
CRWR Online Report 03-07

Identification of large woody debris in acoustic
bathymetry data

by

Laurent White, B.S.

Graduate Research Assistant

and

Ben R. Hodges, Ph.D.

Principal Investigator

The University of Texas at Austin

September 30, 2003

Final Report to Texas Water Development Board

under Contract No. 2003-469

This document is available online via World Wide Web at

http://www.crwr.utexas.edu/online.html

Abstract

The more frequent use of two-dimensional hydrodynamic river models also requires more

detailed bathymetry surveys. For smooth bathymetries, there is little difficulty in developing

accurate translations from survey data to model; however, in rivers with significant bottom

structure (e.g., large woody debris), simple data averaging and interpolation methods may

lead to misrepresentation of the bottom bathymetry. It is necessary to identify in the data set

what is true bathymetry from what is caused by large woody debris. Two groups of methods

are investigated to serve our objective: statistical techniques and filtering techniques. While

the former are appealing for their simplicity and direct applicability in modeling, they fail

at consistently treating spikes (hypothesized to be large woody debris signature) in the data

set. Among filtering techniques, linear filters are turned down due to their inherent trade-off

between edge retention and spike rejection. Two nonlinear filters are examined. Median

and erosion filters are specifically designed to preserve sharp edges while eradicate spikes.

Finally, median filtering is preferred to erosion filtering, for the former leaves large-scale

bathymetric features virtually undisturbed.

i

Contents

1 Introduction 1
1.1 Cause-effect relationships of LWD . 2

1.1.1 Effects of LWD on stream ecology . 2
1.1.2 Effects of LWD on stream fluid mechanics 3
1.1.3 Effects of LWD on stream morphology 13
1.1.4 Indirect effects of LWD . 13

1.2 Objectives . 14

2 Methods 15

3 Statistical techniques 20
3.1 Moving average . 20
3.2 Moving average and standard deviation . 22
3.3 Semivariogram . 23
3.4 Scale-space analysis . 27

3.4.1 Presentation of the method . 27
3.4.2 Implementation . 29
3.4.3 Applications . 30

3.5 Final comments on statistical techniques . 33

4 Filtering techniques 35
4.1 Linear filtering . 37

4.1.1 FIR filter . 38
4.1.2 IIR filter . 38

4.2 Nonlinear filtering . 40
4.2.1 Erosion filter . 41
4.2.2 Median filter . 41

4.3 Applications . 43

5 Conclusion 49

A Pictures of LWD in Sulphur River 51

B Bathymetry Process 1.1: User’s guide 53
B.1 Introduction . 53
B.2 Installation . 53

B.2.1 Requirements . 53

ii

B.2.2 Compilation of the source . 54
B.2.3 Completion . 54

B.3 Utilization . 54
B.3.1 Processing raw data . 54
B.3.2 Identifying Large Woody Debris . 54
B.3.3 Exporting processed data . 55
B.3.4 Plotting . 55

B.4 Median filtering . 56

C Code listing 57

iii

List of Figures

1.1 Emergent LWD in the Sulphur River . 1
1.2 Cause-effect relationships of large woody debris 3
1.3 Types of flow in presence of roughness elements 10
1.4 Pool formation in the presence of woody debris 13

2.1 Bathymetry interpolation on finite element mesh 15
2.2 Bathymetry distortion due to the presence of large woody debris 16
2.3 Distortion of bathymetry smoothness due to spikes 17
2.4 Boat track for the Sulphur River bathymetric survey 17
2.5 Section of Sulphur River bathymetry containing spikes 18
2.6 Submerged piece of woody debris in Guadalupe River 18
2.7 Surveyed cross-section of guadalupe River over piece of LWD 19

3.1 Effect of moving average on spike resolution 21
3.2 Influence of the number of depth soundings in the calculation of mean depths 22
3.3 Spike in the Guadalupe River . 23
3.4 Bathymetry profile: mean and standard deviation 24
3.5 Semivariogram on a linear-linear scale . 26
3.6 Semivariogram on a log-log scale . 26
3.7 Example of scale-space image (σ = 10) m . 28
3.8 Example of fingerprint . 28
3.9 Fingerprint of bathymetry section a . 31
3.10 Fingerprint of bathymetry section b . 31
3.11 Fingerprint of bathymetry section c . 32
3.12 Fingerprint of bathymetry section d . 32

