CENTRAL TEXAS WATER TREATMENT PLANT TO SERVE AUSTIN AND SAN ANTONIO WATER SYSTEM

SPONSOR:

TEXAS WATER DEVELOPMENT BOARD

STUDY PARTICIPANTS:

PREPARED BY:

OCTOBER 2005

CENTRAL TEXAS WATER TREATMENT PLANT TO SERVE CITY OF AUSTIN AND SAN ANTONIO WATER SYSTEM

Prepared for:

Lower Colorado River Authority P.O. Box 220 Austin, Texas 78767-0220 (512) 327-3200

Prepared by:

K Friese & Associates, Inc. 7600 Burnet Road, Ste. 290 Austin, Texas 78757 (512) 338-1704

OCTOBER 2005

Central Texas Regional Water Treatment Plant to serve City of Austin and San Antonio Water System

Executive Summary

The Lower Colorado River Authority contracted with K Friese & Associates, Inc. to conduct a feasibility study of a Central Texas water treatment plant to serve Austin and San Antonio. Texas Water Development Board and study participants funded the study. Participants include LCRA, the Guadalupe-Blanco River Authority, the San Antonio River Authority, the City of Austin and the San Antonio Water System. The source of Texas Water Development funding is a 50% matching funds grant to conduct regional water facility planning.

The purpose of this engineering study was to evaluate the feasibility and comparative costs of developing a large regional water treatment facility to provide potable water for both the cities of Austin and San Antonio, instead of the two separate facilities currently under consideration in the Texas Water Development Board Region L and K plans. Most water utility managers recognize the compelling economies of scale offered by large regional water treatment facilities, which offer lower construction, operation and maintenance costs, while typically delivering higher quality water. This study developed the information necessary to examine the feasibility and economics of this proposed single large plant alternative versus the currently planned separate facilities, one in Austin and one in San Antonio.

The City of Austin and the San Antonio Water System are planning to develop large surface water transfer and treatment facilities using Colorado River water to meet future water demand. The City of Austin has a site under evaluation for Water Treatment Plant No. 4, which would treat water drawn from Lake Travis. However, the intake site and route for the raw water transmission main has not yet been decided. In addition, the city is considering decommissioning the Green Water Treatment plant on Town Lake.

SAWS is working with LCRA to develop surface water supplies. The LCRA-SAWS Water Project is in the study phase and will involve the development of off-channel storage in Colorado, Wharton or Matagorda counties near the Colorado River. The water captured in this storage would be transferred via pipeline to a location near San Antonio where a new or expanded water treatment plant would be located. The specific location of these facilities has not yet been determined.

This feasibility study examined the idea of developing a single water treatment plant located between the cities of Austin and San Antonio that could provide additional capacity to meet the demands of these two cities.

In addition to studying a source of future treated water for Austin and San Antonio, the study also determined the water demands of the other study participants that could be satisfied by this facility.

The study was not prepared in the traditional way studies of this type are normally done. This study was accomplished using an interactive format in which all of the study participants were actively involved in the actual development of the parameters of the scope, the assumptions, analysis and findings of the investigation. This was accomplished by frequent meetings with the participants in which technical memorandums describing the results to date of the investigation were presented and

discussed. Based on these interactive meetings the study team made refinements in the original scope to adjust the emphasis and detail that were needed to better answer the basic feasibility question that the study was to address.

By performing the study in this manner, participants were able to steer the investigations in a way that would produce the most beneficial findings and allow each of them to evaluate the feasibility of their participation in a regional facility. As the study progressed more alternatives were identified and analyzed than was anticipated in the original scope. The end results included findings that addressed the feasibility question of a regional facility.

Technical Memorandums were drafted as the study progressed and were assembled at the end of the study to form the completed report. Each of the memorandums generally addressed one or more of the tasks identified in the original scope. By performing the study in this manner the final report is not as readable as it might be if the study had been performed in a more traditional manner. However, the analysis and findings are presented in much greater detail and are more useable to the study participants.

The study determined at the end of the planning period in year 2065, there would be a total average day demand of 271 million gallons a day (mgd) of water, which could be met by the proposed regional facility. Both average annual and maximum day demands estimated by the participants are summarized below:

Projected Average Day Demand (acre-feet/year)

Year	2015	2020	2030	2040	2050	2060	2065
City of Austin	0	0	16,802	22,403	33,604	33,604	33,604
SAWS	73,000	205,000	205,000	205,000	205,000	205,000	205,000
GBRA	0	0	6,000	8,000	10,000	12,300	12,300
SARA	20,550	23,406	28,433	31,393	34,411	37,530	41,128
LCRA	0	0	5,600	11,200	11,200	11,200	11,200
Total	93,550	228,406	261,835	277,996	294,215	299,634	303,232

Projected Maximum Delivery Rate (MGD)

Year	2015	2020	2030	2040	2050	2060	2065
City of Austin	0	0	25	35	50	50	50
SAWS	85	238	238	238	238	238	238
GBRA	0	0	11	14	18	22	22
SARA	24	27	33	36	40	44	48
LCRA	0	0	10	20	20	20	20
Total	109	265	317	344	366	373	378

SAWS also provided a second, "delayed demand scenario." The first scenario uses the full amount of water supply available with phasing based on an estimation of when the necessary infrastructure can be in place. The second scenario delays 66,000 acre-feet/year of demand from 2020 to 2030.

Projected Average Day Demand "Delayed Demand Scenario" (acre-feet/year)

Year	2015	2020	2030	2040	2050	2060	2065
City of Austin	0	0	16,802	22,403	33,604	33,604	33,604
SAWS	73,000	139,000	205,000	205,000	205,000	205,000	205,000
GBRA	0	0	6,000	8,000	10,000	12,300	12,300
SARA	20,550	23,406	28,433	31,393	34,411	37,530	41,128
LCRA	0	0	5,600	11,200	11,200	11,200	11,200
Total	93,550	162,406	261,835	277,996	294,215	299,634	303,232

Projected Maximum Delivery Rate "Delayed Demand Scenario" (MGD)

Year	2015	2020	2030	2040	2050	2060	2065
City of Austin	0	0	25	35	50	50	50
SAWS	85	161	238	238	238	238	238
GBRA	0	0	11	14	18	22	22
SARA	24	27	33	36	40	44	48
LCRA	0	0	10	20	20	20	20
Total	109	188	317	344	366	373	378

Several potential alternative diversion points for raw water were identified. One location consisted of a series of intakes located in Matagorda, Wharton, and/or Colorado counties along the lower reaches of the Colorado River. A second location considered for an intake was in the segment of the Colorado River from the City of Austin (Town Lake) downstream of the City of Bastrop. Groundwater from the Simsboro Aquifer was also considered. Three general sites for the location of the regional facility were identified and included in the analysis. The three sites considered were: one east of San Antonio near Interstate 10, one east of San Marcos and one in the northern corner of

Caldwell County. The treatment plant evaluated for the facility consisted of a split process water treatment plant. This process approach recognizes that some of the participants require soft water and some do not. In this approach raw water is split at a distribution box and routed through separate processes. Part of the water would be softened using lime. Part of the water would be treated using a so-called conventional water treatment process. Both waters would be filtered separately through microfiltration membranes. This split process would accommodate separate disinfection approaches to better match the existing practices of the participant to avoid compatibility problems. Points for connecting treated water from a regional facility were identified by each participant.

The initial analysis of the first three alternatives of varying the location of the plant indicated a rather small percentage difference in the cost, the least costly being the location east of San Marcos. Four additional alternatives were developed and analyzed for a more complete understanding of the potential regional scenarios. The results showed a greater reduction in the present value of these four new alternatives compared to the lowest present value of the first three alternatives. However, it was determined that the lower costs were either not comparable or that the changes to the basic scenario included in the alternative scenario were not realistic and could not be implemented. The alternatives considered are summarized below:

Alternative	Description	Total NPV in Millions of Dollars
1A	WTP located east of San Antonio.	\$3,896
2A	WTP located east of San Marcos.	\$3,852
3A	WTP located in northern corner of Caldwell	\$3,895
	County.	
1B	Similar to 1A, with the WTP located 10 miles	\$3,790
	closer to San Antonio.	
1C	Similar to Alt 1B, with Simsboro gravity line	\$3,758
	alternative.	
3B	Similar to Alt 3A, uses the "Delayed Demands".	\$3,379
1D	Similar to Alt 1A, with no Bastrop intake and	\$3,580
	groundwater treatment plant near Elgin.	

One final alternative was evaluated. In this alternative, the plant was changed to a base load plant for San Antonio, SARA and GBRA, thereby reducing the size of the plant and treated water transmission mains. Other adjustments were made to help make the regional facility comparable to the other separate alternatives available to the participants. These adjustments included resizing the raw water intake in Matagorda County per the LCRA-SAWS Water Project Viability Assessment. In addition, an assumption was made that scalping withdrawals would not be required for the Bastrop raw water facilities. Next, for comparison purposes, the present value cost was converted to a cost per acrefoot. This was done by dividing the total cost of the project by the acre-foot capacity. The resulting cost was \$794 per acre-foot for treated water at the water treatment plant, without consideration of the potable water transmission mains. When the potable water transmission mains are considered, the average cost would be \$1,039 per acre-foot delivered to the participant's delivery points. The latter figure is in the upper range of costs that have been developed for the LCRA-SAWS Water Project. Those costs range from \$970 to \$1,103.

Alternative	Description	Total NPV in Millions of Dollars
2A - Special	Similar to 2A, with plant and lines sized for SAWS,	\$3,451
	SARA, and GBRA average day demands	$per\ ac\ -ft = 1,039$

While the cost per acre-foot for a regional facility may be at least marginally reasonable for San Antonio and SARA, it is not for the other participants because of the cost of transmission facilities the other participants would have to build compared to their separate alternatives.

An alternative that was not included in the scope of this study but would appear to be worthy of additional analysis is a sub-regional facility located between Austin and Bastrop on or near the Colorado River. That facility could meet the demands of Austin, LCRA and possibly GBRA in a more cost effective manner. A very preliminary cost estimate for such a facility using similar costing data in this study appears to be in the \$741 per acre-foot range not including potable water transmission mains and \$848 per acre-foot including transmission mains to the participant's delivery points.

TECHNICAL MEMORANDUM

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 1 – Data Collection

DATE: February 8, 2005

Works Consulted

- Alan R. Dutton. <u>Groundwater Availability in the Carrizo-Wilcox Aquifer in Central Texas Numerical Simulations of 2003 through 2050 Withdrawal Projections</u>. Bureau of Economic Geology, 1999.
- Alan Plummer Associates, Inc. <u>Proposed Surface Water Treatment Plant Source Water Quality Study</u>. LCRA, 2000.
- Bennett & Williams Environmental Consultants, Inc. <u>An Evaluation of Alternative Sources of Water at the Berdoll Properties</u>, Austin, Texas. LCRA, 2000.
- CDM. Section 5 Regional Water Treatment Facility Alternatives. LCRA, ND.
- CDM. Ozone/Membrane Pilot Study. City of Austin, 1999.
- City of Austin. Methods for Assessing the Effects of pH Reduction on Lime Softening Distribution Systems. City of Austin, 2000.
- HDR Engineering, Inc. <u>Assessment of Groundwater Availability on CPS Property in Bastrop and Lee</u> Counties, Texas. SAWS, 1999.
- HDR Engineering, Inc. <u>Preliminary Feasibility of Options to Deliver ALCOA/CPS Groundwater to Bexar</u> County. SAWS, 2000.
- HDR Engineering, Inc. Concept Development Report Section 3 Groundwater Quality. SAWS, ND.
- HDR Engineering, Inc. Concept Delivery Study. SAWS, June 2004.
- Hunter Associates. <u>IH-35 Water Transmission Main Preliminary Engineering Feasibility Report</u>. GBRA, 2003.
- Lower Colorado River Authority. LCRA SAWS Water Project Viability Assessment. LCRA, ND.
- Lower Colorado Regional Water Planning Group. <u>Adopted Regional Water Supply Plan for the Lower Colorado Regional Water Planning Group (Region K)</u>. TWDB, 2000.
- Metcalf & Eddy. Water Treatment Plant No. 4 and Associated Intake Facilities Feasibility Report. LCRA, 1997.

Central Texas Regional Water Treatment Plant – Task 1 – Data Collection February 8, 2005 Page 2 of 2

South Central Texas Regional Water Planning Group. <u>South Central Texas Regional Water Planning Area Regional Water Plan</u>. TWDB, 2001.

Texas Water Development Board. Water for Texas – 2002. TWDB, 2002.

U.S. Environmental Protection Agency. <u>Bridging Pilot-Scale Testing to Full Scale Design of UV Disinfection Systems</u>. USEPA, 2004.

TECHNICAL MEMORANDUM

PROJECT: Central Texas Regional Water Treatment Plant

Subject: Task 2 - Demand Projections

DATE: February 8, 2005

The purpose of this study is to evaluate the feasibility and comparative costs of developing a large regional water treatment facility to provide potable water for both the Cities of Austin and San Antonio. Although various raw water sources have been included in the analysis (specifically the LCRA-SAWS Water Project, groundwater from the Simsboro Aquifer, and the Bastrop/Colorado River diversion point), no attempt has been made to evaluate these sources. The sole focus is defining the benefits of regional treatment – not defining the issues surrounding sources of raw water.

The purpose of this task is to establish the projected demands for the potential service area and to develop the projected size of the water treatment plant over the planning horizon. A 50-year planning horizon is used, beginning in 2015 and continuing to 2065. Projected average day demands and maximum delivery rate peaking factors were obtained from each study participant. The projected size of the water treatment plant is based on the maximum delivery rate and is more fully discussed in the technical memorandum for Task 8 – Facility Phasing.

The methodology used by each participant in establishing projected average day demands for the study period is summarized below:

- 1. City of Austin The City of Austin maintains a system model for use in determining future needs and planning improvements. The demands in the model were developed in coordination with the TWDB for consistency with the State Water Plan and the City's demands for the Central Texas Regional Water Treatment Plant (CTRWTP) project were derived from the model.
- 2. SAWS –SAWS is evaluating several potential sources of water including surface water from the Colorado River diverted from the Bastrop area (18,000 acre-feet/year) and from the Matagorda/Wharton County area (132,000 acre-feet/year) as part of the LCRA-SAWS Water Project, and Simsboro groundwater from the Aluminum Company of America and the City Public Service Board of San Antonio (ALCOA/CPS) sites in Milam, Lee, and Bastrop Counties (55,000 acre-feet/year) near the Bastrop surface water diversion point. The projected SAWS demands are based on these available water sources.
- 3. GBRA GBRA demands were developed by subtracting available water supply from the TWDB projected demands for the GBRA service area.
- 4. SARA SARA demands were developed by subtracting the CTRWTP SAWS demands from the TWDB projected water supply deficit for Bexar County.
- 5. LCRA LCRA demands are based on potential water supply to an area in south east Travis County currently known as the Creedmore Maha Water Supply Corporation and the Winfield Municipal Utility District. Demands are based on residential and commercial utility service to approximately 2,400 acres of currently undeveloped land. Maximum day demands were calculated based on a projection of approximately 6,900 connections in 2030 and 13,900 connections in 2040. Next, an average day demand factor of two was applied to the maximum day demands to obtain the projected average day demand.

Table 2-1Projected Average Day Demand
(acre-feet/year)

Year	2015	2020	2030	2040	2050	2060	2065
City of Austin	0	0	16,802	22,403	33,604	33,604	33,604
SAWS	73,000	205,000	205,000	205,000	205,000	205,000	205,000
GBRA	0	0	6,000	8,000	10,000	12,300	12,300
SARA	20,550	23,406	28,433	31,393	34,411	37,530	41,128
LCRA	0	0	5,600	11,200	11,200	11,200	11,200
Total	93,550	228,406	261,835	277,996	294,215	299,634	303,232

The maximum projected delivery rate is derived by applying standard peaking factors used in long-range planning by each participant to the average day demand. These factors are:

- 1. City of Austin = 1.67 x average day demand
- 2. SAWS = 1.3 x average day demand
- 3. GBRA = 2.0 x average day demand
- 4. SARA = 1.3 x average day demand
- 5. LCRA = 2.0 x average day demand

Table 2-2Projected Maximum Delivery Rate (MGD)

Year	2015	2020	2030	2040	2050	2060	2065
City of Austin	0	0	25	35	50	50	50
SAWS	85	238	238	238	238	238	238
GBRA	0	0	11	14	18	22	22
SARA	24	27	33	36	40	44	48
LCRA	0	0	10	20	20	20	20
Total	109	265	317	344	366	373	378

SAWS also provided a second, "delayed demand scenario". The first scenario uses the full amount of water supply available with phasing based on an estimation of when the necessary infrastructure can be in place. The second scenario delays 66,000 acre-feet/year of demand from 2020 to 2030. The second scenario is to be considered if delaying the raw water transmission main from the Matagorda/Wharton County intake location results in a more economically feasible project. SAWS will temporarily obtain the 66,000 acre-feet/year supply from another source until the Matagorda/Wharton County intake is in place. The following tables summarize the "delayed demand scenario".

Table 2-3Projected Average Day Demand "Delayed Demand Scenario" (acre-feet/year)

Year	2015	2020	2030	2040	2050	2060	2065
City of Austin	0	0	16,802	22,403	33,604	33,604	33,604
SAWS	73,000	139,000	205,000	205,000	205,000	205,000	205,000
GBRA	0	0	6,000	8,000	10,000	12,300	12,300
SARA	20,550	23,406	28,433	31,393	34,411	37,530	41,128
LCRA	0	0	5,600	11,200	11,200	11,200	11,200
Total	93,550	162,406	261,835	277,996	294,215	299,634	303,232

Table 2-4
Projected Maximum Delivery Rate
"Delayed Demand Scenario"
(MGD)

Year	2015	2020	2030	2040	2050	2060	2065
City of Austin	0	0	25	35	50	50	50
SAWS	85	161	238	238	238	238	238
GBRA	0	0	11	14	18	22	22
SARA	24	27	33	36	40	44	48
LCRA	0	0	10	20	20	20	20
Total	109	188	317	344	366	373	378

TECHNICAL MEMORANDUM

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 4 - Water Treatment Process

DATE: February 8, 2005

Background

The Central Texas Regional Water Treatment Plant would be one of the largest water treatment facilities in the State of Texas. As such, it is expected that this facility would take advantage of state of the art technology in order to produce a high quality potable water.

The selection of a water treatment process is dependent upon three issues. The first is the source water quality, both surface and groundwater. The second is the State and Federal regulations known currently and anticipated to be in place during the life of the treatment works, and third the finished water quality desired by the customers.

The purpose of this study is to evaluate the feasibility and comparative costs of developing a large regional water treatment facility to provide potable water for both the Cities of Austin and San Antonio.

Although various raw water sources have been included in the analysis (specifically the LCRA-SAWS Water Project, groundwater from the Simsboro Aquifer, and the Bastrop/Colorado River diversion point), no attempt has been made to evaluate these sources. The sole focus is defining the benefits of regional treatment – not defining the issues surrounding sources of raw water.

It is anticipated that the raw water would be derived from at least three sources (See Figure 4.1). As of this writing it is not known where raw water for GBRA and SARA would come from. The largest of the three would be from the Colorado River in the vicinity of Matagorda County near the Gulf of Mexico, the diversion point for the LCRA-SAWS Water Project. It is expected that 132,000 acre-feet/year of surface water would be diverted from this segment of the Colorado River. Another source would be the Colorado River further upstream near the City of Bastrop. It is expected that approximately 18,000 acre-feet/year would be diverted at this location. Also, it is likely that raw water for the City of Austin and LCRA would be withdrawn from the Bastrop location. It is also expected that 55,000 acre-feet/year of groundwater from well fields in Milam, Lee and Bastrop Counties will be introduced into the regional water system at some point during the transmission/treatment system.

As a Public Water System, these facilities must comply with both the State of Texas and Federal drinking water regulations. The State rules are administered by the Texas Commission on Environmental Quality (TCEQ) and are codified in Title 30 Texas Administrative Code Chapter 290 Subchapters D and F. Current and anticipated Federal rules are described later in this section.

Our review of water treatment processes is preliminary based on existing water quality data about the Colorado River and the ALCOA/CPS groundwater and discussions with the various participants as to their individual finished water requirements. Our purpose is not to absolutely establish a water treatment process but to establish a level of appropriate technology that can be used as the basis of cost estimating. We all realize that very involved and detailed water treatability studies will be necessary before the final process is established. Recognize that this study is a comparative analysis of several regional treatment and piping arrangements to see which is more cost effective to implement.

_.\work\WATER\79864\10001\Report-Figure 1.dwg Nov 15, 2004 - 1.27pm

ALCOA/CPS Groundwater

SAWS has entered into agreements with the ALCOA/CPS for the use of groundwater in Milam, Lee and Bastrop Counties (see Figure 4.2). Preliminary water availability studies of the ALCOA/CPS proposed well field areas indicate that the following quantities of groundwater, shown in Table 4-1, are available on a long-term basis.

Table 4-1
Available Groundwater
(acre-feet/year)

Source	Quantity
CPS Property	15,000
ALCOA	40,000
Total	55,000

The quality of the water from the ALCOA/CPS property is considered suitable for public water supplies recognizing that treatment and/or blending with other water to reduce elevated concentrations of iron and manganese will be required (see Table 4-2). It is also reported that certain wells in the Simsboro formation produce high temperature water. The following table generally describes the water quality of the Wilcox Group of the Carrizo-Wilcox Aquifer System which underlie the ALCOA/CPS properties and from where the groundwater would be derived. The Wilcox Group consists of the Hooper, Simsboro and Calvert Bluff formations.

Table 4-2
Statistical Summary of Water Quality Data for Hooper, Simsboro and Calvert Bluff Formations
Source – HDR, Assessment of Groundwater Availability on CPS Property in Bastrop and Lee Counties, Texas, SAWS, July 1999

		Hooper		S	imsboro		Ca	lvert Blu	ff
Water Ouality	Median	Ra	nge	Median	Range		Median Range		nge
Temperature (°C)	23	21	25	26	21	76	23	21	27
Silica (mg/l)	35.0	12.0	53.0	30.0	5.0	62.0	29.0	14.0	69.0
Calcium (mg/l)	70.4	4.4	222.0	66.0	2.4	130.0	72.5	12.0	474.0
Magnesium (mg/l)	12.3	6.8	68.0	11.0	1.9	43.0	17.0	2.2	103.0
Sodium (mg/l)	62.0	24.0	258.0	33.0	18.0	258.0	65.5	27.0	1670.0
Potassium (mg/l)	2.70	-	-	3.70	1.50	10.00	4.90	4.00	6.00
Iron (mg/l)	-	-	-	0.47	0.00	13.00	-	-	-
Manganese (mg/l)	-	-	-	0.18	0.00	0.72	-	-	-
Carbonate (mg/l)	0.0	0.0	7.2	0.0	0.0	0.0	0.0	0.0	0.0
Bicarbonate (mg/l)	237	120	422	226	7	568	218	46	804
Sulfate (mg/l)	28	15	213	61	10	199	133	23	879
Chloride (mg/l)	74	42	550	53	19	205	52	18	3480
Fluoride (mg/l)	0.20	0.10	0.50	0.20	0.00	1.10	0.30	0.00	0.70
Nitrate (mg/l as N)	0.18	0.00	21.00	0.20	0.00	20.40	0.40	0.00	70.00
рН	7.40	6.40	8.50	7.20	5.50	8.50	7.40	6.2	8.30
Total Alkalinity (mg/l)	194	98	346	162	6	256	179	38	659
Total Hardness as CaCO3	226	72	726	223	14	488	255	39	1606
TDS (mg/l)	361	271	1411	369	121	850	436	227	2187
Specific Conductance	556	462	2470	586	192	1400	776	370	11200

SAWS has had numerous studies prepared by other consulting engineers to evaluate the quality and quantity of this specific groundwater source as well as several delivery schemes. The most promising of the delivery schemes calls for transmission piping from the well field over a 107 mile route through Caldwell and Guadalupe Counties terminating at a water treatment plant in eastern Bexar County. This option has a total project cost in excess of \$400,000,000.00. When you examine annual costs and project yield, the cost of this water is calculated at \$864 per acre-feet or \$2.65 per 1000 gallons. This includes the cost of the raw water, well field, transmission facilities including a 107 mile transmission line to a point in eastern Bexar County, and a water treatment plant (51.6 MGD) to remove iron and manganese. Costs do not include integration into the SAWS distribution system.

Water Quality

Let us first understand the source of the surface water considered in this study - The Colorado River. LCRA built several dams on the Colorado River from 1935 to 1951 to create Lakes Buchanan, Inks, Marble Falls, Travis, and Austin. They operate the dams and regulate water releases from the lakes to manage floods and provide water for municipal and industrial water supply, irrigation, mining, hydropower generation, and recreation. Town Lake is impounded by Longhorn Dam which is owned and operated by the City of Austin.

The headwaters of the Colorado River occur in eastern New Mexico and flow to the southeast across Texas approximately 600 miles, discharging into Matagorda Bay and the Gulf of Mexico. According to the "Texas Commission on Environmental Quality's 2002 The State of Texas Water Quality Inventory", the Colorado River has good water quality and fully supports public water supply use for the reaches of the river where water intake facilities are being considered in this study.

Water quality data for three locations in the Colorado River Basin (Figure 4.3) are summarized in Table 4-3. This data describes water that is relatively consistent and typical of the Colorado River. The water is hard with high alkalinity. It is expected that turbidity levels will fluctuate when storm events occur within the river's watershed. It is reported that concentrations of aluminum, iron and manganese may occasionally exceed the secondary contaminant limits. All of these constituents are quite manageable by a modern water treatment facility.

Table 4-3Colorado River Water Quality

	Ton	n Lake	Who	ırton	Bay	v Citv
	Median	Range	Median	Range	Median	Range
Alkalinity (mg/L as CaCO3)	174	117-235	182	73-286	200	69-256
Total Organic Carbon (mg/L)	3	1-5.1	4	2.0-16.0	5	1.0-11.0
Nitrate/Nitrite N (mg/L)	0.26	0.02-0.72	1.12	0.02-3.8	0.02	.01099
TKN (mg/L as N)	0.447	0.03-2.68	0.873	0.02-5.6	0.72	.08-3.45
pH (mg/L)	7.8	7.2-8.3	8.11	6.94-9.4	8.11	6.76-8.8
Total Phosphorous (mg/L)	0.04	0.01-0.269	0.374	0.07-	0.26	.005-1.04
				2.16		
Sulfate (mg/L)	38	14.8-99	40.2	12-220	39.5	0.42-220
Temp (Degrees Centigrade)	21.5	10.7-31.15	22.4	7.2-33.7	22.3	6.5-32.9
Calcium	50.6	48.8-50.6	59.8	59.8	44.6	44.6
Hardness, Total (mg/L CaCO3)	209	188-213	235	220-238	200	134-243
Chlorophyll-A, Phytoplanktonug (L)	2	.2-73.3	4	.2-136	.8-83.4	5.9
Magnesium, Dissolved (mg/L)	21	21-21.2	21.6	21.6	21.5	21.5

Notes: Town Lake near City of Austin, Wharton and Bay City near Gulf of Mexico approximately 100 miles down river of Austin

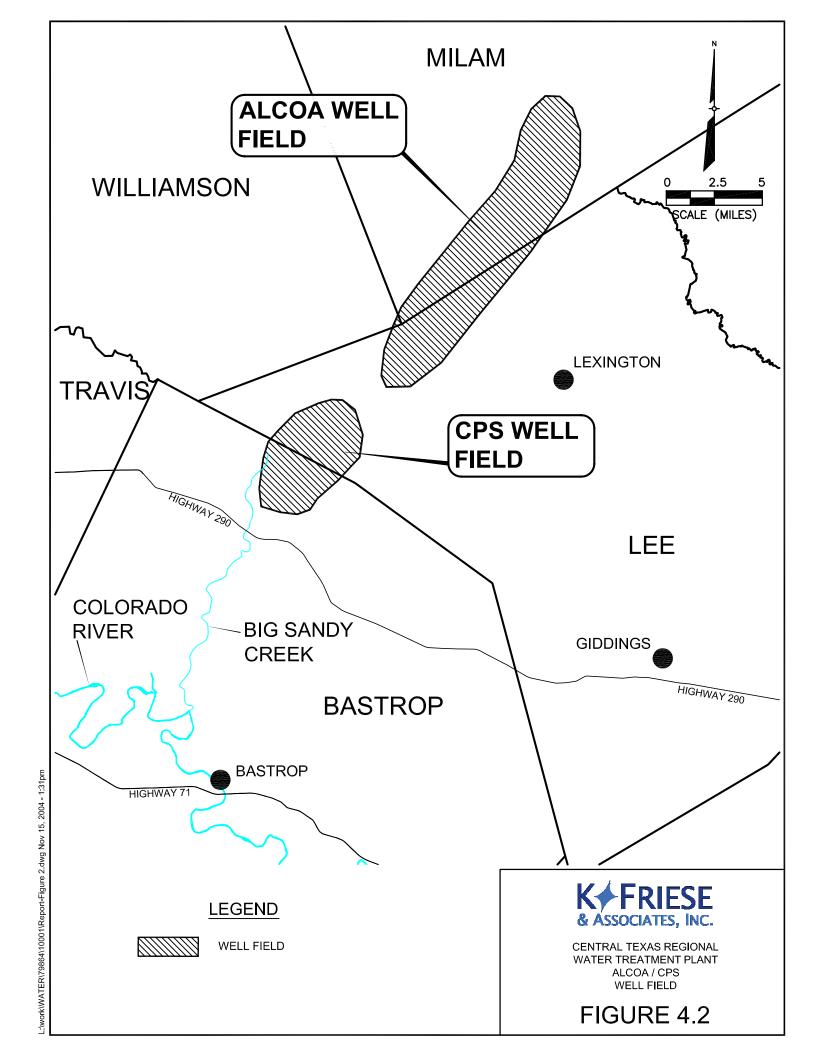
Surface Water Treatability

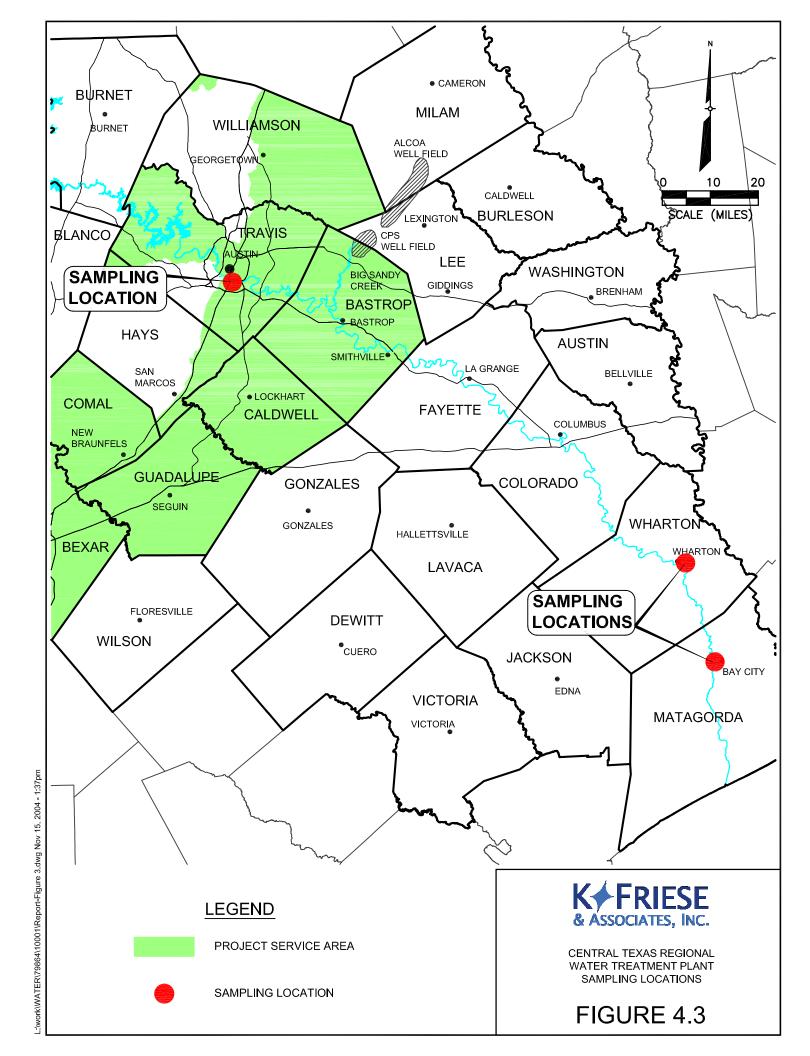
Information on treating the water in the Colorado River near the City of Austin has been largely derived from the City of Austin's own treatment experience. The City of Austin operates three water treatment plants, two on Lake Austin and one on Town Lake. Table 4-4 identifies the three water treatment facilities.

Table 4-4
City of Austin Treatment Process
(MGD)

Water Treatment Plant	Process	Capacity	Disinfection	Source
	Lime			Lake Austin
Davis	Softening	118	Chlorine/Chloramines	Colorado River
	Lime			Lake Austin
Ullrich	Softening	100	Chlorine/Chloramines	Colorado River
	Lime			Town Lake
Green	Softening	42	Chlorine/Chloramines	Colorado River

The City of Austin has more experience in treating the waters of the Colorado than anyone else. It is important to examine their historical experience in developing our proposed process selections.


The Green, Davis and Ullrich Water Treatment Plants are lime-softening plants. The Green and Davis WTPs are conventional lime softening plants with rapid mix basins, flocculation, sedimentation and filtration. The softening process at the Ullrich WTP is performed in upflow solids contact basins. As a result of the lime softening process the pH of the water is increased from approximately 8 to 10 or greater.


Currently gaseous chlorine is used for primary disinfection. After an appropriate contact time ammonia is added to form chloramines.

Ferric sulfate is used at all three plants as a coagulant. Fluoride is added to the water to promote dental health. Powdered activated carbon (PAC) is used as needed for taste and odor control.

In recent years Davis and Ullrich began recarbonation to reduce the pH and scaling potential in the filters and distribution system.

It is important that we examine this approach for possible consideration for a new water treatment plant.

Regulatory Framework

Water treatment regulations have evolved significantly since the advent of the Safe Drinking Water Act in 1974. A major challenge for water suppliers is how to balance the risks from microbial pathogens and disinfection byproducts. It is important to provide protection from these microbial pathogens while simultaneously ensuring decreasing health risks to the population from disinfection byproducts (DBPs). The Federal regulations that need to be considered include the following:

- 1. Safe Drinking Water Act (Primary Drinking Water Standards)
- 2. Surface Water Treatment Rule
- 3. Lead and Copper Rule
- 4. Total Coliform Rule
- 5. Stage 1 Disinfectants/Disinfection By-Products (D/DBP) Rule
- 6. Interim Enhanced Surface Water Treatment Rule (IESWTR)
- 7. Long-Term Enhanced Surface Water Treatment Rule (LT1ESWTR)
- 8. Filter Backwash Rule
- 9. Arsenic Rule
- 10. Radionuclides Rule
- 11. Unregulated Contaminant Monitoring Rule (UCMR)
- 12. Pharmaceutical and Personal Care Products (PPCPs) (Future)
- 13. Secondary Drinking Water Regulation
- 14. Total Coliform Rule and Distribution System Rule (Future)

The U.S. Environmental Protection Agency (EPA) is in the process of issuing two additional regulations, the Long-Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) and the Stage 2 D/DBPR.

The LT2ESWTR includes the following provisions:

- 1. Source water monitoring for Cryptosporidium
- 2. Additional Cryptosporidium treatment techniques for filtered systems based on source water Cryptosporidium concentrations
- 3. Inactivation of Cryptosporidium for all unfiltered systems
- 4. Disinfection profiling and benchmarking to assure continued levels of microbial protection while PWs take the necessary steps to comply with new DBP standards
- 5. Covering, treating or implementing a risk management plan for uncovered finished water reservoirs

The expected requirements for the Stage 2 D/DBPR are:

- -80 ug/L TTHM (Total Trihalomethanes)
- -60 ug/L HAA5 (Haloacetic Acid)

It will be required that each system conduct an Initial Distribution System Evaluation (IDSE) and compliance with each MCL will be determined based on a Locational Running Annual Average.

It is expected that Federal Regulations will continue to put emphasis on better filter performance and control of disinfection byproducts.

Softening

Hard water can cause scaling problems in water heaters as well as other appliances where the temperature of the

Central Texas Regional Water Treatment Plant – Task 4 - Water Treatment Process February 8, 2005 Page 9 of 17

water is increased and soap does not lather well in hard water. "Hardness" in water is primarily the result of concentrations of naturally occurring calcium and magnesium ions that are dissolved in the water. Because of these issues some water utilities choose to soften water during the treatment process.

Hardness in water is derived from contact with soil and rock formations, which in the case of Central Texas is contact with limestone formations. The water in the Colorado River is relatively hard with calcium carbonate hardness in the range of 220 mg/L. In general the degree of hardness is classified as follows:

Table 4-5
Hardness Classification
(mg/L)

Hardness	CaCO ₃
Soft	0 to 75
Moderate	75 to 150
Hard	150 to 300
Very Hard	Above 300

Source: Water Treatment Plant Design, 1998.

For most applications, total hardness of 80-120 mg/L appears to be a typical design target for softening facilities.

In the lime softening process, the soluble hardness constituents are converted to insoluble precipitates that are removed by settling and filtration. Softening is usually accomplished by adding chemical lime (CaO) to the water to increase its pH. Elevating the pH of the water to about 10.3 precipitates the ferrous, manganous, and calcium ions out of the water. Raising the pH further begins to precipitate magnesium ions as well. Softening to remove only the calcium hardness is called lime softening, while softening to remove calcium and magnesium hardness is called excess lime softening.

Finished water quality data for both the City of Austin and the City of San Antonio are presented in Tables 4-6 and 4-7. It is evident from this information that the characteristics of the drinking water in these two communities is somewhat different. First San Antonio is used to a relatively hard water which is softened using home softeners at the individual customer's location. Austin Water Utility provides softened water.

Also the disinfection practice of these two communities is different with San Antonio using free chlorine and Austin using a combination of chlorine and chloramine disinfection. Both communities fluoridate.

Table 4-6 Finished Water Quality Data - City of Austin

CITY OF AUSTIN WATER QUALITY SUMMARY 1st Quarter Averages (January 1, 2004 to March 31, 2004) **Preface**

	DWTP	GWTP	UWTP	DWTP	GWTP	UWTP	SDWA Tap
CONSTITUENT (mg/L)	Raw	Raw	Raw	Тар	Тар	Тар	MCL/[SMCL]
Total Ammonia (as N)	0.05	0.05	0.05	0.49	0.49	0.51	
Free Ammonia (as N)				0.10	0.12	0.13	
Calcium	46	54	46	12	16	14	
Chlorine Residual				2.27	2.20	2.23	
Fluoride	0.22	0.23	0.22	0.92	0.81	0.88	4/[2]
Magnesium	20	20	20	18	18	16	
Sulfate	30.5	32.6	31.1	37.0	37.4	35.9	[250]
Total Phosphate	0.03	0.04	0.03	0.91	1.11	1.01	
Total Hardness (as CaCO ₃)	198	220	199	104	114	100	
pH (units)	8.2	8.0	8.2	9.8	9.8	9.6	[>7.0]
Conductivity (umhos/cm)	484	516	484	328	344	325	
Total Alkalinity (as CaCO ₃)	168	184	168	68	77	65	
Phenol Alkalinity (as CaCO ₃)	0	0	0	20	23	16	
Total Solids	298	319	294	198	208	199	[500]
Threshold Odor (TON)	4	4	4	0	0	0	[3]
Total Organic Carbon	3.16	2.77	3.10	2.23	2.09	2.11	
Turbidity (NTU)	4.09	2.91	3.81	0.06	0.06	0.04	0.3
Silica	8.0	8.1	7.9	7.6	8.3	7.6	
UV254 (cm ⁻¹)	0.060	0.050	0.060	0.050	0.040	0.040	
Total Coliform (Col/100ml)	106	586	158	<1	<1	<1	
E.Coli (Col/100ml)	13	114	14	<1	<1	<1	

Parameters listed below were analyzed by the Texas Department of Health for compliance with the Safe Drinking Water Act.

	DWTP	GWTP	UWTP	DWTP	GWTP	UWTP	SDWA Tap
CONSTITUENT (mg/L)	Raw	Raw	Raw	Тар	Тар	Тар	MCL/[SMCL]
Nitrate (as N)	&	&	&	0.0133	0.218	<0.0100	10
Chloride	&	&	&	36.9	37.1	36.6	[250]
Trihalomethane	&	&	&	0.0219	0.0236	0.0168	0.080
Sodium	&	&	&	18.9	19.0	19.1	
Aluminum	&	&	&	0.017	0.020	0.008	[0.05 - 0.2]
Arsenic	&	&	&	< 0.002	< 0.002	< 0.002	0.01
Barium	&	&	&	0.007	0.006	0.010	2
Cadmium	&	&	&	< 0.001	< 0.001	< 0.001	0.005
Chromium	&	&	&	< 0.001	< 0.001	< 0.001	0.1
Copper	&	&	&	< 0.001	0.003	< 0.001	1.3 **
Iron	&	&	&	< 0.05	< 0.05	< 0.05	[0.3]
Lead	&	&	&	< 0.001	< 0.001	< 0.001	0.015 **
Manganese	&	&	&	< 0.001	< 0.001	< 0.001	[0.05]
Mercury	&	&	&	< 0.0002	< 0.0002	< 0.0002	0.002
Nickel	&	&	&	< 0.001	< 0.001	< 0.001	[0.10]
Selenium	&	&	&	< 0.004	< 0.004	< 0.004	0.05
Silver	&	&	&	< 0.001	< 0.001	< 0.001	0.1
Antimony	&	&	&	< 0.001	< 0.001	< 0.001	0.006
Beryllium	&	&	&	< 0.001	< 0.001	< 0.001	0.004
Thallium	&	&	&	< 0.001	< 0.001	< 0.001	0.002
Zinc	&	&	&	< 0.004	< 0.004	< 0.004	[5.0]
Endrin	&	&	&	< 0.0002	< 0.0002	< 0.0002	0.002
Lindane	&	&	&	< 0.0002	< 0.0002	< 0.0002	0.0002
Methoxychlor	&	&	&	< 0.0002	< 0.0002	< 0.0002	0.04

SDWA MCL = Safe Drinking Water Act Maximum Contaminant Level
SMCL = Secondary Maximum Contaminant Level standard recommended by TCEQ for aesthetic quality
** = Action Levels

< = Symbol indicates levels are below detection limits of the instrumentation or method

[&]amp; = No data available

Table 4-7 Finished Water Quality Data - City of San Antonio

Substance	Highest Concentration found in Water	Concentration Range found in Water	MCL	MCLG	Possible Source
Nitrate (ppm) 2003	2.12	.06-2.12	10	10	Erosion of natural deposits; Runoff from fertilizer use; Leaching from septic tanks, sewage.
Barium (ppm) 2003	0.0516	0.0487-0.0516	2	2	Erosion of natural deposits; Discharge of drilling wastes; Discharge from metal refineries.
Fluoride* (ppm) 2003	1.1	0.5 – 1.1	4	4	Erosion of natural deposits; Discharge from fertilizer and aluminum factories.
Nitrite (ppm) 2003	0.01	ND- 0.01	10	10	Erosion of natural deposits; Runoff from fertilizer use; Leaching from septic tanks, sewage.
Tetrachloroethylene (ppb) 2003	0.9	ND - 0.9	5	0	Leaching by PVC pipes; discharge from factories and dry cleaners.
Di-(2-ethyllhexyl) phthalate (ppb)**	4.19	ND - 4.19	6	0	Discharge from rubber and chemical factories.
Gross alpha adjusted (pCi/l) 2003	4.7	ND - 4.7	15	0	Erosion of natural deposits

Fibroride in the form of hydrofluorosilic acid (H2SiF6) was added to SAWS drinking water as of August 2002.

** Phthalate contamination was unavoidable in the process of analyzing the sample for this substance, therefore this concentration may not have been reliable.

Other Substances (2003)

Substance	Concentration Range (ppm)	Avg. Concentration (ppm)	MCL (ppm)
Calcium	71 - 91	81	Not regulated
Chloride	20	20	250
Copper	0.005 - 0.007	0.006	1
Magnesium	16 - 29	23	Not regulated
Sodium	6 - 9	8	Not regulated
Sulfate	17 - 20	19	250
Total Hardness a	240 - 343	292	Not regulated
Total Alkalinity a	209 - 319	264	Not regulated
Total Dissolved Solids	283 - 358	321	500
Zinc	0.0336 - 0.129	0.08	5

a As Calcium Carbonate

Required Monitoring - No MCLs ^d (2003)

Substance ^e	Range Detected (ppb)	Average Concentration (ppb)	Reasons for Monitoring
Chloroform	ND	ND	^d These values are from points of entry.
Bromodichloromethane	ND - 2.4	1.1	e Unregulated contaminants monitored helps EPA to
Dibromochloromethane	ND - 2.9		determine where certain contaminants occur and
Bromoform	ND - 1.3	1.1	whether EPA needs to regulate those contaminants.

Lead and Copper Results f (2001)

Substance	90 th Percentile	Action Level	Number of residences exceeding Action Level	Possible Source
Lead (ppb)	4.9	15	0	Corrosion of
Copper (ppm)	0.215	1.3	0	household plumbing

f: These two metals get into the water because of corrosion of household plumbing. Many older homes have copper pipes that were put together with lead-based solder. The 90th percentile means that 90 percent of the homes measured had less than that.

A total of 50 residences were monitored.

Microbiological Contaminants Monitoring (2003)

Substance	MCL Amount Found		Source
Total Coliform (presence)		Highest monthly % of positive samples was 3.24%	Naturally present in the environment
Fecal Coliform (presence)	**	0	Human and animal waste

^{*}presence of coliform bacteria in 5% or more of the monthly samples

**A routine sample and a repeat sample are total coliform positive and one is also fecal coliform or E. coli positive

Central Texas Regional Water Treatment Plant – Task 4 - Water Treatment Process February 8, 2005 Page 12 of 17

Process Alternatives

Selection of the water treatment process is made to accomplish the following objectives;

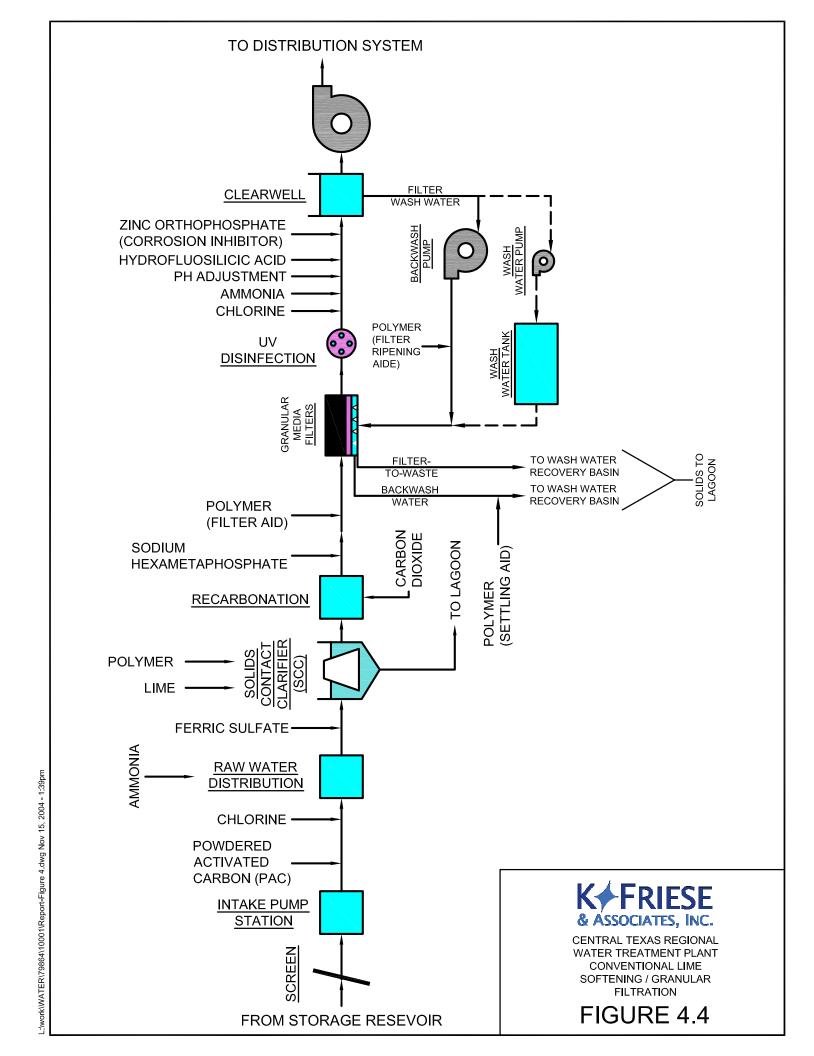
- 1. Produce water safe for human consumption meeting all regulations
- 2. Achieve consumer satisfaction
- 3. Produce water at a reasonable capital and operating cost

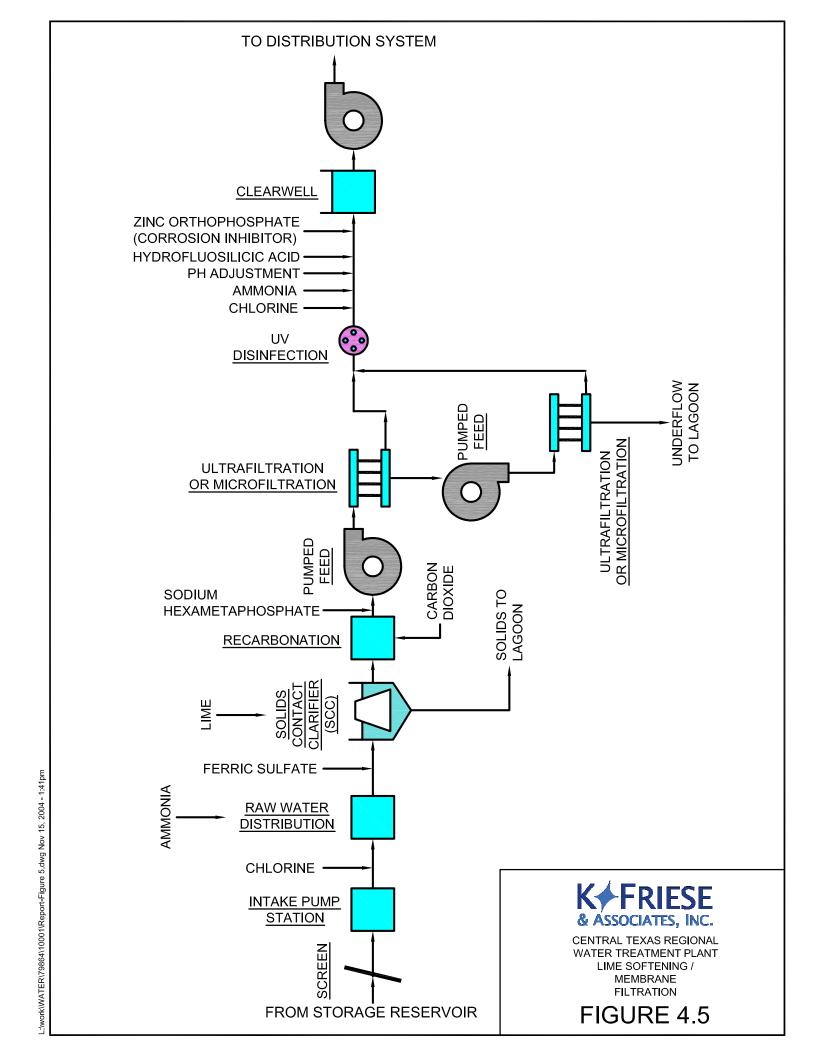
The water treatment plant will be designed to remove and/or deactivate certain characteristics such as turbidity, color, taste, odor as well as microbial and bacteriological contaminants and other chemical constituents. The typical processes utilized to accomplish this include the addition of coagulation chemicals to the raw water, clarification, filtration and disinfection.

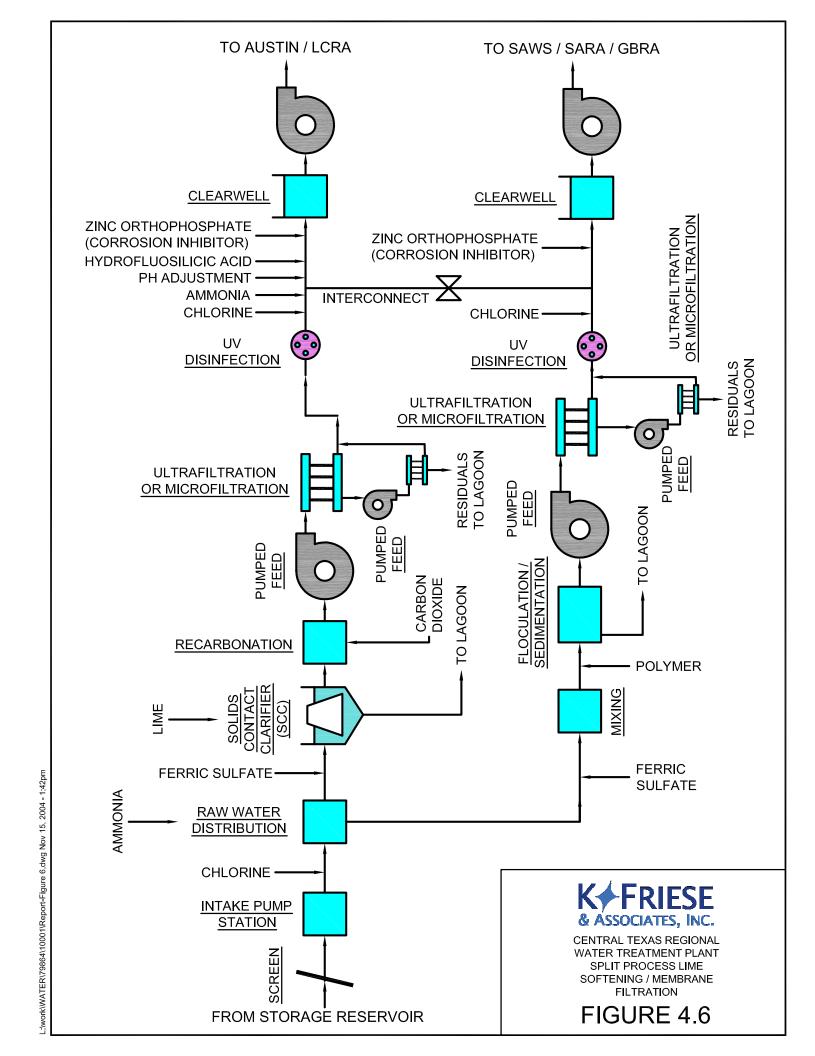
Presented in Figure 4.4 is a proposed conventional lime softening water treatment facility with granular filtration. This is fairly similar to what the City of Austin currently utilizes with the exception that we have substituted Ultraviolet light for disinfection. We present this level of technology for costing purposes if we were to consider the current state of drinking water regulations.

Figure 4.5 presents more advanced technology utilizing lime softening. In this case the granular media filtration system is replaced with filtration membranes. This technology anticipates more stringent regulations which are sure to develop over the life of this water treatment facility and develops the multiple barrier approach that is considered very desirable to minimize the penetration of microbial pathogens.

Figure 4.6 presents a split process water treatment facility. This process approach recognizes that some of the participants require soft water and some do not. In this approach raw water is split at a distribution box and routed through separate processes. Part of the water would be lime softened. Part of the water would be treated using a so-called conventional water treatment process. Both waters would be filtered separately through microfiltration membranes. This split process would accommodate separate disinfection approaches to better match the existing practices of the participant to avoid compatibility problems.


For purposes of this study we will develop costing around the concept of the split process.


Compatibility Issues


Finished water from this water treatment facility will be distributed to five retail water systems, who in some cases already receive groundwater or surface water from another source, for distribution to their customers. Blending of waters from different sources and treatment plants can have a significant impact on pH stability and distribution system water quality. It will be important to examine these compatibility issues in the process selection. In some cases polishing facilities will be necessary to match the outgoing finished water to the existing water quality. The following compatibility issues should be examined in the future.

Water pH is a major factor in the solubility of pipe materials and films that form from corrosion by-products. Mixing waters with different pH's can result in distribution system instability, colored water and aesthetic water quality issues.

There is also a concern relative to blending waters that have different chlorine-based disinfectants, which can happen when water that is disinfected with chloramines is mixed with water that is disinfected with free chlorine. The concern here is the breakpoint reaction that results in residual depletion. Taste and odor problems develop in the blending zone where conditions might allow the formation of di- and tri-chloramines.

Central Texas Regional Water Treatment Plant – Task 4 - Water Treatment Process February 8, 2005
Page 16 of 17

Using a split process approach will help in minimizing many of the compatibility issues and allow the treatment facility to better match the participant's existing water.

Residuals Disposal

Residuals management will be an important part of the water treatment facility. This section of the report will describe what will be done with those constituents that are removed from the water during the treatment process. This can include the sludge from a conventional water treatment process, the lime sludge produced during the softening process as well as the concentrate from a membrane facility.

For purposes of this study we have assumed that the location of the water treatment plant will be such that we have sufficient land available so we can fully develop lagoons for disposal of residuals. The residuals that need to be considered include the disposal of settled solids from the chemical coagulation process as well as the lime softening sludge. Other options include various thickening and dewatering techniques where adequate land is not available, although these are typically more expensive and maintenance intensive.

The concentrate from a microfiltration or ultrafiltration plant consists only of particulates which were removed from the water. We propose that this also be placed into the lagoon system. This also can be disposed of in a sanitary sewer if one is available nearby, but this is more expensive.

Raw Water Storage

Since the raw water delivery facilities will be designed for average demands, it will be necessary to store raw water at the treatment plant site to allow the facility to meet peak day requirements. Given the extended periods of dry/hot weather that can be experienced in Central Texas, there is a tendency to experience several peak days in succession.

We recommend that the water treatment plant be designed to have the capacity for 30 peak days in succession and that the raw water storage reservoir be sized for the greater of peak requirement less the average day requirement over a continuous 30-day period and 15 days at average day demand.

Cost Estimates

It is recognized in the water industry that the unit capital cost of a water treatment plant varies inversely to the size of the plant, in other words the bigger the plant the smaller the per gallon unit price is. This is one of the reasons that many communities look to participate in larger regional water treatment facilities.

The following cost information for water treatment plants has been developed based on cost experience throughout the region adjusted for current Engineering News Record (ENR) indices to the 3rd Quarter of 2004. For purposes of this study we have selected the split process using both conventional water treatment as well as lime softening as shown in Figure 4.6. We will treat each section of the split process as a separate plant for costing purposes. The cost tables are presented in graphical form in Figure 4.7.

Operation and maintenance (O&M) costs were developed as a percentage of capital cost. Cost curves for O&M costs are presented as Figure 4.8. The O&M costs include labor, materials, replacement of equipment, process energy, building energy, chemicals, and pumping energy.

The Capital and O&M costs associated with groundwater treatment facilities has been derived from a letter report developed by HDR Engineering dated August 24, 2004 entitled "Work Item #9 SAWS Simsboro Project: Updates of Delivery Options 1 and 2".

Figure 4.7
Water Treatment Plant Unit Costs
Capital Costs

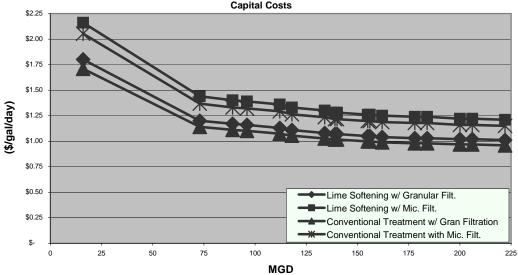
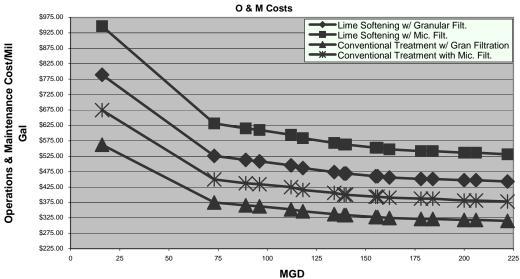



Figure 4.8
Water Treatment Plant Unit Costs

TECHNICAL MEMORANDUM

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 5 – Establish Potential Take Points (Diversions of Raw Water)

DATE: February 8, 2005

Background

The purpose of this study is to evaluate the feasibility and comparative costs of developing a large regional water treatment facility to provide potable water for both the Cities of Austin and San Antonio. Although various raw water sources have been included in the analysis (specifically the LCRA-SAWS Water Project, groundwater from the Simsboro Aquifer, and the Bastrop/Colorado River diversion point), no attempt has been made to evaluate these sources. The sole focus is defining the benefits of regional treatment – not defining the issues surrounding sources of raw water.

The purpose of this task is to establish potential take points and delivery routes for raw water. In addition to potential sites in Colorado, Wharton and Matagorda Counties, consideration is given to additional surface water diversions in Bastrop County and in Travis County, and to groundwater from the Simsboro Aquifer.

Raw Water Intake Locations

Two general locations were considered for the regional system's raw water intakes. The first location would consist of a series of intakes located in Matagorda, Wharton, and/or Colorado Counties along the lower reaches of the Colorado River. The second general location for an intake or intakes was in the segment of the Colorado River from the City of Austin (Town Lake) downstream to the City of Bastrop.

The lower Colorado intakes would be in the same locations as the intakes contemplated for the LCRA-SAWS Water Project that is currently in the planning phase. It is beyond the scope of this study to select the best specific location for these intakes. The specific siting of these intakes is being done as part of the LCRA-SAWS Water Project planning study. Unfortunately, the LCRA-SAWS Water Project planning study has not yet identified the best location for these intakes. For the purpose of this study, it was assumed that the location of the lower Colorado intakes would be in Matagorda County (just downstream of the Wharton/Matagorda county line) and this location was used for all alternatives considered. This location was chosen as the most conservative in terms of both water rights and cost. That is, it is a location that is most likely to have the available water rights needed for the project and is the farthest from the service area. If the lower Colorado intakes can be located further upstream, overall transmission main costs will be reduced but it is assumed that all alternatives would be affected almost equally.

For the river segment between Austin and Bastrop, the alternative analysis considered intakes on Town Lake at Austin and just upstream of Bastrop. The Town Lake intake was considered because the City of Austin has rights to withdraw water at this location. Furthermore, raw water pumped from this location would have lower energy costs associated with it compared with allowing this water to flow down to Matagorda County and having to pump it to the water treatment plant and then back to Austin.

An intake at Bastrop was considered initially because of diversion of 18,000 acre-feet/year at Bastrop is contemplated in the State Water Plan. As the alternative analysis process developed, it also became apparent that a Bastrop intake and raw water transmission main to the water treatment plant might also be used to reduce costs to

Central Texas Regional Water Treatment Plant – Task 5 – Establish Potential Take Points (Diversions of Raw Water) February 8, 2005
Page 2 of 5

deliver ground water from the ALCOA/CPS well fields to San Antonio.

While it is conceivable that all the raw water available to SAWS, LCRA, and the City of Austin could be diverted at the lower Colorado intake(s) in Matagorda County, it was considered that a second intake up-river might lower the overall project costs. Having an intake upriver could reduce the overall operational costs, since during high river flow periods, raw water that would have been diverted downstream, could be diverted upriver through the Town Lake or Bastrop intakes. This would reduce the overall pumping costs for both intakes without significantly affecting Colorado River flows.

A sole intake at Town Lake or Bastrop is not feasible because there are not sufficient water rights available in the Colorado River to meet the participant's demands. Thus, the Matagorda intakes are necessary under all scenarios.

While up-river intakes at both Town Lake and Bastrop are possible from technical and water rights points of view, the economics do not appear viable. The cost of two intakes and two raw water transmission mains increase the overall project costs over alternatives that have only one intake. An intake at Town Lake the advantage of the existing Longhorn Dam facilitating the diversion

However, the Town Lake intake could not be used to withdraw the 18,000 acre-feet of Colorado River water that may be available at Bastrop, nor could the Town Lake intake offer synergies with the transmission of ALCOA/CPS groundwater to the water treatment plant. The initial screening of the alternatives also indicated that a water treatment plant location southeast of Austin and an intake near Bastrop would offer a lower overall project cost compared with an intake on Town Lake.

For these reasons, the alternatives evaluated in this study considered intakes in Matagorda County and just upstream of Bastrop. Because of the general nature of the intake, off-channel reservoir, and treatment plant sites; delivery routes for raw water were taken to be a straight line between the assumed location of each of these facilities.

Matagorda County Raw Water Intake Facilities and Off-Channel Reservoirs (RWI-A)

In accordance with the planning for the LCRA-SAWS Water Project, the lower Colorado River intake system in Matagorda County will involve a low head dam across the river and four to six intake structures that would pump river water to four to six large off-channel reservoirs near the Colorado River. Depending on the location of the intakes, the low head dam may or may not be necessary. For the purpose of this study, it has been assumed that there would be four low head dams of the inflatable type, four raw water intakes, and four reservoirs (except for alternatives 1D and 2A - Special).

According to the Project Viability Assessment (PVA) for the LCRA-SAWS Water Project, the lower Colorado intakes would be designed to withdraw 4000 to 6000 cfs from the river during peak flow events. A peak withdrawal of 4,000 cfs has been assumed in this analysis. The average withdrawal would be 132,000 acrefeet/year (equivalent to 182 cfs). Thus, each of the four intakes would be sized to "scalp" up to 1000 cfs during periods of high river flow.

Each intake would pump raw water through a raw water main to an off-channel reservoir. Thus, there would be a total of four raw water mains, each designed for a peak flow of 1,000 cfs and having a length of one mile and a diameter of 120 inches. Each of the four off-channel reservoirs would have a storage capacity of 25,000 acre feet and a surface area of 1,340 acres.

Central Texas Regional Water Treatment Plant – Task 5 – Establish Potential Take Points (Diversions of Raw Water) February 8, 2005
Page 3 of 5

Raw Water Transmission Main and Pump Stations (RWTM-A)

The raw water stored in the four off-channel reservoirs in Matagorda County would be pumped via a high head pumping station(s) into a raw water transmission main (RWTM) that would deliver the raw water to the water treatment plant. Although the distances between the off-channel reservoirs may, and probably would, dictate the need for more than one high head pumping station at the upstream end of the RWTM, this alternative analysis has assumed all four off-channel reservoirs would feed to a single high head pumping station.

In all of the alternatives, RWTM-A would be over 120 miles in length. Due to this length and the elevation difference between Matagorda County and the alternative WTP sites, at least two additional booster pumping stations would be necessary along the route to avoid pipeline pressures above 150 psi. Each of the booster stations would also include a balancing reservoir with a capacity of about 5 million gallons, which would represent about 60 minutes of storage at the design pumping rate of about 82,000 gpm. The purpose of the balancing reservoirs along the RWTM would be to facilitate operation of the booster pumps, which would take suction from the balancing tank. The balancing tanks are not intended to provide maximum demand versus average demand balancing.

ALCOA/CPS Groundwater

As mentioned in an earlier chapter, SAWS has agreements to obtain as much as 55,000 acre-feet of groundwater from well fields in the Simsboro Aquifer in Bastrop, Lee and Milam Counties. SAWS is considering a separate pipeline to transport this groundwater to San Antonio. However, since this pipeline would cross and parallel the raw water transmission main for a regional facility, the transportation of this groundwater to San Antonio has been considered in the alternatives analyzed in this project. Of particular interest is whether or not this groundwater, together with limited water rights in the Colorado River at Bastrop, could be used to delay the construction of the lower Colorado intakes, off-channel reservoirs and RWTM-A.

Several possibilities were identified for integrating the ALCOA/CPS groundwater into a regional water supply plan. These are as follows:

- 1. Groundwater could be piped to the off-channel reservoir near the Bastrop intake and combined with surface water, then pumped to the water treatment plant in a common raw water transmission main (RWTM-B).
- 2. The groundwater could be discharged to Big Sandy Creek at Hwy 290 and allowed to flow to the Colorado River where it would mix with surface water. This would allow the diversion of an equal amount of raw water from the Colorado River either at the Bastrop intake (RWI-B) or at the Matagorda intake downstream (RWI-A). This additional raw water would then be pumped into the off-channel reservoirs near RWI-A or RWI-B and then pumped to the WTP via RWTM-A or RWTM-B.
- 3. The groundwater from the well fields could be treated separately (for iron and manganese removal). The treated water would then be pumped into the potable water transmission system downstream of the WTP that would treat the raw water from the Colorado River.

Option 3 takes advantage of the quality of the groundwater and would result in lower treatment costs for the 55,000 acre-feet/year available from the ALCOA/CPS well fields. However, overall transmission costs could be higher since a separate groundwater transmission main (GWTM) would be required from the well fields and the groundwater treatment plant to the interconnection with the potable water transmission main.

Central Texas Regional Water Treatment Plant – Task 5 – Establish Potential Take Points (Diversions of Raw Water) February 8, 2005
Page 4 of 5

Transmission main costs would be lower in Option 1 but the groundwater would be treated in the surface water treatment system along with the surface water from the Colorado River. Part of the additional treatment costs could be offset by constructing wells as "non-potable" wells; savings of about \$17 million for the 120 wells anticipated. (San Antonio Water System Preliminary Feasibility of Options to Deliver ALCOA/CPS Ground Water to Bexar County, HDR, Jan 2000; and HDR Update Memo of August 24, 2004).

Transmission costs could be reduced even lower using Option 2, since there would be no need for a GWTM from the well fields to the Colorado River. Since Big Sandy Creek discharges to the Colorado River just upstream of the proposed Bastrop intake (RWI-B), there would be no impact on water rights if an additional 55,000 acre-feet were diverted just downstream at the Bastrop intake.

In the alternative analysis that follows, each of these options is considered in order to estimate the relative savings that could be realized from one option to the next. This information could then be used to judge whether each option should be pursued in more detail in the event a regional system is attractive to the participants.

Bastrop Raw Water Intake Facilities and Off-Channel Reservoir (RWI-B)

As with the Matagorda intakes, the Bastrop intake system will involve low head dams across the river, intake structures with low head pump stations, and off-channel reservoirs near the Colorado River. However, since the diversion at this point would be less, it has been assumed that there would be two low head dams, two raw water intakes, and four reservoirs.

The average yearly withdrawal would be 18,000 acre-feet/year for SAWS plus the withdrawals to meet the LCRA and COA demands (11,200 acre-feet/year and 33604 acre-feet/year in 2065, respectively). In 2065, the total average withdrawal would be 62,804 acre-feet/year, which is equivalent to 87 cfs. The Bastrop intake would be designed to withdraw up to 2000 cfs from the river during peak flow events. The peak withdrawal rate is based on the same ratio of peak withdrawal rate to average withdrawal rate that was determined by LCRA for the Matagorda intake. LCRA would need to undertake a similar analysis to verify this assumed peak withdrawal rate in the event a regional system is pursued.

If the ALCOA/CPS groundwater is discharged to Big Sandy Creek (see Option 2 above under <u>ALCOA/CPS Groundwater</u> section of this memorandum) then RWI-B would be sized to withdraw an additional 55,000 acrefeet/year from the Colorado River. Since the groundwater would be discharged to Big Sandy Creek at an average rate of 55,000 acre-feet/year, the additional withdrawal rate at RWI-B would also be 55,000 acre-feet/year. Thus, no peak withdrawal factor would need to be applied to this volume.

The Bastrop intakes would pump raw water through four raw water mains to four 15,000 acre-foot off-channel reservoirs. Each raw water main would be designed for a peak flow of 224,000 gpm and would have a diameter of 120 inches and a length of two miles. It was assumed that the off channel reservoirs would need to be smaller and possibly farther away from the river near Bastrop (when compared to Matagorda County). Thus, 15,000 acre-foot reservoirs were assumed (instead of 25,000 acre-feet) and two mile raw water mains were used (instead of one mile mains as assumed for the intakes in Matagorda County).

Raw Water Transmission Main and Pump Stations (RWTM-B)

The raw water stored in the off-channel reservoir near the Bastrop intake (RWI-B) would be pumped via a high head pumping station(s) into a raw water transmission main that would deliver the water to the water treatment plant.

Central Texas Regional Water Treatment Plant – Task 5 – Establish Potential Take Points (Diversions of Raw Water) February 8, 2005
Page 5 of 5

As in the case of RWTM-A, additional booster pumping stations may be necessary along the RWTM-B route to avoid pipeline pressures above 150 psi. Each of the booster stations would also include a balancing reservoir which would have a capacity equivalent to about 60 minutes of storage at the design pumping rate for the raw water transmission main. The balancing tanks would be used to facilitate operation of the booster pumps and are not intended to impact the design basis of RWTM-B, which is the average demand for raw water from the Bastrop intake system.

TECHNICAL MEMORANDUM

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 6 – Potential Plant Sites and Potable Water Transmission Main Routes

DATE: February 8, 2005

Background

The purpose of this study is to evaluate the feasibility and comparative costs of developing a large regional water treatment facility to provide potable water for both the Cities of Austin and San Antonio. Although various raw water sources have been included in the analysis (specifically the LCRA-SAWS Water Project, groundwater from the Simsboro Aquifer, and the Bastrop/Colorado River diversion point), no attempt has been made to evaluate these sources. The sole focus is defining the benefits of regional treatment – not defining the issues surrounding sources of raw water.

The purpose of this task is to examine potential plant sites and treated water pipeline corridors between Austin and San Antonio.

Regional Water Treatment Plant Alternative Sites

The selection of the treatment process and the factors used in that evaluation are discussed in detail in other sections. This section only discusses the potential sites.

It was anticipated that the siting of the regional water treatment plant would have a major impact on the raw water and finished water transmission routes and pipeline lengths and thus, on both capital and operating costs. In the initial analysis, three sites were considered:

- 1. Alternative 1A: East of San Antonio (just south of I-10 approximately 5 miles east of I-410 Loop)
- 2. Alternative 2A: East of San Marcos (approximately 1 mile northeast of Martindale)
- 3. Alternative 3A: In the northern corner of Caldwell County about 2 miles east of the intersection of Hwys 183 and 21

The selection of specific sites for each of these alternatives was beyond the scope of this study but the sites described above are generally rural and were defined for the purpose of estimating transmission main lengths and for estimating the elevation of the water treatment plant facilities. The objective in choosing these water treatment plant locations roughly parallel to the I-35 corridor was to identify the general location that resulted in the lowest present value. Then, adjustments to that location could be analyzed to find the location with the least overall cost. The results of the evaluation and the adjustments made to the initially selected alternatives are discussed in the technical memorandum for Tasks 3 and 10 (a combined memorandum). Because of the general nature of the treatment plant sites and the additional economical analyses performed under Tasks 3 and 10, treated water pipeline corridors were taken to be a straight line between the assumed location of the plant and each delivery point.

Central Texas Regional Water Treatment Plant – Task 6 - Potential Plant Sites and PWTM Routes February 8, 2005 Page 2 of 6

Potable Water Transmission Mains (PWTMs)

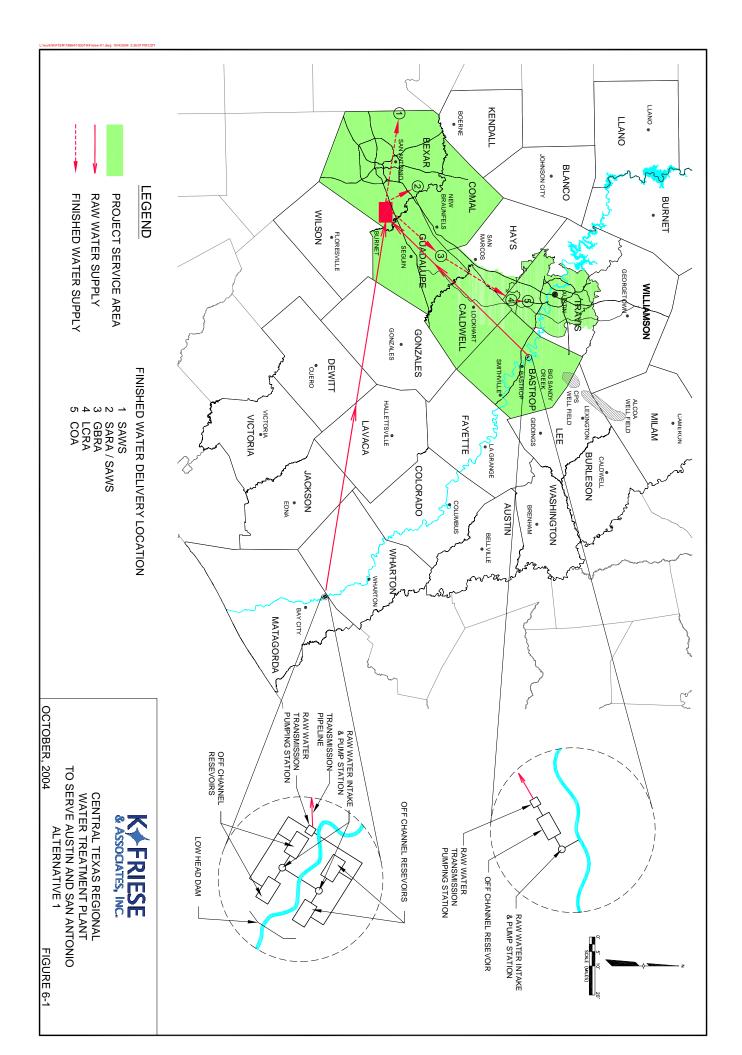
Each of the participants provided descriptions of the points where they wanted the deliveries of finished water to their distribution system, flow to each connection point, and the hydraulic grade elevation (HGL) at each connection point. This information is used in the alternatives analysis for transmission main length and sizing.

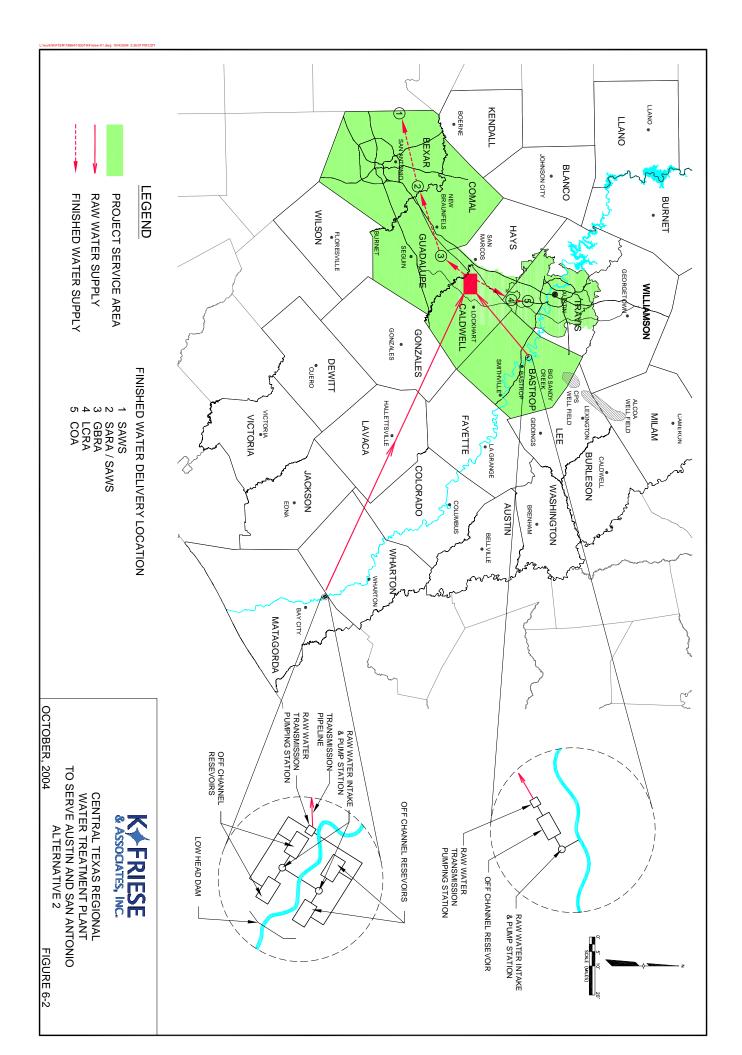
Connection point information coordinated with the participants is summarized below:

- 1. City of Austin The City of Austin has specified the Pilot Knob Reservoir as the connection point. The Pilot Knob Reservoir has an overflow elevation of 720 and 100% of the City's maximum delivery rate will be delivered to this location.
- 2. SAWS SAWS has specified two connection points:
 - a. Northeastern connection point of the Green Mountain Pump Station. The Green Mountain Pump Station has an HGL of 1125 and 40% of the SAWS maximum delivery rate will be delivered to this location.
 - b. The remaining 60% of the SAWS maximum delivery rate will be delivered to the northwestern delivery point, the Culebra Pump Station. The Culebra Pump Station has an HGL of 1080.
- 3. GBRA GBRA connection point is assumed to be located approximately 5 miles south of San Marcos along Highway 123. Based on area topography, an HGL of 740 is used.
- 4. SARA SARA will be using the SAWS Northeastern connection point, the Green Mountain Pump Station, as the delivery point.
- 5. LCRA LCRA connection point is assumed to be located approximately 7 miles south of the City of Austin's Pilot Knob Pump Station. Based on area topography, an HGL of 790 is used.

Connection point HGL and flow data is summarized below in Table 6-1. It should be noted that for each SAWS connection point there are two delivery rates tabulated. SAWS provided two demand scenarios for analysis. These scenarios are further detailed in Task 7 – Connection Points.

Table 6-1Connection Point Data


	HGL (feet)	2015 Flow (MGD)	2020 Flow (MGD)	2030 Flow (MGD)	2040 Flow (MGD)	2050 Flow (MGD)	2060 Flow (MGD)	2065 Flow (MGD)
City of Austin Pilot Knob Reservoir	720	0	0	25	35	50	50	50
SAWS Green Mtn.	1125	34	95.2	95.2	95.2	95.2	95.2	95.2
Pump Station		34	64.4	95.2	95.2	95.2	95.2	95.2
SAWS Culebra Pump	1080	51	142.8	142.8	142.8	142.8	142.8	142.8
Station	1000	51	96.6	142.8	142.8	142.8	142.8	142.8
GBRA	740	0	0	11	14	18	22	22
SARA Green Mtn. Pump Station	1125	24	27	33	36	40	44	48
LCRA	790	0	0	10	20	20	20	20


Each system component was then sized based on the assumptions provided in Table 6-2. Based on the participants' delivery points and the water treatment plant locations in each alternative, general routes for the PWTMs were selected. The routes also had to take into account that SAWS, SARA and GBRA required un-softened water while LCRA and the COA required softened water.

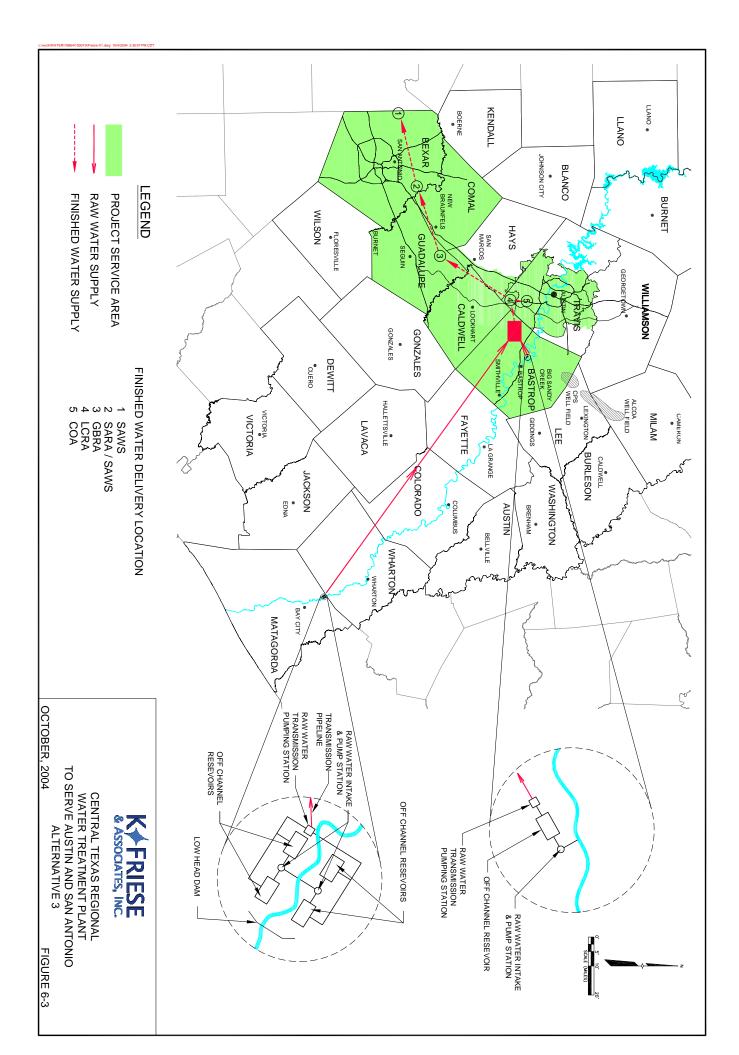

Schematics of the PWTM layouts are shown in Figures 6-1, 6-2, and 6-3.

Table 6-2Summary of Design Basis for Each Facility

Facility	Design Basis
RWI-A	Peak withdrawal rate from Colorado River at Matagorda
RWTM-A	Average delivery rate to WTP
ALCOA/CPS Well Fields	Average groundwater extraction rate of 55,000 acre-
	feet/year
RWI-B	Peak withdrawal rate from Colorado River at Bastrop
RWTM-B	Average delivery rate to WTP
WTP	Sum of Maximum Day Demands of Participants
PWTM's	Sum of Connection Point Maximum Day Demands

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 7 - Connection Points

DATE: February 8, 2005

Although the purpose of this task is to present the connection points to the study participant's distribution system, flow to each connection point, and the hydraulic grade elevation (HGL) at each connection point; this information was used in the alternatives analysis for transmission main length and sizing which was presented in Task 6. The following text then focuses on connection points, but reiterates much of the information presented in Task 6.

Connection point information coordinated with the participants is summarized below:

- 1. City of Austin The City of Austin has specified the Pilot Knob Reservoir as the connection point. The Pilot Knob Reservoir has an overflow elevation of 720 and 100% of the City's maximum delivery rate will be delivered to this location.
- 2. SAWS SAWS has specified two connection points:
 - a. Northeastern connection point of the Green Mountain Pump Station. The Green Mountain Pump Station has an HGL of 1125 and 40% of the SAWS maximum delivery rate will be delivered to this location.
 - b. The remaining 60% of the SAWS maximum delivery rate will be delivered to the northwestern delivery point, the Culebra Pump Station. The Culebra Pump Station has an HGL of 1080.
- 3. GBRA GBRA connection point is assumed to be located approximately 5 miles south of San Marcos along Highway 123. Based on area topography, an HGL of 740 is used.
- 4. SARA SARA will be using the SAWS Northeastern connection point, the Green Mountain Pump Station, as the delivery point.
- 5. LCRA LCRA connection point is assumed to be located approximately 7 miles south of the City of Austin's Pilot Knob Reservoir. Based on area topography, an HGL of 790 is used.

Connection point HGL and flow data is summarized in Table 7-1. SAWS also provided a second, "delayed demand scenario". The first scenario uses the full amount of water supply available with phasing based on an estimation of when the necessary infrastructure can be in place. The second scenario delays 66,000 acre-feet/year of demand from 2020 to 2030. The second scenario is to be considered if delaying the raw water transmission main from the Matagorda/Wharton County intake location results in a more economically feasible project. SAWS will temporarily obtain the 66,000 acre-feet/year supply from another source until the Matagorda/Wharton County intake is in place. Table 7-2 summarizes the "delayed demand scenario".

Table 7-1Connection Point Data

	HGL (feet)	2015 Flow (MGD)	2020 Flow (MGD)	2030 Flow (MGD)	2040 Flow (MGD)	2050 Flow (MGD)	2060 Flow (MGD)	2065 Flow (MGD)
City of Austin Pilot Knob Reservoir	720	0	0	25	35	50	50	50
SAWS Green Mtn. Pump Station	1125	34	95.2	95.2	95.2	95.2	95.2	95.2
SAWS Culebra Pump Station	1080	51	142.8	142.8	142.8	142.8	142.8	142.8
GBRA	740	0	0	11	14	18	22	22
SARA Green Mtn. Pump Station	1125	24	27	33	36	40	44	48
LCRA	790	0	0	10	20	20	20	20

Table 7-2Connection Point Data
Delayed Demand Scenario

	HGL (feet)	2015 Flow (MGD)	2020 Flow (MGD)	2030 Flow (MGD)	2040 Flow (MGD)	2050 Flow (MGD)	2060 Flow (MGD)	2065 Flow (MGD)
City of Austin Pilot Knob Reservoir	720	0	0	25	35	50	50	50
SAWS Green Mtn. Pump Station	1125	34	64.4	95.2	95.2	95.2	95.2	95.2
SAWS Culebra Pump Station	1080	51	96.6	142.8	142.8	142.8	142.8	142.8
GBRA	740	0	0	11	14	18	22	22
SARA Green Mtn. Pump Station	1125	24	27	33	36	40	44	48
LCRA	790	0	0	10	20	20	20	20

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 8 - Phasing Potential

DATE: May 7, 2005

Background

The purpose of this task is to examine the phasing potential of the facilities and the effect of phasing on unit costs. Since a key economic incentive for a regional treatment plant is to realize the economies of scale associated with a larger plant, the construction phasing has to be carefully considered. Building the plant in numerous phases will minimize unused capacity but erode the economies of scale advantage.

Phasing Potential

Facility phasing is determined by two primary factors, capacity required and least cost net present value (NPV). Table 8-1 is a schedule of the projected maximum delivery rate for each participant categorized as softened or non-softened demand.

Table 8-1Projected Maximum Delivery Rate (MGD)

Year	2015	2020	2030	2040	2050	2060	2065			
Softened Demai	Softened Demand									
City of Austin	0	0	25	35	50	50	50			
LCRA	0	0	10	20	20	20	20			
Sub-Total	0	0	35	55	70	70	70			
Non-Softened D	Non-Softened Demand									
SAWS	85	238	238	238	238	238	238			
GBRA	0	0	11	14	18	22	22			
SARA	24	27	33	36	40	44	48			
Sub-Total	109	265	282	288	296	304	308			
Total	109	265	317	343	366	374	378			

SAWS also provided a second, "delayed demand scenario". The first scenario uses the full amount of water supply available with phasing based on an estimation of when the necessary infrastructure can be in place. The second scenario delays 66,000 acre-feet/year of SAWS demand from 2020 to 2030 and delays all of the SARA demand until 2030. The second scenario is to be considered if delaying the raw water transmission main from the Matagorda/Wharton County intake location results in a more economically feasible project. SAWS will temporarily obtain the 66,000 acre-feet/year supply from another source until the Matagorda/Wharton County intake is in place. The following table summarizes the "delayed demand scenario".

Table 8-2
Projected Maximum Delivery Rate
"Delayed Demand Scenario"
(MGD)

Year	2015	2020	2030	2040	2050	2060	2065		
Softened Demai	Softened Demand								
City of Austin	0	0	25	35	50	50	50		
LCRA	0	0	10	20	20	20	20		
Sub-Total	0	0	35	55	70	70	70		
Non-Softened D	emand								
SAWS	85	161	238	238	238	238	238		
GBRA	0	0	11	14	18	22	22		
SARA	0	0	33	36	40	44	48		
Sub-Total	85	161	282	288	296	304	308		
Total	109	161	317	343	366	374	378		

Seven alternative regional systems were evaluated. The seven alternatives are more fully described under Tasks 3 and 10, Economic Analysis. The main variables in the alternatives analysis are treatment plant location, treatment plant phasing, and raw water facilities phasing. The following Table 8-3 shows the location and timing of these variables. The results of the economic analysis are discussed in the Technical Memorandum for Tasks 3 and 10.

Table 8-3 Facilities Phasing

Case	WTP Location	Phasing Scenario	Facility	2015	2020	2030	2040	2050	2060	2065
1A	East of San	RWTM B &	RWI & TM	RWI B	RWI A					
	Antonio	ALCOA/CPS built by	Softened WTP (MGD)			50	20			
		2015; RWTM A Built	Non-Softened WTP (MGD)	200	100					
		in 2020	Total WTP (MGD)	200	300	350	370	370	370	370
2A	East of San	RWTM B &	RWI & TM	RWI B	RWI A					
	Marcos	ALCOA/CPS built by	Softened WTP (MGD)			50	20			
		2015; RWTM A Built	Non-Softened WTP (MGD)	200	100					
		in 2020	Total WTP (MGD)	200	300	350	370	370	370	370
3A	Northern Corner	RWTM B &	RWI & TM	RWI B	RWI A					
	of Caldwell	ALCOA/CPS built by	Softened WTP (MGD)			50	20			
	County	2015; RWTM A Built	Non-Softened WTP (MGD)	200	100					
		in 2020	Total WTP (MGD)	200	300	350	370	370	370	370
1B	East of San	RWTM B &	RWI & RWTM	RWI B	RWI A					
	Antonio	ALCOA/CPS built by	Softened WTP (MGD)			50	20			
		2015; RWTM A Built	Non-Softened WTP (MGD)	200	100					
		in 2020	Total WTP (MGD)	200	300	350	370	370	370	370
1C	East of San	RWTM B &	RWI & TM	RWI B	RWI A					
	Antonio	ALCOA/CPS built by	Softened WTP (MGD)			50	20			
		2015; RWTM A Built	Non-Softened WTP (MGD)	200	100					
		in 2020	Total WTP (MGD)	200	300	350	370	370	370	370
3B	Northern Corner	RWTM B &	RWI & TM	RWI B		RWI A				
	of Caldwell	ALCOA/CPS built by	Softened WTP (MGD)			50	20			
	County	2015; RWTM A Built	Non-Softened WTP (MGD)	100	100	100				
		in 2030, Reduced Demand Scenario	Total WTP (MGD)	100	200	350	370	370	370	370
1D	WTP for	2015 – Build	RWI & TM		RWI A					
עוו	ALCOA/CPS	ALCOA/CPS System	Softened WTP (MGD)		KWIA					
	East of Elgin;	with PWTM's to San	Non-Softened WTP (MGD)	200	100					
	Main Surface	Antonio; 2020 – Build	Total WTP (MGD)	200	300	300	300	300	300	300
	WTP East of San	RWI A and Surface	Total with (MOD)	200	300	300	300	300	300	300
	Antonio	WTP								

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 9 – Develop Treatment Plant Layout

DATE: May 9, 2005

Background

The purpose of this task is to determine the land area requirements for a regional facility of this size and to identify the phasing of the units so that adequate space is available for future expansion. This task is also to identify any additional treatment units and land needs required by future changes in drinking water regulations. This information was used to estimate the cost of the plant site and to determine general areas where the facility could be located. The identification of a definitive size and location of specific plant sites is beyond the scope of this task.

Area required for Plant Site

In Task 2 – Demand Projections, the average day ultimate capacity for this facility was determined to be 303,232 acre-feet/year or 271 MGD. A peak or maximum day rate of 378 MGD was also determined based on peaking factors established by each of the participants. Alternatives were developed for each of these plant sizes. In Task 4 – Water Treatment Process, a split process consisting of two treatment trains was proposed. One of the trains would use a conventional process and the other would be lime softened. Both trains would use microfiltration membranes for filtration. Task 4 also proposed a raw water storage reservoir at or near the plant site. The reservoir would be used to provide raw water in the event that maintenance was required on the raw water transmission main or pump stations. The reservoir was sized at 12,000 acre-feet and would provide approximately 15 days of storage at average flow. At this planning level, a nominal 100 acre plant site is proposed for both plant sizes. An additional 528 acres is proposed for the raw water reservoir based on an assumed depth of 25 feet.

Phasing

Various options for phasing of the facilities were considered based on when capacity was needed, economy of scale in building larger units and the time value of money. Because the SAWS demand comes on so quickly it was determined that the ultimate size facility of 220 MGD for the non-soften train should be constructed initially with no phasing. For the soften train an initial size of 50 MGD should be constructed in 2030 with a 20 MGD expansion in 2040. Both of these expansions were considered to be fairly normal in their space requirements so no additional area was required for this factor. It should be noted that the total soften capacity of 70 MGD is a maximum day capacity while the 220 MGD for the non-soften capacity is an average day capacity.

Future Regulations

Since membranes were proposed for filtration on both treatment trains, it was assumed that no major additional treatment units that could effect the size requirements of the plant site would be needed in the future. Hence no additional land was proposed for this factor.

Central Texas Regional Water Treatment Plant – Task 9 - Develop Treatment Plant Layout May 7, 2005 Page 2 of 3

Conclusions

A plant site of 100 acres is proposed for the regional facility. An additional 528 acre site adjacent to or near the plant site for a raw water storage reservoir is also proposed. A process flow diagram for the proposed facility is shown in Figure 9.1. The required treatments units are identified for both treatment trains. A more detailed plant layout is dependent on the specifics of the actual plant site selected.

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Tasks 3 and 10 – Economic Analysis

DATE: February 8, 2005

Background

The purpose of this study is to evaluate the feasibility and comparative costs of developing a large regional water treatment facility to provide potable water for both the Cities of Austin and San Antonio. Although various raw water sources have been included in the analysis (specifically the LCRA-SAWS Water Project, groundwater from the Simsboro Aquifer, and the Bastrop/Colorado River diversion point), no attempt has been made to evaluate these sources. The sole focus is defining the benefits of regional treatment – not defining the issues surrounding sources of raw water.

Methodology

The economic analysis was undertaken in two steps: first, an initial analysis of three regional system configurations with the main difference being the location of the water treatment plant, and second, the development and analysis of additional alternatives based on the results of the initial analysis.

Initial Analysis of Alternatives

The purpose of the initial analysis was two-fold: First, to identify the principal factors that are likely to affect the costs of the regional system and, second, to screen alternative regional systems in order to determine which water treatment plant locations are most likely to result in the lowest overall cost. The steps taken to accomplish this task were as follows:

- 1. Estimate the size of the intakes, pumping stations, reservoirs, and water treatment plants and assign unit construction costs to each cost item, then calculate capital costs including contingencies; engineering, legal and administrative costs; environmental and surveying costs; land or easement acquisition costs; and other miscellaneous costs
- 2. Prepare operation and maintenance cost estimates
- 3. Calculate present values using a discount rate of 5% for both capital cost expenditures and operation and maintenance costs over the 50 year planning period
- 4. Compare the present values for each alternative and identify the most economical alternatives

Unit Costs

The unit costs used in the analysis were gathered from the LCRA-SAWS Water Project PVA, 2004. The unit costs from the PVA were used because the facilities in both projects were of a similar nature and their use added a sense of consistency between the two projects.

The unit costs in the 2004 PVA were presented in a series of tables and these are included in Appendix 1. Each of

Central Texas Regional Water Treatment Plant – Task 3 & 10 – Economic Analysis February 8, 2005 Page 2 of 8

the unit cost tables was graphed, and using the trendline feature of Excel, a best-fit equation was determined. The best-fit equation was then used in the alternative analysis spreadsheets to estimate costs.

After most of the analysis was complete and the results had been presented to the project participants, the LCRA-SAWS Water Project PVA was revised. One alternative presented in this report (Alternative 2A – Special) was updated to the revised PVA assumptions and costs. This final alternative was based on the revised PVA assumptions and costs, so the reader may note some inconsistencies between Alternative 2A - Special and the others.

Initial Analysis Results

As mentioned previously, the initial analysis evaluated three alternative water treatment plant sites, which were as follows:

- 1. Alternative 1A: East of San Antonio
- 2. Alternative 2A: East of San Marcos
- 3. Alternative 3A: In the northern corner of Caldwell County

The results of the initial analysis are shown in Table 10-1. Although the location of the water treatment plant had a major impact on the orientation of the raw water and potable water transmission mains, there was only a 1.1% difference in the present values between the highest and lowest. Alternative 2A, with the water treatment plant located east of San Marcos, had the least present value. A review of the capital and O&M estimates indicated that while locating the water treatment plant closer to the Bastrop intake and the ALCOA/CPS well fields lowered the cost of the raw water transmission mains, the cost of the potable water transmission mains were increased. In particular, the power costs associated with the potable water transmission mains increased. This result can be explained by the fact that the largest demands are at the southernmost delivery points (those for SAWS and SARA), and by the fact that potable water transmission mains must be designed for maximum daily demands while raw water transmission mains are designed for average daily demands. As the water treatment plant is moved to the northeast, more potable water must be pumped south through the potable water transmission main running parallel to I-35. The potable water transmission main segments between the water treatment plant and the SAWS delivery points must be sized for these large flows.

For Alternatives 1A, 2A, and 3A, the PWTMs represent a sizable percentage of the overall costs of the project over the 50-year analysis period: 20% to 31% of the present value of both capital and O&M costs. The size of the PWTMs range from 54 inches in diameter, for the mains serving the City of Austin on the north end of the project, to 120 inches in diameter for the line serving GBRA, SAWS and SARA on the south end in Alternative 3A.

Since SAWS' maximum daily demand accounts for almost 63% of the total, the PWTMs serving the SAWS delivery points require the largest investments.

Based on the analysis of Alternatives 1A, 2A and 3A, the following observations were made:

- 1. The location of the water treatment plant had a lower impact than expected on overall present values. In fact, although a 1.1% difference represents over \$40 million, a 1.1% difference is not significant given the accuracy of these feasibility level cost estimates.
- 2. The least cost alternative was Alternative 2A, which located the water treatment plant east of San Marcos. The cost of Alternative 1A and Alternative 3A were essentially the same.

Table 10-1
Summary of Alternatives 1A, 2A and 3A (Initial Alternatives)

WTP Location	Case	Phasing Scenario	Total NPVs in Millions of \$	RWI A & OCRs (Matagorda County)	RWTM A (Including Pump Stations)	ALCOA/CPS	RWI B & OCR (just upstream of Bastrop)	RWTM B (Including Pump Station)	WTP & RW Storage at Plant	PWTMs (Including Pump Stations)
East of San Antonio	1A	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.			150 miles of 96-inch diameter pipe sized to deliver 132,000 ac flyear on a continuous basis; includes 3 pumping stations w/ balancing reservoirs along route	Non-Public wells; Transmission of 55,000 ac- ftyear to the OCR at RWI B via 15 miles of 54" gravity pipeline from Hwy 290 east of Elgin	Sized for 2000 cfs to scalp water; 2 intakes; 8 miles of 120-inch raw water mains and 4 OCRs at 15,000 ac- ft/each	Sized for 117,804 ac-ft/yr; 77 miles of 84* pipeline with two pumping stations and balancing reservoirs		Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
		NPV of Capital Costs	\$ 2,366	\$ 191	\$ 534	\$ 135	\$ 204	\$ 297	\$ 585	\$ 420
		NPV of O&M Costs	\$ 1,530	\$ 49	\$ 288	\$ 142	\$ 40	\$ 160	\$ 499	\$ 352
		Total NPV of Capital & O&M	\$ 3,896	\$ 240	\$ 822	\$ 277	\$ 244	\$ 457	\$ 1,084	\$ 772
East of San Marcos	2A	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.			126 miles of 96-inch diameter pipe sized to deliver 132,000 ac flyear on a continuous basis; includes 3 pumping stations w/ balancing reservoirs along route	Non-Public wells; Transmission of 55,000 ac- ftyear to the OCR at RWI B via 15 miles of 54" gravity pipeline from Hwy 290 east of Elgin		Sized for 117,804 ac-ft/yr; 36 miles of 96° pipeline with one pumping station and balancing reservoir	Raw water reservoir w/ 11,000 ac-ft capacity; Conventional settling with membrane filtration for SAWS, SARA & GBRA; Lime softening with membrane filtration for COA & LCRA water	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
		NPV of Capital Costs	\$ 2,306	\$ 191	\$ 451	\$ 135	\$ 204	\$ 168	\$ 572	\$ 585
		NPV of O&M Costs	\$ 1,546	\$ 49	\$ 250	\$ 142	\$ 40	\$ 93	\$ 502	\$ 470
		Total NPV of Capital & O&M	\$ 3,852	\$ 240	\$ 701	\$ 277	\$ 244	\$ 261	\$ 1,074	\$ 1,055
Northern Corner of Caldwell County	3A	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.		4 miles of 120-inch raw water mains & 4	126 miles of 96-inch diameter pipe sized to deliver 132,000 ac flyyear on a continuous basis; includes 3 pumping stations w/ balancing reservoirs along route	ft/year to the OCR at RWI B via 15 miles of 54" gravity	Sized for 2000 cfs to scalp water; 2 intakes; 8 miles of 120-inch raw water mains and 4 OCRs at 15,000 ac- ft/each	Sized for 117,804 ac-ft/yr; 20 miles of 84* pipeline with one pumping station and balancing reservoir	Raw water reservoir w/ 11,000 ac-ft capacity; Conventional settling with membrane filtration for SAWS, SARA & GBRA; Lime softening with membrane filtration for COA & LCRA water	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
		NPV of Capital Costs	\$ 2,333	\$ 191	\$ 451	\$ 135	\$ 204	\$ 86	\$ 572	\$ 694
		NPV of O&M Costs	\$ 1,562	\$ 49	\$ 250	\$ 142	\$ 40	\$ 83	\$ 502	\$ 496
		Total NPV of Capital & O&M	\$ 3,895	\$ 240	\$ 701	\$ 277	\$ 244	\$ 169	\$ 1,074	\$ 1,190

Central Texas Regional Water Treatment Plant – Task 3 & 10 – Economic Analysis February 8, 2005 Page 4 of 8

3. The raw water transmission mains, potable water transmission mains and the water treatment plant were the principal cost drivers.

Analysis Results for Alternates 1B, 1C, 1D, and 3B

Taking these observations into account, four additional alternatives were developed and analyzed for a more complete understanding of the potential regional scenarios (see Table 10-2).

In Alternative 1B, the water treatment plant was located about 10 miles northwest of the location shown in Alternative 1A. This alternative was developed to test if a plant site in the San Antonio area, even closer to the SAWS & SARA delivery points, could yield a present value for the San Antonio plant site lower than the San Marcos site. The water treatment plant is still about 8 miles east of Delivery Point #2, but finding a site for the water treatment plant west of this point may be difficult. Otherwise, no other changes were made compared to Alternative 1A. This change lowered the present value by about \$106 million (about 2.7%). Alternative 1B represents the least cost alternative of the four alternate water treatment plant locations considered, and it is about \$62 million lower than the San Marcos location represented by Alternative 2A.

Given that the water treatment plant location did not have a major impact on present values, changes to the basic scenario were tested to determine if other adjustments could be made to lower the overall cost.

In Alternative 1C, the financial impact of discharging the ALCOA/CPS groundwater to Big Sandy Creek was analyzed. Alternative 1B was used as the base case and the ALCOA/CPS costs were revised to show the elimination of a ground water transmission main from the well fields to the Off-Channel Reservoir (OCR) near the Bastrop intake (RWI-B). However, the O&M costs for this intake were increased to account for the withdrawal of an additional 55,000 acre-feet/year. The overall present value for Alternative 1C was about \$32 million less than Alternative 1B.

Alternate 3B analyzes the impact of delaying a portion of SAWS's 2020 demand to 2030. It also assumes that all of SARA's demands would be delayed until 2030. This alternative is also predicated on the negotiation of an agreement for SAWS to temporarily withdraw LCRA's raw water (11,200 acre-feet/year), the City of Austin's raw water (33,604 acre-feet/year), and an additional 21,196 acre-feet/year of raw water at the Bastrop intake (RWI-A), in addition to the 18,000 acre-feet/year that has been used in the previous alternatives. This agreement would not be necessary after 2030.

Alternative 3B seeks to determine the impact of delaying the costly RWTM-A and the Matagorda intake. Its present value has been estimated at about \$516 million (about 13 %) less than Alternative 3A, to which it is equivalent in all other respects. Had Alternatives 1A or 2A been used as the comparison basis, the savings would have been similar. However, in this case, using present values as the basis for comparison is misleading, since over the project's 50 year life, approximately 9.6% less treated water is delivered to the participants in Alternative 3B compared to 3A as well as all of the other alternatives. Taking this into account, Alternative 3B offers a 3.7% reduction in overall costs compared to 3A.

Alternative 1D represents a more significant change in the basic scenario used in all of the alternatives thus far described. In 1D, the Bastrop intake (RWI-B) and its raw water transmission main (RWTM-B) are eliminated. The ALCOA/CPS well fields would be developed in 2015 and a groundwater treatment plant would be built near Elgin. Treated ground water would be pumped to the SAWS delivery points via a potable water transmission main, but this main would be routed to pass close to the City of Austin, LCRA and GBRA delivery points.