4.1 Synthesized bathymetry . 36
4.2 Assessment of off-trend bathymetric component 37
4.3 Filtering of synthesized bathymetry with FIR filter of order 50 39
4.4 Filtering of synthesized bathymetry with Butterworth filter of order 10 . . . 39
4.5 Illustration of median filter concept . 41
4.6 Filtering of synthesized bathymetry with erosion filter 42
4.7 Filtering of synthesized bathymetry with median filter 42
4.8 Application of median filter to real data . 44
4.9 Application of erosion filter to real data . 44
4.10 Comparison of erosion and median filters . 45
4.11 Scatter plot of all bathymetry survey tracks in Sulphur River 47
4.12 Mapping of alleged LWD locations . 48

iv

A.1 Emergent LWD in the Sulphur River . 51
A.2 Emergent LWD in the Sulphur River . 51
A.3 Emergent LWD in the Sulphur River . 52
A.4 Emergent LWD in the Sulphur River . 52
A.5 Emergent LWD in the Sulphur River . 52

v

Chapter 1

Introduction

As the trees growing alongside a stream or river age, die and decay, large branches and
sometimes even the whole trunk can fall or topple onto the streambank or into the channel
itself. We commonly refer to this amount of woody material as large woody debris (LWD).
The dimensions of LWD are usually taken to be greater than 0.1 m in diameter and 1.0 m
in length.

Figure 1.1: Emergent LWD in the Sulphur River (Northeast Texas) at a low flow rate during ??
20??, when a boat-conducted bathymetric survey would be impractical. Debris is submerged at
high flow, when bathymetry surveys are typically performed. (photograph courtesy of Texas Water
Development Board).

To the early settlers, LWD was often a nuisance and these fallen trees and branches were
usually termed snags. They made access to streams by stock difficult, and large snags
within rivers were a major hazard to transport and navigation at a time when waterways
were a major route for moving goods and people. This use of rivers involved periodic or
regular removal of obstructions as a part of so-called river improvement, river clearing or
channelization schemes (Gippel, 1995). In addition to enhancing river navigability, the
removal of snags has often been justified on the grounds that it improves water conveyance,
reduces bank erosion, rejuvenates channels, lessens the risk of damage to bridges, improves
recreational amenity and removes barriers to fish migration (Harmon et al., 1986).

1

Snag management has generally been regarded as an engineering or economic issue, and
because of this narrow focus, most snag removal has been undertaken with little concern for
the environmental role of snags and, in particular, their direct or indirect effects on aquatic
fauna and flora. It is now well recognized and established that fallen wood in streams has a
multifunctional and positive role on an environmental point of view. Several reviews of the
literature provide grounds for this assertion (e.g., Shields and Nunnally (1984) and Harmon
et al. (1986)). Research over the past 20 years has actually shown that woody debris is a
vital component for the healthy functioning of rivers. For this reason, it has become far
more appropriate to use the term large woody debris instead of snag when referring to fallen
wood in streams.

In the past two decades, the large majority of hydraulic studies regarding large woody de-
bris have focused on their stream-scale management. Research in stream restoration (Shields
and Nunnally (1984), Shields and Gippel (1995), Gerhard and Reich (2000), Gippel et al.
(1996a)) has generally gravitated around the common issue of achieving desirable hydraulic
effects (e.g., decrease flow resistance) while minimizing undesirable environmental effects
(e.g., the loss of aquatic habitat diversity). The focus has also been directed toward the eco-
logical and morphological effects of large woody debris but very little has been done regarding
the local flow pattern around debris such as velocity distribution, turbulence intensities and
secondary currents. As noted by Mutz (2000), the local flow pattern is controlled by the
woody debris and the former has been well established to be highly significant to fauna and
flora, as summarized by Gippel (1995) and determined by Kemp et al. (2000).

1.1 Cause-effect relationships of LWD

LWD is known to influence the fluid mechanics, ecology and morphology of streams in
many ways. Let us first clarify what these three aspects of a stream mean to us. The fluid
mechanics encompasses the properties, distribution and circulation of water. The study of
secondary currents, standing water or turbulence within a stream belongs to the field of fluid
mechanics. The ecology is concerned with the pattern of relations between organisms and
their environments. Why some invertebrates are more likely to live in regions of standing
water is an ecological matter. Finally, the morphology deals with the structure and form
of the stream. These properties of a stream such as its sinuosity, its order or its pools
distribution fall within the scope of the morphological study of the stream.