Table 10-2
Summary of Additional Alternatives Analyzed

WTP Location	Case	Phasing Scenario	Total NPVs in Millions of \$	RWI A & OCRs (Matagorda County)	RWTM A (Including Pump Stations)	ALCOA/CPS	RWI B & OCR (just upstream of Bastrop)	RWTM B (Including Pump Station)	WTP & RW Storage at Plant	PWTMs (Including Pump Stations)
East of San Antonio	1B	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.		Sized for 4000 cfs to scalp water; 4 intakes, 4 miles of 120-inch raw water mains & 4 OCRs at 25,000 ac-ft each	142 miles of 96-inch diameter pipe sized to deliver 132,000 ass tityear on a continuous basis includes 3 pumping stations w balancing reservoirs along route	Non-public wells; Transmission of 55,000 ac- ft/year to the OCR at RWI B via 15 miles of 54* gravity pipeline from Hwy 290 east of Elgin	Sized for 2000 cfs to scalp water; 2 intakes; 8 miles of 120-inch raw water mains and 4 OCRs at 15,000 ac- tr/each	Sized for 117,804 ac-ft/yr; 68 miles of 84* pipeline with two pumping stations and balancing reservoirs	Raw water reservoir w/ 11,000 ac-ft capacity; Conventional settling with membrane filtration for SAWS, SARA & GBRA; Lime softening with membrane filtration for COA & LCRA water	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
		NPV of Capital Costs	\$ 2,286	\$ 191	\$ 507	\$ 135	\$ 204	\$ 265	\$ 572	\$ 412
		NPV of O&M Costs	\$ 1,504	\$ 49	\$ 280	\$ 142	\$ 40	\$ 148	\$ 502	\$ 343
		Total NPV of Capital & O&M	\$ 3,790	\$ 240	\$ 787	\$ 277	\$ 244	\$ 413	\$ 1,074	\$ 755
East of San Antonio	1C	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.		Sized for 4000 cfs to scalp water; 4 intakes, 4 miles of 120-inch raw water mains & 4 OCRs at 25,000 ac-ft each	142 miles of 96-inch diameter pipe sized to deliver 132,000 ac ft/year on a continuous basis; includes 3 pumping stations w/balancing reservoirs along route	Non-public wells; Discharge of 55,000 ac-th/year to Big Sandy Creek near Hwy 290 east of Elgin with flow to Colorado River Just upstream of RWI-B	Sized for 2000 cfs (2 intakes) to scalp surface water plus an additional 76 cfs (55,000 ac-t/yr) equivalent to groundwater released to Big Sandy Creek; 8 miles of 120-inch pipe; 4 OCRs at 15,000 ac-t/each	Sized for 117,804 ac-ft/yr; 68 miles of 84" pipeline with two pumping stations and balancing reservoirs	Raw water reservoir w/ 11,000 ac-ft capacity; Conventional settling with membrane filtration for SAWS, SARA & GBRA; Lime softening with membrane filtration for COA & LCRA water	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
		NPV of Capital Costs	\$ 2,249	\$ 191	\$ 507	\$ 98	\$ 204	\$ 265	\$ 572	\$ 412
		NPV of O&M Costs	\$ 1,509	\$ 49	\$ 280	\$ 138	\$ 49	\$ 148	\$ 502	\$ 343
		Total NPV of Capital & O&M	\$ 3,758	\$ 240	\$ 787	\$ 236	\$ 253	\$ 413	\$ 1,074	\$ 755
Northern Corner of Caldwell County	3B	Reduced SAWS demand in 2020 by 66,000 ac-ft/yr (& SARA to 0 demand); RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2030.	Note: This Alternative delivers 9.6% less water to participants over 50 years than the other Alternatives	Sized for 4000 cfs to scalp water; 4 intakes, 4 miles of 120-inch raw water mains & 4 OCRs at 25,000 ac-ft each	126 miles of 96-inch diameter pipe sized to deliver 132,000 ac ft/year on a continuous basis; includes 3 pumping stations w balancing reservoirs along route	Non-Public wells; Transmission of 55,000 ac- ft/year to the OCR at RWI B via 15 miles of 54* gravity pipeline from Hwy 290 east of Elgin	Sized for 2000 cfs to scalp water; 2 intakes; 8 miles of 120-inch raw water mains and 4 OCRs at 15,000 ac- ft/each	Sized for 117,804 ac-ft/yr; 20 miles of 84* pipeline with one pumping station and balancing reservoir	Raw water reservoir w/ 11,000 ac-ft capacity; Conventional settling with membrane filtration for SAWS, SARA & GBRA; Lime softening with membrane filtration for COA & LCRA water	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
		NPV of Capital Costs	\$ 2,039	\$ 170	\$ 277	\$ 135	\$ 204	\$ 86	\$ 524	\$ 643
		NPV of O&M Costs	\$ 1,340	\$ 39	\$ 142	\$ 142	\$ 40	\$ 87	\$ 427	\$ 463
		Total NPV of Capital & O&M	\$ 3,379	\$ 209	\$ 419	\$ 277	\$ 244	\$ 173	\$ 951	\$ 1,106
WTP for ALCOA/CPS groundwater east of Elgin; Main suface WTP east of San Antonio.	1D	2015: Construct ALCOA/CPS system with PWTM's to San Antonio; 2020: Construct RWI & RWTM A with main suface WTP east of San Antonio.		Sized for 6000 cfs to scalp water; 6 intakes & 6 OCRs at 25,000 ac-ft each	142 miles of 108-inch diameter pipe sized to deliver an ultimate average flow of 194,800 ac- ft/year; includes 3 pumping stations w/ balancing reservoirs along route	Public wells; Treat 55,000 ac-tr/year in iron/manganese removal WTP near Hwy 290 east of Elgin	None req'd	None req'd	Raw water reservoir w/ 12,000 ac-ft capacity; Conventional settling with membrane filtration for SAWS, SARA & GBRA	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
		NPV of Capital Costs	\$ 2,074	\$ 284	\$ 610	\$ 143			\$ 496	\$ 541
		NPV of Capital Costs	\$ 2,074	-	\$ 421	\$ 145			\$ 445	*
		Total NPV of Capital & O&M	\$ 3,580	•	\$ 1,031	\$ 339	\$ -	\$ -	\$ 941	

Central Texas Regional Water Treatment Plant – Task 3 & 10 – Economic Analysis February 8, 2005 Page 6 of 8

The Matagorda intake (RWI-A) and RWTM-A would be built in 2020 and would be sized to withdraw, store and transport up to 194,804 acre-feet/year to a water treatment plant located just northeast of San Antonio. Beginning in

2030, potable water from the Elgin groundwater treatment plant would be diverted to the City of Austin, LCRA and GBRA while more and more of SAWS's potable water would come from the surface water treatment plant.

The present value for Alternative 1D is about \$210 million (about 5.5%) less than the present value of Alternative 1B, the least cost alternative of the first 4 alternatives evaluated. However, by including a separate treatment plant for the ALCOA/CPS groundwater, Alternative 1D takes advantage of the lower treatment costs for this water. This alternative offers SAWS a way of avoiding a long groundwater transmission main from the ALCOA/CPS fields and the potential for sharing in the cost of the potable water transmission main. As in the other alternatives, this regional potable water transmission main (at least 60-inches in diameter) running parallel to IH-35 could be used to service the anticipated growth along the I-35 corridor and to provide an emergency connection between the large public water systems at either end.

However, implementation of Alternative 1D would be predicated on the following:

- 1. The City of Austin would need to verify that treated groundwater from the ALCOA/CPS well fields would be compatible with its treated water from other sources, and that its treatment would be less expensive than the treatment of surface water from the Colorado River in its own treatment plant.
- 2. The City of Austin, LCRA, and SAWS would need to negotiate a water rights transfer that would give SAWS access to 44,804 acre-feet/year (11,200 from LCRA and 33604 from the City of Austin) of Colorado River water in return for the same amount from the ALCOA/CPS well fields.
- 3. SARA would have to meet its water demands from 2015 to 2020 using treated water from some other source and treatment plant since there would be no water treatment plant near San Antonio until after 2020.

Final Alternative Analysis (Alternative 2A – Special)

After the presentation of the aforementioned results to the participants in a meeting held on March 7, 2005, the project team was requested to analyze one more alternative (Alternative 2A – Special). This alternative was to be similar to Alternative 2A (WTP located east of San Marcos) with the following exceptions:

- 1. The non-softening side of the water treatment plant would be sized to meet the average day demands of SAWS, SARA and GBRA. Demands exceeding the average day demands would have to be met by using water from other sources. For SAWS, it was anticipated that wells in the Edwards Aquifer could be used to make up the difference.
- 2. Potable water transmission mains, leading to the demand points for SAWS, SARA and GBRA would also be sized for average day demands rather than for maximum day demands.
- 3. The raw water facilities in Matagorda County (RWI-A) would be sized in accordance with the latest information in the LCRA-SAWS Water Project PVA, that is, for a maximum withdrawal of 6000 cfs.
- 4. The raw water facilities at the Bastrop intake (RWI-B) would be sized for 90 cfs, which is based on the assumption that "scalping" withdrawals would not be required.

Central Texas Regional Water Treatment Plant – Task 3 & 10 – Economic Analysis February 8, 2005 Page 7 of 8

5. Unit costs used were to be in accordance with the latest unit costs used in the LCRA-SAWS Water Project PVA.

The net present value of capital costs and O&M for this Alternative 2A-Special was about 10% less than the cost for Alternative 2A, but a direct comparison is misleading since some unit costs and design assumptions were changed. The purpose of Alternative 2A–Special was not to compare against the previously mentioned alternatives, but to compare against other water supply alternatives the participants are considering. For this reason, additional calculations were prepared for this special alternative and these are shown in Table 10-3.

Using the same methodology that was used in the LCRA-SAWS Water Project PVA, potable water would cost about \$794 per acre-foot produced at the water treatment plant site (based on 2050 production and expressed in 2005 dollars). If the capital and operating costs of the potable water transmission mains are included, the average cost would be \$1039 per acre-foot delivered to each customer's delivery point.

Table 10-3 CTRWTP - Alternate 2A Special - WTP East of San Marcos

VTP Location	Alter- nate	Phasing Scenario	Total NPVs in Millions of \$	RWI A & OCRs	RWTM A (Including Pump Stations)	ALCOA/CPS	RWI B & OCR	RWTM B (Including Pump Stations)	WTP & RW Storage at Plant	PWT Pur
East of San Marcos	2A - Special	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020; Assumes base loaded non-softening plant and PWTMs for SAWS, SARA and GBRA; max day demand softening plant and PWTMs for LCRA and COA		Sized for 6000 cfs to scalp water; 1 low head dam; 6 intakes, 6 miles of 120-inch raw water mains & 4 OCRs at 33,000 ac-ft each (Total of 132,000 acre feet)	126 miles of 96-inch diameter pipe sized to deliver 132,000 ac- ft/year on a continuous basis; includes 3 pumping stations w/ balancing reservoirs along route	Non-Public wells; Transmission of 55,000 ac-ft/year to the balancing tank at RWI B via 15 miles of 54" gravity pipeline from Hwy 290 east of Elgin	miles of 60-inch raw water main, 1	Sized for 117,804 ac- ft/yr; 36 miles of 96" pipeline with one pumping station and balancing reservoir	Raw water reservoir w/11,000 ac-ft capacity; Conventional settling with membrane filtration for SAWS, SARA and GBRA; Lime softening with membrane filtration for COA and LCRA	PWTN SARA sized 1 daily d loadec PWTN LCRA day de PWTN Sheet Appen
		Construction Costs	\$ 1,624	\$ 169	\$ 408	\$ 83	\$ 7	\$ 119	\$ 462	\$
		Capital Costs	\$ 2,246	\$ 261	\$ 552	\$ 131	\$ 10	\$ 161	\$ 627	\$
		NPV of Capital Costs	\$ 1,938	\$ 205	\$ 432	\$ 131	\$ 10	\$ 161	\$ 526	\$
		NPV of O&M Costs	\$ 1,513	\$ 56	\$ 253	\$ 142	\$ 9	\$ 94	\$ 497	\$
		Total NPV of Capital & O&M	\$ 3,451	\$ 260	\$ 685	\$ 273	\$ 19	\$ 255	\$ 1,023	\$

2005 \$

Unit Cost Calculations:		Millior	s of \$			
	Not includi PWTMs	_	Including PWTMs		Interest rate	6%
Capital cost		1.2			Total loan period (years)	30
Interest accrued during construction	\$ 30	9.4	\$ 399.1	4	Number of years for construction	3
Interest earned during construc.	\$ (7	4.4)	\$ (95.9)	•	Interest earned during construction	4%
					Number of years for construction	3
Total project cost	\$ 1,97	6.2	\$ 2,549.3			
Annual Costs:						
Debt service - principal and interest	\$ 14	3.6	185.2	←	Interest rate on loan	6%
Adjustment for "Committed Purchase Fee"	\$	8.8	8.8		Number of payments	30
Subtotal	\$ 15	2.4	194.0		<u></u>	
O&M and Power	\$ 7	3.4	103.9		Basis = Year 2050	
Total annual cost	\$ 22	5.8	\$ 298.0			
Ag and Gw	\$	7.8	7.8			
Total	233	.56	305.76			
Acre-feet produced (annual average)	294,2	215	294,215		Basis = Year 2050	
\$ per acre feet produced	\$	794	\$ 1,039			

E of SMarcos_Alt2A_spec2;Table 3 9/23/2005

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 11 – Identify Other Potential Customers and Participants

DATE: May 9, 2005

Background

The purpose of this task is to identify other potential water customers or participants, at a conceptual level, that may be benefited by this facility. In Task 2 – Demand Projections, the water demand for each of the study participants was determined. A total average day demand of 303,232 acre-feet/year was projected for the study area. It is believed that amount represents the total demand of the study area. The five study participants are expected to serve all of the potential customers within this area either as wholesale or retail customers. Because of the high level nature of this study, those entities within the service area but not participating in the study will be identified and contacted by the individual study participants expected to serve the entity and thus will not be further discussed in this study.

Other Potential Customers

No potential customers outside of the study area have been identified. If additional customers are identified in the future, additional water sources will also have to be identified before they can be served.

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 12 - Institutional Considerations

DATE: May 7, 2005

Background

The purpose of this task is to investigate several potential institutional approaches to develop the proposed water treatment plant. These could include the creation of a development corporation, a regional water authority or other corporate entity to own and operate the facilities. This task also includes examining various procurement tools to facilitate the development of the water treatment plant.

Institutional Considerations

Tasks 3 and 10 – Economic Analysis, discusses the various alternatives evaluated and the resulting net present value of the facilities. For the final alternative considered, the plant was changed to a base load plant for San Antonio, SARA and GBRA thereby reducing the size of the plant and treated water transmission main. Other adjustments were made to help make the regional facility comparable to the other separate alternatives available to the participants. The present value cost was converted to a cost per acre-foot also for comparison purposes. This was done by dividing the total cost by the acre-foot capacity and would be the same for all participants. That cost was \$794 per acre-foot for treated water at the water treatment plant. When the potable water transmission mains are considered, the average cost would be \$1039 per acre-foot delivered to the participants delivery points. The latter figure is in the upper range of costs that have been developed for the LCRA-SAWS Water Project. While the cost per acre-foot for a regional facility appear to be somewhat reasonable for San Antonio and SARA it is not for the other participants because of the cost of transmission facilities that the other participants would not have compared to their separate alternatives. The conclusion appears fairly clear that a regional facility is not feasible based on the alternatives and demand included in this analysis.

Institutional considerations and procurement tools were not further evaluated since it appears from this analysis that a regional facility is not feasible.

PROJECT: Central Texas Regional Water Treatment Plant

SUBJECT: Task 13 - Identify Necessary Permits

DATE: May 7, 2005

Background

The purpose of this task is to review the project components and locations and to identify the permitting entities and permits that will be required to implement a regional water treatment plant. The permitting requirements for a similar sized facility were analyzed in the recently completed LCRA-SAWS Water Project PVA. It was determined the following primary permits may be required:

Name	Granting Agency
Section 404 Permit	United States Army Corps of Engineers
Section 10 Permit	United States Army Corps of Engineers
Water Rights	Texas Commission on Environmental Quality
Public Drinking Water Supplies	Texas Commission on Environmental Quality
Safe Drinking Water Act	Texas Commission on Environmental Quality
Section 401 Water Quality Certification	Texas Commission on Environmental Quality
TPDES Industrial Storm Water Permits	Texas Commission on Environmental Quality
Dam and Reservoir Safety	Texas Commission on Environmental Quality
Cultural Resources	Texas Historical Commission

Approvals, Consultations, and Permits

The following is the complete List of Possibly Required Local, State, and Federal Permits and Approvals from the LCRA-SAWS Water Project PVA. This detailed list has been included since the LCRA-SAWS Water Project is of similar scope, scale, and geographical location as the CTRWTP facilities evaluated herein.

POSSIBLE FEDERAL APPROVALS, CONSULTATIONS, AND PERMITS NECESSARY FOR THE LCRA-SAWS WATER PROJECT

Name	Granting Agency
Agricultural Issues Consultation	U.S. Department of Agriculture (USDA)
Bridge Permit (Section 8 Review	U.S. Coast Guard
Conditional Letter of map Revision (CLOMR)/Letter of Map Revision (LOMR)	Federal Emergency Management Agency (FEMA)
Environmental Justice	U.S. Environmental Protection Agency
Federal Endangered or Threatened Species (Section 7 or 10 Review)	U.S. Fish and Wildlife Service (USFWS)
Fishery Impacts	National Marine Fisheries Service (NMFS)
Prime Farmlands	Natural Resources Conservation Service (NRCS)
Section 4(f) Review	Bureau of Reclamation and U.S. Fish and Wildlife Service
Section 404 Permit	United States Army Corps of Engineers (USACE) (Fort Worth and Galveston Districts)
Section 10 Permit	United States Army Corps of Engineers (USACE) (Fort Worth and Galveston Districts)
Section 10 of the Rivers and Harbors Act of 1899	U.S. EPA
Wildlife Management Areas	USFWS

POSSIBLE STATE AND DISTRICT APPROVALS, CONSULTATIONS, AND PERMITS NECESSARY FOR THE LCRA-SAWS WATER PROJECT

Name	Granting Agency
Coastal Management Zone (Dredging Permits)	Texas General Land Office (GLO)
Coastal Natural Resources Area	TGLO, Coastal Coordination Council (CCC)
Agricultural Issues	TX Department of Agriculture
Cultural Resources (SHPO/Section 106 Review)	Texas Historical Commission (THC)
Dam and Reservoir Safety (Chapter 299)	Texas Commission on Environmental Quality (TCEQ)
Edwards Aquifer Regulations	Edwards Aquifer Conservation District and TCEQ
State Endangered or Threatened Species and Species of Concern (sometimes referred to as Section 7 Review	TPWD
Groundwater Protection	Groundwater Conservation Districts
Water Rights (Water Code Chapter 11, Tex. Admin. Code Chapters 228, 295, 297)	TCEQ And Various Agencies
LCRA Act Section 28	LCRA
Public Drinking Water Supplies (Chapter 290)	TCEQ
Right of Way and Transportation Access	Texas Department of Transportation (TxDOT)
Regional Water Planning Coordination	Water Development Board
Safe Drinking Water Act	TCEQ
Sand and Gravel Permit	TPWD
Section 10 of the Rivers and Harbors Act of 1899	TCEQ and U.S. EPA
Section 4(f) Review	Varies, Bureau of Reclamation , U.S. Fish and Wildlife Service, TPWD
Section 401 Water Quality Certification	TCEQ
Section 404 Permit	USACE (Fort Worth and Galveston Districts)
TPDES Industrial Storm Water Permits	TCEQ
TPDES Storm Water Permits for Activities Associated with Construction	TCEQ
Water Quality (Chapter 307) and TPDES For Other Discharges	TCEQ
Wildlife Management Areas	TPWD

Central Texas Regional Water Treatment Plant – Task 13 - Identify Necessary Permits May 9, 2005 Page 4 of 4

POSSIBLE LOCAL APPROVALS, CONSULTATIONS, AND PERMITS NECESSARY FOR THE LCRA-SAWS WATER PROJECT

Name	Granting Agency
Local Regulatory Floodplain	Affected Municipalities
Local Zoning	Affected Municipalities

PROJECT: Central Texas Regional Water Treatment Plant **SUBJECT:** Task 14 – Conclusions and Major Project Issues

DATE: May 9, 2005

Background

The Technical Memorandums for Tasks 1 through 13 present the body of the study. Each of Technical Memoranda discusses a specific aspect of the study; which together address the scope of work contained in the funding grant from the Texas Water Development Board to the Lower Colorado River Authority. The purpose of the study was to evaluate the feasibility and comparative costs of developing a regional water treatment facility to provide potable water for the Cities of Austin and San Antonio.

The study determined that at the end of the planning period, 2065, there was a total average day demand of 271 MGD that could be met by a regional facility. The treatment plant evaluated for the facility consisted of a split process water treatment plant. Part of the water would be lime softened. The other part would use a conventional water treatment process. Both waters would be filtered separately through microfiltration membranes. This split process would accommodate separate disinfection approaches to better match the existing practices of the participant to avoid compatibility problems.

Several potential alternative diversion points for raw water were identified. One location consisted of a series of intakes located in Matagorda, Wharton, and/or Colorado Counties along the lower reaches of the Colorado River. A second location considered for an intake was in the segment of the Colorado River from the City of Austin (Town Lake) downstream to the City of Bastrop. Ground water from the Simsboro Aquifer was also considered.

Three general sites for the location of the regional facility were identified and included in the analysis. The three sites considered were: one east of San Antonio near I-10, one east of San Marcos and one in the northern corner of Caldwell County. Points for connecting treated water from a regional facility were identified by each participant.

Pipelines and pump stations were sized and located to tie the alternative intake and plant locations to the connection points. A series of alternatives were developed and construction cost estimates were prepared for each. Both construction cost and O&M cost were identified for each alternative.

The initial analysis of the first three alternatives of varying the location of the plant indicated a rather small percentage difference in the cost, the least costly being the location east of San Marcos. Four additional alternatives were developed and analyzed for a more complete understanding of the potential regional scenarios. In one of these alternatives a fourth plant location closer to San Antonio was analyzed. The other three alternatives tested changes to the basic scenario to determine if other adjustments could be made to lower the overall costs.

The results showed a greater reduction in the present value of these four new alternatives compared to the lowest present value of the first three alternatives. However, it was determined that the lower costs were either not comparable or that the changes to the basic scenario included in the alternative scenario were not realistic and/or could not be implemented.

Central Texas Regional Water Treatment Plant – Task 14 - Conclusions and Major Project Issues May 7, 2005 Page 2 of 2

One final alternative was evaluated. In this alternative, the plant was changed to a base load plant for San Antonio, SARA and GBRA thereby reducing the size of the plant and treated water transmission main. Other adjustments were made to help make the regional facility comparable to the other separate alternatives available to the participants. The present value cost was converted to a cost per acre-foot also for comparison purposes. This was done by dividing the total cost by the acre-foot capacity and would be the same for all participants. That cost was \$794 per acre-foot for treated water at the water treatment plant. When the potable water transmission mains are considered, the average cost would be \$1039 per acre-foot delivered to the participant's delivery points. The latter figure is in the upper range of costs that have been developed for the LCRA-SAWS Water Project. Those costs range from \$970 to \$1,103.

Conclusions

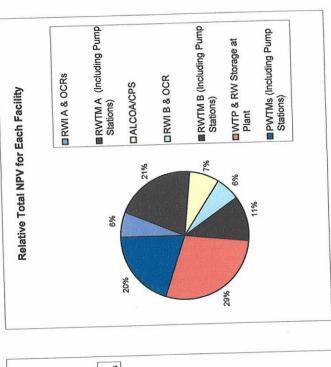
While the cost per acre-foot for a regional facility appear to be somewhat reasonable for San Antonio and SARA it is not for the other participants because of the cost of transmission facilities that the other participants would not have compared to their separate alternatives. The conclusion appears fairly clear that a regional facility is not feasible based on the alternatives and demand included in this analysis.

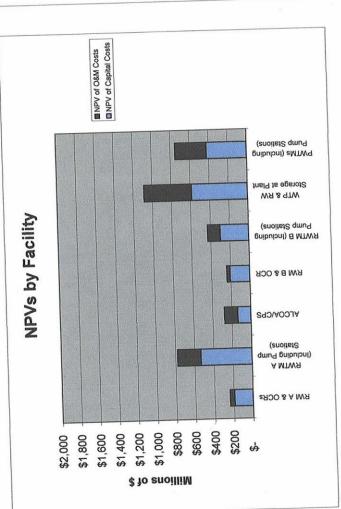
An alternative that was not included in the scope of this study but would appear to be worthy of additional analysis is a sub-regional facility located between Austin and Bastrop on or near the Colorado River. That facility could meet the demands of Austin, LCRA and possibly GBRA in a more cost effective manner. A very preliminary cost estimate for such a facility using similar costing data in this study appears to be in the \$741 per acre-foot range (not including PWTMs) and \$848 per acre-foot (including PWTMs to the delivery points).

APPENDIX 1

CENTRAL TEXAS REGIONAL WATER TREATMENT PLANT TO SERVE AUSTIN AND SAN ANTONIO WATER SYSTEM

ECONOMIC ANALYSIS AND UNIT PRICES


APPENDIX 1


CENTRAL TEXAS REGIONAL WATER TREATMENT PLANT TO SERVE AUSTIN AND SAN ANTONIO WATER SYSTEM

ECONOMIC ANALYSIS AND UNIT PRICES

Page 1

WTP Location nate Phasing S	T Scenario T	Total NPVs in					aniford of the second	RWTM B (Including WTP & RW Storage PWTMs (Including	PWTMs (Including
		Millions of \$	RWI A & OCRs	RWTM A (Including Pump Stations)	ALCOA/CPS	RWI B & OCR	RWTM B (including Pump Stations)	at Plant	Pump Stations)
								Raw water reservoir	
East of San 1A built by 2015; Antonio in 20	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.		Sized for 4000 cfs to scalp water; 4 intakes, 4 miles of 120-inch raw water mains & 4 OCRs at 25,000 ac-ft each	Sized for 4000 cfs diameter pipe sized to to scalp water, 4 deliver 132,000 acriticates, 4 miles of 100 acriticates, 4 OCRs at pumping stations w/ 25,000 acrit each balancing reservoirs along route	Non-Public wells; Transmission of 55,000 to scalp water; 2 ac-fl/year to the OCR intakes; 8 miles of at RVM B via 15 miles 120-inch raw water from Hwy 290 east of at 15,000 ac-fleach Eigin		Sized for 117,804 ac- Sized for 117,804 ac- sipeline with two oumping stations and balancing reservoirs	W/ 11,000 accit capacity; Conventional settling with membrane filtration for SAWS, SARA & GBRA: Lime softening with membrane filtration for COA & LCRA water	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
				Š	135	204	\$ 297	\$ 585	\$ 420
o VQN	NPV of Capital Costs \$	\$ 2,366 \$	-	s			\$ 130	\$ 499	\$ 329
VQN	NPV of O&M Costs \$	\$ 1,423 \$	\$ 47	s			\$ 428	\$ 1,084	\$ 748
Total NPV of	Fotal NPV of Capital & O&M	\$ 3,789 \$	\$ 238	8//	0	,			

O&M Cost Calculations RWI A - Matagorda Co. River Intakes, and Storage CTRWTP - Alternate 1A - WTP East of San Antonio

RWI A - Matagorda Co. River Intakes, an CTRWTP - Alternate 1A - WTP East of St							
Initial year of analysis period Interest rate	2015 5%			Engineering.	Contingency = Legal, Admin. =		
Evaluation period		years		ental & Archae	ology Studies &		
Unit cost of energy	\$ 0.07	per kwh	Mitigation, Si	urveying, and l	Land Acquisition or ≃		per mile per acre
Inflatable Rubber Low Head Dam					Total		
	Quantity	Units	Size	Unit Constr. Cost (millions)	Estimated Constr. Cost (millions)	Contigency, Eng., etc. (millions)	Total Capital Cost (millions)
Inflatable Rubber Low Head Dam	4	each	10 ft high	\$ 2.25	\$ 9.00	\$ 3.42	\$ 12.42
Estimated inflatable dam cost as Value of inflatable dam	% of total	509 S 4.50	6 million				
Assumed life of inflatable dam		10	years				
Estimated maintenance/replacem	ent cost	\$ 0.45	million/year				
Year built		2020					
NPV of O&M Costs NPV of Capital Costs			million million				
Total NPV of Capital and O&M Co	osts		million				
Raw Water Intake, Pumping Station, and	d RWTM (In	take to Res	servoir)				
Average withdrawal				ac-ft/year			
				cfs	21.9	Ratio of desig	gn withdrawal rate
Total intake design withdrawal rat	te (for scalpi	ing high flov	/s 4,000 1,795,200				e design withdrawal rate
No. of Intakes			1,750,250	e ab			
Design withdrawal rate per intake			1,000				
			448,800				
No. of reservoirs Design flow to each reservoir			448,800				
Inside diameter of each RWTM				in.			
Area Average length of each RWTM			78.54	sf miles	4.0	miles for all f	RWTMs
			5,280		21,120		
Estimated construction cost for R	WTM		\$ 793	per LF		\$ 1,254	
Total construction cost in millions Contingencies			\$ 16.8 \$ 3.4				
Subtotal			\$ 20.1	_			
Engineering, Legal & Administrati Subtotal	ive		\$ 3.0	-			
Envir & Arch Studies & Mitigation Total Capital Cost for			\$ 0.4	million			
Unit maintenance cost/year-mile		milotio		\$/year-mile	\$ 0.040	Million \$/vea	(all RWTMs to Reservoirs)
	- DIACTAGE	maina out			\$ 0.040	willion wyea	(all Nev rins to Nesdi volls)
Note: Assume each intake has tw							
Design flow rate for each RWTM Pumping rate (one pump)			448,800 50,000				
No. of pumps (not counting spare Peak flow rate into each RWTM (e) pumping i all pumps e	nto each RV xcept spare	V 9 450,000	gpm			
Velocity at peak flow rate			12.77				
C factor			120				16
Head loss per foot			0.0032 17.25	f/mile	h _l =	3.552*Q 1.6	19
Head loss at peak flow rate			17	7 ft			
Allowance for minor losses	30%		5	n 2 ft		Elev of disch Water surface	arge at reservoir
Total estimated losses Average static head			40	0 ft		tt	a diay iii tiyai
Total estimated dynamic head				2 ft 7 psi			
Assumed pump efficiency			859				
Assumed motor efficiency Estimated Hp required per pump			1,030	hp/pump			
			769	kw/pump			
Total hp pumping into each RWT Total hp at each intake (not coun		ung sparé)	9,272	hp/RWTM hp/intake			
Total hp all intakes (not counting Total kw all intakes (not counting	spares)		37,089 27,668				
Unit construction cost for each pu Construction cost per intake/pum	ump station	(from cost of	cui \$ 889 8.2	per firm hp o	of pump station	\$ 1,180	
No. of intakes from above				each			
Total construction cost in millions Contigency, Eng., etc. in millions				million million			
Total capital cost in millions			\$ 45.5	million			
Total construction cost for pump	stations			million	4000	Estimated -	quip cost as % of total constr cost
Value of equipment Assumed life of equip			20	million years	40%	Estimated ed	quip cost as % or total constr cost
Estimated maintenan		nent cost		million/year			

Year	Flow pun yea		No. of pump "sets"	Energy used		Energ	y cos	t	cost	er O&M s - Pump tations	c	Intenance osts - RWTM	Tot	tal O&M cost	Ne	et prese value
and the second	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		fillion \$ /year)		lillion \$ 'year)	()	Million \$ /year)		tillion \$ /year)		(\$)
2015				-	\$		\$	•					\$		\$	-
2016	*		-		\$		\$						S		\$	
2017		-	-	-	\$	-	\$						\$	-	\$	-
2018		-	-	-	\$		\$	•					\$		\$	
2019			-	-	\$	-	\$						\$		\$	
2020	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.
2021	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.
2022	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	- 1.
2023	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.
2024	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.
2025	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.
2026	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.
2027	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.
2028	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2029	132,000	118	1.64	30,188	\$	2,113	\$	0.77	s	0.66	\$	0.040	\$	1.47	\$	0
2030	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2031	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2032	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2033	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2034	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2035	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2036	132,000	118	1,64	30,188	\$	2,113	s	0.77	\$	0.66	s	0.040	s	1.47	S	0
2037	132,000	118	1.64	30,188	\$	2,113	S	0.77	S	0.66	s	0.040	S	1.47	\$	0
2038	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	5	0
2039	132,000	118	1.64	30,188	\$	2,113	S	0.77	S	0.66	s	0.040	S	1.47	s	0
2040	132,000	118	1.64	30,188	s	2,113	s	0.77	\$	0.66	\$	0.040	s	1.47	s	0
2041	132,000	118	1.64	30,188	s	2,113	s	0.77	s	0.66	s	0.040	s	1.47	\$	0
2042	132,000	118	1.64	30,188	s	2,113	s	0.77	\$	0.66	s	0.040	s	1.47	s	0
2043	132,000	118	1.64	30,188	š	2,113	š	0.77	s	0.66	š	0.040	Š	1.47	Š	ō
2044	132,000	118	1.64	30,188	š	2,113	Š	0.77	Š	0.66	Š	0.040	s	1.47	\$	ō
2045	132,000	118	1.64	30,188	š	2.113	s	0.77	s	0.66	š	0.040	Š	1.47	š	0
2046	132,000	118	1.64	30,188	š	2,113	Š	0.77	š	0.66	š	0.040	Š	1.47	š	0
2047	132,000	118	1.64	30,188	š	2,113	Š	0.77	\$	0.66	s	0.040	\$	1.47	Š	ő
2048	132,000	118	1.64	30,188	š	2,113	š	0.77	s	0.66	Š	0.040	Š	1.47	Š	0
2049	132,000	118	1.64	30,188	Š	2,113	Š	0.77	\$	0.66	Š	0.040	\$	1.47	Š	ő
2050	132,000	118	1.64	30,188	Š	2,113	s	0.77	Š	0.66	Š	0.040	Š	1.47	Š	o
2051	132,000	118	1.64	30,188	Š	2,113	\$	0.77	Š	0.66	Š	0.040	\$	1.47	s	ő
2052	132,000	118	1.64	30,188	S	2,113	5	0.77	S	0.66	Š	0.040	S	1.47	\$	ő
2052	132,000	118	1.64	30,188	Š	2,113	\$	0.77	Š	0.66	Š	0.040	S	1.47	\$	0
2054		118	1.64	30,188	Š	2,113	Š	0.77	Š	0.66	Š	0.040	\$	1.47	Š	ő
2055	132,000	118	1.64	30,188	š	2,113	Š	0.77	Š	0.66	ŝ	0.040	S	1.47	Š	ő
2056	132,000	118	1.64	30,188	s	2,113	S	0.77	s	0.66	S	0.040	S	1.47	s	0
2056	132,000	118	1.64		S	2,113	S	0.77	S	0.66	S	0.040	S	1.47	S	0
	132,000			30,188					\$	0.66	s			1.47	\$	0
2058	132,000	118	1.64	30,188	\$	2,113	\$	0.77	s	0.66	s	0.040	\$	1.47	s	0
2059	132,000	118	1.64	30,188	S	2,113	\$	0.77	S	0.66	s	0.040			s	0
2060	132,000	118	1.64	30,188	s	2,113	S	0.77				0.040	\$	1.47		
2061	132,000	118	1.64	30,188	\$	2,113	S	0.77	S	0.66	\$	0.040	\$	1.47	\$	0
2062	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2063	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2064	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2065	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
											1	Total NPV	of O	&M Costs	\$	2
			Capital Cos	ts in million \$		noire	s	23.5		r built						S 1
				WALLES IN						E-020						

.5 2020 \$ 18.6 .5 2020 \$ 35.6 Total NPV of Capital Costs \$ 54.7

Total NPV of Capital and O&M Costs in millions \$

Reservoirs

	Quantity		Units	Volume/each (acre-feet)		t Cost ac-ft))	Con	Total estruction Cost in nillions		ligency, g., etc.	otal in
Reservoirs	4		each	25000	\$	974 909	\$	97.4	\$	37.0	\$ 134.4
Estimated average depth of reservo	oir		20	ft							
Surface area of reservoir			5000	acres							
Ratio of total land area reqd to surf	ace area		1.1				Er	ovir & Arch	naeolo	ay, Surv.	
Total land area regd for reservoirs			5500	acres						nd Acq =	27.5
						T	otal c	apital cost	t in mil	lions =	\$ 161.9
Assumed life of reservoir			100	years							
Estimated replacement cost		\$	0.97	million/year							
Estimated maintenance			0.4	million/year	Mowi	ng, mair	tainin	g fences,	etc.		
Total		\$	1.37	million/year							
Year built			2020								
NPV of O&M costs		\$	19.1	million							
NPV of Capital costs		\$	126.8	million							
Total NPV of Canital and OSM Cos	te	•	145.9	million							

Summary		IPV of tal Costs		IPV of O&M Costs	Ca	al NPV of pital and M Costs
Inflatable Rubber Low Head Dam	\$	9.7	\$	6.3	\$	16.0
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$	54.1	\$	21.6	\$	75.7
Reservoirs	\$	126.8	\$	19.1	\$	145.9
Total for RWI A	s	190.6	s	47.0	\$	237.6

O&M Cost Calculations RWTM A - Matagorda Co. to WTP CTRWTP - Alternate 1A - WTP East of San Antonio

Initial year of analysis period Contingency = 20% Engineering, Legal, Admin. = 15% Interest rate 5% 50 years Environmental & Archaeology Studies & Evaluation period Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile Unit cost of energy 0.07 per kwh Raw Water Transmission Main - A 96 in. 50.27 sf Inside diameter of pipe Length of RWTM 150 miles 792 000 feet Estimated unit construction cost for RWTM 567 per LF 865 Total construction cost in millions 449 Contingencies 90 Subtotal Engineering, Legal & Administrative Subtotal 620 Envir & Arch Studies & Mitigation, Surveying, & Land Acq \$ Total Capital Cost for PWTM in millions 635 million Unit maintenance cost/year-mile 10,000 \$/year-mile \$ 1.500 Million \$/year 132,000 ac-ft/year Design flow rate (after 100% buildout) 118 mgd 81,829 gpm Pumping rate (one pump) 16,400 No. of pumps (not counting spare)
Peak flow rate (all pumps except spare) 82,000 gpm 3.63 fps Velocity at peak flow rate C factor 120 hr= | 3.552*Q|1.85 0.00041 ft/ft Head loss per foot 2 19 ft/mile | C*(d)2.63 Head loss at peak flow rate 328 ft 600 Elev. At San Antonio East WTP Allowance for minor losses 10% 33 ft 361 ft Total estimated losses 90 Elev. At Matagorda OCRs 510 ft Average static head Total estimated dynamic head 510 ft 871 ft 378 psi No of pumping stations req'd along route No. of pumping stations used in cost estimate 2.52 150 psi (assumed max pressure in pipe) 3.0 Average head per pump station 290 ft Assumed pump efficiency 85% 90% Assumed motor efficiency Estimated Hp required per pump 1,572 hp/pump 1,173 kw/pump Total hp per pump station (not counting spare) 4,717 kw/pump set (one pump at each station) Total kw per pump set (set=pumps in series along route) Unit constr. cost for each pump station (from cost curve) 1,315 per firm hp of pump station 10.33 million \$ Construction cost per pump station 0.75 million 11.08 million Balancing reservoir 60 min. of storage at avg pumping rate Total construction cost per pump station 5.0 mg 0.15 per gal for open top reservoir 3.0 each No. of pump stations from above 33.3 million Total construction cost in millions Contigency, Eng., etc. in millions 12.64 million 45.9 million Total capital cost in millions Total construction cost for pump stations \$ 33.3 million 40% Estimated equipment cost as % of total 13.3 million Value of equipment Assumed life of equipment Estimated maintenance/replacement cost 20 years 0.67 million/year

O&M Costs

Year	Flow pum yea		No. of pump "sets" operating	Energy used		Energy			cos	her O&M its - Pump Stations	c	intenance costs - RWTM		otal O&M cost	Ne	et preser value
	ac-ft/yr	mgd	/day	(kwh/day)		(\$/day)	(1	Million \$ /year)	(1	Million \$ /year)	(Million \$ /year)		(Million \$ /year)	-	(\$)
2015		-	-	-	\$	•	\$	*			-02-		\$		\$	-
2016		•	-	-	\$	-	\$	*					\$	*	\$	-
2017	-		-	-	\$		\$						\$	-	\$	
2018	-	-	-		\$	-	\$						\$	-	\$	
2019	-	•	•	•	\$		\$	•					\$	•	\$	-
2020	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	13.0
2021	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16,60	\$	12.3
2022	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	11.
2023	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	11.
2024	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	10.
2025	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	10.
2026	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	9.
2027	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	9.3
2028	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	8.8
2029	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	8.
2030	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	7.
2031	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	7.
2032	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16,60	\$	7.
2033	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1,500	\$	16.60	\$	6.
2034	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1,500	\$	16.60	\$	6.
2035	132,000	118	4.99	564,822	\$	39,538	s	14.43	s	0.67	\$	1.500	\$	16.60	\$	6.
2036	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	s	5.
2037	132,000	118	4.99	564,822	Š	39,538	Š	14.43	Š	0.67	Š	1.500	\$	16.60	\$	5
2038	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	Š	5
2039	132,000	118	4.99	564,822	Š	39,538	Š	14.43	Š	0.67	Š	1.500	Š	16.60	Š	5.
2040	132,000	118	4.99	564,822	Š	39,538	Š	14.43	s	0.67	Š	1.500	Š	16.60	Š	4.
2041	132,000	118	4.99	564,822	Š	39,538	\$	14.43	Š	0.67	Š	1.500	š	16.60	Š	4
2042	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	Š	1.500	s	16.60	Š	4
		118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	5	1.500	\$	16.60	\$	4.
2043 2044	132,000	118	4.99	564,822	Š	39,538	Š	14.43	\$	0.67	\$	1.500	\$	16.60	\$	4
	132,000		4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	S	3.
2045 2046	132,000	118 118	4.99		\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	s	3.
	132,000			564,822	\$		\$	14.43	S	0.67	\$	1.500	S	16.60	Š	3.
2047	132,000	118	4.99	564,822		39,538					5	1.500	\$	16.60	\$	3.
2048	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67				16.60	S	3
2049	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$			
2050	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	3
2051	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	2
2052	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	2
2053	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	2
2054	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	2
2055	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	2
2056	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	2
2057	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	2
2058	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	2
2059	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1,500	\$	16.60	\$	1
2060	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	1
2061	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	1
2062	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	1
2063	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	1
2064	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	1
2065	132,000	118	4.99	564,822	\$	39,538	\$	14.43	\$	0.67	\$	1.500	\$	16.60	\$	1
											1	Total NPV	of C	0&M Costs	\$	
			Capital Cos	ts in million	\$:				2	Yr built						
			25	RWTM			\$	635		2020					\$	4
				Pumping St	atio	ns	\$	46		2020					\$	
														pital Costs	\$	- 1

NPV CALCULATIONS ALCOA / CPS GROUNDWATER CTRWTP - Alternate 1A - WTP East of San Antonio

Initial year of analysis period 2015 Contingency = 20% Interest rate 5% Engineering, Legal, Admin. = 15% Evaluation period 50 years Environmental & Archaeology Studies & Unit cost of energy \$ 0.07 per kwh Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

	ALCOA	CPS	Total
Year built	2015	2015	
Estimated Construction Cost in Millions			
Wells (Based on Non-Public Water Supply Wells)	20.92	7.94	28.86
Pipeline	13.03	5.94	18.97
Pump Stations & Storage	8.51	0	8.5
Subtotal	42.46	13.88	56.34
Contingency	8.49	2.78	11.2
Subtotal	50.95	16.66	67.6
Engineering, Legal & Administrative	6.37	2.08	8.45
Subtotal	57.32	18.74	76.00
Environmental & Archaeology Studies & Mitigation	0.63	0.2	0.8
Land Acquisition & Surveying	0	0	0.0
Groundwater Purchase	0	5.64	5.64
ALCOA Construction Program Management Fee	5.45	0	5.4
Interest During Construction (2 years, 6% int., 4% ret.)	5.89	2.44	8.3
Total Capital Cost	69.29	27.02	96.3
Estimated Annual O&M Costs			
O&M	0.67	0.18	0.8
Pumping Energy	2.41	0.52	2.9

Total Annual Cost	6.36	1.06	7.42
Mitigation Reserves	0.28	0.11	0.39
Groundwater District Fees	0.65	0.25	0.90
Purchase of Groundwater	2.00	0.00	2.00
ALCOA Project Management Fees	0.35	0.00	0.35
Pumping Energy	2.41	0.52	2.93
O&M	0.67	0.18	0.85
Estimated Annual O&M Costs			

 NPV of O&M Costs
 \$
 116
 \$
 19
 \$
 135 million million

 NPV of Capital Costs
 \$
 69
 \$
 27
 \$
 96 million

 Total NPV of Capital and O&M Costs for Well Fields
 \$
 185
 \$
 46
 \$
 232
 million

Cooling of Well Water

Total number of wells in both fields	120 wells	Approximate capacity per wel	300	gpm
Percentage of wells with temperatures > than degrees	5%		36,000	gpm
Estimated number of wells with temperature > degrees	6.0	Rough check	58,072	ac-ft/year

Estimated Capital Costs

Year built		2015	
Number of Packaged Cooling Towers (300 gpm capacity/each)	6.0		
Equipment cost (cooling towers and fans)	\$	60,000	
Installation and contractors mark-up	\$	50,000	
Structural slab	\$	30,000	
Electrical	\$	50,000	
Estimated Unit Construction Cost	\$	190,000	Each
Total construction cost	\$	1.14	million
Contingencies	\$	0.23	
Subtotal	\$	1.37	
Engineering, Legal and Admin	\$	0.21	
Total Estimated Capital Cost	\$	1.57	-
NPV of Canital Costs	S	1 57	million

Estimated O&M Costs

Value of equipment	\$ 0.4	million	
Assumed life of equipment	10	years	
Estimated maintenance/replacement cost	\$ 0.04	million/year	
Blower Hp per cooling tower	10	Нр	
	7	kw	
Hours of operation	24	hours	
Power consumption per cooling tower	179	kwh per day	
C. 1943 : 1 10. 12 19. 인 전 시간 전 1. 10 10 10 10 10 10 10 10 10 10 10 10 10	65,350	kwh per year	
Power cost per cooling tower	\$ 4,574	per year	
Total power cost for all cooling towers in millions	\$ 0.03	million per year	
Regular operational checks and routine maintenance	\$ 6,000	per month for all cooling towers	
	\$ 0.07	per year	

Estimated O&M Cost \$ 0.14 million \$ per year NPV of O&M costs \$ 2.47 million \$

Ground Water Transmission Main and Pump Station (Hwy 290 to Bastrop Intake)

Inside diameter of transmission pipe

54 in.

Area		15.90	-		
Length of Ground Water TM			miles		
		79,200	feet		
Estimated construction cost for GWTM		\$ 327	per LF		
Total construction cost in millions		\$ 25.9			
Contingencies		\$ 5.2			
Subtotal		\$ 31.1			
Engineering, Legal & Administrative		\$ 4.7			
Subtotal		\$ 35.8			
Envir & Arch Studies & Mitigation, Surv	eying, & Land Acq	\$ 1.5			
Total Capital Cost for PWT		\$ 37.3	million		
Unit maintenance cost/year-mile		\$ 10,000	\$/year-mile	\$ 0.15	50 Million \$/year
Design flow rate		55,000	ac-ft/year		
		49	mgd		
		34,095	gpm		
Velocity at peak flow rate		4.78	fps		
C factor		120			
Head loss per foot		0.00134	ft/ft	1	n= 3.552*Q ^{1.85}
		7.10	ft/mile		C*(d) ^{2.63}
Head loss at peak flow rate		106	ft		
Allowance for minor losses	10%	11	ft	4	00 Elev. At RWI-B
Total estimated losses		 117	ft	5	50 minus Elev Storage Tank at Hwy 290
Average static head		-150	ft	-1	50 ft
Total estimated dynamic head		-33	ft	(intake is lo	wer than tank at Hwy 290)
		-14	psi	8	

Negative indicates gravity flow from Hwy 290 to Bastrop Intake; no pumping necessary.

					Mi	illion \$
Annual O&M Cost in million	\$:		Yr built			77 1 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
GWTM	\$	0.150	2015			
				Total NPV of O&M Costs	\$	2.7
Capital Costs in million \$:			Yr built			
GWTM	\$	37.3	2015		\$	37.3
				Total NPV of Capital Costs	S	37.3

Summary

Well Fields and Collection Lines (including tank and pump station at Hwy 290)
Cooling Towers for Selected High Temperature Wells
Ground Water Transmission Main and Pumping Station
Total for ALCOA-CPS

	IPV of tal Costs	NF	V of O&M Costs	Capital and O&M Costs				
\$	96.3	\$	135.5	\$	231.8			
\$	1.6	\$	2.5	\$	4.0			
\$	37.3	\$	2.7	\$	40.0			
•	135 1	\$	140.7	9	275 8			

O&M Cost Calculations RWI B - Colorado River Intake at Bastrop and Off Channel Reservoir CTRWTP - Alternate 1A - WTP East of San Antonio

Contingency = 20% Engineering, Legal, Admin. = 15% Initial year of analysis period 5% 40 years Interest rate Environmental & Archaeology Studies &

Mittgation, Surveying, and Land Acquisition = \$ 100,000 per mile

or = \$ 5,000 per acre Evaluation period Unit cost of energy \$ 0.07 per kwh Inflatable Rubber Low Head Dam Total Contigency, Total Capital Eng., etc. Cost (millions) (millions) Unit Constr. Estimated Constr. Cost Quantity Units Size Cost (millions) (millions) 10 ft high 2.25 \$ 1.71 \$ Inflatable Rubber Low Head Dam 2 each 4.50 \$ 50% 2.25 million Estimated inflatable dam cost as % of total Value of inflatable dam
Assumed life of inflatable dam
Estimated maintenance/replacement cost 10 years 0.23 million/year Year built 2015 NPV of O&M Costs NPV of Capital Costs 3.86 million 6.21 million Total NPV of Capital and O&M Costs \$ 10.07 million

Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Summary of withdrawals in acre-feet/year:

Year	2015	2020	2030	2040		2050	2060	2065	
For SAWS	18000	18000	18000	18000		18000	18000	18000	
LCRA			5600	11200		11200	11200	11200	
COA _			16802	22403		33604	33604	33604	
Total	18000	18000	40402	51603		62804	62804	62804	
Ultimate (Y2	065) avera	age design v	vithdrawal ra	ate			ac-ft/year cfs		
								23.1	Ratio of design withdrawal rate
Total intake	design with	hdrawal rate	(for scalpin	g high flows)	2,000 897,600			to Total intake design withdrawal rate
No. of Intake						2			
Design with		ner intake				1,000	cfe		
Design with	Jiawai iato	per ilitake				448,800			
No. of resen Design flow		servoir				224,400			
Dough non	to oddir ro	3011011				221,100	ab		
Inside diame	eter of each	h RWTM				120	in.		
Area						78.54			
Average len	gth of each	RWTM					miles		miles for all RWTMs
						10,560	feet	42,240	feet
Estimated co	onstruction	cost for RV	VTMs		\$	793	per LF		\$ 1,254
Total constr		in millions			\$	33.5			
Contingencie					\$	6.7			
	Subtotal				\$	40.2			
Engineering	, Legal & A Subtotal	dministrativ	е		\$	6.0 46.2	-		
Envir & Arch		Mitigation	Surveying 8	& Land Aca	\$	0.8			
		al Cost for F			\$	47.0	•		
Unit mainter	nance cost	/year-mile			\$	10,000	\$/year-mile	\$ 0.080	Million \$/year (all RWTMs to Reservoirs
Note: Assun	ne intake h	as one RW	TM pumping	to the reser	voir.				
Design flow	rate for ea	ch RWTM (from above)			224,400	gpm		
Pumping rat						40,000	gpm	1	
No. of pump Peak flow ra					Γ.	240,000	gpm		
Velocity at p	eak flow ra	ate				6.81	fps		
C factor						0.00102	0/0	h	. 0 55000185
Head loss p	er toot						ft/mile	n _t =	3.552*Q ^{1.85} C*(d) ^{2.63}
									10 (4)
Head loss a			2004			11		400	Disabassa at assault
Allowance for Total estima			30%		_		-ft ft		Discharge at reservoir Water surface elev in river
Average sta						80		80	
Total estima		ic head			_	94	ft		
						41	psi		
Assumed pu						85%			
Assumed m						90%			
Estimated H	p required	per pump					hp/pump		

926 kw/pump

Total hp pumping into each RWTM (not counting spare)		7,448	hp/RWTM			
Total hp at each intake (not counting spare)		14,897	hp/intake			
Total hp all intakes (not counting spares)		29,793	hp			
Total kw all intakes (not counting spares)		22,226	kw			
Unit construction cost for each pump station (from cost cur-	\$	889	per firm hp of pump statio	n	s	830
Construction cost per intake/pump station		13.2	million			
No. of intakes from above		2	each			
Total construction cost in millions	\$	26.5	million			
Contigency, Eng., etc. in millions	\$	10.06	million			
Total capital cost in millions	\$	36.6	million			
Total construction cost for pump stations	\$	26.5	million	10%	Estimated	d equipment cost as % of total
Value of equipment	\$	10.6	million			20.0
Assumed life of equipment		20	years			
Estimated maintenance/replacement cost	S	0.53	million/year			

O&M Costs:

Year	Flow pum		No. of pump "sets"	Energy used		Energ	у с	ost		Other O&M osts - Pump Stations		aintenance costs - RWTM	Т	otal O&M cost	N	et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year))	(Million \$ /year)	(Million \$ /year)		(\$)
2015	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.77
2016	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.73
2017	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.70
2018	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.66
2019	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.63
2020	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.60
2021	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.57
2022	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.55
2023	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.52
2024	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.50
2025	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.47
2026	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.45
2027	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.43
2028	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.41
2029	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.39
2030	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.46
2031	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.44
2032	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.42
2033	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.40
2034	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.38
2035	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.36
2036	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.35
2037	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.33
2038	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.31
2039	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.30
2040 2041	51,603	46 46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.31
2041	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.30
2042	51,603 51,603	46	0.80 0.80	17,775	200	1,244 1,244	\$	0.45 0.45	\$	0.53	\$	0.080	\$	1.06		0.28
2043	51,603	46	0.80	17,775 17,775	\$	1,244	\$	0.45	\$	0.53 0.53	\$	0.080	\$	1.06 1.06	\$	0.27 0.26
2045	51,603	46	0.80	17,775	S	1,244	\$	0.45	S	0.53	\$	0.080	S	1.06	S	0.25
2045	51,603	46	0.80	17,775	\$	1,244	\$	0.45	S	0.53	\$	0.080	S	1.06	S	0.23
2047	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	S	1.06	\$	0.23
2048	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.22
2049	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	S	1.06	\$	0.20
2050	62,804	56	0.00	21,633	\$	1,514	\$	0.45	S	0.53	\$	0.080	\$	1.16	S	0.21
2051	62,804	56	0.97	21,633	Š	1,514	\$	0.55	Š	0.53	Š	0.080	Š	1.16	Š	0.20
2052	62,804	56	0.97	21,633	Š	1,514	Š	0.55	Š	0.53	š	0.080	Š	1.16	Š	0.19
2053	62,804	56	0.97	21,633	Š	1,514	s	0.55	Š	0.53	S	0.000	Š	1.16	Š	0.18
2054	62,804	56	0.97	21,633	Š	1,514	Š	0.55	Š	0.53	Š	0.000	Š	1.16	Š	0.17
2055	62,804	56	0.97	21,633	Š	1,514	\$	0.55	Š	0.53	Š	0.080	Š	1.16	Š	0.17
2056	62,804	56	0.97	21,633	\$	1,514	Š	0.55	S	0.53	s	0.080	Š	1.16	Š	0.16
2057	62,804	56	0.97	21,633	Š	1,514	Š	0.55	Š	0.53	š	0.080	Š	1.16	S	0.15
2058	62,804	56	0.97	21,633	Š	1,514	Š	0.55	Š	0.53	Š	0.080	Š	1.16	Š	0.14
2059	62,804	56	0.97	21,633	Š	1,514	Š	0.55	Š	0.53	Š	0.000	Š	1.16	S	0.14
2060	62,804	56	0.97	21,633	Š	1.514	Š	0.55	\$	0.53	š	0.080	Š	1.16	š	0.13
2061	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	Š	0.080	\$	1.16	Š	0.12
2062	62,804	56	0.97	21,633	S	1,514	Š	0.55	\$	0.53	\$	0.080	Š	1.16	Š	0.12
2063	62,804	56	0.97	21,633	\$	1,514	\$	0.55	s	0.53	Š	0.080	\$	1.16	Š	0.11
2064	62,804	56	0.97	21,633	s	1,514	Š	0.55	\$	0.53	\$	0.080	Š	1.16	S	0.11
2065	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	Š	1.16	Š	0.10
					1		-		1							

Total NPV of O&M Costs \$ 17.1

 Capital Costs in million \$:
 Yr built

 RWTM to Reservoir Intake/Pumping Stations
 \$ 47.0
 2015
 \$ 47.0
 \$ 36.6

 2015
 Total NPV of Capital Costs
 \$ 36.6

Total NPV of Capital and O&M Costs in millions \$ 100.7

Reservoirs

	Quantity	Units	Volume/each (acre-feet)	nit Cost \$/ac-ft)	Con	Total struction ost in illions	tigency, g., etc.	otal in illions
Reservoirs	4	each	15000	\$ 1,180	\$	70.8	\$ 26.9	\$ 97.7
				\$ 0.004	per g	allon		
Estimated average depth of reserv	voir	20	ft		0 0			

Surface area of reservoir	3000	acres		
Ratio of total land area reqd to surface area				
of reservoir	1.1		Envir & Archaeology, Surv,	
Total land area regd for reservoirs	3300	acres	and Land Acq =	16.5
			Total capital cost in millions = \$	114.2
Assumed life of reservoir	100	years		
Estimated replacement cost	\$ 0.71	million/year		
Estimated maintenance	\$ 0.04	million/year	Mowing, maintaining fences, etc.	
Total	\$ 0.75	million/year		
Year built	2015			
NPV of O&M costs	\$ 12.8	million		
NPV of Capital costs	\$ 114.2	million		
Total NPV of Capital and O&M Costs	\$ 127.0	million		

Summary	-	PV of tal Costs	PV of O&M Costs	Ca	pital and
Inflatable Rubber Low Head Dam	\$	6.2	\$ 3.9	\$	10.1
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$	83.6	\$ 17.1	\$	100.7
Off Channel Reservoir	\$	114.2	\$ 12.8	\$	127.0
Total for RWI A	\$	204.0	\$ 33.8	\$	237.8

O&M Cost Calculations RWTM B - RWI B near Bastrop to WTP CTRWTP - Alternate 1A - WTP East of San Antonio

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile Initial year of analysis period Interest rate Evaluation period Unit cost of energy 5% 40 years \$ 0.07 per kwh

Surface Water							
Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	18000	18000	18000	18000	18000	18000	18000
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Subtotal	18000	18000	40402	51603	62804	62804	62804
Groundwater							
Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	55000	55000	55000	55000	55000	55000	55000
Suface & groun	73000	73000	95402	106603	117804	117804	117804

Ultimate (Y206	5) average design pumping rate	- John	117,804	ac-ft/year						
Sizing of Raw Water Tr	ansmission Main B & Pump Stations									
Inside diameter	r of RWTM	040	84 38.48							
Length of RWT	М			miles						
Estimated unit	construction cost for RWTM	\$	467	per LF			\$	417		
Total construct Contingencies	ion cost in millions	\$	190.0 38.0							
	btotal	\$	228.0							
	egal & Administrative	\$	34.2							
	btotal	\$	262.2							
Envir & Arch St	tudies & Mitigation, Surveying, & Land Acq	\$	7.7							
	tal Capital Cost for PWTM in millions	\$	269.9	million						
Unit maintenan	ce cost/year-mile	\$	5,000	\$/year-mile	\$	0.385	Million	s/year		
Design flow rat	e (from table above)			ac-ft/year mgd						
			73,029	gpm						
Pumping rate (one numn)	MINES OF THE PARTY	15,000							
	not counting spare)	11/2/16	5	apin						
	(all pumps except spare)	I A STATE OF	75,000	gpm						
Velocity at pea C factor	k flow rate		4.34	fps						
Head loss per	loot		0.00067	6/6		h=	10 55	1.8	5	
riead loss per	661			ft/mile		III-	1 C*(d	2*Q 1.8 ,2.63		
			0.00	TOTTING			1 C-(a) 1		
Head loss at pe	eak flow rate		274	ft						
Allowance for r			27			650	Elev	At WTP)	
Total estimated		-	301						in Bastrop reservoi	r
Average static			250		-	250				
	d dynamic head		551	ft						
	© por # to proceed the potential proced in 10.		239	psi						
	ended pumping stations along route		1.59			150			I max pressure	
	stations used in cost estimate		2.0				in pip	e)		
Average head	per pump station		276	ft						
Assumed pump			85%							
Assumed motor			90%	G as						
Estimated Hp r	equired per pump			hp/pump						
				kw/pump						
	imp station (not counting spare)			hp/station	/a		b	tation		
i otal kw per pi	ump set (set=pumps in series along route)		2,729	kw/pump set	(one p	ump at	each s	tation)		
	ost for each pump station (from cost curve)	\$		per firm hp o	f pump	station				
Construction of	ost per pump station			million	100					
Balancing rese		\$		million				of storag	ge at avg pumping i	rate
To	tal construction cost per pump station	\$	9.95	million	s	5.0 0.15		al for on	en top reservoir	
No. of pump st	ations from above		2.0	each	- 50		, - 0		• · · · · · · · · · · · · · · · · · · ·	
Total construct	ion cost in millions	\$	19.9	million						
	ing., etc. in millions	\$		million						
Total capital co		\$		million						
Total construct	ion cost for pump stations	\$	19.9	million						
	lue of equipment	\$		million		40%	Estim	ated eq	uipment cost as %	of total
	sumed life of equipment		20	years					6060	
	timated maintenance/replacement cost	\$		million/year						

O&M Costs

Υ	'ear	Flow pun		No. of pump "sets"	Energy used		Energy	y co	st	co	ther O&M sts - Pump Stations		intenance costs - RWTM	Т	otal O&M cost	Ne	et present value
4		ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	(Million \$ /year)	((Million \$ /year)	(Million \$ /year)	((Million \$ /year)		(\$)
2	015	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	5.83
2	016	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	5.55
	017	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	5.29
2	018	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	5.04
2	019	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	4.80
	020	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	4.57
2	021	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	4.35
2	022	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	4.14
	023	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	3.95
	024	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	3.76
	025	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	3.58
	026	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	3.41
	027	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	3.25
	028	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	3.09
	029	73,000	65	3.02	197,574	\$	13,830	\$	5.05	\$	0.40	\$	0.385	\$	5.83	\$	2.95
	030	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	3.55
	031	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	3.38
	032	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	3.22
	033	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	3.07
	034	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	2.92
	035	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	2.78
	036	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	2.65
	037	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	2.52
	038	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	\$	7.38	\$	2.40
	039	95,402	85	3.94	258,205	\$	18,074	\$	6.60	\$	0.40	\$	0.385	5	7.38 8.15	\$	2.29
	040	106,603	95	4.41	288,521	\$	20,196	\$	7.37 7.37	\$	0.40	\$	0.385		8.15	\$	2.41
	041	106,603	95 95	4.41	288,521	\$	20,196	\$	7.37	\$	0.40	\$	0.385	\$	8.15	S	2.18
	042	106,603	95	4.41 4.41	288,521	\$	20,196 20,196	\$	7.37	\$	0.40	\$	0.385	\$	8.15	\$	2.08
	043	106,603	95	4.41	288,521 288,521	\$	20,196	\$	7.37	S	0.40	\$	0.385	\$	8.15	\$	1.98
	045	106,603	95	4.41	288,521	S	20,196	\$	7.37	\$	0.40	\$	0.385	\$	8.15	S	1.89
	046	106,603	95	4.41	288,521	\$	20,196	\$	7.37	S	0.40	\$	0.385	\$	8.15	\$	1.80
	047	106,603	95	4.41	288,521	\$	20,196	\$	7.37	s	0.40	\$	0.385	\$	8.15	\$	1.71
	048	106,603	95	4.41	288,521	Š	20,196	\$	7.37	\$	0.40	Š	0.385	\$	8.15	S	1.63
	049	106,603	95	4.41	288,521	Š	20,196	Š	7.37	Š	0.40	Š	0.385	Š	8.15	S	1.55
	050	117,804	105	4.87	318,836	\$	22,319	Š	8.15	Š	0.40	\$	0.385	Š	8.93	S	1.62
	051	117,804	105	4.87	318,836	Š	22,319	Š	8.15	s	0.40	\$	0.385	\$	8.93	\$	1.54
	052	117,804	105	4.87	318,836	Š	22,319	\$	8.15	s	0.40	\$	0.385	\$	8.93	Š	1.47
	053	117,804	105	4.87	318,836	\$	22,319	S	8.15	Š	0.40	\$	0.385	\$	8.93	\$	1.40
	054	117,804	105	4.87	318,836	\$	22,319	\$	8.15	Š	0.40	\$	0.385	s	8.93	\$	1.33
	055	117,804	105	4.87	318,836	Š	22,319	Š	8.15	\$	0.40	Š	0.385	Š	8.93	\$	1.27
	056	117,804	105	4.87	318,836	Š	22,319	\$	8.15	Š	0.40	\$	0.385	\$	8.93	\$	1.21
	057	117,804	105	4.87	318,836	s	22,319	\$	8.15	Š	0.40	\$	0.385	\$	8.93	\$	1.15
	058	117,804	105	4.87	318,836	s	22,319	\$	8.15	\$	0.40	\$	0.385	\$	8.93	\$	1.10
	059	117,804	105	4.87	318,836	s	22,319	\$	8.15	\$	0.40	\$	0.385	\$	8.93	\$	1.04
	060	117,804	105	4.87	318,836	s	22,319	\$	8.15	s	0.40	\$	0.385	\$	8.93	s	0.99
	061	117,804	105	4.87	318,836	s	22,319	\$	8.15	\$	0.40	\$	0.385	\$	8.93	\$	0.95
	062	117,804	105	4.87	318,836	S	22,319	\$	8.15	\$	0.40	\$	0.385	\$	8.93	\$	0.90
	063	117,804	105	4.87	318,836	\$	22,319	\$	8.15	\$	0.40	\$	0.385	\$	8.93	\$	0.86
	064	117,804	105	4.87	318,836	\$	22,319	\$	8.15	\$	0.40	\$	0.385	\$	8.93	\$	0.82
	065	117,804	105	4.87	318,836	\$	22,319	\$	8.15	\$	0.40	\$	0.385	\$	8.93	\$	0.78
													Total NPV	of (D&M Costs	\$	130.3
				Capital Cos	ts in million \$	3 :				_	Yr built						
					RWTM			\$	269.9		2015					\$	269.9
					Pumping Sta	ation	าร	\$	27.5		2015	12.7				\$	27.5
												Т	otal NPV of	f Ca	pital Costs	\$	297.4

Total NPV of Capital and O&M Costs in millions \$

427.7

East of SA_Alt1A;RWTM B

O&M Cost Calculations WTP and Raw Water Storage Reservoir at WTP CTRWTP - Alternate 1A - WTP East of San Antonio

Initial year of analysis period Interest rate Evaluation period Unit cost of energy

2015 Contingency = 20%
5% Engineering, Legal, Admin. = 15%
50 years Environmental & Archaeology Studies &
\$ 0.07 per kwh Mitigation, Surveying, and Land Acquisition = \$ 25,000 per acre

Treated Water Production by Treatment Type (from Demand Chart - BE SURE TO CHECK)

		Year =	2015	2020	2030	2040	2050	2060	2065
Softened water demand:	<u>82</u>	Units							
Average yearly demands:	_								
City of Austin LCRA		ac-ft/yr ac-ft/yr	0	0	16802 5600	22403 11200	33604 11200	33604 11200	33
Totals		ac-ft/yr	- 0	0	22402	33603	44804	44804	44
Totals		mgd	0	ő		30	40	40	-
Max day demands: City of Austin		mgd	0	0	25	35	50	50	
LCRA		mgd	0	0	10	20	20	20	
Totals		mgd	0	0	35	55	70	70	
		Year =	2015	2020	2030	2040	2050	2060	2065
Non-softened water demands:		Units							
Average yearly demands:	\$1 8 10	Oliks							
SAWS		ac-ft/yr	73000	205000	205000	205000	205000	205000	205
SARA		ac-ft/yr	20550	23406	28433	31393	34411	37530 12300	41
GBRA Totals	-	ac-ft/yr	93550	228406	239433	244393	10000 249411	254830	258
Totals		mgd	84	204	239433	244393	249411	234630	250
Max day demands:									
SAWS SARA		mgd	85	238	238	238	238	238	
GBRA		mgd mgd	24	27	33	36	40	44	
Totals		mgd	109	265	282	288	296	304	
otal: softened and non-softened water d Average yearly demand	lemands	ac-ft/yr	93550	228406	261835	277996	294215	299634	30
		mgd	84	204	234	248	263	267	
Max day demand		mgd	109	265	317	343	366	374	
Water Reservoir									
Sizing for ultimate conditions:									
Sizing for ultimate conditions: Assumed number of days of consecut				days					
Sizing for ultimate conditions:				days mgd	Aublah la alaa a				
Sizing for ultimate conditions: Assumed number of days of consecut	uction req'd in mg		378		(which is also e		ground and raw	water that	
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod	uction req'd in mg		378 271	mgd			ground and raw	water that	
Sizing for ultimate conditions: Assumed number of days of consecul Design (Max. Day) treated water prod Average treated water production in r	uction req'd in mg mgd w water)		378 271 107 3,219	mgd mgd mgd mg			ground and raw	water that	
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of rav Required storage reservoir for raw wa Add safety factor	uction req'd in mg mgd w water)		378 271 107 3,219 9,880 2,470	mgd mgd mgd mg ac-ft ac-ft			ground and raw	water that	
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for ray wa	uction req'd in mg mgd w water) ster		378 271 107 3,219 9,880	mgd mgd mgd mg ac-ft	can be pumped	to the WTP)	e day demand		
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for ray wa Add safety factor Total storage required	uction req'd in mg mgd w water) ster		378 271 107 3,219 9,880 2,470 12,350	mgd mgd mgd mg ac-ft ac-ft ac-ft	Note: No. of	to the WTP)	e day demand	water that	ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for ray wa Add safety factor Total storage required	uction req'd in mg mgd w water) ster		378 271 107 3,219 9,880 2,470 12,350	mgd mgd mgd mg ac-ft ac-ft ac-ft	Note: No. of (for exam	to the WTP)	e day demand		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of rav Required storage reservoir for raw wa Add safety factor Total storage required Total storage recommended	uction req'd in mg mgd w water) ater 25%	d	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each	mgd mgd mgd mg mg ac-ft ac-ft ac-ft Unit Cost	Note: No. of (for exam Total Construction Cost	days at averagingle, for repair of	e day demand of RWTM A) = Total Capital		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for raw wa Add safety factor Total storage required Total storage recommended	uction req'd in mg mgd w water) ster 25% Quantity	Units each	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet)	mgd mgd mgd mg ac-ft ac-ft ac-ft Unit Cost (\$/ac-ft))	Note: No. of (for exam Total Construction Cost	days at averagingle, for repair of	e day demand of RWTM A) = Total Capital Cost		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of rav Required storage reservoir for raw wa Add safety factor Total storage required Total storage recommended Reservoirs Estimated average depth of reservoir Surface area of reservoir	uction reg'd in mg mgd w water) ster 25% Quantity 1	Units each 25 480	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet)	mgd mgd mgd mg ac-ft ac-ft ac-ft Unit Cost (\$/ac-ft))	Note: No. of (for exam Total Construction Cost \$ 15.4	days at average ple, for repair of Contigency, Eng., etc.	e day demand of RWTM A) = Total Capital Cost		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for ray wa Add safety factor Total storage required Total storage recommended Reservoirs Estimated average depth of reservoir Surface area of reservoir	uction reg'd in mg mgd w water) ster 25% Quantity 1	Units each	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet)	mgd mgd mgd mg ac-ft ac-ft ac-ft Unit Cost (\$/ac-ft))	Note: No. of (for exem Total Construction Cost \$ 15.4 Envir & Arch	days at averagingle, for repair of	e day demand of RWTM A) = Total Capital Cost		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for raw wa Add safety factor Total storage required Total storage recommended Reservoirs Estimated average depth of reservoir Surface area of reservoir Ratio of total land area reqd to surface of reservoir	uction reg'd in mg mgd w water) ster 25% Quantity 1	Units each 25 480 1.10	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet) 12,000 ft	mgd mgd mgd mg ac-ft ac-ft ac-ft ac-ft (\$/ac-ft)) \$ 1,283	Note: No. of (for exem Total Construction Cost \$ 15.4 Envir & Arch	days at averagiple, for repair of Contigency, Eng., etc. \$ 5.9 aeology, Surv., nd Land Acq =	e day demand of RWTM A) = Total Capital Cost \$ 21.3		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for raw wa Add safety factor Total storage required Total storage recommended Reservoirs Estimated average depth of reservoir Surface area of reservoir Ratio of total land area reqd to surface of reservoir	uction reg'd in mg mgd w water) ster 25% Quantity 1	Units each 25 480 1.10 528	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet) 12,000 ft	mgd mgd mgd mg ac-ft ac-ft ac-ft ac-ft (\$/ac-ft)) \$ 1,283	Note: No. of (for exam Total Construction Cost \$ 15.4	days at averagiple, for repair of Contigency, Eng., etc. \$ 5.9 aeology, Surv., nd Land Acq =	e day demand of RWTM A) = Total Capital Cost \$ 21.3		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of rav Required storage reservoir for raw wa Add safety factor Total storage required Total storage recommended Reservoirs Estimated average depth of reservoir Ratio of total land area reqd to surface of reservoir Total land area reqd for reservoirs Assumed life of reservoir	uction reg'd in mg mgd w water) ster 25% Quantity 1	Units each 25 480 1.10 528	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet) 12,000 ft acres acres	mgd mgd mgd mg ac-ft ac-ft ac-ft ac-ft (\$/ac-ft)) \$ 1,283	Note: No. of (for exam Total Construction Cost \$ 15.4	days at averagiple, for repair of Contigency, Eng., etc. \$ 5.9 aeology, Surv., nd Land Acq =	e day demand of RWTM A) = Total Capital Cost \$ 21.3		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for ray wa Add safety factor Total storage required Total storage recommended Reservoirs Estimated average depth of reservoir Ratio of total land area reqd to surface of reservoir	uction reg'd in mg mgd w water) ster 25% Quantity 1	Units each 25 480 1.10 528 100 0.15	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet) 12,000 ft acres acres years million/year	mgd mgd mgd mg ac-ft ac-ft ac-ft c-ft sc-ft	Note: No. of (for exam Total Construction Cost \$ 15.4	days at averagiple, for repair of Contigency, Eng., etc. \$ 5.9 aeology, Surv, and Land Acq = 1 in millions =	e day demand of RWTM A) = Total Capital Cost \$ 21.3		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of rav Required storage reservoir for raw wa Add safety factor Total storage required Total storage recommended Reservoirs Estimated average depth of reservoir Surface area of reservoir Ratio of total land area reqd to surface of reservoir Total land area reqd for reservoirs Assumed life of reservoir Estimated replacement cost Estimated replacement cost Estimated maintenance	uction reg'd in mg mgd w water) ster 25% Quantity 1 e area	Units each 25 480 1.10 528 100 0.15	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet) 12,000 ft acres acres years million/year	mgd mgd mgd mg ac-ft ac-ft ac-ft c-ft sc-ft	Note: No. of (for exam Total Construction Cost \$ 15.4	days at averagiple, for repair of Contigency, Eng., etc. \$ 5.9 aeology, Surv, and Land Acq = 1 in millions =	e day demand of RWTM A) = Total Capital Cost \$ 21.3		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for ray wa Add safety factor Total storage required Total storage recommended Reservoirs Estimated average depth of reservoir Surface area of reservoir Ratio of total land area read to surface of reservoir Total land area read for reservoirs Assumed life of reservoir Estimated replacement cost Estimated replacement cost Estimated maintenance Total Year built	uction req'd in mg mgd w water) ster 25% Quantity 1	Units each 25 480 1.10 528 100 0.15 0.04 0.19 2015	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet) 12,000 ft acres acres million/year million/year million/year	mgd mgd mgd mg ac-ft ac-ft ac-ft c-ft sc-ft	Note: No. of (for exam Total Construction Cost \$ 15.4	days at averagiple, for repair of Contigency, Eng., etc. \$ 5.9 aeology, Surv, and Land Acq = 1 in millions =	e day demand of RWTM A) = Total Capital Cost \$ 21.3		ays
Sizing for ultimate conditions: Assumed number of days of consecut Design (Max. Day) treated water prod Average treated water production in r Difference (shortfall of ray Required storage reservoir for raw wa Add safety factor Total storage required Total storage recommended Estimated average depth of reservoir Surface area of reservoir Tatlo of total land area reqd to surface of reservoir Assumed life of reservoir Estimated replacement cost Estimated replacement cost Estimated maintenance Total	uction reg'd in mg mgd w water) ster 25% Quantity 1 e area	Units each 25 480 1.10 528 100 0.15 0.04 0.19 2015	378 271 107 3,219 9,880 2,470 12,350 12,000 Volume/each (acre-feet) 12,000 ft acres acres years million/year	mgd mgd mgd mg ac-ft ac-ft ac-ft c-ft sc-ft	Note: No. of (for exam Total Construction Cost \$ 15.4	days at averagiple, for repair of Contigency, Eng., etc. \$ 5.9 aeology, Surv, and Land Acq = 1 in millions =	e day demand of RWTM A) = Total Capital Cost \$ 21.3		ays

WTP

Plant Phasing and Capital Costs;

Softening Treatment Trains																
Year =		2015		2020		2030		2040		205			206			2065
Average treated water production in mgd		0		0		20		30			40			40		40
Design (Max. Day) treated water production req'd in mgd		0		0		35		55			70			70		70
Initial/additional Max day capacity built (mgd)						50		20								
Total capacity on line (must exceed Design Max Day Req'd)		0		0		50		70			70			70		70
Unit cost for max day treatment capacity (\$/gpd of capacity)					\$	1.78	\$	2.14								
Estimated construction cost of expansion in \$millions	\$		\$	*	\$	89.0	\$	42.8	\$		-	\$			\$	-
Non-softening Treatment Trains																
Year =	2	2015		2020		2030		2040		205			206			2065
Average treated water production in mgd		84		204		214		218			223			227		231
Design (Max. Day) treated water production req'd in mgd		109		265		282		288			296			304		308
Additional Max day capacity built (mgd)		210		100												
Total capacity on line (must exceed Design Max Day Req'd)		210		310		310		310			310			310		310
Unit cost for max day treatment capacity (\$/gpd of capacity)	\$	1.14	\$	1.32												
Estimated construction cost of expansion in \$millions	\$	238.7	\$	131.5	\$		\$		\$		-	\$		÷	\$	B
Totals (Softening + Non-softening Trains)																
Year =	2	2015		2020		2030		2040		205	0		206	0		2065
Total construction cost for both trains	\$	238.7	\$	131.5	S	89.0	\$		S			\$		-	\$	
Contingencies	1023	47.7		26.3	275	17.8		8.6				1000			1070	
Subtotal	S	286.5	S	157.8	\$	106.8	S	51.3	\$		-	\$			\$	-
Engineering, Legal, & Administrative	1370	43.0		23.7	10 5 17.	16.0		7.7				1020			0.70	
Subtotal		329.4		181.5		122.8		59.0			-			-		
Environmental & Archaelogy Studies and Mitigation & Land																
Acquisition and Surveying (see Note below)		2.5														
Total estimated capital cost	\$	331.9	\$	181.5	\$	122.8	\$	59.0	\$	-		\$		-	\$	-
NPV of capital cost	\$	331.9		\$ 142.2		\$ 59.1		\$ 17.4		\$	v		\$			\$ -
Total NPV of WTP initial construction & expansions	\$	551														
Note: Assumed land requirement for WTP (not including reservoir		100	acre	s												

O&M Costs for Softening Trains:

O&M Costs for Non-Softening Trains:

Year	Plant Capacity in service	Estimated treated water production	Est	imated O unit co			N	et present value	Year	Plant Capacity in service	Estimated treated water production	Es	timated O unit co				ot prese value
	mgd of capacity	mgd produced		per mg reated		million Year		(\$)		mgd of capacity	mgd produced		per mg treated	\$m	illion /year		(\$)
2015					\$	-	\$	-	2015	210	84	\$	370	\$	11.29	\$	11.
2016		-			\$		\$		2016	210	84	\$	370	\$	11.29	\$	10.
2017	-	-			\$		\$	-	2017	210	84	\$	370	\$	11.29	\$	10.
2018	-	-			S		\$	-	2018	210	84	\$	370	\$	11.29	\$	9.
2019	-	-			s		\$	-	2019	210	84	\$	370	\$	11.29	\$	9.
2020					Š	-	\$	-	2020	310	204	\$	340	\$	25.32	\$	19.
2021		_			Š		Š	-	2021	310	204	\$	340	\$	25.32	\$	18
2022		-			Š		Š	-	2022	310	204	Š	340	\$	25.32	\$	17.
2023		2			Š		Š	21	2023	310	204	Š	340	Š	25.32	Š	17
2023	-				Š	- 5	Š	- 5	2024	310	204	Š	340	\$	25.32	Š	16
2024	•	•			Š		\$		2025	310	204	Š	340	Š	25.32	Š	15.
	-					-											14.
2026		-			\$		\$	(**)	2026	310	204	\$	340	\$	25.32	\$	
2027		-			\$		\$	-	2027	310	204	\$	340	\$	25.32	\$	14
2028		-			\$	-	\$		2028	310	204	\$	340	\$	25.32	\$	13
2029	•	-			\$	-	\$	-	2029	310	204	\$	340	\$	25.32	\$	12
2030	50	20	\$	712	\$	5.20	\$	2.50	2030	310	214	\$	340	\$	26.54	\$	12
2031	50	20	\$	712	\$	5.20	\$	2.38	2031	310	214	\$	340	\$	26.54	\$	12
2032	50	20	\$	712	\$	5.20	\$	2.27	2032	310	214	\$	340	\$	26.54	\$	11
2033	50	20	\$	712	\$	5.20	\$	2.16	2033	310	214	\$	340	\$	26.54	\$	11
2034	50	20	\$	712	\$	5.20	\$	2.06	2034	310	214	\$	340	\$	26.54	\$	10
2035	50	20	\$	712	\$	5.20	\$	1.96	2035	310	214	\$	340	\$	26.54	\$	10
2036	50	20	\$	712	\$	5.20	\$	1.87	2036	310	214	\$	340	\$	26.54	\$	9
2037	50	20	\$	712	\$	5.20	\$	1.78	2037	310	214	S	340	\$	26.54	5	9
2038	50	20	\$	712	\$	5.20	\$	1.69	2038	310	214	\$	340	\$	26.54	\$	8
2039	50	20	\$	712	\$	5.20	\$	1.61	2039	310	214	\$	340	\$	26.54	S	8
2040	70	30	\$	661	s	7.24	\$	2.14	2040	310	218	s	340	\$	27.09	\$	8
2041	70	30	Š	661	š	7.24	\$	2.04	2041	310	218	Š	340	s	27.09	Š	7
2042	70	30	\$	661	Š	7.24	Š	1.94	2042	310	218	Š	340	s	27.09	\$	7
2043	70	30	\$	661	š	7.24	Š	1.85	2043	310	218	Š	340	\$	27.09	\$	6
2043	70	30	\$	661	Š	7.24	\$	1.76	2044	310	218	Š	340	\$	27.09	Š	6
2044	70	30	\$	661	Š	7.24	\$	1.68	2045	310	218	\$	340	\$	27.09	\$	6
		30									218		340	\$	27.09	S	5
2046	70		\$	661	\$	7.24	\$	1.60	2046	310		\$	340	5	27.09		5
2047	70	30	\$	661	\$	7.24	\$	1.52	2047	310	218	\$				\$	
2048	70	30	\$	661	\$	7.24	\$	1.45	2048	310	218	\$	340	\$	27.09	\$	5
2049	70	30	\$	661	\$	7.24	\$	1.38	2049	310	218	\$	340	\$	27.09	\$	5
2050	70	40	\$	661	\$	9.65	\$	1.75	2050	310	223	\$	340	\$	27.64	\$	5
2051	70	40	\$	661	\$	9.65	\$	1.67	2051	310	223	\$	340	\$	27.64	\$	4
2052	70	40	\$	661	\$	9.65	\$	1.59	2052	310	223	\$	340	\$	27.64	\$	4
2053	70	40	\$	661	\$	9.65	\$	1.51	2053	310	223	\$	340	\$	27.64	\$	4
2054	70	40	\$	661	\$	9.65	\$	1.44	2054	310	223	\$	340	\$	27.64	\$	4
2055	70	40	\$	661	\$	9.65	\$	1.37	2055	310	223	\$	340	\$	27.64	\$	3
2056	70	40	\$	661	\$	9.65	\$	1.31	2056	310	223	\$	340	\$	27.64	\$	3
2057	70	40	\$	661	\$	9.65	\$	1.24	2057	310	223	\$	340	\$	27.64	\$	3
2058	70	40	\$	661	\$	9.65	\$	1.18	2058	310	223	\$	340	\$	27.64	\$	3
2059	70	40	\$	661	\$	9.65	\$	1.13	2059	310	223	\$	340	\$	27.64	\$	3
2060	70	40	\$	661	s	9.65	\$	1.07	2060	310	227	\$	340	\$	28.24	\$	3
2061	70	40	\$	661	s	9.65	\$	1.02	2061	310	227	\$	340	5	28.24	\$	2
2062	70	40	Š	661	Š	9.65	Š	0.97	2062	310	227	Š	340	S	28.24	S	2
2063	70	40	Š	661	Š	9.65	Š	0.93	2063	310	227	Š	340	Š	28.24	Š	2
2064	70	40	\$	661	Š	9.65	Š	0.88	2064	310	227	š	340	\$	28.24	š	2
2065	70	40	\$	661	š	9.65	Š	0.84	2065	310	231	Š	340	Š	28.64	š	2

| NPV Totals for O&M: | Softening trains | Softening trains | Non-softening Trains | 438 | 495 |

Raw Water Reservoir Water Treatment Plant Totals

 NPV of Capital Costs
 NPV of OSM Costs
 Total NPV of Opital and OSM Costs

 \$ 34
 \$ 3.5
 \$ 38

 \$ 551
 \$ 495
 \$ 1,046

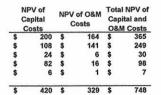
 \$ 585
 \$ 499
 \$ 1,084

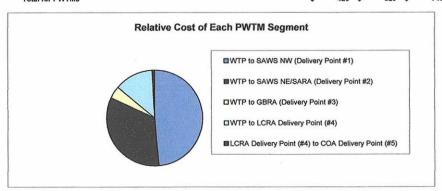
Capital and O&M Cost Calculations Potable Water Transmission Mains CTRWTP - Alternate 1A - WTP East of San Antonio

Initial year of analysis period Interest rate Evaluation period Unit cost of energy

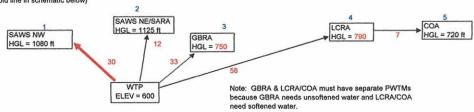
2015 5% 50 years 0.07 per kwh Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

Summary of Demands


Average demands to be delivered in each segment


			in acre-feet/ye	ar				
Year	2015	2020	2030	2040	2050	2060	2065	
SAWS NW	43800	123000	123000	123000	123000	123000	123000	
SAWS NE	29200	82000	82000	82000	82000	82000	82000	
Subtotal	73000	205000	205000	205000	205000	205000	205000	١
SARA	20550	23406	28433	31393	34411	37530	41128	
GBRA			6000	8000	10000	12300	12300	
LCRA			5600	11200	11200	11200	11200	
COA			16802	22403	33604	33604	33604	
Total	93550	228406	261835	277996	294215	299634	303232	١

Summary


WTP to SAWS NW (Delivery Point #1)
WTP to SAWS NE/SARA (Delivery Point #2)
WTP to GBRA (Delivery Point #3)
WTP to LCRA Delivery Point (#4)
LCRA Delivery Point (#4)

Total for PWTMs

WTP to SAWS NW (Delivery Point #1) (Bold line in schematic below)

Demands for this pipe segment

		Average dem	ands to be deli	vered in each s	segment in mgd	1	
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	39	110	110	110	110	110	110
Total -	39	110	110	110	110	110	110

Max d/Avg d

		Max day dem	ands to be deli	ivered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	51	143	143	143	143	143	143
Total -	51	143	143	143	143	143	143

PWTM and Pump Station Costs

Design flow rate - year 2065	143	mgd	
	99,125	gpm	
Pumping capacity of one pump	16,500	gpm	
No. of pumps (not counting spare)	6		
Peak flow rate (all pumps except spare)	99,000	gpm	
Inside diameter of PWTM	96	in.	
Area	50.27	sf	

Area 50.27 sf
Length of PWTM 30 miles
158,400 feet

(linked to mileage in schematic above)

stimated unit cost by condition:	% of length	LE	Un	it cost	Cost	
Rural - soil	25%	39,600	\$	557	\$ 22.1	million
Rural - rock	25%	39,600	\$	750	\$ 29.7	
Urban - rock	50%	79,200	\$	843	\$ 66.7	
		158,400			\$ 118.5	million

Total construction cost in millions	\$	118.5	million
Contingencies	\$	23.7	
Subtotal	\$	142.2	-
Engineering, Legal & Administrative	\$	21.3	
Subtotal	\$	163.5	
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	3.0	
Total Capital Cost for DIATTA in millions	•	166 E	-

rotal capital cost for t vv this in millions	*	100.0				
Unit maintenance cost/year-mile	\$	10,000	\$/year-mile	\$ 0.300	Million \$/year	
Velocity at peak flow rate		4.39	fps			

C factor		120	ipa		
Head loss per foot		0.00059	ft/ft	h _f = 3.552*Q ^{1.85}	
riedu ioss per ioot			ft/mile	C*(d) ^{2.63}	
		3.10	Intille	[C*(d)]	
Head loss at peak flow rate		93	ft		
Allowance for minor losses	20%	19	ft	1080 Desired HGL At Delivery Point	
Total estimated losses		112	ft	600 Elev. At WTP	

Total estimated losses	112 ft	600 Elev. At WTP
Average static head	480 ft	480 ft
Total estimated dynamic head	592 ft	
	256 psi	
No of recommended pumping stations along route	1.71	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	2	in pipe)
Average head per pump station	296 ft	waters:

No. of pumping stations used in cost estimate	2		in pipe)	
Average head per pump station	296 ft	t:		
Assumed pump efficiency	85%			
Assumed motor efficiency	90%			
Estimated Hp required per pump	1,611 h	p/pump		
	1,202 kg	w/pump		
Total hp per pump station (not counting spare)	9,668 h	p/station		
Total kw per pump set (set=pumps in series along route)	3,223 k	w/pump set	(one pump at each station)	
Unit capital cost for each pump station (from cost curve)	\$ 1,264 p	er firm hp of	pump station	

Unit capital cost for each pump station (from cost curve)	\$ 1,264	per firm hp of pump statio
Construction cost per pump station	12.2	million

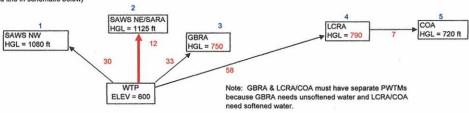
Construction Cook per partip clarici	1818 1111110			
Total construction cost for pump stations	24.4	for	2	pump stations
Contingencies	\$ 4.9	-		
Subtotal	\$ 29.3			
Engineering, Legal & Administrative	\$ 4.4			

Total capital cost for pump stations

\$ 33.7 million

40% Estimated equipment cost as % of total

Value of equipment Assumed life of equipment Estimated maintenance/replacement cost \$ 10 million 20 years \$ 0.49 million/year


O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	y cost	ı	cos	her O&M its - Pump Stations	0	intenance costs - PWTM	То	tal O&M cost	Ne	et present value
	mgd		(kwh/day)		(\$/day)		illion \$ year)		Million \$ /year)	(Million \$ /year)		/illion \$ /year)		(\$)
2015	39	1.65	127,279	\$	8,910	\$	3.25	\$	0.49	\$	0.300	\$	4.04	\$	4.04
2016	39	1.65	127,279	\$	8,910	\$	3.25	\$	0.49	\$	0.300	\$	4.04	\$	3.85
2017	39	1.65	127,279	\$	8,910	\$	3.25	\$	0.49	\$	0.300	\$	4.04	\$	3.67
2018	39	1.65	127,279	\$	8,910	\$	3.25	\$	0.49	\$	0.300	\$	4.04	\$	3.49
2019	39	1.65	127,279	\$	8,910	\$	3.25	\$	0.49	\$	0.300	\$	4.04	\$	3.32
2020	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	7.77
2021	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	7.40
2022	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	7.05
2023	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	6.72
2024	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	
2025	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92 9.92	\$	6.09 5.80
2026	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	2017/2010	\$	27,000
2027	110	4.62	357,427	\$	25,020	\$	9.13 9.13	\$	0.49	\$	0.300	\$	9.92 9.92	\$	5.52 5.26
2028	110 110	4.62 4.62	357,427 357,427	\$	25,020 25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	5.20
2029	110	4.62	357,427	\$	25,020	S	9.13	\$	0.49	\$	0.300	\$	9.92	S	4.77
2030	110	4.62	357,427	\$	25,020	Š	9.13	\$	0.49	\$	0.300	\$	9.92	\$	4.54
2032	110	4.62	357,427	S	25,020	S	9.13	Š	0.49	S	0.300	Š	9.92	S	4.33
2033	110	4.62	357,427	\$	25,020	Š	9.13	Š	0.49	\$	0.300	\$	9.92	Š	4.12
2034	110	4.62	357,427	Š	25,020	Š	9.13	s	0.49	Š	0.300	S	9.92	\$	3.93
2035	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	3.74
2036	110	4.62	357,427	\$	25,020	Š	9.13	Š	0.49	Š	0.300	\$	9.92	\$	3.56
2037	110	4.62	357,427	š	25,020	Š	9.13	Š	0.49	Š	0.300	s	9.92	S	3.39
2038	110	4.62	357,427	s	25,020	\$	9.13	S	0.49	\$	0.300	s	9.92	\$	3.23
2039	110	4.62	357,427	s	25,020	S	9.13	\$	0.49	\$	0.300	\$	9.92	\$	3.08
2040	110	4.62	357,427	s	25,020	S	9.13	\$	0.49	\$	0.300	S	9.92	\$	2.93
2041	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	2.79
2042	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	2.66
2043	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	2.53
2044	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	2.41
2045	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	2.30
2046	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	2.19
2047	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	2.08
2048	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.98
2049	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.89
2050	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.80
2051	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.71
2052	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.63
2053	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.55
2054	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.48
2055	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.41
2056	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.34
2057	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92 9.92	\$	1.28
2058	110 110	4.62 4.62	357,427 357,427	\$	25,020 25,020	\$	9.13 9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.16
2059	110	4.62	357,427	\$	25,020	S	9.13	\$	0.49	\$	0.300	\$	9.92	\$	1.10
2060	110	4.62	357,427	\$	25,020	S	9.13	\$	0.49	5	0.300	\$	9.92	\$	1.05
2062	110	4.62	357,427	S	25,020	Š	9.13	Š	0.49	S	0.300	S	9.92	\$	1.00
2062	110	4.62	357,427	S	25,020	S	9.13	\$	0.49	S	0.300	\$	9.92	\$	0.95
2064	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	0.91
2065	110	4.62	357,427	\$	25,020	\$	9.13	\$	0.49	\$	0.300	\$	9.92	\$	0.87
											Total NPV	of O	&M Costs	\$	164
		Capital Costs					407		Yr built						407
			PWTM Pumping Stat	in-		\$	167 34		2015 2015					\$	167
			Pumping Stat	HOU	8	3	34		2015					3	34

Total NPV of Capital and O&M Costs in millions \$ 365 WTP to SAWS NW (Delivery Point #1)

WTP to SAWS NE/SARA (Delivery Point #2) (Bold line in schematic below)

Max d/Avg d 1.3

Demands for this pipe segment

De		

		Average dem	ands to be del	ivered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NE	26	73	73	73	73	73	73
SARA	18	21	25	28	31	34	37
Total	44	94	99	101	104	107	110

Max day demands to be delivered in each segment in mgd								
Year	2015	2020	2030	2040	2050	2060	2065	
SAWS NE	34	95	95	95	95	95	95	
SARA	24	27	33	36	40	44	48	
Total	58	122	128	132	135	139	143	

PWTM and Pump Station Costs

Design flow rate - year 2065	143	mgd	
	99,228	gpm	
Pumping capacity of one pump	19,000	gpm	
No. of pumps (not counting spare)	6		
Peak flow rate (all pumps except spare)	114,000	gpm	
Inside diameter of PWTM	108	in.	
Area	63.62	sf	
Length of PWTM	12	miles	(linked to mileage in schematic above)
	63,360	feet	
The Control of the Co			

Estimated unit cost by condition:	% of length	LF	U	nit cost		Cost	
Rural - soil	50%	31,680	\$	666	\$	21.1	million
Rural - rock	25%	15,840	\$	894	\$	14.2	
Urban - rock	25%	15,840	\$	1,007	\$	16.0	
		63,360			S	51.2	million

Total construction cost in millions	\$	51.2
Contingencies	\$	10.2
Subtotal	\$	61.4
Engineering, Legal & Administrative	\$	9.2
Subtotal	\$	70.7
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	1.2
Total Capital Cost for PWTM in millions	S	71.9

Total Capital Cost for PWTM in millions	\$ 71.9			
Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile	\$ 0.120	Million \$/year
Velocity at peak flow rate	3.99	fps		
C factor	120			

Ciacion		120		
Head loss per foot		0.00043	ft/ft	h _f = 3.552*Q ^{1.85}
		2.27	ft/mile	C*(d) ^{2.63}
Head loss at peak flow rate		27	ft	
Allowance for minor losses	20%	5	ft	1125 Desired HGL At Delivery Point
Total estimated losses		33	ft	600 Elev. At WTP
Average static head		525	ft	525 ft
Total estimated dynamic head		558	ft	

J	242 psi	
No of recommended pumping stations along route	1.61	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	2	in pipe)
Average head per pump station	279 ft	
Assumed ours officiancy	85%	

Assumed pump efficiency	85%
Assumed motor efficiency	90%
Estimated Hp required per pump	1,749 hp/pump
	1,305 kw/pump
Total hp per pump station (not counting spare)	10,493 firm hp/station
Total kw per pump set (set=pumps in series along route)	3,498 kw/pump set (one pump at each station)

Unit construction cost for each pump station (from cost curve)	•	1 244	per firm hp of pump station
Construction cost per pump station	4		million

Total construction cost for pump stations		26.1	for	2	pump stations
Contingencies		5.2			
Subtotal	- 3	31.3			

Engineering, Legal & Administrative
Total capital cost for pump stations in millions

\$ 4.7 \$ 36.0 million

40% Equip cost as % of constr cost

Value of equipment Assumed life of equipment Estimated maintenance/replacement cost \$ 10 million 20 years \$ 0.52 million/year

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	y co	ost		other O&M sts - Pump Stations		aintenance costs - PWTM	To	tal O&M cost	Ne	et preser value
	mgd		(kwh/day)		(\$/day)	((Million \$		(Million \$	((Million \$	(1	/illion \$		(\$)
2015	44	1.62	136,264	\$	9,538	\$	3.48	\$	0.52	\$	0.120	\$	4.12	\$	4.1
2016	44	1.62	136,264	s	9,538	S	3.48	s	0.52	s	0.120	s	4.12	\$	3.9
2017	44	1.62	136,264	Š	9,538	\$	3.48	s	0.52	\$	0.120	s	4.12	S	3.7
2017	44	1.62		S	9,538	\$	3.48	Š	0.52	\$	0.120	S	4.12	S	3.5
			136,264									S		\$	3.3
2019	44	1.62	136,264	\$	9,538	\$	3.48	\$	0.52	\$	0.120		4.12		
2020	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	6.2
2021	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	5.9
2022	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	5.7
2023	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	5.4
2024	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	5.
2025	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	4.9
2026	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	4.6
2027	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	4.4
2028	94	3.44	288,705	\$	20,209	\$	7.38	Š	0.52	\$	0.120	s	8.02	\$	4.3
2029	94	3.44	288,705	\$	20,209	\$	7.38	\$	0.52	\$	0.120	\$	8.02	\$	4.
2030	99	3.60	302,474	Š	21,173	\$	7.73	Š	0.52	Š	0.120	\$	8.37	S	4.0
	99			Š			7.73	Š	0.52	S	0.120	Š	8.37	Š	3.
2031		3.60	302,474		21,173	\$									
2032	99	3.60	302,474	\$	21,173	\$	7.73	\$	0.52	\$	0.120	\$	8.37	\$	3.0
2033	99	3.60	302,474	\$	21,173	\$	7.73	\$	0.52	\$	0.120	\$	8.37	\$	3.
2034	99	3.60	302,474	\$	21,173	\$	7.73	\$	0.52	\$	0.120	\$	8.37	\$	3.
2035	99	3.60	302,474	\$	21,173	\$	7.73	\$	0.52	\$	0.120	\$	8.37	\$	3.
2036	99	3.60	302,474	\$	21,173	\$	7.73	\$	0.52	\$	0.120	\$	8.37	\$	3.
2037	99	3.60	302,474	\$	21,173	\$	7.73	\$	0.52	\$	0.120	\$	8.37	\$	2.
2038	99	3.60	302,474	S	21,173	\$	7.73	\$	0.52	\$	0.120	\$	8.37	\$	2.
2039	99	3.60	302,474	\$	21,173	\$	7.73	\$	0.52	\$	0.120	\$	8.37	S	2.
2040	101	3.70	310,581	\$	21,741	\$	7.94	\$	0.52	\$	0.120	\$	8.58	\$	2.
2041	101	3.70	310,581	\$	21,741	\$	7.94	Š	0.52	\$	0.120	Š	8.58	\$	2.
								S		Š	0.120	\$	8.58	\$	2.
2042	101	3.70	310,581	\$	21,741	\$	7.94		0.52						
2043	101	3.70	310,581	\$	21,741	\$	7.94	\$	0.52	\$	0.120	\$	8.58	\$	2.
2044	101	3.70	310,581	\$	21,741	\$	7.94	\$	0.52	\$	0.120	\$	8.58	\$	2.0
2045	101	3.70	310,581	\$	21,741	\$	7.94	\$	0.52	\$	0.120	\$	8.58	\$	1.5
2046	101	3.70	310,581	\$	21,741	\$	7.94	\$	0.52	\$	0.120	\$	8.58	\$	1.
2047	101	3.70	310,581	\$	21,741	\$	7.94	\$	0.52	\$	0.120	\$	8.58	\$	1.
2048	101	3.70	310,581	\$	21,741	\$	7.94	\$	0.52	\$	0.120	\$	8.58	\$	1.
2049	101	3.70	310,581	\$	21,741	\$	7.94	\$	0.52	\$	0.120	\$	8.58	\$	1.
2050	104	3.80	318,847	\$	22,319	\$	8.15	\$	0.52	\$	0.120	\$	8.79	\$	1.
2051	104	3.80	318,847	\$	22,319	\$	8.15	\$	0.52	\$	0.120	\$	8.79	S	1.
2052	104	3.80	318,847	Š	22,319	Š	8.15	Š	0.52	š	0.120	S	8.79	S	1.
2052	104	3.80	318,847	Š	22,319	Š	8.15	Š	0.52	Š	0.120	Š	8.79	Š	1.
	104	3.80		Š		Š	8.15	S	0.52	S	0.120	Š	8.79	S	1.
2054			318,847		22,319										
2055	104	3.80	318,847	\$	22,319	\$	8.15	\$	0.52	\$	0.120	\$	8.79	\$	1.
2056	104	3.80	318,847	\$	22,319	\$	8.15	\$	0.52	\$	0.120	\$	8.79	\$	1.
2057	104	3.80	318,847	\$	22,319	\$	8.15	\$	0.52	\$	0.120	\$	8.79	\$	1.
2058	104	3.80	318,847	\$	22,319	\$	8.15	\$	0.52	\$	0.120	\$	8.79	\$	1.
2059	104	3.80	318,847	\$	22,319	\$	8.15	\$	0.52	\$	0.120	\$	8.79	\$	1.
2060	107	3.90	327,390	\$	22,917	\$	8.36	\$	0.52	\$	0.120	\$	9.01	\$	1.
2061	107	3.90	327,390	\$	22,917	\$	8.36	\$	0.52	\$	0.120	\$	9.01	\$	0.
2062	107	3.90	327,390	Š	22,917	Š	8.36	\$	0.52	Š	0.120	Š	9.01	S	0.
2063	107	3.90	327,390	\$	22,917	Š	8.36	Š	0.52	s	0.120	Š	9.01	S	0.
2064	107	3.90	327,390	Š	22,917	S	8.36	S	0.52	\$	0.120	\$	9.01	S	0.
	110	4.02				S	8.62	\$	0.52	\$	0.120	S	9.26	\$	0.
2065	110	4.02	337,245	\$	23,607	٩	0.02	٠	0.52	Þ					
											Total NPV	of C	&M Costs	\$	141
		Capital Costs	in million \$: PWTM			s	71.9		Yr built 2015					\$	71
			Pumping Stati	000		\$	36.0		2015					\$	36
			Fumning Stati												

Total NPV of Capital and O&M Costs in millions \$ WTP to SAWS NE/SARA (Delivery Point #2)

Demands for this pipe segment

Demands	

		Average dem	ands to be deli	vered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
GBRA	0	0	5	7	9	11	11
Total -	0	0	5	7	9	11	11

Max d/Avg d 2.0

		Max day dem	ands to be deli	vered in each :	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
GBRA	0	0	11	14	18	22	22
Total -	0	0	11	14	18	22	22

PWTM and Pump Station Costs

	174,240	feet	
Length of RWTM		miles	(linked to mileage in schematic above)
Area	9.62	sf	
Inside diameter of PWTM		in.	
Peak flow rate (all pumps except spare)	15,300	gpm	
No. of pumps (not counting spare)	3		
Pumping capacity of one pump	5,100	gpm	
	15,250	gpm	
Design flow rate - year 2065		mga	

Estimated unit cost by condition:	% of length	LE	Ur	it cost	Cost	
Rural - soil	100%	174,240	\$	174	\$ 30.3	million
Rural - rock	0%		\$	244	\$	
Urban - rock	0%		\$	263	\$	
		174,240	VIEW CONTRACTOR		\$ 30.3	million

Total construction cost in millions	\$ 30.3
Contingencies	\$ 6.1
Subtotal	\$ 36.3
Engineering, Legal & Administrative	\$ 5.4
Subtotal	\$ 41.8
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 3.3
Total Capital Cost for PWTM in millions	\$ 45.1

Unit maintenance cost/year-mile	\$ 1	10,000	\$/year-mile	\$ 0.330	Million \$/year	
Velocity at peak flow rate		3.54	fps			
C factor		120				

Clactor		120			
Head loss per foot		0.00104	ft/ft	h _f =	3.552*Q 1.85
		5.47	ft/mile		C*(d) ^{2.63}
Head loss at peak flow rate		181	ft		
Allowance for minor losses	20%	36	ft	740	Desired HGL At Delivery Point
Total estimated losses		217	ft	600	Elev. At WTP
Average static head		140	ft	140	ft
Total estimated dynamic head		357	ft		
The deviction of control to the control of the cont		155	psi		
No of recommended pumping stations a	along route	1.03		150	psi (assumed max pressure
No. 16 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	Marrata.	4			In alask

No of recommended pumping stations along route	1.03	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	1	in pipe)
Average head per pump station	357 ft	
Assumed pump efficiency	85%	
Assumed motor efficiency	90%	
Estimated Hp required per pump	601 hp/pump	
TO JOST A CHARLES TO SEE MADELLES AND SET AND	448 kw/pump	

Total hp per pump station (not counting spare) Total kw per pump set (set=pumps in series along route)		hp/station kw/pump set	(one pump at each station)
Unit construction cost for each pump station (from cost curve)	\$ 1,674	per firm hp of	pump station

3.0 million			
3.0	for	1	pump stations
\$ 0.6			
\$ 3.6			
\$ 0.5			
\$ \$ \$	\$ 0.6 \$ 3.6	\$ 0.6	3.0 for 1 \$ 0.6 \$ 3.6

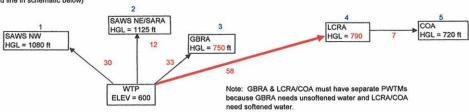
Total capital cost for pump stations

\$ 4.2 million

40% Equip cost as % of constr cost

Value of equipment Assumed life of equipment Estimated maintenance/replacement cost

\$


1.2 million 20 years 0.06 million/year

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	у сс	ost	co	ther O&M sts - Pump Stations	C	ntenance osts - PWTM		al O&M cost	Ne	t presen value
	mgd		(kwh/day)		(\$/day)	((Million \$ /year)	((Million \$ /year)		Million \$ /year)		illion \$ year)		(\$)
2015												\$	-	\$	-
2016												\$		\$	
2017	-											\$	*	\$	
2018	-											\$	-	\$	
2019												\$	-	\$	
2020	-											\$	-	\$	-
2021	•											\$	*	\$	
2022	•											\$	-	\$	-
2023												\$	*	\$	-
2024	-											\$	5.	\$	
2025	-											\$	*	\$	(e)
2026	-											\$	-	\$	-
2027												\$		\$	
2028	-											\$	-	\$	*
2029	-											\$	-	\$	-
2030	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.3
2031	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.3
2032	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.2
2033	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.2
2034	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.2
2035	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.2
2036	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.2
2037	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.2
2038	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.2
2039	5	0.73	10,513	\$	736	\$	0.27	\$	0.06	\$	0.330	\$	0.66	\$	0.2
2040	7	0.97	14,017	s	981	s	0.36	\$	0.06	S	0.330	\$	0.75	\$	0.2
2041	7	0.97	14,017	\$	981	\$	0.36	S	0.06	\$	0.330	\$	0.75	\$	0.2
2042	7	0.97	14,017	s	981	S	0.36	\$	0.06	\$	0.330	\$	0.75	\$	0.2
2043	7	0.97	14,017	s	981	\$	0.36	\$	0.06	S	0.330	\$	0.75	\$	0.1
2044	7	0.97	14,017	S	981	\$	0.36	\$	0.06	\$	0.330	\$	0.75	\$	0.1
2045	7	0.97	14,017	\$	981	\$	0.36	\$	0.06	\$	0.330	\$	0.75	\$	0.1
2046	7	0.97	14,017	\$	981	\$	0.36	\$	0.06	\$	0.330	\$	0.75	\$	0.1
2047	7	0.97	14,017	\$	981	\$	0.36	\$	0.06	\$	0.330	\$	0.75	\$	0.1
2048	7	0.97	14,017	\$	981	\$	0.36	\$	0.06	\$	0.330	\$	0.75	\$	0.1
2049	7	0.97	14,017	\$	981	\$	0.36	\$	0.06	\$	0.330	\$	0.75	\$	0.1
2050	9	1.22	17,521	\$	1,226	\$	0.45	\$	0.06	\$	0.330	\$	0.84	\$	0.1
2051	9	1.22	17,521	\$	1,226	\$	0.45	\$	0.06	S	0.330	\$	0.84	\$	0.1
2052	9	1.22	17,521	Š	1,226	\$	0.45	\$	0.06	\$	0.330	S	0.84	\$	0.1
2053	9	1.22	17,521	\$	1,226	\$	0.45	\$	0.06	\$	0.330	\$	0.84	\$	0.1
2054	9	1.22	17,521	s	1,226	\$	0.45	\$	0.06	\$	0.330	\$	0.84	\$	0.1
2055	9	1.22	17,521	s	1,226	\$	0.45	s	0.06	\$	0.330	s	0.84	\$	0.1
2056	9	1.22	17,521	Š	1,226	\$	0.45	\$	0.06	Š	0.330	\$	0.84	\$	0.1
2057	9	1.22	17,521	Š	1,226	Š	0.45	Š	0.06	\$	0.330	\$	0.84	\$	0.1
2058	9	1.22	17,521	Š	1,226	Š	0.45	Š	0.06	\$	0.330	\$	0.84	\$	0.1
2059	9	1.22	17,521	š	1,226	\$	0.45	Š	0.06	\$	0.330	Š	0.84	\$	0.1
2060	11	1.50	21,551	Š	1,509	š	0.55	Š	0.06	Š	0.330	Š	0.94	\$	0.1
2061	11	1.50	21,551	\$	1,509	\$	0.55	\$	0.06	Š	0.330	\$	0.94	\$	0.1
2062	11	1.50	21,551	š	1,509	Š	0.55	Š	0.06	Š	0.330	s	0.94	Š	0.0
2063	11	1.50	21,551	Š	1,509	\$	0.55	Š	0.06	Š	0.330	Š	0.94	\$	0.0
2064	11	1.50	21,551	Š	1,509	Š	0.55	\$	0.06	Š	0.330	Š	0.94	\$	0.0
2065	11	1.50	21,551	\$	1,509	\$	0.55	\$	0.06	\$	0.330	\$	0.94	\$	0.0
											Total NPV	of O	&M Costs	\$	6
		Capital Costs	in million \$:						Yr built						
			PWTM			\$	45		2030					\$	21
			Pumping Stat	tions	3	\$	4		2030					\$	2

Total NPV of Capital and O&M Costs in millions \$ WTP to GBRA (Delivery Point #3) 29.8

WTP to LCRA Delivery Point (#4) (Bold line in schematic below)

Demands for this pipe segment

De			

		Average ucin	arius to be der	ivered in cacin	segment in my		
Year	2015	2020	2030	2040	2050	2060	2065
LCRA	0	0	5	10	10	10	10
COA	0	0	15	20	30	30	30
Total	0	0	20	30	40	40	40

Max d/Avg d 2.0 1.68

		Max day dem	ands to be del	ivered in each	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
LCRA	0	0	10	20	20	20	20
COA	0	0	25	34	50	50	50
Total	0	0	35	54	70	70	70

PWTM and Pump Station Costs

Design flow rate - year 2065	70	mgd	
	48,883	gpm	
Pumping capacity of one pump	10,000	gpm	
No. of pumps (not counting spare)	5		
Peak flow rate (all pumps except spare)	50,000	gpm	
Inside diameter of PWTM	72	in.	
Area	28.27	sf	
Length of RWTM	58	miles	(linked to mileage in schematic above)
-	306,240	feet	

Rural - soil Rural - rock	100%	306,240	\$ 365	\$ 111.9	million
Rural - rock	0.07				
	070	the same that is	\$ 498	\$	
Urban - rock	0%		\$ 552	\$ THE WALL	
		306,240		\$ 111.9	million

Total construction cost in millions	\$	111.9
Contingencies	\$	22.4
Subtotal	\$	134.3
Engineering, Legal & Administrative	\$	20.1
Subtotal	\$	154.4
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	5.8
Total Capital Cost for PWTM in millions	S	160.2

Unit maintenance cost/	year-mile	\$ 10,000	\$/year-mile	\$ 0.580	Million \$/year

Olit mantenance costyear-mile		\$ 10,000	wydai-iiiio	0.000	Willion Gryodi
Velocity at peak flow rate C factor		3.94 120	fps		
Head loss per foot		0.00067	ft/ft	h _f =	3.552*Q ^{1.85}
Johnston Control Control Technology Technology		3.55	ft/mile		C*(d) ^{2.63}
Head loss at peak flow rate		206	ft		
Allowance for minor losses	20%	41		790	Desired HGL At Delivery Point
Total estimated losses		247	ft	720	Elev. At Delivery Point 3
Average static head			ft	70	ft
Total estimated dynamic head		317	ft		
		138	psi		
No of recommended pumping stations a	along route	0.92		150	psi (assumed max pressure
No. of pumping stations used in cost es	timate	1			in pipe)
Average head per pump station		317	ft		
Assumed pump efficiency		85%			
Assumed motor efficiency		90%			
Estimated Hp required per pump		1,048	hp/pump		
1000 1000 1000 1000 1000 1000 1000 100		782	kw/pump		
Total hp per pump station (not counting	spare)	5,238	firm hp/station	1	
Total kw per pump set (set=pumps in s	eries along route)	1,048	kw/pump set	(one pump at	each station)

	102	kw/pump
Total hp per pump station (not counting spare)	5,238	firm hp/station
Total kw per pump set (set=pumps in series along route)	1,048	kw/pump set (one pump at
Unit construction cost for each pump station (from cost curve)	\$ 1,414	per firm hp of pump station
Construction cost per pump station	7.4	million

Construction cost per pump station	7.4 1111110			
Total construction cost for pump stations	7.4	for	1	pump station
Contingencies	\$ 1.5			
Subtotal	\$ 8.9			
Engineering, Legal & Administrative	\$ 1.3			

Total capital cost for pump stations

10.2 million \$

40% Equip cost as % of constr cost

\$

Value of equipment Assumed life of equipment Estimated maintenance/replacement cost

3.0 million 20 years 0.15 million/year

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	у с	ost	co	ther O&M sts - Pump Stations	c	intenance costs - PWTM	To	otal O&M cost	Ne	et presen value
	mgd		(kwh/day)		(\$/day)		(Million \$ /year)	((Million \$ /year)	(Million \$ /year)		Million \$ /year)		(\$)
2015 2016												\$	-	\$	
2017												\$	-	\$	_
2018												\$		\$	-
2019												\$		\$	
2020												\$		\$	
2021												\$		s	
2022												\$	2	\$	-
2023												\$		\$	2.
2024												s		\$	
2025												\$	2	\$	-
2026												\$	-	\$	
2027												\$	-	\$	
2028												Š		\$	-
2029												\$		\$	
2030	20	1.39	34,919	\$	2,444	\$	0.89	\$	0.15	\$	0.580	\$	1.62	\$	0.7
2031	20	1.39	34,919	\$	2,444	\$	0.89	\$	0.15	\$	0.580	\$	1.62	\$	0.7
2032	20	1.39	34,919	s	2,444	\$	0.89	Š	0.15	S	0.580	\$	1.62	\$	0.7
2033	20	1.39	34,919	\$	2,444	\$	0.89	s	0.15	S	0.580	\$	1.62	s	0.6
2034	20	1.39	34,919	s	2,444	S	0.89	\$	0.15	\$	0.580	\$	1.62	\$	0.6
2035	20	1.39	34,919	\$	2,444	\$	0.89	\$	0.15	\$	0.580	\$	1.62	\$	0.6
2036	20	1.39	34,919	Š	2,444	Š	0.89	Š	0.15	\$	0.580	\$	1.62	\$	0.5
2037	20	1.39	34,919	Š	2,444	Š	0.89	\$	0.15	\$	0.580	Š	1.62	S	0.5
2038	20	1.39	34,919	Š	2,444	\$	0.89	\$	0.15	s	0.580	\$	1.62	\$	0.5
2039	20	1.39	34,919	š	2,444	Š	0.89	Š	0.15	s	0.580	s	1.62	s	0.5
2040	30	2.08	52,379	Š	3,667	Š	1.34	Š	0.15	\$	0.580	\$	2.07	\$	0.6
2041	30	2.08	52,379	š	3,667	Š	1.34	Š	0.15	Š	0.580	Š	2.07	\$	0.5
2042	30	2.08	52,379	\$	3,667	Š	1.34	Š	0.15	Š	0.580	\$	2.07	\$	0.5
2043	30	2.08	52,379	\$	3,667	Š	1.34	Š	0.15	Š	0.580	Š	2.07	\$	0.5
2043	30	2.08	52,379	š	3,667	\$	1.34	\$	0.15	Š	0.580	\$	2.07	\$	0.5
2045	30	2.08	52,379	Š	3,667	Š	1.34	Š	0.15	Š	0.580	Š	2.07	\$	0.4
2046	30	2.08	52,379	Š	3,667	\$	1.34	\$	0.15	Š	0.580	\$	2.07	\$	0.4
2047	30	2.08	52,379	Š	3,667	s	1.34	Š	0.15	s	0.580	\$	2.07	\$	0.4
2048	30	2.08	52,379	Š	3,667	\$	1.34	\$	0.15	\$	0.580	S	2.07	Š	0.4
2049	30	2.08	52,379	Š	3,667	s	1.34	Š	0.15	Š	0.580	Š	2.07	\$	0.3
2050	40	2.78	69,838	\$	4,889	\$	1.78	\$	0.15	Š	0.580	Š	2.51	\$	0.4
2051	40	2.78	69,838	\$	4,889	\$	1.78	\$	0.15	Š	0.580	\$	2.51	\$	0.4
2052	40	2.78	69,838	\$	4,889	\$	1.78	\$	0.15	S	0.580	\$	2.51	\$	0.4
2052	40	2.78	69,838	\$	4,889	\$	1.78	\$	0.15	S	0.580	Š	2.51	\$	0.3
2054	40	2.78	69,838	Š	4,889	\$	1.78	Š	0.15	S	0.580	Š	2.51	\$	0.3
2055	40	2.78	69,838	Š	4,889	\$	1.78	S	0.15	Š	0.580	\$	2.51	Š	0.3
2056	40	2.78	69,838	Š	4,889	Š	1.78	Š	0.15	Š	0.580	Š	2.51	Š	0.3
2050	40	2.78	69,838	S	4,889	S	1.78	Š	0.15	\$	0.580	Š	2.51	\$	0.3
2058	40	2.78	69,838	Š	4,889	S	1.78	Š	0.15	S	0.580	S	2.51	Š	0.3
2059	40	2.78	69,838	Š	4,889	S	1.78	\$	0.15	\$	0.580	\$	2.51	Š	0.2
2060	40	2.78	69,838	S	4,889	S	1.78	S	0.15	S	0.580	S	2.51	Š	0.2
2060	40	2.78	69,838	5	4,889	\$	1.78	\$	0.15	5	0.580	S	2.51	\$	0.2
2062	40	2.78	69,838	\$	4,889	S	1.78	Š	0.15	S	0.580	S	2.51	\$	0.2
2062	40	2.78	69,838	\$	4,889	\$	1.78	\$	0.15	S	0.580	\$	2.51	S	0.2
2063	40	2.78	69,838	S	4,889	\$	1.78	\$	0.15	\$	0.580	\$	2.51	\$	0.2
2065	40	2.78	69,838	\$	4,889	\$	1.78	S	0.15	\$	0.580	s	2.51	\$	0.2
2003	40	2.70	09,030	4	4,005	•	1.70	•	0.10	•			D&M Costs		16
		011-1 0	I 101						Va h		TOTAL INPV	01 0	JOHN CUSTS	φ	10
		Capital Costs					400.5		Yr built					•	***
			PWTM			\$	160.2		2030					\$	77
			Pumping Stat	tions		\$	10.2		2030			Q = 1, Q = 1, 1	pital Costs	\$	82

Total NPV of Capital and O&M Costs in millions \$ WTP to LCRA Delivery Point (#4) 98

LCRA Delivery Point (#4) to COA Delivery Point (#5) (Bold line in schematic below)

Demands for this pipe segment

Demands

		Average dem	ands to be deli	ivered in each :	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
COA	0	0	15	20	30	30	30
Total	0	0	15	20	30	30	30

Max d/Avg d

		Max day dem	ands to be deli	vered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
COA	0	0	25	34	50	50	50
Total -	0	0	25	34	50	50	50

PWTM and Pump Station Costs

Design flow rate - year 2065 50 mgd 34,997 gpm

54 in. 15.90 sf 7 miles 36,960 feet Inside diameter of PWTM Area Length of PWTM

(linked to mileage in schematic above)

Estimated unit cost by condition:	% of length	LE	Un	it cost	Cost	
Rural - soil	100%	36,960	\$	244	\$ 9.0	million
Rural - rock	0%		\$	337	\$	
Urban - rock	0%		\$	369	\$ 	
	and the same of the	36,960	William !		\$ 9.0	million

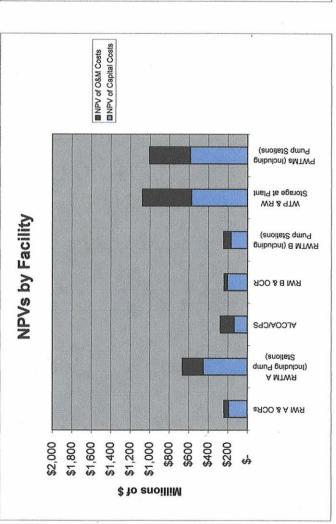
Total construction cost in millions	\$ 9.0
Contingencies	\$ 1.8
Subtotal	\$ 10.8
Engineering, Legal & Administrative	\$ 1.6
Subtotal	\$ 12.4
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 0.0
Total Capital Cost for PWTM in millions	\$ 12.4

Unit maintenance cost/year-mile 10,000 \$/year-mile 0.070 Million \$/year Velocity at peak flow rate 4.90 fps

C factor 120 $h_i = |3.552*Q|^{1.85}$ $|C^*(d)^{2.63}|$ 0.00141 ft/ft Head loss per foot 7.45 ft/mile

Head loss at peak flow rate 52 ft 720 Desired HGL At Delivery Point 790 Elev. At Delivery Point 4 -70 ft Allowance for minor losses Total estimated losses 20% 10 ft 63 ft Average static head Total estimated dynamic head -70 ft -7 ft -3 psi

Negative indicates gravity flow from #4 to #5; no pumping necessary.