The diagram in Figure 1.2 shows the a priori direct and indirect effects of LWD that one
should expect. Despite the previous definitions and the seemingly well-defined relationships
in the diagram, we will see that the latter are unfortunately not as clear-cut as one would
anticipate.

1.1.1 Effects of LWD on stream ecology

In addition to the many indirect effects of LWD on ecology – e.g., LWD creates hydraulic
diversity that enhances fish species diversity –, the presence of LWD has a direct impact
on ecology. Macroinvertabrates benefit from the structural complexity provided by debris
(Minshall, 1984). Furthermore, large items of debris provide a secure, hard surface upon

2

Fluid

Morphology

II

IV

V

VI

III

I
LWD

mechanics

Ecology

Figure 1.2: Cause-effect relationships of large woody debris within stream environments. An
arrow reads affects

which microscopic plants (algae) can grow, and provide habitat for aquatic invertebrates such
as insect larvae and snails. LWD helps to trap leaf litter and other organic matter moving
downstream to form debris dams, which become hot-spots of biological activity and a major
source of food for animals (Land and Water Australia, 2002). Animals feeding on algae or
involved in shredding and consuming leaves and fine litter are key components of aquatic
systems because they, in turn, become food for larger river animals such as crustaceans,
fish and platypus. In this way, LWD plays an important role in providing a base for the
processing of energy and nutrients to support the aquatic food web.

Large debris is also vital for the survival and growth of many important fish species. It
provides habitat and shelter from predators, while hollow logs are an essential spawning
habitat for native fish species; for example the Mary River Cod of south-east Queensland
(Australia), and the River Blackfish of Victoria and Tasmania (Australia) require submerged
hollow logs in which to lay and nurse their eggs.

These are a few examples of the direct influence of LWD on aquatic life diversity and
illustrate the ecological importance of woody debris in rivers. However, this specific role
of LWD is not central to our study and will not be investigated further, but it was worth
including it for the sake of completeness.

1.1.2 Effects of LWD on stream fluid mechanics

Understanding how LWD affects the flow in streams, locally or at the channel scale, is
the key topic of our study. Hydraulic diversity created by LWD is beneficial to the stream
ecosystem. This same local flow diversity positively affects the stream morphology, which,
in turn, is ecologically beneficial. These complex interactions serve as a justification to the
central position of the hydrological aspect in the study of LWD in streams.

3

Flow resistance

Vegetation and debris increase flow resistance (or roughness) that has a direct effect on
the discharge capacity and the level of stream flooding hazard (Dudley et al., 1998). It
has been established that debris act as large roughness elements that provide a varied flow
environment, reduce average velocity and locally produce an increase in water level (afflux)
(Gippel, 1995). The latter is caused by the so-called blockage effect of debris and means that
for a given discharge, the water level is higher than without the debris, thereby theoretically
increasing flooding frequency at locations upstream of the blockage. Depending on how the
river and floodplain are managed, this effect may be perceived as positive (e.g., beneficial
for wetlands) or negative (e.g., inconvenient for landholders) (Gippel et al., 1996b).

Two widely-used approaches to quantify the resistance that debris offers to flow make use
of a flow resistance equation, in which a roughness coefficient (Manning’s n) or a friction
factor (Darcy-Weisbach friction factor) is employed. Both methods may be regarded as
zero-dimensional because they do not attempt to locally model the flow but consider the
reach as a whole. Furthermore, as pointed out by Gippel (1995), the Manning equation (i.e.
the roughness coefficient approach) is not strictly applicable in the case of LWD, for it was
developed to describe open-channel situations where friction is controlled by surface drag
from the bed sediments, rather than form drag from large obstacles such as debris. Also, the
hydraulic radius, as conventionally defined in Manning’s equation, is probably meaningless
in channels heavily obstructed with debris.

Both approaches require the evaluation of an hydraulically meaningful debris drag coeffi-
cient. In practice, LWD are geometrically approximated as circular cylinders for which drag
coefficients in flow of infinite extent (no boundary interference) are well defined. However,
for real woody debris, two deviations from this idealistic situation are generally encountered:

• Debris irregularities. Woody debris are rarely perfectly circular cylinders. Branches
and leaves may significantly increase the drag force and underestimation of the latter
may occur if these irregularities exist and are neglected. Gippel et al. (1996a) measured
the drag coefficient of tree-shaped models compared with that of a cylinder. Four stages
of assembly were considered: trunk only (with three short, projecting elbow joiners);
trunk and butt; trunk and branches; and complete with trunk, branches and butt. A
lower overall drag coefficient for the complete tree-shaped debris model compared with
that of a cylinder was obtained and can be explained by the fact that the drag coefficient
was expressed relative to the projected surface area. Unlike the simple cylinder model,
some flow could pass through the branching section thereby increasing the total drag
force but the drag coefficient was lowered because the increase in projected surface
area was proportionally greater than the increased drag force. The results of these
measurements permitted Gippel et al. (1996a) to establish best-fit empirical expressions
for the drag coefficient of different debris models as functions of debris orientation.

• Effect of confined flow. The blockage effect of confined flow does not alter the inherent
drag coefficient Cd of a cylinder. Rather, Cd measured in confined flow is an apparent
drag coefficient. In (Ranga Raju et al., 1983), the drag coefficient for a vertical cylinder

4

of diameter d in a flume of width w is given by an equation of the form

Cd =
C ′

d

a
[
1− d

w

]b
, (1.1)

where C ′
d is the drag coefficient in a flow of infinite extent (no boundary effects) and

a and b are determined experimentally. Although debris formations are not vertical
cylinders, a series of flume tests on model debris by Shields and Gippel (1995) verified
the form of this equation for debris formations, and provided values for coefficients a
and b. The ratio d

w
was substituted by the blockage ratio B:

B =
Ld

A
, (1.2)

where L is the projected length of debris in flow, d is the diameter of debris in flow
and A is the cross-sectional area of flow.

The Manning’s equation The Manning equation for mean flow velocity, V , reads

V =
1

n
R2/3

√
Se, (1.3)

where R is the hydraulic radius, Se is the slope of the energy grade line and n is Manning
roughness coefficient. The utilization of this equation implies that all resistive effects –
such as vegetation, debris and other obstructions, bed roughness, channel meandering and
streambank irregularity – are lumped together and accounted for by a single coefficient.

Dudley et al. (1998) studied the effect of woody debris on Manning roughness coefficient
by using the relation for Manning’s n presented by Petryk and Bosmajian (1975) in Dudley
et al. (1998). A balance between drag and gravitational forces leads to

n = R2/3

[
CdV egd

2g

]1/2

(1.4)

where Cd is the drag coefficient of vegetation, V egd is the vegetation density and g is the
gravitational acceleration. The vegetation density is defined by

V egd =

∑
Av

aR
, (1.5)

where
∑

Av is the frontal area of the vegetation projected onto a plane perpendicular to
the direction of flow and a is a unit surface area of the channel bed. The development
of Eq. (1.4) is reproduced in details in Dudley et al. (1998). Measurements prior to and
following the removal of woody debris indicated that the average Manning’s n value was 39
percent greater when woody debris was present. It was also observed that the impact of

5

debris on the value of Manning’s n decreased with an increase in unit discharge, suggesting
a convergence of channel roughness of cleared and uncleared reaches at high flows. We may
therefore expect Manning’s n value to be constant at high flow rates and woody debris to
have little impact on total resistance.

The Darcy-Weisbach friction factor A technique for partitioning the total resistance into
various components – the resistance due to woody debris being one component – was devel-
oped by Shields and Gippel (1995). A different Darcy-Weisbach friction factor is associated
with each resistive component, thereby allowing for a more accurate analysis of the effect of
the sole woody debris on flow resistance. The method is based on the assumption that the
flow around woody debris can be evaluated on reach level and assumed to be uniform. The
authors admit that this approach consists in a gross simplification of the complex nonuniform
flow that often occurs around and through debris formations.

The following balance is assumed to hold in a uniform flow on a control volume of length
L:

Fg = Fbed + Fbends + FLWD (1.6)

where Fg is the force of gravity, Fbed is the resistance force due to bed (grain and bar
resistance), Fbends is the resistance force due to bends and FLWD is the drag force on debris.