Million \$ Annual O&M Cost in million \$: Yr built 0.070 \$0.55 Total NPV of O&M Costs Capital Costs in million \$: Yr built Total NPV of Capital Costs \$

> Total NPV of Capital and O&M Costs in millions \$ LCRA Delivery Point (#4) to COA Delivery Point (#5) 6.5

CTRWTP - Alternate 2A - WTP East of San Marcos

ing (s	D NE E	585	419	1,004
PWTMs (Including Pump Stations)	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)	69	69	3,1
RWTM B (Including WTP & RW Storage PWTMs (Including Pump Stations) at Plant Pump Stations)	Raw water reservoir W 11,000 ac-ft capacity; Sized for 117,804 ac. Conventional settling for maximum daily pipeline with one filtration for SAWS, demand (See PWT pumping station and softening with membrane Summary Sheet in softening with membrane filtration for SAWS, demand (See PWT station and softening with membrane filtration for COA & LCRA water	\$ 572	\$ 502	\$ 1,075
RWTM B (Including Pump Stations)	Sized for 117,804 ac- fuyr, 36 miles of 96" pipeline with one pumping station and balancing reservoir	\$ 168	\$ 75	\$ 243
RWI B & OCR	Sized for 2000 cfs to scalp water; 2 intakes; 8 miles of 120-inch raw water mains and 4 OCRs at 15,000 ac-ft/each	\$ 204	\$ 34	\$ 238
ALCOA/CPS	Non-Public wells; Transmission of 55,000 to scalp water; 2 ac-ft/year to the OCR at intakes; 8 miles of pipeline with one 54'9 gravity pipeline from mains and 4 OCRs balanding reservoir Hwy 290 east of Eigin at 15,000 ac-ft/each	\$ 135	\$ 141	\$ 276
RWTM A (Including Pump Stations)	Sized for 4000 cfs 126 miles of 96-inch to scalp water, 4 deliver 132,000 ac- 120-inch raw water mains & 4 pumping stations w/ ac-ft each along route	\$ 451	\$ 213	\$ 664
RWI A & OCRs	Sized for 4000 cfs to scalp water, 4 intakes, 4 miles of 120-inch raw water mains & 4 OCRs at 25,000 ac-ft each	\$ 191	\$ 47	\$ 238
Total NPVs in Millions of \$		\$ 2,306 \$	\$ 1,432	\$ 3,737 \$
Phasing Scenario	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.	NPV of Capital Costs	NPV of O&M Costs \$	Total NPV of Capital & O&M \$
Alter- nate	2A			
WTP Location	East of San Marcos			

O&M Cost Calculations RWI A - Matagorda Co. River Intakes, and Storage CTRWTP - Alternate 2A - WTP East of San Marcos

Initial year of analysis period	2015						Conti	ngency =	209	6		
Interest rate	5%				Engir	neering, L	egal,	Admin. =	159	6		
Evaluation period	50	year	s	Environn	nental a	& Archae	ology	Studies &				
Unit cost of energy	\$ 0.07	per	kwh	Mitigation, S	Surveyin	ng, and L	and A	cquisition	5	100,000	per n	nile
•		******						or =	\$	5,000	per a	cre
Inflatable Rubber Low Head Dam												
	Quantity		Jnits	Size		Constr. Cost illions)	Con	Total timated str. Cost illions)	E	ontigency, ing., etc. millions)	(l Capital Cost Illions)
Inflatable Rubber Low Head Dam	4	eac	1	10 ft high	\$	2.25	\$	9.00	\$	3.42	\$	12.42
Estimated inflatable dam cost as	% of total		50%									
Value of inflatable dam		\$	4.50	million								
Assumed life of inflatable dam			10	years								
Estimated maintenance/replacen	nent cost	\$	0.45	million/year								
Year built			2020									
NPV of O&M Costs			\$6.27	million								
NPV of Capital Costs		\$	9.73	million								
Total NPV of Capital and O&M C	nete	-	\$16.00	million								

Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Average withdrawal		
Total intake design withdrawal rate (for scalping high flows	4,000 1,795,200	
No. of Intakes Design withdrawal rate per intake	1,000 448,800	
No. of reservoirs Design flow to each reservoir	448,800	gpm
Inside diameter of each RWTM Area	120 78.54	
Average length of each RWTM	5,280	miles 4.0 miles for all RWTMs feet 21,120 feet
Estimated construction cost for RWTM	\$ 793	per LF
Total construction cost in millions Contingencies Subtotal Engineering, Legal & Administrative	\$ 16.8 \$ 3.4 \$ 20.1 \$ 3.0	-
Subtotal Envir & Arch Studies & Mitigation, Surveying, & Land Acq Total Capital Cost for PWTM in millions	\$ 23.1 \$ 0.4 \$ 23.5	million
Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile \$ 0.040 Million \$/year (all RWTMs to Reservoirs)
Note: Assume each intake has two RWTMs pumping out of	of it, one to each	h reservoir.
Design flow rate for each RWTM (from above) Pumping rate (one pump) No. of pumps (not counting spare) pumping into each RW		gpm
Peak flow rate into each RWTM (all pumps except spare)	450,000	
Velocity at peak flow rate C factor	12.77	fps
Head loss per foot	0.00327 17.25	ft/ft h _f = 3.552°Q ^{1.85} ft/mile C°(a) ^{2.63}
Head loss at peak flow rate Allowance for minor losses Total estimated losses Average static head Total estimated dynamic head	5 22 40 62	ft 90 Elev of discharge at reservoir ft 50 Water surface elev in river ft 40 ft psi
Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump	85% 90% 1,030 769	hp/pump
Total hp pumping into each RWTM (not counting spare) Total hp at each intake (not counting spare) Total hp all intakes (not counting spares) Total kw all intakes (not counting spares)	9,272	hp/RWTM hp/intake hp
Unit construction cost for each pump station (from cost cu Construction cost per intake/pump station No. of intakes from above		per firm hp of pump station million each
Total construction cost in millions Contigency, Eng., etc. in millions Total capital cost in millions	\$ 12.53	million million million
Total construction cost for pump stations Value of equipment Assumed life of equipment Estimated maintenance/replacement cost	\$ 13.2 20	million million 40% Estimated equip cost as % of total constr cost years million/year

Year	Flow purr yea		No. of pump "sets"	Energy used		Energ	y co	ost	co	other O&M sts - Pump Stations		intenance costs - RWTM	То	tal O&M cost	N	et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		Million \$ /year)		(Million \$ /year)		Million \$ /year)		Million \$ /year)		(\$)
2015	-	-	-	-	\$	-	\$						\$		\$	
2016	-	-			\$		\$						\$	*	\$	* 1
2017	-	-		-	\$		\$						\$		\$	
2018	-		-	38	\$	-	\$						\$		\$	*
2019			-		\$		\$						\$		\$	
2020	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.15
2021	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.10
2022	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.05
2023	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.00
2024	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.95
2025	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.90
2026	132,000	118	1.64	30,188	S	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.86
2027	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	\$	0.040	S	1.47	\$	0.82
2028	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.78
2029	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.68	\$	0.040	\$	1.47	\$	0.74
2030	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	s	0.040	\$	1.47	\$	0.7
2031	132,000	118	1.64	30,188	S	2,113	\$	0.77	5	0.66	\$	0.040	\$	1.47	S	0.67
2032	132,000	118	1.64	30,188	s	2,113	s	0.77	\$	0.66	s	0.040	s	1.47	\$	0.64
2033	132,000	118	1.64	30,188	s	2,113	s	0.77	s	0.66	s	0.040	S	1.47	s	0.61
2034	132,000	118	1.64	30,188	s	2,113	s	0.77	\$	0.66	\$	0.040	\$	1.47	S	0.5
2035	132,000	118	1.64	30,188	Š	2,113	s	0.77	Š	0.66	Š	0.040	s	1.47	š	0.5
2036	132,000	118	1.64	30,188	s	2,113	\$	0.77	S	0.66	s	0.040	s	1.47	\$	0.53
2037	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	\$	0.040	s	1.47	s	0.50
2038	132,000	118	1.64	30,188	Š	2,113	s	0.77	\$	0.66	Š	0.040	s	1.47	Š	0.48
2039	132,000	118	1.64	30,188	š	2,113	Š	0.77	s	0.66	s	0.040	s	1.47	s	0.46
2040	132,000	118	1.64	30,188	š	2,113	s	0.77	\$	0.66	s	0.040	s	1.47	s	0.43
2041	132,000	118	1.64	30,188	š	2,113	Š	0.77	s	0.66	s	0.040	Š	1.47	\$	0.4
2042	132,000	118	1.64	30,188	š	2,113	Š	0.77	\$	0.66	Š	0.040	s	1.47	s	0.39
2043	132,000	118	1.64	30,188	š	2,113	\$	0.77	S	0.66	š	0.040	\$	1.47	Š	0.38
2044	132,000	118	1.64	30,188	Š	2,113	Š	0.77	\$	0.66	š	0.040	\$	1.47	Š	0.36
2045	132,000	118	1.64	30,188	Š	2,113	Š	0.77	Š	0.66	s	0.040	Š	1.47	s	0.3
2046	132,000	118	1.64	30,188	š	2,113	\$	0.77	Š	0.66	š	0.040	Š	1.47	Š	0.3
2047	132,000	118	1.64	30,188	Š	2,113	\$	0.77	š	0.66	Š	0.040	s	1.47	Š	0.3
2048	132,000	118	1.64	30,188	Š	2,113	s	0.77	Š	0.66	Š	0.040	Š	1.47	Š	0.2
2049	132,000	118	1.64	30,188	Š	2,113	Š	0.77	Š	0.66	Š	0.040	Š	1.47	š	0.2
2049	132,000	118	1.64	30,188	\$	2,113	Š	0.77	s	0.66	\$	0.040	Š	1.47	š	0.2
2050	132,000	118	1.64	30,188	Š	2,113	\$	0.77	s	0.66	s	0.040	Š	1.47	Š	0.2
2052		118	1.64	30,188	s	2,113	s	0.77	s	0.66	S	0.040	s	1.47	Š	0.2
2052	132,000	118	1.64	30,188	Š	2,113	s	0.77	Š	0.66	s	0.040	Š	1.47	Š	0.2
	132,000		1.64		s	2,113	Š	0.77	Š	0.66	Š	0.040	Š	1.47	Š	0.2
2054	132,000	118	1.64	30,188 30,188	S	2,113	S	0.77	\$	0.66	5	0.040	s	1.47	Š	0.2
2055	132,000	118	1.64	30,188	s	2,113	S	0.77	s	0.66	S	0.040	S	1.47	Š	0.2
2056	132,000		1.64		S	2,113	5	0.77	S	0.66	S	0.040	S	1.47	5	0.2
2057	132,000	118		30,188			\$	0.77	5	0.66	S	0.040	\$	1.47	s	0.1
2058	132,000	118	1.64	30,188	\$	2,113		0.77	S		S	0.040	Š	1.47	s	0.1
2059	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66		0.040		1.47	s	0.1
2060	132,000	118	1.64	30,188	s	2,113	\$			0.66	\$		\$			
2061	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1
2062	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1
2063	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1
2064	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1
2065	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1

Total NPV of O&M Costs \$ 21.6

 Capital Costs in million \$:
 Yr built
 18.4

 RWTM to Reservoirs
 \$ 23.5
 2020
 \$ 35.6

 Intake/Pumping Stations
 \$ 45.5
 2020
 Total NPV of Capital Costs
 \$ 35.6

 Total NPV of Capital Costs
 \$ 54.1
 35.6
 35.6
 35.6

Total NPV of Capital and O&M Costs in millions \$ 75.

Reservoirs

	Quantity		Units	Volume/each (acre-feet)	Unit Cost (\$/ac-ft))			Total nstruction Cost in millions		tigency, g., etc.	otal in nillions
Reservoirs	4		each	25000	\$	974	\$	97.4	\$	37.0	\$ 134.4
Estimated average depth of reservor			20 5000	ft acres							
of reservoir	total land area reqd to surface area ervoir		1.1				E	nvir & Arch	naeolo	gy, Surv,	
Total land area reqd for reservoirs			5500	acres		_				nd Acq =	27.5
Assumed life of reservoir			100	years		1	otal	capital cos	t in mi	llions =	\$ 161.9
Estimated replacement cost		\$	0.97	million/year							
Estimated maintenance			0.4	million/year	Mowi	ng, mair	ntaini	ng fences,	etc.		
Total		\$	1.37	million/year							
Year built			2020								
NPV of O&M costs		\$	19.1	million							
NPV of Capital costs		\$	126.8	million							
Total NPV of Capital and O&M Cos	its	s	145.9	million							

umi	mary	127 282 11	IPV of tal Costs	PV of O&M Costs	Caj	al NPV of pital and M Costs
	Inflatable Rubber Low Head Dam Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir) Reservoirs Total for RWI &	\$	9.7	\$ 6.3	\$	16.0
	Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$	54.1	\$ 21.6	\$	75.7
	Reservoirs	\$	126.8	\$ 19.1	\$	145.9
	Total for PWI A	•	190 6	47.0	\$	237 B

O&M Cost Calculations RWTM A - Matagorda Co. to WTP CTRWTP - Alternate 2A - WTP East of San Marcos

Initial year of analysis period Interest rate 5% Engineering, Legal, Admin. = 15%

Evaluation period 50 years Environmental & Archaeology Studies & Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

Raw Water Transmission Main - A

ater Transmission Main - A						
Inside diameter of pipe Area		96 50.27	in.			
Length of RWTM			miles			
Longin of North		665,280				
Estimated unit construction cost for RWTM	\$	567	per LF			
Total construction cost in millions	\$	378				
Contingencies Subtotal	\$	76 453				
Engineering, Legal & Administrative	\$	68				
Subtotal	\$	521	•			
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	13				
Total Capital Cost for PWTM in millions	\$		million			
Unit maintenance cost/year-mile	\$	10,000	\$/year-mile	\$	1.260	Million \$/year
Design flow rate (after 100% buildout)		132,000	ac-ft/year			
			mgd			
		81,829				
Pumping rate (one pump)		16,400	gpm			
No. of pumps (not counting spare)		5				
Peak flow rate (all pumps except spare)		82,000	gpm			
Velocity at peak flow rate		3.63	fps			
C factor		120				
Head loss per foot		0.00041	ft/ft		h _f =	[3.552*Q] ^{1.85}
		2.19	ft/mile			C*(d) ^{2.63}
Head loss at peak flow rate		276	ft			
Allowance for minor losses 10%		28	ft		550	Elev. At San Antonio East WTP
Total estimated losses		303	ft		90	Elev. At Matagorda OCRs
Average static head		460	ft		460	
Total estimated dynamic head		763	ft			
		331	psi			
No of pumping stations req'd along route		2.21			150	psi (assumed max pressure
No. of pumping stations used in cost estimate		3.0				in pipe)
Average head per pump station		254	ft			
Assumed pump efficiency		85%				
Assumed motor efficiency		90%				
Estimated Hp required per pump			hp/pump			
724 W. 25		1,028				
Total hp per pump station (not counting spare)			hp/station			
Total kw per pump set (set≃pumps in series along route)		4,133	kw/pump set	(one p	oump at	each station)
Unit construction cost for each pump station (from cost cur	v \$		per firm hp of	fpump	station	
Construction cost per pump station		9.3	million			
Balancing reservoir	\$		million _			min. of storage at avg pumping rate
Total construction cost per pump station	\$	10.03	million		5.0	
			. 1	\$	0.15	per gal for open top reservoir
No. of pump stations from above		3.0	each			
Total construction cost in millions	\$		million			
Contigency, Eng., etc. in millions	\$		million			
Total capital cost in millions	\$	41.5	million			
Total construction cost for pump stations	\$	30.1	million			
Value of equipment	\$		million		40%	Estimated equipment cost as % of total
Assumed life of equipment		20				
Estimated maintenance/replacement cost	\$	0.60	million/year			

O&M Costs

	Year	Flow pun yea		No. of pump "sets"	Energy used		Energy	y co	ost	co	ther O&M sts - Pump Stations		aintenance costs - RWTM	Т	otal O&M cost	Ne	et present value
		ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		(Million \$ /year)	((Million \$ /year)		(Million \$ /year)		(Million \$ /year)		(\$)
0	2015	-				\$	-	\$					17.7	\$		\$	
	2016	-	*	-	-	\$	-	\$						\$		\$	
	2017	-		-		\$	-	\$	-					\$	•	\$	•
	2018	-	-	-	-	\$	-	\$						\$		\$	
	2019				van Ša	\$		\$			200	0		\$		\$	
	2020	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	11.37
	2021	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	10.83
	2022	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	10.31
	2023	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	9.82
	2024	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	9.35
	2025	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	8.91
	2026	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	8.48
	2027	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	8.08
	2028	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	7.69
	2029	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	7.33
	2030	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	6.98
	2031	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	6.65
	2032	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	6.33
	2033	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	6.03
	2034	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	5.74
	2035	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	5.47
	2036	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	5.21
	2037	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	4.96
	2038	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	4.72
	2039	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.50
	2040	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	4.28
	2041	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	4.08
	2042	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	3.89
	2043	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	3.70
	2044	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	3.52
	2045	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.36
	2046	132,000	118	4.99	494,936	5	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.20
	2047	132,000	118	4.99	494,936		34,646				0.60	\$	1.260		14.51		3.04
	2048 2049	132,000	118 118	4.99 4.99	494,936	\$	34,646	\$	12.65 12.65	\$	0.60	\$	1.260 1.260	\$	14.51 14.51	\$	2.90 2.76
		132,000		4.99	494,936	\$	34,646	5				\$		\$		\$	
	2050	132,000	118 118		494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	2.63
	2051	132,000	20007	4.99	494,936	5	34,646	\$		\$	0.60		1.260	\$	14.51	\$	2.50
	2052	132,000	118	4.99	494,936	5	34,646	\$		\$	0.60	\$	1.260		14.51	\$	2.39
	2053 2054	132,000	118 118	4.99 4.99	494,936	\$	34,646	\$	12.65 12.65	\$	0.60	\$	1.260 1.260	\$	14.51	\$	2.27
	2054	132,000 132,000	118	4.99	494,936 494,936	\$	34,646 34,646	\$		\$	0.60	\$	1.260	\$	14.51 14.51	S	2.16 2.06
	2056	132,000	118	4.99	494,936	5	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	1.96
	2057	132,000	118	4.99		\$	34,646	5	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.87
	2057	132,000	118	4.99	494,936 494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	S	1.78
				4.99		\$		\$		S				\$		\$	1.70
	2059 2060	132,000 132,000	118 118	4.99	494,936 494,936	5	34,646 34,646	5		S	0.60	\$	1.260 1.260	\$	14.51 14.51	\$	1.70
	2061		118	4.99		\$		\$		\$	0.60	\$	1.260	\$	14.51	\$	1.54
	2062	132,000	118	4.99	494,936	\$	34,646	\$		\$	0.60	\$	1.260	\$	14.51	\$	1.54
	2062	132,000 132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	5	1.260	\$	14.51	\$	1.46
	2063	132,000	118	4.99	494,936 494,936	5	34,646 34,646	\$		5	0.60	5	1.260	\$	14.51	\$	1.39
	2065	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.27
													Total NPV	of O&M Costs		\$	213
				Capital Cost	ts in million \$:						Yr built						
					RWTM			\$	534	-	2020	•				\$	418
					Pumping Stat	ıon	S	\$	42		2020					\$	33

Total NPV of Capital and O&M Costs in millions \$

664

East of SMarcos_Alt2A;RWTM A

NPV CALCULATIONS ALCOA / CPS GROUNDWATER CTRWTP - Alternate 2A - WTP East of San Marcos

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile Initial year of analysis period Interest rate 2015 5% 50 years 0.07 per kwh Evaluation period Unit cost of energy

	ALCOA	CPS	Total
Year built	2015	2015	
Estimated Construction Cost in Millions			
Wells (Based on Non-Public Water Supply Wells)	20.92	7.94	28.8
Pipeline	13.03	5.94	18.9
Pump Stations & Storage	8.51	0	8.5
Subtotal	42.46	13.88	56.3
Contingency	8.49	2.78	11.2
Subtotal	50.95	16.66	67.6
Engineering, Legal & Administrative	6.37	2.08	8.4
Subtotal	57.32	18.74	76.0
Environmental & Archaeology Studies & Mitigation	0.63	0.2	0.8
Land Acquisition & Surveying	0	0	0.0
Groundwater Purchase	0	5.64	5.6
ALCOA Construction Program Management Fee	5.45	0	5.4
Interest During Construction (2 years, 6% int., 4% ret.)	5.89	2.44	8.3
Total Capital Cost	69.29	27.02	96.3
Estimated Annual O&M Costs			
M&O	0.67	0.18	0.8
Pumping Energy	2.41	0.52	2.9
ALCOA Project Management Fees	0.35	0.00	0.3
Purchase of Groundwater	2.00	0.00	2.0
Groundwater District Fees	0.65	0.25	0.9
Mitigation Reserves	0.28	0.11	0.3
Total Annual Cost	6.36	1.06	7.4

Cooling of Well Water

NPV of O&M Costs

NPV of Capital Costs

Total NPV of Capital and O&M Costs for Well Fields

Total number of wells in both fields	120	wells	Approximate capacity per wel	300	gpm
Percentage of wells with temperatures > than degrees	5%		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	36,000	gpm
Estimated number of wells with temperature > degrees	6.0		Rough check	58,072	ac-ft/year
Estimated Capital Costs					
Year built	2015				
Number of Packaged Cooling Towers (300 gpm capacity/each)	6.0				
Equipment cost (cooling towers and fans)	\$ 60,000				
Installation and contractors mark-up	\$ 50,000				
Structural slab	\$ 30,000				
Electrical	\$ 50,000				
Estimated Unit Construction Cost	\$ 190,000	Each			
Total construction cost	\$ 1.14	million			
Contingencies	\$ 0.23				
Subtotal	\$ 1.37	•			
Engineering, Legal and Admin	\$ 0.21				
Total Estimated Capital Cost	\$ 1.57				
NPV of Capital Costs	\$ 1.57	million			

116 \$

69 \$

185 \$

\$

19 \$ 27 \$

46 \$

135 million 96 million

232 million

Estimated O&M Costs

Value of equipment	\$ 0.4	million
Assumed life of equipment	10	years
Estimated maintenance/replacement cost	\$ 0.04	million/year
Blower Hp per cooling tower	10	Нр
	7	kw
Hours of operation	24	hours
Power consumption per cooling tower	179	kwh per day
	65,350	kwh per year
Power cost per cooling tower	\$ 4,574	
Total power cost for all cooling towers in millions	\$ 0.03	million per year
Regular operational checks and routine maintenance	\$ 6,000	per month for all cooling towers
	\$ 0.07	per year
Estimated O&M Cost	\$ 0.14	million \$ per year
NPV of O&M costs	\$ 2.47	million \$

Ground Water Transmission Main and Pump Station (Hwy 290 to Bastrop Intake)

Inside diameter of transmission pipe

54 in.

Area			15.90	sf				
Length of Ground Water TM			15	miles				
			79,200	feet				
Estimated construction cost for GWTM		\$	327	per LF				
Total construction cost in millions		\$	25.9					
Contingencies		\$	5.2					
Subtotal		\$	31.1					
Engineering, Legal & Administrative		\$	4.7					
Subtotal		\$	35.8					
Envir & Arch Studies & Mitigation, Survey	ring, & Land Acq	\$	1.5					
Total Capital Cost for PWTM	in millions	\$	37.3	million				
Unit maintenance cost/year-mile		\$	10,000	\$/year-mile	\$	0.150	Million \$/year	
Design flow rate			55,000	ac-ft/year				
			49	mgd				
			34,095	gpm				
Velocity at peak flow rate			4.78	fps				
C factor			120	1150				
Head loss per foot			0.00134	ft/ft		h _f =	3.552*Q 1.85	
			7.10	ft/mile		-50	C*(d) ^{2.63}	
Head loss at peak flow rate			106	ft				
Allowance for minor losses	10%		11			400	Elev. At RWI-B	
Total estimated losses		-	117				minus Elev Storage Tank at Hwy	290
Average static head			-150		-	-150		
Total estimated dynamic head		-	-33		(intake	is lowe	r than tank at Hwy 290)	
			-14	psi	2000000			

Negative indicates gravity flow from Hwy 290 to Bastrop Intake; no pumping necessary.

Annual O&M Cost in million \$:			Yr built		М	illion \$
GWTM	s	0.150	2015	-		
	•	0.100	2010	Total NPV of O&M Costs	\$	2.7
Capital Costs in million \$:			Yr built			
GWTM	\$	37.3	2015	•	\$	37.3
				Total NPV of Capital Costs	•	37.3

Summary

Well Fields and Collection Lines (including tank and pump station at Hwy 290)
Cooling Towers for Selected High Temperature Wells
Ground Water Transmission Main and Pumping Station
Total for ALCOA-CPS

NPV of Capital Costs		NP	V of O&M Costs	Total NPV of Capital and O&M Costs				
\$	96.3	\$	135.5	\$	231.8			
\$	1.6	\$	2.5	\$	4.0			
\$	37.3	\$	2.7	\$	40.0			
\$	135.1	S	140.7	S	275.8			

O&M Cost Calculations RWI B - Colorado River Intake at Bastrop and Off Channel Reservoir CTRWTP - Alternate 2A - WTP East of San Marcos

Initial year of analysis period Interest rate 2015 Contingency = 20% Engineering, Legal, Admin. = 15% 5% 40 years \$ 0.07 per kwh Evaluation period Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition = \$ 100,000 per mile
or = \$ 5,000 per acre Unit cost of energy Inflatable Rubber Low Head Dam Total Contigency, Total Capital Eng., etc. Cost (millions) (millions) Unit Constr. Estimated Constr. Cost Quantity Size Cost Units (millions) (millions) 1.71 Inflatable Rubber Low Head Dam 10 ft high 2.25 4.50 Estimated inflatable dam cost as % of total 50% Value of inflatable dam Assumed life of inflatable dam 2.25 million 10 years 0.23 million/year Estimated maintenance/replacement cost 2015 NPV of O&M Costs 3.86 million NPV of Capital Costs 6.21 million \$ 10.07 million Total NPV of Capital and O&M Costs

Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Summary of withdrawals in acre-feet/year:

Year	2015	2020	2030	2040	205		2060	2065	
For SAWS	18000	18000	18000	18000	180		18000	18000	7
LCRA			5600	11200	112		11200	11200	
COA _	10000	10000	16802	22403	336		33604	33604	-
Total	18000	18000	40402	51603	628	04	62804	62804	
Ultimate (Y2	065) avera	age design v	vithdrawal ra	ate	6	2,804	ac-ft/year		
						87	cfs		20.77
Tatal latalia	desire	halanii anta	. Mas analais	a biah flavor		2,000	ofo	23.1	Ratio of design withdrawal rate to Total intake design withdrawal rate
i otal intake	design wit	ndrawai rate	(for scalpin	ng high flows)		7,600			to Total Intake design withdrawarrate
No. of Intake	98					2			
Design with		per intake				1,000	cfs		
z co.g		1.00				8,800			
Nf									
No. of reser Design flow		servoir			22	4,400	anm		
Design now	to each re	3014011				1,100	gp		
Inside diame	eter of eac	h RWTM				120			
Area						78.54			
Average len	gth of eacl	h RWTM					miles		miles for all RWTMs
					1	0,560	feet	42,240	feet
Estimated co	onstruction	cost for RV	VTMs		\$	793	per LF		
Total constr	uction cos	t in millions			\$	33.5			
Contingenci	es				\$	6.7			
	Subtotal				\$	40.2			
Engineering	, Legal & / Subtotal	Administrativ	re		\$	46.2			
Envir & Arch		Mitigation,	Surveying,	& Land Acq	Š	0.8			
		tal Cost for I			\$	47.0			
Unit mainter	nance cost	/year-mile			\$ 1	0,000	\$/year-mile	\$ 0.080	Million \$/year (all RWTMs to Reservoirs)
Note: Assur	me intake h	nas one RW	TM pumping	to the reser	voir.				
Design flow	rate for ea	ch RWTM (from above	,	22	4,400	gpm		
Pumping rat						0,000			
				to each RWI		6			
Peak flow ra	ate into ead	ch RWIM (a	ill pumps ex	cept spare)	24	0,000	gpm		
Velocity at p	eak flow r	ate				6.81	fps		
C factor						120	1.00		
Head loss p	er foot				0.	.00102	ft/ft	h _f =	1 3.552*QI ^{1.85}
						5.39	ft/mile		C*(d) ²⁶³
Head loss a	t peak flov	v rate				11	ft		
Allowance for			30%				ft	400	Discharge at reservoir
Total estima						14	ft	320	Water surface elev in river
Average sta						80		80) ft
Total estima	ated dynan	nic head				94			
						41	psi		
Assumed pu						85%			
Assumed m						90%			
Estimated F	p required	per pump					hp/pump		
						926	kw/pump		

Total hp pumping into each RWTM (not counting spare)
Total hp at each intake (not counting spare)
Total hp all intakes (not counting spares)
Total kw all intakes (not counting spares)
Total construction cost for each pump station (from cost cur Construction cost per intake/pump station
No. of intakes from above

Total construction cost in millions
Contigency, Eng., etc. in millions
Total capital cost in millions
Value of equipment
Assumed life of equipment
Estimated maintenance/replacement cost

Assumed life of equipment
Estimated maintenance/replacement cost

Total hp pumping into each RWTM (not counting spare)
Total construction cost for pump station (from cost cur \$ 29,793 hp
Total construction cost in millions

Total construction cost in millions

Total construction cost for pump stations
Solon
Million

Total construction cost for pump station
Million

Total construction cost for pump station
Million

Total construction cost for pump station
Million

Total construction cost for pump station (from cost cur smillion deach pump station million
Million

40% Estimated equipment cost as % of total million million

Million

Million

Total construction cost for pump station (from cost cur smillion deach pump station million deach pump station pump station million deach pump station pump station deach pump station pump station pump station million deach pump s

O&M Costs:

Year	Flow pun		No. of pump "sets"	Energy used	500000000000000000000000000000000000000				other O&M osts - Pump Stations		aintenance costs - RWTM	T	otal O&M cost	Ne	et present value	
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year)	1	(Million \$ /year)	(Million \$ /year)		(\$)
2015	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.77
2016	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.73
2017	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.70
2018	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.66
2019	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.63
2020	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.60
2021	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.57
2022	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.55
2023	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.52
2024	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.50
2025	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.47
2026	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.45
2027	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.43
2028	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.41
2029	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.39
2030	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.46
2031	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.44
2032	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	S	0.080	\$	0.97	\$	0.42
2033	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.40
2034	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.38
2035	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.36
2036	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.35
2037	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.33
2038	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.31
2039	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.30
2040	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.31
2041	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.30
2042	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.28
2043	51,603	46 46	0.80 0.80	17,775 17,775	\$	1,244	S	0.45 0.45	\$	0.53 0.53	\$	0.080	S	1.06 1.06	\$	0.27
2044	51,603	46	0.80	17,775	S	1,244	\$	0.45	S	0.53	S	0.080	S	1.06	S	0.25
2045	51,603	46	0.80		S		\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.23
2046	51,603 51,603	46	0.80	17,775 17,775	S	1,244 1,244	S	0.45	\$	0.53	\$	0.080	S	1.06	S	0.23
2047	51,603	46	0.80	17,775	\$	1,244	S	0.45	S	0.53	S	0.080	\$	1.06	S	0.22
2049	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	S	0.080	\$	1.06	\$	0.20
2050	62,804	56	0.97	21,633	\$	1,514	\$	0.45	s	0.53	S	0.080	\$	1.16	\$	0.20
2051	62,804	56	0.97	21,633	\$	1,514	S	0.55	S	0.53	\$	0.080	Š	1.16	Š	0.20
2052	62,804	56	0.97	21,633	\$	1,514	\$	0.55	s	0.53	S	0.080	5	1.16	Š	0.19
2052	62,804	56	0.97	21,633	\$	1,514	5	0.55	\$	0.53	S	0.080	S	1.16	S	0.19
2054	62,804	56	0.97	21,633	s	1,514	Š	0.55	S	0.53	s	0.080	Š	1.16	Š	0.17
2055	62,804	56	0.97	21,633	\$	1,514	S	0.55	š	0.53	\$	0.080	Š	1.16	Š	0.17
2056	62,804	56	0.97	21,633	\$	1,514	š	0.55	š	0.53	š	0.080	Š	1.16	\$	0.16
2057	62,804	56	0.97	21,633	Š	1,514	Š	0.55	Š	0.53	Š	0.080	Š	1.16	Š	0.15
2058	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	Š	0.080	Š	1.16	Š	0.14
2059	62,804	56	0.97	21,633	S	1,514	Š	0.55	Š	0.53	S	0.080	Š	1.16	Š	0.14
2060	62,804	56	0.97	21,633	Š	1,514	\$	0.55	\$	0.53	Š	0.080	Š	1.16	Š	0.13
2061	62,804	56	0.97	21,633	S	1,514	\$	0.55	\$	0.53	\$	0.080	Š	1.16	\$	0.12
2062	62,804	56	0.97	21,633	\$	1,514	s	0.55	Š	0.53	Š	0.080	Š	1.16	\$	0.12
2063	62,804	56	0.97	21,633	\$	1,514	Š	0.55	\$	0.53	Š	0.080	Š	1.16	Š	0.12
2064	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.11
2065	62,804	56	0.97	21,633	\$	1,514	Š	0.55	Š	0.53	Š	0.080	Š	1.16	s	0.10
	52,554	50	5.51	21,000	•	1,014	•	5.50	~	0.50	•	Tatal NOV			-	47.4

Total NPV of O&M Costs \$ 17.

 Capital Costs in million \$:
 Yr built
 47.0 built
 2015
 \$ 47.0
 2015
 \$ 36.6
 2015
 \$ 36.6
 Total NPV of Capital Costs
 \$ 83.6

Total NPV of Capital and O&M Costs in millions \$ 100.7

Reservoirs

	Quantity	Units	Volume/each (acre-feet)	500	nit Cost 8/ac-ft))	Const	otal truction est in lions	ntigency, ig., etc.	otal in nillions
Reservoirs	4	each	15000	\$	1,180	\$	70.8	\$ 26.9	\$ 97.7
				\$	0.004	per ga	llon		
Estimated average depth of reserve	oir	20	ft						

Surface area of reservoir	3000	acres		
Ratio of total land area reqd to surface area				
of reservoir	1.1		Envir & Archaeology, Surv,	
Total land area regd for reservoirs	3300	acres	and Land Acq =	16.5
			Total capital cost in millions = \$	114.2
Assumed life of reservoir	100	years		
Estimated replacement cost	\$ 0.71	million/year		
Estimated maintenance	\$ 0.04	million/year	Mowing, maintaining fences, etc.	
Total	\$ 0.75	million/year		
Year built	2015			
NPV of O&M costs	\$ 12.8	million		
NPV of Capital costs	\$ 114.2	million		
Total NPV of Capital and O&M Costs	\$ 127.0	million		

Summary	IPV of tal Costs	 IPV of O&M Costs	Ca	pital and
Inflatable Rubber Low Head Dam	\$ 6.2	\$ 3.9	\$	10.1
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$ 83.6	\$ 17.1	\$	100.7
Off Channel Reservoir	\$ 114.2	\$ 12.8	\$	127.0
Total for RWI A	\$ 204.0	\$ 33.8	\$	237.8

O&M Cost Calculations RWTM B - RWI B near Bastrop to WTP CTRWTP - Alternate 2A - WTP East of San Marcos

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile Initial year of analysis period Interest rate Evaluation period Unit cost of energy 2015 5% 40 years \$ 0.07 per kwh

Suface Water				2010	0050	0000	0005
Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	18000	18000	18000	18000	18000	18000	18000
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Subtotal	18000	18000	40402	51603	62804	62804	62804
Groundwater							
Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	55000	55000	55000	55000	55000	55000	55000
Suface & grour	73000	73000	95402	106603	117804	117804	117804

Sizing o

FRaw Water Transmission Main B & Pump Stations						
Inside diameter of RWTM		96				
Area		50.27				
Length of RWTM			miles			
		190,080	feet			
Estimated unit construction cost for RWTM	\$	567	per LF			
Total construction cost in millions	\$	107.9				
Contingencies	\$	21.6				
Subtotal	\$	129.4				
Engineering, Legal & Administrative	\$	19.4	•)?			
Subtotal	\$	148.9				
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	3.6				
Total Capital Cost for PWTM in millions	>	152.5	million			
Unit maintenance cost/year-mile	\$	5,000	\$/year-mile	\$	0.180	Million \$/year
Design flow rate (after 100% buildout)			ac-ft/year			
			mgd			
		73,029				
Pumping rate (one pump)		15,000	gpm			
No. of pumps (not counting spare)		A CONTRACTOR OF THE PARTY OF TH	anm			
Peak flow rate (all pumps except spare)		75,000	gpitt			
Velocity at peak flow rate		3.32	fps			
C factor		120				
Head loss per foot		0.00035	ft/ft		h _f =	3.552*Q ^{1.85}
		1.86	ft/mile			C*(d) ^{2.63}
and the second						
Head loss at peak flow rate		67			CEO	Class ALMED
Allowance for minor losses 10%	_	74	ft			Elev. At WTP Elev of WSE in Bastrop reservoir
Total estimated losses		250			250	
Average static head Total estimated dynamic head	_	324			230	IL.
Total estimated dynamic nead		140				
No of recommended number stations along route		0.93			160	psi (assumed max pressure
No of recommended pumping stations along route No. of pumping stations used in cost estimate		1.0			150	in pipe)
Average head per pump station		324				iii pipe)
Average nead per pump station		024	**			
Assumed pump efficiency		85%				
Assumed motor efficiency		90%				
Estimated Hp required per pump			hp/pump			
200 000 0 000 0 10 00 00 00 00 00 00 00 0			kw/pump			
Total hp per pump station (not counting spare)			hp/station			sach station)
Total kw per pump set (set=pumps in series along route)		1,602	kw/pump set	(one l	pump at	each station)
Unit construction cost for each pump station (from cost cur	\$	1,310	per firm hp o	f pump	station	
Construction cost per pump station			million			
Balancing reservoir	\$		million			min. of storage at avg pumping rate
Total construction cost per pump station	\$	11.24	million	9	5.0	
No. of pump stations from above		1.0	each	\$	0.15	per gal for open top reservoir
Total construction cost in millions	\$	44.0	million			
	\$		million			
	\$		million			
Contingency, Eng., etc. in millions Total capital cost in millions		10.0				
Total capital cost in millions	*					
	\$	11.2	million			
Total capital cost in millions			million million		40%	Estimated equipment cost as % of total
Total capital cost in millions Total construction cost for pump stations	\$	4.5			40%	Estimated equipment cost as % of total

O&M Costs

2015 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2017 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2018 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2018 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2019 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2019 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2020 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2024 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2024 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2025 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2028 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2028 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2020 \$ 0.5402 \$ 85 3.04 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 \$ 0.5402 \$ 85 3.04 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 \$ 0.5402 \$ 85 3.04 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 \$ 0.5402 \$ 85 3.04 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 \$ 0.5402 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$ 0.50 \$	e	ar	Flow pur		No. of pump "sets"	Energy used		Energy	y co	st	CO	other O&M ests - Pump Stations		aintenance costs - RWTM	7	Total O&M cost	Ne	et present value
2016 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2019 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2019 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2025 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,884 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2020 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0			ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	(9		1	(Million \$ /year)	on acad	(\$)
2017 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2020 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2024 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2025 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,000 65 3.04 115,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,002 85 3.94 151,677 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.	01	15	73,000		3.02	115,984							-		- 70	3.37	\$	3.37
2018																3.37	\$	3.21
2019 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2021 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2022 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2023 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2024 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2024 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2025 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2027 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2027 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.																3.37	\$	3.06
2020																3.37	\$	2.91
2021 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.180 \$ 0.2																3.37	\$	2.77
2022																3.37	\$	2.64
2023																3.37	\$	2.51
2024 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2027 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2027 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2028 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$																3.37	\$	2.39
2025 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2027 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2027 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2028 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2032 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 441 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,															-	3.37	\$	2.28
2026 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2028 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2028 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2032 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,3																3.37	\$	2.17
2027 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2028 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2029 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2042 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,37																3.37	\$	2.07
2028 73,000 65 3.02 115,984 \$ 8,119 \$ 2.96 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2031 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2032 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4																3.37	\$	1.97
2029 73,000 65 3,02 115,984 \$ 8,119 \$ 2,96 \$ 0,22 \$ 0,180 \$ 2031 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2031 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2033 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2033 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2034 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2035 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2036 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2036 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2036 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2036 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2039 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2039 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2039 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2039 95,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2039 15,402 85 3,94 151,577 \$ 10,610 \$ 3,87 \$ 0,22 \$ 0,180 \$ 2040 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2041 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2041 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2042 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2044 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2045 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2045 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2046 106,603 95 441 169,373 \$ 11,856 \$ 4,33 \$ 0,22 \$ 0,180 \$ 2050 117,804 105 4,87 187,170 \$ 13,102 \$ 4,78 \$ 0,22 \$ 0,180 \$ 2050 117,804 105 4,87 187,170 \$																3.37	\$	1.88
2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2032 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2030 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105																3.37	\$	1.79
2031 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 9																3.37	\$	1.70
2032 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050																4.28	\$	2.06
2033 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2040 106,603 9																4.28	\$	1.96
2034 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 205																4.28 4.28	5	1.87 1.78
2035 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.															- 7	4.28	\$	1.69
2036 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0									- 7							4.28	\$	1.61
2037 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2042 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22																4.28	S	
2038 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2042 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2042 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.																4.28	\$	1.54
2039 95,402 85 3.94 151,577 \$ 10,610 \$ 3.87 \$ 0.22 \$ 0.180 \$ 2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2042 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2042 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2043 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$																4.28	5	1.39
2040 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2042 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2043 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2043 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.7																4.28	S	1.33
2041 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2043 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.					100000000000000000000000000000000000000											4.20	\$	1.40
2042 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4															100	4.73	\$	1.33
2043 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$																4.73	\$	1.27
2044 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2046 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,10																4.73	\$	1.21
2045 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,																4.73	Š	1.15
2046 108,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,															0.74	4.73	\$	1.09
2047 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 1																4.73	Š	1.04
2048 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2060 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$																4.73	S	0.99
2049 106,603 95 4.41 169,373 \$ 11,856 \$ 4.33 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$																4.73	Š	0.95
2050																4.73	S	0.90
2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2060 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2061 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2061 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170																5.19	S	0.94
2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170																5.19	\$	0.90
2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170																5.19	S	0.85
2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 17,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 17,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$																5.19	\$	0.81
2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 187,170 \$ 13,102 \$ 4.78 187,170 \$ 1															- 7	5.19	\$	0.77
2056 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2060 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2061 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2063 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 10.20 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.20 \$ 0.20																5.19	Š	0.74
2057 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2050 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2061 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2061 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2063 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2063 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 187,170 \$ 13,102 \$ 4.78 187,170 \$ 13,102 \$ 4.78 187,170 \$ 13,102 \$ 4.78 187,170 \$ 13,102 \$ 4.78 187,170 \$ 13,102 \$ 4.78 187,170 \$ 13,102 \$ 4.78 187,170 \$ 13,102 \$ 4.78 187,1																5.19	\$	0.70
2058 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2051 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2052 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2053 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2054 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2055 117,804 10															0.5	5.19	Š	0.67
2059 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2060 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2061 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2063 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 107,107,107,107,107,107,107,107,107,107,																5.19	\$	0.64
2080 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2061 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2062 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2063 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 105 105 105 105 105 105 105 105 105																5.19	\$	0.61
2081 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2082 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2084 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2084 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2084 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2084 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2085 117,804 107,804 107,804 107,804 107,804 107,804 107,804 107,804 107,804 107,804 107,8																5.19	\$	0.58
2082 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2063 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 2065 117,804 105 105 105 105 105 105 105 105 105 105																0.5000000	\$	0.55
2063 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2064 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ Total NPV of O8 Capital Costs in million \$: RWTM \$ 152.5 2015																	\$	0.52
2084 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ 2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ Total NPV of OX Capital Costs in million \$: RWTM \$ 152.5 2015																5.19	\$	0.50
2065 117,804 105 4.87 187,170 \$ 13,102 \$ 4.78 \$ 0.22 \$ 0.180 \$ Total NPV of OX Capital Costs in million \$: RWTM \$ 152.5 2015																5.19	\$	0.47
Capital Costs in million \$: Yr built RWTM \$ 152.5																5.19	\$	0.45
RWTM \$ 152.5 2015														Total NPV	of	O&M Costs	\$	75.4
RWTM \$ 152.5 2015	Capital Costs in million \$: Yr built																	
Pumping Stations \$ 15.5 2015							atio	ns									\$	15.5
Total NPV of Cap						, unipling of	unit		9	10.0		2010	7	Total NPV of	C	anital Costs		168.0

Total NPV of Capital and O&M Costs in millions \$

243.4

East of SMarcos_Alt2A;RWTM B

O&M Cost Calculations WTP and Raw Water Storage Reservoir at WTP CTRWTP - Alternate 2A - WTP East of San Marcos

Initial year of analysis period Interest rate Evaluation period Unit cost of energy

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition = \$ 25,000 per acre

2015 5% 50 years \$ 0.07 per kwh

Treated Water Production by Treatment Type (from Demand Chart)

CRA ac-Rtyr 0 0 5600 11200 11200 11200			Year =	2015	2020	2030	2040	2050	2060	2065
Average yearly demands: City A lastin Section Section City Alastin Ci	Softened water demand:		Units							
City of Austin ex-thyr 0 0 19802 22403 33004 33004 33004 11200 1	Average yearly demands:									
Max day demands:	City of Austin									3360 1120
Max day demands										4480
Construction Cons			mgd	0	0	20	30	40	40	4
LGRA mgd 0 0 10 20 20 20 20			mad	0	0	25	35	50	50	5
Vear 2015 2020 2030 2040 2050 2060 20 20 20 20 20 20				0						2
Non-softened water demands Note: Note	Totals		mgd	0	0	35	55	70	70	7
Average yearly demands:			Year =	2015	2020	2030	2040	2050	2060	2065
SANS SARA ac-thyr 23050 23406 23433 31393 34411 37530 GBRA ac-thyr 0 0 0 0 000 8000 10000 12300 Totals mgd 94 204 214 218 223 227 Max day demands: SANS SARA GBRA mgd 24 27 33 36 40 44 GBRA GBRA Mgd 9 0 0 0 5 7 9 911 Totals mgd 109 265 276 281 287 283 Totals: softened and non-softened water demands Average yearly demand mgd 109 265 276 281 287 283 Total: softened and non-softened water demands Average yearly demand mgd 109 265 376 281 287 283 Water Reservoir Sizing for ultimate conditions: Assumed number of days of consecutive Max Day demands Design (Max. Day) treated water production req'd in mgd Average treated water production in mgd Difference (shortfall of raw water) Fequired storage reservoir for raw water Total storage required Total storage required Total storage required Total storage recommended Quantity Units Volume/each (ac-re-leaf) (\$\frac{1}{2}\$	Non-softened water demands;		Units							
SARA CBRA	Average yearly demands:									
Collection Col										20500
Totals										4112 1230
Max day demands			ac-it/yr							258428
SARRA mpd 24 27 33 36 40 44 44 77 15 15 15 15 16 16 15 16 16 16 16 16 16 16 16 16 16 16 16 16		-	mgd							230420
SARA migd 24 27 33 36 40 44 44 45 44 45 44 45	Max day demands:									
Colst: softened and non-softened water demands Average yearly demand Mac Ally Max day demand Max d	SAWS									23
Totals										4
Average yearly demand mgd mgd sate 28406 261835 277996 294215 299634 3 mgd mgd mgd sate 204 234 248 263 267 267 268										297
Average yearly demand a-e-Byr 93550 228406 281835 277996 294215 299634 3	Totals		niga	103	203	270	201	201	253	29
Max day demand mgd 109 265 311 336 357 363 363 364 364 364 364 364 365 365 363 365		demands			000.100					
Nater Reservoir Izing for ultimate conditions: Assumed number of days of consecutive Max Day demands Design (Max. Day) treated water production req'd in mgd Average treated water production in mgd Difference (shortfall of raw water) Required storage reservoir for raw water Add safety factor Total storage recommended Difference (shortfall of raw water) Add safety factor Total storage recommended Difference (shortfall of raw water) Add safety factor Total storage required Total storage recommended Difference (shortfall of raw water) Add safety factor Difference (shortfall of raw water) Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 33 days Doll (to vample, for repair of RWTM A) = 31 days Doll (to vample, for repair of RWTM A) = 31 days Do	Average yearly demand									30323
Design (Max. Day) treated water production req'd in mgd Average treated water production in mgd Difference (shortfall of raw water) Required storage reservoir for raw water Add safety factor Total storage recommended Quantity Units Ceservoirs Lestimated average depth of reservoir Surface area of reservoir Total land area reqd for reservoir Total land area reqd for reservoir Total and area reqd for reservoir Total to freservoir Total land area reqd for reservoir Total land area reqd for reservoir Total to freservoir Total land area reqd for reservoir South million/year Total capital cost in millions = \$ 34.5	Max day demand		mgd	109	265	311	336	357	363	36
Design (Max. Dey) treated water production req'd in mgd	Sizing for ultimate conditions:									
Average treated water production in mgd 271 mgd 27	150040503 30 03644171 039 04305 W 0.00 04 P 1507 5042 00 2 20 54									
Difference (shortfall of raw water) Difference (shortfall of raw water) Required storage reservoir for raw water Add safety factor Total storage recommended Total storage recommended Dunts Quantity Units Volume/each (sac-feet) (sac-feet) Cost Total capital cost in millions Envir & Archaeology, Surv, Total land area reqd for reservoir Total land area reqd for reservoir Total land area reqd for reservoir Estimated deplacement cost Estimated replacement cost Estimated replacement cost Estimated replacement cost Estimated replacement cost Total land area reqd for servoir Total Assumed life of reservoir Total Possible repair of RWTM A) = 33 days Total capital cost in millions = \$34.5 Mowing, maintaining fences, etc.			n mga			(which is also	equal to sum of	ground and raw	water that	
Required storage reservoir for raw water						can be pumped	to the WTP)			
Add safety factor Total storage required Total storage recommended Continue Continu										
Add safety factor Total storage required Total storage required Total storage required Total storage recommended Country	Required storage reservoir for raw w	ater								
Total storage required Total storage recommended Continue Con	Add safety factor	25%								
Reservoirs Quantity Units Volume/each (acre-feet) (Value (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (Value (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (Value (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (Value (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (Value (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (Value (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (acre-feet) (Value (acre-feet) (acre-					ac-ft					
Cost									33 d	lays
Reservoirs 1 each 12,000 \$ 1,283 \$ 15.4 \$ 5.9 \$ 21.3		Quantity	Linite	Volume/each	Unit Cost		Contigency,	Total Capital		
Estimated average depth of reservoir Surface area of reservoir Ratio of total land area reqd to surface area of reservoirs Total land area reqd for reservoirs 1.10 Servir & Archaeology, Surv, and Land Acq = 13.2 Total capital cost in millions = 34.5 Assumed life of reservoir Estimated replacement cost	Deconvoire			112		Cost				
Surface area of reservoir 480 acres		•			\$ 1,203	\$ 15.4	\$ 5.9	\$ 21.3		
1.10 Envir & Archaeology, Surv. 3.2 acres Total capital cost in millions = 34.5	Surface area of reservoir									
Total land area regd for reservoirs 528 acres Total capital cost in millions = 34.5 Assumed life of reservoir 100 years Estimated replacement cost Estimated maintenance Total Year built 2015 NPV of Q&M costs NPV of Capital costs 528 acres and Land Acq = 13.2 34.5 Mowing, maintaining fences, etc. Mowing, maintaining fences, etc.			1.10			Envir & Arch	naeology, Surv.			
Estimated replacement cost	Total land area reqd for reservoirs			acres		a	ind Land Acq =			
Estimated maintenance Total S 0.04 million/year S 0.19 million/year Year built 2015 NPV of Q&M costs NPV of Capital costs S 3.5 million NPV of Capital costs S 34.5 million	Assumed life of reservoir		100	years						
Year built 2015 NPV of O&M costs \$ 3.5 million NPV of Capital costs \$ 34.5 million	Estimated maintenance		\$ 0.04	million/year	Mowing, main	taining fences, e	tc.			
NPV of O&M costs \$ 3.5 million NPV of Capital costs \$ 34.5 million										
NPV of Capital costs <u>\$ 34.5</u> million										
Total NPV of Capital and O&M Costs \$ 38.0 million										

WTP

Plant Phasing and Capital Costs:

Softening Treatment Trains Year =		2015		20	020		2030		2040		205			2060		2065
Average treated water production in mgd	-	2015	-	20	0	-	2030	-	2040	_	200	40		2000	40	 40
Design (Max. Day) treated water production reg'd in mgd		0			0		35		55			70				
Initial/additional Max day capacity built (mgd)			,		U							70			70	70
Total capacity on line (must exceed Design Max Day Reg'd)					0		50 50		20 70			70			70	70
Total capacity on line (most exceed Design Max Day Red b)		·	,		U		50		70			70			70	/(
Unit cost for max day treatment capacity (\$/gpd of capacity)						\$	1.78	\$	2.14							
Estimated construction cost of expansion in \$millions	\$	-	\$	\$	*	\$	89.0	\$	42.8	\$		÷	\$		÷	\$
Non-softening Treatment Trains									The second of					100,000	200	20 N - 5 F
Year =	_	2015	_	20	020		2030		2040		205		-	2060		 2065
Average treated water production in mgd		84			204		214		218			223			227	231
Design (Max. Day) treated water production req'd in mgd		109			265		276		281			287			293	297
Additional Max day capacity built (mgd)		200			100				222							
Total capacity on line (must exceed Design Max Day Req'd)		200	,		300		300		300			300			300	300
Unit cost for max day treatment capacity (\$/gpd of capacity)	\$	1.15	\$	5	1.32											
Estimated construction cost of expansion in \$millions	\$	229.6	\$	•	131.5	\$	12	\$		\$			\$		-	\$ -
Totals (Softening + Non-softening Trains)																
Year =		2015		20	020		2030		2040		205	0		2060)	2065
Total construction cost for both trains	\$	229.6	\$	5	131.5	\$	89.0	\$	42.8	\$		-	\$			\$ -
Contingencies		45.9			26.3		17.8		8.6							- E
Subtotal	\$	275.5	\$	5	157.8	\$	106.8	\$	51.3	\$		-	\$			\$ -
Engineering, Legal, & Administrative		41.3			23.7		16.0		7.7							-
Subtotal		316.8			181.5		122.8		59.0							-
Environmental & Archaelogy Studies and Mitigation & Land																
Acquisition and Surveying (see Note below)		2.5														
Total estimated capital cost	\$	319.3	\$		181.5	\$	122.8	\$	59.0	\$		-	\$		-	\$ -
NPV of capital cost		\$ 319.3		\$	142.2		\$ 59.1		\$ 17.4		\$	-		\$	÷	\$ -
Total NPV of WTP initial construction & expansions	\$	538														
Note: Assumed land requirement for WTP (not including reserve		100	ac	cres												

0&M	Costs for	Softening Tra							O&M Cost	ts for	Non-Softening	Trains:					
	Year	Plant Capacity in service	treated water	Esti	imated C unit co	curve	N	et present value	Year		Plant Capacity in service	Estimated treated water production	E	stimated O unit co			t present value
_		mgd of capacity	mgd produced		per mg reated	\$million /year		(\$)			mgd of capacity	mgd produced		per mg treated	\$mil	lion /year	(\$)
-	2015	-	-		-	\$ •	\$	-	2015		200	84	\$	374	\$	11.41	\$ 11.41
	2016	-	-			\$ -	\$	-	2016		200	84	\$	374	\$	11.41	\$ 10.87
	2017	-	-			\$ -	\$	-	2017		200	84	\$	374	\$	11.41	\$ 10.35
	2018	-	-			\$ -	\$	-	2018		200	84	\$	374	\$	11.41	\$ 9.86
	2019	-	-			\$ -	\$	-	2019		200	84	\$	374	\$	11.41	\$ 9.39
	2020	-	-			\$ -	\$	-	2020		300	204	\$	343	\$	25.50	\$ 19.98
	2021	-	-			\$ -	\$	-	2021		300	204	\$	343	\$	25.50	\$ 19.03
	2022	-	-			\$ -	\$		2022		300	204	\$	343	\$	25.50	\$ 18.12
	2023	-	-			\$ -	\$	-	2023		300	204	\$	343	\$	25.50	\$ 17.26
	2024	-	-			\$ -	\$	-	2024		300	204	\$	343	\$	25.50	\$ 16.44
	2025	-	-			\$ -	\$	-	2025		300	204	\$	343	\$	25.50	\$ 15.65
	2026	-	-			\$ -	\$	-	2026		300	204	\$	343	\$	25.50	\$ 14.91
	2027	-	-			\$ -	\$	-	2027		300	204	\$	343	\$	25.50	\$ 14.20
	2028	-	-			\$ -	\$	-	2028		300	204	\$	343	\$	25.50	\$ 13.52
	2029	-	-			\$ -	\$	-	2029		300	204	\$	343	\$	25.50	\$ 12.88
	2030	50	20	\$	712	\$ 5.20	\$	2.50	2030		300	214	\$	343	\$	26.73	\$ 12.86
	2031	50	20	\$	712	\$ 5.20	\$	2.38	2031		300	214	\$	343	\$	26.73	\$ 12.24
	2032	50	20	\$	712	\$ 5.20	\$	2.27	2032		300	214	\$	343	\$	26.73	\$ 11.66
	2033	50	20	\$	712	\$ 5.20	\$	2.16	2033		300	214	\$	343	\$	26.73	\$ 11.11
	2034	50	20	\$	712	\$ 5.20	\$	2.06	2034		300	214	\$	343	\$	26.73	\$ 10.58
	2035	50	20	\$	712	\$ 5.20	\$	1.96	2035		300	214	\$	343	\$	26.73	\$ 10.07
	2036	50	20	\$	712	\$ 5.20	\$	1.87	2036		300	214	\$	343	\$	26.73	\$ 9.59
	2037	50	20	\$	712	\$ 5.20	\$	1.78	2037	1	300	214	\$	343	\$	26.73	\$ 9.14
	2038	50	20	\$	712	\$ 5.20	\$	1.69	2038		300	214	\$	343	\$	26.73	\$ 8.70
	2039	50	20	\$	712	\$ 5.20	\$	1.61	2039	1	300	214	\$	343	\$	26.73	\$ 8.29
	2040	70	30	\$	661	\$ 7.24	\$	2.14	2040	1	300	218	\$	343	\$	27.28	\$ 8.06
	2041	70	30	\$	661	\$ 7.24	\$	2.04	2041		300	218	\$	343	\$	27.28	\$ 7.67
	2042	70	30	\$	661	\$ 7.24	\$	1.94	2042		300	218	\$	343	\$	27.28	\$ 7.31
	2043	70	30	\$	661	\$ 7.24	\$	1.85	2043)	300	218	\$	343	\$	27.28	\$ 6.96
	2044	70	30	\$	661	\$ 7.24	\$	1.76	2044	į	300	218	\$	343	\$	27.28	\$ 6.63
	2045	70	30	\$	661	\$ 7.24	\$	1.68	2045		300	218	\$	343	\$	27.28	\$ 6.31
	2046	70	30	\$	661	\$ 7.24	\$	1.60	2046		300	218	\$	343	\$	27.28	\$ 6.01
	2047	70	30	\$	661	\$ 7.24	\$	1.52	2047		300	218	\$	343	\$	27.28	\$ 5.73
	2048	70	30	\$	661	\$ 7.24	\$	1.45	2048		300	218	\$	343	\$	27.28	\$ 5.45
	2049	70	30	\$	661	\$ 7.24	\$	1.38	2049		300	218	\$	343	\$	27.28	\$ 5.19
	2050	70	40	\$	661	\$ 9.65	\$	1.75	2050		300	223	\$	343	\$	27.84	\$ 5.05
	2051	70	40	\$	661	\$ 9.65	\$	1.67	2051		300	223	\$	343	\$	27.84	\$ 4.81
	2052	70	40	\$	661	\$ 9.65	\$	1.59	2052		300	223	\$	343	\$	27.84	\$ 4.58
	2053	70	40	\$	661	\$ 9.65	\$	1.51	2053		300	223	\$	343	\$	27.84	\$ 4.36
	2054	70	40	\$	661	\$ 9.65	\$	1.44	2054		300	223	\$	343	\$	27.84	\$ 4.15
	2055	70	40	\$	661	\$ 9.65	\$	1.37	2055		300	223	\$	343	\$	27.84	\$ 3.95
	2056	70	40	\$	661	\$ 9.65	\$	1.31	2056		300	223	\$	343	\$	27.84	\$ 3.77
	2057	70	40	\$	661	\$ 9.65	\$	1.24	2057		300	223	\$	343	\$	27.84	\$ 3.59
	2058	70	40	\$	661	\$ 9.65	\$	1.18	2058		300	223	\$	343	\$	27.84	\$ 3.42
	2059	70	40	\$	661	\$ 9.65	\$	1.13	2059		300	223	\$	343	\$	27.84	\$ 3.25
	2060	70	40	\$	661	\$ 9.65	\$	1.07	2060		300	227	\$	343	\$	28.45	\$ 3.17
	2061	70	40	\$	661	\$ 9.65	\$	1.02	2061		300	227	\$	343	\$	28.45	\$ 3.02
	2062	70	40	\$	661	\$ 9.65	\$	0.97	2062		300	227	\$	343	\$	28.45	\$ 2.87
	2063	70	40	\$	661	\$ 9.65	\$	0.93	2063	,	300	227	\$	343	\$	28.45	\$ 2.74
	2064	70	40	\$	661	\$ 9.65	\$	0.88	2064		300	227	\$	343	\$	28.45	\$ 2.60
	2065	70	40	\$	661	\$ 9.65	\$	0.84	2065	,	300	231	\$	343	\$	28.85	\$ 2.52

Total NPV of O&M Costs \$

NPV Totals for O&M:
Softening trains
Non-softening Trains
\$

Total NPV of O&M Costs \$ 441

Raw Water Reservoir Water Treatment Plant Totals

 PV of al Costs	NF	V of O&M Costs	Total NPV of Capital and O&M Costs					
\$ 34	\$	3.5	\$	38				
\$ 538	\$	499	\$	1,037				
\$ 572	\$	502	\$	1.075				

CTRWTP - Alternate 2A - WTP East of San Marcos Potable Water Transmission Mains

CTRWTP - Alternate 2 - WTP Midway Between Austin & San Antonio

 Initial year of analysis period
 2015

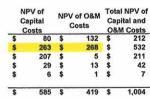
 Interest rate
 5%

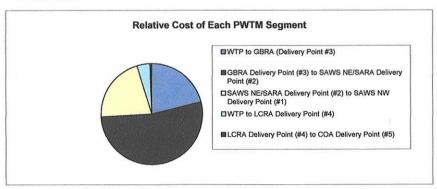
 Evaluation period
 50
 years

 Unit cost of energy
 \$ 0.07
 per kwh

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

Summary of Demands


Average demands to be delivered in each segment


			in acre-feet/ye	ar			
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	43800	123000	123000	123000	123000	123000	123000
SAWS NE	29200	82000	82000	82000	82000	82000	82000
Subtotal	73000	205000	205000	205000	205000	205000	205000
SARA	20550	23406	28433	31393	34411	37530	41128
GBRA			6000	8000	10000	12300	12300
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Total	93550	228406	261835	277996	294215	299634	303232

Summary

WTP to GBRA (Delivery Point #3)
GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2)
SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1)
WTP to LCRA Delivery Point (#4)
LCRA Delivery Point (#4) to COA Delivery Point (#5)

Total for PWTMs

WTP to GBRA (Delivery Point #3) (Bold line in schematic below)

Demands for this pipe segment

		Average dem	ands to be del	ivered in each	segment in mgd	i .		
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
GBRA	0	0	5	7	9	11	11	2.0
SAWS NE	26	73	73	73	73	73	73	1.3
SARA	18	21	25	28	31	34	37	1.3
SAWS NW	39	110	110	110	110	110	110	1.3
Total	84	204	214	218	223	227	231	

Max day demands to be delivered in each segment in mgd												
Year	2015	2020	2030	2040	2050	2060	2065					
GBRA	0	0	11	14	18	22	22					
SAWS NE	34	95	95	95	95	95	95					
SARA	24	27	33	36	40	44	48					
SAWS NW	51	143	143	143	143	143	143					
Total	109	265	282	289	296	303	308					

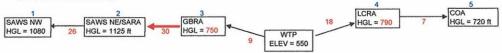
PWTM and Pump Station Costs

	PWTM and Pump Station Costs								
	Design flow rate - year 2065			308 213,603	mgd gpm				
	Pumping capacity of one pump			22,000	gpm				
	No. of pumps (not counting spare)			10					
	Peak flow rate (all pumps except spare)			220,000	gpm				
	Inside diameter of PWTM			120					
	Area			78.54					
	Length of PWTM			47,520	miles feet	(linked	to mile	age in schematic above)	
	Estimated unit cost by condition: % of leng			Unit cost	Cost				
	Rural - soil 100%	47,520		783		million			
	Rural - rock 0% Urban - rock 0%		\$	1,048	\$ -				
Urban - rock		-	_ \$	1,186	\$ -				
		47,520			\$ 37.2	million			
	Average estimated unit construction cost for PWT	И	\$	783	per LF				
	Total construction cost in millions		\$	37.2					
	Contingencies		\$	7.4					
	Subtotal		\$	44.6					
	Engineering, Legal & Administrative		\$	6.7					
	Subtotal		\$	51.3	·:				
Envir & Arch Studies & Mitigation, Surveying, & Land Acq			\$	0.9					
	Total Capital Cost for PWTM in millions		\$	52.2					
	Unit maintenance cost/year-mile		\$	10,000	\$/year-mile	\$	0.090	Million \$/year	
	Velocity at peak flow rate			6.24	fps				
	C factor			120					
	Head loss per foot			0.00087	ft/ft		h _f =	3.552*QI1.85	
				4.59	ft/mile			C*(d) ^{2.63}	
	Head loss at peak flow rate			41	ft				
		0%		8	ft		750	Desired HGL At Delivery Poin	t
	Total estimated losses			50	ft		550	Elev. At WTP	
	Average static head			200	ft		200	ft	
	Total estimated dynamic head			250	ft				
	отности постояния повет повет повет постоя постоя постоя постоя повет по			108	psi				
	No of recommended pumping stations along route			0.72			150	psi (assumed max pressure	
No. of pumping stations used in cost estimate				1				in pipe)	
Average head per pump station				250	ft				
	Assumed pump efficiency			85%					
	Assumed motor efficiency			90%					
	Estimated Hp required per pump			1.812	hp/pump				
					kw/pump				
Total hp per pump station (not counting spare)					firm hp/station	1			
Total kw per pump set (set=pumps in series along route)					kw/pump set		ump at	each station)	
	Unit capital cost for each pump station (from cost of	curve)	s	1,111	per firm hp of	pump s	ation		
Construction cost per pump station			ैं		million				
	Total construction cost for pump stations			20.1	for		1	pump stations	
	Contingencies		\$	4.0	101				
Subtotal			\$	24.2	•1)				

Engineering, Legal & Administrative Total capital cost for pump stations

\$ 3.6 \$ 27.8 million

40% Estimated equipment cost as % of total


Value of equipment Assumed life of equipment Estimated maintenance/replacement cost \$ 8 million 20 years \$ 0.40 million/year

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	y co:	st	cos	ther O&M sts - Pump Stations		aintenance costs - PWTM	То	tal O&M cost	Ne	t present value
	mgd		(kwh/day)		(\$/day)		/illion \$ /year)	(Million \$ /year)	((Million \$ /year)		Million \$ /year)		(\$)
2015	84	2.64	114,661	\$	8,026	\$	2.93	\$	0.40	\$	0.090	\$	3.42	\$	3.42
2016	84	2.64	114,661	\$	8,026	\$	2.93	\$	0.40	\$	0.090	\$	3.42	\$	3.26
2017	84	2.64	114,661	\$	8,026	\$	2.93	\$	0.40	\$	0.090	\$	3.42	\$	3.10
2018	84	2.64	114,661	\$	8,026	\$	2.93	\$	0.40	\$	0.090	\$	3.42	\$	2.96
2019	84	2.64	114,661	\$	8,026	\$	2.93	\$	0.40	\$	0.090	\$	3.42	\$	2.82
2020	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	5.99
2021	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	5.71
2022	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	5.43
2023	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	5.17
2024	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	4.93
2025	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	4.69
2026	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	4.47
2027	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	4.26
2028	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	4.05
2029	204	6.44	279,949	\$	19,596	\$	7.15	\$	0.40	\$	0.090	\$	7.65	\$	3.86
2030	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	3.84
2031	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	3.66
2032	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	3.49
2033	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	3.32
2034	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	3.16
2035	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	3.01
2036	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	2.87
2037	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	2.73
2038	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	2.60
2039	214	6.75	293,465	\$	20,543	\$	7.50	\$	0.40	\$	0.090	\$	7.99	\$	2.48
2040	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	2.41
2041	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	2.29
2042	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	2.18
2043	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	2.08
2044	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	1.98
2045	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	1.88
2046	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	1.80
2047	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	1.71
2048	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	1.63
2049	218	6.89	299,544	\$	20,968	\$	7.65	\$	0.40	\$	0.090	\$	8.15	\$	1.55
2050	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.51
2051	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.43
2052	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.37
2053	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.30
2054	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.24
2055	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.18
2056	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.12
2057	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.07
2058	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	1.02
2059	223	7.03	305,694	\$	21,399	\$	7.81	\$	0.40	\$	0.090	\$	8.30	\$	0.97
2060	227	7.18	312,336	\$	21,864	\$	7.98	\$	0.40	\$	0.090	\$	8.47	\$	0.94
2061	227	7.18	312,336	\$	21,864	\$	7.98	\$	0.40	\$	0.090	\$	8.47	\$	0.90
2062	227	7.18	312,336	\$	21,864	\$	7.98	\$	0.40	\$	0.090	\$	8.47	\$	0.86
2063	227	7.18	312,336	\$	21,864	\$	7.98	\$	0.40	\$	0.090	\$	8.47	\$	0.81
2064 2065	227 231	7.18 7.28	312,336 316,746	\$	21,864 22,172	\$	7.98 8.09	\$	0.40	\$	0.090	\$	8.47 8.59	\$	0.78
2000	231	7.20	310,740	4	22,172	4	0.09	4	0.40	Ψ				unio.	35000
											Total NPV	of O	&M Costs	\$	132
		Capital Costs							Yr built						
			PWTM		_	\$	52		2015					\$	52
			Pumping Stat	non!	5	S	28		2015					\$	28

212

GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2) (Bold line in schematic below)

Demands for this pipe segment

n			

		Average dem	ands to be deli	ivered in each s	segment in mgd			
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
SAWS NE	26	73	73	73	73	73	73	1.3
SARA	18	21	25	28	31	34	37	1.3
SAWS NW	39	110	110	110	110	110	110	1.3
Total -	84	204	208	211	214	217	220	

Max day o	demands to be	delivered in each	segment in mgd
2020	2030	2040	2050

Year	2015	2020	2030	2040	2050	2060	2065
SAWS NE	34	95	95	95	95	95	95
SARA	24	27	33	36	40	44	48
SAWS NW	51	143	143	143	143	143	143
Total	109	265	271	274	278	281	286

PWTM and Pump Station Costs

Design flow rate - year 2065			286	mg	d	
Separation Control (Separation Control (Separa			198,353	gpr	n	
Pumping capacity of one pump			20,000	gpr	n	
No. of pumps (not counting spare)			10	70.00		
Peak flow rate (all pumps except spare)		200,000	gpr	n	
Inside diameter of PWTM			120	in.		
Area			78.54	sf		
Length of PWTM			30	mile	es	(linked to mileage in schematic above)
			158,400	fee	t	•
Estimated unit cost by condition:	% of length	LF	Unit cost		Cost	795
Rural - soil	50%	79,200	\$ 783	\$		million
Rural - rock	25%	39,600	\$ 1,048	\$	41.5	
Urban - rock	25%	39,600	\$ 1,186	\$	46.9	
		158,400	 100000	\$	150.5	million

Average estimated unit cons	struction cost for PWTM
-----------------------------	-------------------------

Average estimated unit construction cost for PWTM	\$ 950	per LF
Total construction cost in millions	\$ 150.5	
Contingencies	\$ 30.1	
Subtotal	\$ 180.6	-

Engineering, Legal & Administrative	\$ 27
Subtotal	\$ 207
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 3
Total Capital Cost for PWTM in millions	\$ 210

Unit maintenance cost/year-mile \$ 10,000 \$/year-mile \$ 0.300 Million

Velocity at peak flow rate C factor		5.67 120	fps	
Head loss per foot		0.00073	ft/ft	h _f = 3.552*Q ^{1.85}
5/20 A A A CONTRACTOR OF THE SECTION ASSESSMENT		3.85	ft/mile	C*(d)2.63
Head loss at peak flow rate		115	ft	
Allowance for minor losses	20%	23	ft	1125 Desired HGL At Delivery Point
Total estimated losses		139	ft	750 HGL At Delivery Point 3
Average static head		375	ft	375 ft
Total estimated dynamic head		514	ft	
		223	psi	
No of recommended pumping stations	along route	1.48		150 psi (assumed max pressure
No. of pumping stations used in cost es	stimate	2		in pipe)
Average head per pump station		257	ft	

No of recommended pumping stations along route No. of pumping stations used in cost estimate Average head per pump station	1.48 2 257 ft	150 psi (assumed max pressure in pipe)
Assumed pump efficiency	85%	

Assumed pump emoisticy	0070
Assumed motor efficiency	90%
Estimated Hp required per pump	1,695 hp/pump
	1,265 kw/pump
Total hp per pump station (not counting spare)	16,951 firm hp/station
Total kw per pump set (set=pumps in series along route)	3.390 kw/pump set (one pump at each station)

	-1	
Unit construction cost for each pump station (from cost curve)	\$	per firm hp of pump station
Construction cost per pump station	19.1	million

Total construction cost for pump stations	38.2	for	2	pump statio
Contingencies	\$ 7.6	-		
Subtotal	\$ 45.9			

	Value of equips Assumed life of Estimated main	f equipment	cement cost			\$	20	yea	million years million/year				ip door do		constr co
&M Cos	ts														
Year	Flow pumped by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	у соз	t	co	ther O&M sts - Pump Stations		intenance costs - PWTM	То	otal O&M cost		t present value
	mgd		(kwh/day)		(\$/day)		lillion \$ 'year)	((Million \$ /year)	(Million \$ /year)	(1	Million \$ /year)		(\$)
2015	84	2.90	235,928	\$	16,515	\$	6.03	\$	0.76	\$	0.300	\$	7.09	\$	7.09
2016	84	2.90	235,928	\$	16,515	\$	6.03	\$	0.76	\$	0.300	\$	7.09	\$	6.75
2017	84	2.90	235,928	\$	16,515	\$	6.03	\$	0.76	\$	0.300	\$	7.09	\$	6.43
2018	84	2.90	235,928	\$	16,515	\$	6.03	\$	0.76	\$	0.300	\$	7.09	\$	6.13
2019	84	2.90	235,928	\$	16,515	\$	6.03	\$	0.76	\$	0.300	\$	7.09	\$	5.83
2020	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	12.37
2021	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	11.78
2022	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	11.22
2023	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	10.68
2024	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	10.17
2025	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	9.69
2026	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	9.23
2027	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	8.79
2028	204	7.08	576,028	\$	40,322	\$	14.72 14.72	\$	0.76 0.76	\$	0.300	\$	15.78 15.78	\$	7.97
2029	204	7.08 7.24	576,028 588,706	\$	40,322 41,209	S	15.04	\$	0.76	\$	0.300	\$	16.11	\$	7.75
2030	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	7.78
2032	208	7.24	588,706	S	41,209	S	15.04	Š	0.76	\$	0.300	\$	16.11	\$	7.03
2032	208	7.24	588,706	\$	41,209	S	15.04	\$	0.76	Š	0.300	\$	16.11	\$	6.69
2034	208	7.24	588,706	Š	41,209	Š	15.04	Š	0.76	Š	0.300	Š	16.11	s	6.37
2035	208	7.24	588,706	Š	41,209	Š	15.04	Š	0.76	\$	0.300	\$	16.11	Š	6.07
2036	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	Š	0.300	\$	16.11	s	5.78
2037	208	7.24	588,706	\$	41,209	\$	15.04	Š	0.76	\$	0.300	\$	16.11	s	5.51
2038	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	5.24
2039	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	4.99
2040	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	4.81
2041	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	4.58
2042	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	4.36
2043	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	4.16
2044	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.96
2045	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.77
2046	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.59
2047	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.42
2048	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.26
2049	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.10
2050	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.99
2051	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.85
2052	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49 16.49	\$	2.7
2053 2054	214 214	7.42 7.42	603,782 603,782	\$	42,265 42,265	\$	15.43 15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.46
2055	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.3
2056	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	Š	2.2
2057	214	7.42	603,782	\$	42,265	s	15.43	\$	0.76	\$	0.300	\$	16.49	Š	2.1
2058	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	Š	0.300	\$	16.49	\$	2.0
2059	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	1.93
2060	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.80
2061	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.77
2062	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.69
2063	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.6
2064	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.53
2065	220	7.63	620,722	\$	43,451	\$	15.86	\$	0.76	\$	0.300	\$	16.92	\$	1.4
											Total NPV	of O	&M Costs	\$	268.
		Capital Costs					010 -		Yr built					•	040
			PWTM			\$	210.6		2015					\$	210.
			Pumping Stat	tions		\$	52.7		2015					\$	52.

Total NPV of Capital and O&M Costs in millions \$
GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2) 532

SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1) (Bold line in schematic below)

Demands for this pipe segment

	m		

Average demands to be delivered in each segment in mgd											
Year	2015	2020	2030	2040	2050	2060	2065				
SAWS NW	39	110	110	110	110	110	110				
Total -	39	110	110	110	110	110	110				

Max d/Avg d

		Max day dem	ands to be deli	vered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	51	143	143	143	143	143	143
Total	51	143	143	143	143	143	143

PWTM and Pump Station Costs

Design flow rate - year 2065 143 mgd 99,125 gpm

Pumping capacity of one pump 17,000 gpm No. of pumps (not counting spare) 6 Peak flow rate (all pumps except spare) 102,000 gpm

 Inside diameter of PWTM
 120 in.

 Area
 78.54 sf

 Length of RWTM
 26 miles

 137,280 feet
 137,280 feet

(linked to mileage in schematic above)

Estimated unit cost by condition:	% of length	LF	U	nit cost	Cost	
Rural - soil	15%	20,592	\$	783	\$ 16.1	million
Rural - rock	35%	48,048	\$	1,048	\$ 50.4	
Urban - rock	50%	68,640	\$	1,186	\$ 81.4	
	-	137,280			\$ 147.9	million

 Engineering, Legal & Administrative
 \$ 26.6

 Subtotal
 \$ 204.1

 Envir & Arch Studies & Mitigation, Surveying, & Land Acq
 \$ 2.6

 Total Capital Cost for PWTM in millions
 \$ 206.7

Unit maintenance cost/year-mile \$ 10,000 \$/year-mile \$ 0.260 Million \$/year

Velocity at peak flow rate 2.89 fps

Head loss per foot 120 120 120 120 Head loss per foot 120 120 120 120 120 Head loss per foot 120 120 120 120 120 120 Head loss per foot 120

Negative indicates gravity flow from #2 to #1; no pumping necessary.

Total NPV of Capital and O&M Costs in millions \$ 211.4 SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1)

WTP to LCRA Delivery Point (#4) (Bold line in schematic below)

Demands for this pipe segment

		na		

		Average dem	ands to be deli	ivered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
LCRA	0	0	5	10	10	10	10
COA	0	0	15	20	30	30	30
Total	0	0	20	30	40	40	40

2.0 1.68

		Max day dem	ands to be del	ivered in each	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
LCRA	0	0	10	20	20	20	20
COA	0	0	25	34	50	50	50
Total	0	0	35	54	70	70	70

PWTM and Pump Station Costs						
Design flow rate - year 2065			70	mgc	1	
			48,883	gpm	1	
Pumping capacity of one pump			10,000	gpm	1	
No. of pumps (not counting spare)			5			
Peak flow rate (all pumps except spare)			50,000	gpm	1	
Inside diameter of PWTM			72	in.		
Area			28.27	sf		
Length of RWTM			18	mile	s	(linked to mileage in schematic above)
			95,040	feet		
Estimated unit cost by condition:	% of length	LF	Unit cost		Cost	
Rural - soil	100%	95,040	\$ 365	\$	34.7	million
Rural - rock	0%	-	\$ 498	\$	-	
Urban - rock	0%		\$ 552	\$		
		95,040		\$	34.7	million
Average estimated unit construction cos	t for PWTM		\$ 365	per	LF	
Total construction cost in millions			\$ 34.7			
Contingencies			\$ 6.9			
Subtotal			\$ 41.7			
Engineering, Legal & Administrative			6.3			
Subtotal			\$ 47.9	-		
Envir & Arch Studies & Mitigation, Surve	ying, & Land Acq		1.8			
Total Capital Cost for PWTM			\$ 49.7			

Contingencies	\$ 6.9		
Subtotal	\$ 41.7	-	
Engineering, Legal & Administrative	\$ 6.3		
Subtotal	\$ 47.9		
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 1.8		
Total Capital Cost for PWTM in millions	\$ 49.7	-	
Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile	\$ 0

Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile	\$ 0.180 Million \$/year
Velocity at peak flow rate	3.94	fps	
C factor	120		
Head loss per foot	0.0006	ft/ft	hr= 3.552*Q 1.85
	3.55	ft/mile	C*(d) ^{2.63}

		0.00	TUTTING		1C-(a) 1
Head loss at peak flow rate		64	ft		
Allowance for minor losses	20%	13	ft	790	Desired HGL At Delivery Point
Total estimated losses		77	ft	550	Elev. At WTP
Average static head		240	ft	240	ft
Total estimated dynamic head		317	ft		
•		137	psi		

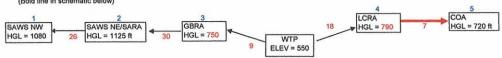
No of recommended pumping stations along route	0.92	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	1	in pipe)
Average head per pump station	317 ft	
Assumed numn efficiency	85%	

Assumed pump efficiency	85%
Assumed motor efficiency	90%
Estimated Hp required per pump	1,046 hp/pump
	780 kw/pump
Total hp per pump station (not counting spare)	5,228 firm hp/station
Total kw per pump set (set=pumps in series along route)	1,046 kw/pump set (one pump at each station)

Total kw per pump set (set≔pumps in series along route)	1,046 kw/pump set	(one pump at each station)
Helt construction and for each owns station (form and owns)	4 444	favora station

for 1 pump station:
ioi i punip stations
19.01992569995599
million
m

40% Equip cost as % of constr cost


Value of equipment Assumed life of equipment Estimated maintenance/replacement cost \$ 3.0 million 20 years \$ 0.15 million/year

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energy cost costs - Pump cos		aintenance costs - PWTM	Total O&M cost		Ne	et preser value				
	mgd		(kwh/day)		(\$/day)		(Million \$		(Million \$ /year)	(Million \$	(Million \$		(\$)
2015	Company of the Parket	was the story of		NAME OF TAXABLE PARTY.			with the same					\$		\$	-
2016												\$	-	\$	2
2017												\$		\$	
2018												\$		\$	~
2019												\$	-	\$	~
2020												\$	17	\$	
2021												\$	-	\$	-
2022												\$	•	\$	_
2023												\$		\$	-2
2024												\$		\$	*
2025												\$	*	\$	_
2026												\$	*	\$	7
2027												\$	-	\$	
2028												\$		\$	-
2029		72.27		21						10000		\$		\$	
2030	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.5
2031	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.5
2032	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.5
2033	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.5
2034	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.4
2035	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.4
2036	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.4
2037	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.4
2038	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.4
2039	20	1.39	34,852	\$	2,440	\$	0.89	\$	0.15	\$	0.180	\$	1.22	\$	0.3
2040	30	2.08	52,278	\$	3,659	\$	1.34	\$	0.15	\$	0.180	\$	1.66	\$	0.4
2041	30	2.08	52,278	\$	3,659	\$	1.34	\$	0.15	\$	0.180	\$	1.66	\$	0.4
2042	30	2.08	52,278	\$	3,659	\$	1.34	\$	0.15	\$	0.180	\$	1.66	\$	0.4
2043	30	2.08	52,278	\$	3,659	\$	1.34	\$	0.15	\$	0.180	\$	1.66	\$	0.4
2044	30	2.08	52,278	\$	3,659	\$	1.34	\$	0.15	\$	0.180	\$	1.66	\$	0.4
2045	30	2.08	52,278	\$	3,659	\$	1.34	\$	0.15	\$	0.180	\$	1.66	\$	0.3
2046	30	2.08	52,278	\$	3,659	\$	1.34	\$	0.15	\$	0.180	\$	1.66	\$	0.3
2047	30 30	2.08	52,278	\$	3,659	\$	1.34	\$	0.15 0.15	\$	0.180	\$	1.66 1.66	\$	0.3
2048	30	2.08	52,278 52,278	\$	3,659	\$	1.34 1.34	\$	0.15	\$	0.180	5	1.66	\$	0.3
2049	40	2.78	69,704	\$	3,659 4,879	S	1.78	\$	0.15	S	0.180	\$	2.11	S	0.3
	40		69,704	\$	4,879	\$	1.78	\$	0.15	\$	0.180	\$	2.11	\$	0.3
2051	40	2.78		200			1.78	\$	0.15	\$	0.180	\$	2.11	5	0.3
2052 2053	40	2.78 2.78	69,704 69,704	\$	4,879 4,879	\$	1.78	5	0.15	\$	0.180	\$	2.11	\$	0.3
2053	40	2.78	69,704	\$	4,879	\$	1.78	\$	0.15	\$	0.180	\$	2.11	\$	0.3
2055	40	2.78	69,704	\$	4,879	\$	1.78	\$	0.15	\$	0.180	\$	2.11	\$	0.3
2056	40	2.78	69,704	Š	4,879	\$	1.78	S	0.15	S	0.180	S	2.11	S	0.2
2057	40	2.78	69,704	S	4,879	\$	1.78	S	0.15	\$	0.180	\$	2.11	\$	0.2
2058	40	2.78	69,704	Š	4,879	Š	1.78	Š	0.15	\$	0.180	S	2.11	\$	0.2
2059	40	2.78	69,704	\$	4,879	\$	1.78	s	0.15	\$	0.180	Š	2.11	\$	0.2
2060	40	2.78	69,704	\$	4,879	\$	1.78	\$	0.15	Š	0.180	\$	2.11	\$	0.2
2061	40	2.78	69,704	\$	4,879	\$	1.78	\$	0.15	\$	0.180	\$	2.11	\$	0.2
2062	40	2.78	69,704	Š	4,879	\$	1.78	s	0.15	s	0.180	\$	2.11	\$	0.2
2063	40	2.78	69,704	\$	4,879	\$	1.78	\$	0.15	Š	0.180	\$	2.11	\$	0.2
2064	40	2.78	69,704	Š	4,879	Š	1.78	Š	0.15	Š	0.180	Š	2.11	\$	0.
2065	40	2.78	69,704	\$	4,879	\$	1.78	\$	0.15	\$	0.180	\$	2.11	\$	0.1
											Total NPV	of C	0&M Costs	\$	13
		Capital Costs	in million \$						Yr built						
			PWTM			S	49.7	_	2030					\$	23
			Pumping Stat	ions		Š	10.2		2030					\$	4
			bing Stat			*			2000	-	otal NPV of				28

Total NPV of Capital and O&M Costs in millions \$ 42 WTP to LCRA Delivery Point (#4)

LCRA Delivery Point (#4) to COA Delivery Point (#5) (Bold line in schematic below)

Demands for this pipe segment

Year	2015	2020	2030	2040	2050	2060	2065
	2010	2020					
COA	0	0	15	20	30	30	30
otal	0	0	15	20	30	30	30

Max d/Avg d

Max day demands to be delivered in each segment in mgd									
Year	2015	2020	2030	2040	2050	2060	2065		
COA	0	0	25	34	50	50	50		
Total	0	0	25	34	50	50	50		

PWTM and Pump Station Costs

50 mgd 34,997 gpm Design flow rate - year 2065 54 in. 15.90 sf Inside diameter of PWTM Area Length of PWTM 7 miles 36,960 feet (linked to mileage in schematic above) % of length 100% 0% 0% Unit cost 244 \$ 337 \$ 369 \$ Estimated unit cost by condition: Rural - soil LF 36,960 Rural - rock Urban - rock 36,960

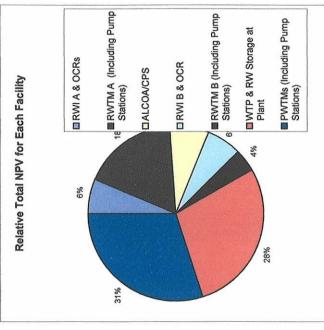
Average estimated unit construction cost for PWTM	\$ 244	pe
Total construction cost in millions	\$ 9.0	
Contingencies	\$ 1.8	200
Subtotal	\$ 10.8	
Engineering, Legal & Administrative	\$ 1.6	
Subtotal	\$ 12.4	
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 0.0	l.
Total Capital Cost for PWTM in millions	\$ 12.4	

Unit maintenance cost/year-mile 10,000 \$/year-mile 0.070 Million \$/year 4.90 fps Velocity at peak flow rate C factor

120 h_f= | 3.552*Q| 1.85 0.00141 ft/ft Head loss per foot 7.45 ft/mile | C*(d)2.63 Head loss at peak flow rate 52 ft 720 Desired HGL At Delivery Point 790 Elev. At Delivery Point 4 -70 ft Allowance for minor losses Total estimated losses 10 ft 63 ft 20% Average static head Total estimated dynamic head -70 ft

Negative indicates gravity flow from #4 to #5; no pumping necessary.

-3 psi

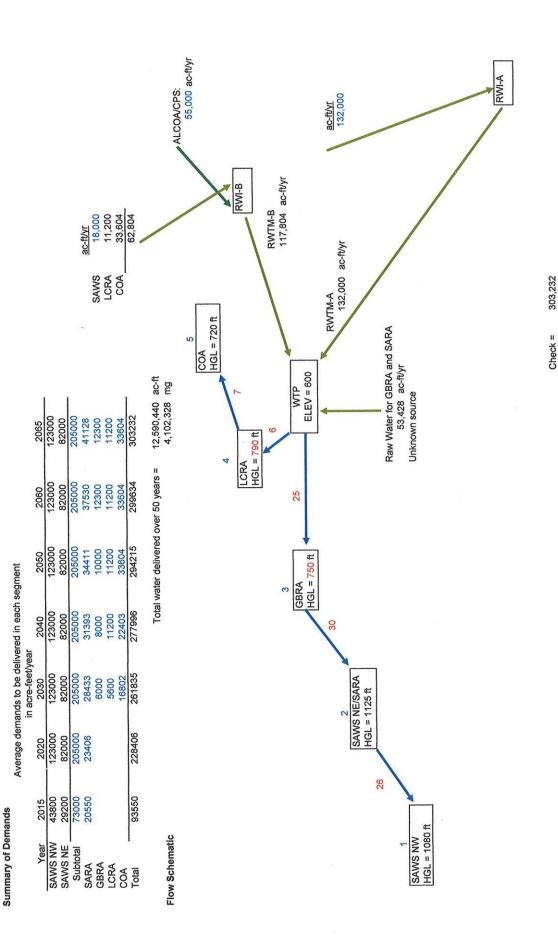

					M	lillion \$
Annual O&M Cost in million	\$:		Yr built			
PWTM	\$	0.070	2030	•		
				Total NPV of O&M Costs		\$0.55
Capital Costs in million \$:			Yr built			
PWTM	\$	12.4	2030		\$	5.99
				Total NPV of Capital Costs	\$	6.0

9.0 million

Total NPV of Capital and O&M Costs in millions \$ LCRA Delivery Point (#4) to COA Delivery Point (#5) 6.5

CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County

& RW Storage PWTMs (Including at Plant Pump Stations)	W 11,000 ac-ft capacity; Conventional Each PWTM sized for settling with membrane filtration for SANS, SARA & Summary Sheet in with membrane filtration for COA & LCRA water	572 \$ 671	502 \$ 458	1,075 \$ 1,129
RWTM B (including WTP & RW Storage Pump Stations) at Plant		86 \$	75 \$	161 \$
		204 \$	34	238 \$
RWI B & OCR	Sized for 2000 cfs to scalp water, 2 intakes; 8 miles of 120-inch raw water mains and 4 Octs at 15,000 ac-f/leach	69	9	8
ALCOA/CPS	Non-Public wells; Sized for 2000 cfs Transmission of 55,000 ac-ft/year to the intakes; 8 miles of OCR at RWI B via 15 120-inch raw water miles of 54" gravity pipeline from Hwy 290 at 15,000 ac-ft/each east of Elgin	\$ 135	\$ 141	\$ 276
RWTM A (Including Pump Stations)	ich c- nuous w/	\$ 451	\$ 213	\$ 664
RWI A & OCRs	Sized for 4000 cfs diameter pipe size to scalp water; 4 deliver 132,000 a lintakes, 4 miles of flyear on a confir 120-inch raw water basis; includes 3 mains & 4 OCRs at pumping stations 25,000 ac-it each along route	\$ 191	\$ 47	\$ 238
Total NPVs in Millions of \$		\$ 2,310	\$ 1,470	\$ 3,780 \$
Phasing Scenario	RWTM B & ALCOAVCPS built by 2015; RWTM A built in 2020.	NPV of Capital Costs \$	NPV of O&M Costs \$	Total NPV of Capital & O&M
Alter- nate	3A			
WTP Location	Northern Corner of Caldwell County			



North Caldwell Co_Alt3A;Flow Schematic

9/28/2005

Flow Schematic CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County

O&M Cost Calculations RWI A - Matagorda Co. River Intakes, and Storage CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County Initial year of analysis period Interest rate Contingency = 20% Engineering, Legal, Admin. = 15% Environmental & Archaeology Studies & Evaluation period 50 years Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile or = \$ 5,000 per acre Unit cost of energy 0.07 Inflatable Rubber Low Head Dam Total Estimated Constr. Cost Unit Constr. Cost (millions) Contigency, Total Capital Eng., etc. Cost (millions) (millions) Quantity (millions) Inflatable Rubber Low Head Dam 3.42 10 ft high 2.25 9.00 Estimated inflatable dam cost as % of total Value of inflatable dam Assumed life of inflatable dam Estimated maintenance/replacement cost 10 0.45 years \$ million/year Year built 2020 NPV of O&M Costs NPV of Capital Costs Total NPV of Capital and O&M Costs \$6.27 million \$ 9.73 million \$16.00 million Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir) 132,000 ac-ft/year 182 cfs Average withdrawal 21.9 Ratio of design withdrawal rate to Total intake design withdrawal rate Total intake design withdrawal rate (for scalping high flows 1,795,200 gpm No. of Intakes 1,000 cfs 448,800 gpm Design withdrawal rate per intake No. of reservoirs Design flow to each reservoir 448,800 gpm 120 in. 78.54 sf Inside diameter of each RWTM Area Average length of each RWTM 4.0 miles for all RWTMs 21,120 feet 1 miles 5,280 feet 793 per LF \$ 1,254 Estimated construction cost for RWTM Total construction cost in millions 16.8 Contingencies Subtotal Engineering, Legal & Administrative \$\frac{1}{5}\$
Subtotal

Envir & Arch Studies & Mitigation, Surveying, & Land Acq \$\frac{1}{5}\$
Total Capital Cost for PWTM in millions \$\frac{1}{5}\$ 0.4 23.5 million Unit maintenance cost/year-mile \$ 10,000 \$/year-mile \$ 0.040 Million \$/year (all RWTMs to Reservoirs) Note: Assume each intake has two RWTMs pumping out of it, one to each reservoir. Design flow rate for each RWTM (from above) Pumping rate (one pump)
No. of pumps (not counting spare) pumping into each RW
Peak flow rate into each RWTM (all pumps except spare) 50,000 gpm 450,000 gpm 12.77 fps 120 0.00327 ft/ft Velocity at peak flow rate C factor hr= | 3.552*Q|^{1.85} | C*(d)^{2.63}| Head loss per foot 17.25 ft/mile 90 Elev of discharge at reservoir 50 Water surface elev in river 40 ft Head loss at peak flow rate 17 ft 5 ft 22 ft 40 ft 62 ft 27 psi Allowance for minor losses Total estimated losses 30% Total estimated losses Average static head Total estimated dynamic head 85% Assumed pump efficiency Assumed motor efficiency 90% 1,030 hp/pump 769 kw/pump 9,272 hp/RWTM 9,272 hp/intake 37,089 hp 27,668 kw Estimated Hp required per pump Total hp pumping into each RWTM (not counting spare)
Total hp at each intake (not counting spare)
Total hp all intakes (not counting spares)
Total kw all intakes (not counting spares) Unit construction cost for each pump station (from cost cui \$ Construction cost per intake/pump station No. of intakes from above 889 per firm hp of pump station \$ 1,190 8.2 million 4 each Total construction cost in millions Contigency, Eng., etc. in millions Total capital cost in millions 33.0 million 12.53 million 45.5 million

> 33.0 million 13.2 million 20 years

40% Estimated equip cost as % of total constr cost

Total construction cost for pump stations Value of equipment Assumed life of equipment Estimated maintenance/repla

mgd	operating /day	(kwh/day)	\$	(\$/day)			10							
118	:	:	S		-	lillion \$ lyear)		Million \$ /year)		Million \$ /year)	`/	lillion \$ lyear)	waysum	(\$)
118		-	-		\$	-					\$	-	\$	
118	-		\$	-	\$	-					S	-	5	
118	-	-			S	-					S	-		
118		-	\$	-	\$	-						-	\$	
118			\$		\$						S		S	
		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118		30,188	S	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118	3 1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118	3 1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118	3 1.64	30,188	S	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118	3 1.64	30,188	S	2,113	\$	0.77	\$	0.66	S	0.040	\$	1.47	S	
111		30,188	s	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	S	
111		30,188	s	2,113	s	0.77	\$	0.66	s	0.040	\$	1.47	S	
111		30,188	Š	2,113	s	0.77	S	0.66	s	0.040	S	1.47	s	
110		30,188	s	2,113	s	0.77	\$	0.66	s	0.040	S	1.47	s	
110		30,188	š	2,113	\$	0.77	Š	0.66	š	0.040	s	1.47	\$	
111		30,188	Š	2,113	\$	0.77	\$	0.66	Š	0.040	\$	1.47	Š	
111		30,188	Š	2,113	š	0.77	Š	0.66	Š	0.040	Š	1.47	š	
11		30,188	š	2,113	Š	0.77	Š	0.66	š	0.040	S	1.47	Š	
111		30,188	š	2,113	Š	0.77	\$	0.66	Š	0.040	\$	1.47	š	
110		30,188	Š	2,113	Š	0.77	Š	0.66	Š	0.040	\$	1.47	s	
			S	2,113	s	0.77	Š	0.66	Š	0.040	S	1.47	S	
118		30,188	ŝ	2,113	\$	0.77	\$	0.66	\$	0.040	5	1.47	Š	
111		30,188												
111		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
111		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47		
111		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
111		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
118		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
11		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
111		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
11		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
11		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
11		30,188	\$	2,113	S	0.77	S	0.66	\$	0.040	S	1.47	\$	
11		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
11		30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
		30,188	S	2,113	\$	0.77	\$	0.66	S	0.040	\$	1.47	\$	
		30,188	\$		\$		\$				\$	1.47	\$	
		30,188	\$	2,113	\$	0.77	\$			0.040	\$	1.47	\$	
11	8 1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
11	8 1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
11	8 1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
11	B 1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	
										Total NPV	of O8	SM Costs	\$	
	11: 11: 11: 11:	118 1.64 118 1.64 118 1.64 118 1.64 118 1.64 118 1.64	118 1.64 30,188 118 1.64 30,188 118 1.64 30,188 118 1.64 30,188 118 1.64 30,188 118 1.64 30,188	118 1.64 30,188 \$ 118 1.64 30,188 \$ 118 1.64 30,188 \$ 119 1.64 30,188 \$ 110 1.64 30,188 \$ 110 1.64 30,188 \$ 111 1.64 30,188 \$	118 1.84 30,188 \$ 2,113 118 1.64 30,188 \$ 2,113	118 1.84 30,188 \$ 2,113 \$ 118 1.84 30,188 \$ 2,113 \$ 118 1.84 30,188 \$ 2,113 \$ 118 1.84 30,188 \$ 2,113 \$ 118 1.64 30,188 \$ 2,113 \$ 118 1.64 30,188 \$ 2,113 \$ 118 1.64 30,188 \$ 2,113 \$ 118 1.64 30,188 \$ 2,113 \$ 118 1.64 30,188 \$ 2,113 \$	118 1.84 30,188 \$ 2,113 \$ 0,77 118 1.64 30,188 \$ 2,113 \$ 0,77 118 1.64 30,188 \$ 2,113 \$ 0,77 118 1.64 30,188 \$ 2,113 \$ 0,77 118 1.64 30,188 \$ 2,113 \$ 0,77 118 1.64 30,188 \$ 2,113 \$ 0,77 118 1.64 30,188 \$ 2,113 \$ 0,77	118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 118 1.64 30,188 \$ 2,113 \$ 0,77 \$	118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 0,68 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66	118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 0,66 \$ 118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 0,66 \$ 0,68 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 \$ 0,68 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 \$ 0,68 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 \$ 0,68	118 1.84 30,188 \$ 2,113 \$ 0.77 \$ 0.68 \$ 0.040 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040	118 1.84 30,188 \$ 2,113 \$ 0.77 \$ 0.68 \$ 0.040 \$ 118 1.84 30,188 \$ 2,113 \$ 0.77 \$ 0.68 \$ 0.040 \$ 118 1.84 30,188 \$ 2,113 \$ 0.77 \$ 0.68 \$ 0.040 \$ 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 \$ 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 \$ 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 \$ 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 \$ 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 \$ \$ 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 \$ \$ 118 1.64 30,188 \$ 2,113 \$ 0.77 \$ 0.66 \$ 0.040 \$ \$ 118 1.64 30,188 \$ 0.77 \$ 0.66 \$ 0.040 \$ \$ 118 1.64 30,188 \$ 0.77 \$ 0.67 \$ 0.67 \$ 0.040 \$ \$ 1.040	118 1.84 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,66 \$ 0,040 \$ 1.47	118 1.64 30,188 \$ 2,113 \$ 0,77 \$ 0,68 \$ 0,040 \$ 1.47 \$ 1.47 \$ 1.89 \$ 2,113 \$ 0,77 \$ 0,66 \$ 0,040 \$ 1.47 \$ 1.47 \$ 1.84 30,188 \$ 2,113 \$ 0,77 \$ 0,66 \$ 0,040 \$ 1.47

Total NPV of Capital and O&M Costs in millions \$ 75.7

Reservoirs

	Quantity		Units	Volume/each (acre-feet)		t Cost ac-ft))	Con	Total struction cost in nillions		tigency, g., etc.	otal in nillions
Reservoirs	4		each	25000	\$	974 909	\$	97.4	\$	37.0	\$ 134.4
Estimated average depth of reserve	oir		20	ft							
Surface area of reservoir			5000	acres							
Ratio of total land area reqd to surf	face area										
of reservoir			1.1				Er	vir & Arch			
Total land area reqd for reservoirs			5500	acres						nd Acq =	27.
Assumed life of reservoir			100	years		T	otal c	apital cos	in mi	llions =	\$ 161.9
Estimated replacement cost		\$	0.97	million/year							
Estimated maintenance			0.4	million/year	Mowi	ng, main	tainin	g fences,	etc.		
Total		\$	1.37	million/year							
Year built			2020								
NPV of O&M costs		\$	19.1	million							
NPV of Capital costs		\$	126.8	million							
Total NPV of Capital and O&M Cos	sts	s	145.9	million							

Summary	NPV of Capital Costs			IPV of O&M Costs	Total NPV of Capital and O&M Costs		
Inflatable Rubber Low Head Dam	\$	9.7	\$	6.3	\$	16.0	
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$	54.1	\$	21.6	\$	75.7	
Reservoirs	\$	126.8	\$	19.1	\$	145.9	
Total for RWI A	\$	190.6	\$	47.0	\$	237.6	

O&M Cost Calculations RWTM A - Matagorda Co. to WTP CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County

	Initial year of analysis period Interest rate		2015			E	Engineering, Le	Conting egal, Ac					
	Evaluation period		50	years	Env		al & Archaeolo						
	Unit cost of energy	\$		per kwh			veying, and La			\$	100,00	0 pe	r mile
Raw Wa	ater Transmission Main - A												
	Inside diameter of pipe					96							
	Area					50.27	miles						
	Length of RWTM					665,280							
	Estimated unit construction cos	t for RW	TM		\$	567	per LF			\$	86	5	
	Total construction cost in million	ns			\$	378							
	Contingencies				\$	76 453							
	Subtotal				\$								
	Engineering, Legal & Administra	ative			\$	521							
	Subtotal			01	\$	13							
	Envir & Arch Studies & Mitigation Total Capital Cost for				\$		million						
	Unit maintenance cost/year-mile	е			\$	10,000	\$/year-mile	\$	1.260	Millio	n \$/yea	ar	
	Design flow rate (after 100% but	uildout)					ac-ft/year						
						118							
						81,829							
	Pumping rate (one pump)					16,400	gpm						
	No. of pumps (not counting spa					5							
	Peak flow rate (all pumps excer	ot spare)				82,000	gpm						
	Velocity at peak flow rate					3.63	fps						
	C factor					120							
	Head loss per foot					0.00041	ft/ft		h _f =	13.5	52*QI1	.85	
	300000000000000000000000000000000000000						ft/mile				1)2.63		
	Head loss at peak flow rate					276	ft						
	Allowance for minor losses		10%			28	ft		550	Elev.	At Sai	n Ant	onio East WTP
	Total estimated losses				-	303	ft		90	Elev.	At Ma	tagor	da OCRs
	Average static head					460	ft		460	ft			
	Total estimated dynamic head					763	ft						
						331	psi						
	No of pumping stations req'd al					2.21			150			ed ma	x pressure
	No. of pumping stations used in		timate	9		3.0				in pip	oe)		
	Average head per pump station	1				254	п						
	Assumed pump efficiency					85%							
						90%							
	Assumed motor efficiency					4 272	hp/pump						
	Assumed motor efficiency Estimated Hp required per pum	р											
	Estimated Hp required per pum					1,028	kw/pump						
	Estimated Hp required per pum Total hp per pump station (not	counting				1,028 6,888	kw/pump hp/station						
	Estimated Hp required per pum	counting				1,028 6,888	kw/pump	(one p	ump at	each	station)	
	Estimated Hp required per pum Total hp per pump station (not Total kw per pump set (set=pu Unit construction cost for each	counting imps in s pump sta	eries	along route)	, \$	1,028 6,888 4,133 1,347	kw/pump hp/station kw/pump set per firm hp of				station 95		
	Estimated Hp required per pum Total hp per pump station (not Total kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta	counting imps in s pump sta	eries	along route)		1,028 6,888 4,133 1,347 9.3	kw/pump hp/station kw/pump set per firm hp of million		station	\$	95	0	
	Estimated Hp required per pum Total hp per pump station (not Total kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir	counting imps in s pump station	eries ation (along route) (from cost curv	\$	1,028 6,888 4,133 1,347 9.3 0.75	kw/pump hp/station kw/pump set per firm hp of million million		station 60	\$ min.	95	0	t avg pumping rate
	Estimated Hp required per pum Total hp per pump station (not Total kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir Total construction co	counting imps in s pump station cost per	eries ation (along route) (from cost curv		1,028 6,888 4,133 1,347 9.3 0.75	kw/pump hp/station kw/pump set per firm hp of million million		station 60 5.0	s min. mg	95 of stor	0 age a	t avg pumping rate
	Estimated Hp required per pum Total hp per pump station (not Total kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir	counting imps in s pump station cost per	eries ation (along route) (from cost curv	\$	1,028 6,888 4,133 1,347 9.3 0.75	kw/pump hp/station kw/pump set per firm hp of million million	pump	station 60 5.0	s min. mg	95 of stor	0 age a	
	Estimated Hp required per pum Total hp per pump station (not Total kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir Total construction cost No. of pump stations from abov Total construction cost in million	counting imps in s pump station cost per	eries ation (along route) (from cost curv	\$	1,028 6,888 4,133 1,347 9.3 0.75 10.03 3.0	kw/pump hp/station kw/pump set per firm hp of million million million each	pump	station 60 5.0	s min. mg	95 of stor	0 age a	
	Estimated Hp required per pum Total hp per pump station (not Total kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir Total construction co No. of pump stations from abov Total construction cost in millio Contigency, Eng., etc. in millio	counting imps in s pump station cost per	eries ation (along route) (from cost curv	\$	1,028 6,888 4,133 1,347 9.3 0.75 10.03 3.0 30.1 11.43	kw/pump hp/station kw/pump set per firm hp of million million million each	pump	station 60 5.0	s min. mg	95 of stor	0 age a	
	Estimated Hp required per pum Total hp per pump station (not - Total kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir Total construction cost Total construction cost in millio Contigency, Eng., etc. in million	counting imps in s pump station cost per we ns ns	eries ation (along route) (from cost curv	\$ \$	1,028 6,888 4,133 1,347 9.3 0.75 10.03 3.0 30.1 11.43 41.5	kw/pump hp/station kw/pump set per firm hp of million million million million million million million	pump	station 60 5.0	s min. mg	95 of stor	0 age a	
	Estimated Hp required per pum Total hp per pump station (not rotal kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir Total construction co No. of pump stations from abox Total construction cost in millio Contigency, Eng., etc. in millio Total capital cost in millions Total construction cost for pum	counting imps in s pump station cost per ve	eries ation (along route) (from cost curv	\$ \$ \$ \$	1,028 6,888 4,133 1,347 9.3 0.75 10.03 30.1 11.43 41.5	kw/pump hp/station kw/pump set per firm hp of million million million million million million million	pump	60 5.0 0.15	min. mg per g	95 of stor	o age a	iop reservoir
	Estimated Hp required per pum Total hp per pump station (not rotal kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir Total construction co No. of pump stations from about Total construction cost in millio Contigency, Eng., etc. in millio Total capital cost in millions Total construction cost for pum Value of equipment	counting mps in s pump station cost per ve ns ns	eries ation (along route) (from cost curv	\$ \$	1,028 6,888 4,133 1,347 9.3 0.75 10.03 3.0 30.1 11.43 41.5 30.1 12.0	kw/pump hp/station kw/pump set per firm hp of million million million million million million million million	pump	60 5.0 0.15	min. mg per g	95 of stor	o age a	
	Estimated Hp required per pum Total hp per pump station (not rotal kw per pump set (set=pu Unit construction cost for each Construction cost per pump sta Balancing reservoir Total construction co No. of pump stations from abox Total construction cost in millio Contigency, Eng., etc. in millio Total capital cost in millions Total construction cost for pum	counting mps in s pump station cost per ve ns ns p station	eries ation pump	along route) (from cost curves station	\$ \$ \$ \$	1,028 6,888 4,133 1,347 9.3 0.75 10.03 3.0 30.1 11.43 41.5 30.1 12.0 20	kw/pump hp/station kw/pump set per firm hp of million million million million million million million	pump	60 5.0 0.15	min. mg per g	95 of stor	o age a	iop reservoir

O&M Costs

Year	Flow pum yea		No. of pump "sets"	Energy used		Energy	/ CO	ost	CO	ther O&M sts - Pump Stations		intenance costs - RWTM	T	otal O&M cost	Ne	et present value
Z. CALLINA	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	((Million \$ /year)	((Million \$ /year)	(Million \$ /year)	(Million \$ /year)		(\$)
2015					\$		\$	-			_		\$		\$	-
2016		•	-	-	\$		\$	-					\$		\$	-
2017	-	•			\$	•	\$	•					\$		\$	
2018	•		-	-	\$		\$						\$	*	\$	
2019	400.000	118	4.00	404.000	\$	24.040		12.65		0.60	\$	1.260		14.51		11.3
2020	132,000	118	4.99 4.99	494,936 494,936	\$	34,646 34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	10.8
2021 2022	132,000	118	4.99	494,936	\$	34,646	\$	12.65	S	0.60	\$	1.260	\$	14.51	\$	10.8
2022	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	9.8
2023	132,000	118	4.99	494,936	\$	34,646	\$	12.65	Š	0.60	\$	1.260	\$	14.51	S	9.3
2025	132,000	118	4.99	494,936	\$	34,646	\$	12.65	Š	0.60	Š	1.260	\$	14.51	\$	8.9
2026	132,000	118	4.99	494,936	\$	34,646	\$	12.65	Š	0.60	\$	1.260	\$	14.51	\$	8.4
2027	132,000	118	4.99	494,936	Š	34,646	\$	12.65	Š	0.60	Š	1.260	\$	14.51	Š	8.0
2028	132,000	118	4.99	494,936	\$	34,646	Š	12.65	Š	0.60	\$	1.260	\$	14.51	\$	7.6
2029	132,000	118	4.99	494,936	\$	34,646	s	12.65	s	0.60	S	1.260	s	14.51	s	7.3
2030	132,000	118	4.99	494,936	\$	34,646	\$	12.65	Š	0.60	\$	1.260	\$	14.51	\$	6.9
2031	132,000	118	4.99	494,936	\$	34,646	\$	12.65	s	0.60	\$	1.260	\$	14.51	\$	6.6
2032	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	s	1.260	\$	14.51	S	6.3
2033	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	6.0
2034	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	5.7
2035	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	5.4
2036	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	5.2
2037	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.9
2038	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.7
2039	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.5
2040	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.2
2041	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.0
2042	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.8
2043	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.7
2044	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.5
2045	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.3
2046	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.2
2047	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.0
2048	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.9
2049	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.7
2050	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.6
2051	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.5
2052	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.3
2053	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.2
2054	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51 14.51	\$	2.1
2055 2056	132,000	118	4.99 4.99	494,936	\$	34,646		12.65 12.65		0.60	\$	1.260 1.260	\$	14.51	\$	1.9
	132,000	118 118	4.99	494,936	\$	34,646	5	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.8
2057 2058	132,000	118	4.99	494,936	S	34,646 34,646	S	12.65	\$	0.60	\$	1.260	\$	14.51	Š	1.7
	132,000	118	4.99	494,936	S		\$	12.65	\$	0.60	5	1.260	\$	14.51	\$	1.7
2059 2060	132,000 132,000	118	4.99	494,936 494,936	\$	34,646 34,646	\$	12.65	\$	0.60	5	1.260	\$	14.51	\$	1.6
2060	132,000	118	4.99	494,936	\$	34,646	\$	12.65	S	0.60	\$	1.260	\$	14.51	\$	1.5
2062	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.4
2062	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.3
2064	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	S	1.3
2065	132,000	118	4.99	494,936	Š	34,646	Š	12.65	Š	0.60	\$	1.260	Š	14.51	\$	1.2
				O.T.M.T.T.								Total NPV				21
			01-10	. la						V- b. "		July 14F V		GIII GUSES	*	21
			Capital Cost	s in million \$:				524		Yr built					•	44
				RWTM Pumping Stat			\$	534		2020					\$	41
								42		2020						

Total NPV of Capital and O&M Costs in millions \$

NPV CALCULATIONS ALCOA / CPS GROUNDWATER CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County

Initial year of analysis period Interest rate Evaluation period Unit cost of energy 2015 5% 50 years 0.07 per kwh Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

			A	
weii	rieids	and	Collection	Lines

	ALC	OA		CPS		Total	
Year built -	20	15	1	2015			
Estimated Construction Cost in Millions							
Wells (Based on Non-Public Water Supply Wells)		20.92		7.94		28.86	
Pipeline		13.03		5.94		18.97	
Pump Stations & Storage		8.51		0		8.51	
Subtotal	T. M.	42.46		13.88		56.34	
Contingency		8.49		2.78		11.27	
Subtotal		50.95		16.66		67.61	
Engineering, Legal & Administrative		6.37		2.08		8.45	
Subtotal		57.32		18.74		76.06	
Environmental & Archaeology Studies & Mitigation		0.63		0.2		0.83	
Land Acquisition & Surveying		0		0		0.00	
Groundwater Purchase		0		5.64		5.64	
ALCOA Construction Program Management Fee		5.45		0		5.45	
Interest During Construction (2 years, 6% int., 4% ret.)		5.89		2.44		8.33	
Total Capital Cost	7	69.29		27.02		96.31	
Estimated Annual O&M Costs							
O&M		0.67		0.18		0.85	
Pumping Energy		2.41		0.52		2.93	
ALCOA Project Management Fees		0.35		0.00		0.35	
Purchase of Groundwater		2.00		0.00		2.00	
Groundwater District Fees		0.65		0.25		0.90	
Mitigation Reserves		0.28	1200202-000	0.11		0.39	
Total Annual Cost		6.36		1.06		7.42	Y
NPV of O&M Costs	\$	116	\$	19	s	125	million
		69	S	27	S		million
NPV of Capital Costs	\$	****	_		_		•
Total NPV of Capital and O&M Costs for Well Fields	\$	185	\$	46	\$	232	million

Cooling of Well Water

Total number of wells in both fields	120 wells	Approximate capacity per wel	300	gpm
Percentage of wells with temperatures > than degrees	5%		36,000	gpm
Estimated number of wells with temperature > degrees	6.0	Rough check	58,072	ac-ft/year

Estimated Capital Costs

2015	
6.0	
\$ 60,000	
\$ 50,000	
\$ 30,000	
\$ 50,000	
\$ 190,000	Each
\$ 1.14	million
\$ 0.23	
\$ 1.37	-
\$ 0.21	
\$ 1.57	-
\$ 1.57	million
****	6.0 \$ 60,000 \$ 50,000 \$ 30,000 \$ 50,000 \$ 190,000 \$ 1.14 \$ 0.23 \$ 1.37 \$ 0.21 \$ 1.57

Estimated O&M Costs

Value of equipment	\$ 0.4	million
Assumed life of equipment	10	years
Estimated maintenance/replacement cost	\$ 0.04	million/year
Blower Hp per cooling tower	10	Нр
	7	kw
Hours of operation	24	hours
Power consumption per cooling tower	179	kwh per day
	65,350	kwh per year
Power cost per cooling tower	\$ 4,574	0.7 ESC. 3000 *040040.00 007000 14
Total power cost for all cooling towers in millions	\$ 0.03	million per year
Regular operational checks and routine maintenance	\$ 6,000	per month for all cooling towers
•	\$ 0.07	peryear

Estimated O&M Cost \$
NPV of O&M costs \$ 0.14 million \$ per year 2.47 million \$

Ground Water Transmission Main and Pump Station (Hwy 290 to Bastrop Intake)

Inside diameter of transmission pipe

54 in.

Area		15.90	sf	
Length of Ground Water TM		15	miles	
		79,200	feet	
Estimated construction cost for GWTM	\$	327	per LF	
Total construction cost in millions	\$	25.9		
Contingencies	\$	5.2		
Subtotal	\$	31.1	-	
Engineering, Legal & Administrative	\$	4.7		
Subtotal	\$	35.8	-	
Envir & Arch Studies & Mitigation, Surveying, & La	nd Acq \$	1.5		
Total Capital Cost for PWTM in million	\$	37.3	million	
Unit maintenance cost/year-mile	\$	10,000	\$/year-mile	\$ 0.150 Million \$/year
Design flow rate		55,000	ac-ft/year	
		49	mgd	
		34,095	gpm	
Velocity at peak flow rate		4.78	fps	
C factor		120	•	
Head loss per foot		0.00134	ft/ft	h _f = 3.552*Q ^{1.85}
		7.10	ft/mile	C*(d) ^{2.63}
Head loss at peak flow rate		106	ft	
Allowance for minor losses	10%	11	ft	400 Elev. At RWI-B
Total estimated losses		117	ft	550 minus Elev Storage Tank at Hwy 290
Average static head		-150	ft	-150 ft
Total estimated dynamic head		-33	ft	(intake is lower than tank at Hwy 290)
		-14	psi	

Negative indicates gravity flow from Hwy 290 to Bastrop Intake; no pumping necessary.

					Mi	illion \$
Annual O&M Cost in million \$:	150	Yr built			
GWTM	\$	0.150	2015	5)		
				Total NPV of O&M Costs	\$	2.7
Capital Costs in million \$:			Yr built			
GWTM	\$	37.3	2015	to:	\$	37.3
				Total NPV of Capital Costs	S	37.3

Summary	IPV of tal Costs	IPV of O&M Costs	Total NPV of Capital and O&M Costs	
Well Fields and Collection Lines (including tank and pump station at Hwy 290)	\$ 96.3	\$ 135.5	\$	231.8
Cooling Towers for Selected High Temperature Wells	\$ 1.6	\$ 2.5	\$	4.0
Ground Water Transmission Main and Pumping Station	\$ 37.3	\$ 2.7	\$	40.0
Total for ALCOA CBS	42E 4	440.7		275.0

O&M Cost Calculations RWI B - Colorado River Intake at Bastrop and Off Channel Reservoir CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County

Initial year of analysis period 2015 Interest rate Evaluation period 40 years Unit cost of energy 0.07 per kwh

Contingency = 20% Engineering, Legal, Admin. = 15%

Environmental & Archaeology Studies &

Mitigation, Surveying, and Land Acquisition = \$ 100,000 per mile or = \$ 5,000 per acre

Inflatable Rubber Low Head Dam

	Quantity	Units	Size	(Constr. Cost illions)	Est Con:	Total imated str. Cost illions)	Eng	tigency, g., etc. illions)	(Capital Cost illions)
Inflatable Rubber Low Head Dam	2	each	10 ft high	\$	2.25	\$	4.50	\$	1.71	\$	6.21

Estimated inflatable dam cost as % of total 2.25 million Value of inflatable dam Assumed life of inflatable dam 10 years Estimated maintenance/replacement cost 0.23 million/year 2015

NPV of O&M Costs

NPV of Capital Costs

3.86 million 6.21 million

Total NPV of Capital and O&M Costs

10.07 million

Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Summary of withdrawals in acre-feet/year:

Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	18000	18000	18000	18000	18000	18000	18000
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Total	18000	18000	40402	51603	62804	62804	62804

Ultimate (Y2065) average design withdrawal rate

62,804 ac-ft/year 87 cfs

Total intake design withdrawal rate (for scalping high flows)

2.000 cfs 897,600 gpm 23.1 Ratio of design withdrawal rate to Total intake design withdrawal rate

No. of Intakes Design withdrawal rate per intake 1,000 cfs 448,800 gpm

No. of reservoirs Design flow to each reservoir

224,400 gpm

Inside diameter of each RWTM 120 in. 78.54 sf Average length of each RWTM 2 miles 10,560 feet

8.0 miles for all RWTMs 42,240 feet

Estimated construction cost for RWTMs 793 per LF Total construction cost in millions 33.5

Contingencies Subtotal 6.7 Engineering, Legal & Administrative Subtotal 0.8 Envir & Arch Studies & Mitigation, Surveying, & Land Acq Total Capital Cost for PWTM in millions

0.080 Million \$/year (all RWTMs to Reservoirs) Unit maintenance cost/year-mile 10,000 \$/year-mile

926 kw/pump

Note: Assume intake has one RWTM pumping to the reservoir.

Design flow rate for each RWTM (from above)	224,400	gpm
Pumping rate (one pump)	STREET, STREET	40,000	gpm
No. of pumps (not counting spare)	pumping into each RWT	6	
Peak flow rate into each RWTM (a	Il pumps except spare)	240,000	gpm
Velocity at peak flow rate		6.81	fps
C factor		120	
Head loss per foot		0.00102	ft/ft
		5.39	ft/mile
Head loss at peak flow rate		11	ft
Allowance for minor losses	30%	3	ft
Total estimated losses	-	14	ft
Average static head		80	ft
Total estimated dynamic head		94	ft

 $h_l = | \frac{3.552 * Q}{1.65} |^{1.65}$ $| C^*(d)^{2.63} |$

400 Discharge at reservoir 320 Water surface elev in river

41 psi Assumed pump efficiency 85% 90% 1,241 hp/pump Assumed motor efficiency Estimated Hp required per pump

Total hp pumping into each RWTM (not counting spare)	7,448	hp/RWTM
Total hp at each intake (not counting spare)	14,897	hp/intake
Total hp all intakes (not counting spares)	29,793	hp
Total kw all intakes (not counting spares)	22,226	kw
Unit construction cost for each pump station (from cost cun	\$ 889	per firm hp of pump station \$ 830
Construction cost per intake/pump station	13.2	million
No. of intakes from above	2	each
Total construction cost in millions	\$ 26.5	million
Contigency, Eng., etc. in millions	\$ 10.06	million
Total capital cost in millions	\$ 36.6	million
Total construction cost for pump stations	\$ 26.5	million 40% Estimated equipment cost as % of total
Value of equipment	\$ 10.6	million
Assumed life of equipment	20	years
Estimated maintenance/replacement cost	\$ 0.53	million/year

0&M	Costs:

	Year	Flow pum		No. of pump "sets"	Energy used	Energ	ус	ost	other O&M osts - Pump Stations		intenance costs - RWTM	To	otal O&M cost	Ne	et present value
		ac-ft/yr	mgd	operating /day	(kwh/day)	 (\$/day)	ı	(Million \$ /year)	(Million \$ /year)	(Million \$ /year)	(Million \$ /year)		(\$)
-	2015	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.77
	2016	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.73
	2017	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.70
	2018	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.66
	2019	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.63
	2020	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.60
	2021	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.57
	2022	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.55
	2023	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.52
	2024	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.50
	2025	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.47
	2026	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.45
	2027	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.43
	2028	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.41
	2029	18,000	16	0.28	6,200	\$ 434	\$	0.16	\$ 0.53	\$	0.080	\$	0.77	\$	0.39
	2030	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.46
	2031	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.44
	2032	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.42
	2033	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.40
	2034	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.38
	2035	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.36
	2036	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.35
	2037	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.33
	2038	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.31
	2039	40,402	36	0.63	13,917	\$ 974	\$	0.36	\$ 0.53	\$	0.080	\$	0.97	\$	0.30
	2040	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.31
	2041	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.30
	2042	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.28
	2043	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.27
	2044	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.26
	2045	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.25
	2046	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.23
	2047	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.22
	2048	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.21
	2049	51,603	46	0.80	17,775	\$ 1,244	\$	0.45	\$ 0.53	\$	0.080	\$	1.06	\$	0.20
	2050	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	0.21
	2051	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	0.20
	2052	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16		
	2053	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	0.18
	2054	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	0.17
	2055	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	0.17
	2056	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	0.16
	2057	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16		0.15
	2058	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	0.14
	2059	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53		0.080	\$	1.16	\$	0.14
	2060	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	S	1.16	S	0.13
	2061	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	0.12
	2062	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	0.53						0.12
	2063	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	\$	
	2064	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16 1.16	\$	0.11
	2065	62,804	56	0.97	21,633	\$ 1,514	\$	0.55	\$ 0.53	\$	0.080	\$	1.16	9	0.10

Total NPV of O&M Costs \$ 17.1

 Capital Costs in million \$:
 Yr built

 RWTM to Reservoir Intake/Pumping Stations
 \$ 47.0
 2015
 \$ 47.0
 \$ 36.6
 \$ 36.6
 Total NPV of Capital Costs
 \$ 83.6

Total NPV of Capital and O&M Costs in millions \$ 100.3

Reservoirs

	Quantity	Units	Volume/each (acre-feet)	-	nit Cost 6/ac-ft))	Con	Fotal struction ost in illions	tigency, g., etc.	otal in illions
Reservoirs	4	each	15000	\$	1,180	\$	70.8	\$ 26.9	\$ 97.7
				\$	0.004	per g	allon		
Estimated average den	th of reservoir	20	ft	S	1.096				

Surface area of reservoir	3000	acres	
Ratio of total land area reqd to surface area			
of reservoir	1.1		Envir & Archaeology, Surv,
Total land area regd for reservoirs	3300	acres	and Land Acq = 16.5
CONTRACTOR A AND ONE AND ONE ADDRESS AND A ADDRESS OF CONTRACTOR AND ADDRESS OF CONTRACTOR AND ADDRESS OF CONTRACTOR AND ADDRESS OF CONTRACTOR ADDRESS OF CONTRACTOR AND ADDRESS OF CONTRACTOR ADDRESS			Total capital cost in millions = \$ 114.2
Assumed life of reservoir	100	years	
Estimated replacement cost	\$ 0.71	million/year	
Estimated maintenance	\$ 0.04	million/year	Mowing, maintaining fences, etc.
Total	\$ 0.75	million/year	
Year built	2015		
NPV of O&M costs	\$ 12.8	million	
NPV of Capital costs	\$ 114.2	million	
Total NPV of Capital and O&M Costs	\$ 127.0	million	

Summary	 IPV of ital Costs	PV of O&M Costs	Ca	pital and
Inflatable Rubber Low Head Dam	\$ 6.2	\$ 3.9	\$	10.1
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$ 83.6	\$ 17.1	\$	100.7
Off Channel Reservoir	\$ 114.2	\$ 12.8	\$	127.0
Total for RWI A	\$ 204.0	\$ 33.8	\$	237.8

O&M Cost Calculations RWTM B - RWI B near Bastrop to WTP CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County

Initial year Interest rate Evaluation Unit cost of	period	eriod				nvironment	Engineering, al & Archaeo veying, and L	logy Studies	in. = s &	15%	•	per mile	
mmary of averag	je pumping	rates in ac	re-feet/ye	ar:									
Surface Water													
Year	2015	2020	2030	2040		2050	2060	2065					
For SAWS	18000	18000	18000	18000		18000	18000	18000					
COA			5600 16802	11200 22403		11200 33604	11200 33604	11200 33604					
Subtotal	18000	18000	40402	51603	-	62804	62804	62804					
Groundwater	10000		10.100					0200	5.1				
Year	2015	2020	2030	2040		2050	2060	2065					
For SAWS	55000	55000	55000	55000		55000	55000	55000	0	•			
Suface & groun	73000	73000	95402	106603		117804	117804	11780	4				
Ultimate (Y	2065) averaç	ge design p	oumping ra	te		117,804	ac-ft/year						
zing of Raw Wate	r Transmiss	sion Main I	B & Pump	Stations									
Inside diam	eter of RWT	M				84	in.						
Area						38.48							
Length of F	MTW						miles						
						105,600	feet						
Estimated	unit construc	tion cost fo	r RWTM		\$	467	per LF			\$	550		
	ruction cost i	in millions			\$	49.4							
Contingend					\$	9.9							
Engineerin	Subtotal g, Legal & Ac	dministrativ			\$	59.2							
Cudineeun	Subtotal	armeni strativ	e e		\$	8.9 68.1							
Envir & Arc	h Studies & I	Mitigation.	Surveying.	& Land Acq	Š	2.0							
	Total Capita				\$		million						
Unit mainte	nance cost/y	ear-mile			\$	5,000	\$/year-mile	\$ 0.	100	Milli	on \$/yea	r	
Design flow	rate (after 1	100% builde	out)				ac-ft/year						
							mgd						
D		-				73,029	gpm						
No. of pum	ite (one pum ps (not coun	ting spare)				15,000	gpm						
Peak flow r	ate (all pump	os except s	pare)			75,000	gpm						
Velocity at C factor	peak flow rat	te				4.34	fps						
Head loss	er foot					0.00067	ft/ft		hæ	134	552*QI	85	
1104411000							ft/mile				(d) ^{2.63}		
Head loss	at peak flow	rate				71	ft						
	for minor loss		10%			7			650	Elev	. At WT	P	
Total estim	ated losses					78	ft		400	Elev	of WSE	in Bastrop	eservoir
Average st						250			250	ft			
Total estim	ated dynamic	c head				328 142							
No of soco	nmended pu	mnina stati	ana alana	routo		0.95	- State of the sta		150	noi i	'aaauma	d max press	
	ping stations					1.0			150	in pi		u max press	ui o
	ad per pump					328					/		
	ump efficien					85%							
	notor efficien					90%	ha/a						
Estimated	Hp required p	bei pullip					hp/pump kw/pump						
Total hp pe	r pump statio	on (not cou	nting spare	e)			hp/station						
				along route)			kw/pump se	t (one pum	p at	each	station)		
Unit constr	action cost fo	or each pur	np station	(from cost cui	\$	1,307	per firm hp	of pump sta	tion				
	n cost per pu	ump station	1				million						
Balancing r					\$		million	1			of stora	ge at avg pu	mping rate
	Total constr	uction cost	per pump	station	\$	11.37	million	\$ 0	5.0		gal for o	pen top rese	rvoir
No. of pum	p stations fro	m above				1.0	each						
Total const	ruction cost i	in millions			\$	11.4	million						
	y, Eng., etc.				\$		million						
Contingend	ost in milli				\$		million						
Total capita													
Total capita	ruction cost f		tations		\$		million			_			- FI 87
Total capita	Value of equ	uipment			\$	4.5	million	5	40%	Esti	mated ed	quipment cos	st as % of to
Total capita		uipment e of equipn	nent	ent cost		4.5		15	40%	Esti	mated ed	quipment cos	st as % of to

O&M Costs

costs																
Yea	ar Flow pu	mped by ar	No. of pump "sets"	Energy used		Energy	cos	st	co	other O&M ests - Pump Stations		aintenance costs - RWTM	To	otal O&M cost	Ne	et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		/illion \$ /year)	d	(Million \$ /year))	(Million \$ /year)	(Million \$ /year)		(\$)
201	5 73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	3.33
201	6 73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	3.17
201	73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	3.02
201	73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.88
201		65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.74
202		65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.61
202		65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.49
202		65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.37
202		65	3.02	117,667	S	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.26
202		65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.15 2.05
202		65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	1.95
202		65 65	3.02 3.02	117,667	\$	8,237 8,237	5	3.01	\$	0.23	\$	0.100	S	3.33	\$	1.86
202		65	3.02	117,667 117,667	S	8,237	S	3.01	\$	0.23	\$	0.100	\$	3,33	\$	1.77
202		65	3.02	117,667	\$	8,237	Š	3.01	\$	0.23	5	0.100	\$	3.33	Š	1.68
203		85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	Š	4.26	\$	2.05
203		85	3.94	153,777	Š	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.95
203		85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	S	0.100	Š	4.26	s	1.86
203		85	3.94	153,777	Š	10,764	S	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.77
203		85	3.94	153,777	S	10,764	\$	3.93	\$	0.23	\$	0.100	s	4.26	\$	1.68
203		85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.60
203		85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.53
203	95,402	85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.46
203	95,402	85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.39
203	95,402	85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.32
204		95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	\$	1.39
204		95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	\$	1.33
204		95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	\$	1.26
204		95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	\$	1.20
204		95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	\$	1.15
204		95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	\$	1.09 1.04
204		95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72 4.72	\$	0.99
204		95 95	4.41 4.41	171,831 171,831	\$	12,028 12,028	S	4.39	S	0.23	S	0.100	\$	4.72	Š	0.94
20-		95	4.41	171,831	\$	12,028	Š	4.39	\$	0.23	S	0.100	s	4.72	Š	0.90
20		105	4.87	189,886	\$	13,292	s	4.85	s	0.23	\$	0.100	\$	5.18	Š	0.94
20		105	4.87	189,886	š	13,292	Š	4.85	Š	0.23	s	0.100	Š	5.18	Š	0.89
20		105	4.87	189,886	Š	13,292	Š	4.85	Š	0.23	\$	0.100	\$	5.18	S	0.85
20		105	4.87	189,886	\$	13,292	\$	4.85	s	0.23	S	0.100	\$	5.18	\$	0.81
20		105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.77
20		105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.74
20	56 117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	5	0.100	\$	5.18	\$	0.70
20	57 117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.67
20	58 117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.64
20		105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.61
20		105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.58
20		105	4.87	189,886	\$	13,292	\$	4.85	\$		\$	0.100	\$	5.18	\$	0.55
20		105	4.87	189,886	\$	13,292	\$	4.85	\$		\$	0.100	\$	5.18	\$	0.52
200		105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.50
200		105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.47
200	35 117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.45
												Total NPV	of C	D&M Costs	\$	74.9
			Capital Cos	sts in million S	5:					Yr built						
				RWTM	2000		\$	70.1		2015	•				\$	70.1
				Pumping St	atio	ns	\$	15.7		2015					\$	15.7
											-	Tatal NIDWA	10-	-11-1 0	•	00.0

Total NPV of Capital Costs \$ 85.8

Total NPV of Capital and O&M Costs in millions \$ 160.7

O&M Cost Calculations WTP and Raw Water Storage Reservoir at WTP CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County

Initial year of analysis period Interest rate Evaluation period Unit cost of energy

2015 5% 50 years \$ 0.07 per kwh

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition = \$ 25,000 per acre

Treated Water Production by Treatment Type (from Demand Chart - BE SURE TO CHECK)

		Year =	2015	2020	2030	2040	2050	2060	2065
Softened water demand:		Units							
Softened water demand; Average yearly demands:									
City of Austin LCRA		ac-ft/yr ac-ft/yr	0		16802 5600	22403 11200	33604 11200	33604 11200	33604 11200
Totals Totals		ac-ft/yr mgd	0	0		33603 30	44804 40	44804 40	44804
Max day demands: City of Austin		mgd	0			35	50	50	50
LCRA Totals		mgd	0			20	20	20	20
lotais		mgd	0	0	35	55	70	70	70
		Year =	2015	2020	2030	2040	2050	2060	2065
Non-softened water demands: Average yearly demands:		Units							
SAWS		ac-ft/yr	73000	205000		205000	205000	205000	205000
SARA		ac-ft/yr	20550	23406		31393	34411	37530	41128
GBRA	~	ac-ft/yr	0	0	0000	8000	10000	12300	12300
Totals Totals		mgd	93550 84	228406 204		244393 218	249411 223	254830 227	258428 231
Max day demands: SAWS			85	238	238	000	238	238	
SARA		mgd mgd	24	238		238 36	40	238	238
GBRA		mgd	0	0		7	9	11	11
Totals		mgd	109	265		281	287	293	297
Total: coffeeed and non-coffeeed western	r domanda								
Total: softened and non-softened water Average yearly demand	demands	ac-ft/yr mgd	93550 84	228406 204		277996 248	294215 263	299634 267	303232 271
Max day demand		mgd	109	265	311	336	357	363	367
Sizing for ultimate conditions: Assumed number of days of conse	cutive Max Day	demands	30	days					
Design (Max. Day) treated water pro		in mgd		mgd	(which is also a	equal to sum of	ground and raw	water that	
Average treated water production in Difference (shortfall of				mgd mgd	can be pumped	to the WTP)	ground und ran	notor that	
Required storage reservoir for raw			2,889	mg					
Add safety factor	25%		8,868 2,217	ac-ft ac-ft					
Total storage required			11,084	ac-ft					
Total storage recommended			12,000	ac-ft	Note: No. of (for exar	days at averag	e day demand of RWTM A) =	33 d	ays
	Quantity	Units	Volume/each (acre-feet)	Unit Cost (\$/ac-ft))	Total Construction	Contigency, Eng., etc.	Total Capital Cost		
Reservoirs	1	each	12,000	\$ 1,283	Cost \$ 15.4	\$ 5.9	\$ 21.3		
Estimated average depth of reservo Surface area of reservoir		25 480	ft acres						
Ratio of total land area reqd to surf	ace area	1.10				aeology, Surv,			
Total land area reqd for reservoirs		528	acres		Total capital cos	nd Land Acq = t in millions =	\$ 34.5		
Assumed life of reservoir		100	years						
Estimated replacement cost Estimated maintenance Total		\$ 0.04	million/year million/year million/year	Mowing, main	taining fences, e	tc.			
Year built		2015							
NPV of O&M costs NPV of Capital costs			million million						
Total NPV of Capital and O&M Cos	ts	\$ 38.0	million						v.

WTP

Plant Phasing and Capital Costs:

Softening Treatment Trains															
Year =		2015	_	2020		2030	_	2040	_	2050	_	20		-	2065
Average treated water production in mgd		0		0		20		30			0		40		40
Design (Max. Day) treated water production req'd in mgd		0)	0		35		55		7	0		70		70
Initial/additional Max day capacity built (mgd)		2.		200		50		20		100			1000		10000
Total capacity on line (must exceed Design Max Day Req'd)		0		0		50		70		7	0		70		70
Unit cost for max day treatment capacity (\$/gpd of capacity)					\$	1.78	\$	2.14							
Estimated construction cost of expansion in \$millions	\$		\$	-	\$	89.0	\$	42.8	\$	-	\$	\$	-	\$	
Non-softening Treatment Trains								1221227		12.522		22			
Year =		2015	_	2020		2030	_	2040	_	2050		20			2065
Average treated water production in mgd		84		204		214		218		22			227		231
Design (Max. Day) treated water production req'd in mgd		109		265		276		281		28	7		293		297
Additional Max day capacity built (mgd)		200		100											
Total capacity on line (must exceed Design Max Day Req'd)		200		, 300		300		300		30	0		300		300
Unit cost for max day treatment capacity (\$/gpd of capacity)	\$	1.15	\$	1.32											
Estimated construction cost of expansion in \$millions	\$	229.6	\$	131.5	\$		\$	-	\$		\$	5	•	\$	
Totals (Softening + Non-softening Trains)															
Year =		2015		2020		2030		2040		2050		20	60		2065
Total construction cost for both trains	S	229.6	S		\$		\$		s	-	5		-	S	-
Contingencies		45.9		26.3	•	17.8	•	8.6	*					•	
Subtotal	\$	275.5	\$		\$		S		\$		-			S	
Engineering, Legal, & Administrative		41.3	•	23.7	-	16.0	•	7.7	*				-		-
Subtotal		316.8	-	181.5		122.8	-	59.0			-	-			
Environmental & Archaelogy Studies and Mitigation & Land		010.0		101.5		122.0		55.0							
Acquisition and Surveying (see Note below)		2.5													
Total estimated capital cost	\$	319.3	\$	181.5	\$	122.8	\$	59.0	\$	-	5	3	-	\$	-
NPV of capital cost		\$ 319.3		\$ 142.2		\$ 59.1		\$ 17.4		\$ -		\$	÷		\$ -
Total NPV of WTP initial construction & expansions	\$	538													
Note: Assumed land requirement for WTP (not including reserve		100	ac	cres											

Year	Plant Capacity in service	treated water production	Est	imated C unit co	-	cost from urve	N	et present value	Year	Year Plant Capacity in service Estimated treated water production Estimated O&M cost fro unit cost curve		cost curve		Ne	t prese value		
	mgd of capacity	mgd produced		per mg reated		million /year	nes-	(\$)		mgd of capacity	mgd produced		per mg treated	\$mi	llion /year		(\$)
2015	-	•			\$		\$	-	2015	200	84	\$	374	\$	11.41	\$	11.
2016	*				\$	-	\$		2016	200	84	\$	374	\$	11.41	\$	10
2017	-	•			\$	-	\$	106	2017	200	84	\$	374	\$	11.41	\$	10
2018	-	/# S			\$	-	\$		2018	200	84	\$	374	\$	11.41	\$	9
2019	4	-			\$	-	\$		2019	200	84	\$	374	\$	11.41	\$	9
2020	-	-			\$	-	\$	-	2020	300	204	\$	343	\$	25.50	\$	19
2021	-	-			\$		\$		2021	300	204	\$	343	\$	25.50	\$	19
2022		-			\$		\$	-	2022	300	204	\$	343	\$	25.50	\$	18
2023	-	-			S	-	S	-	2023	300	204	S	343	\$	25.50	S	17
2024		-			s	-	\$		2024	300	204	\$	343	S	25.50	S	16
2025	_				Š		Ś		2025	300	204	Š	343	Š	25.50	\$	15
2026	-				Š	-	\$		2026	300	204	\$	343	Š	25.50	Š	14
2020					S		S		2027	300	204	\$	343	Š	25.50	\$	14
2028	70				S	-	\$		2028	300	204	\$	343	s	25.50	\$	13
	-	-				-		•			204						
2029		-		240	\$		\$		2029	300		\$	343	\$	25.50	\$	12
2030	50	20	\$	712	\$	5.20	\$	2.50	2030	300	214	\$	343	\$	26.73	\$	12
2031	50	20	\$	712	\$	5.20	\$	2.38	2031	300	214	\$	343	\$	26.73	\$	12
2032	50	20	\$	712	\$	5.20	\$	2.27	2032	300	214	\$	343	\$	26.73	\$	11
2033	50	20	\$	712	\$	5.20	\$	2.16	2033	. 300	214	\$	343	\$	26.73	\$	11
2034	50	20	\$	712	\$	5.20	\$	2.06	2034	300	214	\$	343	\$	26.73	\$	10
2035	50	20	\$	712	\$	5.20	\$	1.96	2035	300	214	\$	343	\$	26.73	\$	10
2036	50	20	\$	712	\$	5.20	\$	1.87	2036	300	214	\$	343	\$	26.73	\$	8
2037	50	20	\$	712	\$	5.20	\$	1.78	2037	300	214	\$	343	\$	26.73	\$	5
2038	50	20	\$	712	\$	5.20	\$	1.69	2038	300	214	\$	343	\$	26.73	\$	8
2039	50	20	S	712	\$	5.20	\$	1.61	2039	300	214	\$	343	\$	26.73	\$	8
2040	70	30	S	661	S	7.24	\$	2.14	2040	300	218	S	343	S	27.28	\$	8
2041	70	30	\$	661	5	7.24	\$	2.04	2041	300	218	s	343	s	27.28	S	7
2042	70	30	s	661	Š	7.24	\$	1.94	2042	300	218	Š	343	s	27.28	\$	- 7
2043	70	30	Š	661	\$	7.24	\$	1.85	2043	300	218	Š	343	\$	27.28	Š	6
2044	70	30	š	661	\$	7.24	\$	1.76	2044	300	218	Š	343	Š	27.28	Š	ě
2045	70	30	š	661	\$	7.24	\$	1.68	2045	300	218	\$	343	Š	27.28	Š	e
2045	70	30	Š	661	S	7.24	\$	1.60	2046	300	218	\$	343	Š	27.28	Š	è
2046	70	30		661	\$	7.24	\$	1.52	2047	300	218	\$	343	\$	27.28	\$	
	70	30	\$	661		7.24	\$	1.45		300	218		343	Š	27.28		
2048			\$		\$				2048			\$				\$	5
2049	70	30	\$	661	\$	7.24	\$	1.38	2049	300	218	\$	343	\$	27.28	\$	5
2050	70	40	\$	661	\$	9.65	\$	1.75	2050	300	223	\$	343	S	27.84	\$	
2051	70	40	\$	661	\$	9.65	\$	1.67	2051	300	223	\$	343	\$	27.84	\$	4
2052	70	40	\$	661	\$	9.65	\$	1.59	2052	300	223	\$	343	\$	27.84	\$	4
2053	70	40	\$	661	\$	9.65	\$	1.51	2053	300	223	\$	343	\$	27.84	\$	4
2054	70	40	\$	661	\$	9.65	\$	1.44	2054	300	223	\$	343	\$	27.84	\$	4
2055	70	40	\$	661	\$	9.65	\$	1.37	2055	300	223	\$	343	\$	27.84	\$:
2056	70	40	\$	661	\$	9.65	\$	1.31	2056	300	223	\$	343	\$	27.84	\$	3
2057	70	40	\$	661	\$	9.65	\$	1.24	2057	300	223	\$	343	\$	27.84	\$	3
2058	70	40	\$	661	\$	9.65	\$	1.18	2058	300	223	\$	343	\$	27.84	\$	3
2059	70	40	\$	661	\$	9.65	\$	1.13	2059	300	223	\$	343	\$	27.84	\$	3
2060	70	40	\$	661	\$	9.65	\$	1.07	2060	300	227	\$	343	\$	28.45	\$	3
2061	. 70	40	\$	661	s	9.65	\$	1.02	2061	300	227	\$	343	\$	28.45	\$	3
2062	70	40	Š	661	\$	9.65	\$	0.97	2062	300	227	Š	343	š	28.45	Š	-
2063	70	40	Š	661	Š	9.65	Š	0.93	2063	300	227	š	343	š	28.45	S	- 1
2064	70	40	Š	661	Š	9.65	Š	0.88	2064	300	227	\$	343	š	28.45	Š	2
2065	70	40	Š	661	\$	9.65	Š	0.84	2065	300	231	Š	343	Š	28.85	\$	2
2000	, 0	40	φ	001	4	0.00	φ	0.04	2003	300	231	4	040	9	20.00	Ψ	- 4

NPV Totals for O&M:

A:
Softening trains
Non-softening Trains
\$

Summary

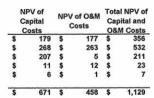
Raw Water Reservoir Water Treatment Plant Totals

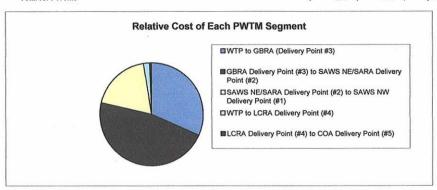
PV of al Costs	 of O&M costs	Ca	al NPV of oital and M Costs
\$ 34	\$ 3.5	\$	38
\$ 538	\$ 499	\$	1,037
F70	F02		4.075

Capital and O&M Cost Calculations Potable Water Transmission Mains CTRWTP - Alternate 3A - WTP in Northern Corner of Caldwell County

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition
\$ 100,000 per mile

Summary of Demands


Average demands to be delivered in each segment


		in acre-reet/ye	CII			
2015	2020	2030	2040	2050	2060	2065
43800	123000	123000	123000	123000	123000	123000
29200	82000	82000	82000	82000	82000	82000
73000	205000	205000	205000	205000	205000	205000
20550	23406	28433	31393	34411	37530	41128
		6000	8000	10000	12300	12300
		5600	11200	11200	11200	11200
		16802	22403	33604	33604	33604
93550	228406	261835	277996	294215	299634	303232
	43800 29200 73000 20550	43800 123000 29200 82000 73000 205000 20550 23406	2015 2020 2030 43800 123000 123000 29200 82000 82000 73000 205000 205000 20550 23406 28433 6000 5600 16802	2015 2020 2030 2040 43800 123000 123000 123000 29200 82000 82000 82000 73000 205000 205000 205000 20550 23406 28433 31393 6000 8000 5600 11200 16802 22403	2015 2020 2030 2040 2050 43800 123000 123000 123000 123000 29200 82000 82000 82000 82000 73000 205000 205000 205000 205000 20550 23406 28433 31393 34411 6000 8000 10000 5600 11200 11200 16802 22403 33604	2015 2020 2030 2040 2050 2080 43800 123000 123000 123000 123000 123000 123000 123000 2000 820

Summary

WTP to GBRA (Delivery Point #3)
GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2)
SAWS NE/SARA Delivery Point (#1)
WTP to LCRA Delivery Point (#4)
LCRA Delivery Point (#4)

Total for PWTMs

WTP to GBRA (Delivery Point #3) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment

Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
GBRA	0	0	5	7	9	11	11	2.0
SAWS NE	26	73	73	73	73	73	73	1.3
SARA	18	21	25	28	31	34	37	1.3
SAWS NW	39	110	110	110	110	110	110	1.3
Total	84	204	214	218	223	227	231	

Max day demands to be delivered in each segment in mgd												
Year	2015	2020	2030	2040	2050	2060	2065					
GBRA	0	0	11	14	18	22	22					
SAWS NE	34	95	95	95	95	95	95					
SARA	24	27	33	36	40	44	48					
SAWS NW	51	143	143	143	143	143	143					
Total	109	265	282	289	296	303	308					

PWTM and Pump Station Costs

Design flow rate - year 2065 308 mgd 213,603 gpm	FWIM and Fullip Station Costs								
Pumping capacity of one pump 21,500 gpm 10	Design flow rate - year 2065				308	mgd			
No. of pumps (not counting spare)									
Peak flow rate (all pumps except spare) 215,000 gpm	Pumping capacity of one pump				21,500	gpm			
Total construction cost in millions	No. of pumps (not counting spare)				10				
Area 78.54 25	Peak flow rate (all pumps except spare	e)			215,000	gpm			
Length of PWTM	Inside diameter of PWTM				120	in.			
Subtotal Subtota Sub	Area				78.54	sf			
Estimated unit cost by condition: Sof length LE Unit cost Cost	Length of PWTM				25	mile	S	(linked to mile	eage in schematic above)
Rural - soil 100% 132,000 \$ 783 \$ 103.3 million	Total Control of the	100 - 100 - 100 - 100	Index and a	ATT I	132,000	feet	100		•
Rural - soil 100% 132,000 783 103.3 million	Estimated unit cost by condition:	% of length	LE	1	Unit cost		Cost		
Urban - rock 0% - \$ 1,186 \$ - \$ 103.3 million Average estimated unit construction cost for PWTM \$ 783 per LF Total construction cost in millions \$ 103.3 contingencies Contingencies \$ 20.7 subtotal Subtotal \$ 124.0	Rural - soil	100%		\$	783	\$	103.3	million	
132,000	Rural - rock	0%		\$	1,048	\$			
Average estimated unit construction cost for PWTM \$ 783 per LF Total construction cost in millions \$ 103.3 Contingencies \$ 20.7 Subtotal \$ 124.0	Urban - rock	0%	on the	\$	1,186	\$			
Total construction cost in millions \$ 103.3 Contingencies \$ 20.7 Subtotal \$ 124.0			132,000			\$	103.3	million	
Contingencies \$ 20.7 Subtotal \$ 124.0	Average estimated unit construction c	ost for PWTM		\$	783	per I	F		
Contingencies \$ 20.7 Subtotal \$ 124.0	Total construction cost in millions			s	103.3				
Subtotal \$ 124.0				S					
Engineering, Legal & Administrative \$ 18.6				\$		-			
	Engineering, Legal & Administrative			\$	18.6				

Total construction cost in millions		\$	103.3			
Contingencies		\$	20.7			
Subtotal		\$	124.0	•		
Engineering, Legal & Administrative		\$	18.6			
Subtotal		\$	142.6			
Envir & Arch Studies & Mitigation, Surve	ying, & Land Acq	\$	2.5			
Total Capital Cost for PWTM	in millions	\$	145.1			
Unit maintenance cost/year-mile		\$	10,000	\$/year-mile	\$ 0.250	Million \$/year
Velocity at peak flow rate			6.10	fps		
C factor			120			
Head loss per foot			0.00083	ft/ft	h _f =	13.552*Q 1.85
			4.40	ft/mile	100	C*(d) ^{2.63}
Head loss at peak flow rate			110	100	700	
Allowance for minor losses	20%	-	22			Desired HGL At Delivery Point
Total estimated losses			132		200	Elev. At WTP
Average static head			332		200	π
Total estimated dynamic head						
			144	psi		
No of recommended pumping stations a			0.96		150	psi (assumed max pressure
No. of pumping stations used in cost est	imate		1			in pipe)
Average head per pump station			332	ft		
Assumed pump efficiency			85%			
Assumed motor efficiency			90%			
Estimated Hp required per pump			2,356	hp/pump		
			1,757	kw/pump		
Total hp per pump station (not counting	spare)		23,559	firm hp/station	6	
Total kw per pump set (set=pumps in se	eries along route)		2,356	kw/pump set	(one pump at	each station)
Unit capital cost for each pump station (from cost curve)	S	1.047	per firm hp of	pump station	
Construction cost per pump station	v.,	10000000		million		

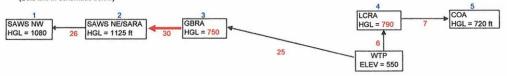
24.7

for _____ pump stations

Total construction cost for pump stations

Contingencies
Subtotal
Engineering, Legal & Administrative
Total capital cost for pump stations

10 million 20 years 0.49 million/year Value of equipment Assumed life of equipment Estimated maintenance/replacement cost


40% Estimated equipment cost as % of total

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	у со	st	co	ther O&M sts - Pump Stations		aintenance costs - PWTM	Т	otal O&M cost	Ne	et present value
	mgd		(kwh/day)		(\$/day)		Million \$ /year)		(Million \$ /year)	_	(Million \$ /year)		(Million \$ /year)		(\$)
2015	84	2.70	152,511	\$	10,676	\$	3.90	\$	0.49	\$	0.250	\$	4.64	\$	4.64
2016	84	2.70	152,511	\$	10,676	\$	3.90	\$	0.49	\$	0.250	\$	4.64	\$	4.42
2017	84	2.70	152,511	\$	10,676	\$	3.90	\$	0.49	\$	0.250	\$	4.64	\$	4.21
2018	84	2.70	152,511	\$	10,676	\$	3.90	\$	0.49	\$	0.250	\$	4.64	\$	4.01
2019	84	2.70	152,511	\$	10,676	\$	3.90	\$	0.49	\$	0.250	\$	4.64	\$	3.82
2020	204	6.59	372,362	\$	26,065	\$	9.51	\$	0.49	\$	0.250	\$	10.26	\$	8.04
2021	204	6.59	372,362	\$	26,065	\$	9.51	\$	0.49	\$	0.250	\$	10.26	\$	7.65
2022	204	6.59	372,362	\$	26,065	\$	9.51	\$	0.49	\$	0.250	\$	10.26	\$	7.29
2023	204	6.59	372,362	\$	26,065	\$	9.51	\$	0.49	\$	0.250	\$	10.26	\$	6.94
2024	204	6.59	372,362	\$	26,065	\$	9.51	\$	0.49	\$	0.250	\$	10.26	\$	6.61
2025	204	6.59	372,362	\$	26,065	\$	9.51 9.51	\$	0.49	\$	0.250	\$	10.26 10.26	5	6.30
2026	204	6.59	372,362		26,065									\$	
2027 2028	204 204	6.59 6.59	372,362 372,362	\$	26,065	\$	9.51 9.51	\$	0.49	\$	0.250 0.250	\$	10.26 10.26	\$	5.71 5.44
2028	204	6.59		S	26,065 26,065	\$	9.51	\$	0.49	S	0.250	\$	10.26	S	5.44
		100000000000000000000000000000000000000	372,362	\$		\$	9.51	\$	0.49	\$	0.250	5	10.26	\$	5.15
2030	214 214	6.90 6.90	390,339 390,339	\$	27,324 27,324	\$	9.97	S	0.49	\$	0.250	5	10.72	\$	4.91
2032	214	6.90		\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	4.68
2032	214	6.90	390,339 390,339	\$		\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	4.45
2034	214	6.90	390,339	\$	27,324 27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	4.43
2034	214	6.90	390,339	5	27,324	\$	9.97	\$	0.49	s	0.250	\$	10.72	\$	4.24
2035	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	3.85
2036	214	6.90	390,339	\$	27,324	\$	9.97	Š	0.49	\$	0.250	\$	10.72	\$	3.66
2037	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	3.49
2039	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	3.49
2040	218	7.05	398,425	\$	27,890	S	10.18	Š	0.49	\$	0.250	S	10.72	S	3.23
2040	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	3.23
2041	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.93
2042	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.79
2043	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	Š	0.250	\$	10.92	\$	2.65
2045	218	7.05	398,425	Š	27,890	S	10.18	Š	0.49	Š	0.250	S	10.92	\$	2.53
2046	218	7.05	398,425	Š	27,890	\$	10.18	s	0.49	Š	0.250	\$	10.92	S	2.41
2047	218	7.05	398,425	Š	27,890	Š	10.18	Š	0.49	Š	0.250	\$	10.92	Š	2.29
2048	218	7.05	398,425	\$	27,890	Š	10.18	Š	0.49	Š	0.250	\$	10.92	Š	2.18
2049	218	7.05	398,425	Š	27,890	\$	10.18	Š	0.49	Š	0.250	Š	10.92	\$	2.08
2050	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	S	0.250	\$	11.13	\$	2.02
2051	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	Š	0.250	\$	11.13	\$	1.92
2052	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.83
2053	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.74
2054	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.66
2055	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.58
2056	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.51
2057	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.43
2058	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.37
2059	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.30
2060	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.26
2061	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.20
2062	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.15
2063	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.09
2064	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.04
2065	231	7.45	421,305	\$	29,491	\$	10.76	\$	0.49	\$	0.250	\$	11.51	\$	1.00
											Total NPV	of (O&M Costs	\$	177
		Capital Costs	in million \$:						Yr built						
			PWTM			\$	145	-	2015	9				\$	145
			Pumping Stat	ion	S	\$	34		2015					\$	34
					777	17.				-	C-1-1 NIDA / -	10	apital Costs	8	179

Total NPV of Capital and O&M Costs in millions \$ WTP to GBRA (Delivery Point #3)

GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment

D			

Average demands to be delivered in each segment in mgd							
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NE	26	73	73	73	73	73	73
SARA	18	21	25	28	31	34	37
SAWS NW	39	110	110	110	110	110	110
Total	84	204	208	211	214	217	220

Max d/Avg d
1.3
1.3
1.3

Max day demands to be delivered in each segment in mgd							
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NE	34	95	95	95	95	95	95
SARA	24	27	33	36	40	44	48
SAWS NW	51	143	143	143	143	143	143
Total	109	265	271	274	278	281	286

PWTM and Pump Station Costs

	158,400	feet
Length of PWTM		miles
Area	78.54	sf
Inside diameter of PWTM	120	in.
Peak flow rate (all pumps except spare)	200,000	gpm
No. of pumps (not counting spare)	10	
Pumping capacity of one pump	20,000	gpm
	198,353	gpm
Design flow rate - year 2065	286	mgd

(linked to mileage in schematic above)

Estimated unit cost by condition:	% of length	LF	U	nit cost	Cost	
Rural - soil	50%	79,200	\$	783	\$ 62.0	million
Rural - rock	25%	39,600	\$	1,048	\$ 41.5	
Urban - rock	25%	39,600	\$	1,186	\$ 46.9	
		158,400	1000		\$ 150.5	million

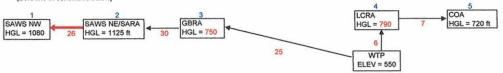
Total construction cost in millions	\$ 150.5
Contingencies	\$ 30.1
Subtotal	\$ 180.6
Engineering, Legal & Administrative	\$ 27.1
Subtotal	\$ 207.6
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 3.0
Total Capital Cost for PWTM in millions	\$ 210.6

Total Capital Cost for F VV III III IIIIIIOIla	•	210.0		
Unit maintenance cost/year-mile	\$	10,000	\$/year-mile	\$ 0.300 Million \$/year
Velocity at peak flow rate C factor		5.67 120	fps	
Head loss per foot		0.00073	ft/ft ft/mile	$h_{i}= 3.552*Q ^{1.85}$ $ C*(d)^{2.63} $
		5.05	TOTTING	1 C-(a) 1

Head loss at peak flow rate		115 ft	
Allowance for minor losses	20%	23 ft	1125 Desired HGL At Delivery Point
Total estimated losses		139 ft	750 HGL At Delivery Point 3
Average static head		375 ft	375 ft
Total estimated dynamic head		514 ft	

Total estimated dynamic head	514 ft	
	223 psi	
No of recommended pumping stations along route	1.48	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	2	in pipe)
Average head per pump station	257 ft	
Assumed pump efficiency	85%	
Assumed motor efficiency	90%	

Assumed motor efficiency	90%	i e
Estimated Hp required per pump	1,695	hp/pump
	1,265	kw/pump
Total hp per pump station (not counting spare)	16,951	firm hp/station


Total kw per pump station (not counting spare) Total kw per pump set (set=pumps in series along route)	3,390 kw/pump set (one pump at each station)
Unit construction cost for each pump station (from cost curve) Construction cost per pump station	\$ 1,127 per firm hp of pump station 19.1 million

Total construction cost for pump stations	38.2	for	2	pump stations

Contingen	Subtotal ng, Legal & Adm	inistrative	ations in millio	ns	,	\$ \$ \$	7.6 45.9 6.9 52.7	mill	ion						
		381 (8									40%	Equ	ip cost as	% of	constr cost
	Value of equip Assumed life of					\$	15	mill							
	Estimated mai		cement cost			\$	0.76	mill	ion/year						
O&M Cos	ts														
	Flow pumped														
	by year	No. of pump "sets"	Energy		_				ther O&M		intenance	Т	otal O&M	Ne	t present
Year	(average	operating	used		Energ	y cos	st		sts - Pump Stations	(costs - PWTM		cost		value
	flows from Table above)	/day						35	Stations		PAALIAI				
			0		(014)	(1)	Million \$	(Million \$	(Million \$	(Million \$		(6)
	mgd		(kwh/day)		(\$/day)		/year)		/year)	_	/year)	-	/year)	_	(\$)
2015 2016	84 84	2.90 2.90	235,928 235,928	\$	16,515 16,515	\$	6.03	\$	0.76 0.76	\$	0.300	\$	7.09 7.09	\$	7.09 6.75
2017	84	2.90	235,928	\$	16,515	\$	6.03	\$	0.76	\$	0.300	\$	7.09	\$	6.43
2018	84	2.90	235,928	\$	16,515	\$	6.03	\$	0.76	\$	0.300	\$	7.09	\$	6.13
2019	84	2.90	235,928	\$	16,515	\$	6.03	\$	0.76	\$	0.300	\$	7.09	\$	5.83
2020	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	12.37 11.78
2021 2022	204 204	7.08 7.08	576,028 576,028	\$	40,322 40,322	\$	14.72 14.72	\$	0.76 0.76	S	0.300	\$	15.78 15.78	\$	11.76
2022	204	7.08	576,028	\$	40,322	\$	14.72	Š	0.76	\$	0.300	\$	15.78	\$	10.68
2024	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	10.17
2025	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	9.69
2026	204	7.08	576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	9.23
2027	204 204	7.08 7.08	576,028	\$	40,322 40,322	\$	14.72 14.72	\$	0.76 0.76	\$	0.300	\$	15.78 15.78	\$	8.79 8.37
2028 2029	204	7.08	576,028 576,028	\$	40,322	\$	14.72	\$	0.76	\$	0.300	\$	15.78	\$	7.97
2030	208	7.24	588,706	\$	41,209	S	15.04	\$	0.76	\$	0.300	\$	16.11	\$	7.75
2031	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	7.38
2032	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	7.03
2033	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	6.69
2034 2035	208 208	7.24 7.24	588,706 588,706	\$	41,209 41,209	\$	15.04 15.04	\$	0.76	\$	0.300	\$	16.11 16.11	\$	6.37 6.07
2035	208	7.24	588,706	\$	41,209	\$	15.04	S	0.76	\$	0.300	\$	16.11	\$	5.78
2037	208	7.24	588,706	\$	41,209	Š	15.04	S	0.76	\$	0.300	\$	16.11	\$	5.51
2038	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	5.24
2039	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	4.99
2040	211	7.33	596,171	\$	41,732	\$	15.23 15.23	\$	0.76 0.76	\$	0.300	\$	16.30 16.30	\$	4.81 4.58
2041 2042	211 211	7.33 7.33	596,171 596,171	\$	41,732 41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	4.36
2042	211	7.33	596,171	\$	41,732	\$	15.23	Š	0.76	Š	0.300	\$	16.30	\$	4.16
2044	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.96
2045	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.77
2046	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	3.59 3.42
2047 2048	211 211	7.33 7.33	596,171 596,171	\$	41,732 41,732	\$	15.23 15.23	\$	0.76 0.76	\$	0.300	\$	16.30 16.30	\$	3.42
2049	211	7.33	596,171	S	41,732	S	15.23	\$	0.76	Š	0.300	\$	16.30	\$	3.10
2050	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.99
2051	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.85
2052	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.71
2053	214 214	7.42 7.42	603,782	\$	42,265	\$	15.43 15.43	\$	0.76	\$	0.300	\$	16.49 16.49	\$	2.58
2054 2055	214	7.42	603,782 603,782	\$	42,265 42,265	S	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.40
2056	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.23
2057	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.12
2058	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	2.02
2059	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76 0.76	\$	0.300	\$	16.49 16.69	\$	1.93 1.86
2060 2061	217 217	7.52 7.52	611,648 611,648	\$	42,815 42,815	\$	15.63 15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.77
2062	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.69
2063	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.60
2064	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.53
2065	220	7.63	620,722	\$	43,451	\$	15.86	\$	0.76	\$	0.300	\$	16.92	\$	1.48
											Total NPV	of C	0&M Costs	\$	268.5
		Capital Costs				s	210.6	-	Yr built 2015					s	210.6
			PWTM Pumping Stat	ion	s	\$	52.7		2015					\$	52.7
			pang otal		70	*	V			T	otal NPV o	f Ca	pital Costs	\$	263.4

Total NPV of Capital and O&M Costs in millions \$ 532
GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2)

SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment

Demands

Average demands to be delivered in each segment in mgd									
Year	2015	2020	2030	2040	2050	2060	2065		
SAWS NW	39	110	110	110	110	110	110		
Total -	39	110	110	110	110	110	110		

Max d/Avg d

Max day demands to be delivered in each segment in mgd									
Year	2015	2020	2030	2040	2050	2060	2065		
SAWS NW	51	143	143	143	143	143	143		
Total	51	143	143	143	143	143	143		

PWTM and Pump Station Costs

Design flow rate - year 2065	143	mgd
And the state of t	99,125	gpm
Pumping capacity of one pump	20,000	gpm
No. of pumps (not counting spare)	5	
Peak flow rate (all pumps except spare)	100,000	gpm
Inside diameter of PWTM	120	in.
Area	78.54	sf
Length of RWTM	26	miles

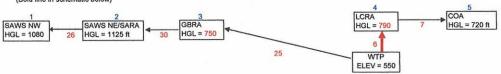
26 miles 137,280 feet (linked to mileage in schematic above)

Estimated unit cost by condition:	% of length	LE	U	nit cost		Cost	
Rural - soil	15%	20,592	\$	783	\$	16.1	million
Rural - rock	35%	48,048	\$	1,048	\$	50.4	
Urban - rock	50%	68,640	\$	1,186	\$	81.4	
		137,280			S	147.9	million

Total construction cost in millions	\$ 147.9
Contingencies	\$ 29.6
Subtotal	\$ 177.4
Engineering, Legal & Administrative	\$ 26.6
Subtotal	\$ 204.1
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 2.6
Total Capital Cost for PWTM in millions	\$ 206.7

	19000190001			
Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile	\$ 0.260	Million \$/year
Valority at peak flow rate	2 84	foe		

Velocity at peak flow rate C factor		2.84	fps	
Head loss per foot		0.00020	ft/ft	h _f = 3.552*Q ^{1.85}
		1.07	ft/mile	C*(d) ^{2.63}
Head loss at peak flow rate		28	ft	
Allowance for minor losses	20%	6	ft	1080 Desired HGL At Delivery Point
Total estimated losses		33	ft	1125 HGL At Delivery Point 2
Average static head		-45	ft	-45 ft
Total estimated dynamic head		-12	ft	


Negative indicates gravity flow from #2 to #1; no pumping necessary.

-5 psi

						M	fillion \$
Annual O&M	Annual O&M Cost in million \$:			Yr built		M. Contain	
	PWTM	\$	0.260	2015	-		
					Total NPV of O&M Costs		\$4.7
Capital Costs	in million \$:			Yr built			
	PWTM	\$	206.7	2015	-	\$	206.7
					Total NPV of Capital Costs	\$	206.7

Total NPV of Capital and O&M Costs in millions \$
SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1)

WTP to LCRA Delivery Point (#4) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

0.060 Million \$/year

Demands for this pipe segment Demands

Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
LCRA	0	0	5	10	10	10	10	2.0
COA	0	0	15	20	30	30	30	1.68
Total	0	0	20	30	40	40	40	

Max day demands to be delivered in each segment in mgd									
Year	2015	2020	2030	2040	2050	2060	2065		
LCRA	0	0	10	20	20	20	20		
COA	0	0	25	34	50	50	50		
Total	0	0	35	54	70	70	70		

PWTM and Pump Station Costs

Unit maintenance cost/year-mile

Velocity at peak flow rate

Design flow rate - year 2065	70	mgd	
	48,883	gpm	
Pumping capacity of one pump	10,000	gpm	
No. of pumps (not counting spare)	5		
Peak flow rate (all pumps except spare)	50,000	gpm	
Inside diameter of PWTM	60	in.	
Area	19.64	sf	
Length of RWTM	6	miles	(linked to mileage in schematic above)
2	31,680	feet	
			Divining had been brooked

Estimated unit cost by condition:	% of length	LF	Un	it cost	Co	st	
Rural - soil	100%	31,680	\$	282	\$	8.9	million
Rural - rock	0%		\$	388	\$	1	
Urban - rock	0%		\$	427	\$		
		31,680			\$	8.9	million
Average estimated unit construction	cost for PWTM		s	282	per LF		

Total construction cost in millions	\$ 8.9
Contingencies	\$ 1.8
Subtotal	\$ 10.7
Engineering, Legal & Administrative	\$ 1.6
Subtotal	\$ 12.3
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 0.6
Total Capital Cost for PWTM in millions	\$ 12.9

C factor		120			
Head loss per foot		0.00163	ft/ft	h _f =	3.552*Q ^{1.85}
		8.63	ft/mile		C*(d) ^{2.63}
Head loss at peak flow rate		52	ft		
Allowance for minor losses	20%	10	ft	790	Desired HGL At Delivery Point
Total estimated losses		62	ft	550	Elev. At WTP
Average static head		240	ft	240	ft
Total estimated dynamic head		302	ft		
The state of the s		131	psi		

10,000 \$/year-mile

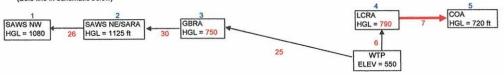
5.67 fps

302	ft	
131	psi	
0.87		150 psi (assumed max pressure
1		in pipe)
302	ft	
85%		
90%		
997	hp/pump	
744	kw/pump	
4,987	firm hp/station	ı.
997	kw/pump set	(one pump at each station)
	131 0.87 1 302 85% 90% 997 744 4,987	1 302 ft 85% 90% 997 hp/pump 744 kw/pump 4,987 firm hp/station

Unit construction cost for each pump station (from cost curve)	S	1,426	per firm hp of pump station
Construction cost per pump station		7.1	million

Construction cost per pump station	7.1 Itimilo			
Total construction cost for pump stations	7.1	for	1	pump stations
Contingencies	\$ 1.4			
Subtotal	\$ 8.5			
Engineering, Legal & Administrative	\$ 1.3			

9.8 million Total capital cost for pump stations \$ 40% Equip cost as % of constr cost 2.8 million 20 years 0.14 million/year


Value of equipment Assumed life of equipment Estimated maintenance/replacement cost

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	gy c	cost		Other O&M osts - Pump Stations		aintenance costs - PWTM		tal O&M cost	Ne	et prese value
	mgd		(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year)	((Million \$		tillion \$ (year)		(\$)
2015				-					114411	-	///	\$	-	\$	-
2016												\$	2	\$	-
2017												\$	-	\$	
2018												\$	-	\$	-
2019												s	2	\$	
2020												\$		\$	-
2021												\$	-	\$	-
2022												\$	2	\$	12
2023												Š	- 9	\$	
2023												\$	- 1	Š	- 7
2025												\$		\$	-
													-	\$	
2026												\$		200	
2027												\$		\$	-
2028												\$	- 2	\$	-
2029						100						\$		\$	
2030	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.
2031	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.4
2032	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.4
2033	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	S	1.05	\$	0.
2034	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.4
2035	20	1.39	33,241	5	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.4
2036	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.3
2037	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.3
2038	20	1.39	33,241	\$	2,327	\$	0.85	s	0.14	\$	0.060	\$	1.05	\$	0.
2039	20	1.39	33,241	Š	2,327	S	0.85	Š	0.14	Š	0.060	S	1.05	\$	0.3
2040	30	2.08	49,862	\$	3,490	\$	1.27	Š	0.14	\$	0.060	\$	1.48	\$	0.4
2040	30	2.08	49,862	S	3,490	S	1.27	\$	0.14	S	0.060	\$	1.48	s	0.4
2042	30	2.08	49,862	Š	3,490	Š	1.27	Š	0.14	Š	0.060	S	1.48	\$	0.4
2042	30	2.08		\$		\$		S		S		\$		\$	0.
		P. T. C.	49,862		3,490	-	1.27		0.14		0.060		1.48		
2044	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.3
2045	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.3
2046	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.
2047	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.
2048	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.
2049	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.
2050	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2051	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2052	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2053	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2054	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2055	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	S	1.90	\$	0.
2056	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	s	1.90	\$	0.
2057	40	2.78	66,483	s	4,654	s	1.70	Š	0.14	Š	0.060	Š	1.90	s	0.
2058	40	2.78	66,483	Š	4,654	\$	1.70	š	0.14	š	0.060	š	1.90	Š	0.
2059	40	2.78	66,483	Š	4,654	\$	1.70	Š	0.14	Š	0.060	\$	1.90	\$	0.
2060	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	5	0.060	\$	1.90	S	0.
2061	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2062	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2063	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2064	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2065	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
											Total NPV	of O	RM Costs	\$	11
		Capital Costs	in million \$:						Yr built						
			PWTM			\$	12.9	-	2030					\$	6
			Pumping Stati	ions		s	9.8		2030					s	- 4
			A orati											*	

Total NPV of Capital and O&M Costs in millions \$
WTP to LCRA Delivery Point (#4) 23

LCRA Delivery Point (#4) to COA Delivery Point (#5) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment

Demand:

		Average dem	ands to be deli	vered in each s	segment in mgd	1	
Year	2015	2020	2030	2040	2050	2060	2065
COA	0	0	15	20	30	30	30
Total -	0	0	15	20	30	30	30

Max d/Avg d 1.68

Max day demands to be delivered in each segment in mgd							
Year	2015	2020	2030	2040	2050	2060	2065
COA	0	0	25	34	50	50	50
Total -	0	0	25	34	50	50	50

PWTM and Pump Station Costs

Unit maintenance cost/year-mile

stimated unit cost by condition:	% of length	LF	Un	it cost	Cost	
Rural - soil	100%	36,960	\$	244	\$ 9.0	million
Rural - rock	0%		\$	337	\$ -	
Urban - rock	0%		\$	369	\$	
		36,960	EXECUTE		\$ 9.0	million

Total construction cost in millions	\$ 9.0
Contingencies	\$ 1.8
Subtotal	\$ 10.8
Engineering, Legal & Administrative	\$ 1.6
Subtotal	\$ 12.4
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 0.0
Total Capital Cost for PWTM in millions	\$ 12.4

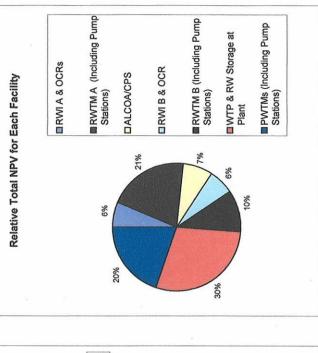
Velocity at peak flow rate		4.90	fps	
C factor		120		
Head loss per foot		0.00141	ft/ft	hr= 13.552*Q11.85
		7.45	ft/mile	C*(d) ^{2.63}
Head loss at peak flow rate		52	ft	
Allowance for minor losses	20%	10	ft	720 Desired HGL At
Total estimated losses		63	ft	790 Elev. At Deliver

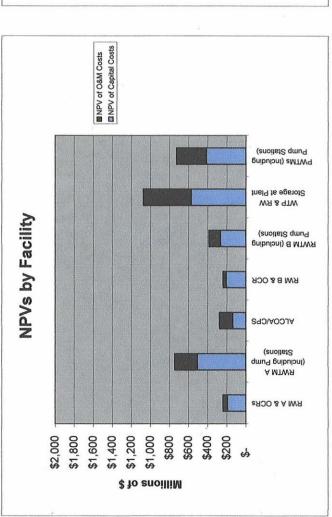
Total estimated losses
Average static head
Total estimated dynamic head

10 ft 720 Desired HGL At Delivery Point 63 ft 790 Elev. At Delivery Point 4 790 Elev. At Delivery Point 4 790 ft 790 ft 790 ft

Negative indicates gravity flow from #4 to #5; no pumping necessary.

					Mi	llion \$
Annual O&M Cost in million	n \$:		Yr built			
PWTM	S	0.070	2030	-		
	1000			Total NPV of O&M Costs		\$0.6
Capital Costs in million \$:			Yr built			
PWTM	\$	12.4	2030	-	\$	6.0
				Total NPV of Capital Costs	\$	6.0


10,000 \$/year-mile


Total NPV of Capital and O&M Costs in millions \$ 6.5 LCRA Delivery Point (#4) to COA Delivery Point (#5)

0.070 Million \$/year

CTRWTP - Alternate 1B - WTP East of San Antonio

Phasing Scenario Total NPVs in RWI A & OCRs Pump Stations) RWTM A (Including Pump Stations) RWTM A (Including Pump Stations) Sized for 4000 cfs diameter pipe sized to scalp water, 4 deliver 132,000 acroscopinals via 2020. Intakes, 4 miles of 96-inch acrominous in 2020. Intakes, 4 miles of 96-inch acrominous stations wiles of 120-inch raw water passis; includes 3 mains & 4 OCRs at pumping stations wiles of 25,000 acrit each balancing reservoirs along route along route along route stations and 25,000 acrit each along route al	Millions of \$ Sized for 4000 cfs di to scalp water, 4 di trakes, 4 miles of ft 120-inch raw water be mains & 4 OCRs at plot 25,000 ac-ft each be 25,000 ac-ft each all states at 1,397 \$ 191 \$
3.682	3.682
\$ 2.286 \$ 1,397 \$ 3,682	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020. NPV of Capital Costs \$ 2,286 NPV of Capital & \$ 1,397 Total NPV of Capital & 0&M \$ 3,682
	Phasing Scenario RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020. NPV of Capital Costs NPV of Capital & O&M Total NPV of Capital & O&M
Phasing Scenario RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020. NPV of Capital Costs NPV of Capital & O&M Total NPV of Capital & O&M	Pha RWTM built by 2 N
	Arier-nate

O&M Cost Calculations RWI A - Matagorda Co. River Intakes, and Storage CTRWTP

CTRWTP							
Initial year of analysis perior Interest rate	d 2015 5%			Engineering,	Contingency = Legal, Admin. =		
Evaluation period		years		ental & Archae	eology Studies &	1	
Unit cost of energy	\$ 0.07	per kwh	Mitigation, S	urveying, and i	Land Acquisition or =		per mile per acre
Inflatable Rubber Low Head Dam							
	Quantity	Units	Size	Unit Constr. Cost (millions)	Constr. Cost	Contigency, Eng., etc. (millions)	Total Capital Cost (millions)
Inflatable Rubber Low Head Day	m 4	each	10 ft high	\$ 2.25	\$ 9.00	\$ 3.42	\$ 12.42
Estimated inflatable dam co	st as % of total	50%					
Value of inflatable dam Assumed life of inflatable da Estimated maintenance/rep		\$ 4.50 10 \$ 0.45	million years million/year				
Year built		2020					
NPV of O&M Costs NPV of Capital Costs Total NPV of Capital and O	&M Costs	\$ 9.73	million million million				
Raw Water Intake, Pumping Statio	n, and RWTM (Ir	ntake to Rese	ervoir)				
Average withdrawal				ac-ft/year			
		in a black flamma	182	cfs	21.9		gn withdrawal rate
Total intake design withdray	val rate (for scalp	ing high flows	1,795,200	gpm		to Fotal Intak	e design withdrawal rate
No. of Intakes Design withdrawal rate per	intake	*	1,000 448,800				
No. of reservoirs Design flow to each reservo	ir		448,800				
Inside diameter of each RW	тм			in.			
Area Average length of each RW	тм		78.54 5,280	miles	4.0 21,120	miles for all f	RWTMs
Estimated construction cost	for RWTM		\$ 793	per LF		\$ 1,254	
Total construction cost in m Contingencies	illions		\$ 16.8 \$ 3.4				
Subtotal Engineering, Legal & Admir	nistrative		\$ 20.1 \$ 3.0	-			
Subtotal Envir & Arch Studies & Mitig Total Capital Co	gation, Surveying est for PWTM in n		\$ 0.4	million			
Unit maintenance cost/year	-mile		\$ 10,000	\$/year-mile	\$ 0.040	Million \$/yea	r (all RWTMs to Reservoirs)
Note: Assume each intake t	nas two RWTMs	pumping out o	of it, one to each	h reservoir.			
Design flow rate for each R Pumping rate (one pump)			448,800 50,000	gpm gpm			
No. of pumps (not counting Peak flow rate into each RV			450,000	gpm			
Velocity at peak flow rate C factor			12.77	fps			
Head loss per foot			0.00327		h _f =	13.552*QI1.	35
			17.25	ft/mile		C*(d)2.63	
Head loss at peak flow rate Allowance for minor losses	30%			ft ft	90	Flev of disch	arge at reservoir
Total estimated losses	007		22	ft ft	50	Water surface	
Average static head Total estimated dynamic he	ead		62	nt nt psi	40	n ft	
Accumed numb officiency			85%				
Assumed pump efficiency Assumed motor efficiency			90%				
Estimated Hp required per	pump		1,030 769	hp/pump kw/pump			
Total hp pumping into each Total hp at each intake (not		nting spare)		hp/RWTM hp/intake			
Total hp all intakes (not countries for the coun	inting spares)		37,089 27,668	hp			
Unit construction cost for e Construction cost per intak No. of intakes from above	ach pump station	(from cost cu		per firm hp o million	of pump station	\$ 1,180).
Total construction cost in m	illions			million			
Contigency, Eng., etc. in r Total capital cost in millions	illions		\$ 12.53	million million			
Total construction cost for p	oump stations		\$ 33.0	million			
Value of equipm Assumed life of			\$ 13.2 20	million	409	Estimated ed	quip cost as % of total constr cos
	tenance/replacen	nent cost		million/year			

Year	Flow purr yea		No. of pump "sets"	Energy used		Energy	у со	st	cost	ner O&M s - Pump tations	0	ntenance osts - RWTM	То	tal O&M cost		prese value	
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		Million \$ /year)	(Million \$ /year)			Million \$ /year)		Million \$ /year)	- Colombi	(\$)	
2015		-			\$		\$						\$	*	\$		
2016					\$	•	\$	5					\$		\$	- 1	
2017	*			196	\$		\$	-					\$	•	\$		
2018		0.00		0.50	\$		\$						\$		\$		
2019					\$		\$						\$		\$		
2020	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.	
2021	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.	
2022	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1	
2023	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1,	
2024	132,000	118	1.64	30,188	S	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.	
2025	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	\$	0.040	S	1.47	\$	0	
2026	132,000	118	1.64	30,188	s	2,113	S	0.77	S	0.66	S	0.040	\$	1.47	\$	0	
2027	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	S	0.040	S	1.47	S	0	
2028	132,000	118	1.64	30,188	Š	2,113	Š	0.77	\$	0.66	s	0.040	s	1.47	\$	0	
2029	132,000	118	1.64	30,188	š	2,113	Š	0.77	s	0.66	s	0.040	s	1.47	S	0	
2030	132,000	118	1.64	30,188	Š	2,113	\$	0.77	s	0.66	Š	0.040	\$	1.47	s	C	
2030	132,000	118	1.64	30,188	Š	2,113	Š	0.77	\$	0.66	Š	0.040	Š	1.47	s	0	
		118	1.64	30,188	\$	2,113	s	0.77	\$	0.66	s	0.040	š	1.47	\$	C	
2032	132,000				s	2,113	\$	0.77	s	0.66	Š	0.040	Š	1.47	S	Č	
2033	132,000	118	1.64	30,188					\$	0.66	s	0.040	S	1.47	\$	Ö	
2034	132,000	118	1.64	30,188	\$	2,113	\$	0.77		0.66		0.040	Š	1.47	S	č	
2035	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$		\$	100000000000000000000000000000000000000			S	č	
2036	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47			
2037	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0	
2038	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0,66	\$	0.040	\$	1.47	\$	0	
2039	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	(
2040	132,000	118	1.64	30,188	\$	2,113	\$	0.77	5	0.66	\$	0.040	\$	1.47	\$	(
2041	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	(
2042	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	(
2043	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.68	\$	0.040	\$	1.47	\$	(
2044	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	(
2045	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	(
2046	132,000	118	1.64	30,188	S	2,113	\$	0.77	\$	0.66	\$	0.040	5	1.47	\$	(
2047	132,000	118	1.64	30,188	s	2,113	S	0.77	\$	0.66	S	0.040	\$	1.47	\$	(
2048	132,000	118	1.64	30,188	s	2.113	\$	0.77	\$	0.66	S	0.040	\$	1.47	\$		
2049	132,000	118	1.64	30,188	s	2.113	\$	0.77	s	0.66	s	0.040	S	1.47	S	(
2050	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	S	0.040	S	1.47	s	- 1	
2051	132,000	118	1.64	30,188	s	2,113	s	0.77	s	0.66	s	0.040	\$	1.47	s	- 0	
2052	132,000	118	1.64	30,188	s	2.113	š	0.77	s	0.66	s	0.040	s	1.47	s	-	
2052	132,000	118	1.64	30,188	š	2,113	š	0.77	Š	0.66	\$	0.040	Š	1.47	Š	- 8	
2054		118	1.64	30,188	Š	2,113	Š	0.77	s	0.66	s	0.040	s	1.47	s	- 1	
	132,000	2.55	1.64	30,188	š	2,113	Š	0.77	Š	0.66	š	0.040	Š	1.47	Š	- 6	
2055	132,000	118	1.64	30,188	s	2,113	Š	0.77	Š	0.66	Š	0.040	Š	1.47	Š	- 1	
2056	132,000	118					S	0.77	s	0.66	Š	0.040	Š	1.47	Š	ì	
2057	132,000	118	1.64	30,188	\$	2,113			S	0.66	Š	0.040	s	1.47	Š		
2058	132,000	118	1.64	30,188	\$	2,113	\$	0.77							s		
2059	132,000	118	1.64	30,188	\$	2,113	\$	0.77	s	0.66	\$	0.040	\$	1.47			
2060	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		
2061	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	(
2062	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		
2063	132,000	118	1.64	30,188	\$		\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		
2064	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	- 0	
2065	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	-	
												Total NPV	of C	8M Costs	\$	-	
			Capital C	ts in million 5						Yr built							
			Capital Cos	RWTM to R		m re les	s	23.5		2020	-					S	

Reservoirs

	Quantity	ntity Unit		Volume/each (acre-feet)	Unit Cost (\$/ac-ft))		Total Construction Cost in millions		Contigency, Eng., etc.			otal in nillions
Reservoirs	4		each	25000	\$	974 909	\$	97.4	\$	37.0	\$	134.4
Estimated average depth of reser	voir		20	ft								
Surface area of reservoir			5000	acres								
Ratio of total land area reqd to su of reservoir	Ratio of total land area reqd to surface area		1.1				E	nvir & Arch	aeolo	gy, Surv,		
Total land area reqd for reservoir	s		5500	acres			otal	a apital cost		nd Acq =	5	27.5 161.9
Assumed life of reservoir			100	years		,	otal c	apital coa		mona -	*	101.0
Estimated replacement cost		\$	0.97	million/year								
Estimated maintenance		_	0.4	million/year	Mowi	ng, mair	ntainir	ng fences,	etc.			
Total		\$	1.37	million/year								
Year built			2020									
NPV of O&M costs		\$	19.1	million								
NPV of Capital costs		\$	126.8	million								
Total NPV of Capital and O&M C	osts	\$	145.9	million								

Total NPV of Capital and O&M Costs in millions \$

Sum	mary	 IPV of tal Costs	V of O&M Costs	Capital and		
	Inflatable Rubber Low Head Dam	\$ 9.7	\$ 6.3	\$	16.0	
	Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$ 54.1	\$ 21.6	\$	75.7	
	Reservoirs	\$ 126.8	\$ 19.1	\$	145.9	
	Total for RWI A	\$ 190.6	\$ 47.0	\$	237.6	

O&M Cost Calculations RWTM A - Matagorda Co. to WTP CTRWTP - Alternate 1B - WTP East of San Antonio

Raw

	Initial year of analysis period 2015 Interest rate 5%	F		ngineering, L		lmin. =		
	Evaluation period 50 years Unit cost of energy \$ 0.07 per kwh			al & Archaeolo			\$ 100,000 pe	er mile
	One cost of energy	iiiiiganori,	-	oying, and Ed			, 100,000 p.	
W	ater Transmission Main - A							
	Inside diameter of pipe		96	in.				
	Area	50	0.27					
	Length of RWTM		142	miles				
		749,7	760	feet				
	Estimated unit construction cost for RWTM	\$ 5	567	per LF				
				•				
	Total construction cost in millions		125					
	Contingencies Subtotal	0 1	85					
	Engineering, Legal & Administrative	\$	77					
	Subtotal		587					
	Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	14					
	Total Capital Cost for PWTM in millions		301	million				
	Unit maintenance cost/year-mile	\$ 10,0	200	\$/year-mile	s	1 420	Million \$/year	
	Onit maintenance cost/year-mile	\$ 10,0	000	g/year-IIIIle	4	1.420	Willion S/year	
	Design flow rate (after 100% buildout)	132,0	000	ac-ft/year				
			118	mgd				
				gpm				
	Pumping rate (one pump)	16,4		gpm				
	No. of pumps (not counting spare)		5					
	Peak flow rate (all pumps except spare)	82,0)00	gpm				
	Velocity at peak flow rate	3	.63	fps				
	C factor		120	•				
	Head loss per foot	0.00	041	ft/ft		h _f =	[3.552*Q 1.85	
		2	.19	ft/mile			C*(d)2.63	
	Constitution of the Consti							
	Head loss at peak flow rate		311			000	FI N.O 1	and Fred MCD
	Allowance for minor losses 10%		342				Elev. At San Ant	
	Total estimated losses Average static head		510			510	Elev. At Matago	rua OCKS
	Total estimated dynamic head		852			310		
	rolar osimaloa aynamo noad		369					
						78126	227	
	No of pumping stations req'd along route	1	2.46			150	psi (assumed m	ax pressure
	No. of pumping stations used in cost estimate		3.0	4			in pipe)	
	Average head per pump station		284	π				
	Assumed pump efficiency		85%					
	Assumed motor efficiency		90%					
	Estimated Hp required per pump			hp/pump				
	Approximation of the state of t			kw/pump				
	Total hp per pump station (not counting spare)			hp/station				
	Total kw per pump set (set=pumps in series along route)	4,6	012	kw/pump set	(one p	ump at	each station)	
	Unit constr. cost for each pump station (from cost curve)	\$ 1,3	320	per firm hp o	f pump	station		
	Construction cost per pump station			million	, p. ann. p			
	Balancing reservoir	\$ 0	.75	million _		60	min. of storage	at avg pumping rate
	Total construction cost per pump station	\$ 10	.90	million		5.0		
	No of some stations from the second		20		\$	0.15	per gal for open	top reservoir
	No. of pump stations from above		3.0	each				
	Total construction cost in millions	\$ 3	2.7	million				
	Contigency, Eng., etc. in millions			million				
	Total capital cost in millions	\$ 4	5.1	million				
	Total construction cost for pump stations	\$ 3	27	million				
	Value of equipment	100		million		40%	Estimated equir	ment cost as % of total
	Assumed life of equipment			years				
	Estimated maintenance/replacement cost	\$ 0		million/year				
	um en							

O&M Costs

Year		low pumped by year Power Sets" No. of Energy pump used Sets" Energy cost		st	Other O&M costs - Pump Stations			Maintenance costs - RWTM		Total O&M cost		et present value				
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	(Million \$ /year)		(Million \$ /year)	(1	Million \$ /year)	(Million \$ /year)		(\$)
2015	-	-	-	-	\$	-	\$	•					\$	•	\$	-
2016	-	-	-	-	\$		\$	1.0					\$	-	\$	-
2017	-	-	-	-	\$		\$						\$	-	\$	
2018	-	•	-	-	\$	-	\$	-					\$	•	\$	*
2019	400.000			-	\$	-	\$			0.05	•	4 400	\$	40.40	\$	40.00
2020	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	12.68
2021	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	12.08
2022	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	11.50
2023 2024	132,000 132,000	118 118	4.99 4.99	552,331 552,331	\$	38,663 38,663	\$	14.11	5	0.65 0.65	\$	1.420 1.420	\$	16.19 16.19	\$	10.96 10.43
2024	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	9.94
2025	132,000	118	4.99	552,331	\$	38,663	\$	14.11	S	0.65	\$	1.420	\$	16.19	\$	9.46
2020	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	9.40
2028	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	8.58
2029	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	8.18
2029	132,000	118	4.99	552,331	\$	38,663	s	14.11	s	0.65	\$	1.420	s	16.19	Š	7.79
2030	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	S	7.41
2032	132,000	118	4.99	552,331	Š	38,663	\$	14.11	S	0.65	\$	1.420	\$	16.19	S	7.06
2032	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	Š	6.73
2034	132,000	118	4.99	552,331	Š	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	Š	6.41
2035	132,000	118	4.99	552,331	Š	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	Š	6.10
2036	132,000	118	4.99	552,331	\$	38,663	\$	14.11	Š	0.65	\$	1.420	\$	16.19	Š	5.81
2037	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	5.53
2038	132,000	118	4.99	552,331	Š	38,663	S	14.11	Š	0.65	S	1,420	Š	16.19	Š	5.27
2039	132,000	118	4.99	552,331	Š	38,663	Š	14.11	š	0.65	Š	1.420	š	16.19	Š	5.02
2040	132,000	118	- 4.99	552,331	\$	38,663	\$	14.11	Š	0.65	Š	1.420	s	16.19	S	4.78
2041	132,000	118	4.99	552,331	Š	38,663	\$	14.11	Š	0.65	\$	1.420	š	16.19	\$	4.55
2042	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	Š	4.34
2043	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	Š	4.13
2044	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.93
2045	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.75
2046	132,000	118	4.99	552,331	\$	38,663	\$	14.11	Š	0.65	\$	1.420	Š	16.19	Š	3.57
2047	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1,420	\$	16.19	\$	3.40
2048	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.24
2049	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1,420	\$	16.19	\$	3.08
2050	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.93
2051	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.79
2052	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.66
2053	132,000	118	4.99	552,331	\$	38,663	\$	14.11	s	0.65	S	1,420	S	16,19	S	2.53
2054	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.41
2055	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.30
2056	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.19
2057	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.09
2058	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.99
2059	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.89
2060	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.80
2061	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.72
2062	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.63
2063	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.56
2064	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.48
2065	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.41
											Т	otal NPV	of C	&M Costs	\$	238
			Capital Cos	ts in million \$:				_	Yr built						
				RWTM		2007	\$	601		2020					\$	471
				Pumping Sta	atio	ns	\$	45		2020					\$	35
											Tot	at NIDV/ of	Car	ital Costs	\$	507

NPV CALCULATIONS ALCOA / CPS GROUNDWATER

lds and Collection Lines	ALC	COA	(PS	- 8	Total
Year built	20	15	2	015		
Estimated Construction Cost in Millions						
Wells (Based on Non-Public Water Supply Wells)		20.92		7.94		28.
Pipeline		13.03		5.94		18.9
Pump Stations & Storage	Haragan Car	8.51		0		8.
Subtotal		42.46		13.88		56.
Contingency		8.49		2.78		11.3
Subtotal		50.95		16.66		67.
Engineering, Legal & Administrative		6.37		2.08		8.
Subtotal		57.32		18.74	5	76.
Environmental & Archaeology Studies & Mitigation		0.63		0.2		0.
Land Acquisition & Surveying		0		0		0.
Groundwater Purchase		0		5.64		5.
ALCOA Construction Program Management Fee		5.45		0		5.
Interest During Construction (2 years, 6% int., 4% ret.)		5.89		2.44		8.
Total Capital Cost		69.29		27.02		96.
Estimated Annual O&M Costs						
O&M		0.67		0.18		0.
Pumping Energy		2.41		0.52		2.
ALCOA Project Management Fees		0.35		0.00		0.
Purchase of Groundwater		2.00		0.00		2.
Groundwater District Fees		0.65		0.25		0.
Mitigation Reserves	-	0.28		0.11		0.
Total Annual Cost		6.36		1.06		7.
	•	440		19	s	13
NPV of O&M Costs	\$	116 69	\$	27	\$	1,
NPV of Capital Costs						-
Total NPV of Capital and O&M Costs for Well Fields	\$	185	\$	46	\$	23

Cooling of Well Water

Total number of wells in both fields	120 wells	Approximate capacity per wel	300	gpm
Percentage of wells with temperatures > than degrees	5%		36,000	gpm
Estimated number of wells with temperature > degrees	6.0	Rough check	58,072	ac-ft/year

Estimated Capital Costs

Year built		2015	
Number of Packaged Cooling Towers (300 gpm capacity/each)		6.0	
Equipment cost (cooling towers and fans)	\$	60,000	
Installation and contractors mark-up	\$	50,000	
Structural slab	\$	30,000	
Electrical	\$	50,000	
Estimated Unit Construction Cost	\$	190,000	Each
Total construction cost	\$	1.14	million
Contingencies	\$	0.23	
Subtotal	\$	1.37	.
Engineering, Legal and Admin	\$	0.21	
Total Estimated Capital Cost	\$	1.57	
NPV of Capital Costs	S	1.57	million

Estimated O&M Costs

Value of equipment	\$ 0.4	million
Assumed life of equipment	10	years
Estimated maintenance/replacement cost	\$ 0.04	million/year
Blower Hp per cooling tower	10	Нр
	7	kw
Hours of operation	24	hours
Power consumption per cooling tower	179	kwh per day
	65,350	kwh per year
Power cost per cooling tower	\$ 4,574	per year
Total power cost for all cooling towers in millions	\$ 0.03	million per year
Regular operational checks and routine maintenance	\$ 6,000	per month for all cooling towers
	\$ 0.07	per year
Estimated O&M Cost	\$ 0.14	million \$ per year
NPV of O&M costs	\$ 2.47	million \$

Ground Water Transmission Main and Pump Station (Hwy 290 to Bastrop Intake)

Inside diameter of transmission pipe

54 in.

Area		15.90	sf			
Length of Ground Water TM		15	miles			
		79,200	feet			
Estimated construction cost for GWTM		\$ 327	per LF			
Total construction cost in millions		\$ 25.9				
Contingencies		\$ 5.2				
Subtotal		\$ 31.1	-			
Engineering, Legal & Administrative		\$ 4.7				
Subtotal		\$ 35.8	•			
Envir & Arch Studies & Mitigation, Surve	ying, & Land Acq	\$ 1.5				
Total Capital Cost for PWTN	I in millions	\$ 37.3	million			
Unit maintenance cost/year-mile		\$ 10,000	\$/year-mile	\$	0.150 Million \$/year	
Design flow rate		55,000	ac-ft/year			
		49	mgd			
		34,095	gpm			
Velocity at peak flow rate		4.78	fps			
C factor		120	0.50			
Head loss per foot		0.00134	ft/ft		h _f = 3.552*Q ^{1.85}	
		7.10	ft/mile		C*(d) ^{2.63}	
Head loss at peak flow rate		106	ft			
Allowance for minor losses	10%	11	ft		400 Elev. At RWI-B	
Total estimated losses		 117	ft		550 minus Elev Storage Tank at	Hwy 290
Average static head		-150	ft		-150 ft	
Total estimated dynamic head		-33	ft	(intak	te is lower than tank at Hwy 290)	
		-14	psi	37		

Negative indicates gravity flow from Hwy 290 to Bastrop Intake; no pumping necessary.

						Mi	illion \$
An	nual O&M Cost in million \$:		Yr built			
	GWTM	\$	0.150	2015	-		
					Total NPV of O&M Costs	\$	2.7
Ca	apital Costs in million \$:			Yr built	Sr.		
	GWTM	\$	37.3	2015	-	\$	37.3
					Total NPV of Canital Costs	S	37.3

0	 ma	-

ary	Capi	Capital Costs			O&M Costs		
Well Fields and Collection Lines (including tank and pump station at Hwy 290)	\$	96.3	\$	135.5	\$	231.8	
Cooling Towers for Selected High Temperature Wells	\$	1.6	\$	2.5	\$	4.0	
Ground Water Transmission Main and Pumping Station	\$	37.3	\$	2.7	\$	40.0	
Total for ALCOA-CPS	\$	135.1	\$	140.7	\$	275.8	

O&M Cost Calculations RWI B - Colorado River Intake at Bastrop and Off Channel Reservoir CTRWTP - Alternate 1B - WTP East of San Antonio

Initial year of analysis period 2015 Contingency = 20% Interest rate 5% Engineering, Legal, Admin. = 15% Evaluation period 40 years

Unit cost of energy \$ 0.07 per kwh Environmental & Archaeology Studies &

Mitigation, Surveying, and Land Acquisition = \$ 100,000 per mile or = \$ 5,000 per acre

Inflatable Rubber Low Head Dam

	Quantity	Units	Size	(Constr. Cost illions)	Est Con:	imated str. Cost illions)	En	tigency, g., etc. illions)	(Capital Cost illions)
Inflatable Rubber Low Head Dam	2 (each	10 ft high	\$	2.25	\$	4.50	\$	1.71	\$	6.21

Estimated inflatable dam cost as % of total Value of inflatable dam \$ 2.25 million
Assumed life of inflatable dam 10 years
Estimated maintenance/replacement cost \$ 0.23 million/years

Year built 2015

DESCRIPTION DESCRIPTION OF THE STATE OF THE

 NPV of O&M Costs
 \$ 3.86 million

 NPV of Capital Costs
 \$ 6.21 million

Total NPV of Capital and O&M Costs \$ 10.07 million

Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Summary of withdrawals in acre-feet/year:

Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	18000	18000	18000	18000	18000	18000	18000
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Total -	18000	18000	40402	51603	62804	62804	62804

Ultimate (Y2065) average design withdrawal rate

62,804 ac-ft/year 87 cfs

Total intake design withdrawal rate (for scalping high flows) 2,000 cfs

23.1 Ratio of design withdrawal rate
2,000 cfs to Total intake design withdrawal rate
897,600 gpm

8.0 miles for all RWTMs

No. of Intakes 2
Design withdrawal rate per intake 1,000 cfs 448,800 gpm

No. of reservoirs

Design flow to each reservoir

224,400 gpm

 Inside diameter of each RWTM
 120 in.

 Area
 78.54 sf

 Average length of each RWTM
 2 miles

 10,560 feet
 10,560 feet

10,560 feet 42,240 feet

Estimated construction cost for RWTMs \$ 793 per LF \$ 1,254

Total construction cost in millions \$ 33.5

| Solution | Solution

Unit maintenance cost/year-mile \$ 10,000 \$/year-mile \$ 0.080 Million \$/year (all RWTMs to Reservoirs)

85%

90% 1.241 hp/pump

926 kw/pump

Note: Assume intake has one RWTM pumping to the reservoir.

224,400 gpm Design flow rate for each RWTM (from above) Pumping rate (one pump)
No. of pumps (not counting spare) pumping into each RWT 40,000 gpm Peak flow rate into each RWTM (all pumps except spare) 240,000 gpm Velocity at peak flow rate 6.81 fps 120 C factor hr= | 3.552*Q|1.85 0.00102 ft/ft Head loss per foot | C*(d)^{2.63}| 5.39 ft/mile Head loss at peak flow rate Allowance for minor losses 11 ft 400 Discharge at reservoir 3 ft 14 ft Total estimated losses 320 Water surface elev in river 80 ft Average static head Total estimated dynamic head 94 ft 41 psi

Assumed pump efficiency Assumed motor efficiency

Estimated Hp required per pump

Total hp pumping into each RWTM (not counting spare)	7,448	hp/RWTM	
Total hp at each intake (not counting spare)	14,897	hp/intake	
Total hp all intakes (not counting spares)	29,793	hp	
Total kw all intakes (not counting spares)	22,226	kw	
Unit construction cost for each pump station (from cost cur-	\$ 889	per firm hp of pump station \$ 830	
Construction cost per intake/pump station	13.2	million	
No. of intakes from above	2	each	
Total construction cost in millions	\$ 26.5	million	
Contigency, Eng., etc. in millions	\$ 10.06	million	
Total capital cost in millions	\$ 36.6	million	
Total construction cost for pump stations	\$ 26.5	million 40% Estimated equipment cost as % of total	al
Value of equipment	\$ 10.6	million	
Assumed life of equipment	20	years	
Estimated maintenance/replacement cost	\$	million/year	

O&M Costs:

Year	Flow pun yea		No. of pump "sets"	Energy used		Energ	ус	ost		Other O&M osts - Pump Stations		aintenance costs - RWTM	Т	otal O&M cost	Ne	t present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year)		(Million \$ /year)		(Million \$ /year)		(\$)
2015	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.77
2016	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.73
2017	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.70
2018	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.66
2019	18,000	16	0.28	6,200	\$	434	\$		\$	0.53	\$	0.080	\$	0.77	\$	0.63
2020	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.60
2021	18,000	16	- 0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.57
2022	18,000	16	0.28	6,200	\$	434	\$		\$	0.53	\$	0.080	\$	0.77	\$	0.55
2023	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.52
2024	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.50
2025	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.47
2026	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.45
2027	18,000	16	0.28	6,200	\$	434	\$		\$	0.53	\$	0.080	\$	0.77	\$	0.43
2028	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.41
2029	18,000	16	0.28	6,200	\$	434	\$		\$	0.53	\$	0.080	\$	0.77	\$	0.39
2030	40,402	36	0.63	13,917	\$	974	\$		\$	0.53	\$	0.080	\$	0.97	\$	0.46
2031	40,402	36	0.63	13,917	\$	974	\$		\$	0.53	\$	0.080	\$	0.97	\$	0.44
2032	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.42
2033	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.40
2034	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.38
2035	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.36
2036	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	S	0.080	\$	0.97	S	0.35
2037	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	S	0.33
2038	40,402	36	0.63	13,917	\$	974	\$		\$	0.53	\$	0.080	\$	0.97	\$	0.31
2039 2040	40,402 51,603	36 46	0.63	13,917 17,775	\$	974 1,244	\$		\$	0.53 0.53	\$	0.080	\$	1.06	\$	0.30
2040		46	0.80		\$		\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.30
2041	51,603 51,603	46	0.80	17,775 17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.30
2042	51,603	46	0.80	17,775	5	1,244	\$	0.45	s	0.53	\$	0.080	S	1.06	\$	0.27
2043	51,603	46	0.80	17,775	\$	1,244	\$		\$	0.53	\$	0.080	\$	1.06	\$	0.26
2045	51,603	46	0.80	17,775	Š	1,244	Š		Š	0.53	Š	0.080	Š	1.06	Š	0.25
2046	51,603	46	0.80	17,775	\$	1,244	Š		Š	0.53	\$	0.080	Š	1.06	\$	0.23
2047	51,603	46	0.80	17,775	S	1,244	\$		Š	0.53	Š	0.080	Š	1.06	Š	0.22
2048	51,603	46	0.80	17,775	s	1,244	Š		Š	0.53	Š	0.080	s	1.06	\$	0.21
2049	51,603	46	0.80	17,775	s	1,244	\$		\$	0.53	s	0.080	s	1.06	s	0.20
2050	62,804	56	0.97	21,633	s	1,514	Š		Š	0.53	Š	0.080	Š	1.16	Š	0.21
2051	62,804	56	0.97	21,633	\$	1,514	s	0.55	5	0.53	s	0.080	\$	1.16	\$	0.20
2052	62,804	56	0.97	21,633	\$	1,514	\$		\$	0.53	S	0.080	s	1.16	s	0.19
2053	62,804	56	0.97	21,633	\$	1,514	\$		\$	0.53	\$	0.080	\$	1.16	\$	0.18
2054	62,804	56	0.97	21,633	\$	1,514	\$		\$	0.53	\$	0.080	\$	1.16	\$	0.17
2055	62,804	56	0.97	21,633	\$	1,514	s		\$	0.53	\$	0.080	\$	1.16	s	0.17
2056	62,804	56	0.97	21,633	\$	1,514	\$		\$	0.53	\$	0.080	\$	1.16	\$	0.16
2057	62,804	56	0.97	21,633	\$	1,514	\$		\$	0.53	\$	0.080	\$	1.16	\$	0.15
2058	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.14
2059	62,804	56	0.97	21,633	5	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.14
2060	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.13
2061	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.12
2062	62,804	56	0.97	21,633	\$	1,514	\$		\$	0.53	\$	0.080	\$	1.16	\$	0.12
2063	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.11
2064	62,804	56	0.97	21,633	\$	1,514	\$		\$	0.53	\$	0.080	\$	1.16	\$	0.11
2065	62,804	56	0.97	21,633	\$	1,514	\$		\$	0.53	\$	0.080	\$	1.16	\$	0.10
														2000		
												Total NPV	of (O&M Costs	\$	17.1
			Capital Cost	s in million \$						Yr built						
			p., 5000	RWTM to Re		rvoir	s	47.0	_	2015	-				\$	47.0

Total NPV of Capital and O&M Costs in millions \$ 100.