It can be shown that the above formula may be rewritten as

S0 =
τb

γRav

+

∑
[Bi/rci

] αV 2
av

gL
+

∑
Di

γAavL
, (1.7)

where S0 is the average bed slope, τb is the shear stress on boundaries, γ is the specific weight
of water, Rav is the mean hydraulic radius, Bi is the ith bend water surface width, rci

is the
ith bend radius of curvature, α is the kinetic energy correction factor (assumed to be 1.15 in
Henderson (1966)), Vav is the mean flow speed,

∑
Di is the resistance due to debris and Aav

is the fluid control volume divided by the reach length L.

The Darcy-Weisbach equation for uniform flow in an open channel is

S0 =
fαV 2

av

8gRav

, (1.8)

where f is the Darcy-Weisbach friction factor representing total flow resistance. Now, the
idea is to partition the friction factor into four components:

f = fgrain + fbedform and bar + fbends + fdebris (1.9)

6

so that the last term of (1.7) may be expressed as

∑
Di

γAavL
=

fdebrisαV 2
av

8gRav

. (1.10)

Finally, the form drag of a piece of solid wood in flow is

Di =
Cdi

γV 2
i Ai

2g
(1.11)

where Vi is the upstream (approach) velocity of ith debris formation and Ai is the projected
area of ith debris formation. By combining (1.10) and (1.11), we can solve for the Darcy-
Weisbach friction factor due to debris, provided that the drag coefficient Cdi

be properly
assessed.

Field experiments in cleared and uncleared reaches of the Obion and Tumut rivers (Aus-
tralia) were carried out by Shields and Gippel (1995) in order to

1. evaluate how close the computed value of the Darcy-Weisbach friction factor was rel-
ative to the measured value in the field;

2. evaluate the impact of the presence or removal of woody debris on the total friction
factor under different flow conditions.

The study site of the Obion River was straight and the bed was mainly made of sand. The
Tumut River channel in the study area was a sinuous, fast-flowing river with a bed mainly
composed of gravel (75 %). In both rivers, computed values of Darcy-Weisbach friction
factor were slightly more accurate for reaches with debris (errors ranged from -28 to +19
%) than for reaches without debris (errors ranged from -38 to +30 %). The mean of the
absolute values of errors was lower for the straight sand-bed Obion (13 %) than for the
sinuous, gravel-bed Tumut (19 %).

As regards debris removal, modest effects were observed. Increases of 6 % and 22 % in
flow conveyance were reported in the Tumut River and Obion River, respectively.

Another study by Manga and Kirchner (2000) centered on the estimation of the partition-
ing of flow shear stress between woody debris and streambeds. Their measurements showed
that, even though LWD covered less than 2 % of the streambed, they provided roughly
half of the total flow resistance. This result was obtained by using different methods of
measurement. One of these consisted in inferring the drag from water surface steps, using
conventional energy balance arguments. It is now well established that woody debris causes
a perceptible afflux, or local increase in the elevation of the water surface (Gippel (1995),
Gippel et al. (1996a), Gippel et al. (1996b)). Therefore, LWD are associated with abrupt
steps, indicating localized energy dissipation by LWD drag. Manga and Kirchner (2000)
showed that, when the Froude number is small, the shear stress due to woody debris is

7

directly proportional to the local afflux. Moreover, they reported that half the drop in the
water surface elevation through the surveyed reach occurred in steps associated with LWD.
In other words, half the total dissipated energy – or half the total shear stress – was caused
by LWD, a result that was also furnished by direct measurements of drag on woody debris.

In their experiments, Gippel et al. (1996b) measured that 15 % of the total afflux was
caused by the largest item (out of a total of 95 items of debris) and the ten largest items
accounted for 57 % of the total afflux. Now, relating these results with those of Manga and
Kirchner (2000) might suggest that more than half the total resistance due to woody debris
be caused by the ten largest items. This might further suggest that more effort should be di-
rected toward an accurate modeling of local flow around the largest items and that the latter
should be geometrically well represented and maybe included into the stream morphology.
In this respect, Shields and Nunnally (1984) suggested that logjams large enough to have a
damming effect be incorporated in backwater profile computations as geometric elements in
the channel boundaries rather than being treated as roughness components.

This last recommendation is important for it consists of a deviation from the global ap-
proach associated with the flow resistance equations described earlier. The latter may be
adequate for the hydraulic management of the stream – such as LWD removal or introduction
and its global effect on resistance – but do not represent any local effect – which is believed
to be the most significant on an ecological point of view.

Velocity distribution

A closer look at the flow patterns in the neighborhood of LWD would not only help obtain
a more accurate description of the flow on the stream-scale, but it would also assist the
prediction of aquatic development of fauna and flora. Indeed, hydraulic diversity created
and maintained by debris enhances fish species diversity by providing habitat, through a
range of flow conditions, for a variety of species and age groups. Dead-water zones provide
areas for resting and for refuge during high flow conditions and low-velocity zones furnish a
concentrated source of food (Sullivan (1987) in Gippel (1995)).

Moreover, the knowledge of precise values of depth and velocity at numerous points within
the study reach is required for Instream Flow Needs (IFN) assessment techniques. One
of the most widely used IFN assessment models in North America, the Physical Habitat
Simulation System (PHABSIM), utilizes these hydraulic parameters as input variables to
produce relationships between streamflow and usable habitat area for different life stages of
varying fish species (Ghanem et al., 1996). It is expensive to perform measurements in the
field in order to obtain those parameters so that a hydrodynamic model that would provide
these input variables is desirable.

As it was mentioned earlier in this paper, very few studies have focused on the local
flow pattern around woody debris and most hydraulic research has been directed toward
determining the global effect of LWD – traditionally on flow resistance – given the density
of debris. However, using field measurements on a sand-bed stream reach in East Germany,
Mutz (2000) assessed the local flow patterns and turbulence in the neighborhood of woody

8

debris. His study showed that the flow pattern was clearly controlled by the wood. Mutz
turned his attention on two types of woody debris, depending upon its height relative to the
stream bed. Woody elements elevated above the stream bed deflected the flow and locally
caused strong secondary currents and high turbulence. Woody debris resting directly on the
stream bed determined the roughness of the latter. More will be said in the next section
about wood as roughness elements.

The localized effect of elevated wood can also be seen for the vertical velocity distribution.
In a section intersecting big log, the flow was directed towards the stream bed and the vertical
velocity gradient in the free flowing water could become reversed. These results suggest that:

1. the local flow around elevated woody debris be inherently three-dimensional. As a
consequence, any depth-averaged two-dimensional modeling will fail to represent the
local hydraulic diversity associated with elements of wood;

2. elevated woody debris be generator of high turbulence intensities. We may therefore
legitimately expect this type of debris to be the cause of energy dissipation through
turbulence in the first place.

LWD as roughness elements

The hydraulic effects of LWD have been reviewed on the global scale given a certain density
of woody debris (i.e., effects on flow resistance) as well as on the local scale, generally around
single elements of debris. However, LWD also influences the flow on an intermediate scale,
depending upon the pattern of woody elements lying on the stream bed. In his review of
woody debris hydraulics, Gippel (1995) refers to this situation as multiple roughness elements.

According to the nomenclature introduced by Morris (1955) and subsequently used by
Davis and Barmuta (1989) and Young (1992), we may define three types of flow over rough-
ness elements based on the roughness index, which is the ratio of horizontal roughness spacing
λ to roughness height h. The three types of flow are depicted in Figure 1.3.

When the roughness elements are far apart, they act as isolated bodies on which are
exerted drag forces by the flowing fluid. The wake zone and vortex-generating zone at each
element are completely developed and dissipated before the next element is reached. The
apparent friction factor would therefore result from the form drag on the roughness elements
in addition to the bottom friction between elements. This type of flow is termed isolated-
roughness flow.

The so-called skimming flow (or quasi-smooth flow) occurs when the elements are so close
together that the flow skims over their crests. In the groove between the elements, there
will be regions of dead water containing stable vortices. According to Morris (1955), much
of the energy loss can be attributed to the maintenance of the groove vortices.

An intermediate situation develops when the distance between each element is approx-
imately equal to the length of the wake generated by each element, in which case wake-
interference flow occurs and considerable turbulent mixing is generated.

9

h

λ

D

(a)

(b)

(c)

j

Figure 1.3: The three types of flow based upon roughness element geometry. Redrawn from
Young (1992). (a) Isolated roughness flow. (b) Wake interference flow. (c) Skimming flow.