Reservoirs

	Quantity	Units	Volume/each (acre-feet)	nit Cost \$/ac-ft)	Con	Total struction cost in sillions	tigency, g., etc.	otal in illions
Reservoirs	4	each	15000	\$ 1,180	\$	70.8	\$ 26.9	\$ 97.7
				\$ 0.004	per g	allon		
Estimated average dept	th of reservoir	20	ft					

Surface area of reservoir	3000	acres	
Ratio of total land area regd to surface area			
of reservoir	1.1		Envir & Archaeology, Surv,
Total land area regd for reservoirs	3300	acres	and Land Acq = 16.5
			Total capital cost in millions = \$ 114.2
Assumed life of reservoir	100	years	
Estimated replacement cost	\$ 0.71	million/year	
Estimated maintenance	\$ 0.04	million/year	Mowing, maintaining fences, etc.
Total	\$ 0.75	million/year	
Year built	2015		
NPV of O&M costs	\$ 12.8	million	
NPV of Capital costs	\$ 114.2	million	
Total NPV of Capital and O&M Costs	\$ 127.0	million	

Summary	 PV of tal Costs	PV of O&M Costs	Ca	pital and M Costs
Inflatable Rubber Low Head Dam	\$ 6.2	\$ 3.9	\$	10.1
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$ 83.6	\$ 17.1	\$	100.7
Off Channel Reservoir	\$ 114.2	\$ 12.8	\$	127.0
Total for RWI A	\$ 204.0	\$ 33.8	\$	237.8

O&M Cost Calculations

RWTM B - RWI B near Bastrop to WTP CTRWTP - Alternate 1B - WTP East of San Antonio

Interest rate	5%		Engineering, Legal, Admin. =	15%		
Evaluation period	40	years	Environmental & Archaeology Studies &			
Unit cost of energy	\$ 0.07	per kwh	Mitigation, Surveying, and Land Acquisition	\$	100,000	per mile

Summary of average pumping rates in acre-feet/year:

	ce Water Year	2015	2020	2030	2040		2050	2060	20	065	
F	or SAWS	18000	18000	18000	18000		18000	18000		000	•
- 1	CRA			5600	11200		11200	11200	11	200	
	COA			16802	22403		33604	33604		604	
	Subtotal	18000	18000	40402	51603		62804	62804		804	•
Groui	ndwater Year	2015	2020	2030	2040		2050	2060	20	065	
F	or SAWS	55000	55000	55000	55000		55000	55000	55	000	
Sufac	ce & groun	73000	73000	95402	106603	1	117804	117804	117	804	
ι	Ultimate (Y20	065) averag	ge design p	umping rate	•		117,804	ac-ft/year			
ing of	Raw Water	Transmiss	sion Main E	3 & Pump S	Stations						
Ir	nside diame	ter of RWT	м				84	in.			
A	Area						38.48	sf			
1.	ength of RV	MTV					68	miles			
	***********						359,040	feet			
Е	Estimated un	it construc	tion cost fo	r RWTM		\$	467	per LF			
Т	Total constru	ction cost	in millions			\$	167.8				
C	Contingencie	S				\$	33.6				
		Subtotal				\$ \$ \$	201.4				
E	Engineering,	Legal & Ad	dministrativ	е		\$	30.2				
		Subtotal					231.6	M			
E	Envir & Arch	Studies &	Mitigation,	Surveying, a	& Land Acq	\$	6.8				
		Total Capita	al Cost for I	PWTM in m	illions	\$	238.4	million			
ι	Jnit mainten	ance cost/y	ear-mile			\$	5,000	\$/year-mile	\$	0.340	Million \$/year
C	Design flow r	ate (from t	able above)			117,804	ac-ft/year			
							105	mgd			
							73,029	gpm			
F	Pumping rate	(one pum	p)				15,000	gpm			
1	No. of pumps	(not coun	ting spare)				5				
P	Peak flow rat	e (all pump	os except s	pare)			75,000	gpm			
٧	Velocity at pe	eak flow rat	te				4.34	fps			
(C factor						120				
F	Head loss pe	r foot					0.00067	ft/ft		h _f =	3.552*Q ^{1.85}
							3.55	ft/mile			C*(d) ^{2.63}
	Head loss at						242				
	Allowance fo		ses	10%		_	24				Elev. At WTP
7	Total estimat						266	155			Elev of WSE in Bastrop reserve
	Average stat						250		Control of the last	250	ft
		ed dynami	c head				516				
A	Fotal estimat						224	psi			
A	Fotal estimat										7227
T N	No of recomm						1.49			150	psi (assumed max pressure
T		ng stations	used in co				1.49 2.0 258			150	psi (assumed max pressure in pipe)
A T N	No of recomr No. of pumpi Average hea	ng stations d per pump	used in co station				2.0 258			150	
A A A	No of recomr No. of pumpi Average hea Assumed pu	ng stations d per pump mp efficien	used in co station cy				2.0 258 85%			150	
A A A	No of recommon of pumping the second of pumping the second of the second	ng stations d per pump mp efficien stor efficien	used in co station cy				2.0 258 85% 90%	ft		150	
A A A	No of recomr No. of pumpi Average hea Assumed pu	ng stations d per pump mp efficien stor efficien	used in co station cy				2.0 258 85% 90% 1,277	ft hp/pump		150	
T N N A A E	No of recommon of pumping the second of pumping the second of the second	ng stations d per pump mp efficien stor efficien o required p	cy cy cy per pump	st estimate			2.0 258 85% 90% 1,277 953	ft		150	

1,365 per firm hp of pump station 8.7 million 0.75 million 60 9.47 million 5.0

2.0 each

18.9 million

7.20 million 26.1 million

18.9 million 7.6 million 20 years 0.38 million/year

60 min. of storage at avg pumping rate 5.0 mg
0.15 per gal for open top reservoir

40% Estimated equipment cost as % of total

Unit construc cost for each pump station (from cost curve) \$ Construction cost per pump station
Balancing reservoir
Total construction cost per pump station

Total construction cost for pump stations
Value of equipment
Assumed life of equipment
Estimated maintenance/replacement cost

No. of pump stations from above

Total construction cost in millions

Contingency, Eng., etc. in millions Total capital cost in millions

O&M Costs

Year	Flow pum yea		No. of pump "sets"	Energy used		Energy	/ co	ost	COS	ther O&M sts - Pump Stations	aintenance costs - RWTM	Т	otal O&M cost	Ne	t present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		(Million \$ /year)	(Million \$ /year)	(Million \$ /year)		(Million \$ /year)		(\$)
2015	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	5.44
2016	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	5.19
2017	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	4.94
2018	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	4.70
2019	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	4.48
2020	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	4.27
2021	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	4.06
2022	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	3.87
2023	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	3.69
2024	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	3.51
2025	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	3.34
2026	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	3.18
2027	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	3.03
2028	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	2.89
2029	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$ 0.340	\$	5.44	\$	2.75
2030	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	3.32
2031	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	3.16
2032	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	3.01
2033	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	2.86
2034	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	2.73
2035	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	2.60
2036	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	2.47
2037	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	2.36
2038	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	2.24
2039	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$ 0.340	\$	6.89	\$	2.14
2040	106,603	95	- 4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	2.25
2041	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	2.14
2042	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	2.04
2043	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	1.94
2044	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	1.85
2045	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	1.76
2046	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	1.68
2047	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	1.60
2048	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	1.52
2049	106,603	95	4.41	270,096	\$	18,907	\$	6.90	\$	0.38	\$ 0.340	\$	7.62	\$	1.45
2050	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.51
2051	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.44
2052	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.37
2053	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.31
2054	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.24
2055	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.19
2056	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.13
2057	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.08
2058	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	1.02
2059	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	0.98
2060	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	0.93
2061	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	0.88
2062	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	0.84/
2063	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	0.80
2064	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	0.76
2065	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$ 0.340	\$	8.34	\$	0.73
											Total NPV	of (O&M Costs	\$	121.7
			Capital Cos	ts in million \$	5:					Yr built					
				RWTM			\$	238.4	-	2015				\$	238.4
							5230							0.00	
				Pumping Sta	atio	ns	\$	26.1		2015				\$	26.1

Total NPV of Capital and O&M Costs in millions \$ 386.2

O&M Cost Calculations WTP and Raw Water Storage Reservoir at WTP CTRWTP - Alternate 1B - WTP East of San Antonio

Initial year of analysis period Interest rate Evaluation period Unit cost of energy

2015 5% 50 years \$ 0.07 per kwh

Contingency = 20%
Engineering, Legal, Admin, = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition = \$ 25,000 per acre

Treated Water Production by Treatment Type (from Demand Chart - BE SURE TO CHECK)

			Year =	2015	2020	2030	2040	2050	2060	2065
Softened water demand:			Units							
Average yearly demands										
City of Austir LCRA	1:		ac-ft/yr ac-ft/yr	0			22403 11200	33604 11200	33604 11200	33604 11200
	Totals Totals		ac-ft/yr mgd	0			33603 30	44804 40	44804 40	44804 40
Max day demands; City of Austir LCRA	1		mgd mgd	0			35 20	50 20	50 20	50 20
LONA	Totals		mgd				55	70	70	70
			Year =	2015	2020	2030	2040	2050	2060	2065
Non-softened water demand	S:		Units							
Average yearly demands	: :			70000			005000	205000	205000	005000
SAWS SARA			ac-ft/yr ac-ft/yr	73000 20550			205000 31393	34411	37530	205000 41128
GBRA			ac-ft/yr	0	(6000	8000	10000	12300	12300
	Totals			93550			244393	249411	254830	258428
	Totals		mgd	84	204	214	218	223	227	231
Max day demands:										
SAWS			mgd	85			238	238	238	238
SARA GBRA			mgd mgd	24			36	40 9	44	48 11
GBRA ,	Totals		mgd	109			281	287	293	297
Total: softened and non-soft	ened water de	mands								
Average yearly demand			ac-ft/yr mgd	93550 84			277996 248	294215 263	299634 267	303232 271
Max day demand			mgd	109	265	311	336	357	363	367
aw Water Reservoir Sizing for ultimate conditions Assumed number of day		ve Max Day d	emands	30	days					
Design (Max. Day) treate	d water produ	ction req'd in	mgd		mgd					
Average treated water p	oduction in m	gd		271	mgd	(which is also can be pumped		ground and raw	water that	
Difference (s	hortfall of raw	water)		96	mgd	2 224				
Required storage reserve		er 25%		2,889 8,868 2,217	mg ac-ft ac-ft					
Total storage required		2070		11,084	ac-ft					
Total storage recommer	ded			12,000	ac-ft		days at averag		33 (lays
		Quantity	Units	Volume/each (acre-feet)	Unit Cost (\$/ac-ft))	Total Construction		Total Capital Cost		
Reservoirs		1	each	12,000	\$ 1,283	\$ 15.4	Eng., etc.	\$ 21.3		
Estimated average depti Surface area of reservol	of reservoir		25 480	ft acres						
Ratio of total land area re of reservoir	eqd to surface	area	1.10			Emds 8 Assi	analamı Cunı			
Total land area reqd for	reservoirs		528	acres		Total capital cos	naeology, Surv, and Land Acq = t in millions ≃	\$ 34.5		
Assumed life of reservol			100	years						
Estimated replacement of Estimated maintenance Total	cost		\$ 0.04	million/year million/year million/year	Mowing, mair	ntaining fences, e	tc.			
Year built			2015							
NPV of O&M costs NPV of Capital costs				million million						
Total NPV of Capital and	I O&M Costs		\$ 38.0	million						

WTP

Plant Phasing and Capital Costs:

Softening Treatment Trains	8	2045		2020		0000		2010		205	•	2222	2005
Year =		2015		2020		2030	-	2040	-	205		 2060	2065
Average treated water production in mgd		0		0		20		30			40	40	4
Design (Max. Day) treated water production req'd in mgd		0		0		35		55			70	70	7
Initial/additional Max day capacity built (mgd)				_		50		20					-
Total capacity on line (must exceed Design Max Day Req'd)		0		0		50		70			70	70	7
Unit cost for max day treatment capacity (\$/gpd of capacity)					\$	1.78	\$	2.14					
Estimated construction cost of expansion in \$millions	\$		\$	-	\$	89.0	\$	42.8	\$		•	\$	\$ * :
Non-softening Treatment Trains													
Year =		2015	44.00	2020	I Description	2030		2040		205	0	2060	 2065
Average treated water production in mgd		84		204		214		218			223	227	23
Design (Max. Day) treated water production req'd in mgd		109		265		276		281			287	293	29
Additional Max day capacity built (mgd)		200		100									
Total capacity on line (must exceed Design Max Day Req'd)		200		300		300		300			300	300	30
Unit cost for max day treatment capacity (\$/gpd of capacity)	\$	1.15	\$	1.32									
Estimated construction cost of expansion in \$millions	\$	229.6	\$	131.5	\$		\$	¥	\$		-	\$ 	\$ 2
Totals (Softening + Non-softening Trains)													
Year =		2015		2020		2030		2040		205	0	2060	2065
Total construction cost for both trains	\$	229.6	\$	131.5	\$	89.0	\$	42.8	\$	of the second		\$	\$ -
Contingencies		45.9		26.3		17.8		8.6				-	-
Subtotal	\$	275.5	\$	157.8	\$	106.8	\$	51.3	\$		-	\$ -	\$
Engineering, Legal, & Administrative		41.3		23.7		16.0		7.7			-		-
Subtotal		316.8		181.5		122.8		59.0				 -	-
Environmental & Archaelogy Studies and Mitigation & Land													
Acquisition and Surveying (see Note below)		2.5											
Total estimated capital cost	\$	319.3	\$	181.5	\$	122.8	\$	59.0	\$		-	\$ -	\$ -
NPV of capital cost	\$	319.3		\$ 142.2		\$ 59.1		\$ 17.4		\$	*	\$ -	\$ -
Total NPV of WTP initial construction & expansions	\$	538											
Note: Assumed land requirement for WTP (not including reservoir		100	acr	es									

O&M Costs for Softening Trains:

O&M Costs for Non-Softening Trains;

/ear	Plant Capacity in service	Estimated treated water production	Esti	mated O			Ne	et present value	Year	Plant Capacity in service	Estimated treated water production	\$ par ma				value	
	mgd of capacity	mgd produced		per mg reated		nillion year		(\$)		mgd of capacity	mgd produced		per mg reated	\$mi	lion /year		(\$)
2015	-				\$	•	\$	-	2015	200	84	\$	374	\$	11.41	\$	11,41
2016	*	-			\$		\$	-	2016	200	84	\$	374	\$	11.41	\$	10.8
2017	-	-			\$		\$	-	2017	200	84	\$	374	\$	11.41	\$	10.3
2018	-	-			\$	-	\$	-	2018	200	84	\$	374	\$	11.41	\$	9.8
2019					\$		\$	2	2019	200	84	\$	374	\$	11.41	\$	9.3
2020					S		\$		2020	300	204	\$	343	\$	25.50	\$	19.9
2021		-			\$	-	\$	2	2021	300	204	\$	343	\$	25.50	\$	19.0
2022	-	-			\$		\$	-	2022	300	204	\$	343	\$	25.50	\$	18.1
2023	-	-			S		s		2023	300	204	S	343	\$	25.50	\$	17.2
2024	-	-			\$	-	s	-	2024	300	204	\$	343	\$	25.50	\$	16.4
2025					s		s		2025	300	204	\$	343	\$	25.50	\$	15.6
2026					s		Š		2026	300	204	\$	343	Š	25.50	\$	14.9
2027					Š		Š	2	2027	300	204	š	343	š	25.50	š	14.2
2028	2	_			Š	-	Š	Į.	2028	300	204	Š	343	Š	25.50	Š	13.5
2029		8			Š		Š	- 5	2029	300	204	š	343	š	25.50	š	12.
2030	50	20	\$	712	Š	5.20	Š	2.50	2030	300	214	š	343	š	26.73	Š	12.8
	50	20	\$	712	\$	5.20	Š	2.38	2031	300	214	\$	343	\$	26.73	\$	12.
2031 2032	50	20	S	712	\$	5.20	Š	2.30	2032	300	214	Š	343	S	26.73	\$	11.0
					\$					300	214	Š	343	\$	26.73	\$	11.
2033	50	20	\$	712		5.20	\$	2.16	2033				343	\$			10.5
2034	50	20	\$	712	\$	5.20	\$	2.06	2034	300	214	\$			26.73	\$	
2035	50	20	\$	712	\$	5.20	\$	1.96	2035	300	214	\$	343	\$	26.73	\$	10.
2036	50	20	\$	712	\$	5.20	\$	1.87	2036	300	214	\$	343	\$	26.73	\$	9.
2037	50	20	\$	712	\$	5.20	\$	1.78	2037	300	214	\$	343	\$	26.73	\$	9.
2038	50	20	\$	712	\$	5.20	\$	1.69	2038	300	214	\$	343	\$	26.73	\$	8.
2039	50	20	\$	712	\$	5.20	\$	1.61	2039	300	214	\$	343	\$	26.73	\$	8.
2040	70	30	\$	661	\$	7.24	\$	2.14	2040	300	218	\$	343	\$	27.28	\$	8.
2041	70	30	\$.	661	\$	7.24	\$	2.04	2041	300	218	\$	343	\$	27.28	\$	7.
2042	70	30	\$	661	\$	7.24	\$	1.94	2042	300	218	\$	343	\$	27.28	\$	7.
2043	70	30	\$	661	\$	7.24	\$	1.85	2043	300	218	\$	343	\$	27.28	\$	6.
2044	70	30	\$	661	\$	7.24	\$	1.76	2044	300	218	\$	343	\$	27.28	\$	6.6
2045	70	30	\$	661	\$	7.24	\$	1.68	2045	300	218	\$	343	\$	27.28	\$	6.3
2046	70	30	\$	661	\$	7.24	\$	1.60	2046	300	218	\$	343	\$	27.28	\$	6.0
2047	70	30	\$	661	\$	7.24	\$	1.52	2047	300	218	\$	343	\$	27.28	\$	5.7
2048	70	30	\$	661	\$	7.24	S	1.45	2048	300	218	\$	343	\$	27.28	\$	5.
2049	70	30	s	661	s	7.24	\$	1.38	2049	300	218	\$	343	\$	27.28	S	5.
2050	70	40	\$	661	s	9.65	\$	1.75	2050	300	223	\$	343	\$	27.84	\$	5.0
2051	70	40	\$	661	\$	9.65	\$	1.67	2051	300	223	\$	343	\$	27.84	5	4.1
2052	70	40	\$	661	\$	9.65	Š	1.59	2052	300	223	\$	343	\$	27.84	\$	4.
2053	70	40	š	661	Š	9.65	\$	1.51	2053	300	223	Š	343	S	27.84	s	4.
2054	70	40	Š	661	\$	9.65	š	1.44	2054	300	223	š	343	Š	27.84	Š	4.
2055	70	40	\$	661	\$	9.65	\$	1.37	2055	300	223	Š	343	Š	27.84	š	3.
2056	70	40	s	661	Š	9.65	Š	1.31	2056	300	223	Š	343	\$	27.84	\$	3.
2056	70	40	S	661	S	9.65	\$	1.24	2057	300	223	Š	343	Š	27.84	Š	3.
2058	70	40	\$	661	\$	9.65	\$	1.18	2058	300	223	\$	343	\$	27.84	Š	3.
													343				
2059	70	40	\$	661	\$	9.65	\$	1.13	2059	300	223	\$		\$	27.84	\$	3.
2060	70	40	\$	661	\$	9.65	\$	1.07	2060	300	227	\$	343	\$	28.45	\$	3.
2061	70	40	\$	661	\$	9.65	\$	1.02	2061	300	227	\$	343	\$	28.45	\$	3.
2062	70	40	\$	661	\$	9.65	\$	0.97	2062	300	227	\$	343	\$	28.45	\$	2.
2063	70	40	\$	661	\$	9.65	\$	0.93	2063	300	227	\$	343	\$	28.45	\$	2.
2064	70	40 40	\$	661 661	\$	9.65	\$	0.88	2064	300 300	227 231	\$	343 343	\$	28.45	\$	2.5
2065	70					9.65			2065						28.85		

NPV Totals for O&M:

Softening trains \$ 58

Non-softening Trains \$ 441

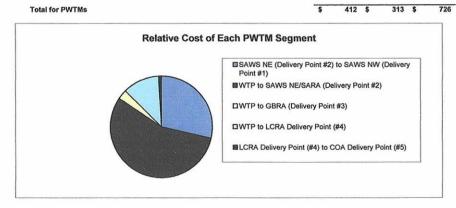
\$ 499

Summary

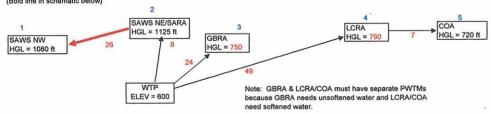
Raw Water Reservoir Water Treatment Plant Totals

 PV of al Costs	of O&M Costs	Cap	al NPV of pital and M Costs
\$ 34	\$ 3.5	\$	38
\$ 538	\$ 499	\$	1,037
\$ 572	\$ 502	\$	1,075

Capital and O&M Cost Calculations Potable Water Transmission Mains CTRWTP - Alternate 1B - WTP East of San Antonio


Initial year of analysis period 2015 Contingency = 20% Interest rate 5% Engineering, Legal, Admin. = 15% Evaluation period 50 years Environmental & Archaeology Studies & Unit cost of energy \$ 0.07 per kwh Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

Summary of Demands


Average demands to be delivered in each segment

			in acre-feet/ye	ar			
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	43800	123000	123000	123000	123000	123000	123000
SAWS NE	29200	82000	82000	82000	82000	82000	82000
Subtotal	73000	205000	205000	205000	205000	205000	205000
SARA	20550	23406	28433	31393	34411	37530	41128
GBRA			6000	8000	10000	12300	12300
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Total	93550	228406	261835	277996	294215	299634	303232

NPV of O&M Total NPV of Capital and Summary Capital Costs O&M Costs \$ 207 Costs SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1) WTP to SAWS NE/SARA (Delivery Point #2) WTP to GBRA (Delivery Point #3) WTP to LCRA Delivery Point (#4) LCRA Delivery Point (#4) to COA Delivery Point (#5) 203 117 289 405 5 14 1 22 84 7 17 70

SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1) (Bold line in schematic below)

Demands for this pipe segment

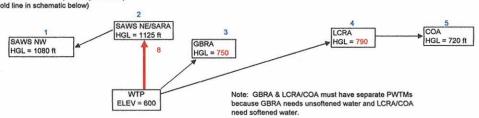
		Average dem	ands to be deli	ivered in each	segment in mgd	ĺ		
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
SAWS NW	39	110	110	110	110	110	110	1.3
Total -	39	110	110	110	110	110	110	

		Max day dem	ands to be del	vered in each s	segment in mgd	l	
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	51	143	143	143	143	143	143
Total	51	143	143	143	143	143	143

PWTM and Pump Station Costs

Design flow rate - year 2065	143	mgd	
•	99,125	gpm	
Pumping capacity of one pump	20,000	gpm	
No. of pumps (not counting spare)	5		
Peak flow rate (all pumps except spare)	100,000	gpm	
Inside diameter of PWTM	120	in.	
Area	78.54	sf	
Length of RWTM	26	miles	(linked to mileage in schematic above)
	137 280	foot	S 150

Estimated unit cost by condition:	% of length	LF	U	nit cost		Cost	
Rural - soil	15%	20,592	\$	783	\$	16.1	million
Rural - rock	50%	68,640	\$	1,048	\$	72.0	
Urban - rock	35%	48,048	\$	1,186	\$	57.0	
		137,280	8.00		\$	145.0	million
Average estimated unit construction	cost for PWTM		\$	1,057	per L	F	
Total construction cost in millions			\$	145.0			
Contingencies			\$	29.0			
Subtotal			\$	174.0			
Engineering, Legal & Administrative			\$	26.1			
Subtotal			\$	200.2			
	and And And And		2	2.6			
Envir & Arch Studies & Mitigation, Su	irveying, & Land Acc						


Unit maintenance cost/year-mile		S	10.000	\$/year-mile	S	0.260	Million \$/year
One manifolianos sossycar milo		*	10,000	4.,00	*	0.000	
Velocity at peak flow rate			2.84	fps			
C factor			120				
Head loss per foot			0.00020	ft/ft		h _f =	3.552*Q 1.85
			1.07	ft/mile			C*(d) ^{2.63}
Head loss at peak flow rate			28	ft			
Allowance for minor losses	20%		6	ft		1080	Desired HGL At Delivery Point
Total estimated losses			33	ft			HGL At Delivery Point 2
Average static head		-	-45			-45	ft
Total estimated dynamic head			-12				
			-5	nsi			

Negative indicates gravity flow from #2 to #1; no pumping necessary.

				12	 Aillion \$
Annual O&M Cost in milli	on \$:		Yr built		
PWTM	\$	0.260	2015		
				Total NPV of O&M Costs	\$4.7
Capital Costs in million \$			Yr built		
PWTM	\$	202.8	2015	-	\$ 202.8
				Total NPV of Capital Costs	\$ 202.8

Total NPV of Capital and O&M Costs in millions \$ 207.5 SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1)

WTP to SAWS NE/SARA (Delivery Point #2) (Bold line in schematic below)

Demands for this pipe segment

D			

		Avoidge delli	ands to be don	voida ili dacili a	oginioni in mga		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	39	110	110	110	110	110	110
SAWS NE	26	73	73	73	73	73	73
SARA	18	21	25	28	31	34	37
Total	84	204	208	211	214	217	220

Max d/Avg d
1.3
1.3
1.3

0.080 Million \$/year

\$

		Max day dem	ands to be deli	ivered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	51	143	143	143	143	143	143
SAWS NE	34	95	95	95	95	95	95
SARA	24	27	33	36	40	44	48
Total	109	265	271	274	278	281	286

PWTM and Pump Station Costs

Design flow rate - year 2065	286	mgd	
	198,353	gpm	
Pumping capacity of one pump	20,000	gpm	
No. of pumps (not counting spare)	10		
Peak flow rate (all pumps except spare)	200,000	gpm	
Inside diameter of PWTM	120	in.	
Area	78.54	sf	
Length of PWTM	8	miles	(linked to mileage in schematic above)
	42,240	feet	

Estimated unit cost by condition:	% of length	LE	U	nit cost		Cost	
Rural - soil	25%	10,560	\$	783	\$	8.3	million
Rural - rock	50%	21,120	\$	1,048	S	22.1	
Urban - rock	25%	10,560	\$	1,186	\$	12.5	
		42,240	SULPTRI		\$	42.9	million

Total construction cost in millions	\$ 42.9
Contingencies	\$ 8.6
Subtotal	\$ 51.5
Engineering, Legal & Administrative	\$ 7.7
Subtotal	\$ 59.2

Engineering, Legal & Administrative	\$ 7.7	
Subtotal	\$ 59.2	-
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 0.8	
Total Capital Cost for PWTM in millions	\$ 60.0	-
Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile

Velocity at peak flow rate C factor		5.67 120	fps		
Head loss per foot		0.00073	ft/ft	h _f =	3.552*Q 1.85
		3.85	ft/mile		C*(d) ^{2.63}
Head loss at peak flow rate		31	ft		
Allowance for minor losses	20%	6	ft	1125	Desired HGL At Delivery Point
Total estimated losses		37	ft	600	Elev. At WTP
Average static head		525	ft	525	ft
Total estimated dynamic head		562	ft		
		244	psi		

,	244 psi	
No of recommended pumping stations along route	1.62	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	2	in pipe)
Average head per pump station	281 ft	
Assumed pump efficiency	85%	
Assumed motor efficiency	90%	
Estimated Hp required per pump	1,855 hp/pump	
	1,384 kw/pump	

Total hp per pump station (not counting spare)	18,549 firm hp/station
Total kw per pump set (set=pumps in series along route)	3,710 kw/pump set (one pump at each station)

Unit construction cost for each pump station (from cost curve)	\$ 1,105	per firm hp of pump station
Construction cost per pump station	20.5	million

Total construction cost for pump stations	41.0	for	2	pump statio

 Contingencies
 \$
 8.2

 Subtotal
 \$
 49.2

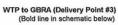
 Engineering, Legal & Administrative
 \$
 7.4

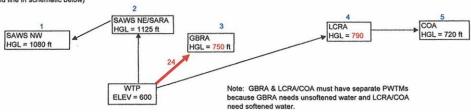
 Total capital cost for pump stations in millions
 \$
 56.6
 million

 Value of equipment
 \$ 16 million

 Assumed life of equipment
 20 years

 Estimated maintenance/replacement cost
 \$ 0.82 million/year


40% Equip cost as % of constr cost


O&M Costs

O&M Cos	ts														
Year	Flow pumped by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	gy c	cost		Other O&M osts - Pump Stations		aintenance costs - PWTM	Т	otal O&M cost	Ne	et present value
	mgd		(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year)	-	(Million \$ /year)		(Million \$ /year)		(\$)
2015	84	2.90	258,178	\$	18,072	\$	6.60	\$	0.82	\$	0.080	\$	7,50	\$	7.50
2016	84	2.90	258,178	\$	18,072	\$	6.60	\$	0.82	\$	0.080	\$	7.50	\$	7.14
2017	84	2.90	258,178	\$	18,072	\$	6.60	\$	0.82	\$	0.080	\$	7.50	\$	6.80
2018	84	2.90	258,178	\$	18,072	\$	6.60	\$	0.82	\$	0.080	\$	7.50	\$	6.48
2019	84	2.90	258,178	\$	18,072	\$	6.60	\$	0.82	\$	0.080	\$	7.50	\$	6.17
2020	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	13.32
2021	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	12.69
2022	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	12.09
2023	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	11.51
2024	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	10.96
2025	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	10.44
2026	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	9.94
2027	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	9.47
2028	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	9.02
2029	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	8.59
2030	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	8.35
2031	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	7.95
2032	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	7.57
2033	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	7.21
2034	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	6.87
2035	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	6.54
2036	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	6.23
2037	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	5.93
2038	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	5.65
2039	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	5.38
2040	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	5.19
2041	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.94
2042	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.71
2043	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.48
2044	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.27
2045	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.06
2046	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	3.87
2047	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	3.69
2048	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	3.51
2049	211	7.33	652,394	\$	45,668	\$	16.67	\$		\$	0.080	\$	17.57	\$	3.34
2050	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	3.22
2051	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	3.07
2052	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.92
2053	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.78
2054	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.65
2055	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.53
2056	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.41
2057	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.29
2058	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.18
2059	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.08
2060	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82	\$	0.080	\$	18.00	\$	2.00
2061	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82	\$	0.080	\$	18.00	\$	1.91
2062	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82	\$	0.080	\$	18.00	\$	1.82
2063	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82	\$	0.080	\$	18.00	\$	1.73
2064	217	7.52	669,331	\$	46,853	\$	17.10	\$		\$	0.080	\$	18.00	\$	1.65
2065	220	7.63	679,260	\$	47,548	\$	17.36	\$		\$	0.080	\$	18.26	\$	1.59
											Total NPV	of	O&M Costs	\$	288.7
		Capital Costs	in million e.						Yr built						
		Capital Costs	PWTM			\$	60.0	-	2015	-				s	60.0
			Pumping Sta	lion		5			2015					\$	56.6
			rumping Sta	uOn	5	\$	00.0		2013	-	otal NDV o	10	apital Costs		116.6
											Otal INF V O	. 00	apital Costs	9	110.0

Total NPV of Capital and O&M Costs in millions \$ WTP to SAWS NE/SARA (Delivery Point #2)

405

Demands for this pipe segment

De	ma	nd

Year	2015	2020	2030	2040	2050	2060	2065
	2010	2020	2000	2040	2000	2000	2000
GBRA	0	0	5	/	9	11	11
Total	0	0	5	/	9	11	11

Max d/Avg d

		Max day dem	ands to be del	ivered in each s	segment in mgd	1	
Year	2015	2020	2030	2040	2050	2060	2065
GBRA	0	0	11	14	18	22	22
Total -	0	0	11	14	18	22	22

PWTM and Pump Station Costs

Design flow rate - year 2065	22	mgd
**************************************	15,250	gpm
Pumping capacity of one pump	5,100	gpm
No. of pumps (not counting spare)	3	2.30
Peak flow rate (all pumps except spare)	15,300	gpm
Inside diameter of PWTM	42	in.
Area	9.62	sf
Length of RWTM	24	miles

24 miles 126,720 feet

(linked to mileage in schematic above)

		- Aller Brown Brown		CHECK SHIPPING AND ADDRESS OF	STATE OF THE PERSON NAMED IN		and the second state of
Estimated unit cost by condition:	% of length	LE	Un	it cost	C	ost	
Rural - soil	100%	126,720	\$	174	\$	22.0	million
Rural - rock	0%		\$	244	\$		
Urban - rock	0%	Manufacture	\$	263	\$		
		126,720	THE REAL PROPERTY.		\$	22.0	million
Average estimated unit construction Total construction cost in millions	cost for PWTM		\$	174	perLF		
			\$				
Contingencies Subtotal			\$	26.4	•		
Engineering, Legal & Administrative			\$	4.0			
Subtotal			\$	30.4	- 2		
Envir & Arch Studies & Mitigation, Surveying, & Land Acq				2.4			
W	mma a 1 1111		-	200	-		

Little & Alcit Oldalos & Willigation, Our vo	ying, a cana may	-	4.7				
Total Capital Cost for PWTM	in millions	\$	32.8				
Unit maintenance cost/year-mile		\$	10,000	\$/year-mile	\$ 0.240	Million \$/year	
Velocity at peak flow rate			3.54	fps			
C factor			120				

Head loss per foot		0.00104 5.47	ft/ft ft/mile	h _f =	3.552*Q ^{1.85} C*(d) ^{2.63}
Head loss at peak flow rate		131	ft		
Allowance for minor losses	20%	26	ft	740	Desired HGL At Delivery Point
Total estimated losses		158	ft	600	Elev. At WTP
Average static head		140	ft	140	ft

Total estillated 103363	100 11	000 1104. 711 4411
Average static head	140 ft	140 ft
Total estimated dynamic head	298 ft	
•	129 psi	
No of recommended pumping stations along route	0.86	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	1	in pipe)
Average head per pump station	298 ft	0000 - 0400000
Assumed pump efficiency	85%	
Assumed motor efficiency	90%	
Estimated Hp required per pump	501 hp/pump	

	374	kw/pump	
Total hp per pump station (not counting spare)	1,503	hp/station	
Total kw per pump set (set=pumps in series along route)	501	kw/pump set	(one pump at each station)

Unit construction cost for each pump station (from cost curve)	\$ 1,718	per firm hp of pump static
Construction cost per pump station	2.6	million

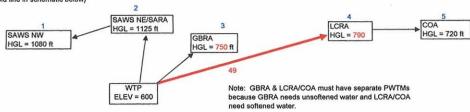
Construction cost per pump station	2.6 millio	n		
Total construction cost for pump stations	2.6	for	1	pump stations
Contingencies	\$ 0.5	25	n+ 1/	
Subtotal	\$ 3.1			
Engineering, Legal & Administrative	\$ 0.5			

Total capital cost for pump stations

\$ 3.6 million

40% Equip cost as % of constr cost

Value of equipment
Assumed life of equipment
Estimated maintenance/replacement cost


\$ 1.0 million 20 years \$ 0.05 million/year

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy Energy used		Energy Energy cost costs - Po				gy Energy cost costs - Pump costs -		mp costs -		costs -		Total O&M cost		Net present value	
	mgd		(kwh/day)		(\$/day)		(Million \$		(Million \$	(Million \$		lillion \$ 'year)		(\$)			
2015												\$		\$	-			
2016	-											\$	*	\$	-			
2017	-											\$	2	\$				
2018	-											\$	-	\$				
2019	-											\$	-	\$	-			
2020	-											\$	-	\$	-			
2021												\$	-	\$	-			
2022	-											\$						
2023	-											\$	-	\$	-			
2024	-												•	\$	•			
2025	-											\$	~	\$	-			
2026	-											\$	-	\$	-			
2027	-											\$	•	\$	-			
2028	-											\$	-	\$				
2029												\$		\$				
2030	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.2			
2031	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.2			
2032	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$				
2033	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52		0.2			
2034	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.2			
2035	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.1			
2036	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.1			
2037	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.1			
2038	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.1			
2039	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.1			
2040	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2041	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2042	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2043	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2044	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	- 7				
2045	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2046	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2047	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2048	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2049	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.1			
2050	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240	\$	0.67	\$	0.1			
2051	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240	\$	0.67		0.1			
2052	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240	\$	0.67	\$	0.1			
2053	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240		0.67					
2054	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240	\$	0.67	\$	0.1			
2055	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240	\$	0.67	\$	0.0			
2056		1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240		0.67	\$				
2057	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240	\$	0.67		0.0			
2058	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240	\$	0.67	\$	0.0			
2059	9	1.22 1.50	14,618	\$	1,023	\$	0.37 0.46	\$	0.05	\$	0.240	S	0.67 0.75	\$	0.0			
2060	11		17,980	\$	1,259			5	0.05	\$	0.240	\$	0.75	\$	0.0			
2061	11 11	1.50	17,980	S	1,259	\$	0.46	\$	0.05	\$	0.240	\$	0.75	S	0.0			
2062 2063	11	1.50 1.50	17,980	5	1,259 1,259	\$	0.46	\$	0.05	5	0.240	\$	0.75	\$	0.0			
2063	11	1.50	17,980	\$	1,259	\$	0.46	\$		\$	0.240	\$	0.75	\$	0.0			
2065	11	1.50	17,980 17,980	\$	1,259	\$	0.46	\$		\$	0.240	\$	0.75	\$	0.0			
											Total NPV	of O	&M Costs	\$	4			
		Capital Costs	in million \$:					line or	Yr built									
		or a sales are reconcession to	PWTM			\$	33		2030					\$	15			
			Pumping Stati	ons		\$	4		2030					\$	1			
						(5)			255000	-		000	ital Costs		17			

Total NPV of Capital and O&M Costs in millions \$ 22.3 WTP to GBRA (Delivery Point #3)

WTP to LCRA Delivery Point (#4) (Bold line in schematic below)

Demands for this pipe segment

n			

		Average dem	ands to be del	ivered in each s	segment in mgd			
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
LCRA	0	0	5	10	10	10	10	2.0
COA	0	0	15	20	30	30	30	1.68
Total	0	0	20	30	40	40	40	

		max day dem	ands to be del	ivered in each s	segment in mga		
Year	2015	2020	2030	2040	2050	2060	2065
LCRA	0	0	10	20	20	20	20
COA	0	0	25	34	50	50	50
Total	0	0	35	54	70	70	70

PWTM and Pump Station Costs

Unit maintenance cost/year-mile

Design flow rate - year 2065	70	mgd	
•	48,883	gpm	
Pumping capacity of one pump	10,000	gpm	
No. of pumps (not counting spare)	5		
Peak flow rate (all pumps except spare)	50,000	gpm	
Inside diameter of PWTM	72	in.	
Area	28.27	sf	
Length of RWTM	49	miles	(linked to mileage in schematic above)
	258,720	feet	

Estimated unit cost by condition:	% of length	LE	Un	it cost	C	ost	
Rural - soil	100%	258,720	\$	365	\$	94.5	million
Rural - rock	0%	O Wasaiii.	\$	498	\$		
Urban - rock	0%		\$	552	\$		
		258,720			\$	94.5	million
Average estimated unit construction	cost for PWTM		\$	365	per LF		

Total construction cost in millions	\$ 94.5
Contingencies	\$ 18.9
Subtotal	\$ 113.4
Engineering, Legal & Administrative	\$ 17.0
Subtotal	\$ 130.4
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 4.9
Total Capital Cost for PWTM in millions	\$ 135.3

Velocity at peak flow rate C factor		3.94 120	fps	
Head loss per foot		0.00067	ft/ft	h _f = 3.552*Q ^{1.85}
		3.55	ft/mile	C*(d) ^{2.63}
Head loss at peak flow rate		174	ft	
Allowance for minor losses	20%	35	ft	790 Desired HGL At Delivery Point
Total estimated losses		209	ft	720 Elev. At Delivery Point 3
Average static head		70	ft	70 ft
Total estimated dynamic head		279	ft	
		121	psi	

10,000 \$/year-mile \$

0.490 Million \$/year

No of recommended pumping stations along route	0.81	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	1	in pipe)
Average head per pump station	279 ft	
Assumed pump efficiency	85%	
Assumed motor efficiency	90%	
Estimated Hp required per pump	921 hp/pump	
	687 kw/pump	
Total hp per pump station (not counting spare)	4,605 firm hp/station	
Total kw per pump set (set=pumps in series along route)	921 kw/pump set (one p	oump at each station)
Unit construction cost for each pump station (from cost curve)	\$ 1,445 per firm hp of pump s	station
Construction cost per pump station	6.7 million	

6.7 million	n		
6.7	for	1	pump stations
\$ 1.3	-	1	
\$ 8.0			
\$ 1.2			
\$ \$	6.7 \$ 1.3	6.7 for	6.7 for <u>1</u>

Total capital cost for pump stations \$ 9.2 million

Value of equipment \$ 2.7 million

Assumed life of equipment 20 years

Estimated maintenance/replacement cost \$ 0.13 million/year

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	ју со	ost	co	ther O&M sts - Pump Stations	(intenance costs - PWTM	То	etal O&M cost	Ne	t presen value
	mgd		(kwh/day)		(\$/day)	((Million \$		(Million \$	(Million \$ /year)		Million \$ /year)		(\$)
2015								_				\$	-	\$	-
2016												\$	-	\$	
2017												\$	•	\$	-
2018												\$	7.	\$	
2019												\$	*	\$	-
2020												\$	*	\$	-
2021												\$		\$	27.)
2022												\$	*	\$	
2023												\$		\$	-
2024												\$	7	\$	-71
2025												\$	-	\$	9.00
2026												\$	-	\$	-
2027												\$	-	\$	
2028												\$		\$	•
2029							0.70		0.40		0 400	\$		\$	-
2030	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.6
2031	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.6
2032	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.6
2033	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.5
2034	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.5
2035	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.5
2036	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.5
2037	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.4
2038	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.4
2039	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.4
2040	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.5
2041	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.5
2042	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.4
2043	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.4
2044	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.4
2045	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.4
2046	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.4
2047	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.3
2048	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.3
2049	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.3
2050	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.4
2051	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.3
2052	40	2.78	61,391	\$	4,297	S	1.57		0.13	\$	0.490	S	2.19	\$	0.3
2053	40	2.78	61,391	\$	4,297		1.57	\$	0.13 0.13	\$	0.490	S	2.19	\$	0.3
2054	40	2.78	61,391	\$	4,297	\$	1.57	\$							
2055	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.3
2056	40	2.78	61,391	\$	4,297	\$	1.57	\$		\$	0.490	\$	-	\$	0.3
2057	40 40	2.78	61,391	\$	4,297	S	1.57	5	0.13 0.13	\$	0.490	S	2.19	\$	0.2
2058	40	2.78	61,391	S	4,297 4,297	\$	1.57 1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.2
2059	40	2.78	61,391	\$		\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.2
2060	40	2.78	61,391		4,297	\$		-		0.7%	0.490	5	1770000	\$	0.2
2061	40	2.78	61,391	\$	4,297 4,297	\$	1.57	\$	0.13	\$	0.490	S	2.19	\$	0.2
2062	40	2.78	61,391	\$		\$	1.57	\$			0.490	\$	2.19	\$	0.2
2063	40 40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.2
2064		2.78	61,391		4,297	\$	1.57		0.13			S	2.19	\$	
2065	40	2.78	61,391	\$	4,297	٩	1.57	\$	0.13	\$	0.490	-27		1.00	0.1
											Total NPV	or O	am Costs	\$	14
		Capital Costs					400 -		Yr built						
			PWTM			\$	135.3		2030					\$	65
			Pumping Stat	ions		\$	9.2		2030					\$	4.

Total NPV of Capital and O&M Costs in millions \$ 84 WTP to LCRA Delivery Point (#4)

LCRA Delivery Point (#4) to COA Delivery Point (#5) (Bold line in schematic below)

Demands for this pipe segment

Demands

		Average dem	ands to be deli	ivered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
COA	0	0	15	20	30	30	30
Total	0	0	15	20	30	30	30

Max d/Avg d 1.68

		Max day dem	ands to be deli	vered in each	segment in mgd	1	
Year	2015	2020	2030	2040	2050	2060	2065
COA	0	0	25	34	50	50	50
Total -	0	0	25	34	50	50	50

PWTM and Pump Station Costs

Design flow rate - year 2065 50 mgd 34,997 gpm

54 in. 15.90 sf 7 miles 36,960 feet Inside diameter of PWTM Area Length of PWTM

(linked to mileage in schematic above)

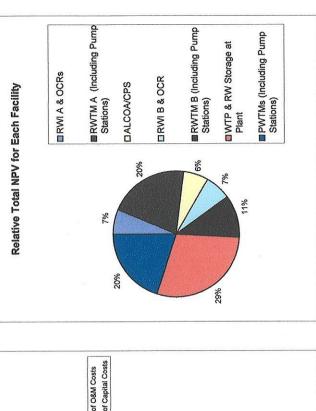
stimated unit cost by condition:	% of length	LF	Un	it cost	Cost	
Rural - soil	100%	36,960	\$	244	\$	million
Rural - rock	0%		\$	337	\$	
Urban - rock	0%	-	\$	369	\$	
		36,960			\$ 9.0	million

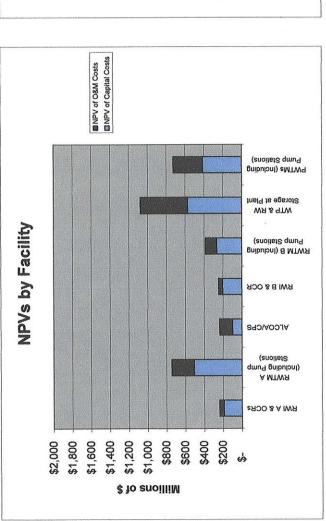
Total construction cost in millions	\$	9.0
Contingencies	\$	1.8
Subtotal	\$	10.8
Engineering, Legal & Administrative	\$	1.6
Subtotal	\$	12.4
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	0.0
Total Capital Cost for PM/TM in millions	•	12.4

10,000 \$/year-mile 0.070 Million \$/year Unit maintenance cost/year-mile

4.90 fps 120 Velocity at peak flow rate C factor $h_f = \left| \frac{3.552 \cdot Q}{C \cdot (d)^{2.63}} \right|^{1.85}$ Head loss per foot 0.00141 ft/ft 7.45 ft/mile 52 ft 10 ft 63 ft Head loss at peak flow rate

720 Desired HGL At Delivery Point 790 Elev. At Delivery Point 4 -70 ft Allowance for minor losses Total estimated losses Average static head Total estimated dynamic head -70 ft -3 psi


20%


Negative indicates gravity flow from #4 to #5; no pumping necessary.

						M	lillion \$
Annual O&M (Cost in million	1 \$:		Yr built			
	PWTM	\$	0.070	2030	-		
					Total NPV of O&M Costs		\$0.55
Capital Costs	in million \$:			Yr built			
	PWTM	\$	12.4	2030	-	\$	6.0
					Total NPV of Capital Costs	\$	6.0

Total NPV of Capital and O&M Costs in millions \$ LCRA Delivery Point (#4) to COA Delivery Point (#5) 6.5 Page 1

		november 1	nogentacione	phonone
PWTMs (including Pump Stations)	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)	\$ 412	\$ 313	\$ 726
RWTM B (including WTP & RW Storage PWTMs (including Pump Stations) at Plant Pump Stations)	Raw water reservoir w/ 11,000 ac-ft capacity. Conventional settling with membrane filtration for SAWS, SARA & GBRA; Lime softening with membrane filtration for COA & LCRA water	\$ 572	\$ 502	\$ 1,075
RWTM B (including Pump Stations)	Sized for 117,804 ac- flyr; 68 miles of 84" pipeline with two pumping stations and balancing reservoirs	\$ 265	\$ 122	\$ 386
RWI B & OCR	Sized for 2000 cfs (2 intakes) to scalp surface water plus an additional 76 cfs (55,000 ac-ft/yr) equilvalent to groundwater reheased to Big Sandy Creek; 8 miles of 120-inch pipe; 4 OCRs at 15,000 ac-ft/each	\$ 204	\$ 43	\$ 247
ALCOA/CPS	Non-public wells; Discharge of 55,000 ac- flyear to Big Sandy Creek near Hwy 290 east of Elgin with flow to Colorado River just upstream of RWI-B	86	\$ 138	\$ 236 \$
RWTM A (Including Pump Stations)	e s	\$ 507	\$ 238	\$ 745 \$
RWI A & OCRs	Sized for 4000 cfs diameter pipe sized to scalp water; 4 deliver 132,000 ac-intakes, 4 miles of flypear on a continuo 120-inch raw water basis; includes 3 mains & 4 OCRs at pumping stations w/ 25,000 ac-ft each along route	\$ 191	\$ 47	\$ 238
Total NPVs in Millions of \$, , , , , , , , , , , , , , , , , , ,	\$ 2,248 \$	\$ 1,403 \$	\$ 3,652 \$
Phasing Scenario	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.	NPV of Capital Costs \$	NPV of O&M Costs \$	Total NPV of Capital & O&M \$
Alter- nate	ō			
WTP Location	East of San Antonio			

O&M Cost Calculations
RWI A - Matagorda Co. River Intakes, and Storage
CTRWTP - Alternate 1C - WTP East of San Antonio (Discharge ALCOA/CPS groundwater to Big Sandy Creek)

Initial year of analysis period Interest rate	2015 5%						egal,	ngency = Admin. =	15%			
Evaluation period	50	yea	rs	Enviror	mental &	Archae	ology !	Studies &				
Unit cost of energy \$	0.07	per	kwh	Mitigation,	Surveyir	g, and L	and A	cquisition	\$	100,000	per i	mile
								or=	\$	5,000	per a	acre
nflatable Rubber Low Head Dam												
	Quantity	1	Units	Size	(Constr. Cost Illions)	Con	Total timated str. Cost illions)	E	ntigency, ng., etc. nillions)		al Capital Cost nillions)
Inflatable Rubber Low Head Dam	4	eac	h	10 ft high	\$	2.25	\$	9.00	\$	3.42	\$	12.42
Estimated inflatable dam cost as %	of total		50%									
Value of inflatable dam		\$	4.50	million								
Assumed life of inflatable dam			10	years								
Estimated maintenance/replacement	nt cost	\$	0.45	million/year								
Year built			2020									
NPV of O&M Costs			\$6.27	million								
NPV of Capital Costs		\$	9.73	million								
Total NPV of Capital and O&M Cos	ts		\$16.00	million								

Raw W

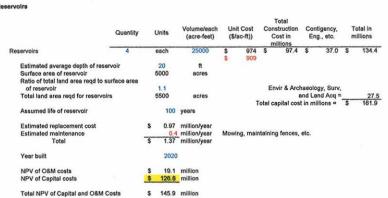
Unit construction cost for each pump station (from cost cur \$ Construction cost per intake/pump station No. of intakes from above

Total construction cost for pump stations
Value of equipment
Assumed life of equipment
Estimated maintenanco/replacement cost

Total construction cost in millions Contigency, Eng., etc. in millions Total capital cost in millions

400.000			
		21	.9 Ratio of design withdrawal rate
			to Total intake design withdrawal rate
.,,,,	Jr		
1,000	ole		
4			
448,800	gpm		
		9.2	
			.0 miles for all RWTMs 0 feet
\$ 793	per LF		\$ 1,254
\$ 16.8			
\$ 20.1	•		
\$ 3.0	_		
	million		
\$ 10,000	\$/year-mile	\$ 0.04	0 Million \$/year (all RWTMs to Reservoirs)
it, one to each	reservoir.		
448,800	gpm		
	gpm		
450,000	gpm		
	fps		
		100	
			N= 3.552*Q ^{1.85}
17.25	ft/mile		C*(d) ^{2.63}
17	ft		
			90 Elev of discharge at reservoir
			50 Water surface elev in river
			40 ft
85%			
90%			
	hp/pump		
769	kw/pump		
769 9,272	kw/pump hp/RWTM		
769 9,272	kw/pump hp/RWTM hp/intake		
	182 4,000 1,795,200 4 1,000 448,800 4 448,800 78,54 5,280 \$ 793 \$ 13,4 \$ 20.1 \$ 23.1 \$ 23.5 \$ 10,000 it, one to each 448,800 50,000 12,777 120 0,00327 17,25 22 40 62 27	1,000 cfs 448,800 gpm 448,800 gpm 120 in. 78,54 sf 1 miles 5,280 feet \$ 16.8 s.3.4 s.20.1 s.3.0 s.23.1 million \$ 10,000 \$/year-mile it, one to each reservoir. 448,800 gpm 450,000 gpm 12,77 fps 120 0.00327 ft/ft 17,25 ft/mile 17 ft 22 ft 40 ft 27 psi	182 cfs 4,000 cfs 1,795,200 gpm 4 1,000 cfs 448,800 gpm 448,800 gpm 120 in. 78.54 sf 1 miles 4 5,280 feet 21,12 \$ 793 per LF \$ 16.8 \$ 3.4 \$ 20.1 \$ 23.1 \$ 0.4 \$ 23.5 million \$ 10,000 \$/year-mile \$ 0.04 it, one to each reservoir. 448,800 gpm 50,000 gpm 12.77 fps 120 0.00327 ft/ft 17.25 ft/mile 17 ft 5 ft 22 ft 40 ft 65 ft 27 psi

889 per firm hp of pump station \$ 1,180 8.2 million 4 each


40% Estimated equip cost as % of total constr cost

33.0 million 12.63 million 45.5 million

33.0 million 13.2 million 20 years 0.66 million/year

Year	Flow pum yea		No. of pump "sets"	Energy used	Energy		y co	cost cost		costs - Pump Stations		costs - RWTM	Total O&M cost		Net p		
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		Million \$ /year)		Million \$ /year)	(Million \$ /year)		lillion \$ year)	******	(\$))
2015	•	•		•	\$		\$	-		V. aminimocci	S ()	T-ASSEMBLE	\$	•	\$		•
2016	-				\$	-	\$	*					\$	•	\$		*
2017	*	•		•	\$	-	\$						\$		S		:
2018	•	•	7	•	\$		\$	•					5	-	\$		•
2019				00 400	\$	2,113	\$	0.77	\$	0.66	s	0.040	\$	1.47	\$		1.1
2020	132,000	118	1.64	30,188	\$		\$	0.77	\$	0.66	5	0.040	\$	1.47	S		1.
2021	132,000	118	1.64	30,188	5	2,113			\$		\$		s		\$		1.0
2022	132,000	118	1.64	30,188	s	2,113	\$	0.77		0.66		0.040		1.47			1.0
2023	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	S	0.040	S	1.47	\$		
2024	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.1
2025	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2026	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2027	132,000	118	1.64	30,188	\$	2,113	\$	0.77	S	0.68	\$	0.040	\$	1.47	\$		0.
2028	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2029	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.68	\$	0.040	\$	1.47	\$		0.
2030	132,000	118	1.64	30,188	\$	2,113	S	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2031	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2032	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2033	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2034	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2035	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2036	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2037	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2038	132,000	118	1.64	30,188	\$	2,113	S	0.77	\$	0.66	\$	0.040	S	1.47	\$		0.
2039	132,000	118	1.64	30,188	S	2,113	S	0.77	\$	0.66	\$	0.040	S	1.47	\$		0.
2040	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	5		0.
2041	132,000	118	1.64	30,188	\$	2,113	\$	0.77	S	0.66	\$	0.040	\$	1.47	\$		0.
2042	132,000	118	1.64	30,188	5	2.113	s	0.77	S	0.66	s	0.040	\$	1.47	\$		0
2043	132,000	118	1.64	30,188	Š	2,113	S	0.77	s	0.66	\$	0.040	s	1.47	\$		0
2044	132,000	118	1.64	30,188	š	2,113	s	0.77	s	0.66	s	0.040	s	1.47	\$		0.
2045	132,000	118	1.64	30,188	š	2,113	\$	0.77	\$	0.66	š	0.040	Š	1.47	S		0
2046	132,000	118	1.64	30,188	š	2,113	\$	0.77	s	0.66	š	0.040	Š	1.47	s		0
2047	132,000	118	1.64	30,188	Š	2,113	\$	0.77	Š	0.66	š	0.040	Š	1.47	Š		0
2048	132,000	118	1.64	30,188	š	2,113	\$	0.77	Š	0.66	š	0.040	š	1.47	š		0
2049	132,000	118	1.64	30,188	š	2,113	Š	0.77	Š	0.66	š	0.040	Š	1.47	Š		0
2050		118	1.64	30,188	Š	2,113	Š	0.77	Š	0.66	š	0.040	Š	1.47	š		0
	132,000				s		3	0.77	Š	0.66	5	0.040	S	1.47	Š		0
2051	132,000	118	1.64	30,188		2,113	Š	0.77	Š	0.66	Š	0.040	Š	1.47	Š		0
2052	132,000	118	1.64	30,188	\$	2,113				0.66	S	0.040		1.47	s		0.
2053	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$				\$		Š		
2054	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47			0.
2055	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.68	\$	0.040	\$	1.47	\$		0.
2056	132,000	118	1.64	30,188	\$	2,113	\$	0.77	s	0.66	s	0.040	\$	1.47	\$		0.
2057	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0
2058	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2059	132,000	118	1.84	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2060	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0
2061	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0
2062	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0
2063	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0
2064	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
2065	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$		0.
												Total NPV	of O	M Costs	\$		2
			Capital Cos	ts in million :			p.20			Yr built						_	100
				RWTM to R			\$	23.5		2020					120	\$	1
				Intake/Pum	ping	Stations	\$	45.5		2020		otal NPV of		Desires (1997)	\$		5

Reservoirs

Total NPV of Capital and O&M Costs in millions \$

Summary	-	IPV of tal Costs		PV of O&M Costs	Ca	Total NPV of Capital and O&M Costs		
Inflatable Rubber Low Head Dam	\$	9.7	\$	6.3	\$	16.0		
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$	54.1	\$	21.6	\$	75.7		
Reservoirs	\$	126.8	\$	19.1	\$	145.9		
Total for RWI A	\$	190.6	5	47.0	\$	237.6		

O&M Cost Calculations
RWTM A - Matagorda Co. to WTP
CTRWTP - Alternate 1C - WTP East of San Antonio (Discharge ALCOA/CPS groundwater to Big Sandy Creek)

	Initial year of analysis period Interest rate	201:				ngineering,		ngency =		
									1370	
	Evaluation period		0 years			I & Archaeol				
	Unit cost of energy	\$ 0.07	per kwh	Mitigat	ion, Sun	veying, and L	and Ac	quisition	\$ 100,000	per mile
Raw W	ater Transmission Main - A									
	Inside diameter of pipe				96					
	Area				50.27					
	Length of RWTM					miles				
				7	49,760	feet				
	Estimated unit construction cost	for RWTM		\$	567	per LF				
	Total construction cost in million	s		\$	425					
	Contingencies			\$	85					
	Subtotal			\$	511					
	Engineering, Legal & Administra	tive		\$	77					
	Subtotal			\$	587					
	Envir & Arch Studies & Mitigatio			\$	14	1000				
	Total Capital Cost fo	r PWTM in i	millions	\$	601	million				
	Unit maintenance cost/year-mile	1		\$	10,000	\$/year-mile	\$	1.420	Million \$/year	
	Design flow rate (after 100% but	ldout)		1		ac-ft/year				
						mgd				
					81,829					
	Pumping rate (one pump)					gpm				
	No. of pumps (not counting spar				5					
	Peak flow rate (all pumps excep	t spare)			82,000	gpm				
	Velocity at peak flow rate				3.63	fps				
	C factor				120					
	Head loss per foot			10	0.00041	ft/ft		h.=	[3.552*Q]1.8	5
	rioda ioso por ioot					ft/mile			1 C*(d) ^{2.63}	
					2.10	TOTTING			10-(0)	
	Head loss at peak flow rate				311	ft				
	Allowance for minor losses	109	6		31			600	Flev At San	Antonio East WTP
	Total estimated losses				342				Elev. At Mata	
	Average static head				510		-	510		
	Total estimated dynamic head			-	852					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				369					
	No of pumping stations req'd ald	na route			2.46			150	psi (assumed	max pressure
	No. of pumping stations used in		te		3.0				in pipe)	
	Average head per pump station				284	ft				
	Assumed pump efficiency				85%					
	Assumed motor efficiency				90%					
	Estimated Hp required per pump	0			1,537	hp/pump				
						kw/pump				
	Total hp per pump station (not c				7,687	hp/station				
	Total kw per pump set (set=pur	nps in series	s along route)		4,612	kw/pump se	t (one	pump at	each station)	
	Unit constr. cost for each pump	station (fron	n cost curve)	\$	1,320	per firm hp	of pum	station		
	Construction cost per pump stat			Š		million				
	Balancing reservoir			\$		million	1	60	min. of storag	e at avg pumping rate
	Total construction co	st per pum	p station	\$		million	1	5.0	mg	
	No. of pump stations from above	в			3.0	each	\$	0.15	per gal for op	en top reservoir
	Total construction and to the	_			20.7					
	Total construction cost in million			\$		million				
	Contigency, Eng., etc. in million	S		\$		million				
	Total capital cost in millions			\$	45.1	million				
	Total construction cost for pump	stations		s	32.7	million				
		Stations		S	13.1			40%	Estimated en	uipment cost as % of total
									Latiniatou 60	שוטוויויוווו טיסו מס יס טו וטופ
	Value of equipment	nment		•		veare				
	Assumed life of equi Estimated maintena		ment cost	s	20	years million/year				

O&M Costs

Year	Flow pum yea		No. of pump "sets"	Energy used		Energy				Other O&M costs - Pump Stations		Maintenance costs - RWTM		Total O&M cost		et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	(Million \$ /year)	(Million \$ /year)	(Million \$ /year)	/year)			(\$)
2015	-	-	-	-	\$		\$		-		-		\$		\$	-
2016	~		-	1000	\$	-	\$						\$		\$	-
2017	-	-	-	-	\$	-	\$						\$	-	\$	
2018	-		-	9.7	\$	1.5	\$						\$		\$	
2019	-		-	1.4	\$	-	\$						\$		\$	
2020	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	12.68
2021	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	12.08
2022	132,000	118	4.99	552,331	S	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	11.50
2023	132,000	118	4.99	552,331	\$	38,663	\$	14.11	S	0.65	\$	1.420	\$	16.19	\$	10.96
2024	132,000	118	4.99	552,331	\$	38,663	S	14.11	\$	0.65	\$	1.420	\$	16,19	\$	10.43
2025	132,000	118	4.99	552,331	s	38,663	\$	14.11	s	0.65	\$	1.420	s	16.19	\$	9.94
2026	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	9.46
2027	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	S	1.420	s	16.19	\$	9.01
2028	132,000	118	4.99	552,331	\$	38,663	\$	14.11	Š	0.65	\$	1.420	Š	16.19	\$	8.58
2029	132,000	118	4.99	552,331	š	38,663	Š	14.11	Š	0.65	\$	1.420	š	16.19	Š	8.18
2030	132,000	118	4.99	552,331	Š	38,663	Š	14.11	\$	0.65	\$	1.420	Š	16.19	š	7.79
2031	132,000	118	4.99	552,331	\$	38,663	S	14.11	\$	0.65	\$	1.420	Š	16.19	Š	7.41
2032	132,000	118	4.99	552,331	S	38,663	Š	14.11	S	0.65	S	1.420	S	16.19	Š	7.06
2032		118	4.99		\$	38,663	\$	14.11	S	0.65	\$	1.420	Š	16.19	Š	6.73
	132,000			552,331			\$	14.11	\$	0.65		1.420	\$	16.19	s	6.41
2034	132,000	118	4.99	552,331	\$	38,663					\$					
2035	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	6.10
2036	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	5.81
2037	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	5.53
2038	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	5.27
2039	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	5.02
2040	132,000	118	_ 4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	4.78
2041	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	4.55
2042	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	4.34
2043	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	4.13
2044	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.93
2045	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.75
2046	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.57
2047	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.40
2048	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.24
2049	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	3.08
2050	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.93
2051	132,000	118	4.99	552,331	\$	38,663	S	14.11	\$	0.65	\$	1,420	\$	16.19	\$	2.79
2052	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	S	2.66
2053	132,000	118	4.99	552,331	\$	38,663	s	14.11	S	0.65	s	1.420	\$	16.19	S	2.53
2054	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	2.41
2055	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1,420	\$	16.19	s	2.30
2056	132,000	118	4.99	552,331	\$	38,663	s	14.11	\$	0.65	\$	1,420	S	16.19	S	2.19
2057	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	Š	16.19	Š	2.09
2058	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	Š	1.99
2059	132,000	118	4.99	552,331	s	38,663	\$	14.11	\$	0.65	\$	1,420	\$	16.19	Š	1.89
2060		118	4.99		S		\$	14.11	S	0.65	\$	1.420	S	16.19	Š	1.80
2060	132,000 132,000	118	4.99	552,331 552,331	\$	38,663 38,663	\$	14.11	S	0.65	\$	1.420	\$	16.19	5	1.72
2062		118	4.99		\$		S	14.11	\$	0.65	\$	1.420	5	16.19	\$	1.63
	132,000			552,331		38,663										
2063 2064	132,000	118 118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19 16.19	S	1.56 1.48
	132,000			552,331		38,663		14.11								
2065	132,000	118	4.99	552,331	\$	38,663	\$	14.11	\$	0.65	\$	1.420	\$	16.19	\$	1.41
											1	Total NPV	of O	&M Costs	\$	238
			Capital Cos	ts in million \$:	:					Yr built						
				RWTM			\$	601	-	2020					\$	471
				Pumping Sta	tion	s	\$	45		2020					\$	35
					vere!	NAC.		1.5%		CHARLES	To	tal NPV of	Cap	ital Costs	\$	507

Total NPV of Capital and O&M Costs in millions \$

745

East of SA_Alt1C;RWTM A

NPV CALCULATIONS ALCOA / CPS GROUNDWATER CTRWTP - Alternate 1C - WTP East of San Antonio (Discharge ALCOA/CPS groundwater to Big Sandy Creek)

Initial year of analysis period	2015	Contingency = 20%	
Interest rate	5%	Engineering, Legal, Admin. = 15%	
Evaluation period	50 years	Environmental & Archaeology Studies &	
Unit cost of energy	\$ 0.07 per kwh	Mitigation, Surveying, and Land Acquisition \$ 100,000 per mi	0

	ALCOA	CPS	Total
Year built	2015	2015	
Estimated Construction Cost in Millions			
Wells (Based on Non-Public Water Supply Wells)	20.92	7.94	28.8
Pipeline	13.03	5.94	18.9
Pump Stations & Storage	8.51	0	8.5
Subtotal	42.46	13.88	56.3
Contingency	8.49	2.78	11.2
Subtotal	50.95	16.66	67.6
Engineering, Legal & Administrative	6.37	2.08	8.4
Subtotal	57.32	18.74	76.0
Environmental & Archaeology Studies & Mitigation	0.63	0.2	0.8
Land Acquisition & Surveying	0	0	0.0
Groundwater Purchase	0	5.64	5.6
ALCOA Construction Program Management Fee	5.45	0	5.4
Interest During Construction (2 years, 6% int., 4% ret.)	5.89	2.44	8.3
Total Capital Cost	69.29	27.02	96.3
Estimated Annual O&M Costs			
M&O	0.67	0.18	8.0
Pumping Energy	2.41	0.52	2.9
ALCOA Project Management Fees	0.35	0.00	0.3
Purchase of Groundwater	2.00	0.00	2.0
Groundwater District Fees	0.65	0.25	0.9
Mitigation Reserves	0.28	0.11	0.3
Total Annual Cost	6.36	1.06	7.4
NW - COM Cont			
	\$ 116 \$		
NPV of Capital Costs	\$ 69 \$	27 \$	96

Cooling of Well Water

Total NPV of Capital and O&M Costs for Well Fields

Total number of wells in both fields Percentage of wells with temperatures > than degrees Estimated number of wells with temperature > degrees		120 5% 6.0		Approximate capacity per wel Rough check	300 36,000 58,072	gpm gpm ac-ft/year
Estimated Capital Costs						
Year built		2015				
Number of Packaged Cooling Towers (300 gpm capacity/each)		6.0				
Equipment cost (cooling towers and fans)	\$	60,000				
Installation and contractors mark-up	\$	50,000				
Structural slab	\$	30,000				
Electrical	S	50,000				
Estimated Unit Construction Cost	\$	190,000	Each			
Total construction cost	\$	1.14	million			
Contingencies	\$	0.23				
Subtotal	\$	1.37	•			
Engineering, Legal and Admin	\$	0.21				
Total Estimated Capital Cost	S	1.57				
NPV of Capital Costs	\$	1.57	million			
Estimated O&M Costs						
Value of equipment	\$	0.4	million			
Assumed life of equipment		10	years			
Estimated maintenance/replacement cost	\$	0.04	million/year			
Blower Hp per cooling tower		10	Нр			
		7	kw			
Hours of operation		24	hours			
Power consumption per cooling tower		179	kwh per day			
		65,350	kwh per year			
Power cost per cooling tower	\$	4,574	per year			
Total power cost for all cooling towers in millions	\$	0.03	million per yea	ar		

185 \$

46 \$

232 million

6,000 per month for all cooling towers 0.07 per year

0.14 million \$ per year 2.47 million \$

Ground Water Transmission Main and Pump Station (Hwy 290 to Bastrop Intake)

Estimated O&M Cost \$
NPV of O&M costs \$

None Req'd - flow in Big Sandy Creek

Regular operational checks and routine maintenance

Summary

Well Fields and Collection Lines (including tank and pump station at Hwy 290)
Cooling Towers for Selected High Temperature Wells
Ground Water Transmission Main and Pumping Station
Total for ALCOA-CPS

 PV of tal Costs	10000	V of O&M Costs	Total NPV of Capital and O&M Costs		
\$ 96.3	\$	135.5	\$	231.8	
\$ 1.6	\$	2.5	\$	4.0	
\$ -	\$		\$		
\$ 97.9	\$	137.9	\$	235.8	

O&M Cost Calculations

Oam Cost Calculations
RWI B - Colorado River Intake at Bastrop and Off Channel Reservoir
CTRWTP - Alternate 1C - WTP East of San Antonio (Discharge ALCOA/CPS groundwater to Big Sandy Creek)

Contingency = 20% Engineering, Legal, Admin. = 15% Initial year of analysis period 2015 Interest rate Evaluation period 5% 40 years Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition = \$ 100,000 per mile Unit cost of energy \$ 0.07 per kwh or = S Inflatable Rubber Low Head Dam Total Estimated Unit Constr. Contigency, Total Capital Quantity Units Size Cost Eng., etc. (millions) Cost Constr. Cost (millions) (millions) 2.25 \$ 4.50 Inflatable Rubber Low Head Dam 2 each 10 ft high Estimated inflatable dam cost as % of total Value of inflatable dam 50% 2.25 million Assumed life of inflatable dam
Estimated maintenance/replacement cost 10 years 0.23 million/year

2015 Year built 3.86 million

NPV of O&M Costs NPV of Capital Costs Total NPV of Capital and O&M Costs

\$ 10.07 million

6.21 million

Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Summary of withdrawals in acre-feet/year:

Year	2015	2020	2030	2040		2050	2060		065			
For SAWS	18000	18000	18000	18000		18000	18000	18	8000			
LCRA			5600	11200		11200	11200		200			
COA		1919-101-111-11	16802	22403		33604	33604		604			
Subtotals	18000	18000	40402	51603		62804	62804		804			
ALCOA/CPS_	55000	55000	55000	55000		55000	55000		000			
Totals	73000	73000	95402	106603		117804	117804	11	7804			
Ultimate (Y20	65) averag	je design su	ırface water v	withdrawal ra			ac-ft/year cfs		22.1	Patio	of design withdrawal rate	
Surface water	withdrawa	al rate (for s	calping high	flows)		2,000	cfs		20.1		tal intake design withdrawa	rate
						897,600	gpm				-	
Plus additiona	al withdraw	al of oround	dwater on co	nstant basis		55,000	ac-ft/vr					
i ius auginorie	a minimum and	ai oi giouii		iotain baaic		76						
						34,095						
Total design v	vithdrawal	rate				931,695	gpm					
No. of Intakes						2						
Design withdr	awal rate	er intake				465,848	gpm					
No. of reserve	oirs					4						
Design flow to	each rese	ervoir				232,924	gpm					
Inside diamet	er of each	RWTM				120						
Area						78.54					for all DIACTAGE	
Average lengt	th of each	RWIM				10,560	miles feet		42,240		for all RWTMs	
Estimated cor	nstruction	cost for RW	TMs		\$	793	per LF			\$	1,254	
Total construc	otion cost i	n millione			s	33.5						
Contingencies		ri ilililions			\$	6.7						
	Subtotal				\$	40.2						
Engineering,		ministrative			\$	6.0						
	Subtotal				\$	46.2	•					
Envir & Arch		Mitigation, S	Surveying, &	Land Aca	\$	0.8						
			PWTM in mil		\$	47.0	•					
	. о.с. оср.											
Unit maintens		ear-mile			\$	10,000	\$/year-mile	\$	0.080	Millio	on \$/year (all RWTMs to Re	servoirs
	ance cost/y		M pumping to	o the reserve		10,000	\$/year-mile	\$	0.080	Millio	on \$/year (all RWTMs to Re	servoirs
Unit maintens	ance cost/y	s one RWT		o the reserv		10,000		\$	0.080	Millio	on \$/year (all RWTMs to Re	servoirs
Unit maintena	ance cost/y e intake ha	s one RWT h RWTM (fi		o the reserve			gpm	\$	0.080	Millio	n \$/year (all RWTMs to Re	servoirs
Unit maintena Note: Assume	ance cost/y e intake ha ate for eac (one pum	s one RWT h RWTM (fi	rom above)		oir.	232,924	gpm	\$	0.080	Millio	n \$/year (all RWTMs to Re	servoirs
Unit maintena Note: Assume Design flow re Pumping rate	ance cost/y e intake ha ate for eac (one pum	s one RWT h RWTM (fi p) ting spare)	rom above) pumping into	each RWT	oir.	232,924 40,000	gpm gpm	\$	0.080	Millio	n \$/year (all RWTMs to Re	servoirs
Unit maintens Note: Assume Design flow re Pumping rate No. of pumps	ance cost/y e intake ha ate for each (one pum i (not coun- e into each	h RWTM (fi p) ting spare) i RWTM (all	rom above) pumping into	each RWT	oir.	232,924 40,000 6	gpm gpm	\$	0.080	Millio	n \$√year (all RWTMs to Re	servoirs
Unit maintena Note: Assume Design flow re Pumping rate No. of pumps Peak flow rate Velocity at pe	ance cost/y e intake ha ate for eac (one pum (not coun e into each	h RWTM (fi p) ting spare) i RWTM (all	rom above) pumping into	each RWT	oir.	232,924 40,000 6 240,000	gpm gpm gpm fps	\$	0.080 h _f =	13.5	52*Q1 ^{1,85}	servoirs

11 ft 3 ft 14 ft

80 ft

30%

400 Discharge at reservoir

320 Water surface elev in river 80 ft

Head loss at peak flow rate

Allowance for minor losses Total estimated losses

Average static head

Total estimated dynamic head		94	ft
Total ostilitation dynamic fload			psi
Assumed pump efficiency		85%	
Assumed motor efficiency		90%	
Estimated Hp required per pump		1,241	hp/pump
		926	kw/pump
Total hp pumping into each RWTM (not counting spare)		7,448	hp/RWTM
Total hp at each intake (not counting spare)		14,897	hp/intake
Total hp all intakes (not counting spares)		29,793	
Total kw all intakes (not counting spares)		22,226	kw
Unit construction cost for each pump station (from cost cur	/€ \$	889	per firm hp of pump station \$ 830
Construction cost per intake/pump station			million
No. of intakes from above		2	each
Total construction cost in millions	\$	26.5	million
Contigency, Eng., etc. in millions	s	10.06	million
Total capital cost in millions	\$	36.6	million
Total construction cost for pump stations	s	26.5	million 40% Estimated equipment cost as % of total
Value of equipment	s	10.6	million
Assumed life of equipment	*	20	J20072707
Estimated maintenance/replacement cost	\$		million/year

O&M Costs:

Yea	Flow pur	mped by ar	No. of pump "sets"	Energy used		Energ	y co	ost	Other O&M osts - Pump Stations		aintenance costs - RWTM	Т	otal O&M cost	N	et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)	3-0.0	(\$/day)		(Million \$ /year)	(Million \$ /year)	9	(Million \$ /year)	(Million \$ /year)	5010000	(\$)
201	5 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	1.25
201		65	1,13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	1.19
201	7 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	1.14
201	8 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	1.08
201	9 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	1.03
202	0 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.98
202	1 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.93
202	2 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.89
202	3 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.85
202	4 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.81
202	5 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.77
202	6 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.73
202	7 73,000	65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.70
202		65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.66
202		65	1.13	25,145	\$	1,760	\$	0.64	\$ 0.53	\$	0.080	\$	1.25	\$	0.63
203	0 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.70
203	1 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.66
203		85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.63
203	3 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.60
203	4 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.57
203	5 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.55
203	6 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.52
203	7 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.50
203	8 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.47
203	9 95,402	85	1.48	32,862	\$	2,300	\$	0.84	\$ 0.53	\$	0.080	\$	1.45	\$	0.45
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.46
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.44
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.41
204	3 106,603	95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.39
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.38
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.36
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.34
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.32
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.31
204		95	1.65	36,720	\$	2,570	\$	0.94	\$ 0.53	\$	0.080	\$	1.55	\$	0.29
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.30
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.28
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.27
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.26
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.25
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.23
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.22
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.21
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.20
205		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.19
206		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.18
206		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.17
206		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.17
206	170 - 1710 N. H.	105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.16
206		105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.15
206	5 117,804	105	1.83	40,578	\$	2,840	\$	1.04	\$ 0.53	\$	0.080	\$	1.65	\$	0.14

Total NPV of O&M Costs \$ 26.4 Capital Costs in million \$: RWTM to Reservoir Intake/Pumping Stations Yr built 2015 2015 47.0 36.6 47.0 Total NPV of Capital Costs \$ 110.0

Total NPV of Capital and O&M Costs in millions \$

	Quantity	Units	Volume/each (acre-feet)	-	nit Cost 6/ac-ft)	Con	Total struction cost in nillions		tigency, g., etc.	0.7	otal in nillions
Reservoirs	4	 each	15000	\$	1,180	\$	70.8	\$	26.9	\$	97.7
Estimated average depth of reservoir	r	20	ft								
Surface area of reservoir		3000	acres								
Ratio of total land area regd to surface	ce area										
of reservoir		1.1				E	nvir & Arcl	haeolo	gy, Surv,		
Total land area regd for reservoirs		3300	acres					and La	nd Acq =		16.5
						Total o	capital cos	t in mi	llions =	\$	114.2
Assumed life of reservoir		100	years							(2)	
Estimated replacement cost		\$ 0.71	million/year								
Estimated maintenance		\$ 0.04	million/year	Mow	ing, mair	tainin	g fences,	etc.			
Total		\$ 0.75	million/year								
Year built		2015									
NPV of O&M costs		\$ 12.8	million								
NPV of Capital costs		\$ 114.2	million								
Total NPV of Capital and O&M Cos	ts	\$ 127.0	million								

Summary	 PV of tal Costs	OV of O&M Costs	Ca	pital and
Inflatable Rubber Low Head Dam	\$ 6.2	\$ 3.9	\$	10.1
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$ 83.6	\$ 26.4	\$	110.0
Off Channel Reservoir	\$ 114.2	\$ 12.8	\$	127.0
Total for RWI A	\$ 204.0	\$ 43.1	\$	247.1

O&M Cost Calculations
RWTM B - RWI B near Bastrop to WTP
CTRWTP - Alternate 1C - WTP East of San Antonio (Discharge ALCOA/CPS groundwater to Big Sandy Creek)

initial year of analysis period		2015		Contingency -	2070	8	
Interest rate		5%		Engineering, Legal, Admin. =	15%	i i	
Evaluation period		40	years	Environmental & Archaeology Studies &			
Unit cost of energy	S	0.07	per kwh	Mitigation, Surveying, and Land Acquisition	\$	100,000	per mile
Summary of average pumping rates in	acre-f	eet/yea	r:				

S

Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	18000	18000	18000	18000	18000	18000	18000
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Subtotal	18000	18000	40402	51603	62804	62804	62804
Groundwater							
Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	55000	55000	55000	55000	55000	55000	55000
Suface & groun	73000	73000	95402	106603	117804	117804	117804

Ultimate (Y2065) average design pumping rate

117,804 ac-ft/year

Sizing of Raw Water Transmission Main B & Pump Stations

Inside diameter of RWTM	84	in.	
Area	38.48	sf	
Length of RWTM	68	miles	
	359,040	feet	
Estimated unit construction cost for RWTM	\$ 467	per LF	
Total construction cost in millions	\$ 167.8		
Contingencies	\$ 33.6		
Subtotal	\$ 201.4		
Engineering, Legal & Administrative	\$ 30.2		
Subtotal	\$ 231.6		
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 6.8		
Total Capital Cost for PWTM in millions	\$ 238.4	million	
Unit maintenance cost/year-mile	\$ 5,000	\$/year-mile	\$
Design flow rate (from table above)	117,804	ac-ft/year	

Unit maintenance cost/year-mile	\$ 5,00	0 \$/year-mile	\$ 0.340 Million \$/year
Design flow rate (from table above)	117,80	4 ac-ft/year	
	10	5 mgd	
	73,02	9 gpm	
Pumping rate (one pump)	15,00	0 gpm	
No. of pumps (not counting spare)		5	
Peak flow rate (all pumps except spare)	75,00	0 gpm	
Velocity at peak flow rate	4.3	4 fps	
C factor	12	0	
Head loss per foot	0.000	57 ft/ft	hr= 3.552*Q 1.85
	3.5	5 ft/mile	C*(d) ^{2.63}
Head loss at pack flow rate	2	12 8	

Head loss at peak flow rate		242	ft	
Allowance for minor losses	10%	24	ft	
Total estimated losses		266	ft	
Average static head		250	ft	_
Total estimated dynamic head		516	ft	
		224	psi	

650 Elev. At WTP 400 Elev of WSE in Bastrop reservoir 250 ft

150 psi (assumed max pressure

in pipe)

No. of pumping stations used in cost estimate	2.0	
Average head per pump station	258	ft
Assumed pump efficiency	85%	
Assumed motor efficiency	90%	
Estimated Hp required per pump	1,277	hp/pum
	953	kw/pum
Total hp per pump station (not counting spare)	6,386	hp/station
Total kw per pump set (set=pumps in series along route)	2.554	kw/pum

No of recommended pumping stations along route

np mp tion ump set (one pump at each station) 1,365 per firm hp of pump station 8.7 million Unit construc cost for each pump station (from cost curve) \$
Construction cost per pump station

1.49

Balancing reservoir	\$ 0.75	million _
Total construction cost per pump station	\$ 9.47	million
No. of pump stations from above	2.0	each
Total construction cost in millions	\$ 18.9	million
Contingency, Eng., etc. in millions	\$ 7.20	million

60 min. of storage at avg pumping rate 5.0 mg 0.15 per gal for open top reservoir

26.1 million Total capital cost in millions Total construction cost for pump stations
Value of equipment
Assumed life of equipment
Estimated maintenance/replacement cost 18.9 million 7.6 million 20 years 0.38 million/year

40% Estimated equipment cost as % of total

O&M Costs

Year	Flow purr yea		No. of pump "sets"	Energy used		Energ	y co	st	CO	ther O&M sts - Pump Stations		aintenance costs - RWTM	Т	otal O&M cost	N	et presen value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	((Million \$ /year)	((Million \$ /year)		(Million \$ /year)		(Million \$ /year)		(\$)
2015	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	5.4
2016	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	5.1
2017	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	4.9
2018	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	4.7
2019	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	4.4
2020	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	4.2
2021	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	4.0
2022	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	3.8
2023	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	3.6
2024	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	3.5
2025	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	3.3
2026	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	3.1
2027	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	3.0
2028	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	2.8
2029	73,000	65	3.02	184,957	\$	12,947	\$	4.73	\$	0.38	\$	0.340	\$	5.44	\$	2.7
2030	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	3.3
2031	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	3.1
2032	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	3.0
2033	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	2.8
2034	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	2.7
2035	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	2.6
2036	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	2.3
2037	95,402	85	3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	
2038	95,402	85 85	3.94 3.94	241,716	\$	16,920	\$	6.18	\$	0.38	\$	0.340	\$	6.89	\$	2.2
2039	95,402	95	4.41	241,716	S	16,920	S	6.18	S	0.38	5	0.340	\$	7.62	\$	2.
2040	106,603	95		270,096	0.55	18,907	\$	6.90	\$		\$	0.340	S	7.62	\$	2.
2041	106,603	95	4.41	270,096	\$	18,907	S	6.90	\$	0.38	\$	0.340	\$	7.62	\$	2.0
2042	106,603 106,603	95	4.41 4.41	270,096 270,096	\$	18,907 18,907	\$	6.90	\$	0.38	\$	0.340	3	7.62	\$	1.9
2043	106,603	95	4.41	270,096	5	18,907	\$	6.90	\$	0.38	\$	0.340	\$	7.62	\$	1.8
2045	106,603	95	4.41	270,096	\$	18,907	S	6.90	\$	0.38	\$	0.340	\$	7.62	\$	1.7
2045	106,603	95	4.41	270,096	\$	18,907	S	6.90	\$	0.38	\$	0.340	5	7.62	\$	1.6
2047	106,603	95	4.41	270,096	\$	18,907	\$	6.90	S	0.38	\$	0.340	3	7.62	\$	1.6
2048	106,603	95	4.41	270,096	Š	18,907	Š	6.90	Š	0.38	\$	0.340	\$	7.62	\$	1.6
2049	106,603	95	4.41	270,096	\$	18,907	Š	6.90	\$	0.38	\$	0.340	\$	7.62	Š	1.4
2050	117,804	105	4.87	298,476	Š	20,893	S	7.63	\$	0.38	Š	0.340	\$	8.34	S	1.5
2051	117,804	105	4.87	298,476	Š	20,893	Š	7.63	Š	0.38	Š	0.340	Š	8.34	\$	1.4
2052	117,804	105	4.87	298,476	Š	20,893	Š	7.63	š	0.38	Š	0.340	Š	8.34	Š	1.3
2053	117,804	105	4.87	298,476	s	20,893	Š	7.63	š	0.38	s	0.340	Š	8.34	Š	1.3
2054	117,804	105	4.87	298,476	\$	20,893	s	7.63	\$	0.38	Š	0.340	\$	8.34	\$	1.2
2055	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$	0.340	\$	8.34	\$	1.1
2056	117,804	105	4.87	298,476	Š	20,893	Š	7.63	Š	0.38	\$	0.340	\$	8.34	Š	1.1
2057	117,804	105	4.87	298,476	\$	20,893	Š	7.63	\$	0.38	\$	0.340	\$	8.34	Š	1.0
2058	117,804	105	4.87	298,476	\$	20,893	Š	7.63	\$	0.38	\$	0.340	Š	8.34	\$	1.0
2059	117,804	105	4.87	298,476	Š	20,893	S	7.63	Š	0.38	Š	0.340	Š	8.34	Š	0.9
2060	117,804	105	4.87	298,476	Š	20,893	Š	7.63	š	0.38	\$	0.340	Š	8.34	Š	0.1
2061	117,804	105	4.87	298,476	\$	20,893	\$	7.63	Š	0.38	\$	0.340	s	8.34	\$	0.
2062	117,804	105	4.87	298,476	Š	20,893	Š	7.63	š	0.38	Š	0.340	Š	8.34	\$	0.
2063	117,804	105	4.87	298,476	\$	20,893	Š	7.63	\$	0.38	\$	0.340	\$	8.34	\$	0.
2064	117,804	105	4.87	298,476	Š	20,893	Š	7.63	Š	0.38	Š	0.340	\$	8.34	Š	0.
2065	117,804	105	4.87	298,476	\$	20,893	\$	7.63	\$	0.38	\$	0.340	\$	8.34	\$	0.
												Total NPV	of (O&M Costs	\$	121
			Capital Cos	ts in million \$:				_	Yr built						
				RWTM			\$	238.4	_	2015					\$	238
				Pumping Sta	atio	ns	\$	26.1		2015					\$	26
											1	otal NPV o	f Cr	pital Costs	S	264

Total NPV of Capital and O&M Costs in millions \$ 386.2

O&M Cost Calculations
WTP and Raw Water Storage Reservoir at WTP
CTRWTP - Alternate 1C - WTP East of San Antonio (Discharge ALCOA/CPS groundwater to Big Sandy Creek)

Initial year of analysis period Interest rate Evaluation period Unit cost of energy

Treated Water Production by Treatment Type (from Demand Chart - BE SURE TO CHECK)

		Year =	2015	2020	2030	2040	2050	2060	2065
Softened water demand:		Units							
Average yearly demands:		- Crinto							
City of Austin		ac-ft/yr	0	0		22403	33604	33604	3360
LCRA		ac-ft/yr	0	0	5600	11200	11200	11200	1120
Totals		ac-ft/yr	0	0		33603	44804	44804	4480
Totals		mgd	0	0	20	30	40	40	4
Max day demands: City of Austin		mgd	0	0	25	35	50	50	5
LCRA		mgd	0	0		20	20	20	2
Totals		mgd	0	0	35	55	70	70	7
		Year =	2015	2020	2030	2040	2050	2060	2065
Non-softened water demands:		Units							
Average yearly demands:			70000	005000	005000	005000	005000	205000	00500
SAWS		ac-ft/yr	73000 20550	205000 23406		205000 31393	205000 34411	205000 37530	20500
SARA GBRA		ac-ft/yr ac-ft/yr	20550	23406	6000	8000	10000	12300	1230
Totals		ac-loyi	93550	228406		244393	249411	254830	25842
Totals		mgd	84	20400		218	223	227	23042
Max day demands:		-	-	000	000	000	000	238	23
SAWS SARA		mgd	85 24	238		238	238	238	23
GBRA		mgd mgd	0	2/		7	9	11	1
Totals		mgd	109	265		281	287	293	29
Total: softened and non-softened wa Average yearly demand	ter demands	ac-ft/yr mgd	93550 84	228406 204		277996 248	294215 263	299634 267	30323
Max day demand		mgd	109	265	311	336	357	363	36
Sizing for ultimate conditions: Assumed number of days of con-	secutive Max Day de	mands	30	days					
Design (Max. Day) treated water	production req'd in r	ngd	367	mgd					
Average treated water production	in mgd		271	mgd	(which is also can be pumped	equal to sum of	ground and rav	v water that	
Difference (shortfall o	of raw water)		96	mgd	can be pumped	to the vvii)			
Required storage reservoir for ra	w water		2,889	mg					
Add safety factor	25%		8,868 2,217	ac-ft ac-ft					
Total storage required	2070		11,084	ac-ft					
Total storage recommended			12,000	ac-ft	Note: No. of (for exam	days at averag nple, for repair	e day demand of RWTM A) =	33 0	lays
	Quantity	Units	Volume/each (acre-feet)	Unit Cost (\$/ac-ft))	Total Construction	Contigency, Eng., etc.	Total Capital Cost		
Reservoirs	1	each	12,000	\$ 1,283	\$ 15.4	\$ 5.9	\$ 21.3		
	Service .	0.5							
Estimated average depth of rese Surface area of reservoir Ratio of total land area regd to su		25 480	ft acres						
of reservoir	maco area	1.10			Envir & Arcl	naeology, Surv,			
Total land area reqd for reservoir	rs .	528	acres			and Land Acq =	13.2		
					Total capital cos	t in mill ons ≈	\$ 34.5		
Assumed life of reservoir		100	years						
Estimated replacement cost Estimated maintenance Total		\$ 0.04	million/year million/year million/year	Mowing, mair	ntaining fences, e	tc.			
Year built		2015	E .						
NPV of O&M costs		\$ 25	million						
NPV of Capital costs			million						
	2: 100	1651 1630121	1021511						

\$ 38.0 million

Total NPV of Capital and O&M Costs

WTP

Plant Phasing and Capital Costs;

Softening Treatment Trains	2045		0000		2000	2012		001		0000		0005
Year =	 2015	-	2020	-	2030	 2040	-	205		 2060		2065
Average treated water production in mgd Design (Max. Day) treated water production reg'd in mgd	0		0		20 35	30 55			40 70	40 70		40 70
	U								70	70		70
Initial/additional Max day capacity built (mgd)	0	9			50	20			70	70		70
Total capacity on line (must exceed Design Max Day Req'd)	U	8	0		50	70			70	70		70
Unit cost for max day treatment capacity (\$/gpd of capacity)				\$	1.78	\$ 2.14						
Estimated construction cost of expansion in \$millions	\$ *	\$		\$	89.0	\$ 42.8	\$		٠	\$ -	\$	-
Non-softening Treatment Trains												
Year =	 2015		2020		2030	 2040		205		 2060		2065
Average treated water production in mgd	84		204		214	218			223	227		231
Design (Max. Day) treated water production req'd in mgd	109		265		276	281			287	293		297
Additional Max day capacity built (mgd)	200		100									
Total capacity on line (must exceed Design Max Day Req'd)	200	1	300		300	300			300	300		300
Unit cost for max day treatment capacity (\$/gpd of capacity)	\$ 1.15	\$	1.32									
Estimated construction cost of expansion in \$millions	\$ 229.6	\$	131.5	\$	(4)	\$ -	\$			\$ -	\$	¥
Totals (Softening + Non-softening Trains)												
Year =	2015		2020		2030	2040		205	0	2060		2065
Total construction cost for both trains	\$ 229.6	\$	131.5	\$	89.0	\$ 42.8	\$			\$ 	\$	
Contingencies	45.9		26.3		17.8	8.6				-		-
Subtotal	\$ 275.5	\$	157.8	\$	106.8	\$ 51.3	\$		-	\$ 	\$	
Engineering, Legal, & Administrative	41.3		23.7		16.0	7.7						
Subtotal	316.8		181.5		122.8	59.0				-		-
Environmental & Archaelogy Studies and Mitigation & Land												
Acquisition and Surveying (see Note below)	2.5											
Total estimated capital cost	\$ 319.3	\$	181.5	\$	122.8	\$ 59.0	\$			\$ -	\$	-
NPV of capital cost	\$ 319.3		\$ 142.2		\$ 59.1	\$ 17.4		\$	(1 9)	\$ -)	\$ -
Total NPV of WTP initial construction & expansions	\$ 538											
Note: Assumed land requirement for WTP (not including reservoir	100	acı	es									

O&M Costs for Softening Trains:

O&M Costs for Non-Softening Trains;

d of acity	mgd produced		per mg reated		million /year - - -	\$	(\$)		mgd of capacity	mgd produced		per mg	\$mil	lion /year		020
	-		and the second second second	\$			•			produced	ti	eated		0.5		(\$)
				\$		S		2015	200	84	\$	374	\$	11.41	\$	11
				\$			-	2016	200	84	\$	374	\$	11.41	\$	10
				\$		\$		2017	200	84	\$	374	\$	11.41	\$	10
	:			\$		\$		2018	200	84	\$	374	\$	11.41	\$	9
	:					\$		2019	200	84	\$	374	\$	11.41	\$	9
	:				-	\$		2020	300	204	S	343	\$	25.50	\$	19
	:			\$		\$		2021	300	204	\$	343	\$	25.50	\$	19
	:			S	-	\$		2022	300	204	\$	343	\$	25.50	\$	18
	-			Š		Š		2023	300	204	\$	343	\$	25.50	\$	17
:				Š	1123	\$	2	2024	300	204	Š	343	\$	25.50	\$	16
:				Š	723	Š		2025	300	204	š	343	Š	25.50	\$	15
•				Š		Š	<u> </u>	2026	300	204	Š	343	Š	25.50	\$	14
-	2			Š	950	Š	8	2027	300	204	Š	343	Š	25.50	\$	14
-	-			\$	257	Š	5	2028	300	204	\$	343	\$	25.50	\$	13
				\$	100	Š				204	\$	343		25.50	\$	12
EO	- 00		740		5.20		2.60	2029	300	214			\$			
50	20	\$	712	\$		\$	2.50	2030	300		\$	343	\$	26.73	\$	12
50	20	\$	712	\$	5.20	\$	2.38	2031	300	214	\$	343	\$	26.73	\$	12
50	20	\$	712	\$	5,20	\$	2.27	2032	300	214	\$	343	\$	26.73	\$	11
50	20	\$	712	\$	5.20	\$	2.16	2033	300	214	\$	343	\$	26.73	\$	11
50	20	\$	712	\$	5.20	\$	2.06	2034	300	214	\$	343	\$	26.73	\$	10
50	20	\$	712	5	5.20	\$	1.96	2035	300	214	\$	343	\$	26.73	\$	10
50	20	\$	712	\$	5.20	\$	1.87	2036	300	214	\$	343	\$	26.73	\$	9
50	20	\$	712	\$	5.20	\$	1.78	2037	300	214	\$	343	\$	26.73	\$	8
50	20	\$	712	\$	5.20	\$	1.69	2038	300	214	\$	343	\$	26.73	\$	8
50	20	\$	712	\$	5.20	\$	1.61	2039	300	214	\$	343	\$	26.73	\$	8
70	30	\$	661	\$	7.24	\$	2.14	2040	300	218	\$	343	\$	27.28	\$	8
70	30	\$	661	\$	7.24	\$	2.04	2041	300	218	\$	343	\$	27.28	\$	7
70	30	\$	661	\$	7.24	\$	1.94	2042	300	218	\$	343	\$	27.28	\$	7
70	30	\$	661	\$	7.24	\$	1.85	2043	300	218	\$	343	\$	27.28	\$	6
70	30	\$	661	\$	7.24	\$	1.76	2044	300	218	s	343	\$	27.28	\$	6
70	30	\$	661	S	7.24	5	1.68	2045	300	218	S	343	\$	27.28	s	6
70	30	\$	661	S	7.24	Š	1.60	2046	300	218	s	343	S	27.28	s	6
70	30	š	661	Š	7.24	Š	1.52	2047	300	218	Š	343	S	27.28	Š	5
70	30	š	661	š	7.24	š	1,45	2048	300	218	š	343	Š	27.28	\$	5
70	30	š	661	Š	7.24	\$	1.38	2049	300	218	Š	343	Š	27.28	Š	5
70	40	\$	661	\$	9.65	\$	1.75	2050	300	223	Š	343	Š	27.84	Š	5
70	40	\$	661	Š	9.65	\$	1.67	2051	300	223	Š	343	Š	27.84	Š	4
70	40	\$	661	S	9.65	\$	1.59	2052	300	223	Š	343	Š	27.84	\$	4
70	40	\$	661	\$	9.65	\$	1.51	2052	300	223	S	343	\$	27.84	\$	4
70	40	\$							300	223		343		27.84	Š	4
70			661	\$	9.65	\$	1.44	2054			\$	343	\$			
	40	\$	661	\$	9.65	\$	1.37	2055	300	223	\$		\$	27.84	\$	3
70	40	\$	661	\$	9.65	\$	1.31	2056	300	223	\$	343	\$	27.84	\$	3
70	40	\$	661	\$	9.65	\$	1.24	2057	300	223	\$	343	\$	27.84	\$	3
													33.00			3
70																3
70													3132.0			3
																3
70																2
70			661	\$	9.65							343	\$			2
70 70	40	\$	661	\$	9.65		0.88	2064	300	227		343	\$	28.45		2
70 70 70	40	\$	661	\$	9.65	\$	0.84	2065	300	231	\$	343	\$	28.85	\$	2
70 70 70	0000	40 40 40 40 40 40 40 40 40 40 40	40 \$ 40 \$ 40 \$ 40 \$ 40 \$ 40 \$ 40 \$ 40 \$	40 \$ 661 40 \$ 661 0 40 \$ 661	0 40 \$ 661 \$ 40 \$ 661 \$ 0 40 \$ 661 \$	0 40 \$ 661 \$ 9.65 0 40 \$ 661 \$ 9.65	0 40 \$ 661 \$ 9.85 \$ 0 40 \$ 661 \$ 9.65 \$ 0 40 \$ 661 \$ 0 40 \$ 601 \$ 0 4	0 40 \$ 661 \$ 9.65 \$ 1.18 0 40 \$ 661 \$ 9.65 \$ 1.13 0 40 \$ 661 \$ 9.65 \$ 1.07 0 40 \$ 661 \$ 9.65 \$ 1.07 0 40 \$ 661 \$ 9.65 \$ 0.97 0 40 \$ 661 \$ 9.65 \$ 0.93 0 40 \$ 661 \$ 9.65 \$ 0.88 0 40 \$ 661 \$ 9.65 \$ 0.88	0 40 \$ 661 \$ 9.85 \$ 1.18 2058 0 40 \$ 661 \$ 9.65 \$ 1.13 2059 0 40 \$ 681 \$ 9.65 \$ 1.07 2060 0 40 \$ 661 \$ 9.65 \$ 1.02 2081 0 40 \$ 661 \$ 9.65 \$ 0.97 2062 0 40 \$ 661 \$ 9.65 \$ 0.93 2063 0 40 \$ 661 \$ 9.65 \$ 0.84 2064 0 40 \$ 661 \$ 9.65 \$ 0.84 2065	0 40 \$ 661 \$ 9.65 \$ 1.18 2058 300 0 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 0 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 0 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 0 40 \$ 661 \$ 9.65 \$ 1.02 2061 300 0 40 \$ 661 \$ 9.65 \$ 0.97 2062 300 0 40 \$ 661 \$ 9.65 \$ 0.93 2063 300 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300	0 40 \$ 661 \$ 9.65 \$ 1.18 2058 300 223 0 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 223 0 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 227 0 40 \$ 661 \$ 9.65 \$ 1.02 2061 300 227 0 40 \$ 661 \$ 9.65 \$ 0.93 2063 300 227 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 0 40 \$ 661 \$ 9.65 \$ 0.84 2065 300 231	0 40 \$ 661 \$ 9.65 \$ 1.18 2058 300 223 \$ 0 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 223 \$ 0 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 227 \$ 0 40 \$ 661 \$ 9.65 \$ 1.02 2061 300 227 \$ 0 40 \$ 661 \$ 9.65 \$ 0.93 2063 300 227 \$ 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 0 40 \$ 661 \$ 9.65 \$ 0.84 2065 300 231 \$	0 40 \$ 661 \$ 9.65 \$ 1.18 2058 300 223 \$ 343 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 223 \$ 343 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 227 \$ 343 5 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 227 \$ 343 5 40 \$ 661 \$ 9.65 \$ 1.02 2061 300 227 \$ 343 40 \$ 661 \$ 9.65 \$ 0.97 2062 300 227 \$ 343 5 40 \$ 661 \$ 9.65 \$ 0.93 2063 300 227 \$ 343 5 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 5 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 5 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 5 40 \$ 661 \$ 9.65 \$ 0.84 2065 300 231 \$ 343	0 40 \$ 661 \$ 9.65 \$ 1.18 2058 300 223 \$ 343 \$ 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 223 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 1.02 2061 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.97 2062 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.93 2063 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 60 40 \$ 661 \$ 9.65 \$ 0.84 2065 300 231 \$ 343 \$ 60 40 \$	0 40 \$ 661 \$ 9.65 \$ 1.18 2058 300 223 \$ 343 \$ 27.84 0 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 223 \$ 343 \$ 27.84 0 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 227 \$ 343 \$ 28.45 0 40 \$ 661 \$ 9.65 \$ 1.02 2061 300 227 \$ 343 \$ 28.45 0 40 \$ 661 \$ 9.65 \$ 0.97 2062 300 227 \$ 343 \$ 28.45 0 40 \$ 661 \$ 9.65 \$ 0.93 2063 300 227 \$ 343 \$ 28.45 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 0 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ <td< td=""><td>40 \$ 661 \$ 9.65 \$ 1.18 2058 300 223 \$ 343 \$ 27.84 \$ 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 223 \$ 343 \$ 27.84 \$ 50 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 1.02 2061 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.97 2062 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.97 2062 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.93 2063 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.98 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 \$ 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 600 \$ 600 \$ 0.8</td></td<>	40 \$ 661 \$ 9.65 \$ 1.18 2058 300 223 \$ 343 \$ 27.84 \$ 40 \$ 661 \$ 9.65 \$ 1.13 2059 300 223 \$ 343 \$ 27.84 \$ 50 40 \$ 661 \$ 9.65 \$ 1.07 2060 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 1.02 2061 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.97 2062 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.97 2062 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.93 2063 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.98 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 661 \$ 9.65 \$ 0.88 2064 \$ 300 227 \$ 343 \$ 28.45 \$ 50 40 \$ 600 \$ 600 \$ 0.8

NPV Totals for O&M:
Softening trains
Non-softening Trains
\$

8	un	ım	ıß	у

Raw Water Reservoir Water Treatment Plant Totals

PV of al Costs	of O&M Costs	Total NPV of Capital and O&M Costs			
\$ 34	\$ 3.5	\$	38		
\$ 538	\$ 499	\$	1,037		
\$ 572	\$ 502	\$	1,075		

Capital and O&M Cost Calculations Potable Water Transmission Mains CTRWTP - Alternate 1C - WTP East of San Antonio (Discharge ALCOA/CPS groundwater to Big Sandy Creek)

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile Initial year of analysis period Interest rate 5% Evaluation period 50 years Unit cost of energy 0.07 per kwh

Summary of Demands

Average demands to be delivered in each segment

			in acre-feet/ye	ar			
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	43800	123000	123000	123000	123000	123000	123000
SAWS NE	29200	82000	82000	82000	82000	82000	82000
Subtotal	73000	205000	205000	205000	205000	205000	205000
SARA	20550	23406	28433	31393	34411	37530	41128
GBRA			6000	8000	10000	12300	12300
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Total	93550	228406	261835	277996	294215	299634	303232

Summary

SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1)
WTP to SAWS NE/SARA (Delivery Point #2)
WTP to GBRA (Delivery Point #3)
WTP to LCRA Delivery Point (#4)
LCRA Delivery Point (#4) to COA Delivery Point (#5)

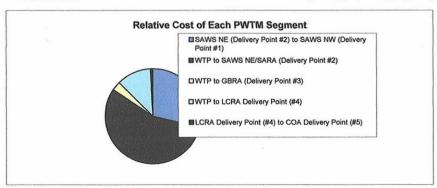
289 \$ 5 \$ 14 \$ 1 \$ 6 \$ 313 \$ 726 412 \$

Costs

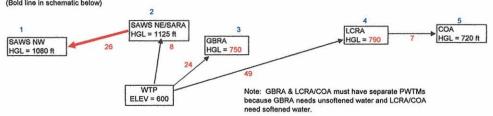
NPV of Capital

Costs 203

17


NPV of O&M Total NPV of Capital and

O&M Costs \$ 207


405

22

Total for PWTMs

SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1) (Bold line in schematic below)

Demands for this pipe segment

		Average dem	ands to be del	ivered in each	segment in mgd	1		
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
SAWS NW	39	110	110	110	110	110	110	1.3
Total -	39	110	110	110	110	110	110	

		Max day dem	ands to be deli	vered in each s	segment in mgd	f:	
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	51	143	143	143	143	143	143
Total —	51	143	143	143	143	143	143

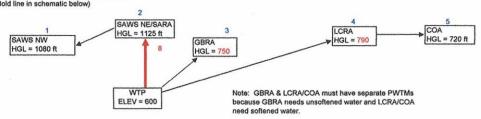
PWTM and Pump Station Costs

Design flow rate - year 2065	143	mgd	
	99,125	gpm	
Pumping capacity of one pump	20,000	gpm	
No. of pumps (not counting spare)	5		
Peak flow rate (all pumps except spare)	100,000	gpm	
Inside diameter of PWTM	120	in.	
Area	78.54	sf	
Length of RWTM	26	miles	(linked to mileage in schematic above)
	137,280	feet	(#29-5000 mm) (

Estimated unit cost by condition:	% of length	LE	y	nit cost		Cost	
Rural - soil	15%	20,592	\$	783	\$	16.1	million
Rural - rock	50%	68,640	\$	1,048	3	72.0	
Urban - rock	35%	48,048	\$	1,186	\$	57.0	
		137,280			3	145.0	million

Total construction cost in millions	\$ 145.0
Contingencies	\$ 29.0
Subtotal	\$ 174.0
Engineering, Legal & Administrative	\$ 26.1
Subtotal	\$ 200.2
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 2.6
Total Capital Cost for PWTM in millions	\$ 202.8

Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile	\$ 0.260	Million \$/year	
Velocity at peak flow rate	2.84	fps			
C factor	120				
Head loss per foot	0.00020	ft/ft	h,=	13 552*011.85	


Cractor		120		
Head loss per foot		0.00020	ft/ft	h _f = 3.552*Q 1.85
		1.07	ft/mile	C*(d) ^{2.63}
Head loss at peak flow rate		28	ft	
Allowance for minor losses	20%	6	ft	1080 Desired HGL At Delivery Point
Total estimated losses		33	ft	1125 HGL At Delivery Point 2
Average static head		-45	ft	-45 ft
Total estimated dynamic head		-12	ft	
		-5	psi	

Negative indicates gravity flow from #2 to #1; no pumping necessary.

					N	fillion \$
Annual O&M Cost in million	\$:		Yr built			
PWTM	\$	0.260	2015			
				Total NPV of O&M Costs		\$4.7
Capital Costs in million \$:			Yr built			
PWTM	\$	202.8	2015		\$	202.8
				Total NPV of Capital Costs	\$	202.8

Total NPV of Capital and O&M Costs in millions \$ 207.5 SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1)

WTP to SAWS NE/SARA (Delivery Point #2) (Bold line in schematic below)

Demands for this pipe segment Demands

		Average dem	ands to be deli	vered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	39	110	110	110	110	110	110
SAWS NE	26	73	73	73	73	73	73
SARA	18	21	25	28	31	34	37
Total	84	204	208	211	214	217	220

1.3 1.3 1.3

Max day demands to be delivered in each segment in mgd								
Year	2015	2020	2030	2040	2050	2060	2065	
SAWS NW	51	143	143	143	143	143	143	
SAWS NE	34	95	95	95	95	95	95	
SARA	24	27	33	36	40	44	48	
Total	109	265	271	274	278	281	286	

PWTM and Pump Station Costs

Design flow rate - year 2065	286	mgd	
	198,353	gpm	
Pumping capacity of one pump	20,000	gpm	
No. of pumps (not counting spare)	10		
Peak flow rate (all pumps except spare)	200,000	gpm	
Inside diameter of PWTM	120	in.	
Area	78.54	sf	
Length of PWTM	8	miles	(linked to mileage in schematic above)
The state of the s	42,240	feet	Management of the state of the

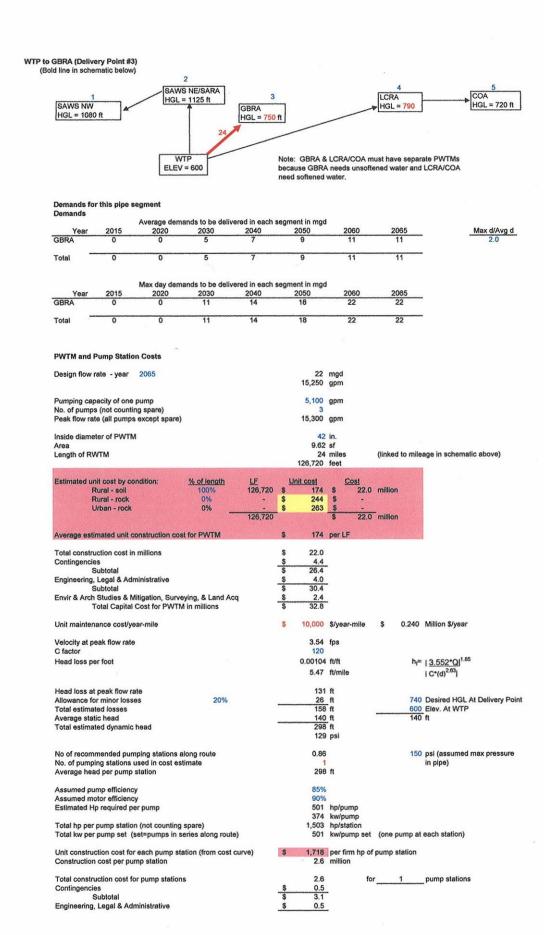
Estimated unit cost by condition:	% of length	LE	U	nit cost	C	ost	
Rural - soil	25%	10,560	\$	783	\$	8.3	million
Rural - rock	50%	21,120	\$	1,048	\$	22.1	
Urban - rock	25%	10,560	\$	1,186	\$	12.5	
		42,240			\$	42.9	million
Average estimated unit construction	cost for PWTM		\$	1,016	per LF		

Total construction cost in millions	\$	42.9
Contingencies	\$	8.6
Subtotal	\$	51.5
Engineering, Legal & Administrative	\$	7.7
Subtotal	\$	59.2
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	0.8
Total Capital Cost for PWTM in millions	S	60.0

Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile	\$ 0.080	Million \$/year
Velocity at peak flow rate	5.67	fps		
C factor	120			
Head loss per foot	0.0007	8 61/61	h.	12 5524011.85

Head loss per foot		0.00073	tvit		3.552*Q 1.85
		3.85	ft/mile		C*(d) ^{2.63}
Head loss at peak flow rate		31	ft		
Allowance for minor losses	20%	6	ft	1125	Desired HGL At Delivery Point
Total estimated losses		37	ft	600	Elev. At WTP
Average static head		525	ft	525	ft
Total estimated dynamic head		562	ft		
		244	mai		

	244 psi	
No of recommended pumping stations along route	1.62	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	2	in pipe)
Average head per pump station	281 ft	5444 54 C


Average head per pump station	281 ft
Assumed pump efficiency	85%
Assumed motor efficiency	90%
Estimated Hp required per pump	1,855 hp/pump
	1,384 kw/pump
Total hp per pump station (not counting spare)	18,549 firm hp/station
Total kw per pump set (set=pumps in series along route)	3,710 kw/pump set (one pump at each station)

Unit construction cost for each pump station (from cost curve)	\$ 1,105	per firm hp of pump static
Construction cost per pump station	20.5	million

Total construction cost for pump stations	41.0	for	2	pump stations
Total continuous cost for paris stations	71.0	101	-	point stations

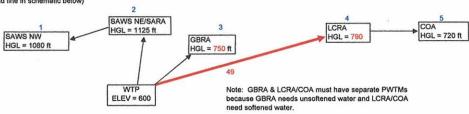
contingen	Subtotal	injetenti:				\$ \$	8.2 49.2 7.4	•							
ngineeni	ng, Legal & Adm Total capital c	ost for pump st	ations in millio	ons		\$	56.6	mil	lion			_			
	Value of equip	ment				\$	16	mil	lion		40%	Equ	ip cost as	% of	constr co
	Assumed life of	of equipment				s	20	yea							
		intenance/repla	icement cost			•	0.82	mi	lion/year						
08M Cos															
	Flow pumped by year	No. of pump	_					0	ther O&M	Ма	intenance	-			
Year	(average	"sets" operating	Energy		Energ	gy cos	t	co	sts - Pump	C	costs -	10	otal O&M cost	Ne	t present value
	flows from Table above)	/day							Stations		PWTM				2.50.00
	mgd		(kwh/day)		(\$/day)		lillion \$		(Million \$	(Million \$	(1	Million \$		(\$)
2015	84	2.90	258,178	\$	18,072	\$	year) 6.60	\$	/year) 0.82	\$	/year) 0.080	\$	/year) 7.50	\$	7.50
2016	84	2.90	258,178	\$	18,072	\$	6.60	\$	0.82	\$	0.080	\$	7.50	\$	7.14
2017	84	2.90	258,178	\$	18,072	\$	6.60	\$	0.82	\$	0.080	\$	7.50	\$	6.80
2018	84	2.90	258,178	\$	18,072	\$	6.60	\$	0.82	\$	0.080	\$	7.50	\$	6.48
2019 2020	84 204	2.90 7.08	258,178 630,351	\$	18,072 44,125	\$	6.60 16.11	\$	0.82	S	0.080	\$	7.50 17.01	\$	6.17 13.32
2020	204	7.08	630,351	\$	44,125	S	16.11	\$	0.82	S	0.080	\$	17.01	\$	12.69
2022	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	12.09
2023	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	11.51
2024	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	10.96
2025	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	10.44
2026 2027	204 204	7.08 7.08	630,351 630,351	\$	44,125 44,125	\$	16.11 16.11	\$	0.82	\$	0.080	\$	17.01 17.01	\$	9.94 9.47
2028	204	7.08	630,351	S	44,125	S	16.11	Š	0.82	S	0.080	\$	17.01	Š	9.02
2029	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	8.59
2030	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	8.35
2031	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	7.95
2032	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	7.57
2033	208 208	7.24 7.24	644,225 644,225	\$	45,096 45,096	\$	16.46 16.46	\$	0.82 0.82	\$	0.080	\$	17.36 17.36	\$	7.21 6.87
2035	208	7.24	644,225	\$	45,096	S	16.46	\$	0.82	Š	0.080	\$	17.36	\$	6.54
2036	208	7.24	644.225	Š	45,096	s	16.46	\$	0.82	\$	0.080	\$	17.36	\$	6.23
2037	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	5.93
2038	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	5.65
2039	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	5.38
2040	211 211	7.33 7.33	652,394 652,394	S	45,668 45,668	5	16.67 16.67	\$	0.82 0.82	5	0.080	\$	17.57 17.57	\$	5.19 4.94
2042	211	7.33	652,394	\$	45,668	s	16.67	Š	0.82	Š	0.080	Š	17.57	\$	4.71
2043	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.48
2044	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.27
2045	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.06
2046	211	7.33 7.33	652,394	\$	45,668	\$	16.67 16.67	\$	0.82 0.82	\$	0.080	\$	17.57 17.57	\$	3.87 3.69
2047 2048	211 211	7.33	652,394 652,394	5	45,668 45,668	S	16.67	\$	0.82	\$	0.080	\$	17.57	\$	3.51
2049	211	7.33	652,394	s	45,668	s	16.67	\$	0.82	Š	0.080	\$	17.57	\$	3.34
2050	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	3.22
2051	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	3.07
2052	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.92
2053	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.78
2054 2055	214 214	7.42 7.42	660,723 660,723	\$	46,251 46,251	\$	16.88 16.88	\$	0.82	\$	0.080	\$	17.78 17.78	\$	2.65 2.53
2055	214	7.42	660,723	3	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.53
2057	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	Š	0.080	\$	17.78	\$	2.29
2058	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.18
2059	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.08
2060	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82	\$	0.080	\$	18.00	\$	2.00
2061	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82 0.82	\$	0.080	\$	18.00	\$	1.91 1.82
2062	217	7.52	669,331	\$	46,853	\$	17.10		0.82	\$	0.080	5	18.00	\$	1.73
2064	217	7.52	669,331		46,853		17.10		0.82		0.080		18.00		1.65
2065	220	7.63	679,260		47,548		17.36		0.82		0.080		18.26	\$	1.59
											Total NPV	of C	&M Costs	\$	288.7
		Capital Costs						_	Yr built						20.5
			PWTM Pumping Stat	inc		\$	60.0		2015					\$	60.0 56.6
			Pumping Stat	Ons	•	9	56.6		2015	T	otal NPV of	Cer	nital Coete		116.6

Total NPV of Capital and O&M Costs in millions \$ WTP to SAWS NE/SARA (Delivery Point #2) 405

Total capital cost for pump stations \$ 3.6 million

Value of equipment \$ 1.0 million

Assumed life of equipment 20 years


Estimated maintenance/replacement cost \$ 0.05 million/year

O&M Costs

	Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	ду с	cost		other O&M ests - Pump Stations		aintenance costs - PWTM	То	tal O&M cost	Ne	et present value
2000	dwarana	mgd		(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year)	(Million \$ /year)		/lillion \$ /year)		(\$)
	2015	-											\$	•	\$	•
	2016 2017	-											\$	-	\$	•
	2018	•											\$		\$	170
	2019												\$	-	\$	•
	2020	-											\$	-	\$	
	2021												\$		\$	
	2022												\$	-	\$	-
	2023												\$		Š	-
	2024	-											\$	3.0	Š	-
	2025												\$	-	5	-
	2026												\$	- 1	\$	
	2027	-											\$		\$	-
	2028	1 2											\$		\$	-
	2029												\$		\$	-
	2030	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.25
	2031	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.24
	2032	5	0.73	8,771	Š	614	Š	0.22	Š	0.05	\$	0.240	Š	0.52	Š	0.23
	2032	5	0.73	8,771	Š	614	\$	0.22	Š	0.05	Š	0.240	S	0.52	\$	0.23
	2034	5	0.73	8,771	\$	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.20
	2035	5	0.73	8,771	S	614	\$	0.22	S	0.05	\$	0.240	\$	0.52	\$	0.19
	2036	5	0.73	8,771	\$	614	\$	0.22	Š	0.05	\$	0.240	\$	0.52	\$	0.19
	2037	5	0.73	8,771	Š	614	\$	0.22	\$	0.05	\$	0.240	\$	0.52	\$	0.18
	2038	5	0.73	8,771	\$	614	\$	0.22	s	0.05	S	0.240	Š	0.52	\$	0.17
	2039	5	0.73	8,771	Š	614	Š	0.22	Š	0.05	\$	0.240	Š	0.52	\$	0.16
	2040	7	0.73	11,694	Š	819	\$	0.30	Š	0.05	\$	0.240	\$	0.52	\$	0.10
	2040	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.17
	2042	7	0.97	11,694	Š	819	Š	0.30	S	0.05	Š	0.240	\$	0.59	Š	0.17
	2042	7	0.97	11,694	\$	819	S	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.15
	2044	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	\$	0.59	\$	0.13
	2045	7	0.97	11,694	\$	819	\$	0.30	S	0.05	\$	0.240	\$	0.59	Š	0.14
	2046	7	0.97	11,694	Š	819	Š	0.30	Š	0.05	Š	0.240	Š	0.59	\$	0.13
	2047	7	0.97	11,694	\$	819	\$	0.30	\$	0.05	\$	0.240	S	0.59	\$	0.13
	2048	. 7	0.97	11,694	Š	819	S	0.30	s	0.05	\$	0.240	\$	0.59	Š	0.12
	2049	7	0.97	11,694	s	819	Š	0.30	Š	0.05	Š	0.240	Š	0.59	š	0.11
	2050	9	1.22	14,618	Š	1,023	Š	0.37	Š	0.05	\$	0.240	\$	0.67	\$	0.12
	2051	9	1.22	14,618	Š	1,023	Š	0.37	Š	0.05	Š	0.240	Š	0.67	Š	0.11
	2052	9	1.22	14,618	Š	1,023	Š	0.37	Š	0.05	\$	0.240	Š	0.67	Š	0.11
	2053	9	1.22	14,618	Š	1,023	\$	0.37	Š	0.05	\$	0.240	\$	0.67	\$	0.10
	2054	9	1.22	14,618	Š	1,023	Š	0.37	Š	0.05	Š	0.240	Š	0.67	\$	0.10
	2055	. 9	1.22	14,618	s	1,023	\$	0.37	Š	0.05	S	0.240	\$	0.67	\$	0.09
	2056	9	1.22	14,618	\$	1,023	\$	0.37	\$	0.05	\$	0.240	s	0.67	\$	0.09
	2057	9	1,22	14,618	Š	1,023	Š	0.37	Š	0.05	Š	0.240	Š	0.67	Š	0.09
	2058	9	1.22	14,618	s	1,023	Š	0.37	s	0.05	\$	0.240	Š	0.67	\$	0.08
	2059	9	1.22	14,618	s	1,023	s	0.37	Š	0.05	\$	0.240	\$	0.67	\$	0.08
	2060	11	1.50	17,980	Š	1,259	\$	0.46	Š	0.05	Š	0.240	Š	0.75	\$	0.08
	2061	11	1.50	17,980	\$	1,259	Š	0.46	š	0.05	\$	0.240	Š	0.75	Š	0.08
	2062	11	1.50	17,980	\$	1,259	\$	0.46	s	0.05	Š	0.240	\$	0.75	\$	0.08
	2063	11	1.50	17,980	\$	1,259	\$	0.46	Š	0.05	Š	0.240	\$	0.75	Š	0.07
	2064	11	1.50	17,980	\$	1,259	Š	0.46	\$	0.05	\$	0.240	S	0.75	Š	0.07
	2065	11	1.50	17,980	\$	1,259	\$	0.46	\$	0.05	Š	0.240	\$	0.75	S	0.07
		0.00		,		.,	-	3.10	*	2.30	•		7		1 .	
												Total NPV	of O	&M Costs	\$	4.8
			Capital Costs	in million \$:						Yr built						
				PWTM			\$	33	-	2030					\$	15.8
				Pumping Stat	ions		\$	4		2030					\$	1.7
											T	otal NPV of	Cap	ital Costs	\$	17.5

Total NPV of Capital and O&M Costs in millions \$ 22.3 WTP to GBRA (Delivery Point #3)

WTP to LCRA Delivery Point (#4) (Bold line in schematic below)

Demands for this pipe segment Demands

		Average dem	ands to be del	ivered in each s	segment in mgd	B. Contractor		
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
LCRA	0	0	5	10	10	10	10	2.0
COA	0	0	15	20	30	30	30	1.68
Total	0	0	20	30	40	40	40	

Max day demands to be delivered in each segment in mgd										
Year	2015	2020	2030	2040	2050	2060	2065			
LCRA	0	0	10	20	20	20	20			
COA	0	0	25	34	50	50	50			
Total	^	^	26	EA	70	70	70			

PWTM and Pump Station Costs

Design flow rate - year 2065	70	mgd	
	48,883	gpm	
Pumping capacity of one pump	10,000	anm	
No. of pumps (not counting spare)	5	abin	
Peak flow rate (all pumps except spare)	50,000	gpm	
Inside diameter of PWTM	72	in.	
Area	28.27	sf .	
Length of RWTM	49	miles	(linked to mileage in schematic above)
	258,720	feet	

Estimated unit cost by condition:	% of length	LF	U	nit cost	Co	st	
Rural - soil	100%	258,720	\$	365	\$	94.5	million
Rural - rock	0%		\$	498	\$	1	
Urban - rock	0%		\$	552	\$		
		258,720			\$	94.5	million
Average estimated unit construction		\$	365	per LF			
T-1-111			•	94.5			
lotal construction cost in millions			\$	94.5			
			\$	18.9			
Contingencies Subtotal			\$ \$	18.9	•		
Contingencies Subtotal			\$	18.9 113.4			
Engineering, Legal & Administrative	urveying, & Land Acq		\$ \$	18.9 113.4 17.0			

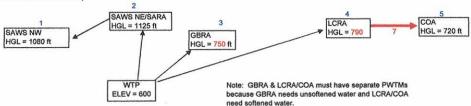
Unit maintenance cost/year-mile		\$	10,000	\$/year-mile	\$	0.490	Million \$/year
Velocity at peak flow rate			3.94	fps			
C factor			120				
Head loss per foot			0.00067	ft/ft		h _f =	3.552*QI ^{1.85}
			3.55	ft/mile			C*(d) ^{2.63}
Head loss at peak flow rate			174	ft			
Allowance for minor losses	20%		35	ft		790	Desired HGL At Delivery Point
Total estimated losses		-	209	ft		720	Elev. At Delivery Point 3
Average static head			70	ft	C. House	70) ft
Total estimated dynamic head			279	ft			
			121	psi			
No of recommended pumping stations a	along route		0.81			150	psi (assumed max pressure
No. of pumping stations used in cost es	timate		1				in pipe)
Average head per pump station			279	ft			1.5.5

Average head per pump station	2/9 11
Assumed pump efficiency	85%
Assumed motor efficiency	90%
Estimated Hp required per pump	921 hp/pump
	687 kw/pump
Total hp per pump station (not counting spare)	4,605 firm hp/station
Total kw per pump set (set=pumps in series along route)	921 kw/pump set (one pump at each station)
Unit construction cost for each pump station (from cost curve)	\$ 1.445 per firm hp of pump station

Construction cost per pump station	•	6.7 million						
Total construction cost for pump stations		6.7	for	1	F			
A - II I		4.0	-					

Total construction cost for pump stations	6.7	for	1	pump stations
Contingencies	\$ 1.3	-		
Subtotal	\$ 8.0			
Engineering, Legal & Administrative	\$ 1.2			

Total capital cost for pump stations	\$	9.2	million	40% Equip cost as % of constr cost
Value of equipment	\$	2.7	million	40% Equip cost as % of constr cost
Assumed life of equipment		20	years	
Estimated maintenance/replacement cost	S	0.13	million/year	


O&M Costs

Year	Flow pumped by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	gy c	ost		Other O&M osts - Pump Stations		aintenance costs - PWTM	То	tal O&M cost	Ne	et present value
40-00 TOTAL	mgd		(kwh/day)		(\$/day)		(Million \$ /year)	1	(Million \$ /year)	(Million \$ /year)		/lillion \$ /year)		(\$)
2015	A STATE OF THE PARTY OF T			-				A				\$		\$	-
2016												\$	*	\$	•
2017												\$		\$	
2018												\$	-	\$	
2019												\$	•	\$	•
2020												\$	•	\$	
2021												\$	*	\$	
2022												\$	-	\$	-
2023												\$		\$	
2024												\$	*	\$	
2025												\$	-	\$	
2026												\$	-	\$	•
2027												\$	•	\$	
2028												\$	-	\$	-
2029												\$	•	\$	•
2030	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.68
2031	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.64
2032	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.61
2033	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.58
2034	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.56
2035	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.53
2036	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.51
2037	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.48
2038	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.46
2039	20	1.39	30,696	\$	2,149	\$	0.78	\$	0.13	\$	0.490	\$	1.41	\$	0.44
2040	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.53
2041	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.51
2042	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.48
2043	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.46
2044	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.44
2045	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.42
2046	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.40
2047	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.38
2048	30	2.08	46,044	\$	3,223	\$	1,18	\$	0.13	\$	0.490	\$	1.80	\$	0.36
2049	30	2.08	46,044	\$	3,223	\$	1.18	\$	0.13	\$	0.490	\$	1.80	\$	0.34
2050	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.40
2051	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.38
2052	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.36
2053	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.34
2054	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.33
2055	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.31
2056	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.30
2057	40	2.78	61,391	\$	4,297	\$	1.57	S	0.13	\$	0.490	\$	2.19	\$	0.28
2058	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.27
2059	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.26
2060	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	\$	0.490	\$	2.19	\$	0.24
2061	40	2.78	61,391	\$	4,297	\$	1.57	\$	0.13	Š	0.490	\$	2.19	\$	0.23
2062	40	2.78	61,391	Š	4,297	\$	1.57	Š	0.13	S	0.490	\$	2.19	\$	0.22
2063	40	2.78	61,391	š	4,297	\$	1.57	Š	0.13	\$	0.490	\$	2.19	\$	0.21
2064	40	2.78	61,391	\$	4,297	Š	1.57	Š	0.13	Š	0.490	Š	2.19	Š	0.20
2065	40	2.78	61,391	Š	4,297	Š	1.57	Š	0.13	Š	0.490	\$	2.19	Š	0.19
2000	,,,,			•	.,			~	0.10		Total NPV			7,510	14.3
		Onellal On the	la asililaa C						V- L		i Stat 141° V	51 0	um 003(3	٠	14.3
		Capital Costs					400.0		Yr built						05.4
			PWTM			\$	135.3		2030					\$	65.1
			Pumping Stat	ions	,	\$	9.2		2030	-	-4-1 NIDA (-		Hal Oart	\$	69.5
										T	otal NPV of	Cap	ital Costs	\$	6

Total NPV of Capital and O&M Costs in millions \$ 84
WTP to LCRA Delivery Point (#4)

LCRA Delivery Point (#4) to COA Delivery Point (#5) (Bold line in schematic below)

Demands for this pipe segment

Average demands to be delivered in each segment in mgd											
Year	2015	2020	2030	2040	2050	2060	2065				
COA	0	0	15	20	30	30	30				
Total	0	0	15	20	30	30	30				

Max d/Avg d

Max day demands to be delivered in each segment in mgd										
Year	2015	2020	2030	2040	2050	2060	2065			
COA	0	0	25	34	50	50	50			
Total -	0	0	25	34	50	50	50			

PWTM and Pump Station Costs

Design flow rate - year 2065

50 mgd 34,997 gpm

Inside diameter of PWTM

Area Length of PWTM

54 in. 15.90 sf 7 miles 36,960 feet

Estimated unit cost by condition:	% of length	LF	U	nit cost		Cost
Rural - soil	100%	36,960	\$	244	S	9.0 million
Rural - rock	0%		\$	337	\$	
Urban - rock	0%		\$	369	\$	
		36,960			\$	9.0 million
vorgae estimated unit construction	nost for PIATEM		2	244	nerl	F

Total construction cost in millions	\$ 9.0
Contingencies	\$ 1.8
Subtotal	\$ 10.8
Engineering, Legal & Administrative	\$ 1.6
Subtotal	\$ 12.4
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 0.0
Total Canital Cost for PWTM in millions	\$ 12 4

Unit maintenance cost/year-mile 10,000 \$/year-mile 4.90 fps Velocity at peak flow rate C factor Head loss per foot 0.00141 ft/ft

0.070 Million \$/year

(linked to mileage in schematic above)

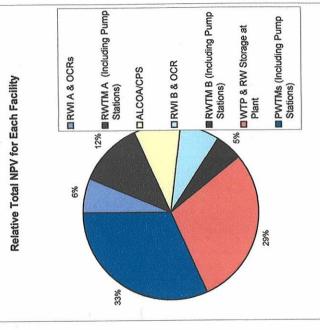
7.45 ft/mile

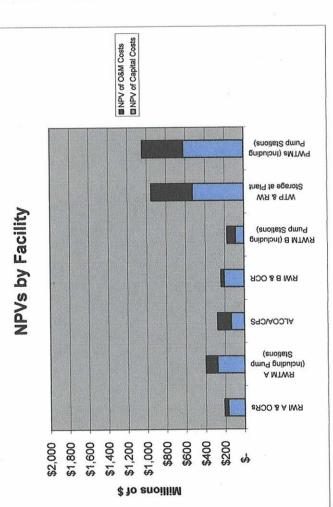
 $h_{\rm f} = \frac{3.552 \cdot Q}{1.85} \frac{1.85}{1.85}$

Head loss at peak flow rate Allowance for minor losses Total estimated losses Average static head
Total estimated dynamic head

52 ft 10 ft 63 ft -70 ft 20% -3 psi

720 Desired HGL At Delivery Point 790 Elev. At Delivery Point 4 -70 ft

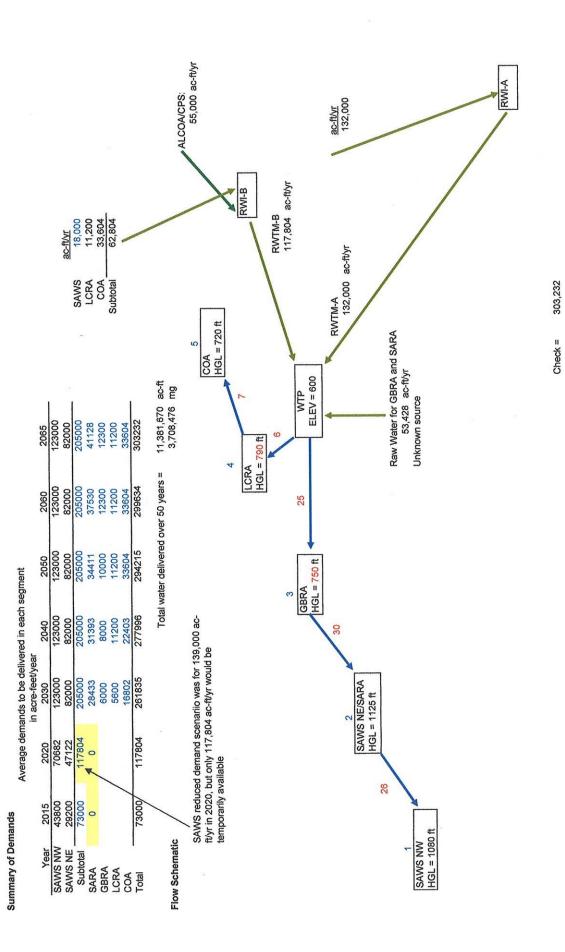

Negative indicates gravity flow from #4 to #5; no pumping necessary.


				2	M	lillion \$
Annual O&M Cost in millio	on \$:		Yr built			
PWTM	\$	0.070	2030			
				Total NPV of O&M Costs		\$0.55
Capital Costs in million \$:		772	Yr built			
PWTM	\$	12.4	2030		\$	6.0
				Total NPV of Capital Costs	\$	6.0

Total NPV of Capital and O&M Costs in millions \$ LCRA Delivery Point (#4) to COA Delivery Point (#5) 6.5 Page 1

CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

WTP Location nate	Phasing Scenario	Total NPVs in Millions of \$	RWI A & OCRs	RWTM A (Including Pump Stations)	ALCOA/CPS	RWI B & OCR	RWTM B (Including Pump Stations)	RWTM B (Including Pump Stations) at Plant Pump Stations)	PWTMs (Including Pump Stations)
88	Reduced SAWS demand in 2020 by 66,000 ac-ft/yr (& SARA to 0 demand); RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2030.		126 miles of 96-ir to water ploe sized for 4000 cfs diameter pipe sized to scalp water, 4 deliver 132,000 a intakes, 4 miles of flyear on a contil 120-inch raw water basis; includes 3 mains & 4 OCRs at pumping stations 25,000 ac-ft each balancing reserve along route	ich c- ruous w/	Non-Public wells: Transmission of 55,000 ac-fayear to the intakes; 8 miles of 0CR at RWI B via 15 120-inch raw water miles of 54" gravity mains and 4 OCRs pipeline from Hwy 290 at 15,000 ac-fleadest of Elgin	Sized for 2000 cfs Sized for 117,804 act to scalp water; 2 ftyr, 20 miles of 84" intakes; 8 miles of pipeline with one 120-inch raw water pumping station and mains and 4 OCRs balancing reservoir at 15,000 ac-fleach		Raw water reservoir w/ 11,000 ac-ft capacity; Conventional settling with membrane filtration for SAWS, SARA & GBRA; Lime softening with membrane filtration for COA & LCRA water	Each PWTM sized for maximum daily demand (See PWTM Summary Sheet in the Appendices)
	NPV of Capital Costs \$	\$ 2,016	\$ 170	\$ 277	\$ 135	\$ 204	\$ 86	\$ 524	\$ 620
	NPV of O&M Costs \$		88	\$ 121	\$ 141	\$	\$ 87	\$ 427 \$	\$ 424
	Total NPV of Capital & O&M \$	\$ 3,287 \$	\$ 207	388	\$ 276	\$ 238	\$ 172	\$ 951	\$ 1,044



9/28/2005

North Caldwell Co_Alt3B;Flow Schematic

9/28/2005

Flow Schematic CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

O&M Cost Calculations
RWI A - Matagorda Co. River Intakes, and Storage
CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

Initial year of analysis period Interest rate Evaluation period			years	Environn	nental &	Archae	egal, A		15%	22-	12	
Unit cost of energy	\$	0.07	per kwh	Mitigation, S	urveyin	g, and L	and Ac	quisition or =		5,000	per mi	
Inflatable Rubber Low Head Dam	Quar	ntity	Units	Size	C	Constr.	Estin	otal mated tr. Cost	Eng	gency,	C	Capital ost
Inflatable Bubbard and Hand Dam	-		anah	10 ft blob	(mi	lions)		9.00	(mil	3.42	(mili	12.42
Inflatable Rubber Low Head Dam			each	10 ft high	3	2.25	•	9.00	٥	3.42	*	12.42
Estimated inflatable dam cost Value of inflatable dam Assumed life of inflatable dam Estimated maintenance/replac			\$ 4.50 10 \$ 0.45	million years million/year								
Year built			2020									
NPV of O&M Costs NPV of Capital Costs Total NPV of Capital and O&M	Costs		\$6.27 \$ 9.73 \$16.00	million million million								
Raw Water Intake, Pumping Station,	and RWT	M (in	take to Rese	ervoir)								
Average withdrawal				132,000 182	ac-fl/)	/ear		21.9	Ratio	of desig	n withd	rawal rate
Total intake design withdrawal	rate (for s	scalpi	ing high flows	4,000 1,795,200	cfs gpm							withdrawal rate
No. of Intakes Design withdrawal rate per into	ike		2.	1,000 448,800								
No. of reservoirs Design flow to each reservoir				448,800	4) gpm							
Inside diameter of each RWTh	1				0 in.							
Area Average length of each RWTN	I.				1 miles feet			4.0 21,120		for all R	WTMs	
Estimated construction cost for	r RWTM			\$ 793	per LJ	F						
Total construction cost in milli Contingencies Subtotal	ons			\$ 16.8 \$ 3.4 \$ 20.1								
Engineering, Legal & Administ Subtotal Envir & Arch Studies & Mitigat Total Capital Cost	lon, Surve			\$ 3.0 \$ 23.1 \$ 0.4)	n						
Unit maintenance cost/year-m	ile			\$ 10,000	\$/yea	r-mile	\$	0.040	Million	\$/year	(all RV	/TMs to Reservoirs)
Note: Assume each intake has	two RW	TMs p	oumping out o	of it, one to eac	ch resen	voir.						
Design flow rate for each RWT Pumping rate (one pump) No. of pumps (not counting sp Peak flow rate into each RWT	are) pum	ping i	nto each RW	448,800 50,000 450,000	gpm							
Velocity at peak flow rate				12.77								
C factor Head loss per foot				0.0032 17.25		9		h _f =	13,55 1 C*(d	2°Q ^{1.8}	5	
Head loss at peak flow rate Allowance for minor losses Total estimated losses Average static head Total estimated dynamic head		30%		4	7 ft 5 ft 2 ft 0 ft 2 ft 7 psi				Water	f discha		reservoir n river
Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pui Total hp pumping into each R Total hp at each intake (not co Total hp all intakes (not count Total kw all intakes (not count	NTM (not unting sp ng spares	are)	nting spare)	85° 90° 1,030 76° 9,27°	% hp/pu 9 kw/pu 2 hp/R\ 2 hp/inl	MTM						
Unit construction cost for each Construction cost per intake/p No. of intakes from above			(from cost cu	8.3		rm hp o n	f pump	station				
Total construction cost in milli Contigency, Eng., etc. in milli Total capital cost in millions				\$ 12.50	millio millio millio	n						
Total construction cost for pur Value of equipmer Assumed life of eq	t	15		\$ 13.2	0 millio 2 millio 3 years 3 millio	n		40%	Estim	ated eq	uip cosi	t as % of total constr

Year	Flow pun yea		No. of pump "sets"	Energy used		Energ	у с	ost	cos	her O&M ts - Pump Stations	C	ntenance osts - RWTM	Tol	tal O&M cost		prese value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	9	(Million \$ /year)	()	Million \$ /year)		Aillion \$ /year)		fillion \$ /year)		(\$)
2015	-	-			\$	-	\$	-	1	- Annahistania	orazetea	de serviciones	\$	intrices:	\$	Name of Street
2016			-		\$		\$						S		\$	
2017					\$		\$	-					\$	-	\$	
2018		-	-		\$	-	S	2					S	-	\$	
2019	-		-		S		\$	-					\$		\$	
2020				2	s		s	2					s		\$	
2021		0			š		Š						Š		s	
2022			-	2	s		Š	2					s	-	\$	
2023	74		12	2	Š		\$	_					Š	227	\$	
2024	-		-	- 0	š		š						Š		s	
2025	1500				š		Š	1					Š		\$	
2026	-	-	-		\$		\$						\$	-	Š	
2020	-	-	-	•	\$	-	s	-					S		5	
	-	-				-	s						S			
2028	-	-		-	\$	-		-						•	\$	
2029	400 000				\$		\$	-					\$		\$	- 2
2030	132,000	118	1.64	30,188	\$	2,113	\$	0.77	s	0.66	\$	0.040	\$	1.47	\$	0
2031	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	5	0.040	\$	1.47	\$	0
2032	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2033	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2034	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2035	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2036	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2037	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2038	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2039	132,000	118	1.64	30,188	\$	2,113	5	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2040	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2041	132,000	118	1.64	30,188	\$	2,113	\$	0.77	S	0.68	5	0.040	\$	1.47	\$	0
2042	132,000	118	1.64	30,188	S	2,113	S	0.77	\$	0.66	S	0.040	5	1.47	S	0
2043	132,000	118	1.64	30,188	s	2,113	s	0.77	s	0.66	S	0.040	S	1.47	\$	0
2044	132,000	118	1.64	30,188	s	2,113	\$	0.77	S	0.68	S	0.040	\$	1.47	\$	0
2045	132,000	118	1.64	30,188	s	2,113	s	0.77	s	0.66	s	0.040	s	1.47	S	0
2046	132,000	118	1,64	30,188	s	2,113	s	0.77	s	0.66	s	0.040	s	1.47	\$	0
2047	132,000	118	1.64	30,188	š	2,113	Š	0.77	s	0.66	Š	0.040	s	1.47	Š	0
2048	132,000	118	1.64	30,188	š	2,113	s	0.77	s	0.66	s	0.040	s	1.47	S	0
2049	132,000	118	1.64	30,188	š	2,113	Š	0.77	\$	0.66	š	0.040	Š	1.47	š	Ö
2050	132,000	118	1.64	30,188	Š	2,113	s	0.77	Š	0.66	Š	0.040	Š	1.47	S	Ö
2050		118	1.64				\$		S	0.66	S				S	ò
2052	132,000	118	1.64	30,188	\$	2,113 2,113	5	0.77	\$	0.66	\$	0.040	\$	1.47	S	Č
		118					5		\$	0.66					S	
2053	132,000		1.64	30,188	\$	2,113		0.77			\$	0.040	\$	1.47		0
2054	132,000	118	1.64	30,188	s	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2055	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	S	1.47	\$	0
2056	132,000	118	1.64	30,188	\$	2,113	s	0.77	\$	0.66	\$	0.040	\$	1.47	S	0
2057	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2058	132,000	118	1.64	30,188	\$	2,113	\$	0.77	S	0.66	\$	0.040	\$	1.47	\$	(
2059	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2060	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2061	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.68	\$	0.040	\$	1.47	\$	0
2062	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
2063	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.68	\$	0.040	\$	1.47	\$	0
2064	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	(
2065	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0
											,	Total NPV	of O	RM Coete	\$	1
									-			Con In V	5,50	with charge	•	
			Capital Cos	ts in million \$ RWTM to R		neoire	s	23.5		Yr built 2030					s	

5.5 2030 \$ 21.

Total NPV of Capital and O&M Costs in millions \$ 45.5

Reservoirs

	Quantity		Units	Volume/each (acre-feet)		t Cost ac-ft))	Con	Total struction cost in nillions		tigency, g., etc.		rotal in millions
Reservoirs	4		each	25000	\$	974	\$	97.4	\$	37.0	\$	134.4
Estimated average depth of reserve Surface area of reservoir Ratio of total land area read to surf			20 5000	ft acres								
of reservoir	aco area		1.1				En	vir & Arch	aeolo	gy, Surv,	3	
Total land area reqd for reservoirs			5500	acres						nd Acq =		27.5
Assumed life of reservoir			100	years		Т	otal c	apital cost	in mi	llions =	\$	161.9
Estimated replacement cost		s	0.97	million/year								
Estimated maintenance			0.4		Mowi	ng, main	tainin	g fences,	etc.			
Total		\$	1.37	million/year				70 B				
Year built			2020									
NPV of O&M costs		s	19.1	million								
NPV of Capital costs		\$	126.8	million								
Total NPV of Capital and O&M Cos	its	\$	145,9	million								

Summary	IPV of tal Costs	V of O&M Costs	Cap	al NPV of pital and M Costs
Inflatable Rubber Low Head Dam	\$ 9.7	\$ 6.3	\$	16.0
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$ 33.2	\$ 12.3	5	45.5
Reservoirs	\$ 126.8	\$ 19.1	\$	145.9
Total for RWI A	\$ 169.7	\$ 37.7	s	207.4

O&M Cost Calculations
RWTM A - Matagorda Co. to WTP
CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

	Initial year of analysis period 2015 Interest rate 5%		Contingency = 20% Engineering, Legal, Admin. = 15%
	Evaluation period 50 years	Environmen	al & Archaeology Studies &
			veying, and Land Acquisition \$ 100,000 per mile
	Unit cost of energy \$ 0.07 per kwh	winigation, ou	veying, and cand Acquisition \$ 100,000 per fillie
w Wa	ater Transmission Main - A		
	Inside diameter of pipe		in.
	Area	50.27	
	Length of RWTM	665,280	miles feet
	Estimated unit construction cost for RWTM	\$ 567	per LF
	Total construction cost in millions	\$ 378	
	Contingencies	\$ 76	
	Subtotal	\$ 453	*):
	Engineering, Legal & Administrative	\$ 68	
	Subtotal	\$ 521	*):
	Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 13	
	Total Capital Cost for PWTM in millions		million
	Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile \$ 1.260 Million \$/year
	Design flow rate (after 100% buildout)	132,000	ac-ft/year
		118	mgd
		81,829	gpm
	Pumping rate (one pump)	16,400	gpm
	No. of pumps (not counting spare)	5	
	Peak flow rate (all pumps except spare)	82,000	gpm
	Velocity at peak flow rate	3.63	fps
	C factor	120	
	Head loss per foot	0.0004	ft/ft hr= 3.552*Q ^{1.85}
			ft/mile C*(d) ^{2.63}
	Head loss at peak flow rate	276	f
	Allowance for minor losses 10%		ft 550 Elev. At San Antonio East WTP
	Total estimated losses	303	
	Average static head	46	The state of the s
	Total estimated dynamic head	76:	
	Total estimated dynamic nead		psi
	No of pumping stations req'd along route	2.2	150 psi (assumed max pressure
	No. of pumping stations used in cost estimate	3.0	
	Average head per pump station	25	
	Assumed pump efficiency	85%	
	Assumed motor efficiency	909	
	Estimated Hp required per pump	1,378	hp/pump
		1,028	kw/pump
	Total hp per pump station (not counting spare)		hp/station
	Total kw per pump set (set=pumps in series along route)	4,133	kw/pump set (one pump at each station)
	Unit construction cost for each pump station (from cost curv		per firm hp of pump station
	Construction cost per pump station		million -
	Balancing reservoir		_million 60 min. of storage at avg pumping ra
	Total construction cost per pump station	\$ 10.03	million 5.0 mg 0.15 per gal for open top reservoir
	No. of pump stations from above	3.0	each
	Total construction cost in millions		million
		\$ 11.43	million
	Contigency, Eng., etc. in millions		
		\$ 41.5	million
	Contigency, Eng., etc. in millions		million
	Contigency, Eng., etc. in millions Total capital cost in millions	\$ 30.1	
	Contigency, Eng., etc. in millions Total capital cost in millions Total construction cost for pump stations	\$ 30.1 \$ 12.0	million

O&M Costs

Year	Flow pun yea		No. of pump "sets"	Energy used		Energy	у со	st	cost	er O&M s - Pump ations	C	intenance osts - RWTM		tal O&M cost	Ne	et prese value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	(Million \$ /year)		lillion \$ year)		Million \$ /year)		Villion \$ /year)		(\$)
2015	-	-	-	-	\$	-	\$	-				TO SUPPLIED THE SU	\$	-	\$	-
2016	-	-	-		\$		\$						\$		\$	
2017	-				\$		\$						\$		\$	
2018			-		\$	-	\$						\$	-	\$	1/2
2019	•	-	-	•	\$	•	\$						\$		\$	()
2020	-				\$	3.00	\$						\$		\$	33
2021	-			-	\$		\$						\$		\$	- 5
2022	-		-	-	\$		\$						\$		\$	200
2023	-		-	-	\$	-	\$						\$		\$	
2024	1940			0.40	\$	-	\$						\$	-	\$	
2025	-			-	\$		\$						\$	2	\$	
2026	-	-	-	-	\$		\$	-					\$	-	\$	
2027	-		-		\$		S						\$	-	\$	- 6
2028	-		-	_	\$	-	\$						\$	-	\$	
2029					\$		\$	- 2					\$	-	\$	
2030	132,000	118	4.99	494,936	Š	34,646	S	12.65	s	0.60	\$	1.260	\$	14.51	Š	6
2031	132,000	118	4.99	494,936	\$	34,646	Š	12.65	Š	0.60	\$	1.260	\$	14.51	\$	6
2032	132,000	118	4.99	494,936	\$	34,646	\$	12.65	Š	0.60	\$	1.260	\$	14.51	\$	6
2032	132,000	118	4.99	494,936	\$	34,646	Š	12.65	Š	0.60	Š	1.260	\$	14.51	S	6
2033		118	4.99		\$	34,646	\$	12.65	S	0.60	\$	1.260	\$	14.51	\$	5
	132,000			494,936					200						\$	
2035	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51		5
2036	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	5
2037	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4
2038	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4
2039	132,000	118	4.99	494,936	\$	34,646	\$	12.65	S	0.60	\$	1.260	\$	14.51	\$	4
2040	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4
2041	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4
2042	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3
2043	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3
2044	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3
2045	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$. 3
2046	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3
2047	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3
2048	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2
2049	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2
2050	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2
2051	132,000	118	4.99	494,936	\$	34,646	\$	12.65	S	0.60	\$	1.260	S	14.51	\$	2
2052	132,000	118	4.99	494,936	s	34,646	S	12.65	s	0.60	\$	1.260	S	14.51	s	2
2053	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2
2054	132,000	118	4.99	494,936	\$	34,646	\$	12.65	s	0.60	\$	1.260	\$	14.51	\$	2
2055	132,000	118	4.99	494,936	\$	34,646	\$	12.65	Š	0.60	\$	1.260	\$	14.51	\$	2
2056	132,000	118	4.99	494,936	\$	34,646	\$	12.65	Š	0.60	\$	1.260	Š	14.51	Š	1
2057	132,000	118	4.99	494,936	Š	34,646	\$	12.65	S	0.60	\$	1.260	\$	14.51	\$	1
2058	132,000	118	4.99	494,936	\$	34,646	S	12.65	Š	0.60	\$	1.260	\$	14.51	\$	1
2059	132,000	118	4.99	494,936	\$	34,646	Š	12.65	Š	0.60	\$	1.260	\$	14.51	\$	1
2060	132,000	118	4.99	494,936	\$	34,646	\$	12.65	S	0.60	Š	1.260	\$	14.51	\$	1
2061	132,000	118	4.99	494,936	\$	34,646	\$	12.65	S	0.60	\$	1.260	\$	14.51	\$	- 1
									200							
2062	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1
2063	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$. 1
2064	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1
2065	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1
				Oli Mileson Salano							Т	otal NPV	of O	&M Costs	\$	
				s in million \$:						r built						
				RWTM			\$	534		2030					\$	- 1
				Pumping Stat	tions	5	\$	42	3	2030					\$	
												al NPV of			\$	

NPV CALCULATIONS ALCOA / CPS GROUNDWATER CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

Initial year of analysis period	2015	Contingency = 20%
Interest rate	5%	Engineering, Legal, Admin. = 15%
Evaluation period	50 years	Environmental & Archaeology Studies &
Unit cost of energy	\$ 0.07 per kwh	Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

elds and Collection Lines	ALCOA	CPS	Total
Year built -	2015	2015	Total
Tour built	2010	2010	
Estimated Construction Cost in Millions			
Wells (Based on Non-Public Water Supply Wells)	20.92	7.94	28.8
Pipeline	13.03	5.94	18.9
Pump Stations & Storage	8.51	0	8.8
Subtotal	42.46	13.88	56.3
Contingency	8.49	2.78	11.2
Subtotal	50.95	16.66	67.6
Engineering, Legal & Administrative	6.37	2.08	8.4
Subtotal	57.32	18.74	76.0
Environmental & Archaeology Studies & Mitigation	0.63	0.2	0.6
Land Acquisition & Surveying	0	0	0.0
Groundwater Purchase	0	5.64	5.6
ALCOA Construction Program Management Fee	5.45	0	5.4
Interest During Construction (2 years, 6% int., 4% ret.)	5.89	2.44	8.3
Total Capital Cost	69.29	27.02	96.3
Estimated Annual O&M Costs			
O&M	0.67	0.18	0.8
Pumping Energy	2.41	0.52	2.9
ALCOA Project Management Fees	0.35	0.00	0.3
Purchase of Groundwater	2.00	0.00	2.0
Groundwater District Fees	0.65	0.25	0.9
Mitigation Reserves	0.28	0.11	0.3
Total Annual Cost	6.36	1.06	7.4

NPV of O&M Costs	s	116	s	19	\$	135	million
NPV of Capital Costs	\$	69	\$	27	Š	96	million
Total NPV of Capital and O&M Costs for Well Fields	\$	185	\$	46	\$	232	millior

Cooling of Well Water

Total number of wells in both fields	120 wells	Approximate capacity per wel	300	gpm
Percentage of wells with temperatures > than degrees	5%		36,000	gpm
Estimated number of wells with temperature > degrees	6.0	Rough check	58,072	ac-ft/year
Fetimated Capital Costs				

Year built	2015	
Number of Packaged Cooling Towers (300 gpm capacity/each)	6.0	
Equipment cost (cooling towers and fans)	\$ 60,000	
Installation and contractors mark-up	\$ 50,000	
Structural slab	\$ 30,000	
Electrical	\$ 50,000	
Estimated Unit Construction Cost	\$ 190,000	Each
Total construction cost	\$ 1.14	million
Contingencies	\$ 0.23	
Subtotal	\$ 1.37	•
Engineering, Legal and Admin	\$ 0.21	
Total Estimated Capital Cost	\$ 1.57	
NPV of Capital Costs	\$ 1.57	million

Estimated O&M Costs

Value of equipment	\$	0.4	million
Assumed life of equipment		10	vears
Estimated maintenance/replacement cost	\$	0.04	million/year
Blower Hp per cooling tower		10	Нр
000000 20 000 € • • • • • • • • • • • • • • • •		7	kw
Hours of operation		24	hours
Power consumption per cooling tower		179	kwh per day
A MODE OF THE CONTRACT OF THE SECTION OF A VINCORY AND ADDRESS OF A SECTION OF THE SECTION OF TH		65,350	kwh per year
Power cost per cooling tower	S	4,574	
Total power cost for all cooling towers in millions	\$	0.03	million per year
Regular operational checks and routine maintenance	s	6,000	per month for all cooling towers
	\$	0.07	per year

Estimated O&M Cost \$
NPV of O&M costs \$ 0.14 million \$ per year 2.47 million \$

54 in.

Ground Water Transmission Main and Pump Station (Hwy 290 to Bastrop Intake)

Inside diameter of transmission pipe

Area			15.90	sf			
Length of Ground Water TM			15	miles			
			79,200	feet			
Estimated construction cost for GWTN	T.	\$	327	per LF			
Total construction cost in millions		\$	25.9				
Contingencies		\$	5.2				
Subtotal		\$	31.1	•			
Engineering, Legal & Administrative		\$	4.7				
Subtotal		\$	35.8	•			
Envir & Arch Studies & Mitigation, Sun	veying, & Land Acq	\$	1.5				
Total Capital Cost for PWT		\$		million			
Unit maintenance cost/year-mile		\$	10,000	\$/year-mile	\$ 0.	.150	Million \$/year
Design flow rate			55,000	ac-ft/year			
			49	mgd			
			34,095				
Velocity at peak flow rate			4.78	fps			
C factor			120				
Head loss per foot			0.00134	ft/ft		h _f =	3.552*Q ^{1.85}
			7.10	ft/mile			C*(d) ^{2.63}
Head loss at peak flow rate			106	ft			
Allowance for minor losses	10%		11	ft		400	Elev. At RWI-B
Total estimated losses			117	ft		550	minus Elev Storage Tank at Hwy 290
Average static head			-150	ft		-150	
Total estimated dynamic head		-	-33		(intake is	lower	than tank at Hwy 290)
and the second s			-14	psi			or the second of the second o

- Negative indicates gravity flow from Hwy 290 to Bastrop Intake; no pumping necessary.

Annual O&M Cost in million \$			Yr built		М	illion \$
GWTM	s	0.150	2015	6		
				Total NPV of O&M Costs	\$	2.7
Capital Costs in million \$:			Yr built			
GWTM	\$	37.3	2015		\$	37.3
				Total NPV of Capital Costs	\$	37.3

Summary

Well Fields and Collection Lines (including tank and pump station at Hwy 290)
Cooling Towers for Selected High Temperature Wells
Ground Water Transmission Main and Pumping Station
Total for ALCOA-CPS

 IPV of tal Costs	 of O&M Costs	Ca	Capital and				
\$ 96.3	\$ 135.5	\$	231.8				
\$ 1.6	\$ 2.5	\$	4.0				
\$ 37.3	\$ 2.7	\$	40.0				
\$ 135.1	\$ 140.7	\$	275.8				

O&M Cost Calculations
RWI B - Colorado River Intake at Bastrop and Off Channel Reservoir
CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

Initial year of analysis period 2015 Contingency = 20% Engineering, Legal, Admin. = 15% Interest rate 5% Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition = \$ 100,000 per mile
or = \$ 5,000 per acre Evaluation period 40 years \$ 0.07 per kwh Unit cost of energy Inflatable Rubber Low Head Dam Total Total Contigency, Total Capital Estimated Constr. Cost (millions) (millions) Unit Constr. Quantity Cost Units (millions) (millions) 2.25 1.71 \$ 6.21 Inflatable Rubber Low Head Dam 10 ft high 4.50 \$ Estimated inflatable dam cost as % of total 50% 2.25 million 10 years 0.23 million/year Value of inflatable dam
Assumed life of inflatable dam
Estimated maintenance/replacement cost 2015 NPV of O&M Costs NPV of Capital Costs 3.86 million 6.21 million \$ 10.07 million Total NPV of Capital and O&M Costs

Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Su

		in acre-feet			Includes 18k	+ 11.2k of LCR	A's + 33.6k of C	DA's
Year	2015	2020	2030	2040	2050	2060	2065	
or SAWS	18000	62804	18000	18000	18000	18000	18000	
.CRA			5600	11200	11200	11200	11200	
COA			16802	22403	33604	33604	33604	•
otal	18000	62804	40402	51603	62804	62804	62804	
Ultimate (Y2	2065) ave	rage design v	vithdrawal re	ite	62,804 87	ac-ft/year		
					0.	Old	23.1	Ratio of design withdrawal rate
Total intake	design w	ithdrawal rate	(for scalpin	g high flows	2,000	cfs		to Total intake design withdrawal rate
					897,600	gpm		
No. of Intake	98					2		
		e per intake			1,000			
					448,800			
No. of reser Design flow		eservoir			224,400	4 apm		
Dosigit now	to outin	00017011			221,100	81		
anda dana		ah DIACTAR			10	0 in.		
inside diami Area	eter or ea	CH RVV I W			78.5			
Average len	oth of ear	ch RWTM				2 miles	8.0	miles for all RWTMs
wordgo ion	gui oi ou	J. 1 (1 (1) 1) 1 1 1 1 1 1 1 1			10,560		42,240	
Estimated c	onstruction	on cost for RV	VTMs		\$ 793	perLF		
						9781		
		st in millions			\$ 33.5			
Contingenci					\$ 6.7			
	Subtotal	Administrativ			\$ 6.0			
	Subtotal	Administrativ			\$ 6.0			
		& Mitigation,	Surveying,	& Land Acq	\$ 0.8			
		oital Cost for F			\$ 47.0			
Unit mainte	nance cos	st/year-mile			\$ 10,000	\$/year-mile	\$ 0.080	Million \$/year (all RWTMs to Reservoin
Note: Assur	ne intake	has one RW	TM pumping	to the reser	voir.			
Design flow	rate for e	ach RWTM (from above)		224,400			
Pumping ra						gpm		
		unting spare)						
Peak flow n	ate into ea	ach RWTM (a	III pumps ex	cept spare)	240,000	gpm		
Velocity at p	eak flow	rate				fps		
C factor					120		7/8/5	4.05
Head loss p	er foot				0.0010		h _{l=}	13.552*QI ^{1.85}
					5.39	ft/mile		C*(d) ^{2.63}
Head loss a	t peak flo	w rate			1	1 ft		
Allowance f			30%			3 ft	400	Discharge at reservoir
Total estima						4 ft		Water surface elev in river
Average sta	atic head					O ft	80) ft
Total estima	ated dyna	mic head			17	4 ft		
					4	1 psi		
Assumed p					85			
Assumed m					90			
Estimated F	Ip require	d per pump				hp/pump		
					920	8 kw/pump		

np pumping into each RWTM (not counting spare)		7,448	hp/RWTM		
np at each intake (not counting spare)		14,897	hp/intake		
np all intakes (not counting spares)		29,793	hp		
kw all intakes (not counting spares)		22,226	kw		
onstruction cost for each pump station (from cost cur	\$	889	per firm hp of pum	p station	
ruction cost per intake/pump station		13.2	million		
intakes from above		2	each		5
construction cost in millions	\$	26.5	million		
jency, Eng., etc. in millions	\$	10.06	million		
capital cost in millions	\$	36.6	million		
construction cost for pump stations	\$	26.5	million	40%	Estimated equipment cost as % of total
Value of equipment	\$	10.6	million		Angele and the second control of the second
Assumed life of equipment		20	years		
Estimated maintenance/replacement cost	\$	0.53	million/year		
	nuction cost per intake/pump station intakes from above construction cost in millions tency, Eng., etc. in millions capital cost in millions construction cost for pump stations Value of equipment Assumed life of equipment	pa at each intake (not counting spare) p all intakes (not counting spares) wave all intakes (not counting spares) construction cost for each pump station (from cost cur- precion cost per intake/pump station intakes from above construction cost in millions spaneacy, Eng., etc. in millions scapital cost in millions Value of equipment Assumed life of equipment	14,897 14,897 14,897 14,897 19,191 11,897 19,191 11,897 19,191 11,897 19,793 1	part each intake (not counting spare) p all intakes (not counting spares) p all intakes (not counting	part each Intake (not counting spare) part each Intake (not counting spares) 29,793 hp pall intakes (not counting spares) 22,226 kw construction cost for each pump station (from cost cur struction cost per intake/pump station 13.2 million 13.3 million

O&M Costs:

Year	Flow pum yea		No. of pump "sets"	Energy used		Energ	y c	ost		other O&M ests - Pump Stations		aintenance costs - RWTM	Te	otal O&M cost	Ne	t present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		(Million \$ /year)	3	(Million \$ /year)	((Million \$ /year)	(Million \$ /year)		(\$)
2015	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.77
2016	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.73
2017	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.70
2018	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.66
2019	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	1000	0.63
2020	18,000	16	0.28	6,200	\$	434 434	\$	0.16 0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.60
2021	18,000	16 16	0.28	6,200	\$	434		0.16	\$	0.53	\$	0.080	\$		S	0.57
2022	18,000 18,000	16	0.28	6,200 6,200	S	434	\$	0.16	\$	0.53 0.53	\$	0.080	\$	0.77	\$	0.52
2023	18,000	16	0.28	6,200	\$	434	5	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.52
2025	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.50
2025	18,000	16	0.28	6,200	5	434	\$	0.16	5	0.53	S	0.080	5	0.77	S	0.47
2027	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	S	0.43
2028	18,000	16	0.28	6,200	Š	434	S	0.16	\$	0.53	S	0.080	\$	0.77	Š	0.43
2029	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	S	0.39
2030	40,402	36	0.28	13,917	\$	974	Š	0.16	\$	0.53	\$	0.080	\$	0.77	S	0.46
2031	40,402	36	0.63	13,917	Š	974	S	0.36	Š	0.53	S	0.080	3	0.97	Š	0.44
2032	40,402	36	0.63	13,917	\$	974	Š	0.36	Š	0.53	Š	0.080	Š	0.97	Š	0.42
2032	40,402	36	0.63	13,917	Š	974	\$	0.36	š	0.53	S	0.080	Š	0.97	S	0.40
2034	40,402	36	0.63	13,917	Š	974	Š	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.38
2035	40,402	36	0.63	13,917	Š	974	Š	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.36
2036	40,402	36	0.63	13,917	Š	974	Š	0.36	Š	0.53	s	0.080	Š	0.97	Š	0.35
2037	40,402	36	0.63	13,917	Š	974	\$	0.36	s	0.53	Š	0.080	\$	0.97	Š	0.33
2038	40,402	36	0.63	13,917	S	974	S	0.36	Š	0.53	S	0.080	\$	0.97	S	0.31
2039	40,402	36	0.63	13,917	\$	974	Š	0.36	s	0.53	Š	0.080	\$	0.97	\$	0.30
2040	51,603	46	0.80	17,775	Š	1,244	\$	0.45	\$	0.53	Š	0.080	\$	1.06	\$	0.31
2041	51,603	46	0.80	17,775	š	1,244	Š	0.45	\$	0.53	Š	0.080	\$	1.06	\$	0.30
2042	51,603	46	0.80	17,775	Š	1,244	Š	0.45	Š	0.53	Š	0.080	Š	1.06	S	0.28
2043	51,603	46	0.80	17,775	Š	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	Š	0.27
2044	51,603	46	0.80	17,775	Š	1,244	\$	0.45	s	0.53	\$	0.080	Š	1.06	\$	0.26
2045	51,603	46	0.80	17,775	s	1,244	Š	0.45	Š	0.53	Š	0.080	Š	1.06	Š	0.25
2046	51,603	46	0.80	17,775	s	1,244	\$	0.45	s	0.53	\$	0.080	Š	1.06	\$	0.23
2047	51,603	46	0.80	17,775	š	1,244	\$	0.45	\$	0.53	\$	0.080	Š	1.06	Š	0.22
2048	51,603	46	0.80	17,775	Š	1,244	Š	0.45	Š	0.53	Š	0.080	Š	1.06	S	0.21
2049	51,603	46	0.80	17,775	S	1,244	Š	0.45	Š	0.53	Š	0.080	Š	1.06	\$	0.20
2050	62,804	56	0.97	21,633	Š	1,514	Š	0.55	\$	0.53	\$	0.080	Š	1.16	S	0.21
2051	62,804	56	0.97	21,633	\$	1,514	S	0.55	Š	0.53	S	0.080	s	1.16	\$	0.20
2052	62,804	56	0.97	21,633	Š	1,514	\$	0.55	\$	0.53	Š	0.080	s	1.16	\$	0.19
2053	62,804	56	0.97	21,633	\$	1,514	S	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.18
2054	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.17
2055	62,804	56	0.97	21,633	s	1,514	\$	0.55	s	0.53	s	0.080	s	1.16	S	0.17
2056	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	S	0.080	\$	1.16	S	0.16
2057	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.15
2058	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	S	0.14
2059	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.14
2060	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.13
2061	62,804	56	0.97	21,633	S	1,514	\$	0.55	\$	0.53	s	0.080	\$	1.16	\$	0.12
2062	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.12
2063	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.11
2064	62,804	56	0.97	21,633	s	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.11
2065	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.10
												Total NPV	of C	0&M Costs	\$	17.1
			Capital Cost	s in million \$						Yr built					•	4
				RWTM to Re			\$	47.0		2015					\$	47.0
				Intake/Pump	ping	Stations	S	36.6		2015					\$	36.6

Total NPV of Capital and O&M Costs in millions \$

Reservoirs

	Quantity	Units	Volume/each (acre-feet)	nit Cost (ac-ft))	C	struction ost in illions	tigency, g., etc.	otal in nillions
Reservoirs	4	each	15000	\$ 1,180	\$	70.8	\$ 26.9	\$ 97.7

Estimated average depth of reservoir

20

Surface area of reservoir	3000	acres		
Ratio of total land area regd to surface area				
of reservoir	1.1		Envir & Archaeology, Surv,	
Total land area regd for reservoirs	3300	acres	and Land Acq =	16.5
A CARCAGO AND A CARCAGO A CARCAGO AND A CARCAGO A		,	Total capital cost in millions = \$ 11	14.2
Assumed life of reservoir	100	years	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Estimated replacement cost	\$ 0.71	million/year		
Estimated maintenance	\$ 0.04	million/year	Mowing, maintaining fences, etc.	
Total	\$ 0.75	million/year		
Year built	2015			
NPV of O&M costs	\$ 12.8	million		
NPV of Capital costs	\$ 114.2	million		
Total NPV of Capital and O&M Costs	\$ 127.0	million		

Sur	mmary	33507	IPV of tal Costs	 V of O&M Costs	Capital and		
	Inflatable Rubber Low Head Dam	\$	6.2	\$ 3.9	\$	10.1	
	Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$	83.6	\$ 17.1	\$	100.7	
	Off Channel Reservoir	\$	114.2	\$ 12.8	\$	127.0	
	Total for RWI A	\$	204.0	\$ 33.8	\$	237.8	

O&M Cost Calculations
RWTM B - RWI B near Bastrop to WTP
CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

	Initial year of Interest rate		eriod	2015 5%				ngineering, L	Contingency = egal, Admin. =				
	Evaluation p				years			& Archaeolo			100 000	nor mile	
33	Unit cost of e	anergy	0	\$ 0.07	per kwh	willigation,	Quiv	eying, and Le	and Acquisition	9	100,000	per mile	
4 20000 0000000000000000000000000000000	y of average	pumping			ar: of LCRA's +	33.6k of CO	A's						
Surf	ace Water	2015	2020	2030	2040	2050		2060	2065				
-	Year For SAWS	18000	62804	18000	18000	18000) ;	18000	18000	-			
	LCRA	10000	02001	5600	11200	11200		11200	11200				
0	COA			16802	22403	33604		33604	33604				
_	Subtotal	18000	62804	40402	51603	62804	•	62804	62804				
Grou	undwater Year	2015	2020	2030	2040	2050		2060	2065				
	For SAWS	55000	55000	55000	55000	55000		55000	55000	-			
Sufa	ace & grour	73000	117804	95402	106603	117804	4	117804	117804	-			
	Ultimate (Y2	065) avera	ige design p	umping rat	te	117,	804	ac-ft/year					
Sizing of	f Raw Water	Transmis	sion Main E	3 & Pump	Stations								
	Inside diame	ter of RW	TM				84	in.					
	Area					38	3.48	sf					
	Length of RV	MTM				405		miles					
						105,	800	feet					
	Estimated u	nit constru	ction cost for	r RWTM		\$	467	per LF					
	Total constru	uction cost	in millions			s 4	19.4						
	Contingencie	es				\$	9.9						
		Subtotal	20 000 00 000				59.2						
	Engineering	, Legal & A Subtotal	dministrativ	е		\$ 6	8.9						
	Envir & Arch		Mitigation	Surveying	& Land Aco		2.0						
			al Cost for P					million					
	Unit mainter	nance cost	/year-mile			\$ 5,	000	\$/year-mile	\$ 0.100	Mill	ion \$/yea	r	
	Design flow	rate (after	100% buildo	out)				ac-ft/year					
							105						
	Dumning rat	a (ana nur	201					gpm gpm					
	Pumping rat No. of pump					10,	5	gpiii					
			nps except s	pare)		75,	,000	gpm					
	Velocity at p	eak flow ra	ate				4.34	fps					
	C factor	oun now it	ato				120	ileo					
	Head loss p	er foot				0.00	0067	ft/ft	hr	= 13.	552*QI1	B5	
						:	3.55	ft/mile			(d) ^{2.63}		
	Head loss a			400/			71		CE	0 510			
	Allowance for Total estima			10%	01		7				v. At WT	in Bastrop	reservoir
	Average sta		9				250			O ft	V OI VVOL	in Dasirop	103014011
	Total estima		nic head				328						
							142	psi					
	No of socos		umalas stati	ana alana	routo		0.95		16	nei	/accumo	d max press	11100
			umping stati is used in co				1.0		15		oipe)	u max press	idio
	Average her			or outilities	7		328						
							0501						
	Assumed pu						85% 90%						
	Assumed m Estimated H					1		hp/pump					
	Latinated	ip required	hor bamb					kw/pump					
	Total hp per	pump sta	tion (not cou	nting span	e)	8,	,125	hp/station					
	Total kw per	r pump set	(set=pump	s in series	along route)	1,	625	kw/pump set	(one pump a	t eac	h station)		
	Linit consta	etion cost	for each pur	nn etation	(from cost c	u \$ 1	307	ner firm hn o	of pump station				
			pump station		(IIOIII COSt C			million	n pump station				
	Balancing re		pannp ciano.					million _	6	0 mir	n. of store	ge at avg p	umping rate
		Total cons	truction cost	per pump	station	\$ 1	1.37	million) mg			CILI PAI
(6)	No. of pump	stations f	rom above				1.0	each	\$ 0.15	per	r gal for o	pen top rese	ervoir
	Total const	nuction one	t in millions			s	11.4	million					
	Total constr		t in millions					million					
	Total capita			3				million					
				ongres-c			ngogi vies	2.002.126-2.00					
			t for pump s	tations				million		, -	tionat - d -	tanat	at an 0/ -f1-1-
		Value of e		nont		\$		million	409	6 Es	timated e	quipment co	st as % of tota
			life of equipn maintenance		ent cost	s		years million/year					
		-omnated	mannenano	on opiacen	ioni oosi	•	0.20	mmor//yedi					

O&M Costs

Year	Flow purr yea		No. of pump "sets"	Energy used	used			st	CO	other O&M ests - Pump Stations	RWTM		Total O&M cost		Ne	t present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)		Million \$ /year)		(Million \$ /year)		Million \$ /year)		Million \$ /year)		(\$)
2015	73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	3.33
2016	73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	3.17
2017	73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	3.02
2018	73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.88
2019	73,000	65	3.02	117,667	\$	8,237	\$	3.01	\$	0.23	\$	0.100	\$	3.33	\$	2.74
2020	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	4.06
2021	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	3.86
2022	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	3.68
2023	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	3.51
2024	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	3.34
2025	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	3.18
2026	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	3.03
2027	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	2.88
2028	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	2.75
2029	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	2.62
2030	95,402	85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	2.05
2031	95,402	85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.95
2032	95,402	85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.86
2033	95,402	85 85	3.94	153,777	\$	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.77
2034	95,402		3.94	153,777	5	10,764		3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.68
2035	95,402	85 85	3.94	153,777	S	10,764	\$	3.93	\$	0.23	\$	0.100	\$	4.26	\$	1.60
2036	95,402	85	3.94	153,777	S	10,764	\$	3.93		0.23	\$	0.100	\$	4.26 4.26	\$	1.53
2037	95,402	85	3.94	153,777	S	10,764	\$	3.93	\$	0.23	\$	0.100	5		\$	1.46
2038	95,402	85	3.94 3.94	153,777 153,777	S	10,764 10,764	S	3.93	\$	0.23	\$	0.100	S	4.26 4.26	S	1.39 1.32
2039	95,402 106,603	95	4.41	171,831	S	12,028	S	4.39	S	0.23	S	0.100	S	4.72	S	1.32
2040	106,603	95	4.41	171,831	\$	12,028	S	4.39	\$	0.23	\$	0.100	\$	4.72	S	1.33
2041	106,603	95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	\$	1.26
2042	106,603	95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	\$	1.20
2043	106,603	95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	\$	0.100	\$	4.72	S	1.15
2045	106,603	95	4.41	171,831	Š	12,028	\$	4.39	\$	0.23	5	0.100	\$	4.72	Š	1.09
2046	106,603	95	4.41	171,831	\$	12,028	s	4.39	s	0.23	s	0.100	\$	4.72	S	1.04
2047	106,603	95	4.41	171,831	Š	12,028	Š	4.39	Š	0.23	Š	0.100	Š	4.72	Š	0.99
2048	106,603	95	4.41	171,831	š	12,028	Š	4.39	\$	0.23	\$	0.100	Š	4.72	\$	0.94
2049	106,603	95	4.41	171,831	\$	12,028	\$	4.39	\$	0.23	S	0.100	\$	4.72	\$	0.90
2050	117,804	105	4.87	189,886	\$	13,292	\$	4.85	s	0.23	s	0.100	S	5.18	s	0.94
2051	117,804	105	4.87	189,886	\$	13,292	\$	4.85	S	0.23	\$	0.100	\$	5.18	S	0.89
2052	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.85
2053	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.81
2054	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.77
2055	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.74
2056	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.70
2057	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.67
2058	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.64
2059	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.61
2060	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.58
2061	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.55
2062	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.52
2063	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.50
2064	117,804	105	4.87	189,886	\$	13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.47
2065 117,804 105 4.87 189,886 \$				13,292	\$	4.85	\$	0.23	\$	0.100	\$	5.18	\$	0.45		
												Total NPV	of C	O&M Costs	\$	86.6
Capital Costs is willian 6.							Yr built									
Capital Costs in million \$:					\$	70.1	-	2015	Ě				\$	70.1		
RWTM Pumping Stations				ns	S	15.7		2015					S	15.7		
				, amping on	utio		•	10.7		2010	T	otal NPV of	Ca	pital Costs		85.8
														F 50010	-	

Total NPV of Capital and O&M Costs in millions \$

North Caldwell Co_Alt3B;RWTM B

O&M Cost Calculations
WTP and Raw Water Storage Reservoir at WTP
CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

2015 Contingency = 20%
5% Engineering, Legal, Admin. = 15%
50 years Environmental & Archaeology Studies &
\$ 0.07 per kwh Mitgation, Surveying, and Land Acquisition = \$ 25,000 per acre Initial year of analysis period Interest rate Evaluation period Unit cost of energy

Treated Water Production by Treatment Type (from Demand Chart - BE SURE TO CHECK)

Treated Water Production by Treatment Typ	e (from Den	nand Chart -	BE SURE TO C	HECK)					
		Year =	2015	2020	2030	2040	2050	2060	2065
Softened water demand;		Units							
Average yearly demands:		Olino							
City of Austin		ac-ft/yr	0	0	16802	22403	33604	33604	33604
LCRA		ac-ft/yr	0	0	5600	11200	11200	11200	11200
Totals		ac-ft/yr	0	0	22402	33603	44804	44804	44804
Totals		mgd	ő	ő	20	30	40	40	40
Max day demands:									
City of Austin		mgd	0	0	25	35	50 20	50 20	50 20
LCRA		mgd	0	0	10	20	20	20	20
Totals		mgd	0	0	35	55	70	70	70
SAWS reduced demand scena	arilo was for								
139,000 ac-ft/yr in 2020, but only 117 would be temporar	,804 ac-ft/yr	Year =	2015	2020	2030	2040	2050	2060	2065
Non-softened water demands:	ily available	Units							
Average yearly demands:		- Olino		\					
SAWS		ac-ft/yr	73000	117804	205000	205000	205000	205000	205000
SARA		ac-ft/yr	0	0	28433	31393	34411	37530	41128
GBRA		ac-ft/yr	0	0	6000	8000	10000	12300	12300
Totals	~		73000	117804	239433	244393	249411	254830	258428
Totals		mgd	65	105	214	218	223	227	231
Max day demands:									
SAWS		mgd	85	137	238	238	238	238	238
SARA		mgd	0	0	33	36	40	44	48
GBRA		mgd	0	0	5	7	9	11	11
Totals		mgd	85	137	276	281	287	293	297
Total: softened and non-softened water d	emands								
Average yearly demand		ac-ft/yr	73000	117804	261835	277996	294215	299634	303232
		mgd	65	105	234	248	263	267	271
Max day demand		mgd	85	137	311	336	357	363	367
Raw Water Reservoir Sizing for ultimate conditions: Assumed number of days of consecut	tive Max Day	demands	30	days			×		
Design (Max. Day) treated water produ				mgd					
Average treated water production in r				mgd			ground and raw	water that	
Difference (shortfall of ray	17.		or the second	mgd	can be pumped	to the WTP)			
Required storage reservoir for raw wa	ter		2,889 8.868	mg ac-ft					
Add safety factor	25%		2,217	ac-ft					
Total storage required	2070		11,084	ac-ft					
Total storage recommended			12,000	ac-ft		days at averag		00	
					(for exam	nple, for repair	OIRWIMA) =	33 d	ays
			Volume/each	Unit Cost	Total	Contigency,	Total Capital		
	Quantity	Units	(acre-feet)	(\$/ac-ft))	Construction Cost	Eng., etc.	Cost		
Reservoirs	1	each	12,000	\$ 1,283	\$ 15.4	\$ 5.9	\$ 21.3		
Estimated average depth of reservoir Surface area of reservoir		25 480	ft						
Ratio of total land area reqd to surface	e area	-	acres						
of reservoir		1.10				aeology, Surv,			
Total land area reqd for reservoirs		528	acres		a Total capital cos	nd Land Acq = t in millions =	\$ 34.5		
Assumed life of reservoir		100	years						
Estimated replacement cost		\$ 0.15	million/year						
Estimated replacement cost Estimated maintenance Total		\$ 0.04	million/year million/year million/year	Mowing, main	taining fences, e	tc.			
Year built		2015							
NPV of O&M costs NPV of Capital costs			million _million						
Total NPV of Capital and O&M Costs		\$ 38.0	million						

WTP

Plant Phasing and Capital Costs:

Softening Treatment Trains Year =		2015		2020		2030		2040		2050	,	2060		208	35
Average treated water production in mgd		0	-	0		20	-	30	-	2000	40	 4	0	200	40
Design (Max. Day) treated water production reg'd in mgd		o		0		35		55			70	7			70
Initial/additional Max day capacity built (mgd)				U		50		20					•		
		0		0		50		70			70	7	0		70
Total capacity on line (must exceed Design Max Day Req'd)		U		U		50		70			70	,	U		/(
Unit cost for max day treatment capacity (\$/gpd of capacity)					\$	1.78	\$	2.14							
Estimated construction cost of expansion in \$millions	\$	-	\$	140	\$	89.0	\$	42.8	\$		×	\$	\$		-
Non-softening Treatment Trains Year ■		2015		2020		2030		2040		2050		2060		206	25
	_	2015	-	105		214	-	218	-	2000	223	 2000	7	200	231
Average treated water production in mgd								281			287	29			297
Design (Max. Day) treated water production req'd in mgd		85		137		276		201			201	29	3		28
Additional Max day capacity built (mgd)		100		100		100							•		-
Total capacity on line (must exceed Design Max Day Req'd)		100		200		300		300			300	30	U		300
Unit cost for max day treatment capacity (\$/gpd of capacity)	\$	1.32	\$	1.32	\$	1.32									
Estimated construction cost of expansion in \$millions	\$	131.5	\$	131.5	\$	131.5	\$	- 1	\$		ě	\$ ٠	\$		•
Totals (Softening + Non-softening Trains)				1000000		12.00221		1-50-00			207				
Year = .		2015		2020		2030		2040		2050)	 2060		200	35
Total construction cost for both trains	\$	131.5	\$		\$	220.5	\$		\$		-	\$	\$		-
Contingencies	_	26.3		26.3		44.1		8.6			-	 			-
Subtotal	\$	157.8	\$		\$	264.7	\$		\$		•	\$ -	\$		-
Engineering, Legal, & Administrative		23.7		23.7	_	39.7		7.7			_	 -			-
Subtotal		181.5		181.5		304.4		59.0							
Environmental & Archaelogy Studies and Mitigation & Land															
Acquisition and Surveying (see Note below)		2.5													
Total estimated capital cost	\$	184.0	\$	181.5	\$	304.4	\$	59.0	\$		-	\$ •	\$	0	
NPV of capital cost		\$ 184.0		\$ 142.2		\$ 146.4		\$ 17.4		\$	2	\$ -		\$	-
Total NPV of WTP initial construction & expansions	\$	490													
Note: Assumed land requirement for WTP (not including reserv		100	ac	res											

O&M Costs for	Softening Tra	ains:							O&M Costs fo	r Non-Softening	Trains;							
Year	Plant Capacity in service	treated water	Esti	mated C unit co		cost from urve	N	et present value	Year	Plant Capacity in service	Estimated treated water production	E	stimated O unit co				t present value	
	mgd of capacity	mgd produced		per mg eated	\$	\$million /year		(\$)		mgd of capacity	mgd produced	1	\$ per mg treated	\$mi	llion /year		(\$)	
2015		-			\$	-	\$	-	2015	100	65	\$	436	5	10.37	\$	10.37	
2016	-				\$	-	\$	-	2016	100	65	5	436	\$	10.37	\$	9.87	
2017	-	-			\$	-	\$	-	2017	100	65	\$	436	\$	10.37	\$	9.40	
2018					Š		\$	-	2018	100	65	Š	436	s	10.37	\$	8.96	
2019		-			Š	-	\$	-	2019	100	65	\$	436	Š	10.37	\$	8.53	
2020		-			Š		Š	-	2020	200	105	Š	374	Š	14.37	Š	11.26	
2021					Š		Š	_	2021	200	105	š	374	š	14.37	Š	10.73	
2022	2	-			Š	-	Š	-	2022	200	105	š	374	Š	14.37	Š	10.21	
2023		-			\$		\$	-	2023	200	105	\$	374	Š	14.37	\$	9.73	
2024	-	-			Š	-	\$	-	2024	200	105	\$	374	\$	14.37	\$	9.26	
	-	-				-	S	-		200	105	Š	374	Š	14.37	Š		
2025	-	-			\$	-	\$	-	2025		105		374	\$			8.82 8.40	
2026	-	-			\$	•	*	-	2026	200		\$			14.37	\$		
2027	-	-			\$	-	\$	-	2027	200	105	\$	374	\$	14.37	\$	8.00	
2028	-	-			\$	-	\$	-	2028	200	105	\$	374	\$	14.37	\$	7.62	
2029					\$		\$		2029	200	105	\$	374	\$	14.37	\$	7.26	
2030	50	20	\$	712	\$	5.20	\$	2.50	2030	300	214	\$	343	\$	26.73	\$	12.86	
2031	50	20	\$	712	\$	5.20	\$	2.38	2031	300	214	\$	343	\$	26.73	\$	12.24	
2032	50	20	\$	712	\$	5.20	\$	2.27	2032	300	214	\$	343	\$	26.73	\$	11.66	
2033	50	20	\$	712	\$	5.20	\$	2.16	2033	300	214	\$	343	\$	26.73	\$	11.11	
2034	50	20	\$	712	\$	5.20	\$	2.06	2034	300	214	\$	343	\$	26.73	\$	10.58	
2035	50	20	\$	712	\$	5.20	\$	1.96	2035	300	214	\$	343	\$	26.73	\$	10.07	
2036	50	20	\$	712	\$	5.20	\$	1.87	2036	300	214	\$	343	\$	26.73	\$	9.59	
2037	50	20	\$	712	\$	5.20	\$	1.78	2037	300	214	\$	343	\$	26.73	\$	9.14	
2038	50	20	\$	712	\$	5.20	\$	1.69	2038	300	214	\$	343	\$	26.73	\$	8.70	
2039	50	20	\$	712	\$	5.20	\$	1.61	2039	300	214	\$	343	\$	26.73	\$	8.29	
2040	70	30	\$	661	\$	7.24	5	2.14	2040	300	218	\$	343	\$	27.28	\$	8.06	
2041	70	30	\$	661	\$	7.24	\$	2.04	2041	300	218	\$	343	\$	27.28	5	7.67	
2042	70	30	\$	661	\$	7.24	S	1.94	2042	300	218	\$	343	\$	27.28	S	7.31	
2043	70	30	\$	661	\$	7.24	\$	1.85	2043	300	218	\$	343	s	27.28	\$	6.96	
2044	70	30	Š	661	Š	7.24	Š	1.76	2044	300	218	Š	343	Š	27.28	Š	6.63	
2045	70	30	Š	661	Š	7.24	Š	1.68	2045	300	218	Š	343	\$	27.28	Š	6.31	
2046	70	30	Š	661	\$	7.24	\$	1.60	2046	300	218	Š	343	\$	27.28	\$	6.01	
2047	70	30	Š	661	Š	7.24	Š	1.52	2047	300	218	Š	343	\$	27.28	\$	5.73	
2048	70	30	Š	661	Š	7.24	š	1.45	2048	300	218	š	343	\$	27.28	Š	5.45	
2049	70	30	Š	661	Š	7.24	Š	1.38	2049	300	218	Š	343	Š	27.28	Š	5.19	
2050	70	40	š	661	\$	9.65	Š	1.75	2050	300	223	Š	343	š	27.84	Š	5.05	
2051	70	40	Š	661	\$	9.65	Š	1.67	2051	300	223	Š	343	Š	27.84	Š	4.81	
2052	70	40	š	661	Š	9.65	Š	1.59	2052	300	223	Š	343	Š	27.84	Š	4.58	
2053	70	40	Š	661	š	9.65	Š	1.51	2053	300	223	Š	343	Š	27.84	\$	4.36	
2054	70	40	\$	661	\$	9.65	\$	1.44	2054	300	223	Š	343	S	27.84	S	4.15	
2055	70	40	\$	661	\$	9.65	\$	1.44	2055	300	223	\$	343	\$	27.84	\$	3.95	
2056	70	40	\$	661	\$	9.65	\$	1.31	2056	300	223	\$	343	\$	27.84	\$	3.77	
	70											\$	343	\$		\$		
2057	70	40 40	\$	661 661	\$	9.65 9.65	\$	1.24	2057	300	223	\$	343	\$	27.84	\$	3.59 3.42	
2058					\$		\$		2058	300	223							
2059	70	40	\$	661	\$	9.65	\$	1.13	2059	300	223	\$	343	\$	27.84	\$	3.25	
2060	70	40	\$	661	\$	9.65	\$	1.07	2060	300	227	\$	343	\$	28.45	\$	3.17	
2061	70	40	\$	661	\$	9.65	\$	1.02	2061	300	227	\$	343	\$	28.45	\$	3.02	
2062	70	40	\$	661	\$	9.65	\$	0.97	2062	300	227	\$	343	\$	28.45	\$	2.87	
2063	70	40	\$	661	\$	9.65	\$	0.93	2063	300	227	\$	343	\$	28.45	\$	2.74	
2064	70	40	\$	661	\$	9.65	\$	0.88	2064	300	227	\$	343	\$	28.45	\$	2.60	
2065	70	40	\$	661	\$	9.65	\$	0.84	2065	300	231	\$	343	\$	28.85	\$	2.52	
			To	tal NPV	of O	&M Costs	\$	58					Total NPV	of O	&M Costs	\$	366	

NPV Totals for O&M:
Softening trains
Non-softening Trains
Non-softening Trains
\$ 366
\$ 423

Summary Raw Water Reservoir

Water Treatment Plant Totals

	NPV of ital Costs	of O&M Costs	Capital and				
\$	34	\$ 3.5	\$	38			
\$	490	\$ 423	\$	913			
S	524	\$ 427	S	951			

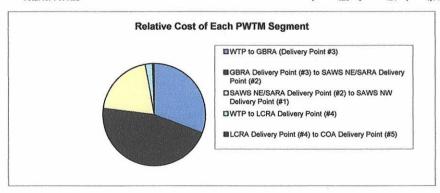
Capital and O&M Cost Calculations

Potable Water Transmission Mains
CTRWTP - Alternate 3B - WTP in Northern Corner of Caldwell County - Delayed SAWS and SARA Demands

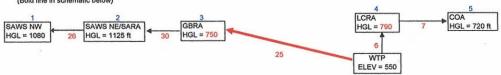
Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile Initial year of analysis period Interest rate Evaluation period Unit cost of energy 5% 50 years 0.07 per kwh

Summary of Demands

Average demands to be delivered in each segment


			in acre-feet/ye	ear			
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	43800	70682	123000	123000	123000	123000	123000
SAWS NE	29200	47122	82000	82000	82000	82000	82000
Subtotal	73000	117804	205000	205000	205000	205000	205000
SARA	0	0	28433	31393	34411	37530	41128
GBRA			6000	8000	10000	12300	12300
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Total	73000	117804	261835	277996	294215	299634	303232

Summary


WTP to GBRA (Delivery Point #3)
GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2)
SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1)
WTP to LCRA Delivery Point (#4)
LCRA Delivery Point (#4) to COA Delivery Point (#5)

Total for PWTMs

C	PV of apital osts	0.70	of O&M osts	Total NPV o Capital and O&M Costs				
\$	179	\$	144	\$	323			
\$	217	\$	263	\$	481			
\$	207	\$	5	\$	211			
\$	11	\$	12	\$	23			
\$	6	\$	1	\$	7			
\$	620	S	424	\$	1.044			

WTP to GBRA (Delivery Point #3) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment

Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg o
GBRA	0	0	5	7	9	11	11	2.0
SAWS NE	26	42	73	73	73	73	73	1.3
SARA	0	0	25	28	31	34	37	1.3
SAWS NW	39	63	110	110	110	110	110	1.3
Total	65	105	214	218	223	227	231	

		Max day dem	ands to be del	vered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
GBRA	0	0	11	14	18	22	22
SAWS NE	34	55	95	95	95	95	95
SARA	0	0	33	36	40	44	48
SAWS NW	51	82	143	143	143	143	143
Total	85	137	282	289	296	303	308

PWTM and Pump Station Costs

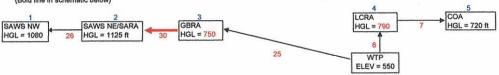
PWIM and Pump Station Costs									
Design flow rate - year 2065				308	mgd				
				213,603	gpm				
Pumping capacity of one pump				21,500	gpm				
No. of pumps (not counting spare)				10	37				
Peak flow rate (all pumps except spa	re)			215,000	gpm				
Inside diameter of PWTM Area				120 78.54					
Length of PWTM				100000000000000000000000000000000000000	miles	/linked	to mile	age in schematic above)	
rendin or Law Livi				132,000	10.1	(IIIIKGU	to mile	age in schematic above)	
Estimated unit cost by condition:	% of length	LF	Ur	nit cost	Cost				
Rural - soil	100%	132,000	\$	783		million			
Rural - rock	0%		\$	1,048	\$ -	50000000			
Urban - rock	0%		\$	1,186	\$ -				
Olbail 100K		132,000	- *	1,100		million			
Average estimated unit construction	cost for PWTM		\$	783	perLF				
Total acceptantian and in million				400.0					
Total construction cost in millions			\$	103.3					
Contingencies			\$	20.7					
Subtotal			\$	124.0					
Engineering, Legal & Administrative			\$	18.6					
Subtotal			\$	142.6					
Envir & Arch Studies & Mitigation, Su	irveying, & Land Acq		\$	2.5					
Total Capital Cost for PW	/TM in millions		\$	145.1					
Unit maintenance cost/year-mile			\$	10,000	\$/year-mile	\$	0.250	Million \$/year	
Velocity at peak flow rate				6.10	fps				
C factor				120					
Head loss per foot				0.00083	ft/ft		h ₁ =	3.552*QI1.85	
				4.40	ft/mile			C*(d) ^{2.63}	
Uned to a stand flower				440					
Head loss at peak flow rate	0001			110			750	B	
Allowance for minor losses	20%			22				Desired HGL At Delivery Poin	Į.
Total estimated losses				132		-		Elev. At WTP	
Average static head			-	200			200	ft	
Total estimated dynamic head				332					
				144	psi				
No of recommended pumping station				0.96			150	psi (assumed max pressure	
No. of pumping stations used in cost	estimate			1				in pipe)	
Average head per pump station				332	ft				
Assumed pump efficiency				85%					
Assumed motor efficiency				90%					
Estimated Hp required per pump				2,356	hp/pump				
					kw/pump				
Total hp per pump station (not count	ing spare)				firm hp/station	1			
Total kw per pump set (set≂pumps i					kw/pump set		ump at	each station)	
Unit capital cost for each pump station	on (from cost curve)		\$	1.047	per firm hp of	numn s	tation		
Construction cost per pump station	(5111 0001 001 00		•		million	Family 9			
Total construction cost for pump stat	ione			24.7	to	r	1	pump stations	
Total constitution cost for pump stat	10110			24.1	10			- bamb aggroup	

Contingencies
Subtotal
Engineering, Legal & Administrative
Total capital cost for pump stations

4.4 34.0 million

40% Estimated equipment cost as % of total

Value of equipment Assumed life of equipment Estimated maintenance/replacement cost


10 million 20 years 0.49 million/year \$ \$

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	y cos	st	cos	her O&M ts - Pump stations	•	intenance costs - PWTM	To	otal O&M cost	Ne	t present value
	mgd		(kwh/day)		(\$/day)		/illion \$ /year)		/lillion \$ /year)	(Million \$ /year)	(1	Million \$ /year)		(\$)
2015	65	2.10	119,009	\$	8,331	\$	3.04	\$	0.49	\$	0.250	\$	3.78	\$	3.78
2016	65	2.10	119,009	\$	8,331	\$	3.04	\$	0.49	\$	0.250	\$	3.78	\$	3.60
2017	65	2.10	119,009	\$	8,331	\$	3.04	\$	0.49	\$	0.250	\$	3.78	\$	3.43
2018	65	2.10	119,009	\$	8,331	\$	3.04	\$	0.49	\$	0.250	\$	3.78	\$	3.27
2019	65	2.10	119,009	\$	8,331	\$	3.04	\$	0.49	\$	0.250	\$	3.78	\$	3.11
2020	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	4.43
2021	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	4.22
2022	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	4.02
2023	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	3.82
2024	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	3.64
2025	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	3.47
2026	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	3.30
2027	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	3.15
2028	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	3.00
2029	105	3.40	192,051	\$	13,444	\$	4.91	\$	0.49	\$	0.250	\$	5.65	\$	2.85
2030	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	5.15
2031	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	4.91
2032	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	4.68
2033	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	4.45
2034	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	4.24
2035	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	4.04
2036	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	3.85
2037	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	3.66
2038	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	3.49
2039	214	6.90	390,339	\$	27,324	\$	9.97	\$	0.49	\$	0.250	\$	10.72	\$	3.32
2040	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	3.23
2041	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	3.07
2042	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.93
2043	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.79
2044	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.65
2045	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.53
2046	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.41
2047	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.29
2048	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.18
2049	218	7.05	398,425	\$	27,890	\$	10.18	\$	0.49	\$	0.250	\$	10.92	\$	2.08
2050	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	2.02
2051	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.92
2052	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.83
2053	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.74
2054	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.66
2055	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.58
2056	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.5
2057	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.43
2058	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.37
2059	223	7.19	406,605	\$	28,462	\$	10.39	\$	0.49	\$	0.250	\$	11.13	\$	1.30
2060	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.26
2061	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.20
2062	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.15
2063	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.09
2064	227	7.35	415,440	\$	29,081	\$	10.61	\$	0.49	\$	0.250	\$	11.36	\$	1.04
2065	231	7.45	421,305	\$	29,491	\$	10.76	\$	0.49	\$	0.250	\$	11.51	\$	1.00
											Total NPV	of C	&M Costs	\$	144
		Capital Costs	in million \$: PWTM			s	145		Yr built	S				s	145
				ine		\$	145		2015					\$	
			Pumping Stal	ion	5	D.	34		2015					3	34

Total NPV of Capital and O&M Costs in millions \$
WTP to GBRA (Delivery Point #3) 323

GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment

		Average dem	ands to be del	ivered in each s	segment in mgd	1		
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
SAWS NE	26	42	73	73	73	73	73	1.3
SARA	0	0	25	28	31	34	37	1.3
SAWS NW	39	63	110	110	110	110	110	1.3
Total	65	105	208	211	214	217	220	

Max day demands to be delivered in each segment in mgd 2020 2030 2040 2050

SAWS NE	34	55	95	95	95	95	95	
SARA	0	0	33	36	40	44	48	
SAWS NW	51	82	143	143	143	143	143	
Total	85	137	271	274	278	281	286	_

PWTM and Pump Station Costs

Design flow rate - year 2065 286 mgd 198,353 gpm 20,000 gpm Pumping capacity of one pump No. of pumps (not counting spare)
Peak flow rate (all pumps except spare) 200,000 gpm Inside diameter of PWTM 120 in. 78.54 sf 30 miles Length of PWTM (linked to mileage in schematic above)

158,400 feet Estimated unit cost by condition: % of length Unit cost 79,200 \$ 39,600 \$ Rural - soil Rural - rock 50% 25% 783 \$ 1,048 \$ 62.0 million 41.5 Urban - rock 25% 39,600 158,400 1,186 46.9

150.5 million Average estimated unit construction cost for PWTM 950 per LF \$ Total construction cost in millions 150.5 Contingencies 30.1 180.6 Subtotal

Engineering, Legal & Administrative 27.1 Subtotal Envir & Arch Studies & Mitigation, Surveying, & Land Acq Total Capital Cost for PWTM in millions 3.0

Unit maintenance cost/year-mile 10,000 \$/year-mile \$ 0.300 Million \$/year

Velocity at peak flow rate 5.67 fps C factor 120 hr= | 3.552*Q|^{1.85} | C*(d)^{2.63}| 0.00073 ft/ft Head loss per foot 3.85 ft/mile

Head loss at peak flow rate 115 ft 20% 1125 Desired HGL At Delivery Point Allowance for minor losses 23 ft 139 ft 750 HGL At Delivery Point 3 375 ft Total estimated losses 375 ft 514 ft Average static head Total estimated dynamic head 223 psi

No of recommended pumping stations along route No. of pumping stations used in cost estimate 1.48 150 psi (assumed max pressure in pipe) Average head per pump station 257 ft

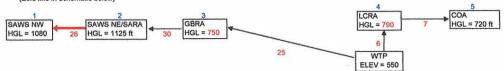
Assumed pump efficiency Assumed motor efficiency 85% 90% Estimated Hp required per pump 1,695 hp/pump 1,265 kw/pump

Total hp per pump station (not counting spare) 16,951 firm hp/station Total kw per pump set (set=pumps in series along route) 3,390 kw/pump set (one pump at each station)

Unit construction cost for each pump station (from cost curve) 1,127 per firm hp of pump station 19.1 million Construction cost per pump station

38.2 Total construction cost for pump stations 2 _pump stations

Contingencies	\$ 7.6		
Subtotal	\$ 45.9	-	
Engineering, Legal & Administrative	\$ 6.9		
Total capital cost for pump stations in millions	\$ 52.7	million	
			40% Equip cost as % of constr cos
Value of equipment	\$ 15	million	The state of the s
Assumed life of equipment	20	years	
Estimated maintenance/replacement cost	\$ 0.76	million/year	


O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	ду с	ost	co	other O&M sts - Pump Stations		aintenance costs - PWTM	т	otal O&M cost	Ne	et present value
	mgd		(kwh/day)		(\$/day)		(Million \$		(Million \$	((Million \$	(Million \$		(\$)
2015	65	2.26	184,102	\$	12,887	\$	4.70	\$	0.76	\$	0.300	\$	5.77	\$	5.77
2016	65	2.26	184,102	\$	12,887	\$	4.70	\$	0.76	\$	0.300	\$	5.77	\$	5.49
2017	65	2.26	184,102	\$	12,887	\$	4.70	\$	0.76	\$	0.300	\$	5.77	\$	5.23
2018	65	2.26	184,102	\$	12,887	\$	4.70	\$	0.76	\$	0.300	\$	5.77	\$	4.98
2019	65	2.26	184,102	\$	12,887	\$	4.70	\$	0.76	\$	0.300	\$	5.77	\$	4.75
2020	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	\$	6.78
2021	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	\$	6.46
2022	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	\$	6.15
2023	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	\$	5.86
2024	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	\$	5.58
2025	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	\$	5.31
2026	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	\$	5.06
2027	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	S	8.66	\$	4.82
2028	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	5	4.59
2029	105	3.65	297,096	\$	20,797	\$	7.59	\$	0.76	\$	0.300	\$	8.66	\$	4.37
2030	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	S	0.300	\$	16.11	\$	7.75
2031	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	7.38
2032	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	\$	0.300	\$	16.11	\$	7.03
2033	208	7.24	588,706	\$	41,209	\$	15.04	\$	0.76	S	0.300	\$	16.11	\$	6.69
2034	208	7.24	588,706	\$	41,209	S	15.04	\$	0.76	S	0.300	\$	16.11	s	6.37
2035	208	7.24	588,706	\$	41,209	s	15.04	\$	0.76	\$	0.300	s	16.11	s	6.07
2036	208	7.24	588,706	S	41,209	s	15.04	s	0.76	s	0.300	s	16.11	s	5.78
2037	208	7.24	588,706	\$	41,209	\$	15.04	Š	0.76	S	0.300	s	16.11	\$	5.51
2038	208	7.24	588,706	\$	41,209	s	15.04	Š	0.76	s	0.300	\$	16.11	s	5.24
2039	208	7.24	588,706	s	41,209	s	15.04	\$	0.76	\$	0.300	\$	16.11	s	4.99
2040	211	7.33	596,171	\$	41,732	Š	15.23	Š	0.76	\$	0.300	Š	16.30	\$	4.81
2041	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	\$	4.58
2042	211	7.33	596,171	\$	41,732	\$	15.23	Š	0.76	\$	0.300	\$	16.30	\$	4.36
2043	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	s	16.30	Š	4.16
2044	211	7.33	596,171	\$	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	Š	3.96
2045	211	7.33	596,171	s	41,732	\$	15.23	\$	0.76	Š	0.300	\$	16.30	Š	3.77
2046	211	7.33	596,171	s	41,732	Š	15.23	\$	0.76	\$	0.300	š	16.30	Š	3.59
2047	211	7.33	596,171	\$	41,732	s	15.23	\$	0.76	\$	0.300	s	16.30	S	3.42
2048	211	7.33	596,171	Š	41,732	\$	15.23	\$	0.76	\$	0.300	\$	16.30	Š	3.26
2049	211	7.33	596,171	S	41,732	Š	15.23	Š	0.76	Š	0.300	Š	16.30	Š	3.10
2050	214	7.42	603,782	5	42,265	\$	15.43	5	0.76	Š	0.300	\$	16.49	\$	2.99
2051	214	7.42	603,782	S	42,265	Š	15.43	S	0.76	5	0.300	Š	16.49	Š	2.85
2052	214	7.42	603,782	S	42,265	\$	15.43	Š	0.76	S	0.300	\$	16.49	Š	2.71
2052	214	7.42	603,782	\$	42,265	\$	15.43	Š	0.76	Š	0.300	\$	16.49	Š	2.58
2054	214	7.42	603,782	S	42,265	\$	15.43	Š	0.76	\$	0.300	\$	16.49	S	2.46
2055	214	7.42	603,782	S	42,265	\$	15.43	S	0.76	\$	0.300	\$	16.49	Š	2.34
	214	7.42		\$	42,265	\$	15.43	S	0.76	\$	0.300	S	16.49	S	2.23
2056		127.000	603,782			\$						\$	16.49	5	2.23
2057	214 214	7.42 7.42	603,782 603,782	\$	42,265 42,265	\$	15.43 15.43	\$	0.76 0.76	\$	0.300	\$	16.49	\$	2.12
												1000			
2059	214	7.42	603,782	\$	42,265	\$	15.43	\$	0.76	\$	0.300	\$	16.49	\$	1.93
2060	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.86
2061	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.77
2062	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.69
2063	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.60
2064	217	7.52	611,648	\$	42,815	\$	15.63	\$	0.76	\$	0.300	\$	16.69	\$	1.53
2065	220	7.63	620,722	\$	43,451	\$	15.86	\$	0.76	\$	0.300	\$	16.92		1.48
											Total NPV	of (D&M Costs	\$	217.2
		Capital Costs	in million \$:						Yr built						
			PWTM			\$	210.6	_	2015					\$	210.6
			Pumping Stati	000		Š	52.7		2015					s	52.7
						ಾ	32.1								32.1

Total NPV of Capital and O&M Costs in millions \$
GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2)

481

SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment Demands

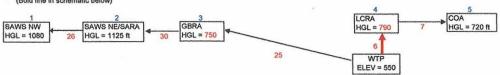
		Average dem	ands to be deli	ivered in each s	segment in mgd	I		
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
SAWS NW	39	63	110	110	110	110	110	1.3
Total	39	63	110	110	110	110	110	

		Max day dem	ands to be deli	ivered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	51	82	143	143	143	143	143
Total	51	82	143	143	143	143	143

PWTM and Pump Station Costs

Design flow rate - year 2065	143	mgd	
Signature Estate State Andrew Service (Service Service	99,125	gpm	
Pumping capacity of one pump	20,000	gpm	
No. of pumps (not counting spare)	5		
Peak flow rate (all pumps except spare)	100,000	gpm	
Inside diameter of PWTM	120	in.	
Area	78.54	sf	
Length of RWTM	26	miles	(linked to mileage in schematic above)
TO 0 - ■ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	137,280	feet	

Estimated unit cost by condition:	% of length	LF	U	nit cost	Co	ost			
Rural - soil	15%	20,592	\$	783	\$	16.1	million		
Rural - rock	35%	48,048	\$	1,048	\$	50.4			
Urban - rock	50%	68,640	\$	1,186	\$	81.4			
		137,280			\$	147.9	million		
Average estimated unit construction of	cost for PWTM		\$	1,077	per LF				
Total construction cost in millions			\$	147.9					
Contingencies			\$	29.6					
Subtotal			\$	177.4	-				
Engineering, Legal & Administrative			\$	26.6					
Subtotal			\$	204.1	-				
Envir & Arch Studies & Mitigation, Su	rveying, & Land Acq		\$	2.6	20				
Total Capital Cost for PW	TM in millions		\$	206.7	70				
Unit maintenance cost/year-mile			\$	10,000	\$/year-	mile	\$	0.260	Million \$/year
Velocity at peak flow rate				2.84	fps				


Unit maintenance cost/year-mile		\$ 10,000	\$/year-mile	\$ 0.260	Million \$/year
Velocity at peak flow rate C factor		2.84	fps		
Head loss per foot		0.00020	ft/ft	h _f =	3.552*Q ^{1.85}
		1.07	ft/mile		C*(d) ^{2.63}
Head loss at peak flow rate		28	ft		
Allowance for minor losses	20%	6	ft	1080	Desired HGL At Delivery Point
Total estimated losses		 33	ft	1125	HGL At Delivery Point 2
Average static head		-45	ft	-45	ft
Total estimated dynamic head		 -12	ft		
United and the state of the sta		-5	psi		

Negative indicates gravity flow from #2 to #1; no pumping necessary.

	_				M	lillion \$
Annual O&M Cost in million	\$:		Yr built			
PWTM	\$	0.260	2015			
				Total NPV of O&M Costs		\$4.7
Capital Costs in million \$:			Yr built			
PWTM	\$	206.7	2015		\$	206.7
				Total NPV of Capital Costs	\$	206.7

Total NPV of Capital and O&M Costs in millions \$
SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1)

WTP to LCRA Delivery Point (#4) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment Demands

	Average demands to be delivered in each segment in mgd										
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d			
LCRA	0	0	5	10	10	10	10	2.0			
COA	0	0	15	20	30	30	30	1.68			
Total	0	^	20	30	40	AD	40				

 Max day demands to be delivered in each segment in mgd

 2020
 2030
 2040
 2050

 0
 10
 20
 20

 0
 25
 34
 50

 0
 35
 54
 70
 2050 20 50 70 LCRA COA Total

PWTM and Pump Station Costs

Design flow rate - year 2065	70	mgd	
	48,883	gpm	
Pumping capacity of one pump	10,000	gpm	
No. of pumps (not counting spare)	5		
Peak flow rate (all pumps except spare)	50,000	gpm	
Inside diameter of PWTM	60	in.	
Area	19.64	sf	
Length of RWTM	6	miles	(linked to mileage in schematic above)
	31,680	feet	

Estimated unit cost by condition:	% of length	LE	Ur	it cost		Cost	
Rural - soil	100%	31,680	\$	282	\$	8.9	million
Rural - rock	0%	-	\$	388	\$	-	
Urban - rock	0%		\$	427	\$	-	
		31,680			\$	8.9	million
Average estimated unit construction cos	t for PWTM		\$	282	per L	F	

The age of the anni of the age of	 non por nr
Total construction cost in millions	\$ 8.9
Contingencies	\$ 1.8
Subtotal	\$ 10.7
Engineering, Legal & Administrative	\$ 1.6
Subtotal	\$ 12.3
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 0.6
Total Capital Cost for PWTM in millions	\$ 12.9

Half malistan and protein as will-		40.000		•	0.000	14700
Unit maintenance cost/year-mile	9	10,000	\$/year-mile	3	0.060	Million \$/year

Velocity at peak flow rate		5.67	fps	
C factor		120		
Head loss per foot		0.00163	ft/ft	hr= 13.552*Q11.85
		8.63	ft/mile	C*(d) ^{2.63}
Head loss at peak flow rate		52	ft	
Allowance for minor losses	20%	10	ft	790 Desired HGL At Delivery Point
Total estimated losses		62	ft	550 Elev. At WTP
Average static head		240	ft -	240 ft
Total estimated dynamic head		302	ft	

Average static head	240 ft	240 ft
Total estimated dynamic head	302 ft	
	131 psi	
No of recommended pumping stations along route	0.87	150 psi (assumed max pressure
No. of pumping stations used in cost estimate	1	in pipe)
Average head per pump station	302 ft	
NAMES OF THE PROPERTY OF THE P		

Average head per pump station	302	ft
Assumed pump efficiency	85%	
Assumed motor efficiency	90%	
Estimated Hp required per pump	997	hp/pump
	744	kw/pump
Total hp per pump station (not counting spare)	4,987	firm hp/station
Total kw per pump set (set=pumps in series along route)	997	kw/pump set (one pump at each station)
Unit construction cost for each pump station (from cost curve)	\$ 1,426	per firm hp of pump station

Construction cost for each pump station (from cost curve)	\$	per tim i	np of pur	np stati	on
Total construction cost for nump stations	7.1		for	1	numn

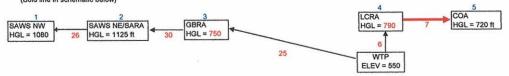
Total Control of the Parish Control					
Total construction cost for pump stations		7.1	for	1	pump stations
Contingencies	\$	1.4	_		***************************************
Subtotal	\$	8.5			
Engineering, Legal & Administrative	\$	1.3			

Total capital cost for pump stations

\$ 9.8 million

40% Equip cost as % of constr cost

Value of equipment Assumed life of equipment Estimated maintenance/replacement cost


2.8 million 20 years 0.14 million/year

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	ду с	ost	co	ther O&M sts - Pump Stations	c	intenance osts - PWTM	То	tal O&M cost	Ne	t preser value
	mgd		(kwh/day)		(\$/day)		(Million \$	(Million \$ /year)	(1	Million \$ /year)		fillion \$ /year)		(\$)
2015										- Control		\$		\$	-
2016												\$		\$	
2017												\$		\$	
2018	V											\$	-	\$	-
2019												\$	•	\$	-
2020												\$	*	\$	
2021												S	-	\$	-
2022												\$	•	\$	
2023													•	\$	7.50
2024												\$	•	\$	
2025												\$	-	\$	-
2026 2027												S	12.1	S	170
2028												\$		Š	
2029												š		š	
2030	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.5
2031	20	1.39	33,241	Š	2,327	\$	0.85	\$	0.14	\$	0.060	S	1.05	\$	0.4
2032	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	s	1.05	\$	0.4
2033	20	1.39	33,241	\$	2,327	\$	0.85	s	0.14	\$	0.060	s	1.05	s	0.4
2034	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.4
2035	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.
2036	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.3
2037	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.3
2038	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.3
2039	20	1.39	33,241	\$	2,327	\$	0.85	\$	0.14	\$	0.060	\$	1.05	\$	0.3
2040	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.4
2041	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.4
2042	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.4
2043	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.3
2044	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.3
2045	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.3
2046	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.3
2047	30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48	\$	0.3
2048	30 30	2.08	49,862	\$	3,490	\$	1.27	\$	0.14	\$	0.060	\$	1.48 1.48	\$	0.
2049 2050	40	2.08 2.78	49,862 66,483	\$	3,490 4,654	\$	1.27 1.70	\$	0.14	\$	0.060	\$	1.40	\$	0.
2050	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	S	0.
2052	40	2.78	66,483	\$	4,654	\$	1.70	Š	0.14	S	0.060	S	1.90	Š	0.
2053	40	2.78	66,483	Š	4,654	Š	1.70	Š	0.14	\$	0.060	S	1.90	Š	0.
2054	40	2.78	66,483	\$	4,654	Š	1.70	\$	0.14	S	0.060	\$	1.90	Š	0.
2055	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	s	1.90	s	0.3
2056	40	2.78	66,483	Š	4,654	\$	1.70	Š	0.14	\$	0.060	s	1.90	Š	0.
2057	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2058	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.3
2059	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2060	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2061	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2062	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2063	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2064	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
2065	40	2.78	66,483	\$	4,654	\$	1.70	\$	0.14	\$	0.060	\$	1.90	\$	0.
											Total NPV	of O	&M Costs	\$	11
		Capital Costs							Yr built						
			PWTM			\$	12.9		2030					\$	6
			Pumping Stati			\$	9.8		2030					\$	4

Total NPV of Capital and O&M Costs in millions \$
WTP to LCRA Delivery Point (#4)

23

LCRA Delivery Point (#4) to COA Delivery Point (#5) (Bold line in schematic below)

Note: GBRA & LCRA/COA must have separate PWTMs because GBRA needs unsoftened water and LCRA/COA need softened water.

Demands for this pipe segment Demands

		Average dem	ands to be del	ivered in each :	segment in mgd	1		
Year	2015	2020	2030	2040	2050	2060	2065	
COA	0	0	15	20	30	30	30	-
Total -	0	0	15	20	30	30	30	

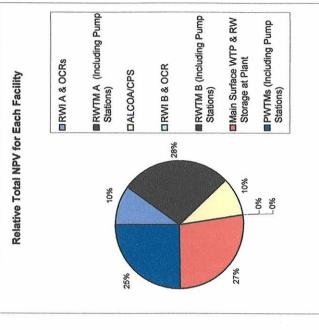
Max d/Avg d 1.68

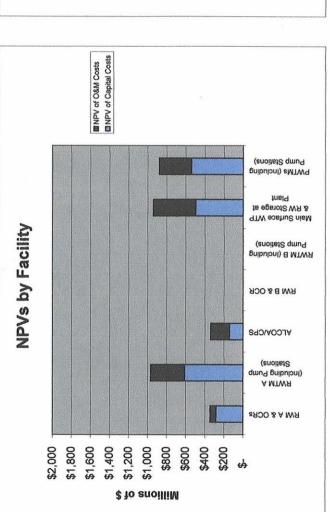
		Max day dem	ands to be deli	vered in each s	segment in mgd	(i)	
Year	2015	2020	2030	2040	2050	2060	2065
COA	0	0	25	34	50	50	50
Total	0	0	25	34	50	50	50

DMTM and Dump Station Costs

PWTM and Pump Station Costs									
Design flow rate - year 2065				50	mgd				
Inside diameter of PWTM					in.				
Area				15.90					
Length of PWTM					miles		(linked	to mile	eage in schematic above)
				36,960	feet				
Estimated unit cost by condition:	% of length	LF	Ţ	Jnit cost	Co	st			
Rural - soil	100%	36,960	\$	244	\$	9.0	million		
Rural - rock	0%		\$	337	\$	-			
Urban - rock	0%		\$	369	* \$				
		36,960			\$	9.0	million		
Average estimated unit construction	cost for PWTM		\$	244	per LF				
Total construction cost in millions			\$	9.0					
Contingencies			\$	1.8					
Subtotal			\$	10.8					
Engineering, Legal & Administrative			\$ \$ \$ \$ \$	1.6					
Subtotal			\$	12.4					
Envir & Arch Studies & Mitigation, St			\$	0.0					
Total Capital Cost for PV	VTM in millions		\$	12.4					
Unit maintenance cost/year-mile			\$	10,000	\$/year-r	nile	\$	0.070	Million \$/year
Velocity at peak flow rate				4.90	fps				
C factor				120					
Head loss per foot				0.00141	ft/ft			h _f =	1 3.552*QI ^{1.85}
50000000000000000000000000000000000000				7.45	ft/mile				C*(d) ^{2.63}
Head loss at peak flow rate				52	ft				
Allowance for minor losses	20%			10	ft			720	Desired HGL At Delivery Point
Total estimated losses			-	63				790	Elev. At Delivery Point 4
Average static head				-70	ft		-	-70	ft
Total estimated dynamic head				-7					
				-3	psi				

Negative indicates gravity flow from #4 to #5; no pumping necessary.

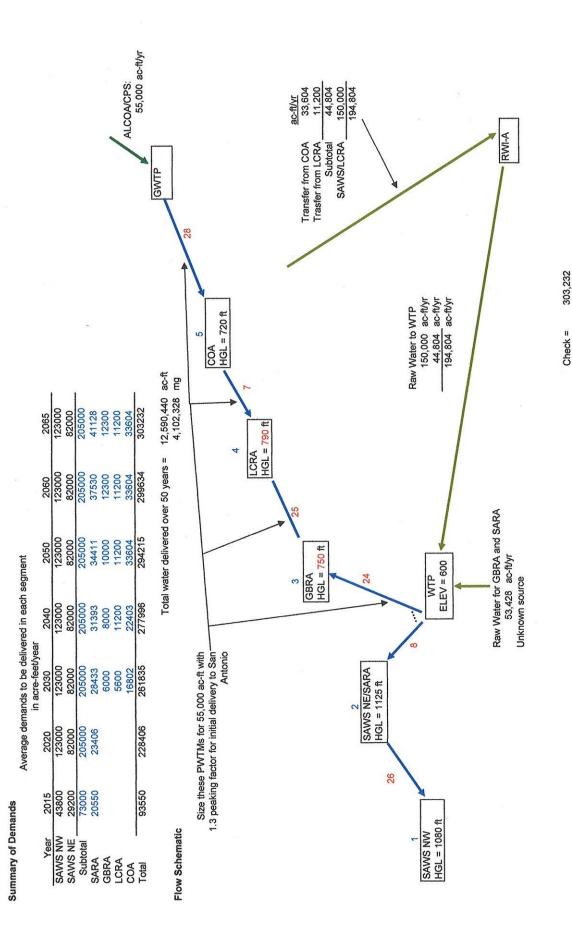

-3 psi


					Mi	illion \$
Annual O&M Cost in million	\$:	-	Yr built	_		
PWTM	\$	0.070	2030			
				Total NPV of O&M Costs		\$0.6
Capital Costs in million \$:			Yr built			
PWTM	\$	12.4	2030	7	\$	6.0
				Total NPV of Capital Costs	\$	6.0
		Total N	PV of Capita	and O&M Costs in millions	\$	6.5
		LCRA Deliv	ery Point (#	i) to COA Delivery Point (#5)		

CTRWTP - Alternate 1D - WTP East of San Antonio & ALCOA/CPS Water Ultimately to COA & LCRA

I NPVs in RWI A & OCRs Sized for 6000 ofs to scalp water. 6 intakes & 6 OCRs at 25,000 acrft a	Millions of \$ Millions of \$ Sized for 6000 cfs to scalp water. 6 intakes & 6 OCRs at 25,000 ac-ft at 25,000 ac
each pumping stations w/ balancing reservoirs along route 1,399 \$ 61 \$	284 61
3,472 \$ 344 \$	

0.85



East of SA_Alt1D; Flow Schematic

9/28/2005

Flow Schematic CTRWTP - Alternate 1D - WTP East of San Antonio & ALCOA/CPS Water Ultimately to COA & LCRA

O&M Cost Calculations
RWI A - Matagorda Co. River Intakes, and Storage
CTRWTP - Alternate 1D - WTP East of San Antonio & ALCOA/CPS Water Ultimately to COA & LCRA

Initial year of analysis period	2015					2001	
Interest rate Evaluation period	ate 5% n period 50 years		Contingency = 20% Engineering, Legal, Admin. = 15% Environmental Archaeology Studies & Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile				
Unit cost of energy	\$ 0.07	per kwii	wingation, or	aveying, and L	or =		
Inflatable Rubber Low Head Dam	Quantity	Units	Size	Unit Constr.	Total Estimated	Contigency, Total Capital Eng., etc. Cost	
	acantay	Omito	5425	(millions)	Constr. Cost (millions)	(millions) (millions)	
Inflatable Rubber Low Head Dam	6	each	10 ft high	\$ 2.25	\$ 13.50	\$ 5.13 \$ 18.63	
Estimated inflatable dam cost as Value of inflatable dam Assumed life of inflatable dam Estimated maintenance/replacer			million years million/year				
Year built		2020					
NPV of O&M Costs NPV of Capital Costs Total NPV of Capital and O&M C	Costs		million million million				
Raw Water Intake, Pumping Station, as	nd RWTM (In	take to Rese	ervoir)				
Average withdrawal			194,804	ac-ft/year			
120000000000000000000000000000000000000	2002	100002000	269	cfs	22.3	Ratio of design withdrawal rate	
Total intake design withdrawal re	ate (for scalpi	ng high flows	2,692,800	ofs gpm		to Total intake design withdrawal rate	
Design withdrawal rate per intak	е	*	1,000 448,800				
No. of reservoirs Design flow to each reservoir			448,800	gpm			
Inside diameter of each RWTM			144				
Area Average length of each RWTM			113.10 1 5,280	miles	6.0 31,680	miles for all RWTMs	
Estimated construction cost for	RWTM			per LF	684*3468		
Total construction cost in millior Contingencies	ns		\$ 33.4 \$ 6.7				
Subtotal Engineering, Legal & Administra	itive		\$ 40.0 \$ 6.0				
Subtotal Envir & Arch Studies & Mitigatio Total Capital Cost fo			\$ 46.0 \$ 0.6 \$ 46.6	million			
Unit maintenance cost/year-mile	1		\$ 10,000	\$/year-mile	\$ 0.060	Million \$/year (all RWTMs to Reservoirs)	
Note: Assume each intake has t	wo RWTMs p	umping out o	of it, one to each	reservoir,			
Design flow rate for each RWTN Pumping rate (one pump) No. of pumps (not counting spai Peak flow rate into each RWTM	re) pumping in	nto each RW	448,800 50,000 9 450,000	gpm gpm gpm			
Velocity at peak flow rate			8.87	fps			
C factor Head loss per foot			0.00135 7.10	ft/ft ft/mile	h _f =	3.552*Q ^{1.85} C*(d) ^{2.63}	
Head loss at peak flow rate Allowance for minor losses Total estimated losses Average static head Total estimated dynamic head	30%		9 40 49	ft ft ft ft	50	Elev of discharge at reservoir Water surface elev in river ft	
Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp pumping into each RW Total hp all each intake (not cou Total hp all intakes (not countin Total kw all intakes (not countin	TM (not coun nting spare) g spares)	ting spare)	85% 90% 813 606 7,313	hp/pump kw/pump hp/RWTM hp/intake hp			
Unit construction cost for each pump station (from cost cu Construction cost per intake/pump station No. of intakes from above		889 6.5 6	per firm hp of million each	pump station			
Total construction cost in millior Contigency, Eng., etc. in millior Total capital cost in millions			\$ 14.82	million million million			
Total construction cost for pum Value of equipment Assumed life of equi Estimated maintena	pment	ent cost	\$ 15.6 20	million million years million/year	40%	Estimated equip cost as % of total const	r cost

Year	Flow pun		No. of pump "sets" operating	Energy used		Energ			co	ther O&M sts - Pump Stations		aintenance costs - RWTM		tal O&M cost	Ne	t pre valu	esent ue
	ac-ft/yr	mgd	/day	(kwh/day)		(\$/day)	1	(Million \$ /year)	-	(Million \$ /year)		(Million \$ /year)		Aillion \$ /year)		(\$)
2015	on the same of the	annimización de	MATERIAL PROPERTY.		\$	-	\$	•	-				\$		\$		-
2016		-	-		\$	-	\$	-					\$		\$		
2017	*	-	-	-	\$		\$						\$		\$		
2018		*		-	\$	-	\$	-					\$		\$		
2019		*			\$		\$	-					\$		\$		(*)
2020	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		1.36
2021	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		1.30
2022	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		1.23
2023	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		1.18
2024	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		1.12
2025	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		1.07
2026	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		1.02
2027	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.080	\$	1.74	\$		0.97
2028	194,804	174	2.42	35,139	S	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		0.92
2029	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		0.88
2030	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		0.84
2031	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.80
2032	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	s	0.060	\$	1.74	\$		0.76
2033	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		0.72
2034	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		0.6
2035	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		0.6
2036	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.6
2037	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.5
2038	194,804	174	2.42	35,139	\$	2,460	\$	0.90	\$	0.78	\$	0.060	\$	1.74	\$		0.5
2039	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.54
2040	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.5
2041	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.4
2042	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.4
2043	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.4
2044	194,804	174	2.42	35,139	\$	2,460	\$		s	0.78	\$	0.060	\$	1.74	\$		0.4
2045	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.4
2046	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.3
2047	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.36
2048	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.3
2049	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.3
2050	194,804	174	2.42	35,139	s	2,460	\$		s	0.78	\$	0.060	\$	1.74	\$		0.3
2051	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.3
2052	194,804	174	2.42	35,139	\$	2,460	\$		S	0.78	\$	0.060	\$	1.74	\$		0.2
2053	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	s	1.74	\$		0.2
2054	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	S	1.74	\$		
2055	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	\$	1.74	\$		0.2
2056	194,804	174	2.42	35,139	S	2,460	S		\$	0.78	S	0.060	s	1.74			
2057	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	\$	0.060	S	1.74	\$		0.2
2058	194,804	174	2.42	35,139	\$	2,460	\$			0.78	\$	0.060			\$		
2059	194,804	174	2.42	35,139	S	2,460	\$		5	0.78	\$	0.060	\$	1.74	\$		0.2
2060	194,804	174	2.42	35,139	\$	2,460	\$		\$	0.78	S	0.060	\$	1.74	\$		0.1
2061	194,804	174	2.42	35,139	\$	2,460	\$							1.74	S		0.1
2062	194,804	174 174	2.42	35,139	\$	2,460	\$		\$	0.78 0.78	5	0.060	\$	1.74	S		0.1
2063	194,804		2.42	35,139		2,460	5		\$	0.78	5	0.060	S	1.74	5		0.1
2064 2065	194,804	174 174	2.42	35,139 35,139	5	2,460 2,460	\$		\$	0.78	S	0.060	S	1.74	\$		0.1
2065	194,804	1/4	2.42	35,139	3	2,460	Þ	0.90	Þ	0.78	3						
												Total NPV	of O	&M Costs	\$		25.
			Capital Cos	ts in million \$				40.0		Yr built							20
				RWTM to R	626	IVOILE	\$	46.6		2020						\$	36.

 Capital Costs in million \$:
 Yr built
 \$ 36.5

 RWTM to Reservoirs Inteke/Pumping Stations
 \$ 46.6
 2020
 \$ 36.5

 \$ 5.8
 2020
 \$ 42.2

 Total NPV of Capital Costs
 \$ 76.7

Total NPV of Capital and O&M Costs in millions \$ 104.3

Reservoirs

	Quantity		Units	Volume/each (acre-feet)	Unit Cost (\$/ac-ft))		c	Total Construction Cost in millions		tigency, g., etc.		Total in millions
Reservoirs	6		each	25000	\$	974	\$	146.0	\$	55.5	\$	201.5
Estimated average depth of reservo Surface area of reservoir			20 7500	ft acres								
Ratio of total land area reqd to surfa of reservoir	ace area		1.1					Envir & Arch	naeolo	gy, Surv		
Total land area reqd for reservoirs		8250		acres				8	ind La	nd Acq =	_	41.3
Assumed life of reservoir			100	years		1	ota	I capital cost	t in mi	llions =	\$	242.8
Estimated replacement cost		\$	1.46	million/year								
Estimated maintenance			0.4	million/year	Mowi	ng, mair	ntai	ning fences,	etc.			
Total		\$	1.86	million/year				N-00-00-00-00-00-00-00-00-00-00-00-00-00				
Year built			2020									
NPV of O&M costs		\$	25.9	million								
NPV of Capital costs		\$	190.2	million								
Total NPV of Capital and O&M Cos	ts	\$	216.1	million								

Summary	0.000000	IPV of tal Costs	PV of O&M Costs	Ca	pital and M Costs
Inflatable Rubber Low Head Dam	\$	14.6	\$ 9.4	\$	24.0
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$	78.7	\$ 25.6	\$	104.3
Reservoirs	\$	190.2	\$ 25.9	\$	216.1
	\$	283.5	\$ 60.9	\$	344.4

O&M Cost Calculations RWTM A - Matagorda Co. to WTP CTRWTP - Alternate 1D - WTP East of San Antonio & ALCOA/CPS Water Ultimately to COA & LCRA

Raw

	Initial year of analysis period 2015 Interest rate 5% Evaluation period 50 years		nvironment	Engineering, L al & Archaeolo	egal,	udies &	15%
	Unit cost of energy \$ 0.07 per kwh	Mit	igation, Sur	veying, and La	and A	equisition	\$ 100,000 per mile
w	ater Transmission Main - A						
	Inside diameter of pipe		108				
	Area		63.62				
	Length of RWTM			miles			
			749,760	feet			
	Estimated unit construction cost for RWTM	\$	676	per LF			
	Total construction cost in millions	\$	507				
	Contingencies	\$	101				
	Subtotal	\$	608				
	Engineering, Legal & Administrative	\$	91				
	Subtotal	\$	700				
	Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	14				
	Total Capital Cost for PWTM in millions	\$		million			
	Unit maintenance cost/year-mile	\$	10,000	\$/year-mile	\$	1.420	Million \$/year
	Design flow rate (after 100% buildout)		194,804	ac-ft/year			
				mgd			
			120,762				*
	Pumping rate (one pump) No. of pumps (not counting spare)		20,000	gpm			
	Peak flow rate (all pumps except spare)		120,000	anm			
	r oak now rate (an pumps except spare)		120,000	Abin			
	Velocity at peak flow rate		4.20	fps			
	C factor		120				
	Head loss per foot		0.00047	ft/ft		h _f =	3.552*Q 1.85
			2.50	ft/mile			C*(d) ^{2.63}
							3.7.12
	Head loss at peak flow rate		355				
	Allowance for minor losses 10%		35				Elev. At San Antonio East WTP
	Total estimated losses		390		_		Elev. At Matagorda OCRs
	Average static head	-	510			510	Ħ
	Total estimated dynamic head		900 390				
			380	psi			
	No of pumping stations req'd along route		2.60			150	psi (assumed max pressure
	No. of pumping stations used in cost estimate		3.0				in pipe)
	Average head per pump station		300	ft			
	Maria Cara Cara Cara Cara Cara Cara Cara						
	Assumed pump efficiency		85%				
	Assumed motor efficiency		90%				
	Estimated Hp required per pump			hp/pump kw/pump			
	Total hp per pump station (not counting spare)			hp/station			
	Total kw per pump set (set=pumps in series along route)			kw/pump set	t (one	pump at	each station)
	transmitted bank and transfer and transfer		-,			pantip an	
	Unit constr. cost for each pump station (from cost curve)	\$	1,214	per firm hp o	of pum	p station	
	Construction cost per pump station	\$		million			
	Balancing reservoir	\$		million			min. of storage at avg pumping rate
	Total construction cost per pump station	\$	15.62	million		8.0	
	No. of pump stations from above		2.0	each	\$	0.15	per gal for open top reservoir
	No. of pump stations from above		3.0	eacri			
	Total construction cost in millions	\$	46.9	million			
	Contigency, Eng., etc. in millions	\$		million			
	Total capital cost in millions	\$	64.7	million			
	Total construction cost for pump stations	\$		million		4000	F-F
	Value of equipment	\$		million		40%	Estimated equipment cost as % of total
	Assumed life of equipment Estimated maintenance/replacement cost	S		years million/year			
	Latinated maintenance/replacement cost	9	0.84	millotoyear			

O&M Costs

Year	Flow purr yea		No. of pump "sets"	Energy used		Energy	10	ost	COS	ther O&M sts - Pump Stations		aintenance costs - RWTM	1	Total O&M cost	N	et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)	(\$	/day)		(Million \$ /year)	(Million \$ /year)	(Million \$ /year)		(Million \$ /year)	-	(\$)
2015	-	-		- \$		-	\$						\$		\$	-
2016	*	-	-	- \$		*	\$						\$		\$	
2017	-	-	-	- \$		-	\$						\$		\$	-
2018	-	•	-	- \$		•	\$						\$		\$	
2019		-	12.750	- \$			\$		828	5020	2	2.722	\$		\$	
2020	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	19.08
2021	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	18.18
2022	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	17.31
2023	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	16.49
2024	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	15.70
2025	194,800	174	6.04	861,036 \$		60,272	Ş		\$	0.94	\$	1.420	\$		\$	14.95
2026	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	14.24
2027	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	13.56
2028	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1,420	\$		\$	12.92
2029	194,800	174	6.04	861,036 \$		60,272	S		\$	0.94	\$	1.420	\$		\$	12.30
2030	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	11.72
2031	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	11.16
2032	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	10.63
2033	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	10.12
2034	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	9.64
2035	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	9.18
2036	194,800	174	6.04	861,036 \$		60,272	9		\$	0.94	\$	1.420	\$		\$	8.74
2037	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	8.33
2038	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	7.93
2039	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	7.55
2040	194,800	174	6.04	861,036 \$		60,272	\$		\$	0.94	\$	1.420	\$		\$	7.19
2041	194,800	174	6.04	861,036 \$		60,272	S		\$	0.94	\$	1.420	\$		\$	6.85
2042	194,800	174	6.04	861,036 \$	5	60,272	5		\$	0.94	\$	1.420	\$		\$	6.52
2043	194,800	174	6.04	861,036 \$	5	60,272	\$		\$	0.94	\$	1.420	\$		\$	6.21
2044	194,800	174	6.04	861,036 \$	5	60,272	\$		\$	0.94	\$	1.420	\$		\$	5.92
2045	194,800	174	6.04	861,036 \$	5	60,272	\$	22.00	\$	0.94	\$	1.420	\$	24.36	\$	5.64
2046	194,800	174	6.04	861,036 \$	5	60,272	5		\$	0.94	\$	1.420	\$	24.36	\$	5.37
2047	194,800	174	6.04	861,036 \$	5	60,272	\$		\$	0.94	\$	1.420	\$		\$	5.11
2048	194,800	174	6.04	861,036 \$	5	60,272	\$		\$	0.94	\$	1.420	\$		\$	4.87
2049	194,800	174	6.04	861,036 \$	5	60,272	\$	22.00	\$	0.94	\$	1.420	\$	24.36	\$	4.64
2050	194,800	174	6.04	861,036 \$	5	60,272	\$	22.00	\$	0.94	\$	1.420	\$	24.36	\$	4.42
2051	194,800	174	6.04	861,036 \$	5	60,272	\$	22.00	\$	0.94	\$	1.420	\$	24.36	\$	4.21
2052	194,800	174	6.04	861,036 \$	5	60,272	\$	22.00	\$	0.94	\$	1.420	\$	24.36	\$	4.01
2053	194,800	174	6.04	861,036 \$	5	60,272	\$	22.00	\$	0.94	\$	1.420	\$	24.36	\$	3.81
2054	194,800	174	6.04	861,036 \$	5	60,272	\$	22.00	\$	0.94	\$	1.420	\$	24.36	\$	3.63
2055	194,800	174	6.04	861,036 \$	5	60,272	\$	22.00	\$	0.94	\$	1.420	\$	24.36	\$	3.46
2056	194,800	174	6.04	861,036 \$	5	60,272	5		\$	0.94	\$	1.420	\$		\$	3.30
2057	194,800	174	6.04	861,036 \$	5	60,272	5	22.00	\$	0.94	\$	1,420	\$	24.36	\$	3.14
2058	194,800	174	6.04	861,036 \$	5	60,272	5	22.00	\$	0.94	\$	1.420	\$	24.36	\$	2.99
2059	194,800	174	6.04	861,036 \$	5	60,272	5	22.00	\$	0.94	\$	1.420	\$	24.36	\$	2.85
2060	194,800	174	6.04	861,036 \$	5	60,272	9	22.00	\$	0.94	\$	1.420	\$	24.36	\$	2.71
2061	194,800	174	6.04	861,036 \$	5	60,272	5	22.00	\$	0.94	\$	1.420	\$	24.36	\$	2.58
2062	194,800	174	6.04	861,036	5	60,272	5	22.00	\$	0.94	\$	1.420	\$	24.36	\$	2.46
2063	194,800	174	6.04	861,036	5	60,272	5	22.00	S	0.94	\$	1.420	\$	24.36	\$	2.34
2064	194,800	174	6.04	861,036		60,272	5		\$	0.94	\$	1.420	\$		\$	2.23
2065	194,800	174	6.04	861,036		60,272	5		\$	0.94	\$	1.420	\$		\$	2.12
												Total NPV	of 4	O&M Costs	\$	358
							Yr built									
				RWTM			4			2020					\$	559
				Pumping Statio	ons		5	65		2020					\$	51
											To	tal NPV of	Ca	apital Costs	\$	610
								Total	NΡ\	of Capita	an	d O&M Cos	sts	in millions	\$	968

NPV CALCULATIONS ALCOA / CPS GROUNDWATER CTRWTP - Alternate 1D - WTP East of San Antonio & ALCOA/CPS Water Ultimately to COA & LCRA

Initial year of analysis period		2015	Contingency = 20%	
Interest rate		5%	Engineering, Legal, Admin. = 15%	
Evaluation period		50 years	Environmental & Archaeology Studies &	
Unit cost of energy	S	0.07 per kwh	Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile	

	ALC	COA		CPS		Total
Year built	20	15		2015		
Estimated Construction Cost in Millions						
Wells (Based on Non-Public Water Supply Wells)		32.97		12.51		45.4
Pipeline		13.03		5.94		18.9
Pump Stations & Storage		8.51		0	1	8.5
Subtotal		54.51		18.45		72.9
Contingency		10.90		3.69		14.5
Subtotal		65.41		22.14	7	87.5
Engineering, Legal & Administrative		8.18		2.77		10.9
Subtotal		73.59		24.91		98.
Environmental & Archaeology Studies & Mitigation		0.63		0.2	d	0.8
Land Acquisition & Surveying		0		0		0.0
Groundwater Purchase		0		5.64		5.6
ALCOA Construction Program Management Fee		5.45		0	1	5.4
Interest During Construction (2 years, 6% int., 4% ret.)		5.89		2.44	1	8.3
Total Capital Cost		85.56	(1-2-3-2-14) /-	33.19		118.
Estimated Annual O&M Costs						
O&M		0.67		0.18		0.1
Pumping Energy		2.41		0.52		2.9
ALCOA Project Management Fees		0.35		0.00		0.3
Purchase of Groundwater		2.00		0.00		2.0
Groundwater District Fees		0.65		0.25	5	0.9
Mitigation Reserves		0.28	V	0.11		0.3
Total Annual Cost		6.36		1,08	1	7.
		440		40		
NPV of O&M Costs	\$	116	\$	19		
NPV of Capital Costs	\$	86	\$	33	-	
Total NPV of Capital and O&M Costs for Well Fields	\$	202	\$	53	\$	25

Cooling of Well Water

oning of train tracer						
Total number of wells in both fields		120	wells	Approximate capacity per wel	300	gpm
Percentage of wells with temperatures > than degrees		5%			36,000	gpm
Estimated number of wells with temperature > degrees		6.0		Rough check	58,072	ac-ft/year
Estimated Capital Costs						
Year built		2015				
Number of Packaged Cooling Towers (300 gpm capacity/each)		6.0				
Equipment cost (cooling towers and fans)	\$	60,000				
Installation and contractors mark-up	\$	50,000				
Structural slab	\$	30,000				
Electrical	\$	50,000				
Estimated Unit Construction Cost	\$	190,000	Each			
Total construction cost	\$	1.14	million			
Contingencies	\$	0.23				
Subtotal	\$	1.37				
Engineering, Legal and Admin	S	0.21				
Total Estimated Capital Cost	\$	1.57	58			
NPV of Capital Costs	\$	1.57	million			
Estimated O&M Costs						
Value of equipment	\$	0.4	million			
Assumed life of equipment		10	years			
Estimated maintenance/replacement cost	\$	0.04	million/year			
Blower Hp per cooling tower		10	Нр			
		7	kw			
Hours of operation		24	hours			
Power consumption per cooling tower		179	kwh per day			
		65,350	kwh per year			
Power cost per cooling tower	\$	4,574	per year			
Total power cost for all cooling towers in millions	\$	0.03	million per ye	ar		

6,000 per month for all cooling towers 0.07 per year

0.14 million \$ per year \$2.47 million \$

Ground Water Transmission Main and Pump Station (Hwy 290 to Bastrop Intake)

Estimated O&M Cost \$
NPV of O&M costs

Regular operational checks and routine maintenance

None Req'd - flow in Big Sandy Creek

Water Treatment Plant (Iron & manganese removal)

Estimated capital cost	\$ 22.6	million
Year built	2015	
NPV of capital cost	\$ 22.6	million
Estimated annual O&M costs	\$ 3.19	million
NPV of O&M costs	\$ 58.2	million

(From HDR 2004 update)

(From HDR 2004 update; 1/2 of O&M estimate; Table 2)

Summary

Well Fields and Collection Lines (including tank and pump station at Hwy 290) Cooling Towers for Selected High Temperature Wells Ground Water Transmission Main and Pumping Station Water Treatment Plant (Iron & manganese removal)

Total for ALCOA-CPS

- Table 1	IPV of ital Costs	10.00	of O&M Costs	Cap	al NPV of pital and M Costs
\$	118.7	\$	135.5	\$	254.2
\$	1.6	\$	2.5	\$	4.0
\$		\$	-	\$	
\$	22.6	\$	58.2	\$	80.8
\$	142.9	\$	196.1	\$	339.1

Check only
49 mgd average production
64 mgd peak \$ 0.35 per gpd of capacity \$ 22.34 milion

17885 mg per year \$ 200 per mg treated 3.58 million

O&M Cost Calculations
Surface WTP and Raw Water Storage Reservoir at WTP
CTRWTP - Alternate 1D - WTP East of San Antonio & ALCOA/CPS Water Ultimately to COA & LCRA

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition = \$ 25,000 per acre

2015 5% 50 years \$ 0.07 per kwh Initial year of analysis period Interest rate Evaluation period Unit cost of energy

Treated Water Production by Treatment Type (from Demand Chart - BE SURE TO CHECK)

	Yes	r= 2015	2020	2030	2040	2050	2060	2065
	108	2013	2020	2030	2040	2000	2000	2005
Softened water demand:	Unite							
None req'd		0	0	0	0	0	0	0
		2015	0000	0000	0040			2005
Non-softened water demands;	Yea Units		2020	2030	2040	2050	2060	2065
Average yearly demands:								
SAWS	ac-ft/y			205000	205000	205000	205000	205000
SARA	ac-ft/y			28433	31393	34411	37530	41128
GBRA	ac-ft/y	0 00000	0	6000	8000	10000	12300	12300
Totals Totals	mgd	93550 84		239433 214	244393 218	249411 223	254830 227	258428 231
Totals	mga		204	214	210	220	22,	201
Max day demands:								
SAWS	mgd			238	238	238	238	238
SARA	mgd	24		33	36	40	44	48
GBRA Totals	mgd mgd	109		276	281	287	293	297
Totals	nigo	100	203	210	201	201	203	201
Total: coffeed and non-coffeed water do	mailda							
Total: softened and non-softened water de Average yearly demand	manos ac-ft/y	r 93550	228406	239433	244393	249411	254830	258428
ritotago jouniy domana	mgd			214	218	223	227	231
Max day demand	mgd		265		281	287	293	297
aw Water Reservoir								
Sizing for ultimate conditions: Assumed number of days of consecution	ve Max Day demands	30	days					
Design (Max. Day) treated water produ	ction req'd in mgd	297	mgd					
Average treated water production in m	gd	231	mgd	(which is also ed can be pumped		ground and raw	water that	
Difference (shortfall of raw	water)	66	mgd					
Required storage reservoir for raw water	er	1,989	mg					
******	0.504	6,105	ac-ft					
Add safety factor Total storage required	25%	1,526 7,631	ac-ft ac-ft					
Total storage recommended		12,000	ac-ft		lays at average			
				(for exam)	ple, for repair of	f RWTM A) =	33 d	ays
	Quantity Units	Volume/each		Total Construction	Contigency,			
3	addinary office	(acre-teet)	(\$/ac-ft))	Cost	Eng., etc.	Cost		
Reservoirs	1 each	12,000	\$ 1,283	\$ 15.4	\$ 5.9	\$ 21.3		
Estimated average depth of reservoir Surface area of reservoir		25 ft 80 acres						
Ratio of total land area reqd to surface	area							
of reservoir		.10			aeology, Surv,			
Total land area reqd for reservoirs	5	328 acres	1	ar Total capital cost	id Land Acq =_ in millions =	\$ 34.5		
Assumed life of reservoir	-	00 years						
Estimated replacement cost	\$ 0	.15 million/year						
Estimated maintenance Total	\$ 0	.04 million/year .19 million/year	Mowing, main	taining fences, etc	5.			
Year built		015						
NPV of O&M costs		3.5 million						
NPV of Capital costs	\$ 3	4.5 million						
Total NPV of Capital and O&M Costs	\$ 3	8.0 million						

WTP

Plant Phasing and Capital Costs:

Softening Treatment Trains Year ≃		2015		2020		2030	1		2040		205	0		206	n		2065		
Average treated water production in mgd		0	-	0	-	2000	0	-	0		200	0	-	200	0	_	2000	0	
Design (Max. Day) treated water production reg'd in mgd		0		0			ő		0			0			o			0	
		U		U			U		U			·			v			U	
Initial/additional Max day capacity built (mgd) Total capacity on line (must exceed Design Max Day Reg'd)		0	8	0			0		0			0			0			0	
Total capacity on line (must exceed Design Max Day Req d)		U	6	U			U		U			U			U			U	
Unit cost for max day treatment capacity (\$/gpd of capacity)																			
Estimated construction cost of expansion in \$millions	\$	-	\$	•	\$		•	\$		\$		٠	\$			\$		•	
Non-softening Treatment Trains	2			V2-2022			2.7					_			201				
Year =		2015	_	2020		2030			2040		205			206			2065		
Average treated water production in mgd		84		204			214		218			223			227			231	
Design (Max. Day) treated water production req'd in mgd		109		265			276		281			287			293			297	
Additional Max day capacity built (mgd)		200		100															
Total capacity on line (must exceed Design Max Day Req'd)		200		300			300		300			300			300			300	
Unit cost for max day treatment capacity (\$/gpd of capacity)	\$	1.15	\$	1.32															
Estimated construction cost of expansion in \$millions	\$	229.6	\$	131.5	\$			\$	*	\$		*	\$		•	\$		-	
Totals (Softening + Non-softening Trains)																			
Year =		2015		2020		2030)		2040		205	0		206	0		2065		
Total construction cost for both trains	\$	229.6	Ś		\$		-	\$	-	\$	-	-	\$	-	-	\$		-	
Contingencies	10000	45.9		26.3						7.5			2000			LEITO			
Subtotal	S	275.5	S	157.8	S		-	\$	_	\$			S		-	S		-	
Engineering, Legal, & Administrative		41.3		23.7			*	•	-									-	
Subtotal		316.8		181.5			-		-						-			_	
Environmental & Archaelogy Studies and Mitigation & Land																			
Acquisition and Surveying (see Note below)		2.5																	
Total estimated capital cost	\$	319.3	\$	181.5	\$		-	\$	-	\$			\$		-	\$		-	
NPV of capital cost	5	\$ 319.3		\$ 142.2		\$	•		\$ -		\$			\$	-		\$	-	
Total NPV of WTP initial construction & expansions	\$	461																	
Note: Assumed land requirement for WTP (not including reservoir	r.	100	ac	res															

O&M Costs for Softening Trains: Estimated

O&M Costs for Non-Softening Trains:

	Year	Plant Capacity in service	Estimated treated water production	Estimated Os unit cos			Ne	et present value	Year	Plant Capacity in service	Estimated treated water production	Es	stimated O unit co			Ne	t present value
		mgd of capacity	mgd produced	\$ per mg treated		illion ear		(\$)		mgd of capacity	mgd produced		per mg treated	\$mil	llon /year		(\$)
-	2015	-	-		\$	-	\$	-	2015	200	84	\$	374	\$	11.41	\$	11.41
	2016	-	-		\$		\$	100	2016	200	84	\$	374	\$	11.41	\$	10.87
	2017	-			\$	-	\$		2017	200	84	\$	374	\$	11.41	\$	10.35
	2018	-	-		\$	-	\$		2018	200	84	\$	374	\$	11.41	\$	9.86
	2019	-			\$	-	\$	-	2019	200	84	\$	374	\$	11.41	\$	9.39
	2020	-	-		\$	-	\$	-	2020	300	204	\$	343	\$	25.50	\$	19.98
	2021	-	-		\$	-	\$	-	2021	300	204	\$	343	\$	25,50	\$	19.03
	2022		-		\$		\$	-	2022	300	204	\$	343	\$	25.50	\$	18.12
	2023	-	-		\$	-	\$		2023	300	204	\$	343	\$	25.50	\$	17.26
	2024	-	-		\$		\$	~	2024	300	204	\$	343	\$	25.50	\$	16.44
	2025	-	-		\$		\$	(·	2025	300	204	\$	343	\$	25.50	\$	15.65
	2026	-	-		\$	~	\$	-	2026	300	204	\$	343	\$	25.50	\$	14.91
	2027	_	-		\$	-	\$	-	2027	300	204	\$	343	\$	25.50	\$	14.20
	2028	_	-		\$	-	\$	-	2028	300	204	\$	343	\$	25.50	\$	13.52
	2029	-	-		S	-	5	-	2029	300	204	\$	343	\$	25.50	\$	12.88
	2030	-			S		S		2030	300	214	\$	343	S	26.73	S	12.86
	2031	-			\$	-	\$		2031	300	214	\$	343	\$	26.73	s	12.24
	2032	_	-		\$	-	\$		2032	300	214	S	343	s	26.73	s	11.66
	2033	-	-		\$	-	\$		2033	300	214	\$	343	\$	26.73	\$	11.11
	2034	-	-		\$	-	\$		2034	300	214	\$	343	\$	26.73	\$	10.58
	2035	-			\$	_	\$	-	2035	300	214	Š	343	\$	26.73	\$	10.07
	2036				s	_	Š		2036	300	214	\$	343	\$	26.73	\$	9.59
	2037				\$	-	S	_	2037	300	214	\$	343	\$	26.73	\$	9.14
	2038	_			Š		Š		2038	300	214	š	343	Š	26.73	Š	8.70
	2039				Š	- 2	Š		2039	300	214	\$	343	Š	26.73	Š	8.29
	2040				Š		Š		2040	300	218	Š	343	š	27.28	Š	8.06
	2041				š	-	Š		2041	300	218	Š	343	š	27.28	Š	7.67
	2042		-	46	Š		\$	-	2042	300	218	Š	343	Š	27.28	Š	7.31
	2043		-		Š		Š	1.5	2043	300	218	Š	343	\$	27.28	Š	6.96
	2044				Š	- 2	Š	-	2043	300	218	Š	343	Š	27.28	\$	6.63
	2045	- 0			š		\$		2045	300	218	\$	343	\$	27.28	\$	6.31
	2046		10		Š	- 2	Š	100	2045	300	218	S	343	Š	27.28	Š	6.01
	2047	9			\$	- 5	Š		2047	300	218	\$	343	\$	27.28	\$	5.73
	2048		-		Š	-	Š	2.7	2048	300	218	\$	343	\$	27.28	\$	5.45
	2049	•			Š	-	S		2049	300	218	\$	343	Š	27.28	S	
	2050		-		Š	7	S	, -	2050	300	210	\$	343	Š	27.84	\$	5.19 5.05
	2051	-	-		š	-	Š		2051	300	223	\$	343	\$	27.84	Š	
	2052	-			5		S				223	\$	343				4.81
	2052		-		S	-	S		2052	300 300	223	\$	343	\$	27.84	\$	4.58
	2053	-			\$	-	5		2053		223			\$			4.36
	2054	5	-			5	5	•	2054	300	223	\$	343 343	\$	27.84	\$	4.15
	2056	- 1	-		\$	7	\$	•	2055	300		\$	343	\$	27.84	\$	3.95
	2056	7				-	5		2056	300	223	\$		\$	27.84	\$	3.77
		-	-		\$	7	0.000		2057	300	223	\$	343	\$	27.84	\$	3.59
	2058	-	-		\$		\$		2058	300	223	\$	343	\$	27.84	\$	3.42
	2059	-	-		\$	-	\$		2059	300	223	\$	343	\$	27.84	\$	3.25
	2060	-	-		\$	-	\$		2060	300	227	\$	343	\$	28.45	\$	3.17
	2061	-	-		\$	-	\$	•	2061	300	227	\$	343	\$	28.45	5	3.02
	2062	-	-		\$	-	\$	•	2062	300	227	\$	343	\$	28.45	\$	2.87
	2063	-	-		\$	•	\$	•	2063	300	227	\$	343	\$	28.45	\$	2.74
	2064	-	-		\$	-	\$	•	2064	300	227	\$	343	\$	28.45	\$	2.60
	2065	-	-		\$	-	\$		2065	300	231	\$	343	\$	28.85	\$	2.52
				Total NPV o	f O&M	Costs	\$	-				15	Total NPV	of O	RM Costs	\$	441

NPV Totals for O&M:

Softening trains
Non-softening Trains
\$ -\$ 441
\$ 441

Summary

 NPV of Capital Costs
 NPV of Oath Costs
 Total NPV of Capital and QaM Costs

 \$ 34
 \$ 3.5
 \$ 38

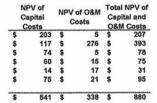
 \$ 461
 \$ 441
 \$ 903

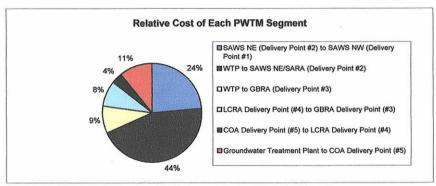
 \$ 496
 \$ 445
 \$ 941
 Raw Water Reservoir Water Treatment Plant Totals

Capital and O&M Cost Calculations Potable Water Transmission Mains CTRWTP - Alternate 1D - WTP East of San Antonio & ALCOA/CPS Water Ultimately to COA & LCRA

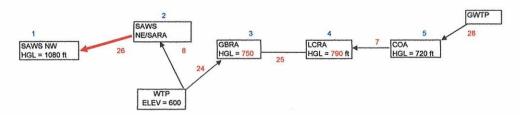
Initial year of analysis period 2015 Contingency = 20% Interest rate 5% Engineering, Legal, Admin. = 15% Evaluation period 50 years Environmental & Archaeology Studies & Unit cost of energy \$ 0.07 per kwh Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

Summary of Demands


Average demands to be delivered in each segment


			in acre-feet/ye	ar			
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	33000	123000	123000	123000	123000	123000	123000
SAWS NE	22000	82000	82000	82000	82000	82000	82000
Subtotal	55000	205000	205000	205000	205000	205000	205000
SARA	0	23406	28433	31393	34411	37530	41128
GBRA			6000	8000	10000	12300	12300
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Total	55000	228406	261835	277996	294215	299634	303232

Summary


SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1) WTP to SAWS NE/SARA (Delivery Point #2) WTP to GBRA (Delivery Point #3) LCRA Delivery Point (#4) to GBRA Delivery Point (#3) COA Delivery Point (#5) to LCRA Delivery Point (#4) Groundwater Treatment Plant to COA Delivery Point (#5)

Total for PWTMs

SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1) (Bold line in schematic below)

Demands for this pipe segment

		Average dem	ands to be deli	vered in each	segment in mgd	ı	
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	29	110	110	110	110	110	110
Total -	29	110	110	110	110	110	110

Max d/Avg d

		Max day dem	ands to be deli	vered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	38	143	143	143	143	143	143
Total	38	143	143	143	143	143	143

PWTM and Pump Station Costs

Design flow rate - year 2065	143	mgd
The state of the s	99,125	gpm
Pumping capacity of one pump	20,000	gpm
No. of pumps (not counting spare)	5	177-55
Peak flow rate (all pumps except spare)	100,000	gpm
Inside diameter of PWTM	120	in.

 Inside diameter of PWTM
 120 in.

 Area
 78.54 sf

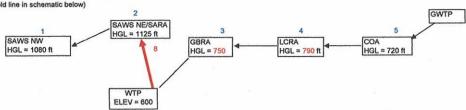
 Length of RWTM
 26 miles

 137,280 feet
 137,280 feet

(linked to mileage in schematic above)

stimated unit cost by condition:	% of length	LE	U	nit cost	Cost	
Rural - soil	15%	20,592	\$	783	\$ 16.1	million
Rural - rock	50%	68,640	\$	1,048	\$ 72.0	
Urban - rock	35%	48,048	\$	1,186	\$ 57.0	
		137,280			\$ 145.0	million

Total construction cost in millions	\$	145.0
Contingencies	\$	29.0
Subtotal	\$	174.0
Engineering, Legal & Administrative	\$	26.1
Subtotal	\$	200.2
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$	2.6
Total Capital Cost for PM/TM in millions	2	202.8


Unit maintenance cost/year-mile \$ 10,000 \$/year-mile \$ 0.280 Million \$/year

Negative indicates gravity flow from #2 to #1; no pumping necessary.

100						N	illion \$
Annua	I O&M Cost in million	\$:		Yr built			
	PWTM	\$	0.260	2015			
					Total NPV of O&M Costs		\$4.7
Capita	I Costs in million \$:			Yr built			
	PWTM	\$	202.8	2015		\$	202.8
					Total NPV of Capital Costs	\$	202.8

Total NPV of Capital and O&M Costs in millions \$ 207.5 SAWS NE (Delivery Point #2) to SAWS NW (Delivery Point #1)

WTP to SAWS NE/SARA (Delivery Point #2) (Bold line in schematic below)

Demands for this pipe segment

		Average dem	ands to be deli	vered in each s	segment in mgd	l		
Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
SAWS NW	29	110	110	110	110	110	110	1.3
SAWS NE	20	73	73	73	73	73	73	1.3
SARA	0	21	25	28	31	34	37	1.3
Total	49	204	208	211	214	217	220	

		Max day dem	ands to be del	ivered in each s	segment in mgd		
Year	2015	2020	2030	2040	2050	2060	2065
SAWS NW	38	143	143	143	143	143	143
SAWS NE	26	95	95	95	95	95	95
SARA	0	27	33	36	40	44	48
Total	64	265	271	274	278	281	286

PWTM and Pump Station Costs

286	mgd	
198,353	gpm	
20,000	gpm	
10		
200,000	gpm	×
120	in.	
78.54	sf	
8	miles	(linked to mileage in schematic above)
42,240	feet	11
	198,353 20,000 10 200,000 120 78.54 8	286 mgd 198,353 gpm 20,000 gpm 10 200,000 gpm 120 in. 78.54 sf 8 miles 42,240 feet

Estimated unit cost by condition:	% of length	LE	U	nit cost	Co	st	
Rural - soil	25%	10,560	\$	783	\$	8.3	million
Rural - rock	50%	21,120	\$	1,048	\$	22.1	
Urban - rock	25%	10,560	\$	1,186	\$	12.5	
		42,240			\$	42.9	million
Average estimated unit construction	cost for PWTM		\$	1,016	per LF		

Total construction cost in millions	\$	42.9
Contingencies	\$	8.6
Subtotal	\$	51.5
Engineering, Legal & Administrative	\$	7.7
Subtotal	\$	59.2
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	S	0.8
Total Capital Cost for PWTM in millions	S	60.0

\$ 10,000	\$/year-mile	\$	0.080	Million \$/year
5.67	fps			
120				
0.00073	fl/ft		h _f =	13.552*QI1.85
\$	5.67 120	\$ 10,000 \$/year-mile 5.67 fps 120 0.00073 ft/ft	5.67 fps 120	5.67 fps 120

Ctactor		120			
Head loss per foot		0.00073	ft/ft	h _f =	3.552*Q 1.85
		3.85	ft/mile		C*(d) ^{2.63}
Head loss at peak flow rate		31	ft		
Allowance for minor losses	20%	6	ft	1125	Desired HGL At Delivery Point
Total estimated losses		37	ft	600	Elev. At WTP
Average static head		525	ft	525	ft
Total actimated dynamic head		562	ft		

rotal estimated dynamic nead	244 psi								
No of recommended pumping stations along route	1.62	150 psi (assumed max pressure							
No. of pumping stations used in cost estimate	2	in pipe)							
Average head per pump station	281 ft								
Assumed numb officiency	95%								

Assumed pump efficiency	85%
Assumed motor efficiency	90%
Estimated Hp required per pump	1,855 hp/pump
	1,384 kw/pump
Total hp per pump station (not counting spare)	18,549 firm hp/station
Total kw per pump set (set=pumps in series along route)	3,710 kw/pump set (one pump at each station)

A STATE OF THE PARTY OF THE STATE OF THE STA		
Unit construction cost for each pump station (from cost curve)	\$ 1,105	per firm hp of pump station
Construction cost per pump station	20.5	million

Total construction cost for pump stations	41.0	for	2	pump stations

Contingencies Subtotal Engineering, Legal & Administrative Total capital cost for pump stations in millions Value of equipment Assumed life of equipment Estimated maintenance/replacement cost			ons	\$ 16 million 20 years						40% Equip cost as % of con					
	Estimated mai	ntenance/repla	cement cost			\$	0.82	mil	lion/year						
O&M Cos	sts														
Year	Flow pumped by year (average flows from	No. of pump "sets" operating /day	Energy used		Energ	ду с	ost	co	ther O&M sts - Pump Stations		aintenance costs - PWTM	T	otal O&M cost	Ne	et present value
	Table above) mgd		(kwh/day)		(\$/day)		(Million \$				(Million \$	(Million \$		(\$)
2015	49	1.70	151,788	\$	10,625	S	/year) 3.88	S	/year) 0.82	S	/year) 0.080	Ś	/year) 4.78	\$	4.78
2016	49	1.70	151,788	š	10,625	\$	3.88	\$	0.82	\$	0.080	Š	4.78	\$	4.55
2017	49	1.70	151,788	\$	10,625	\$	3.88	\$	0.82	\$	0.080	\$	4.78	\$	4.33
2018	49	1.70	151,788	\$	10,625	\$	3.88	\$	0.82	\$	0.080	\$	4.78	\$	4.13
2019	49	1.70	151,788	\$	10,625	\$	3.88	\$	0.82	\$	0.080	\$	4.78	\$	3.93
2020	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	13.32
2021	204 204	7.08 7.08	630,351 630,351	\$	44,125 44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01 17.01	\$	12.69 12.09
2022 2023	204	7.08	630,351	S	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	11.51
2024	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	Š	0.080	Š	17.01	\$	10.96
2025	204	7.08	630,351	\$	44,125	Š	16.11	Š	0.82	\$	0.080	\$	17.01	\$	10.44
2026	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	9.94
2027	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	9.47
2028	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	9.02
2029	204	7.08	630,351	\$	44,125	\$	16.11	\$	0.82	\$	0.080	\$	17.01	\$	8.59
2030	208 208	7.24 7.24	644,225 644,225	\$	45,096 45,096	\$	16.46 16.46	\$	0.82 0.82	\$	0.080	\$	17.36 17.36	\$	8.35 7.95
2032	208	7.24	644,225	5	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	7.57
2033	208	7.24	644,225	Š	45,096	\$	16.46	Š	0.82	Š	0.080	\$	17.36	\$	7.21
2034	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	6.87
2035	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	6.54
2036	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	6.23
2037	208	7.24	644,225	\$	45,096	\$	16.46	\$	0.82	\$	0.080	\$	17.36	\$	5.93
2038	208 208	7.24 7.24	644,225 644,225	\$	45,096 45,096	\$	16.46 16.46	\$	0.82	\$	0.080	\$	17.36 17.36	\$	5.65 5.38
2039	211	7.24	652,394	S	45,668	\$	16.46	\$	0.82	5	0.080	\$	17.57	\$	5.19
2040	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.94
2042	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.71
2043	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.48
2044	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.27
2045	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	4.06
2046	211	7.33	652,394	\$	45,668	\$	16.67	\$	0.82	\$	0.080	\$	17.57	\$	3.87
2047	211	7.33 7.33	652,394 652,394	\$	45,668 45,668	\$	16.67 16.67	\$	0.82	5	0.080	\$	17.57 17.57	\$	3.69 3.51
2049	211	7.33	652,394	\$	45,668	S	16.67	Š	0.82	\$	0.080	\$	17.57	\$	3.34
2050	214	7.42	660,723	Š	46,251	s	16.88	\$	0.82	\$	0.080	\$	17.78	\$	3.22
2051	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	3.07
2052	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.92
2053	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.78
2054	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.65
2055 2056	214 214	7.42 7.42	660,723 660,723	5	46,251 46,251	5	16.88 16.88	\$	0.82	\$	0.080	\$	17.78 17.78	\$	2.53 2.41
2057	214	7.42	660,723	S	46,251	S	16.88	\$	0.82	\$	0.080	\$	17.78	Š	2.29
2058	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.18
2059	214	7.42	660,723	\$	46,251	\$	16.88	\$	0.82	\$	0.080	\$	17.78	\$	2.08
2060	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82	\$	0.080	\$	18.00	\$	2.00
2061	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82	\$	0.080	\$	18.00	\$	1.91
2062	217	7.52	669,331	\$	46,853	\$	17.10	\$	0.82	\$	0.080	\$	18.00	\$	1.82
2063 2064	217 217	7.52 7.52	669,331	\$	46,853 46,853	\$	17.10 17.10	\$	0.82	\$	0.080	\$	18.00 18.00	\$	1.73 1.65
2065	220	7.63	669,331 679,260	\$	47,548	\$	17.10	\$	0.82	\$	0.080	\$	18.26	\$	1.59
											Total NPV	of C	D&M Costs	\$	276.4
		Carital Carts	in million &						V- h:14						
		Capital Costs	in million \$: PWTM			s	60.0	-	Yr built 2015	0				\$	60.0
			Pumping Stat	ion	3	S	56.6		2015					\$	56.6
			ping Otut			-	55.0			T	otal NPV of	Ca	pital Costs	\$	116.6

Total NPV of Capital and O&M Costs in millions \$ 393 WTP to SAWS NE/SARA (Delivery Point #2)

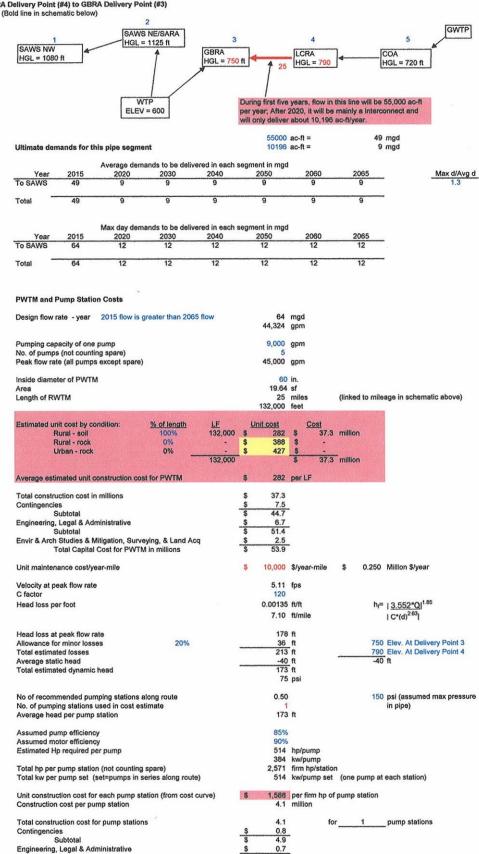
Total NPV of Capital Costs \$

WTP to GBRA (Delivery Point #3) (Bold line in schematic below) GWTP SAWS NE/SARA HGL = 1125 ft SAWS NW GBRA LCRA COA HGL = 1080 ft HGL = 750 ft HGL = 720 ft HGL = 790 During first five years, flow in this line will be in opposite direction, that is from GBRA to SAWS NE but via Surface WTP which will be built in 2020. WTF ELEV = 600 Ultimate demands for this pipe segment Average demands to be delivered in each segment in mgd 2020 2030 2040 2050 0 5 7 9 Year GBRA Max d/Avg d 2065

PWTM and Pump Station Costs

Design flow rate - year 2015 flow i	s greater than 2065	5 flow		64	mg	4		
Design now rate - year 2015 now i	s greater man 2000	J HOW						
Pumping capacity of one pump				9,000	gpr	n		
No. of pumps (not counting spare)				5				
Peak flow rate (all pumps except spar			45,000	gpr	n			
Inside diameter of PWTM				72	in.			
Area				28.27	sf			
Length of RWTM				24	mile	es	(linked to mile	age in schematic above)
POS DEZWYMIERS III DIANA III VAN TIVA	1	C Des Incasation	ewn (t	126,720	fee		ATRICK (PER ADDITION	
Estimated unit cost by condition:	% of length	LE		Unit cost		Cost		
Rural - soil	100%	126,720	\$	365	\$	46.3	million	
Rural - rock	0%		\$	498	\$			
Urban - rock	0%		\$	552	\$			

Urban - rock	0%	STATE OF STATE OF	\$	552	\$		2000		
		126,720			\$	46.3	millio	n	
Average estimated unit construction	cost for PWTM		\$	365	per LF				
Total construction cost in millions			\$	46.3					
Contingencies			\$	9.3					
Subtotal			\$	55.6					
Engineering, Legal & Administrative			\$	8.3					
Subtotal			\$	63.9	7				
Envir & Arch Studies & Mitigation, St	irveying, & Land Acq		\$	2.4	20				
Total Capital Cost for PV	/TM in millions		\$	66.3					
Linit maintenance cost/year-mile			•	10.000	\$hear-o	oile	•	0.240	Million S/ves


Total Capital Cost for PWTM in millions	\$	66.3				
Unit maintenance cost/year-mile	\$	10,000	\$/year-mile	\$	0.240	Million \$/year
Velocity at peak flow rate		3.55	fps			
C factor		120				
Head loss per foot		0.00055	ft/ft		h _f =	13.552*Q11.85
		2.92	ft/mile			C*(d) ^{2.63}
Head loss at peak flow rate		70	ft			
Allowance for minor losses 2	0%	14	ft		750	Desired HGL At Delivery Point
Total estimated losses		84	ft			Elev. At WTP
Average static head		150			150	ft
Total estimated dynamic head	V-2001	234	ft			
		102	psi			
No of recommended pumping stations along route		0.68			150	psi (assumed max pressure
No. of pumping stations used in cost estimate		1				in pipe)
Average head per pump station		234	ft			
Assumed pump efficiency		85%				
Assumed motor efficiency		90%				
Estimated Hp required per pump		696	hp/pump			
		519	kw/pump			
Total hp per pump station (not counting spare)		3,479	hp/station			
Total kw per pump set (set≃pumps in series along	route)	696	kw/pump set	(one	pump at	each station)
Unit construction cost for each pump station (from	cost curve) \$	1,514	per firm hp of	pump	station	

O&M Costs

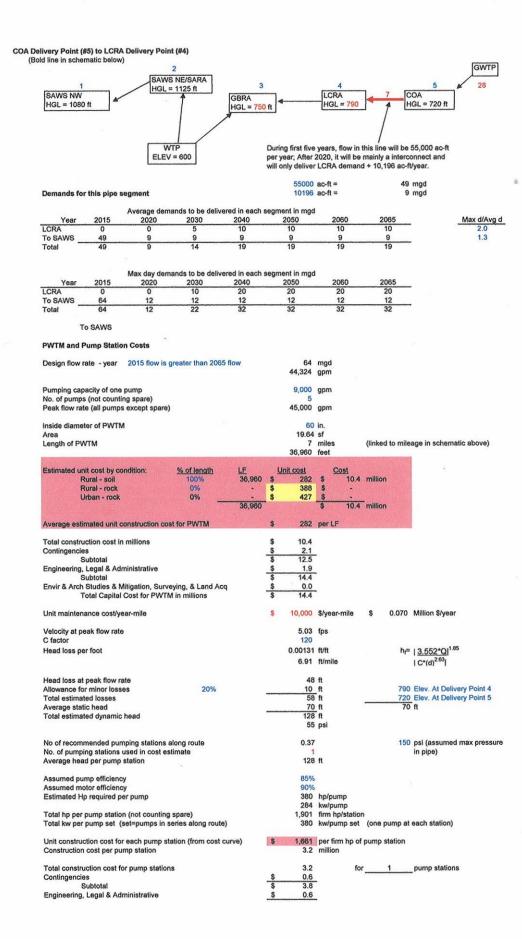
Year	Flow pumped by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used	Energy cost				costs -		otal O&M cost	Ne	et present value		
	mgd		(kwh/day)	(\$	i/day)	Million \$ /year)	(1	Million \$ /year)		Million \$ /year)		Million \$ /year)		(\$)
2015		4							\$	0.240	\$	0.24	\$	0.24
2016		7							\$	0.240	\$	0.24	\$	0.23
2017									\$	0.240	\$	0.24	\$	0.22
2018		1							\$	0.240	\$	0.24	\$	0.21
2019		1							\$	0.240	\$	0.24	\$	0.20
2020		1							\$	0.240	\$	0.24	\$	0.19 0.18
2021		1							5	0.240	\$	0.24	\$	0.18
2022 2023		1							\$	0.240	Š	0.24	\$	0.17
2023									\$	0.240	Š	0.24	\$	0.15
2024		1							\$	0.240	Š	0.24	\$	0.15
2026		1							\$	0.240	s	0.24	\$	0.14
2027		1							\$	0.240	š	0.24	s	0.13
2028		1							\$	0.240	Š	0.24	\$	0.13
2029		1							\$	0.240	s	0.24	\$	0.12
2030		_ 1							\$	0.240	\$	0.24	\$	0.12
2031		Flow is by gra	vity in opposit	e dire	ction				\$	0.240	\$	0.24	\$	0.11
2032									\$	0.240	\$	0.24	\$	0.10
2033		1							\$	0.240	\$	0.24	\$	0.10
2034		1							\$	0.240	\$	0.24	\$	0.09
2035		1							\$	0.240	\$	0.24	\$	0.09
2036		- 1							\$	0.240	\$	0.24	\$	0.09
2037		- 1							\$	0.240	\$	0.24	\$	0.08
2038		1							\$	0.240	\$	0.24	\$	0.08
2039		1							\$	0.240	\$	0.24	\$	0.07
2040		1							\$	0.240	\$	0.24	\$	0.07
2041		- 1							\$	0.240	\$	0.24	\$	0.07
2042		1							\$	0.240	\$	0.24	\$	0.06
2043		1							\$	0.240	\$	0.24	\$	0.06
2044		1							\$	0.240	\$	0.24	\$	0.06
2045		1							\$	0.240	\$	0.24	\$	0.06
2046		1							\$	0.240	\$	0.24	\$	0.05
2047		1							\$	0.240	\$	0.24	\$	0.05
2048		1							\$	0.240	\$	0.24	\$	0.05 0.05
2049 2050		- 1							\$	0.240	\$	0.24	\$	0.05
2050		- 1							\$	0.240	S	0.24	\$	0.04
2052		- 1							\$	0.240	\$	0.24	\$	0.04
2052		1							Š	0.240	Š	0.24	Š	0.04
2054		1							\$	0.240	Š	0.24	Š	0.04
2055		1							Š	0.240	Š	0.24	\$	0.03
2056									\$	0.240	\$	0.24	\$	0.03
2057		1							\$	0.240	\$	0.24	\$	0.03
2058		1							\$	0.240	Š	0.24	\$	0.03
2059		₩							\$	0.240	\$	0.24	\$	0.03
2060	11	0.85	14,150	\$	990	\$ 0.36	\$	0.11	\$	0.240	\$	0.71	\$	0.08
2061	11	0.85	14,150	\$	990	\$ 0.36	\$	0.11	\$	0.240	\$	0.71	\$	0.07
2062	11	0.85	14,150	\$	990	\$ 0.36	\$	0.11	\$	0.240	\$	0.71	\$	0.07
2063	11	0.85	14,150	\$	990	\$ 0.36	s	0.11	\$	0.240	\$	0.71	\$	0.07
2064	11	0.85	14,150	\$	990	\$ 0.36	\$	0.11	\$	0.240	\$	0.71	\$	0.06
2065	11	0.85	14,150	\$	990	\$ 0.36	\$	0.11	\$	0.240	\$	0.71	\$	0.06
										Total NPV	of C	O&M Costs	\$	4.9
		Capital Costs	in million \$:					Yr built						
			PWTM			\$ 66		2015	• 1 5				\$	66.3
			Pumping Stati	ions		\$ 7		2015					\$	7.3
			2, 55						T	otal NPV o	Ca	pital Costs	\$	73.6

Total NPV of Capital and O&M Costs in millions \$ 78.5 WTP to GBRA (Delivery Point #3)

LCRA Delivery Point (#4) to GBRA Delivery Point (#3)

Total capital cost for pump stations

\$ 5.6 million


40% Equip cost as % of constr cost

Value of equipment Assumed life of equipment Estimated maintenance/replacement cost \$ 1.6 million 20 years \$ 0.08 million/year

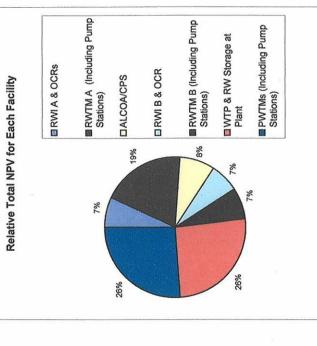
O&M Costs

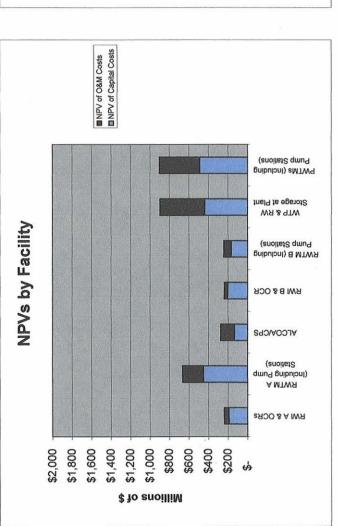
Year	Flow pumped by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	Эу (cost		Other O&M osts - Pump Stations		aintenance costs - PWTM	Т	otal O&M cost	Ne	et present value
	mgd		(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year)		(Million \$ /year)	(Million \$ /year)		(\$)
2015	49	3.79	46,745	\$	3,272	\$	1.19	\$	0.08	\$	0.250	\$	1.53	\$	1.53
2016	49	3.79	46,745	\$	3,272	\$	1.19	\$		\$	0.250	\$	1.53	\$	1.45
2017	49	3.79	46,745	\$	3,272	\$	1.19	\$	0.08	\$	0.250	\$	1.53	\$	1.38
2018	49	3.79	46,745	\$	3,272	\$	1.19	\$	0.08	\$	0.250	\$	1.53	\$	1.32
2019	49	3.79	46,745	\$	3,272	\$	1.19	\$	0.08	\$	0.250	\$	1.53	\$	1.26
2020	9	0.70	8,666	\$	607	\$		\$		\$	0.250	\$	0.55	\$	0.43
2021	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.41
2022	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.39
2023	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.37
2024	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.36
2025	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.34
2026	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0,55	\$	0.32
2027	9	0.70	8,666	\$	607	\$		\$		\$	0.250	\$	0.55	\$	0.31
2028	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.29
2029	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.28
2030	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.27
2031	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.25
2032	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.24
2033		0.70	8,666	\$	607	\$	0.22	\$	80.0	\$	0.250	\$	0.55	\$	0.23
2034	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.22
2035	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.21
2036	9	0.70	8,666	\$	607	\$		\$		\$	0.250	\$	0.55	\$	0.20
2037	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.19
2038	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.18
2039		0.70	8,666	\$	607	3	0.22	\$	-	\$	0.250	\$	0.55	\$	0.17
2040	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.16
2041	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.16
2042	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.15
2043	9	0.70	8,666	\$	607	\$	00000000	\$		\$	0.250	\$	0.55	\$	0.14
2044	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.13
2045 2046	9	0.70	8,666	\$	607 607	\$	0.22	\$		\$	0.250	\$	0.55 0.55	\$	0.13
2046	9	0.70 0.70	8,666	\$	607	\$	0.22 0.22	\$		\$	0.250 0.250	\$	1000000	5	0.12
2047	9	0.70	8,666 8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55 0.55	\$	0.12 0.11
2049	9	0.70	8,666	\$	607	5	0.22	\$		S	0.250	\$	0.55	s	0.11
2050	9	0.70	8,666	\$	607	S	0.22	\$		S	0.250	5	0.55	s	0.10
2051	9	0.70	8,666	\$	607	S	0.22	\$		\$	0.250	\$	0.55	S	0.10
2052	9	0.70	8,666	s	607	\$	0.22	\$		Š	0.250	\$	0.55	\$	0.09
2053	9	0.70	8,666	\$	607	\$	0.22	S		Š	0.250	s	0.55	\$	0.09
2054	9	0.70	8,666	Š	607	Š	0.22	\$		Š	0.250	Š	0.55	s	0.08
2055	9	0.70	8,666	š	607	s	0.22	Š		Š	0.250	\$	0.55	Š	0.08
2056	9	0.70	8,666	\$	607	\$		\$		\$	0.250	\$	0.55	\$	0.07
2057	9	0.70	8,666	Š	607	\$		Š		Š	0.250	Š	0.55	\$	0.07
2058	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	s	0.250	\$	0.55	\$	0.07
2059	9	0.70	8,666	\$	607	S	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.06
2060	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.06
2061	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.06
2062	9	0.70	8,666	\$	607	\$	0.22	\$		\$	0.250	\$	0.55	\$	0.06
2063	9	0.70	8,666	\$	607	\$		\$		\$	0.250	\$	0.55	\$	0.05
2064	9	0.70	8,666	\$	607	\$		\$		\$	0.250	\$	0.55	\$	0.05
2065	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.05
											Total NDV	~	OPM Coats	•	15.1
											i Otal NPV	or C	0&M Costs	4	15.1
		Capital Costs							Yr built						
			PWTM			\$	53.9		2015					\$	53.9
		9	Pumping Stat	ions	3	\$	5.6		2015					\$	5.6
										1	Total NPV of	Ça	pital Costs	\$	59.6

Total NPV of Capital and O&M Costs in millions \$ 75 LCRA Delivery Point (#4) to GBRA Delivery Point (#3)

Total capital cost for pump stations \$ 4.4 million

Value of equipment \$ 1.3 million


Assumed life of equipment 20 years
Estimated maintenance/replacement cost \$ 0.06 million/year


O&M Costs

Year	Flow pumped by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	gy (cost		Other O&M osts - Pump Stations		aintenance costs - PWTM	т	otal O&M cost	Ne	et present value
	mgd		(kwh/day)	10 punt	(\$/day)		(Million \$ /year))	(Million \$ /year)		(Million \$ /year)	((Million \$		(\$)
2015	49	3.79	46,745	\$	3,272	\$	1.19	\$	0.08	\$	0.250	\$	1.53	\$	1.53
2016	49	3.79	46,745	\$	3,272	\$	1.19	\$	0.08	\$	0.250	\$	1.53	\$	1.45
2017	49	3.79	46,745	\$	3,272	\$		\$	0.08	\$	0.250	\$	1.53	\$	1.38
2018	49	3.79	46,745	\$	3,272	\$	1.19	\$	0.08	\$	0.250	\$	1.53	\$	1.32
2019	49	3.79 0.70	46,745	\$	3,272 607	\$	1.19	\$	0.08 0.08	\$	0.250 0.250	\$	1.53 0.55	\$	1.26 0.43
2020	9	0.70	8,666	\$	607	\$		\$	0.08	\$	0.250	\$	0.55	\$	0.43
2021	9	0.70	8,666 8,666	S	607	S	0.22	Š	0.08	S	0.250	S	0.55	\$	0.39
2023	9	0.70	8,666	S	607	S	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.35
2024	9	0.70	8,666	5	607	Š	0.22	S	0.08	Š	0.250	\$	0.55	Š	0.36
2025	9	0.70	8,666	\$	607	\$		\$	0.08	\$	0.250	\$	0.55	\$	0.34
2026	9	0.70	8,666	\$	607	Š		Š	0.08	S	0.250	Š	0.55	\$	0.32
2027	9	0.70	8,666	\$	607	s		\$	0.08	\$	0.250	\$	0.55	\$	0.31
2028	9	0.70	8,666	\$	607	\$		\$	0.08	\$	0.250	\$	0.55	\$	0.29
2029	9	0.70	8,666	\$	607	\$	0.22	\$	0.08	\$	0.250	\$	0.55	\$	0.28
2030	14	1.09	13,425	\$	940	\$	0.34	\$	0.08	\$	0.250	\$	0.67	\$	0.32
2031	14	1.09	13,425	\$	940	\$	0.34	\$	0.08	\$	0.250	\$	0.67	\$	0.31
2032	14	1.09	13,425	\$	940	\$	0.34	\$	0.08	\$	0.250	\$	0.67	\$	0.29
2033	14	1.09	13,425	\$	940	\$		\$	0.08	\$	0.250	\$	0.67	\$	0.28
2034	14	1.09	13,425	\$	940	\$		\$	0.08	\$	0.250	\$	0.67	\$	0.27
2035	14	1.09	13,425	\$	940	\$		\$	0.08	\$	0.250	\$	0.67	\$	0.25
2036	14	1.09	13,425	\$	940	\$		\$	0.08	\$	0.250	\$	0.67	\$	0.24
2037	14	1.09	13,425	\$	940	\$		\$	0.08	\$	0.250	\$	0.67	\$	0.23
2038	14	1.09	13,425	\$	940	\$	10	\$	0.08	\$	0.250	\$	0.67	\$	0.22
2039	14	1.09	13,425	\$	940	\$	0.34	\$	0.08	\$	0.250	\$	0.67	\$	0.21
2040	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.24
2041	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.22
2042	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.21
2043	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.20
2044	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.19
2045	19 19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.18
2046 2047	19	1.47 1.47	18,185 18,185	\$	1,273 1,273	\$		\$	0.08	\$	0.250 0.250	\$	0.80	\$	0.18 0.17
2047	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.17
2049	19	1.47	18,185	S	1,273	S		S	0.08	\$	0.250	\$	0.80	\$	0.15
2050	19	1.47	18,185	\$	1,273	S		\$	0.08	\$	0.250	\$	0.80	\$	0.14
2051	19	1.47	18,185	Š	1,273	S		S	0.08	S	0.250	Š	0.80	\$	0.14
2052	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	Š	0.13
2053	19	1.47	18,185	Š	1,273	S		š	0.08	Š	0.250	Š	0.80	Š	0.12
2054	19	1.47	18,185	s	1,273	\$		s	0.08	\$	0.250	S	0.80	\$	0.12
2055	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	S	0.80	s	0.11
2056	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.11
2057	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.10
2058	19	1.47	18,185	\$	1,273	\$	0.46	\$	0.08	\$	0.250	\$	0.80	\$	0.10
2059	19	1.47	18,185	\$	1,273	\$	0.46	\$	0.08	\$	0.250	\$	0.80	\$	0.09
2060	19	1.47	18,185	\$	1,273	\$	0.46	\$	0.08	\$	0.250	\$	0.80	\$	0.09
2061	19	1.47	18,185	\$	1,273	\$	0.46	\$	0.08	\$	0.250	\$	0.80	\$	0.08
2062	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.08
2063	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.08
2064	19	1.47	18,185	\$	1,273	\$		\$	0.08	\$	0.250	\$	0.80	\$	0.07
2065	19	1.47	18,185	\$	1,273	\$	0.46	\$	80.0	\$	0.250	\$	0.80	\$	0.07
											Total NPV	of (D&M Costs	\$	16.6
		Capital Costs	in million \$:						Yr built						
			PWTM			\$		-	2015					\$	14.4
			Pumping Stat	ions	3	\$	4.4		2015					\$	4.4
										7	otal NPV o	f Ca	pital Costs	\$	14.4

Total NPV of Capital and O&M Costs in millions \$ 31.0
COA Delivery Point (#5) to LCRA Delivery Point (#4)

WTP Location	Alter-	Phasing Scenario	Total NPVs in	RWI A & OCRs	RWTM A (Including	ALCOA/CPS	RWI B & OCR	RWTM B (Including	RWTM B (Including WTP & RW Storage PWTMs (Including Pinno Stations)	PWTMs (Including
	late		minore of the		(cuones duns)			dump demons)		ramp canonal
East of San Marcos	2A	RWTM B & ALCOA/CPS built by 2015; RWTM A built in 2020.		Sized for 4000 cfs 1 to scalp water, 4 cf intakes, 4 miles of fi 120-inch raw water mains & 4 p OCRs at 25,000 p ac-ft each	26 miles of 96-inch iameter pipe sized to lefiver 132,000 ac- lyear on a continuous lassis; includes 3 umping stations w/ alanding reservoirs long route	Non-Public wells; Sized for 2000 cfs Transmission of 55,000 to scalp water; 2 ac-ftyear to the OCR at intrakes, 8 miles of RWI B via 15 miles of 120-inch raw water 54" gravity pipeline from main, 4 OCRs at Hwy 290 east of Elgin 15,000 ac-ft/each	Sized for 2000 cfs to scalp water, 2 intakes, 8 miles of 120-inch raw water main, 4 Ocfs at 15,000 ac-f/each	Raw wate Raw water 1,000 wt 11,000 wt 11,000 wt 11,000 wt 11,000 wt 11,000 with mer pumping station and balancing reservoir SOFTEN PROVIDIA	Raw water reservoir Each PWTIM so capacity, for BASE DEM conventional settling (average daily with membrane filtration for all participants (NO Sheet in the SOFTENING Appendices)	Each PWTM sized for BASE DEMAND (average daily demand) (See PWTM Summary Sheet in the Appendices)
		NPV of Capital Costs	\$ 2,076 \$	\$ 191	\$ 451	\$ 135	\$ 204	\$ 168	\$ 439	\$ 489
		NPV of O&M Costs \$	\$ 1,381	\$ 47	\$ 213	\$ 141	8	\$ 75	\$ 457	\$ 413
		Total NPV of Capital & O&M \$	\$ 3,457 \$	\$ 238	\$ 664	\$ 276	\$ 238	\$ 243	\$ 896	\$ 902

9/28/2005

O&M Cost Calculations RWI A - Matagorda Co. River Intakes, and Storage CTRWTP - Alternate 2A - WTP East of San Marcos Initial year of analysis period interest rate Evaluation period Unit cost of energy 5% 50 years \$ 0.07 per kwh Inflatable Rubber Low Head Dam | Unit Constr. | Cost (millions) | Total | Estimated Constr. Cost (millions) | Cost Quantity Units Inflatable Rubber Low Head Dam 4 each 10 ft high Estimated inflatable dam cost as % of total Value of inflatable dam Assumed life of inflatable dam Estimated maintenance/replacement cost \$ 4.50 million 10 years \$ 0.45 million/year Year built 2020 \$6.27 million \$ 9.73 million \$16.00 million NPV of O&M Costs NPV of Capital Costs Total NPV of Capital and O&M Costs Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Average withdrawal		ac-ft/year		
	182	cfs		
			21.9	Ratio of design withdrawal rate
Total intake design withdrawal rate (for scalping high flows				to Total intake design withdrawal rate
	1,795,200	gpm		
No. of Intakes	4			
Design withdrawal rate per intake	1,000	cfs		
Dosign matarian rate per mitare	448,800			
		ap		
No. of reservoirs	4			
Design flow to each reservoir	448,800	gpm		
	1000			
Inside diameter of each RWTM	120			
Area	78.54		4.0	miles for all RWTMs
Average length of each RWTM	5,280	miles	21,120	
	5,200	ieut	21,120	leet
Estimated construction cost for RWTM	\$ 793	per LF		
Localitation Constitution Court for 1447 file	9 100	pui Li		
Total construction cost in millions	\$ 16.8			
Contingencies	\$ 3.4			
Subtotal	\$ 20.1			
Engineering, Legal & Administrative	\$ 3.0			
Subtotal	\$ 23.1	-		
Envir & Arch Studies & Mitigation, Surveying, & Land Acq	\$ 0.4			
Total Capital Cost for PWTM in millions	\$ 23.5	million		
Unit maintenance cost/year-mile	\$ 10,000	\$/year-mile	\$ 0.040	Million \$/year (all RWTMs to Reservoirs)
Note: Assume each intake has two RWTMs pumping out of	of it, one to each	reservoir.		
Design flow sate for each DWTM (from about)	449 900	anm		
Design flow rate for each RWTM (from above)	448,800			
Pumping rate (one pump) No. of pumps (not counting spare) pumping into each RW	50,000	gpm		
Peak flow rate into each RWTM (all pumps except spare)	450,000	anm		
Peak now rate into each NYY I'm (all pumps except spare)	450,000	abin		
Velocity at peak flow rate	12.77	fps		
C factor	120			
Head loss per foot	0.00327	ft/ft	he	13.552*QI ^{1.85}
		ft/mile		1 C*(d) ^{2.63} 1
	,,,,,,,			10(0)
Head loss at peak flow rate	17	ft		
Allowance for minor losses 30%	5	ft	90	Elev of discharge at reservoir
Total estimated losses	22	ft		Water surface elev in river
Average static head	40	ft	40	n
Total estimated dynamic head	62	ft		
	27	psi		
Assumed pump efficiency	85%			
Assumed motor efficiency	90%			
Estimated Hp required per pump		hp/pump		
		kw/pump		
Total hp pumping into each RWTM (not counting spare)		hp/RWTM		
Total hp at each intake (not counting spare)		hp/intake		
Total hp all intakes (not counting spares)	37,089			
Total kw all intakes (not counting spares)	27,668	kw		
Unit construction cost for each pump station (from cost cu		nor firm bo	of numn station	
Construction cost for each pump station (from cost cu		million	of pump station	
No. of intakes from above		each		
.,		50011		
Total construction cost in millions	\$ 33.0	million		
Contigency, Eng., etc. in millions		million		
Total capital cost in millions		million		
a net recent and all and a second a second and a second a				
Total construction cost for pump stations		million		
Value of equipment		million	40%	Estimated equip cost as % of total constr cost
Assumed life of equipment		years		
Estimated maintenance/replacement cost	\$ 0.66	million/year		

&M Costs	2															
Year	Flow purr yea		No. of pump "sets"	Energy used		Energ	у со	ost	005	ther O&M sts - Pump Stations	c	intenance osts - RWTM	То	otal O&M cost	N	et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	-	(Million \$ /year)	(Million \$ /year)	()	Million \$ /year)		Million \$ /year)		(\$)
2015		•		•	\$		\$						\$		\$	
2016				•	\$	-	\$	-					\$		\$	
2017			-		\$		\$						\$	•	\$	*
2018	7				\$	•	\$						\$	•	\$	-
2019	7		•	•	\$	-	\$						\$	•	\$	
2020	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.15
2021	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.10
2022	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.05
2023	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	1.00
2024	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.95
2025	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.90
2026	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	S	0.040	\$	1.47	\$	0.86
2027	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.82
2028	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.78
2029	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.74
2030	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.7
2031	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.67
2032	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.64
2033	132,000	118	1.64	30,188	S	2.113	S	0.77	\$	0.66	S	0.040	S	1.47	\$	0.6
2034	132,000	118	1.64	30,188	\$	2,113	\$	0.77	S	0.66	\$	0.040	S	1.47	\$	0.5
2035	132,000	118	1.64	30,188	s	2.113	S	0.77	s	0.66	s	0.040	s	1.47	\$	0.55
2036	132,000	118	1.64	30,188	S	2.113	s	0.77	Š	0.66	\$	0.040	\$	1.47	\$	0.5
2037	132,000	118	1.64	30,188	\$	2,113	s	0.77	s	0.66	s	0.040	s	1.47	s	0.5
2038	132,000	118	1.64	30,188	Š	2,113	s	0.77	Š	0.66	Š	0.040	s	1.47	Š	0.48
2039	132,000	118	1.64	30,188	\$	2,113	\$	0.77	Š	0.66	Š	0.040	Š	1.47	Š	0.4
2040	132,000	118	1.64	30,188	Š	2,113	S	0.77	Š	0.66	Š	0.040	Š	1.47	s	0.4
2041	132,000	118	1.64	30,188	š	2,113	\$	0.77	š	0.66	Š	0.040	s	1.47	s	0.4
2041	132,000	118	1.64	30,188	Š	2,113	s	0.77	Š	0.66	Š	0.040	š	1.47	Š	0.3
2042		118	1.64	30,188	s	2,113	Š	0.77	Š	0.66	s	0.040	Š	1.47	š	0.3
	132,000					2,113	S	0.77	Š	0.66	\$	0.040	Š	1.47	Š	0.3
2044	132,000	118	1.64	30,188	S		\$	0.77	s	0.66	s	0.040	Š	1.47	s	0.3
2045	132,000			30,188		2,113								1.47	S	
2046	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$			0.3
2047	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.3
2048	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.2
2049	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	S	0.2
2050	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.2
2051	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.2
2052	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.2
2053	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.2
2054	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.2
2055	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.2
2056	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.20
2057	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1
2058	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1
2059	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1
2060	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	\$	0.040	\$	1.47	\$	0.1
2061	132,000	118	1.64	30,188	\$	2,113	\$	0.77	\$	0.66	s	0.040	\$	1.47	\$	0.1
2062	132,000	118	1.64	30,188	\$	2,113	s	0.77	s	0.66	s	0.040	s	1.47	\$	0.1
2063	132,000	118	1.64	30,188	s	2.113	s	0.77	s	0.66	s	0.040	s	1.47	\$	0.1
2064	132,000	118	1.64	30,188	š	2,113	Š		Š	0.66	s	0.040	\$	1.47	\$	0.1
2065	132,000	118	1.64	30,188	Š	2,113	\$	0.77	Š	0.66	Š	0.040	Š	1.47	Š	0.1

Total NPV of O&M Costs \$ 21.6

 Capital Costs in million \$:
 Yr built
 Yr built
 \$ 18.4

 RWTM to Reservoirs Intake/Pumping Stations
 \$ 45.5
 2020
 \$ 35.6

 Total NPV of Capital Costs
 \$ 54.1

Total NPV of Capital and O&M Costs in millions \$ 75.

Reservoirs

	Quantity	Units	Volume/each (acre-feet)		t Cost ac-ft))	Con	Total struction cost in nillions		tigency, g., etc.		otal in nillions
Reservoirs	4	each	25000	\$	974	\$	97.4	\$	37.0	\$	134.4
Estimated average depth of reservo	oir	20	ft								
Surface area of reservoir Ratio of total land area regd to surfa	200 200	5000	acres								
of reservoir	ace area	1.1				Er	vir & Arch	naeolo	gy, Surv,	2	
Total land area reqd for reservoirs		5500	acres						nd Acq =		27.5
Assumed life of reservoir		100	years		Т	otal c	apital cost	t in mi	llions =	\$	161.9
Estimated replacement cost		\$ 0.97	million/year								
Estimated maintenance		 0.4		Mowi	ng, mair	tainin	g fences,	etc.			
Total		\$ 1.37	million/year								
Year built		2020									
NPV of O&M costs		\$ 19.1	million								
NPV of Capital costs		\$ 126.8	million								
Total NPV of Capital and O&M Cos	its	\$ 145.9	million								

Summary	IPV of tal Costs	PV of O&M Costs	Caj	al NPV of pital and M Costs
Inflatable Rubber Low Head Dam	\$ 9.7	\$ 6.3	\$	16.0
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$ 54.1	\$ 21.6	\$	75.7
Reservoirs	\$ 126.8	\$ 19.1	\$	145.9
Total for RWI A	\$ 190.6	\$ 47.0	\$	237.6

O&M Cost Calculations RWTM A - Matagorda Co. to WTP CTRWTP - Alternate 2A - WTP East of San Marcos

Total estimated losses	
Evaluation period Unit cost of enerty \$ 0.07 per kwh Mitigation, Surveying, and Land Acquisition \$ 10 Raw Water Transmission Main - A Inside diameter of pipe Area 50.27 sf 126 miles 665,280 feet Estimated unit construction cost for RWTM 5 567 per LF Total construction cost in millions 5 76 yer LF Total construction cost in millions 5 76 yer LF Total construction cost in millions 5 76 yer LF Total construction cost in millions 5 76 yer LF Total construction cost in millions 5 76 yer LF Total construction cost in millions 5 76 yer LF Total construction cost in millions 7 76 yer LF Total construction cost in millions 7 76 yer LF Total Capital Cost for PWTM in millions 7 8 76 yer LF Total Capital Cost for PWTM in millions 7 9 13 yer limiter 1 13 yer li	
Raw Water Transmission Main - A Inside diameter of pipe Area Length of RWTM Estimated unit construction cost for RWTM Total construction cost in millions Contingencies Subtotal Engineering, Legal & Administrative Subtotal Envir & Arch Studies & Mitigation, Surveying, & Land Acq Total Capital Cost for PWTM in millions Unit maintenance cost/year-mile Design flow rate (after 100% buildout) Pumping rate (one pump) No. of pumps (not counting spare) Peak flow rate (all pumps except spare) Velocity at peak flow rate Allowance for minor losses Average static head Total estimated obsess Average static head Total estimated dynamic head Assumed pump efficiency Assumed motor efficiency Link wyer pump station (not counting spare) Total hy per pump station (not counting spare) Total construction cost per pump station Unit construction cost per pump station Total construction cost	
Raw Water Transmission Main - A	0000 per mile
Inside diameter of pipe Area Length of RWTM Length of RWTM Length of RWTM Length of RWTM Lestimated unit construction cost for RWTM Se65,280 feet Estimated unit construction cost for RWTM Se65,280 feet Estimated unit construction cost for RWTM Se65,280 feet Total construction cost in millions Subtotal Subtotal Sengineering, Legal & Administrative Subtotal Engineering, Legal & Administrative Subtotal Security Administrative Security Ad	you ber time
Length of RWTM	
Length of RWTM	
Estimated unit construction cost for RWTM Second Sec	
Estimated unit construction cost for RWTM Total construction cost in millions Contingencies Subtotal Engineering, Legal & Administrative Subtotal Envir & Arch Studies & Miligation, Surveying, & Land Acq Total Capital Cost for PWTM in millions Unit maintenance cost/year-mile Design flow rate (after 100% buildout) Unit maintenance cost/year-mile Design flow rate (after 100% buildout) Pumping rate (one pump) No. of pumps (not counting spare) Peak flow rate (all pumps except spare) Velocity at peak flow rate C factor Head loss per foot Unit and loss at peak flow rate C factor Head loss at peak flow rate Allowance for minor losses Total estimated dynamic head No of pumping stations req'd along route No. of pumping stations req'd along route No. of pumping stations req'd along route Average static head Average head per pump station Average head per pump station Assumed pump efficiency Assumed motor efficiency Estimated Hy required per pump Total kw per pump station (not counting spare) Total kw per pump station Unit construction cost for each pump station Float from cost curv Unit construction cost per pump station Unit construction cost per pump station Float from cost curv South Advance South	
Total construction cost in millions	
Contingencies Subtotal Subt	
Engineering, Legal & Administrative Subtotal Envir & Arch Studies & Mitigation, Surveying, & Land Acq Total Capital Cost for PWTM in millions Unit maintenance cost/year-mile S 10,000 S/year-mile \$ 10,000 S/year-mile \$ 1.260 Millions Unit maintenance cost/year-mile Unit maintenance cost/year-mile S 10,000 S/year-mile \$ 1.260 Millions S 534 million Unit maintenance cost/year-mile S 10,000 S/year-mile \$ 1.260 Millions S 534 million S 534 million S 521 S 4 million S 521 S 4 million S 10,000 S/year-mile \$ 1.260 Millions S 10,000 S/year-mile \$ 1.260 Millions S 10,000 S 10	
Subtotal S 13 13 13 13 13 13 14 15 14 15 14 15 14 15 14 15 15	
Subtotal S 13 13 13 13 13 13 14 15 14 15 14 15 14 15 14 15 15	
Envir & Arch Studies & Mitigation, Surveying, & Land Acq Total Capital Cost for PWTM in millions Unit maintenance cost/year-mile Design flow rate (after 100% buildout) Pumping rate (one pump) No. of pumps (not counting spare) Peak flow rate (all pumps except spare) Velocity at peak flow rate C factor Head loss per foot Head loss at peak flow rate Allowance for minor losses Average static head Total estimated dynamic head No. of pumping stations used in cost estimate Average head per pump station Assumed pump efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Unit construction cost for each pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Find a construction cost per pump	
Total Capital Cost for PWTM in millions Unit maintenance cost/year-mile Design flow rate (after 100% buildout) 132,000 132,000 138,020 118 mgd 81,829 gpm 16,400 gpm 16,400 gpm No. of pumps (not counting spare) Peak flow rate (all pumps except spare) Velocity at peak flow rate C factor Head loss per foot 120 Head loss at peak flow rate Allowance for minor losses 10% Total estimated losses Average static head No. of pumping stations used in cost estimate Average head per pump station Total hp per pump station (not counting spare) Total hp per pump station (not counting spare) Total kw per pump station Balancing reservoir Total construction cost for each pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station S 10,000 \$1,260 \$1,260 \$4,137 \$4,260 \$4,260 \$4,137 \$4,260 \$4,137 \$4,260 \$4,137 \$4,260 \$4,137 \$4,260 \$4,137 \$4,260 \$4,137 \$4,260 \$4,137 \$4,260 \$4,260 \$4,137 \$4,260 \$4,260 \$4,137 \$4,260 \$	
Unit maintenance cost/year-mile Design flow rate (after 100% buildout) Pumping rate (one pump) No. of pumps (not counting spare) Peak flow rate (all pumps except spare) Velocity at peak flow rate C factor Head loss per foot Head loss at peak flow rate Allowance for minor losses Average static head Total estimated losses Average static head No. of pumping stations used in cost estimate No. of pumping stations used in cost estimate Average head per pump station Assumed pump efficiency Estimated Ip required per pump Total hp per pump station (not counting spare) Total ww per pump set (set-pumps in series along route) Unit construction cost for each pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station S 0.03 132,000 ac-ft/year 132,000 ac-ft/year 138,000 ac-ft/year 148 mgd ac-ft/year 188 mgd ac-ft/year 16,400 gpm 16,400 gpm 16,400 gpm 2.20 2.19 460 ft	
Design flow rate (after 100% buildout)	
Pumping rate (one pump) No. of pumps (not counting spare) Peak flow rate (all pumps except spare) No. of pumps (not counting spare) Peak flow rate (all pumps except spare) No. of pumps (flow rate) No. of pumping stations used in cost estimate Assumed pump efficiency Assumed pump efficiency Assumed motor efficiency Assumed motor efficiency Static hard spare in the spare is along route No. of pumping station cost for each pump station Balancing reservoir No. of pump station Static hard static hard static hard spare) Total hyper pump station Static hard static hard static hard spare) Total hyper pump station Static hyper pump static h	5/year ₄
Pumping rate (one pump) No. of pumps (not counting spare) Peak flow rate (all pumps except spare) Velocity at peak flow rate C factor Head loss per foot Head loss at peak flow rate Allowance for minor losses Average static head Total estimated dynamic head No. of pumping stations used in cost estimate No. of pumping stations used in cost estimate Assumed pump efficiency Assumed motor efficiency Estimated Hy required per pump Total hy per pump station Total construction cost for each pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station 16,400 16,400 17,400 18,200 19,000 19,000 11,400 12,000 18,400 19,000 19,	
Pumping rate (one pump) No. of pumps (not counting spare) Peak flow rate (all pumps except spare) Velocity at peak flow rate C factor Head loss per foot Head loss at peak flow rate Allowance for minor losses Average static head Total estimated dynamic head No of pumping stations req'd along route Average head per pump station Average had per pump station Average had per pump station Fotal hp per pump station (not counting spare) Total hp per pump station (not counting spare) Total kw per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station 16,400 gpm 82,000 gpm 16,400 gpm 82,000 gpm 16,400 gpm 82,000 gpm 3.63 fps 120 0.00041 ft/ft hr= 3.552 2.19 ft/mile C'(d)² 120 120 120 120 121 120 122 133 ft 130 gillion 133 psi 1460 ft 133 ft 1331 psi 150 psi (ast 150	
No. of pumps (not counting spare) Peak flow rate (all pumps except spare) Velocity at peak flow rate C factor Head loss per foot C factor Head loss at peak flow rate Allowance for minor losses Average static head Total estimated dynamic head No of pumping stations req'd along route Average head per pump station Assumed pump efficiency Assumed motor efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump station Balancing reservoir Construction cost per pump station Balancing reservoir Total construction cost per pump station Velocity at peak flow rate 3.63 fps 2.21 ft/mile 120 0.00041 ft/fit hr= 3.552 2.19 ft/mile 120 226 ft 330 ft 303 ft 30 Elev. A 460 ft 331 psi No of pumping stations req'd along route 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	
Velocity at peak flow rate	
Velocity at peak flow rate C factor Head loss per foot Head loss at peak flow rate Allowance for minor losses Average static head Total estimated dynamic head No of pumping stations req'd along route Average head per pump station Average head per pump Total hp per pump station from cost curv Estimated Hp required per pump Total hp per pump station Unit construction cost for each pump station Balancing reservoir Total construction cost per pump station 3.63 fps 120 0.00041 ft/ft hr= 3.552 2.19 ft/mile 1276 ft 28 ft 550 Elev. A 460 ft 460 ft 460 ft 331 psi 150 psi (ast in pipe) 1,028 kw/pump set (one pump at each sterm of the pump station 2,3 million 3,3 million 3,3 million 3,5 million 3,5 million 5,0 min. of 5,0 min. of 5,0 mg	
C factor Head loss per foot 120 0.00041 ft/ft h; 3.552 2.19 ft/mile 1 C*(d)² Head loss at peak flow rate Allowance for minor losses 10% 28 ft 28 ft 550 Elev. A Total estimated losses Average static head 460 ft Total estimated dynamic head 763 ft 331 psi No of pumping stations req'd along route No. of pumping stations used in cost estimate No. of pumping stations used in cost estimate No. of pumping stations used in cost estimate Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set=pumps in series along route) Unit construction cost for each pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Figure 1.3552 10.03 ft 331 psi 150 psi (ass 3.0 in pipe) 1.378 kw/pump 1.028 kw/pump 1.028 kw/pump 1.028 kw/pump set (one pump at each station series along route) 1.347 per firm hp of pump station 9.3 million 60 min. of Total construction cost per pump station 5.0 mg	
Head loss per foot C'(d)^2 Head loss at peak flow rate 276 ft 28 ft 550 Elev. A 28 ft 550 Elev. A 303 ft 30 Elev. A 460 ft 460 ft 460 ft 460 ft 331 psi 301 psi 30	
Head loss at peak flow rate Allowance for minor losses 10% 28 ft 28 ft 303 ft 90 Elev. A Average static head Total estimated dynamic head No of pumping stations req'd along route Average head per pump station No. of pumping stations used in cost estimate 3.0 Average head per pump station Average head per pump station No estimated dynamic head No. of pumping stations used in cost estimate Average head per pump station Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set≃pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Somition 100 min. of Total construction cost per pump station 100 min. of 100 m	
Head loss at peak flow rate Allowance for minor losses 10% 28 ft 28 ft 303 ft 90 Elev. A Average static head Total estimated dynamic head No of pumping stations req'd along route Average head per pump station No. of pumping stations used in cost estimate 3.0 Average head per pump station Average head per pump station No estimated dynamic head No. of pumping stations used in cost estimate Average head per pump station Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set≃pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Somition 100 min. of Total construction cost per pump station 100 min. of 100 m	*QI ^{1.85}
Allowance for minor losses Total estimated losses Average static head Total estimated dynamic head Total per pump station sused in cost estimate Average head per pump station Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total hp per pump station (not counting spare) Total kw per pump set (set≃pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Somition Total construction cost per pump station Total construction cost per pump	
Allowance for minor losses Total estimated losses Average static head Total estimated dynamic head Total per pump station sused in cost estimate Average head per pump station Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total hp per pump station (not counting spare) Total kw per pump set (set≃pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Somition Total construction cost per pump station Total construction cost per pump	
Total estimated losses Average static head Assumed pump efficiency Estimated Prequired per pump Total hp per pump station (not counting spare) Total hy per pump set (set=pumps in series along route) Unit construction cost per pump station Balancing reservoir Total construction cost per pump station 300 in pipe) 2.21 350 psi (ass 30, in pipe) 3.0 in pipe) 4.55 mg 85% 85% 85% 85% 85% 86% 88% 88%	San Antonio East WTP
Average static head Total estimated dynamic head No of pumping stations req'd along route No. of pumping stations used in cost estimate No. of pumping stations used in cost estimate Average head per pump station Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total hp per pump set (set≃pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station S 0.75 million 100 min. of 100 m	t Matagorda OCRs
Total estimated dynamic head 763 ft 331 psi No of pumping stations req'd along route No. of pumping stations used in cost estimate Average head per pump station Assumed pump efficiency Assumed motor efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set≈pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Sumillion Balancing meservoir 10.03 million 5.0 min. of 5.0 mg	Watagorda Corts
No of pumping stations req'd along route No. of pumping stations used in cost estimate No. of pumping station used in cost estimate Static Research Static Research Static Research Static Research Static Research No. of pumping station static Static Research Stat	
No. of pumping stations used in cost estimate Average head per pump station Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set≃pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing mainlion Balancing main	
No. of pumping stations used in cost estimate Average head per pump station Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set≃pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing mainlion Balancing main	sumed max pressure
Assumed pump efficiency Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set=pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Total construction cost per pump station Balancing reservoir Total construction cost per pump station S 10.03 million 100 min. of 5.0 mg.	
Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set=pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Total construction cost per pump station Balancing reservoir Total construction cost per pump station S 10.03 million 1.377 per firm hp of pump station 9.3 million 60 min. of 5.0 mg	
Assumed motor efficiency Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set=pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Balancing reservoir Total construction cost per pump station Total construction cost per pump station Balancing reservoir Total construction cost per pump station S 10.03 million 1.377 per firm hp of pump station 9.3 million 60 min. of 5.0 mg	
Estimated Hp required per pump Total hp per pump station (not counting spare) Total kw per pump set (set=pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station Total construction cost for each pump station Balancing reservoir Total construction cost per pump station 1,378 hp/pump 1,378 kw/pump 1,	
Total hp per pump station (not counting spare) Total kw per pump set (set≃pumps in series along route) Unit construction cost for each pump station Construction cost per pump station Balancing reservoir Total construction cost per pump station 1,028 kw/pump 6,888 hp/station 4,133 kw/pump set (one pump at each station series along route) 1,347 per firm hp of pump station 9,3 million 0,75 million 5,0 mg	
Total kw per pump set (set=pumps in series along route) 4,133 kw/pump set (one pump at each struction cost for each pump station (from cost curv \$ 1,347 per firm hp of pump station 9.3 million Balancing reservoir Total kw per pump set (one pump at each struction cost per pump station 9.3 million 60 min. of 5.0 mg	
Total kw per pump set (set≈pumps in series along route) Unit construction cost for each pump station (from cost curv \$ 1,347 per firm hp of pump station	
Construction cost per pump station Balancing reservoir Total construction cost per pump station 9.3 million 00 min. of 00 min. of 5.0 mg	ution)
Construction cost per pump station Balancing reservoir Total construction cost per pump station 9.3 million 00 min. of 00 min. of 5.0 mg	
Balancing reservoir Total construction cost per pump station \$ 0.75 million \$ 10.03 million \$ 5.0 mg	
Total construction cost per pump station \$ 10.03 million 5.0 mg	storage at avg pumping rate
No. of pump stations from above 3.0 each	for open top reservoir
Total construction cost in millions \$ 30.1 million	
Contigency, Eng., etc. in millions \$ 11.43 million Total capital cost in millions \$ 41.5 million	
Total construction cost for pump stations \$ 30.1 million	AND A SECURITY OF THE PARTY OF
	ted equipment cost as % of tot
Assumed life of equipment 20 years	
Estimated maintenance/replacement cost \$ 0.60 million/year	

O&M Costs

Year	Flow purr yea		No. of pump "sets"	Energy used		Energy			cos	ther O&M sts - Pump Stations	(intenance costs - RWTM		otal O&M cost	Ne	et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	(Million \$ /year)	(Million \$ /year)	(Million \$ /year)		(Million \$ /year)		(\$)
2015	-	-	•	-	\$	-	\$	-	-				\$	-	\$	-
2016	17		7		\$		\$	1/2:					\$		\$	-
2017	-	*	-	-	\$	-	\$						\$	(-)	\$	-
2018	-	-	-	-	\$	-	\$						\$	-	\$	
2019			11 Same		\$	200	\$				-		\$		\$	
2020	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	11.37
2021	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	10.83
2022	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	10.31
2023	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	9.82
2024	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	9.35
2025	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	8.91
2026	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	8.48
2027	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	8.08
2028	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	7.69
2029	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	7.33
2030	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	6.98
2031	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	6.65
2032	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	6.33
2033	132,000	118	4.99	494,936	\$	34,646	\$	12.65	s	0.60	s	1.260	\$	14.51	\$	6.03
2034	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	5.74
2035	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	s	1.260	s	14.51	\$	5.47
2036	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	S	1.260	\$	14.51	\$	5.21
		118	4.99		\$	34,646	\$	12.65	\$	0.60	s	1.260	\$	14.51	\$	4.96
2037	132,000			494,936	\$		\$		\$		\$		\$		\$	4.72
2038	132,000	118	4.99	494,936		34,646		12.65		0.60		1.260		14.51		
2039	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.50
2040	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.28
2041	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	4.08
2042	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.89
2043	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.70
2044	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.52
2045	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.36
2046	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.20
2047	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	3.04
2048	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.90
2049	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.76
2050	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.63
2051	132,000	118	4.99	494,936	\$	34,646	\$	12.65	s	0.60	\$	1.260	\$	14.51	\$	2.50
2052	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.39
2053	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	s	1.260	\$	14.51	\$	2.27
2054	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.16
2055	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	2.06
				494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.96
2056	132,000	118	4.99													1.87
2057	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	
2058	132,000	118	4.99	494,936	\$		\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.78
2059	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.70
2060	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.61
2061	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.54
2062	132,000	118	4.99	494,936	\$		\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.46
2063	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.39
2064	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.33
2065	132,000	118	4.99	494,936	\$	34,646	\$	12.65	\$	0.60	\$	1.260	\$	14.51	\$	1.27
											•	Total NPV	of (O&M Costs	\$	213
			Capital Cos	ts in million \$:						Yr built						
			-up.tai 003	RWTM			\$	534		2020	•				\$	418
				Pumping Stat	tion	16	\$	42		2020					\$	33
				, umping ola	ioi		Ψ	42		2020	To	tal NIDV of	Co	pital Costs		451
											10	cal INP V OT	υd	Pital Custs	. 4	401

NPV CALCULATIONS ALCOA / CPS GROUNDWATER CTRWTP - Alternate 2A - WTP East of San Marcos

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile Initial year of analysis period Interest rate Evaluation period Unit cost of energy 2015 5% 50 years 0.07 per kwh

	AL	COA		CPS		Total	
Year built	2	015		2015			
Estimated Construction Cost in Millions							
Wells (Based on Non-Public Water Supply Wells)		20.92		7.94		28.86	
Pipeline		13.03		5.94		18.97	
Pump Stations & Storage		8.51	t even made	0		8.51	
Subtotal		42.46		13.88		56.34	
Contingency		8.49		2.78	210-211-2	11.27	
Subtotal		50.95		16.66		67.61	
Engineering, Legal & Administrative		6.37		2.08		8.45	
Subtotal		57.32	10011	18.74		76.06	
Environmental & Archaeology Studies & Mitigation		0.63		0.2		0.83	
Land Acquisition & Surveying		0		0		0.00	
Groundwater Purchase		0		5.64		5.64	
ALCOA Construction Program Management Fee		5.45		0		5.45	
Interest During Construction (2 years, 6% int., 4% ret.)		5.89		2.44		8.33	
Total Capital Cost		69.29		27.02		96.31	
Estimated Annual O&M Costs							
O&M		0.67		0.18		0.85	
Pumping Energy		2.41		0.52		2.93	
ALCOA Project Management Fees		0.35		0.00		0.35	
Purchase of Groundwater		2.00		0.00		2.00	
Groundwater District Fees		0.65		0.25		0.90	
Mitigation Reserves		0.28		0.11		0.39	
Total Annual Cost		6.36		1.06		7.42	
NPV of O&M Costs	\$	116	\$	19	s	135	milli
NPV of Capital Costs	\$	69	\$	27	\$		mill
Total NPV of Capital and O&M Costs for Well Fields	\$	185	\$	46	\$	232	mil

Cooling of Well Water

Total number of wells in both fields	120 wells	Approximate capacity per wel	300	gpm
Percentage of wells with temperatures > than degrees	5%		36,000	gpm
Estimated number of wells with temperature > degrees	6.0	Rough check	58,072	ac-ft/year
120 Principal Control Company Control				

Estimated Capital Costs

V CONTRACTOR OF THE CONTRACTOR		
Year built	2015	
Number of Packaged Cooling Towers (300 gpm capacity/each)	6.0	
Equipment cost (cooling towers and fans)	\$ 60,000	
Installation and contractors mark-up	\$ 50,000	
Structural slab	\$ 30,000	
Electrical	\$ 50,000	
Estimated Unit Construction Cost	\$ 190,000	Each
Total construction cost	\$ 1.14	million
Contingencies	\$ 0.23	
Subtotal	\$ 1.37	
Engineering, Legal and Admin	\$ 0.21	
Total Estimated Capital Cost	\$ 1.57	
NPV of Capital Costs	\$ 1.57	million

Estimated O&M Costs

Value of equipment	\$ 0.4	million
Assumed life of equipment	10	years
Estimated maintenance/replacement cost	\$ 0.04	million/year
Blower Hp per cooling tower	10	Нр
	7	kw
Hours of operation	24	hours
Power consumption per cooling tower	179	kwh per day
N 33 B	65,350	kwh per year
Power cost per cooling tower	\$ 4,574	
Total power cost for all cooling towers in millions	\$ 0.03	million per year
Regular operational checks and routine maintenance	\$ 6,000	per month for all cooling towers
	\$ 0.07	per year
Estimated O&M Cost	\$ 0.14	million \$ per year
NPV of O&M costs	\$ 2.47	million \$

Ground Water Transmission Main and Pump Station (Hwy 290 to Bastrop Intake)

Inside diameter of transmission pipe

54 in.

Area		15.90	sf	
Length of Ground Water TM		15	miles	
		79,200	feet	
Estimated construction cost for GWTM	\$	327	per LF	
Total construction cost in millions	\$	25.9		
Contingencies	\$ \$ \$	5.2		
Subtotal	\$	31.1	•	
Engineering, Legal & Administrative	\$	4.7		
Subtotal	\$	35.8	•	
Envir & Arch Studies & Mitigation, Surveying, & Lar	nd Acq \$	1.5		
Total Capital Cost for PWTM in millions	\$	37.3	million	
Unit maintenance cost/year-mile	\$	10,000	\$/year-mile	\$ 0.150 Million \$/year
Design flow rate		55,000	ac-ft/year	
		49	mgd	
		34,095	gpm	
Velocity at peak flow rate		4.78	fps	
C factor		120	118.000	
Head loss per foot		0.00134	ft/ft	hr= 3.552*Q 1.85
		7.10	ft/mile	C*(d) ^{2.63}
Head loss at peak flow rate		106	ft	
Allowance for minor losses	10%	11	ft	400 Elev. At RWI-B
Total estimated losses	No.	117	ft	550 minus Elev Storage Tank at Hwy 290
Average static head		-150	ft	-150 ft
Total estimated dynamic head		-33	ft	(intake is lower than tank at Hwy 290)
an appointment of the second		-14	psi	**************************************

Negative indicates gravity flow from Hwy 290 to Bastrop Intake; no pumping necessary.

				MI	illion \$
Annual O&M Cost in million \$	7.00	Yr built	J		
GWTM	\$ 0.150	2015	•		
			Total NPV of O&M Costs	\$	2.7
Capital Costs in million \$:		Yr built	2		
GWTM	\$ 37.3	2015	-	\$	37.3
			Total NPV of Canital Costs	S	37.3

Su		

Well Fields and Collection Lines (including tank and pump station at Hwy 290) Cooling Towers for Selected High Temperature Wells Ground Water Transmission Main and Pumping Station Total for ALCOA-CPS

NPV of Capital Costs		NF	OV of O&M Costs	Total NPV of Capital and O&M Cost			
\$	96.3	\$	135.5	\$	231.8		
\$	1.6	\$	2.5	\$	4.0		
\$	37.3	\$	2.7	\$	40.0		
•	135 1	é	440.7	e	275 0		

O&M Cost Calculations RWI B - Colorado River Intake at Bastrop and Off Channel Reservoir CTRWTP - Alternate 2A - WTP East of San Marcos

Initial year of analysis period Interest rate Evaluation period	2015 5%				Engir	eering, l		ngency = Admin. =				
Unit cost of energy	\$ 0.07			Environmental & Archaeology Studies & Mitigation, Surveying, and Land Acquisition						100,000	per m	
Inflatable Rubber Low Head Dam								or=	\$	5,000	per a	are:
	Quantity	U	nits	Size	(Constr. Cost Ilions)	Est	otal mated str. Cost llions)	E	entigency, ing., etc. millions)	(Capital Cost Ilions)
Inflatable Rubber Low Head Dam	2	each		10 ft high	\$	2.25	\$	4.50	\$	1.71	\$	6.21
Estimated inflatable dam cost as 9	% of total		50%									
Value of inflatable dam		\$	2.25	million								
Assumed life of inflatable dam			10	years								
Estimated maintenance/replaceme	ent cost	\$	0.23	million/year								
Year built		20	015									
NPV of O&M Costs		\$	3.86	million								
NPV of Capital Costs		\$	6.21	_million								
Total NPV of Capital and O&M C	osts	\$	10.07	million								

Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)

Year	2015	2020	2030	2040		2050	2060	2065	
For SAWS	18000	18000	18000	18000		18000	18000	18000	*
LCRA			5600	11200		11200	11200	11200	
COA		212042002-004	16802	22403		33604	33604	33604	2
Total	18000	18000	40402	51603		62804	62804	62804	-
Ultimate (Y2	.065) avera	age design v	withdrawal ra	ate			ac-ft/year cfs		
								23.1	Ratio of design withdrawal rate
Total intake	design wit	hdrawal rate	e (for scalpin	g high flows)		2,000 897,600			to Total intake design withdrawal rate
No. of Intake						2			
Design with		ner intake				1,000	cfs		
Design Willia	ulawai late	per imake				448,800			
						The second second			
No. of reser Design flow		servoir				224,400	gpm		
•									
Inside diame	eter of eacl	h RWTM				120	in.		
Area						78.54			
Average len	gth of each	n RWTM					miles		miles for all RWTMs
						10,560	feet	42,240	feet
Estimated o	onstruction	cost for RV	NTMs		\$	793	per LF		
Total constr		in millions			\$	33.5			
Contingenci					\$	6.7			
; Engineering	Subtotal	dministratio	10		\$	40.2 6.0			
	Subtotal	Millionali	,,		\$	46.2			
			Surveying, a		\$	0.8			
	Total Capit	al Cost for I	PWTM in mi	llions	\$	47.0			
Unit mainter	nance cost	/year-mile			\$	10,000	\$/year-mile	\$ 0.080	Million \$/year (all RWTMs to Reservoirs)
Note: Assun	ne intake h	as one RW	TM pumping	to the reser	voir.				
			from above)			224,400			
Pumping rat						40,000	gpm		
			pumping in all pumps ex	to each RWT	1	240,000			
reak now re	ite iiito eac	AT IVAA LIAI (e	iii puilips ex	cept spare)		240,000	gpiii		
Velocity at p	eak flow ra	ate				6.81	fps		
C factor						120		1.02553	_ 105
Head loss p	er foot					0.00102		h _f =	1 3.552*QI ^{1.85}
						5.39	ft/mile		C*(d) ^{2.63}
Head loss a	t peak flow	rate				11	ft		
Allowance for			30%			3			Discharge at reservoir
Total estima						14			Water surface elev in river
Average sta						80		80	ft .
Total estima	ited dynam	nic head				94 41	ft psi		
Assumed -	ima efficie	nov				85%	A.I.		
Assumed pu Assumed m						90%			
Estimated H							hp/pump		
	r	La bamb					kw/pump		

Total hp pumping into each RWTM (not counting spare)	7,448	hp/RWTM
Total hp at each intake (not counting spare)	14,897	hp/intake
Total hp all intakes (not counting spares)	29,793	hp
Total kw all intakes (not counting spares)	22,226	kw
Unit construction cost for each pump station (from cost cur-	\$ 889	per firm hp of pump station
Construction cost per intake/pump station	13.2	million
No. of intakes from above	2	each
Total construction cost in millions	\$ 26.5	million
Contigency, Eng., etc. in millions	\$ 10.06	million
Total capital cost in millions	\$ 36.6	million
Total construction cost for pump stations	\$ 26.5	million 40% Estimated equipment cost as % of total
Value of equipment	\$ 10.6	million
Assumed life of equipment	20	years
Estimated maintenance/replacement cost	\$ 0.53	million/year

O&M Costs:

Year	Flow pum yea		No. of pump "sets"	Energy used		Energy cost			co	ther O&M sts - Pump Stations		intenance costs - RWTM	To	otal O&M cost	Ne	et present value
	ac-ft/yr	mgd	operating /day	(kwh/day)		(\$/day)	((Million \$ /year)		(Million \$ /year)	(Million \$ /year)	(Million \$ /year)		(\$)
2015	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.77
2016	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.73
2017	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.70
2018	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.66
2019	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.63
2020	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.60
2021	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.57
2022	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.55
2023	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.52
2024	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.50
2025	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.47
2026	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.45
2027	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.43
2028	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.41
2029	18,000	16	0.28	6,200	\$	434	\$	0.16	\$	0.53	\$	0.080	\$	0.77	\$	0.39
2030	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.46
2031	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.44
2032	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.42
2033	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.40
2034	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.38
2035	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.36
2036	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.35
2037	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.33
2038	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.31
2039	40,402	36	0.63	13,917	\$	974	\$	0.36	\$	0.53	\$	0.080	\$	0.97	\$	0.30
2040	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.31
2041	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.30
2042	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.28
2043	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.27
2044	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.26
2045	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.25
2046	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.23
2047	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.22
2048	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.21
2049	51,603	46	0.80	17,775	\$	1,244	\$	0.45	\$	0.53	\$	0.080	\$	1.06	\$	0.20
2050	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.21
2051	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.20
2052	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.19
2053	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.18
2054	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.17
2055	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.17
2056	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.16
2057	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.15
2058	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.14
2059	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.14
2060	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.13
2061	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.12
2062	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.12
2063	62,804	56	0.97	21,633	\$	1,514	\$	0.55	\$	0.53	\$	0.080	\$	1.16	\$	0.11
		56	0.97	21,633	S	1,514	S	0.55	\$	0.53	S	0.080	S	1.16	S	0.11
2064 2065	62,804 62,804	56	0.97	21,633	\$	1,514	\$	0.55	Š	0.53	Š	0.080	Š	1.16	Š	0.10

Total NPV of O&M Costs \$ 17.1

 Capital Costs in million \$:
 Yr built
 47.0
 2015
 \$ 47.0
 47.0
 \$ 36.6
 \$ 36.6
 \$ 36.6
 Total NPV of Capital Costs
 \$ 83.6

Total NPV of Capital and O&M Costs in millions \$ 100.

Reservoirs

	Quantity	Units	Volume/each (acre-feet)	nit Cost 5/ac-ft))	Construction Cost in millions		Contigency, Eng., etc.		otal in
Reservoirs	4	each	15000	\$ 1,180	\$	70.8	\$	26.9	\$ 97.7
				\$ 0.004	per g	allon			
Estimated average death of	receptoir	20	4						

Surface area of reservoir	3000	acres		
Ratio of total land area regd to surface area				
of reservoir	1.1		Envir & Archaeology, Surv,	
Total land area regd for reservoirs	3300	acres	and Land Acq =	16.5
			Total capital cost in millions = \$	114.2
Assumed life of reservoir	100	years		
Estimated replacement cost	\$ 0.71	million/year		
Estimated maintenance	\$ 0.04	million/year	Mowing, maintaining fences, etc.	
Total	\$ 0.75	million/year		
Year built	2015			
NPV of O&M costs	\$ 12.8	million		
NPV of Capital costs	\$ 114.2	million		
Total NPV of Capital and O&M Costs	\$ 127.0	million		

Summary	IPV of tal Costs		PV of O&M Costs	Capital and		
Inflatable Rubber Low Head Dam	\$ 6.2	\$	3.9	\$	10.1	
Raw Water Intake, Pumping Station, and RWTM (Intake to Reservoir)	\$ 83.6	\$	17.1	\$	100.7	
Off Channel Reservoir	\$ 114.2	\$	12.8	\$	127.0	
Total for RWI A	\$ 204.0	S	33.8	\$	237.8	

O&M Cost Calculations RWTM B - RWI B near Bastrop to WTP CTRWTP - Alternate 2A - WTP East of San Marcos

Initial year of analysis period Interest rate Evaluation period Unit cost of energy 2015 5% 40 years \$ 0.07 per kwh Contingency = 20%
Engineering, Legal, Admin, = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

Suface Water Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	18000	18000	18000	18000	18000	18000	18000
LCRA			5600	11200	11200	11200	11200
COA			16802	22403	33604	33604	33604
Subtotal	18000	18000	40402	51603	62804	62804	62804
Groundwater							
Year	2015	2020	2030	2040	2050	2060	2065
For SAWS	55000	55000	55000	55000	55000	55000	55000
Suface & grour	73000	73000	95402	106603	117804	117804	117804

Sizing

Inside diameter of RWTM		96	in.			
Area		50,27				
Length of RWTM		36	miles			
		190,080				
Estimated unit construction cost for RWTM	\$	567	per LF			
Total construction cost in millions	\$	107.9				
Contingencies	\$	21.6				
Subtotal	\$	129.4				
Engineering, Legal & Administrative	\$	19.4	i .			
Subtotal	\$	148.9				
Envir & Arch Studies & Mitigation, Surveying, & Land Acc Total Capital Cost for PWTM in millions	\$	3.6 152.5	million			
Unit maintenance cost/year-mile	\$	5,000	\$/year-mile	\$	0.180	Million \$/year
Design flow rate (after 100% buildout)		117,804	ac-ft/year			
3 (3)		105	mgd			
		73,029				
Pumping rate (one pump)		15,000	gpm			
No. of pumps (not counting spare)		5				
Peak flow rate (all pumps except spare)		75,000	gpm			
Velocity at peak flow rate		3.32	fps			
C factor		120	10.50			
Head loss per foot		0.00035	ft/ft		h _f =	3.552*Q ^{1.85}
			ft/mile		200	C*(d) ^{2.63}
Head loss at peak flow rate		67	ft			
Allowance for minor losses 10%		7				Elev. At WTP
Total estimated losses		74				Elev of WSE in Bastrop reservoir
Average static head		250			250	ft
Total estimated dynamic head		324				
		140	psi			
No of recommended pumping stations along route		0.93			150	psi (assumed max pressure
No. of pumping stations used in cost estimate		1.0				in pipe)
Average head per pump station		324	ft			
Assumed pump efficiency		85%				
Assumed motor efficiency		90%				
Estimated Hp required per pump			hp/pump			
			kw/pump			
Total hp per pump station (not counting spare)	20		hp/station			
Total kw per pump set (set=pumps in series along route)	1,602	kw/pump set	(one	pump at	each station)
Unit construction cost for each pump station (from cost of	uı \$		per firm hp of million	f pump	o station	
Construction cost per pump station Balancing reservoir	•		million		en	min. of storage at avg pumping rate
Total construction cost per pump station	\$		million			mg
				\$		per gal for open top reservoir
No. of pump stations from above		1.0	each			
Total construction cost in millions	\$	11.2	million			
Contingency, Eng., etc. in millions	\$		million			
Total capital cost in millions	\$		million			
Total construction cost for pump stations	\$		million			
Value of equipment	\$		million		40%	Estimated equipment cost as % of total
Assumed life of equipment			years			
Estimated maintenance/replacement cost	\$		million/year			

O&M Costs

Year	Flow pun yea		No. of pump "sets" operating	Energy used		Energy			co	other O&M sts - Pump Stations)	aintenance costs - RWTM		otal O&M cost	Ne	et present value
	ac-ft/yr	mgd	/day	(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year)		(Million \$ /year)		(Million \$ /year)	***	(\$)
2015	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	3.37
2016	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	3.21
2017	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	3.06
2018	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	2.91
2019	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	2.77
2020	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	2.64
2021	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	2.51
2022	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	2.39
2023	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	2.28
2024	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	2.17
2025	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	2.07
2026	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	1.97
2027	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	1.88
2028	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	1.79
2029	73,000	65	3.02	115,984	\$	8,119	\$	2.96	\$	0.22	\$	0.180	\$	3.37	\$	1.70
2030	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	2.06
2031	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	1.96
2032	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	1.87
2033	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	1.78
2034	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	1.69
2035	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	1.61
2036	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	1.54
2037	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	1.46
2038	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28		1.39
2039	95,402	85	3.94	151,577	\$	10,610	\$	3.87	\$	0.22	\$	0.180	\$	4.28	\$	1.33
2040	106,603	95	- 4.41	169,373	\$	11,856	\$	4.33	\$	0.22	\$	0.180	\$	4.73 4.73	\$	1.40
2041	106,603	95 95	4.41	169,373	\$	11,856	\$	4.33	\$	0.22	\$	0.180	\$	4.73	\$	1.33 1.27
2042	106,603	95 95	4.41	169,373	\$	11,856	\$	4.33	\$	0.22	\$	0.180	\$	4.73	\$	1.21
2043	106,603	95 95	4.41	169,373	5	11,856	\$	4.33	\$	0.22	5	0.180	5	4.73	S	1.15
2044	106,603	95	4.41 4.41	169,373	\$	11,856 11,856	\$	4.33	\$	0.22	\$	0.180	\$	4.73	\$	1.09
2045 2046	106,603	95	4.41	169,373	\$	11,856	\$	4.33	\$	0.22	S	0.180	\$	4.73	\$	1.09
2046	106,603	95	4.41	169,373	\$	11,856	\$	4.33	\$	0.22	\$	0.180	\$	4.73	\$	0.99
2047	106,603	95	4.41	169,373	\$	11,856	\$	4.33	\$	0.22	\$	0.180	\$	4.73	\$	0.95
2048	106,603 106,603	95	4.41	169,373 169,373	\$	11,856	\$	4.33	S	0.22	\$	0.180	S	4.73	S	0.90
2049	117,804	105	4.41	187,170	\$	13,102	\$	4.78	Š	0.22	\$	0.180	\$	5.19	Š	0.94
2050	117,804	105	4.87	187,170	\$	13,102	\$	4.78	S	0.22	5	0.180	\$	5.19	s	0.90
2052	117,804	105	4.87	187,170	S	13,102	Š	4.78	S	0.22	Š	0.180	\$	5.19	Š	0.85
2052	117,804	105	4.87	187,170	S	13,102	Š	4.78	S	0.22	S	0.180	5	5.19	Š	0.81
2054	117,804	105	4.87	187,170	\$	13,102	\$	4.78	\$	0.22	\$	0.180	\$	5.19	Š	0.77
2055	117,804	105	4.87	187,170	\$	13,102	\$	4.78	S	0.22	\$	0.180	\$	5.19	\$	0.74
2056	117,804	105	4.87	187,170	\$	13,102	S	4.78	S	0.22	5	0.180	\$	5.19	S	0.70
2057	117,804	105	4.87	187,170	\$	13,102	Š	4.78	Š	0.22	\$	0.180	\$	5.19	Š	0.67
2058	117,804	105	4.87	187,170	\$	13,102	s	4.78	\$	0.22	\$	0.180	Š	5.19	\$	0.64
2059	117,804	105	4.87	187,170	Š	13,102	s	4.78	s	0.22	\$	0.180	s	5.19	Š	0.61
2060	117,804	105	4.87	187,170	\$	13,102	\$	4.78	\$	0.22	Š	0.180	\$	5.19	Š	0.58
2061	117,804	105	4.87	187,170	\$	13,102	\$	4.78	Š	0.22	\$	0.180	\$		S	0.55
2062	117,804	105	4.87	187,170	\$	13,102	\$	4.78	\$	0.22	\$	0.180	\$	5.19	\$	0.52
2063	117,804	105	4.87	187,170	Š	13,102	Š	4.78	s	0.22	Š	0.180	\$	5.19	Š	0.50
2064	117,804	105	4.87	187,170	š	13,102	s	4.78	Š	0.22	Š	0.180	\$		Š	0.47
2065	117,804	105	4.87	187,170	\$	13,102	Š	4.78	s	0.22	\$	0.180	\$		Š	0.45
2000	117,004	100	4.01	107,110	•	10,102	•	1.70	•	0.22	•					
												I otal NPV	of	O&M Costs	\$	75.4
			Capital Cos	ts in million \$	6:				-	Yr built	0				-	
				RWTM			\$	152.5		2015					\$	152.5
				Pumping St	atio	ns	\$	15.5		2015	13.22				\$	15.5
											1	otal NPV o	C	apital Costs	\$	168.0

Total NPV of Capital and O&M Costs in millions \$ 243.4

O&M Cost Calculations WTP and Raw Water Storage Reservoir at WTP CTRWTP - Alternate 2A - WTP East of San Marcos

Special case for using plant as a base loaded plant only; no peaking factor; AND ALL NON-SOFTENED WATER PRODUCTION

2015

Initial year of analysis period Interest rate Evaluation period Unit cost of energy

5% 50 years \$ 0.07 per kwh

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition = \$ 25,000 per acre

Treated Water Production	by Treatment Type	(from Domand Chart)
reated water Production	by freatment type	(from Demand Chart)

	Year = _	2015	2020	2030	2040	2050	2060	2065
NON-Softened water demand:	Units							
Average yearly demands:								
City of Austin	ac-ft/yr	0	0	16802	22403	33604	33604	33604
LCRA	ac-ft/yr	0	0	5600	11200	11200	11200	11200
Totals	ac-ft/yr	0	0	22402	33603	44804	44804	44804
Totals	mgd	0	0	20	30	40	40	40
Max day demands: City of Austin LCRA	mgd mgd							
Totals	mgd -	0	0	20	30	40	40	40
	Year = _	2015	2020	2030	2040	2050	2060	2065
Non-softened water demands: Average yearly demands:	Units							
SAWS	ac-ft/yr	73000	205000	205000	205000	205000	205000	205000
SARA	ac-ft/yr	20550	23406	28433	31393	34411	37530	41128
GBRA	ac-ft/yr	0	0	6000	8000	10000	12300	12300
Totals		93550	228406	239433	244393	249411	254830	258428

	Totals Totals	mgd	93550 84	228406	239433	244393 218	249411	254830	258428
Max day demands: SAWS SARA GBRA		mgd mgd mgd							
	Totals	mgd	84	204	214	218	223	227	231

Total: ALL non-softened water demands	ac-ft/yr	93550	228406	261835	277996	294215	299634	303232
Average yearly demand	mgd	84	204	234	248	263	267	271
Max day demand	mgd 📗	84	204	234	248	263	267	271

Raw Water Reservoir

Assumed number of days of consecutive	utive Max Day demands	30	days			
Design (Max. Day) treated water pro-	duction req'd in mgd	271	mgd			
Average treated water production in	mgd	271	mgd	(which is also equal to sum of ground and raw water can be pumped to the WTP)	r that	
Difference (shortfall of ra	w water)	0	mgd			
Required storage reservoir for raw w	ater		mg			
Add safety factor	25%		ac-ft ac-ft			
Total storage required		1/ 8= 11 · H	ac-ft			
Total storage recommended		6,000	ac-ft	Note: No. of days at average day demand (for example, for repair of RWTM A) =	17	day

	Quantity	Units	Volume/each (acre-feet)		nit Cost \$/ac-ft))	Co	Total onstruction Cost		tigency, g., etc.	al Capital Cost
Reservoirs	1	each	6,000	\$	1,666	\$	10.0	\$	3.8	\$ 13.8
Estimated average depth of reservoir		25	ft							
Surface area of reservoir		240	acres							
Ratio of total land area reqd to surface of reservoir	e area	1.10					Envir & Arcl	haeolo	ogy, Surv	
Total land area regd for reservoirs		264	acres				8	and La	nd Acq =	6.6
						Tota	l capital cos	t in m	illions =	\$ 20.4
Assumed life of reservoir		100	years							
Estimated replacement cost		\$ 0.10	million/year							
Estimated maintenance		\$ 0.04	million/year	Mow	ving, main	tainii	ng fences, e	tc.		
Total		\$ 0.14	million/year							
Year built		2015	5							
NPV of O&M costs		\$ 2.6	million							
NPV of Capital costs		\$ 20.4	million							

\$ 22.9 million

Total NPV of Capital and O&M Costs

WTP

Plant Phasing and Capital Costs:

NON - Softening Treatment Trains							_	1000000					2222			
Year □		2015		2020		203		 2040		2050			2060		2065	nga.
Average treated water production in mgd		0		0			20	30			40		40			40
Design (Max. Day) treated water production req'd in mgd		0		0			20	30			40		40			40
Initial/additional Max day capacity built (mgd)					92											
Total capacity on line (must exceed Design Max Day Req'd)		0		0	1		0	0			0		0			0
Unit cost for max day treatment capacity (\$/gpd of capacity)					Will.	e li			I							
Estimated construction cost of expansion in \$millions	\$	-	\$	•	\$		*	\$	\$		•	\$	-	\$	~	
Non-softening Treatment Trains		2045		0000				0040		205					0005	
Year =		2015		2020		203		 2040		2050		_	2060	_	2065	31
Average treated water production in mgd	CONT.			204			214	218			223	en a compa	227			
Design (Max. Day) treated water production req'd in mgd		84		204			234	248			263		267		2	71 For special case, this includes demands
Additional Max day capacity built (mgd)	900	200		50				25		12.4						from rows above
Total capacity on line (must exceed Design Max Day Req'd)		200		250	5		250	275			275		275		2	75
Unit cost for max day treatment capacity (\$/gpd of capacity)	\$	1.15	\$	1.51				\$ 1.73								
Estimated construction cost of expansion in \$millions	\$	229.6	\$	75.4	\$		2	\$ 43.2	\$			\$	ū	\$		
Totals (ALL Non-softening Trains)																
Year =		2015		2020		203	0	2040		2050	0		2060		2065	
Total construction cost for both trains	\$	229.6	\$	75.4	\$			\$ 43.2	\$		-	\$	-	\$	-	
Contingencies		45.9		15.1	- 2		-	8.6						- 60	-	
Subtotal	\$	275.5	\$	90.4	\$		-	\$ 51.8	\$			\$	-	\$	-	
Engineering, Legal, & Administrative		41.3		13.6			-	7.8			-		-		~	
Subtotal		316.8		104.0			-	59.6					-			
Environmental & Archaelogy Studies and Mitigation & Land																
Acquisition and Surveying (see Note below)		2.5														
Total estimated capital cost	\$	319.3	\$	104.0	\$		-	\$ 59.6	\$		-	\$	-	\$	-	
NPV of capital cost		\$ 319.3		\$ 81.5		\$	-	\$ 17.6		\$			\$ -		\$ -	
Total NPV of WTP initial construction & expansions	\$	418														
Note: Assumed land requirement for WTP (not including reserv		100	acre	es												

O&M Costs for Softening Trains;

O&M Costs for Non-Softening Trains;

Year	Plant Capacity in service	Estimated treated water production	Estimated Of unit cos				t present value	!	Year	Plant Capacity in service	Estimated treated water production	E	stimated O				t present value
	mgd of capacity	mgd produced	\$ per mg treated		nillion year		(\$)	-		mgd of capacity	mgd produced		per mg treated	\$mil	lion /year		(\$)
2015	-	-		\$	-	\$	-		2015	200	84	\$	374	\$	11.41	\$	11.41
2016		-		\$	-	\$	2		2016	200	84	\$	374	\$	11.41	\$	10.87
2017	-			\$	-	\$	2		2017	200	84	\$	374	\$	11.41	\$	10.35
2018		-		\$	-	\$	-		2018	200	84	\$	374	\$	11.41	\$	9.86
2019		-		\$	-	\$	2.		2019	200	84	\$	374	\$	11.41	\$	9.39
2020				\$		\$	=		2020	250	204	\$	357	\$	26.54	\$	20.79
2021	**	:00		\$	*	\$	*		2021	250	204	\$	357	\$	26.54	\$	19.80
2022	-			\$	-	\$	-		2022	250	204	\$	357	\$	26.54	\$	18.86
2023	-	200		\$	-	\$	-		2023	250	204	\$	357	\$	26.54	\$	17.96
2024	-	-		\$	-	\$	-		2024	250	204	\$	357	\$	26.54	\$	17.11
2025		-		\$	-	\$	2		2025	250	204	\$	357	\$	26.54	\$	16.29
2026	-	-		\$	-	\$	-		2026	250	204	\$	357	\$	26.54	\$	15.52
2027	-	-		\$	-	\$	-		2027	250	204	\$	357	\$	26.54	\$	14.78
2028	-	-		\$	-	\$	-		2028	250	204	\$	357	\$	26.54	\$	14.07
2029	-	-		\$	-	\$	-		2029	250	204	\$	357	\$	26.54	\$	13.40
2030	(*):	MOTOCY-303	SE WITCH STREET	\$	*	\$	*		2030	250	214	\$	357	\$	27.82	\$	13.38
2031				\$	¥	\$	-		2031	250	214	\$	357	\$	27.82	\$	12.74
2032	-			\$	2	\$	€		2032	250	214	\$	357	\$	27.82	\$	12,14
2033				\$	-	\$	2		2033	250	214	\$	357	\$	27.82	\$	11.56
2034				S		\$	2		2034	250	214	\$	357	\$	27.82	\$	11.01
2035	-			\$	2	\$	2		2035	250	214	\$	357	\$	27.82	\$	10.48
2036	-	DAY OF THE PARTY OF		\$	-	\$	-		2036	250	214	\$	357	\$	27.82	\$	9.99
2037	-			\$	-	S	-		2037	250	214	\$	357	\$	27.82	\$	9.51
2038	-			\$	~	\$	-		2038	250	214	\$	357	\$	27.82	\$	9.06
2039	-			s		\$	-		2039	250	214	\$	357	\$	27.82	\$	8.63
2040	-		SASTA PERM	\$	2	\$	2		2040	275	218	\$	349	\$	27.81	\$	8.21
2041				S	2	\$	2		2041	275	218	\$	349	\$	27.81	\$	7.82
2042			A Comment	\$	2	\$	2		2042	275	218	\$	349	\$	27.81	\$	7.45
2043				\$		\$			2043	275	218	\$	349	\$	27.81	\$	7.09
2044	-			\$	-	\$	_		2044	275	218	s	349	S	27.81	\$	6.76
2045	-	K	100	\$	-	\$	-		2045	275	218	\$	349	\$	27.81	\$	6.43
2046		Story Challe		\$	-	s	-		2046	275	218	\$	349	\$	27.81	S	6.13
2047	-		TE SHEET ST	\$	-	\$	-		2047	275	218	\$	349	\$	27.81	S	5.84
2048	-			\$	-	\$	-		2048	275	218	\$	349	\$	27.81	\$	5.56
2049		15		\$	-	Š			2049	275	218	\$	349	\$	27.81	\$	5.29
2050		No. of the second		\$	2	Š	2		2050	275	223	\$	349	\$	28.38	\$	5.14
2051	-			\$	-	\$	2		2051	275	223	\$	349	\$	28.38	\$	4.90
2052		The state of		\$		\$			2052	275	223	\$	349	\$	28.38	\$	4.67
2053			West March	\$	-	\$	-		2053	275	223	\$	349	\$	28.38	\$	4.44
2054			7.101.12.8	\$	-	Š	-		2054	275	223	\$	349	\$	28.38	\$	4.23
2055				Š	*	\$	-		2055	275	223	\$	349	\$	28.38	\$	4.03
2056	345			\$	-	Š	-		2056	275	223	\$	349	\$	28.38	\$	3.84
2057	-	2 3/1 -1	THE PARTY OF THE P	\$	-	\$	-		2057	275	223	\$	349	\$	28.38	\$	3.66
2058			5 4 681 63	\$		Š	2		2058	275	223	Š	349	s	28.38	\$	3.48
2059	2			Š	-	Š	2		2059	275	223	\$	349	\$	28.38	\$	3.32
2060	Ş. 1	A RESIDEN		\$	-	Š	2		2060	275	227	\$	349	Š	29.00	\$	3.23
2061				Š	-	Š	-		2061	275	227	\$	349	\$	29.00	\$	3.07
2062	1177	0.8 72-1724		\$	-	Š	-		2062	275	227	Š	349	\$	29.00	\$	2.93
2063		The state of the s		Š	-	s			2063	275	227	Š	349	Š	29.00	Š	2.79
2064	150	the Complete		\$	-	Š			2064	275	227	\$	349	\$	29.00	\$	2.65
2065	120	A LIVE III		Š	-	\$	-		2065	275	231	Š	349	Š	29.40	Š	2.56
						T				21.0	-41	7		5:		-	

NPV Totals for O&M:

VI: Softening trains \$
Non-softening Trains \$

Summary

Raw Water Reservoir Water Treatment Plant Totals

 PV of al Costs	N	OV of O&M Costs	Cap	I NPV of ital and I Costs
\$ 20	\$	2.6	\$	23
\$ 418	\$	454	\$	873
\$ 439	\$	457	\$	896

CTRWTP - Alternate 2A - WTP East of San Marcos Potable Water Transmission Mains CTRWTP - Alternate 2 - WTP Midway Between Austin & San Antonio

 Initial year of analysis period Interest rate
 2015 | 5%

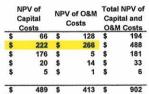
 Evaluation period
 50 years

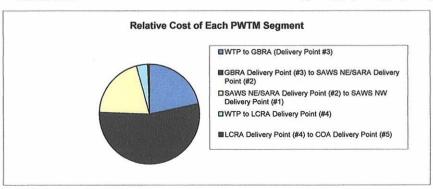
 Unit cost of energy
 \$ 0.07 per kwh

Contingency = 20%
Engineering, Legal, Admin. = 15%
Environmental & Archaeology Studies &
Mitigation, Surveying, and Land Acquisition \$ 100,000 per mile

Special case for using plant as a base loaded plant only; no peaking factor

Summary of Demands


Average demands to be delivered in each segment

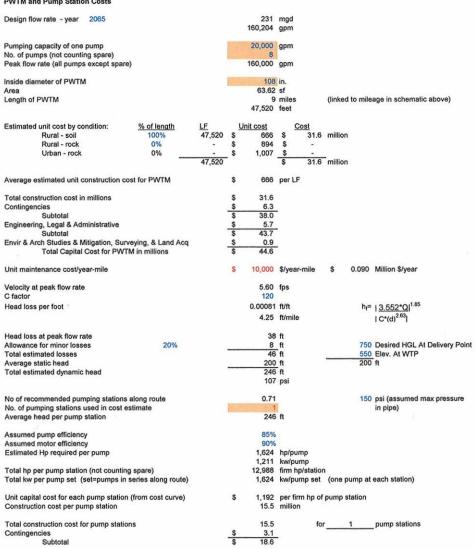

in acre-feet/year											
Year	2015	2020	2030	2040	2050	2060	2065				
SAWS NW	43800	123000	123000	123000	123000	123000	123000				
SAWS NE	29200	82000	82000	82000	82000	82000	82000				
Subtotal	73000	205000	205000	205000	205000	205000	205000				
SARA	20550	23406	28433	31393	34411	37530	41128				
GBRA			6000	8000	10000	12300	12300				
LCRA			5600	11200	11200	11200	11200				
COA			16802	22403	33604	33604	33604				
Total	93550	228406	261835	277996	294215	299634	303232				

Summary

WTP to GBRA (Delivery Point #3) GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2) SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1) WTP to LCRA Delivery Point (#4) LCRA Delivery Point (#4) to COA Delivery Point (#5)

Total for PWTMs

WTP to GBRA (Delivery Point #3) (Bold line in schematic below)



Demands for this pipe segment

Year	2015	2020	2030	2040	2050	2060	2065	Max d/Avg d
GBRA	0	0	5	7	9	11	11	1.0
SAWS NE	26	73	73	73	73	73	73	1.0
SARA	18	21	25	28	31	34	37	1.0
SAWS NW	39	110	110	110	110	110	110	1.0
Total	84	204	214	218	223	227	231	

Max day demands to be delivered in each segment in mgd											
Year	2015	2020	2030	2040	2050	2060	2065				
GBRA	0	0	5	7	9	11	11				
SAWS NE	26	73	73	73	73	73	73				
SARA	18	21	25	28	31	34	37				
SAWS NW	39	110	110	110	110	110	110				
Total	84	204	214	218	223	227	231				

PWTM and Pump Station Costs

Engineering, Legal & Administrative Total capital cost for pump stations \$ 2.8 \$ 21.4 million

Value of equipment
Assumed life of equipment
Estimated maintenance/replacement cost

\$ 6 million 20 years \$ 0.31 million/year 40% Estimated equipment cost as % of total

O&M Costs

Year	Flow pumped by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	ду с	ost	CO	other O&M sts - Pump Stations		aintenance costs - PWTM	Т	otal O&M cost	Ne	t present value
	mgd		(kwh/day)		(\$/day)		(Million \$ /year)		(Million \$ /year)	(Million \$ /year)	(Million \$ /year)		(\$)
2015	84	2.90	112,984	\$	7,909	\$	2.89	\$	0.31	\$	0.090	\$	3.29	\$	3.29
2016	84	2.90	112,984	\$	7,909	\$	2.89	\$	0.31	\$	0.090	\$	3.29	\$	3.13
2017	84	2.90	112,984	\$	7,909	\$	2.89	\$	0.31	\$	0.090	\$	3.29	\$	2.98
2018	84	2.90	112,984	\$	7,909	\$	2.89	\$	0.31	\$	0.090	\$	3.29	\$	2.84
2019	84	2.90	112,984	\$	7,909	\$	2.89	\$	0.31	\$	0.090	\$	3.29	\$	2.70
2020	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	5.84
2021	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	5.56
2022	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	5.29
2023	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	5.04
2024	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	4.80
2025	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	4.57
2026	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	4.35
2027	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	4.15
2028	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	3.95
2029	204	7.08	275,854	\$	19,310	\$	7.05	\$	0.31	\$	0.090	\$	7.45	\$	3.76
2030	214	7.42	289,172	\$	20,242	\$	7.39	\$	0.31	\$	0.090	\$	7.79	\$	3.75
2031	214	7.42	289,172	\$	20,242	\$	7.39	\$	0.31	\$	0.090	\$	7.79	\$	3.57
2032	214	7.42	289,172	\$	20,242	\$	7.39	\$	0.31	\$	0.090	\$	7.79	\$	3.40
2033	214	7.42	289,172	\$	20,242	\$	7.39	\$	0.31	\$	0.090	\$	7.79	\$	3.24
2034	214	7.42	289,172	\$	20,242	\$	7.39	\$	0.31	\$	0.090	\$	7.79	\$	3.08
2035	214	7.42	289,172	\$	20,242	\$	7.39	\$	0.31	\$	0.090	\$	7.79	\$	2.94
2036	214	7.42	289,172	\$	20,242	\$	7.39	\$	0.31	\$	0.090	\$	7.79	\$	2.80
2037	214	7.42	289,172	\$	20,242	\$	7.39	\$	0.31	\$	0.090	\$	7.79	\$	2.66
2038	214	7.42	289,172	\$	20,242	S	7.39	S	0.31	\$	0.090	\$	7.79	\$	2.54
2039	214	7.42	289,172	\$	20,242	s	7.39	\$	0.31	\$	0.090	\$	7.79	\$	2.41
2040	218	7.58	295,162	\$	20,661	\$	7.54	\$	0.31	\$	0.090	\$	7.94	S	2.35
2041	218	7.58	295,162	s	20,661	\$	7.54	\$	0.31	S	0.090	\$	7.94	\$	2.23
2042	218	7.58	295,162	\$	20,661	S	7.54	S	0.31	\$	0.090	S	7.94	S	2.13
2043	218	7.58	295,162	\$	20,661	\$	7.54	\$	0.31	\$	0.090	\$	7.94	\$	2.03
2044	218	7.58	295,162	\$	20,661	\$	7.54	\$	0.31	\$	0.090	\$	7.94	s	1.93
2045	218	7.58	295,162	\$	20,661	\$	7.54	\$	0.31	\$	0.090	\$	7.94	\$	1.84
2046	218	7.58	295,162	\$	20,661	s	7.54	\$	0.31	\$	0.090	\$	7.94	\$	1.75
2047	218	7.58	295,162	\$	20,661	\$	7.54	\$	0.31	\$	0.090	\$	7.94	\$	1.67
2048	218	7.58	295,162	\$	20,661	s	7.54	\$	0.31	\$	0.090	\$	7.94	\$	1.59
2049	218	7.58	295,162	\$	20,661	\$	7.54	\$	0.31	\$	0.090	\$	7.94	\$	1.51
2050	223	7.73	301,223	s	21,086	s	7.70	s	0.31	S	0.090	\$	8.10	s	1.47
2051	223	7.73	301,223	\$	21,086	\$	7.70	\$	0.31	\$	0.090	S	8.10	\$	1.40
2052	223	7.73	301,223	Š	21,086	s	7.70	s	0.31	s	0.090	Š	8.10	s	1.33
2053	223	7.73	301,223	\$	21,086	\$	7.70	\$	0.31	\$	0.090	\$	8.10	\$	1.27
2054	223	7.73	301,223	Š	21,086	Š	7.70	Š	0.31	Š	0.090	S	8.10	\$	1.21
2055	223	7.73	301,223	\$	21,086	s	7.70	\$	0.31	š	0.090	\$	8.10	\$	1.15
2056	223	7.73	301,223	Š	21,086	Š	7.70	Š	0.31	Š	0.090	š	8.10	\$	1.10
2057	223	7.73	301,223	\$	21,086	\$	7.70	\$	0.31	\$	0.090	\$	8.10	\$	1.04
2058	223	7.73	301,223	Š	21,086	Š	7.70	Š	0.31	š	0.090	\$	8.10	\$	0.99
2059	223	7.73	301,223	Š	21,086	Š	7.70	š	0.31	\$	0.090	\$	8.10	\$	0.95
2060	227	7.90	307,767	Š	21,544	Š	7.86	Š	0.31	Š	0.090	Š	8.26	\$	0.92
2061	227	7.90	307,767	\$	21,544	\$	7.86	\$	0.31	\$	0.090	\$	8.26	\$	0.88
2062	227	7.90	307,767	Š	21,544	\$	7.86	Š	0.31	Š	0.090	s	8.26	\$	0.83
2063	227	7.90	307,767	Š	21,544	Š	7.86	Š	0.31	\$	0.090	Š	8.26	\$	0.79
2064	227	7.90	307,767	Š	21,544	\$	7.86	Š	0.31	Š	0.090	S	8.26	\$	0.76
2065	231	8.01	312,113	\$	21,848	\$	7.97	\$	0.31	\$	0.090	\$	8.37	\$	0.73
											Total NPV	of (D&M Costs	\$	128
		Capital Costs	in million \$:						Yr built						
	PWTM					\$	45		2015					\$	45
			Pumping Stat	1										S	21
			Fullipling Stat	IOUS	5	\$	21		2015					9	41

Total NPV of Capital and O&M Costs in millions \$ 194 WTP to GBRA (Delivery Point #3)

GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2) (Bold line in schematic below)

Demands for this pipe segment Demands

	Average demands to be delivered in each segment in rigg										
Year	2015	2020	2030	2040	2050	2060	2065				
SAWS NE	26	73	73	73	73	73	73				
SARA	18	21	25	28	31	34	37				
SAWS NW	39	110	110	110	110	110	110				
Total	84	204	208	211	214	217	220				

Max	d/A	vg d
1000	1.0	
	1.0	
	1.0	

Max day demands to be delivered in each segment in mgd										
Year	2015	2020	2030	2040	2050	2060	2065			
SAWS NE	26	73	73	73	73	73	73			
SARA	18	21	25	28	31	34	37			
SAWS NW	39	110	110	110	110	110	110			
Total	84	204	208	211	214	217	220			

PWTM and Pump Station Costs							
Design flow rate - year 2065			220 152,579	mgd gpm			
Pumping capacity of one pump		Descri	19,000	apm			
No. of pumps (not counting spare)		1000	8	gpin			
		BLUSS					
Peak flow rate (all pumps except spare)			152,000	gpm			
Inside diameter of PWTM		100	108				
Area			63.62				
Length of PWTM			30 158,400	miles feet	(linked	to mile	age in schematic above)
Estimated unit cost by condition:	% of length LF		Unit cost	Cost			
Rural - soil	50% 79,20		666	\$ 52.7	million		
Rural - rock	25% 39.60	0 \$	894	\$ 35.4			
Urban - rock	25% 39,60		1,007	\$ 39.9			
Olbaii - Pook	158,40		1,007		million		
Average estimated unit construction cos	st for PWTM	\$	808	per LF			
Total construction cost in millions		s	128.0				
Contingencies		Š	25.6				
Subtotal		\$	153.6	•			
		\$	23.0				
Engineering, Legal & Administrative Subtotal		\$	176.7	-			
			100000				
Envir & Arch Studies & Mitigation, Surve Total Capital Cost for PWTM		\$	3.0 179.7	-			
Unit maintenance cost/year-mile		\$	10,000	\$/year-mile	\$	0.300	Million \$/year
Velocity at peak flow rate C factor			5.32 120	fps			
			0.00073	0/0		h m	1 0 FF0+01.85
Head loss per foot				ft/mile		116-	3.552*Q ^{1.85} C*(d) ^{2.63}
				1125			1-1-7
Head loss at peak flow rate	222		116				
Allowance for minor losses	20%	_	23				Desired HGL At Delivery Point
Total estimated losses			139				HGL At Delivery Point 3
Average static head			375	ft		375	ft
Total estimated dynamic head			514	ft			
			223	psi			
No of recommended pumping stations a	along route		1,49	i		150	psi (assumed max pressure
No. of pumping stations used in cost es			2				in pipe)
Average head per pump station	imato	0.00	257	ft			m pipe)
Assumed pump efficiency			85%				
Assumed motor efficiency			90%				
Estimated Hp required per pump				hp/pump			
Estimated rip required per pump				kw/pump			
T-1-1 b					23		
Total hp per pump station (not counting Total kw per pump set (set=pumps in s				firm hp/station kw/pump set		ump at	each station)
			4 404				en Copinio de Copinio de Haraco. Es
Unit construction cost for each pump st Construction cost per pump station	ation (from cost curve)	\$		per firm hp of million	pump st	ation	
Total construction cost for pump station	uS .		30.8	fo	r :	2	pump stations
Contingencies		\$	6.2				
Subtotal		\$	37.0				

Engineering, Legal & Administrative 5.5 42.5 million Total capital cost for pump stations in millions 40% Equip cost as % of constr cost Value of equipment S 12 million Assumed life of equipment years Estimated maintenance/replacement cost 0.62 million/year **O&M** Costs Flow pumped No. of pump by year Other O&M Maintenance Total O&M Net present "sets" Energy Year Energy cost costs - Pump costs operating used Stations PWTM flows from /day Table above) (Million S (Million \$ (Million S (Million \$ mgd (kwh/day) (\$/day) (\$) /year) /year) /year) 0.300 /year) 6.95 2015 3.05 236,242 16.537 6.04 0.62 6.95 6.62 2016 84 3.05 236.242 16.537 6.04 S 0.62 0.300 6.95 84 3.05 236,242 16,537 6.04 0.62 0.300 6.95 \$ 6.31 84 236,242 16,537 6.04 0.300 6.01 2018 3.05 0.62 6.95 84 3.05 236,242 16,537 6.04 0.62 0.300 6.95 5.72 2019 2020 204 7.45 7.45 576,795 40,376 14.74 \$ 0.62 0.300 15.65 \$ 12.26 204 576,795 14.74 0.300 15.65 11.68 2021 40,376 11.12 2022 204 7.45 576.795 40.376 14.74 \$ 0.62 0.300 15.65 204 7.45 0.300 576,795 40,376 2023 7.45 7.45 14.74 14.74 2024 204 576,795 40.376 \$ 0.62 0.300 15.65 10.09 204 576,795 40,376 0.62 0.300 15.65 9.61 2025 204 7.45 7.45 14.74 14.74 2026 576,795 40.376 0.62 0.300 15 65 9 15 576,795 40,376 0.62 0.300 15.65 8.72 2027 204 40,376 40,376 14.74 14.74 \$ 2028 7.45 576,795 0.62 0.300 15.65 8.30 7.45 576.795 0.62 0.300 15.65 7.91 2029 589,490 589,490 208 7.62 41,264 15.06 0.62 0.300 15.98 7.69 7.62 0.62 0.300 7.32 2031 208 41.264 15.06 15.98 2032 208 7.62 589,490 41,264 15.06 0.62 0.300 15.98 6.97 0.300 15,98 2033 208 7.62 589,490 41.264 15.06 0.62 \$ \$ \$ 6.64 2034 208 7.62 41,264 0.300 6.32 2035 208 7.62 589 490 41,264 15.06 0.62 0.300 15.98 6.02 208 7.62 41,264 0.62 0.300 15.98 5.73 589,490 15.06 2036 208 208 7.62 7.62 2037 589,490 41,264 15.06 0.62 0.300 15.98 5.46 589,490 41,264 0.62 0.300 15.98 5.20 2038 15.06 208 211 7.62 2039 589,490 41,264 15.06 0.62 0.300 15 98 4 95 0.300 596,964 41,788 0.62 16.17 4.77 15.25 2040 0.300 2041 211 7.71 596,964 41,788 15.25 0.62 16.17 4 55 4.33 2042 211 7.71 596,964 41,788 15.25 0.62 16.17 2043 211 7.71 596,964 41,788 15.25 0.62 0.300 16.17 4.12 2044 211 7.71 596.964 41.788 15.25 0.62 16.17 3.93 0.300 7.71 596,964 0.62 16.17 3.74 211 211 7.71 7.71 2046 596.964 41.788 15.25 0.62 16.17 3.56 596,964 41,788 15.25 0.62 0.300 3.39 2047 2048 211 7.71 7.71 596 964 41.788 15 25 0.62 16 17 3 23 41,788 0.62 0.300 2049 596,964 16.17 214 214 2050 7.81 604 586 42,321 15 45 0.62 0.300 16.36 2.97 42,321 0.62 0.300 604,586 15.45 16.36 2.83 2051 7.81 2052 214 7.81 604.586 42,321 15.45 \$ 0.62 0.300 16.36 2.69 604,586 0.300 2.56 214 7.81 42,321 15.45 0.62 16.36 2053 0.300 2054 214 7.81 604,586 42,321 15.45 0.62 16.36 2.44 2.32 2055 214 604,586 42,321 15.45 0.62 16.36 7.81 0.300 7.81 604,586 42,321 15.45 0.62 16.36 2.21 2057 214 7.81 604.586 42.321 15.45 0.62 16.36 2.11 0.300 214 7.81 604,586 42,321 15.45 0.62 16.36 2.01 2058 2059 214 7.81 604.586 42.321 15.45 \$ 0.62 16.36 1.91 217 42,872 0.62 2060 7.91 612,462

> 16.80 Total NPV of O&M Costs \$ 266.0

16.56

16.56

16.56

16.56

1.76

1.67

1.59

1.52

1.46

Capital Costs in million \$: Yr built 2015 179.7 **PWTM** \$ 179.7 Pumping Stations 42.5 Total NPV of Capital Costs \$

\$

15.65 \$

15.65

15.65

15.65

15.88

Total NPV of Capital and O&M Costs in millions \$ 488 GBRA Delivery Point (#3) to SAWS NE/SARA Delivery Point (#2)

0.62

0.62

0.62

0.62

0.62

0.300

0.300

0.300 \$

0.300

0.300 \$

2061

2062

2063

2064

217 217

217

217 220 7.91

7.91

7.91

7.91

8.03

612.462

612,462

612.462

612,462

621,548

42.872

42,872

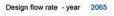
42.872

42,872

43,508

SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1) (Bold line in schematic below)

Demands for this pipe segment


n	_	m	-	n	d	e

Average demands to be delivered in each segment in mgd										
Year	2015	2020	2030	2040	2050	2060	2065			
SAWS NW	39	110	110	110	110	110	110			
Total	39	110	110	110	110	110	110			

Max d/Avg d

Max day demands to be delivered in each segment in mgd										
Year	2015	2020	2030	2040	2050	2060	2065			
SAWS NW	39	110	110	110	110	110	110			
Total -	39	110	110	110	110	110	110			

PWTM and Pump Station Costs

110 mgd 76,250 gpm

Pumping capacity of one pump No. of pumps (not counting spare) Peak flow rate (all pumps except spare) 13,000 gpm 6 78,000 gpm

Inside diameter of PWTM Area Length of RWTM 108 in. 63.62 sf 26 miles 137,280 feet

(linked to mileage in schematic above)

Estimated unit cost by condition:	% of length	LF	U	nit cost	Cost	
Rural - soil	15%	20,592	\$	666	\$ 13.7	million
Rural - rock	35%	48,048	\$	894	\$ 42.9	
Urban - rock	50%	68,640	\$	1,007	\$ 69.2	
		137,280			\$ 125.8	million

Average estimated unit construction cost for PWTM

916 per LF

Total construction cost in millions	
Contingencies	
Subtotal	
Engineering, Legal & Administrative	
Cubtotal	

\$ 125.8 \$ 25.2 \$ 151.0 \$ 22.6 \$ 173.6

Envir & Arch Studies & Mitigation, Surveying, & Land Acq Total Capital Cost for PWTM in millions

176.2 10,000 \$/year-mile

1.13 ft/mile

0.260 Million \$/year

Unit maintenance cost/year-mile
Velocity at peak flow rate
C factor

2.73 fps 120 0.00021 ft/ft

 $h_l = \frac{3.552 \times Q}{1 \cdot C^*(d)^{2.63}}$

Head loss at peak flow rate Allowance for minor losses Total estimated losses Average static head Total estimated dynamic head

Head loss per foot

29 ft 6 ft 35 ft -45 ft -10 ft 4 psi

1080 Desired HGL At Delivery Point 1125 HGL At Delivery Point 2 -45 ft

Negative indicates gravity flow from #2 to #1; no pumping necessary.

						M	lillion \$
Annual C	0&M Cost in millio	n \$:	100	Yr built			
	PWTM	\$	0.260	2015	-		
					Total NPV of O&M Costs		\$4.7
Capital C	Costs in million \$:			Yr built			
	PWTM	\$	176.2	2015	-	\$	176.2
					Total NPV of Capital Costs	\$	176.2

Total NPV of Capital and O&M Costs in millions \$ 181.0 SAWS NE/SARA Delivery Point (#2) to SAWS NW Delivery Point (#1)

WTP to LCRA Delivery Point (#4)

Demands for this pipe segment

Demands

Average demands to be delivered in each segment in mgd										
Year	2015	2020	2030	2040	2050	2060	2065			
LCRA	0	0	5	10	10	10	10			
COA	0	0	15	20	30	30	30			
Total	0	0	20	30	40	40	40			

Max d/Avg d

Max day demands to be delivered in each segment in mgd										
Year	2015	2020	2030	2040	2050	2060	2065			
LCRA	0	0	5	10	10	10	10			
COA	0	0	15	20	30	30	30			
Total	0	0	20	30	40	40	40			

PWTM and Pump Station Costs 40 mgd 27,775 gpm Design flow rate - year 2065 7,000 gpm Pumping capacity of one pump No. of pumps (not counting spare) Peak flow rate (all pumps except spare) 28,000 gpm Inside diameter of PWTM 54 in. Area Length of RWTM (linked to mileage in schematic above) 18 miles 95,040 feet Estimated unit cost by condition: Unit cost % of length Cost 244 \$ 337 \$ 23.2 million 95,040 \$ Rural - soil 100% Rural - rock 0% 0% 369 95,040 23.2 million Average estimated unit construction cost for PWTM 244 per LF Total construction cost in millions 23.2 Contingencies 4.6 27.8 Subtotal Engineering, Legal & Administrative 32.0 Subtotal Envir & Arch Studies & Mitigation, Surveying, & Land Acq Total Capital Cost for PWTM in millions 1.8 Unit maintenance cost/year-mile 10,000 \$/year-mile \$ 0.180 Million \$/year Velocity at peak flow rate 3.92 fps C factor 120 $h_f = [\frac{3.552 \text{°Q}}{1.85}]^{1.85}$ $[\text{C*(d)}^{2.63}]$ Head loss per foot 0.00093 ft/ft 4.93 ft/mile Head loss at peak flow rate 89 ft 790 Desired HGL At Delivery Point 20% 18 ft 106 ft Allowance for minor losses 550 Elev. At WTP 240 ft Total estimated losses 240 ft 346 ft Average static head Total estimated dynamic head 150 psi No of recommended pumping stations along route No. of pumping stations used in cost estimate 1.00 150 psi (assumed max pressure in pipe) Average head per pump station 346 ft Assumed pump efficiency Assumed motor efficiency 85% 90% Estimated Hp required per pump 801 hp/pump 597 kw/pump kw/pump Total hp per pump station (not counting spare) 3,202 801 kw/pump set (one pump at each station) Total kw per pump set (set=pumps in series along route) 1,534 per firm hp of pump station 4.9 million Unit construction cost for each pump station (from cost curve) Construction cost per pump station Total construction cost for pump stations pump stations Contingencies Subtotal

0.9 6.8 million

Engineering, Legal & Administrative

Total capital cost for pump stations

40% Equip cost as % of constr cost

Value of equipment Assumed life of equipment Estimated maintenance/replacement cost \$ 2.0 million 20 years \$ 0.10 million/year

O&M Costs

Year	by year (average flows from Table above)	No. of pump "sets" operating /day	Energy used		Energ	ду с	ost		Other O&M osts - Pump Stations	c	intenance osts - PWTM		al O&M cost	Ne	et preser value
	mgd		(kwh/day)	((\$/day)	3	(Million \$	1	(Million \$ /year)	(Million \$ /year)		lillion \$ year)		(\$)
2015		No college de la College										\$	-	\$	-
2016												\$	-	\$	-
2017												\$	•	\$	-
2018												\$		\$	
2019												\$		\$	-
2020												S		\$	-
2021												\$	-	\$	
2022												S		\$	-
2023													-	\$	
2024												\$	-	\$	
2025														\$	
2026												\$		\$	•
2027												S	-		
2028														\$	-
2029		4.00	00.400		0.000		0.07		0.40		0.400	\$	4.00	\$	0.6
2030	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	22733
2031	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.
2032	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.
2033	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.
2034	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.
2035	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.
2036	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.4
2037	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.
2038	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.
2039	20	1.98	38,120	\$	2,668	\$	0.97	\$		\$	0.180	\$	1.25	\$	0.3
2040	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.
2041	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.4
2042	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.4
2043	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.4
2044	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.4
2045	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.
2046	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.
2047	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.3
2048	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.
2049	30	2.98	57,180	\$	4,003	\$	1.46	\$		\$	0.180	\$	1.74	\$	0.3
2050	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.4
2051	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.3
2052	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.3
2053	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.
2054	40	3.97	76,240	\$	5,337	\$	1.95	\$	0.10	\$	0.180	\$	2.23	\$	0.
2055	40	3.97	76,240	\$	5,337	\$	1.95	\$	0.10	\$	0.180	\$	2.23	\$	0.
2056	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.3
2057	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.:
2058	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.:
2059	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.:
2060	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$. 2.23	\$	0.:
2061	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.3
2062	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.3
2063	40	3.97	76,240	\$	5,337	\$	1.95	\$	0.10	\$	0.180	\$	2.23	\$	0.:
2064	40	3.97	76,240	\$	5,337	\$	1.95	\$		\$	0.180	\$	2.23	\$	0.:
2065	40	3.97	76,240	\$	5,337	\$	1.95	\$	0.10	\$	0.180	\$	2.23	\$	0.
											Total NPV	of O	&M Costs	\$	13
		Capital Costs	in million \$:						Yr built						
			PWTM			S	33.8	-	2030					\$	16
			Pumping Station	one		S	6.8		2030					Š	3
			. Jimping Gratin			*	0.0		2000	-			ital Costs		19

Total NPV of Capital and O&M Costs in millions \$ 33
WTP to LCRA Delivery Point (#4)

LCRA Delivery Point (#4) to COA Delivery Point (#5) (Bold line in schematic below)

Demands for this pipe segment

Average demands to be delivered in each segment in mgd									
Year	2015	2020	2030	2040	2050	2060	2065		
COA	0	0	15	20	30	30	30		
Total -	0	0	15	20	30	30	30		

2015	2020	2030	2040	2050	2060	2065
0	0	15	20	30	30	30
			20	30		
	2015			2015 2020 2030 2040 0 0 15 20	0 0 15 20 30	2015 2020 2030 2040 2050 2060 0 0 15 20 30 30

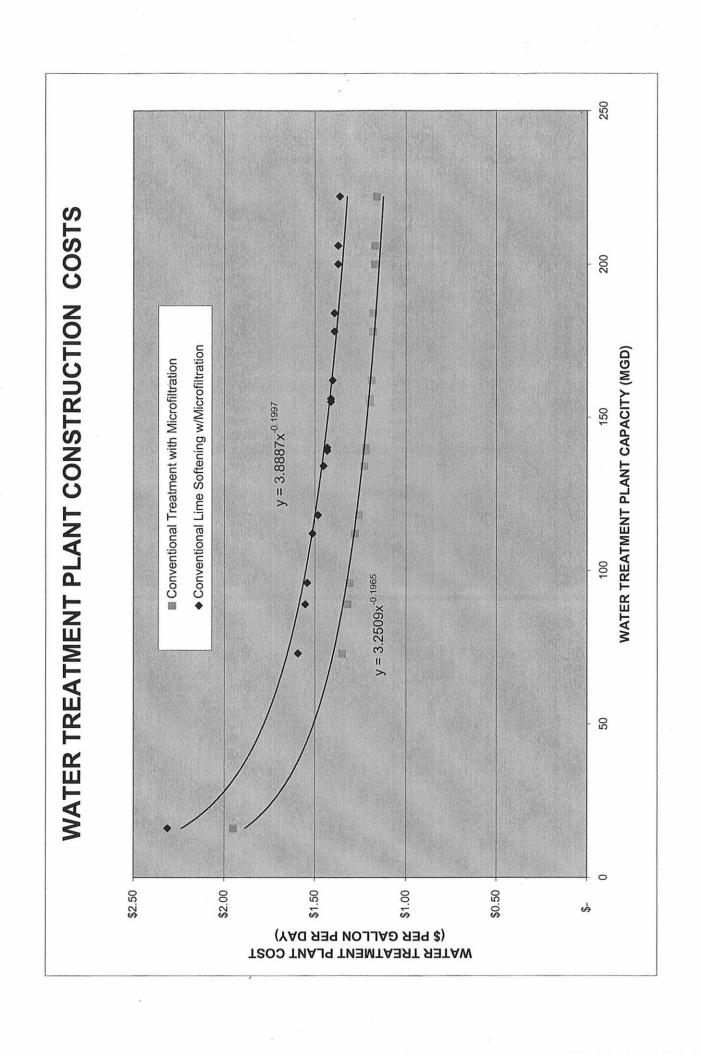
PWTM and Pump Station Costs

Design flow rate - year 2065

30 mgd 20,832 gpm

Inside diameter of PWTM

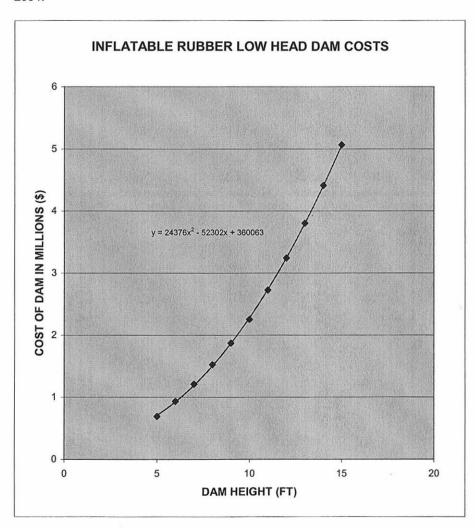
48 in.


inside diameter of PVV I M				48	in.				
Area				12.57	sf				
Length of PWTM				7	miles		(linked	to mile	age in schematic above)
				36,960	feet		•		,
Estimated unit cost by condition:	% of length	LF	u	Init cost	Cos	t			
Rural - soil	100%	36,960	\$	208	\$	7.7	million		
Rural - rock	0%	-	\$	289	\$	-			
Urban - rock	0%		\$	314	\$	2			
		36,960			\$	7.7	million		
Average estimated unit construction	cost for PWTM		\$	208	per LF				
Total construction cost in millions			\$	7.7					
Contingencies			\$	1.5					
Subtotal			\$	9.2					
Engineering, Legal & Administrative			\$	1.4					
Subtotal			\$	10.6					
Envir & Arch Studies & Mitigation, Su	rveying, & Land Acq		\$	0.0					
Total Capital Cost for PW	/TM in millions		\$	10.6	50				
Unit maintenance cost/year-mile			\$	10,000	\$/year-m	ile	\$	0.070	Million \$/year
Velocity at peak flow rate				3.69	fps				
C factor				120					
Head loss per foot				0.00096	ft/ft			h _f =	3.552*Q 1.85
				5.06	ft/mile				C*(d) ^{2.63}
Head loss at peak flow rate				35	ft				
Allowance for minor losses	20%			7					Desired HGL At Delivery Point
Total estimated losses				42					Elev. At Delivery Point 4
Average static head				-70				-70	ft
Total estimated dynamic head				-28					
				-12	nsi				

Negative indicates gravity flow from #4 to #5; no pumping necessary.

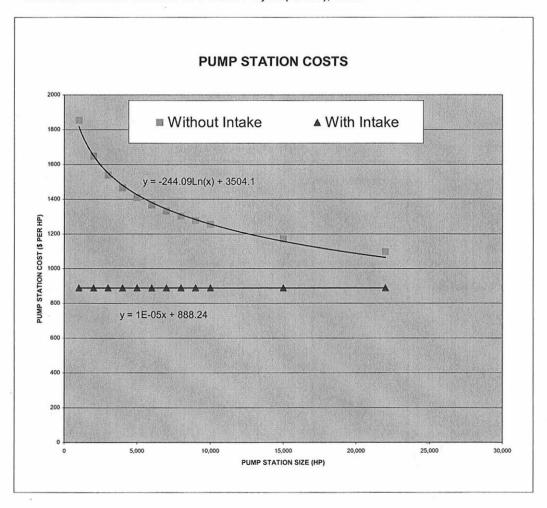
-12 psi

					N	Million \$
Annual O&M Cost	in million \$:		Yr built	vii		
PW	M	\$ 0.070	2030	-		
				Total NPV of O&M Costs		\$0.55
Capital Costs in mi	llion \$:		Yr built			
PW	M	\$ 10.6	2030	-	\$	5.10
				Total NPV of Capital Costs	\$	5.1


Total NPV of Capital and O&M Costs in millions \$ LCRA Delivery Point (#4) to COA Delivery Point (#5) 5.6

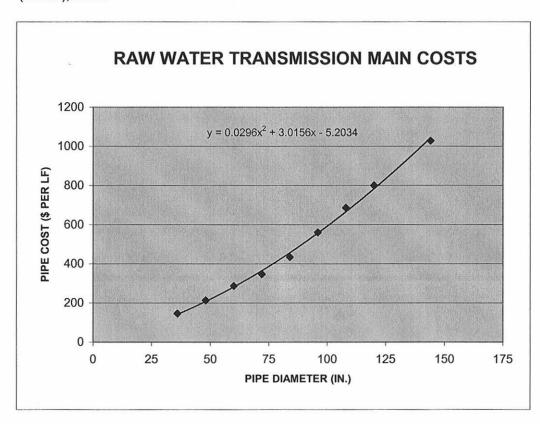
INFLATABLE RUBBER LOW HEAD DAM COST

Dam Height (ft)	Total Cost (\$)	Cost Per Height (\$)
5	688,000	137,600
6	930,000	155,000
7	1,208,000	172,571
8	1,520,000	190,000
9	1,868,000	207,556
10	2,250,000	225,000
11	2,723,000	247,545
12	3,240,000	270,000
13	3,803,000	292,538
14	4,410,000	315,000
15	5,063,000	337,533


^{*} Costs based on the LCRA-SAWS Water Project (LSWP), 2004.

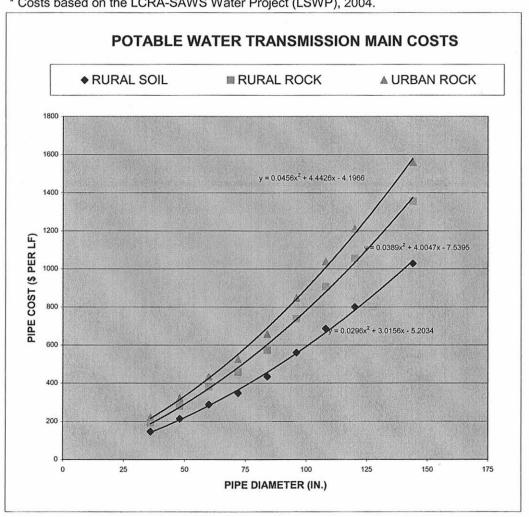
PUMP STATION COSTS WITH & WITHOUT INTAKE STRUCTURES

Pump Station	Pump Station Cost Without Intake Structure	Cost Per HP	Pump Station Cost With Intake Structure	Cost Per HP
(HP)	(\$)	(\$)	(\$)	(\$)
1,000	1,854,000	1854	888,000	888
2,000	3,296,000	1648	1,776,800	888
3,000	4,615,000	1538	2,664,000	888
4,000	5,860,000	1465	3,553,600	888
5,000	7,052,000	1410	4,442,000	888
6,000	8,204,000	1367	5,330,400	888
7,000	9,324,000	1332	6,218,800	888
8,000	10,416,000	1302	7,107,200	888
9,000	11,486,000	1276	7,995,600	888
10,000	12,536,000	1254	8,884,000	888
15,000	17,551,000	1170	13,326,000	888
22,000	24,119,000	1096	19,544,800	888


^{*} Costs based on the LCRA-SAWS Water Project (LSWP), 2004.

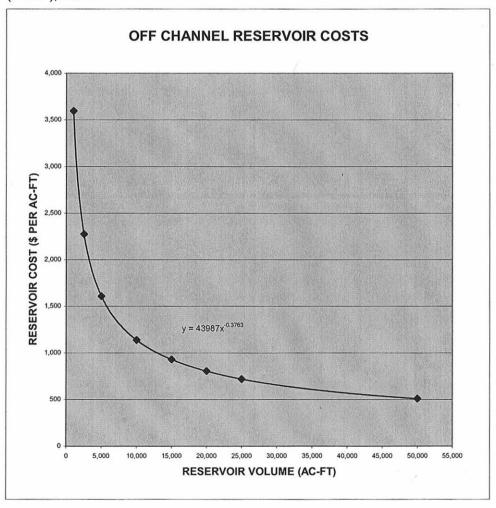
RAW WATER TRANSMISSION MAIN COSTS

(in.)	(\$ / LF)
36	146
48	213
60	287
72	347
84	434
96	560
108	686
120	800
144	1028


^{*} Costs based on the LCRA-SAWS Water Project (LSWP), 2004.

POTABLE WATER TRANSMISSION MAIN COSTS

	RU	RAL	URBAN
Г	SOIL	ROCK	ROCK
Diameter	Cost	Cost	Cost
(in.)	(\$ / LF)	(\$ / LF)	(\$ / LF)
36	146	193	221
48	213	281	322
60	287	379	434
72	347	458	525
84	434	573	657
96	560	739	847
108	686	906	1038
120	800	1056	1211
144	1028	1356	1560


* Costs based on the LCRA-SAWS Water Project (LSWP), 2004.

OFF CHANNEL RESERVOIR COSTS

Volume (ac-ft)	Total Cost (\$)	Cost Per Ac-Ft (\$)
1,000	3,595,061	3,595
2,500	5,684,290	2,274
5,000	8,038,800	1,608
10,000	11,368,580	1,137
15,000	13,923,610	928
20,000	16,077,600	804
25,000	17,975,000	719
50,000	25,420,918	508

* Costs based on the LCRA-SAWS Water Project (LSWP), 2004.

APPENDIX 2

CENTRAL TEXAS REGIONAL WATER TREATMENT PLANT TO SERVE AUSTIN AND SAN ANTONIO WATER SYSTEM

MEETING MINUTES AND PARTICIPANT COMMENTS

TEXAS WATER DEVELOPMENT BOARD

Jack Hunt, Vice Chairman
J. Kevin Ward Thomas Weir Labatt III, Member
Executive Administrator James E. Herring, Member

E. G. Rod Pittman, *Chairman*William W. Meadows, *Member*Dario Vidal Guerra, Jr., *Member*

July 28, 2005

Mr. Scott Ahlstrom, P.E. Lower Colorado River Authority P. O. Box 220 Austin, Texas 78767-0220

RE:

Regional Water Supply Facility Planning Grant Contract between the Lower Colorado River Authority (LCRA) and the Texas Water Development Board (BOARD), TWDB Contract No. 2004-483-522, Draft Report Comments

Dear Mr. Ahlstrom:

Staff members of the Texas Water Development Board have completed a review of the draft report under TWDB Contract No. 2004-483-522. As stated in the above-referenced contract, the CONTRACTOR (S) will consider incorporating comments from the EXECUTIVE ADMINISTRATOR as shown in Attachment 1 and other commentors on the draft final report into a final report. The CONTRACTOR (S) will include a copy of the EXECUTIVE ADMINISTRATOR's comments in the final report.

The Board looks forward to receiving one (1) electronic copy, one (1) unbound single-sided camera-ready original, and nine (9) bound double-sided copies of the final report on this study.

If you have any questions concerning this contract, please contact Mr. David Meesey, the Board's designated Contract Manager for this study, at (512) 936-0852.

Sincerely,

William F. Mullican, III

Deputy Executive Administrator

Office of Planning

c: David Meesey, TWDB

A Member of the Texas Geographic Information Council (TGIC)

Attachment 1 Board Contract No. 2004-483-522 Central Texas Regional Water Treatment Plant Study Comments

General Comments

- 1. The draft report consists of a series of technical memos that represent work performed under specific tasks in the contract scope of work. However, the memos are somewhat difficult to follow and would be improved through the addition of an executive summary that lays out the purpose of the study, introduction, conclusions and recommendations.
- 2. The tasks in the report do not follow the task sequence in the scope of work, which leads to confusion. In some instances, it is unclear whether or not particular scope of work tasks (i.e. 3, 10, and 11) are addressed in the report.
- 3. Better documentation of the participants, study area, comments received, and changes in emphasis made during the study could prove useful for reference in future years as this region grows and centralized water treatment becomes an even bigger issue than it is today.

Specific Comments from the Contract Scope of Work

- 1. Task 3 Develop a Diagrammatic Trial Design of a Consolidated System Featuring a Single Water Treatment Plant Along with Necessary Raw Water and Finished Water Piping, does not include the raw and finished water piping components.
- 2. Task 6 Establish Potential Plant Sites and Treated Water Pipeline Corridors, is only partly addressed, in that the discussion in the technical memorandum is limited primarily to connection points and does not address pipeline corridors. A corridor is defined as a narrow passageway or route. Typically existing right-of-ways for highways, railroads, power lines and possibly other utilities would be considered as possible corridors for water pipelines.
- 3. Task 8 Examine Phasing Potential and the Effect of Phasing on Unit Costs, is only partly addressed, as no unit or other costs are demonstrated in the analysis of phasing.

Suggestions for Improving the Report (Listed By Technical Memorandum Subject)

1. Task 2 – Demand Projections

Bullet 1 under methodology refers to a City of Austin system model for determining future needs and planning improvements. Additional explanation would be helpful as to the type of model and how the model results were coordinated.

Bullet 2 under methodology states that SAWS is <u>developing</u> several potential sources of water. For the ones listed, it might be more accurate to state that SAWS is <u>evaluating</u> several potential sources.

Bullet 5 under methodology refers to LCRA demands but does not describe the basis for or how the LCRA demands were computed.

2. Task 4 - Water Treatment Process

Page 16, under Raw Water Storage, second paragraph. The technical memorandum recommends sizing the raw water storage reservoir to hold the differential between peak and average demand for a 30-day period. Please provide the reference for the 30-day period, such as water delivery data or engineering guidance document. Also the Task 9 technical memorandum was based on a raw water storage reservoir sized for 15 days of storage at average flow. The technical memorandum might clarify that both criteria provide similar reservoir sizes, if that is the case, or the same criterion should be used for both technical memoranda.

3. Task 8 - Phasing Potential

Table 8-3, Facilities Phasing, is unclear. For example three of the rows are identical. Additional explanation needs to be added to distinguish between Alternatives 1A, 1B, and 1C.

4. Tasks 3 and 10 - Economic Analysis

On page 1, under Unit Costs, second paragraph, Appendix 1 was not included.

The tables are difficult to read. Suggest either enlarging to 11 x 17 or revising to utilize larger fonts and/or decrease the amount of descriptive information inside table columns.

5. Task 14 - Conclusions and Major Project Issues

The last sentence on page 1 states that the lower costs for the four new alternatives were not comparable or that the changes to the basic scenario were not realistic and/or could not be implemented. Additional explanation and supporting information should be provided to support this conclusion, as it is not obvious from the information presented in this and the other technical memoranda.

6. Costs – The cost analysis appears to be cursory, and documentation for the basis of cost estimates is not included.

MEETING MINUTES

Date: August 24, 2004

Time: 2:00 PM

Subject: Central Texas Regional Water Treatment Plant to Serve Austin and San Antonio Water

System

Location: Aquarena Springs, San Marcos, Texas

Present: See Attached List

The following items are believed to have been discussed at the above dated meeting. Unless adjustments are requested, these minutes will be filed as official documentation for this project.

The purpose of the meeting was to provide an update on project progress and receive participant input on project assumptions and demands. Agenda items are shown in italics and the related discussion summarized below.

- I. Review Response to Requested Information
 - A handout was distributed listing the status of specific information which had previously been requested from each participant. Participants were asked to review the list and provide outstanding items at their earliest convenience.
- II. Review Study Area Map
 - A handout was distributed showing the proposed study area. It was agreed that the study area in Williamson County will be shown as that area within Austin's service area only and that the service boundary for Bexar County will remain shown as the Bexar County line. Participants agreed to review and provide comment, if any.
- III. Discuss Study Assumptions (reference August 2 letter)
 - A peaking factor of 1.3 was discussed for the SAWS demand. SAWS typically uses a 1.3 peaking factor for planning purposes. The City of Austin will be including a peaking factor of 1.65. A general discussion of peaking factors concluded that the peaking factor will be unique for each participant and will be reflected in requested capacity and ultimate plant component sizing.
 - A discussion of groundwater centered on the point that the intent of the study is to determine the feasibility of a regional water treatment plant and it is not intended to be a water supply study. Although groundwater may impact phasing or other aspects of the facilities, the study will concentrate on surface water treatment.
 - The selection of conventional lime softening was questioned with regards to the hardness of water taken from near the delta as compared to water upstream. Water properties will be further considered in process assumptions.
 - The best available cost data will be used for the study. This may include data from the Lower Guadalupe study (pending authorization and acceptance of assumptions) or data from TWDB regional plans. Currently, updated costs from Appendix A of the Region L Water Plan are being considered.

IV. Review Response to Request for Water Demand Data

 A table showing each study participant and incremental years for the study period (2015 to 2065) was displayed for recording demands. Draft demands for GBRA, LCRA, and the City of Austin were discussed. The participants will further consider demand needs and forward the information.

V. Discuss Delivery Points and HGLs

• It was acknowledged that SAWS and the City of Austin provided delivery points. The GBRA delivery point will be directly from the plant. Participants will further consider delivery points and HGLs and forward the information.

VI. Discuss News Release

The possibility of a news release was discussed. It was determined that a one page project
description would be developed and kept on-hand for press purposes. LCRA will initiate
the effort and provide a draft to participants for input.

VII. Information Required Prior to Next Meeting

- a. Potential Plant Sites
- b. Finalized Demands and Delivery Points
- If participants have previously considered plant sites within the study area the information will be forwarded to the project team (particularly the City of Austin and SAWS). Otherwise the team will select conceptual plant locations.
- Participants will finalize demands, delivery point locations and delivery HGLs and forward the information no later than September 3rd.

VIII. Set Next Meeting Date and Discuss Next Meeting Agenda

- a. Discuss Treatment Process
- b. Review Diagrammatic Trial Design
- The next meeting was set for Wednesday, September 22, 2004 at 2:00 PM, at Aquarena Springs.

ACTION	RESPONSIBLE PARTY	DEADLINE
Outstanding Requested Information	All Participants	September 3 rd
Finalize Demands	All Participants	September 3 rd
Finalize Delivery Points and HGLs	All Participants	September 3 rd
Upstream and Downstream Water	LCRA	September 3 rd
Quality and Hardness Data		_
One Page Project Summary	LCRA	September 3 rd

CENTRAL TEXAS REGIONAL WATER TREATMENT PLANT TO SERVE AUSTIN AND SAN ANTONIO August 24, 2004

Name	Organization	Phone No.	E-Mail Address
Chris Lippe	Austin Water Utility	(512) 972-0108	chris.lippe@ci.austin.tx.us
Teresa Lutes	Austin Water Utility	(512) 972-0179	teresa.lutes@ci.austin.tx.us
Fred Blumberg	GBRA	(830) 379-5822	fblumberg@gbra.org
Thomas D. Hill	GBRA	(830) 379-5822	thill@gbra.org
Everett Owen	K Friese & Associates, Inc.	(512) 338-1704	eowen@kfriese.com
Karen Friese	K Friese & Associates, Inc.	(512) 338-1704	kfriese@kfriese.com
Tom Owens	K Friese & Associates, Inc.	(512) 338-1704	towens@kfriese.com
Bill Leisering	LCRA	(512) 473-3588	<u>bleisering@lcra.org</u>
		(512) 473-3200	
Jason Eichler	LCRA	x7782	<u>jeichler@lcra.org</u>
Randy Goss	LCRA	(512) 473-3589	rgoss@lcra.org
Scott Ahlstrom	LCRA	(512) 473-3367	sahlstrom@lcra.org
Melissa Bryant	SARA	(210) 302-3611	mbryant@sara-tx.org
Kevin Morrision	SAWS	(210) 704-7253	kmorrison@saws.org
Meg Conner	SAWS	(210) 704-7613	mconner@saws.org
David Meesey	TWDB	(512) 936-0852	david.meesey@twdb.state.tx.us

MEETING MINUTES

Date: October 6, 2004

Time: 2:00 PM

Subject: Central Texas Regional Water Treatment Plant to Serve Austin and San Antonio Water

System

Location: Aquarena Springs, San Marcos, Texas

Present: See Attached List

The following items are believed to have been discussed at the above dated meeting. Unless adjustments are requested, these minutes will be filed as official documentation for this project.

The purpose of the meeting was to provide an update on project progress and receive participant input on project demands, alternative scenarios, Simsboro water use potential, and upcoming actions. Agenda items are shown in italics and the related discussion summarized below.

I. Review demand calculations

- A table showing average day demand, maximum delivery rate, and delivery points with HGLs was distributed and reviewed.
- The City of Austin and LCRA may each be including demands for the Heep Ranch area in the reported numbers. Jason and Teresa will resolve any discrepancy.
- Demands for Bastrop County/Aqua will not be included in the study at this time.
- The maximum delivery rate for GBRA will include a peaking factor of two (2).
- Delivery points were reviewed and agreed to. GBRA's delivery point is assumed to be at the plant site.
- The Blanco River Basin will be added to the study area.

II. Review ALCOA/CPS groundwater availability assumptions.

- Selected pages from "Preliminary Feasibility of Options to Deliver ALCOA/CPS Groundwater to Bexar County", HDR, January 2000, were distributed.
- The CTRWTP study is assuming Scenario A from the HDR report 40,000 acft/yr from ALCOA and 15,000 acft/yr from CPS. SAWS is comfortable with this assumption.
- TSAWS reported that the "Direct Pipeline" delivery option for ALCOA/CPS groundwater is the most probable option at this point in time. SAWS will provide updated cost estimates.
- ALCOA/CPS groundwater quality was reviewed. Iron and manganese content may require treatment or blending. High temperatures may be the primary item of concern.

III. Review anticipated raw water quality in the Lower Colorado vs. Town Lake.

- A Water Quality Summary Table with selected Town Lake, Wharton, and Bay City parameters from the Waterquality.LCRA.org website was distributed and reviewed.
- A list of regulations and treated water quality objectives was distributed and discussed.

- IV. Review water treatment technology issues and options.
 - A chart showing water treatment plant unit costs vs. capacity was distributed and reviewed.
 - It was pointed out that based on maximum delivery rates a 367 MGD plant is currently being considered. This size plant is in the \$1.00/gal range on the chart.
 - Conventional lime softening is being assumed for the plant. The question of what if SAWS and/or SARA do not want softened water was raised. Two options are available (1) deliver softened water and blend with unsoftened water or (2) have separate treatment trains.
 - The relative cost of conventional lime softening with membrane treatment would add approximately \$0.25/gal as compared to conventional lime softening with granular filtration (typical for City of Austin plants). Since each scenario examined for the CTRWTP project will use the same treatment process the treatment method selected will not impact the outcome.
- V. Review three preliminary intake/treatment/transmission system layouts with cost estimates.
 - Maps showing each system layout were distributed. Three treatment plant location
 alternatives were examined for preliminary screening. Each scenario includes an intake
 near Bastrop and an intake at the north Matagorda County line. The treatment plant
 locations include one on the northeast side of San Antonio, one near San Marcos, and one
 on the southeast side of Austin. Each scenario delivers water to each participant's
 identified delivery point.
 - Capital cost estimates for the scenarios were reviewed and Alternative 2, treatment plant located near San Marcos, is the least cost alternative.
 - Options for blending groundwater into the raw surface water were discussed. The most
 economical option is to transport the groundwater to the river/Bastrop intake via Big Sandy
 Creek. It was noted that environmental and other factors must be considered to ensure
 feasibility of this transport means.
 - Although the preliminary analysis is intended to be an alternatives screening process to
 narrow the options for further consideration, "cost drivers" and their effect on each
 alternative should be identified before eliminating any options. For example, diverting all
 of the raw water from Matagorda and deleting the Bastrop intake could impact the location
 of the least cost alternative.
 - LCRA noted that the identified demand is greater than the available supply from the Colorado River (by 53,428 acft/yr in year 2065) and questioned the source of supply water for SARA and GBRA demands. Reducing the plant size by the overage amount will not significantly impact the plant unit cost per gallon and it was decided to take the demand out of the raw water lines but to leave it in the finished water lines for cost estimating purposes.
 - The City of Austin's options of interim water sale (depending on Austin's needs) and timing of future treatment plant projects relative to the CTRWTP may have a significant impact on project phasing.
- VI. Proposed project schedule for next 3 months.
 - Deliver Technical Memorandums for tasks one through five by November 15.
 - Schedule next meeting for early December (actual meeting date to be determined).
 - Deliver technical memorandums for tasks six through nine by January 15.

VII. Information or assistance needed from participants

• Comments, concerns, and questions on the project from the participants will be forwarded to Jason Eichler by October 20th.

VIII. Discuss Project Description (news release)

- Comments on the project description will be forwarded to Jason Eichler by October 20th.
- It was noted that the project description is not intended as a press release but will be kept on-hand in case information is requested by the press.

ACTION ITEMS

ACTION	RESPONSIBLE PARTY	DEADLINE
Project comments/concerns/questions	All Participants	October 20 th
Project Description comments	All Participants	October 20 th
Task 1 thru 5 Tech. Memos	KFA	November 15 th
Task 6 thru 9 Tech Memos	KFA	January 15 th

CENTRAL TEXAS REGIONAL WATER TREATMENT PLANT TO SERVE AUSTIN AND SAN ANTONIO October 6, 2004

Name	Organization	Phone No.	E-Mail Address
Teresa Lutes	Austin Water Utility	(512) 972-0179	teresa.lutes@ci.austin.tx.us
Thomas D. Hill	GBRA	(830) 379-5822	thill@gbra.org
Everett Owen	K Friese & Associates, Inc.	(512) 338-1704	eowen@kfriese.com
Karen Friese	K Friese & Associates, Inc.	(512) 338-1704	kfriese@kfriese.com
Tom Owens	K Friese & Associates, Inc.	(512) 338-1704	towens@kfriese.com
Breck Plauche	K Friese & Associates, Inc.	(512) 338-1704	Breck@realtime.net
Bill Moriarty	EarthTech	EarthTech (512) 479-1609	
Karen Bondy	LCRA	(512) 473-4019	bleisering@lcra.org
		(512) 473-3200	
Jason Eichler	LCRA	x7782	kbondy@lcra.org
Randy Goss	LCRA	(512) 473-3589 <u>rgoss@lcra.c</u>	
Scott Ahlstrom	LCRA	(512) 473-3367	sahlstrom@lcra.org
Phil Weynand	SARA	(210) 302-3629	pweynand@sara-tx.org
Kevin Morrision	SAWS	(210) 704-7253 <u>kmorrison@saws</u>	
Meg Conner	SAWS	(210) 704-7613 <u>mconner@saws.or</u>	
David Meesey	TWDB	(512) 936-0852	david.meesey@twdb.state.tx.us

MEETING MINUTES

Date: March 7, 2005 Time: 9:30 AM

Subject: Central Texas Regional Water Treatment Plant to Serve Austin and San Antonio Water

System

Location: Aquarena Springs, San Marcos, Texas

Present: See Attached List

The following items are believed to have been discussed at the above dated meeting. Unless adjustments are requested, these minutes will be filed as official documentation for this project.

The purpose of the meeting was to review the Draft Technical Memorandums and discuss the direction of the remainder of the study. Agenda items are shown in italics and the related discussion summarized below.

I. Brief Presentations of Technical Memorandums

- Each Technical Memorandum was briefly presented.
- Written comments on the memorandums will be submitted by the Participants within two weeks.

II. Discussion

- The original purpose of the study was summarized as determining if a regional facility to serve Austin and San Antonio Water System would be less expensive than individual projects. It was discussed that the conclusion of the study could go beyond providing a net present value of a regional facility and may include items such as:
 - o Should two sub-regional facilities be considered (south Austin and San Antonio)?
 - o A regional alternative which involves two plants (Alt. 1D).
 - o Identification of specific next step(s) which could be taken after completion of the study.
- Various scenarios for possible economic analysis were discussed. These scenarios included:
 - Not applying a peaking factor to the SAWS demand since other sources may be available to supply the peak;
 - Splitting the sources such that supply from the Bastrop area would be used in the south Austin sub-region and supply from the Matagorda area would be used in the San Antonio sub-region. Austin expressed concern with source compatibility and requested more information if the supply split is further pursued.

III. Future Milestones

• The project team will evaluate study findings and discussions to date and propose a methodology for completing the work.

ACTION ITEMS

ACTION	RESPONSIBLE PARTY	DEADLINE
Technical Memorandum Comments	All Participants	March 21, 2005
Project Methodology	Study Team	March 21, 2005

Regional Treatment Plant Comments & Questions

- Is the planned Bastrop Diversion capable of diverting more than the 18,000 AF/yr? Any additional water that could be diverted at Bastrop could reduce the costs associated with the transmission line between Matagorda County and the Regional Treatment Plant. This could provide significant cost savings for all parties. This may also assist with phasing opportunities.
- Finished water quality remains a major issue as we move through the remainder of this study. Since San Antonio would be taking the majority of water from this treatment plant, it would seem reasonable to match San Antonio's water quality. This needs to be further discussed.
 - o Treatment with Chloramines is a major issue for the SAWS system and will need to be thoroughly investigated. Chlorine injection is utilized throughout the entire SAWS system.
- What is the elevation of the Treatment Plant in Caldwell County?
- Is water from the Simsboro Project considered in all of the alternatives or only the composite?
- Demand numbers for the LCRA-SAWS Water Project can be phased in to reduce the production requirements.

	Simsboro	Bastrop	LCRA-SAWS	Total
Year 2020	55,000	18,000	66,000	139,000
Year 2030	55,000	18,000	132,000	205,000

• For Simsboro water conveyed directly to the treatment plant by pipeline should reflect costs for public supply wells (in the Alcoa & CPS wellfields). If the water is dropped in the Colorado River, then non-public well costs should be utilized.

CENTRAL TEXAS REGIONAL WATER TREATMENT PLANT TO SERVE AUSTIN AND SAN ANTONIO March 7, 2005

Name	Organization	Phone No.	E-Mail Address
Teresa Lutes	Austin Water Utility	(512) 972-0179	teresa.lutes@ci.austin.tx.us
Bill Moriarty	EarthTech	(512) 479-1609	bill.moriarty@earthtech.com
Fred Blumberg	GBRA	(830) 379-5822	fblumberg@gbra.org
Thomas D. Hill	GBRA	(830) 379-5822	thill@gbra.org
Breck Plauche	KFA	(512) 338-1704	Breck@realtime.net
Everett Owen	KFA	(512) 338-1704	eowen@kfriese.com
Karen Friese	KFA	(512) 338-1704	kfriese@kfriese.com
Tom Owens	KFA	(512) 338-1704	towens@kfriese.com
		(512) 473-3200	
Jason Eichler	LCRA	x7782	<u>jeichler@lcra.org</u>
Scott Ahlstrom	LCRA	(512) 473-3367	sahlstrom@lcra.org
Melissa Bryant	SARA	(210) 302-3611	mbryant@sara-tx.org
Phil Weynand	SARA	(210) 302-3629	pweynand@sara-tx.org
Kevin Morrision	SAWS	(210) 704-7253	kmorrison@saws.org
David Meesey	TWDB	(512) 936-0852	david.meesey@twdb.state.tx.us
Gilbert Ward	TWDB		gilbert.ward@twdb.state.tx.us

Austin Water Utility 4/12/2005

Central Texas Water Treatment Plant to Serve Austin and San Antonio

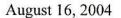
Comments on Cover Letter

We offer the following comments on the Cover Letter (February 11, 2005):

On page 2, in the section discussing potentially reconsidering initial assumptions:

- a. Peaking vs. base load assumption: Due to the large number of associated initial assumptions and uncertainties and for consistent comparison purposes, we recommend keeping the assumption that the projected maximum delivery rate should be based on a projected peaking factor for Austin's portion of the projected plant demand. Austin's portion of the demand projection includes using an average day to peak day demand multiplier of 1.67.
- b. Treatment Process assumption: the letter suggests that the second assumption reconsideration would be for the proposed treatment facility to have only one unsoftened treatment process. With this assumption, the water from the proposed plant would not be compatible with the current or future City of Austin water provided to Austin customers and thus would not meet Austin's needs. For the results of the study to remain applicable Austin, as set forth in the original scope, the study should continue to evaluate the feasibility of a single facility to meet both Austin and San Antonio needs. To meet water compatibility requirements, the study should continue to assume the plant's treatment process for Austin's portion will produce softened water compatible with Austin's water.

Comments on Draft Technical Memorandums


We offer the following comments on the Draft Technical Memorandums on the above Project:

- 1. Task 4 Background Section, end of the first sentence of Paragraph 7: Suggest changing the word "preferences" to "requirements".
- 2. Task 4 Background Section, Figure 4.1 and the other project maps: As previously suggested, consider changing "project service area" to indicate the service areas of Austin and San Antonio, as originally shown in the project scope materials. As currently depicted, the project service area indicates considerable portions of outside of the project service areas as discussed over the course of the project, including large areas of Williamson and Bastrop County.
- 3. Task 4, first line of text under Table 4-1: Suggest changing "downstream of the City of Austin" to "in the Lower Colorado River Basin", since one of the points is Town Lake.
- 4. Task 4, Notes under Table 4-3: In the Note at the bottom of the table there is a reference to "100 miles down river". It is unclear what is being referred to.
- Table 4-4 states the City of Austin utilizes only Chloramine for disinfection. This is incorrect. The City of Austin utilizes a combination of chlorine and chloramine disinfection. Also, suggest changing heading "size" to "capacity".
- 6. Task 4, end of second paragraph from the end of the "Softening" section: Suggest changing "Clearly Austin is used to soft water" to "Austin Water Utility provides softened water."
- 7. Task 4, last paragraph in "Softening" section: Suggest changing "...Austin using chloramines" to "Austin utilizes a combination of chlorine and chloramine disinfection."
- 8. Task 4, in the second sentence of the Paragraph 5 in the "Process Alternatives" section: Suggest changing the word "prefer" to "require".

- 9. Task 4, in the section just above "Residuals Disposal", approximately 3 paragraphs are duplicated from the text immediately above.
- 10. Task 4, "Raw Water Storage" section: An assumption of 30 successive peak days seems very conservative. It may be worthwhile to examine this assumption to determine if a shorter duration of successive peak days would significantly impact the sizing and costs of the raw water storage facilities.
- 11. Task 4, Figure 4.7, is unit cost information available that would range high enough to cover the largest plant size contemplated by the project?
- 12. Task 5, Page 2 of 5, third paragraph: Not sure as to the validity of the listed advantages numbered 2 and 3 (i.e., downstream water quality and public perceptions items), particularly the water quality item. Recommend reducing the list down to one advantage (item #1 on list), that being the presence of the dam with its associated lake.
- 13. Task 5, Page 4 of 5, Bastrop Raw Water Intake Facilities section: In this section it is unclear if the project contemplates two or four 15,000 acre-foot off-channel reservoirs at the Bastrop location. The first paragraph mentions two and the fourth paragraph mentions four. Are the two extra off-channel reservoirs only needed if the system is sized for both Colorado River water and ALCOA water? Also in the same portion of the report, suggest that it should be noted that any required off-channel reservoirs near Bastrop would need to be constructed on land from willing sellers and would address all applicable environmental concerns.
- 14. Task 6, Table 6-2, last item in "Design Basis" column: What is definition of "downstream" in this table? Is that downstream of the treatment process? Would the term "participants" work there instead?
- 15. Tasks 3 and 10, Page 1 of 4 and tables 3-10-1 and 2: Add an item #5 to the list, prepare a total unit cost for each alternative, in \$/af or \$/MGD. In Tables 3-10-1 and 2, add plant capacity and the unit cost figure for each alterative.
- 16. Tasks 3 and 10, Page 3 of 4: In the second paragraph from the bottom of the page the report states that Alternative 3B would require an agreement, including the City of Austin and others, for SAWS to temporarily withdrawal water at the Bastrop intake in excess of 18,000 af-ft/yr. While the concept details are unclear, there are a number of potential issues with this alternative including water rights and water supply issues and its inconsistency with the adopted Lower Colorado Regional Water Planning Group (Region K) water plan.
- 17. Tasks 3 and 10, Page 4 of 4: The draft states "The COA would need to verify that treated groundwater from the ALCOA/CPS well fields would be compatible with its treated water from other sources, and that its treatment would be less expensive than treatment of surface water from the Colorado River in its own treatment plant". It is expected that the treated groundwater would not be compatible with Austin's treated water.
- 18. Tasks 3 and 10, Page 4 of 4 states "The COA, LCRA, and SAWS would need to negotiate a water rights transfer that would give SAWS access to 44,804 af/yr (...33,604 from COA) of Colorado River water in return for the same amount from the ALCOA/CPS well fields." Austin has concerns/issues with this Alterative related to comparative reliability, particularly during drought conditions, long-term water supply availability, and water compatibility. Additionally, Alternative 1D is problematic in that it is not consistent with the study's approach of examining a single facility. It also does not result in significant cost savings.

We appreciate the opportunity to comment on the draft technical memos. We look forward to the opportunity to further comment as the report nears completion.

Should you have any questions please contact Chris Lippe (512-972-0108) or Teresa Lutes (512-972-0179)

Jason Eichler, P. E. LCRA Water & Wastewater Utility Services P.O. Box 220 Austin, TX 78767-0220

Re: Central Texas Water Treatment Plant Study

Dear Mr. Eichler:

Thank you for your letter of August 2, 2004 addressing project-engineering assumptions. The SAWS staff and I have reviewed the assumptions and offer the following comments and suggestions:

- Assumption Item 2: While service from such a distance is likely to be designed at constant rate, we need to evaluate the cost of oversizing for potential future volumes or some moderate peaking vs. the cost of local storage to meet summer peaking requirements. We have typically selected a 1.3 peaking factor in other water supply projects to reduce the size of terminal storage required. Additionally, we need to refine the withdrawal rates from the Lower Colorado River and look at the diversion from Bastop area with LCRA. It is possible that we could consider the use of the diversion rate identified in the Region L plan.
- Assumption Items 3 & 4: It is important that the water derived from the Simsboro project remain as input source of water for this project. One of the potential future uses of the Simsboro project may be to meet regional needs. If the project were to be utilized in this capacity, treatment at the source would be more important than if Bexar County users were the primary users. The potential to co-locate groundwater treatment facilities was key to our involvement in the study.
- Assumption Item 5: We may need additional detail regarding the selection of appropriate treatment/softening process assessment of the quality of the receiving waters in our system.
- First paragraph after the assumptions: Because this is a high level regional study, we recommend that the river authorities provide the expected water demands within their service areas. It is probable that the River Authorities have more detailed information on some of the communities that may need water along the pipeline route. The table with County demand projections should also be broken down by city, so that work on potential pipeline alignments can be more easily accomplished.

- Specific Request #1 (page 2): Please use the Region L planning forecast and break out by city.
- Specific Request #2 (page 2): Potential demand along the pipeline alignment is an expected outcome of the study rather than an input from the study participants.
- Specific Request #3 (page 2): SAWS' total water demand in 2050 as projected in the Region L plan is approximately 291,858 AF/yr. SAW water supply is derived from a number of sources, of which this could potentially be one.

Water Delivery Points:

For the purposes of this study, our infrastructure planning staff has requested that water be delivered at two potential locations. Approximately 60% of the water would be delivered to a point on the west side of San Antonio and the remaining 40% would be dropped at the northeast location. Detailed maps will be forwarded.

- Western Delivery Point: Highway 211 and FM 471 (Culebra Property)
- Northeast Delivery Point:
 Green Mountain Rd and Loop 1604 (Green Mountain Pump Sta.)

System Water Quality

I have included the most recent water quality report that characterizes the overall system water quality to assist with determination of appropriate water treatment and system compatibility issues.

Again, thank you for the opportunity to comment on the assumption for the project. If you should require additional information please contact me at (210) 704-7375 or Kevin Morrison at (210) 704-7253.

Sincerely,

Susan Butler

Director – Water Resources

Cc: Karen Friese, P.E.
Steve Raabe, P.E. - SARA
Fred Blumberg – GBRA
Chris Lippe – City of Austin
File

Types Of Contaminants

Sources for drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbiological contaminants, such as viruses and bacteria which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. Cryptosporidium is an example of a microbiological contaminant affecting surface water sources. Since SAWS uses underground aquifers as water sources, Cryptosporidium is not a tested contaminant.
- Inorganic contaminants, such as salts and metals which can be naturally-occurring or result from urban stormwater

runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming;

- Pesticides and herbicides, which may have a variety of sources such as agriculture, urban stormwater runoff and residential uses;
- Organic chemical contaminants which are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff and septic systems and;
- Radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.

Contaminants may be found in drinking water and may cause taste, color or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor or color of drinking water, contact SAWS Customer Service Department at (210)704-SAWS (7297).

Understanding The Charts

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for margin of safety.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Not regulated: The contaminant is not currently regulated by the Environmental Protection Agency.

pCi/l: Picocuries per liter. A measure of radioactivity in water.

ppm: Parts per million. One part per million equals one teaspoon in 1,302 gallons, which is enough water to fill a typical bathtub more than 40 times.

ppb: Parts per billion. One part per billion is equal to one teaspoon in 1,302,000 gallons – enough to fill a typical bathtub more than 40,000 times.

N/A: Not applicable ND: Not detected

Points-of-entry: Entry point to the distribution system which is representative of each well after disinfection.

Remember that these substances are shown in parts per million or parts per billion. As you will see in these charts, water delivered by SAWS is of excellent quality.

Substance	Test Year	Concentration Range Found	Highest Concentration Found	Maximum Contaminant Level (MCL)	Maximum Contaminant Level Goal (MCLG)	Possible Source
Nitrate (ppm)	2003	0.6 ~ 2.12	2.12	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; crosion of natural deposits.
Barium (ppm)	2003	0.0487 - 0.0516	0.0516	2	2	Discharge from drilling wastes; discharge from metal refineries; erosion of natural deposits.
Fluoride (ppm)*	2003	0.5 - 1.1	1.1	4	4	Erosion of natural deposits; Discharge from fertilizer and aluminum factories.
Nitrite (ppm)	2003	ND - 0.01	0.01	Į.	1	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits.
Tetrachloroethylene (ppb)	2003	ND - 0.9	0.9	5	. 0	Leaching from PVC pipes; discharge from factories and dry cleaners.
Di-(2-ethylhexyl) phthalate (pph)**	2003	ND-4.19	4.19	6	0	Discharge from rubber and chemical factories.
Gross alpha adjusted (pCi I)	2003	ND - 3.4	3.4	15	0	Erosion of natural deposits.

^{*} Fluoride in the form of hydrofluorosilic acid (H₂SiF₆) was added to SAWS drinking water as of August 2002.

^{**}Phthalate contamination was unavoidable in the process of analyzing the sample for this substance, therefore this concentration may not have been reliable.

Other Substances (2003)

Substance	Concentration Range (ppm)	Average Consentation Found(o	pm) _{rea} MCE (ppm);
Calcium	71-91	81	Not Regulated
Chloride	20	20	250
Copper	0.005 - 0.007	0.006	l l
Magnesium	16 - 29	23	Not Regulated
Sodium	6 - 9	8	Not Regulated
Sulfate	17 - 20	19	250
Total Hardness ^a	240 - 343	292	Not Regulated
Total Alkalinity ^a	209 - 319	264	Not Regulated
Total Dissolved Solids	283 - 358	321	500
Zinc	0.0336 - 0.129	0.08	5

Substance	MCL	Amount Found	Source
Total Coliform (presence)	ь	Highest Monthly % of positive samples 3.24%	Naturally present in the environment
Fecal Coliform (presence)	c	0	Human and animal fecal waste

A routine sample and a repeat sample are total coliform positive, and one is also fecal coliform or E. coli positive

Total coliform bacteria are used as indicators of microbial contamination of drinking water because testing for them is easy. While not disease-causing organisms themselves, they are often found in association with other microbes that are capable of causing disease. Coliform bacteria are more hardy than many disease-causing organisms; therefore, their absence from water is a good indication that the water is microbiologically safe for human consumption.

Fecal coliform bacteria and in particular, E. coli are members of the coliform bacteria group originating in the intestinal tract of warm-blooded animals and are passed into the environment through feces. The presence of fecal coliform bacteria (E. coli) in drinking water may indicate recent contamination of the drinking water with fecal material. The table above indicates whether total or fecal coliform bacteria were found in the monthly drinking water samples submitted for testing last year.

Required Monitoring - No MCL's ^d (2003)					
Substance e	Range Detected (ppb)	Average Concentration (ppb)	Reason for monitoring		
Chloroform	ND	ND	d These values are from points-of-entry		
Bromodichlormethane	ND - 2.4	1.1	Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of		
Dibromochloromethane	ND - 2.9	1.6	unregulated contaminant monitoring is to assist EPA in		
Bromoform	ND - 1.3	1.t	determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.		

Lead and Copper Results (2001)							
Substance	90th Percentile	Action Level	Number of residences exceeding Action Level	Possible Source			
Lead (ppb)	4.9	15	0	Corrosion of			
Copper (ppm)	0.215	1.3	0	household plumbing			

These two metals enter the water because of corrosion of household plumbing. Many older homes have copper pipes that were put together with lead-based solder. The 90° percentile means that 90 percent of the homes measured had less than that. A total of 50 residences were monitored.

What Are Coliforms?

I tend to agree with the comment that one of the outcomes should be discussions among GBRA, LCRA and City of Austin related to northern Hays County. That should be included in the conclusions/recommendations section of the final report.

thnaks. fmb

----Original Message----

From: Jason Eichler [mailto:jason.eichler@lcra.org]

Sent: Monday, March 28, 2005 1:47 PM

To: Fred Blumberg

Subject: Re: FW: In-kind services documentation

Thanks Fred. I seemed to recall you had a comment to list all the financial assumptions such as interest rates so each entity could make their own comparisons. Let me know if there is anything else you would like to discuss/revise.

Jason

MEMORANDUM

November 24, 2004

TO: Karen Friese, Tom Owens

FROM: Jason Eichler

CC: Scott Ahlstrom, Bill Leisering, Ron Anderson, Ken Hall

SUBJECT: Comments on draft report.

I have completed a preliminary review of the Central Texas study and prepared comments below. I appreciate the effort that has gone into producing this draft, and look forward to helping with development of the report. I understand that work is continuing on this draft, so some of the comments mentioned below may already be in progress.

I also anticipate it will be difficult to collect comments from the other project participants in a timely manner given the volume of the draft and material covered. And consequently, I would like to have the opportunity to perform an additional review with LCRA staff based on the comments below prior to issuing to the other participants. I believe this will help expedite the review process.

Comments by Jason Eichler

- General: It appears the draft submitted addresses most of the items in Tasks 1 – 10 in the scope. Please complete the Table of Contents, and Purpose & Scope to allow project participants to compare the progress of this draft with the scope and budget. This will also help in prioritizing future efforts that may be needed in some sections as we collect comments from the participants.
- 2. General: Please complete any sections of the draft that have not been completed (Unit Cost Section). In addition, please provide references to tables and figures in the appropriate locations, and include all figures referenced in the text.
- General: The Project Viability Assessment has been finalized and is available on the LCRA website. Please ensure that costing data is consistent with this report.
- 4. See attached for additional comments.

March 24, 2005

Mr. Jason Eichler, P.E. Lower Colorado River Authority P.O. Box 220 Austin, TX 78767

RE: Comments on the Regional Treatment Plant Draft Technical Memorandums provided by K Friese & Associates

Dear Mr. Eichler:

Thank you for the opportunity to review and comment on the draft technical memorandums for the Central Texas Water Treatment Plant Study. From a general perspective, SAWS primary concerns with the concept of the Regional Treatment Plant center around the overall costs and water compatibility issues. SAWS offers the following comments for your review and consideration.

Sincerely,

Susan Butler

Director, Water Resources

& Marin for

Regional Treatment Plant Draft Technical Memo Comments San Antonio Water System

Task 1 Memo

• Page 1 of 2 - Add date to HDR Engineering, Inc. "Concept Delivery Study" – Groundwater Quality, SAWS, June 2004.

Task 2 Memo

• **General Comment** - Consider identifying additional potential customers and participants along the IH-35 corridor (as mentioned in the Detailed Scope of Services, 1st page, last paragraph).

Task 4 Memo

- Page 1 of 19 Consider adding language to clarify the 18,000 AF/yr diversion at Bastrop. Any water that can be diverted at Bastrop will serve to reduce the water that is taken at Matagorda and thus will reduce the size and ultimate cost of the transmission line portion of the project from the lower part of the basin.
- Page 4 of 19, 3rd paragraph Consider removing sentence referring to SAWS Simsboro project. It makes it appear as if the additional water supply from the Simsboro was an after thought. The possibility of treatment of water from the Simsboro project was one of the primary reasons SAWS decided to participate in the study and included in the original scope.
- Page 4 of 19, 3rd paragraph Consider additional language to clarify that the \$ 864 per AF/yr is the cost for the entire project. This includes the cost of the raw water, well field, transmission facilities including a 107-mile transmission line to a point in eastern Bexar County, and a water treatment plant (51.6 MGD) to remove iron & manganese. Costs do not include integration into SAWS distribution system.
- Page 6 of 19, Table 4-2 Add reference to cite the source of the data.
- Page 9 of 19 Consider adding a listing of all abbreviations for water treatment. Did not see anything for HAA5.
- Page 10 of 19 Possibly provide additional detail regarding the statement addressing "acceptable" total hardness. Not sure if it is relevant since each system receiving water would determine the level of softening to match their distribution system.
- Page 11 of 19, first full sentence Consider citing the source regarding San Antonio's use of individual softener systems. The percentage of households utilizing softeners may not be very high when you consider San Antonio's population.
- Page 13 of 19, Table 4-7 Consider enlarging the table possibly breaking it into two parts.
- Page 18 of 19 Consider additional discussion for the "30 peak days in succession". Possibly need additional discussion if the users require 30 peak days in a row from this plant or have additional water resources from their system

- available. Discuss whether building additional peak capacity into the treatment plant is cost effective.
- Page 18 of 19, Cost Estimates Please add language to indicate the cost basis are the costs presented 4th Qtr. 2004?
- Page 19 of 19 Is Debt Service included in the O&M costs?
- Page 19 of 19, Figure 4.7 In the capital costs illustrated in the figure, do these costs include interest during the construction period?

Task 5 Memo

- Page 2 of 5, 2nd Paragraph It is suggested that water availability data be provided to clarify why the diversion at Bastrop and Town Lake are not appropriate for all withdrawals.
- Page 3 of 5, Alcoa/CPS Groundwater It is suggested that additional language be included about the actual quantity of water entering the treatment plant from this source (how did you account for channel and evaporative losses), or was that taken into account at this level of study?

Task 6 Memo

• General Comment – Throughout this memo text and tables, please change the SAWS Culebra Reservoir and Green Mountain Reservoir to Culebra Pump Station and Green Mountain Pump Station respectively.

Task 7 Memo

• **General Comment** – please change the word "Reservoir" to "Pump Station" throughout the SAWS connection point write up.

Task 3 & 10 Memo

- It is suggested that the memo title "Economic Analysis" be changed to "Financial Analysis".
- Page 3 of 4 Add language to state what discount rate was utilized.
- Page 3 of 4, alternative 1C, Are the costs of a TPDES permit included?