10

To define threshold criteria between those types of flow, three parameters are of impor-
tance: the roughness height (h), the roughness spacing (λ) and the groove width (j). When
the roughness index λ/h is large, isolated-roughness flow will occur whereas when λ/h is very
small, skimming flow will be present, provided that the roughness height be of reasonable
value relative to the depth D. In this respect, Davis and Barmuta (1989) and Young (1992)
noted that chaotic flow occurred for roughness height such that D ≤ 3h. Under such condi-
tions, flow structure is very complex and near-bed velocities are determined by the shape of
the local flow boundary. In chaotic flow, the entire flow is affected by the geometry of the
bed and energy losses are high.

The distinction between isolated-roughness flow and wake-interference flow can be made
when the wake behind the roughness element just reaches the next roughness element. This
transition is primarily affected by the roughness spacing λ. By equating the expressions for
the frictional resistance in the two types of flow, Morris (1955) derived an equation (his Eq.
(27)) for determining the critical value of transition λc:

λc/h

Cd

(
1− ns

P

) =
67.2/100

(2 log y/λc + 1.75)2 − 1, (1.12)

where Cd is the roughness element drag coefficient, P is the cross-stream wetted perimeter,
n is the number of elements across a section, s is the cross-stream groove width and y is the
depth of water above the roughness element.

As noted by Morris (1955), a criterion to differentiate between wake-interference flow and
skimming flow cannot be set up in a similar manner – that is by equating two expressions
of frictional resistance – because the latter move away from each other rather than converge
as λ approaches the critical value. Thus, there is likely to be a sudden change, occurring
when the stable vortex in the groove gives way to the typical flow-separation phenomenon.
Wake-interference flow is likely to appear when the groove width j is much larger than the
depth D, in which case the vortex will adhere to the upstream face of the groove and the
stream will flow over and down the vortex against the downstream groove face.

It should be pointed out that, from a biological perspective, it is the threshold between
skimming and wake-interference flow that is of far greater importance, inasmuch as it indi-
cates a change from stable, relatively sheltered conditions within a groove to an unstable,
more turbulent flow regime Young (1992).

The above discussion shows that effects of roughness elements on the flow field may be
reasonably well predicted if we assume that

1. the spatial distribution of woody debris on the bed may be retrieved;

2. the geometry of single elements of wood is fairly well known;

3. the spatial distribution is uniform, without which the previous results might become
irrelevant. (We may relax the last statement by assuming that a patchwise uniformity
may be sufficient for the applicability of the results).

11

In the realm of stream restoration, the work by Morris (1955) is useful and of direct
applicability because it provides information as to how arrange woody debris in rivers to
minimize resistance for a given desirable debris volume (for ecological purpose). In this
very situation, people have control on the distribution as well as on the geometry of single
elements. However, in a reversed situation in which the stream under study presents LWD
randomly distributed by nature, this does not hold true. It then becomes indispensable to
devise a technique to assess the distribution and geometry of LWD. As we will see later, it
seems that a systematic approach to evaluate the distribution of LWD is yet to be found and
most people have employed rather archaic methods to do so (e.g., close-up photographs, a
method that could be invalidated in case of high turbidity).

To finish this section, we ought to mention a study by Nowell and Church (1979). They
extended Morris (1955)’s approach by classifying flow types according to the planform density
of roughness elements (that is, the ratio of total plan area of roughness elements to total
plan area of channel). Skimming flow occurred at densities of 0.125-0.083, wake-interference
flow occurred at densities of 0.063-0.045 and isolated-roughness flow required a density as
low as 0.02.

LWD and dimensionless numbers

A somewhat different perspective on LWD is described in Kemp et al. (2000). They es-
tablished a link between so-called functional habitats (biologically defined habitat units) and
flow biotopes (hydraulically defined habitat units) using Froude number. Functional habi-
tats are objectively defined habitat units, made up of substrate or vegetation types, which
have been identified as distinct by their invertebrate assemblages. Fifteen of the 16 func-
tional habitats were found to be distributed with Froude number in a non-random fashion,
woody debris being the exception. This information may prove useful for stream rehabil-
itation projects insofar as hydraulic dimensionless numbers, such as Froude number, can
be manipulated through changes to channel morphology in order to obtain desired habitat
heterogeneity (Kemp et al., 2000).

The lack of correlation between woody debris and Froude number may misleadingly suggest
that flow characteristics not influence the pattern (distribution and whether woody debris
is present or not) of LWD. However, this conclusion might conceal other potential causes to
this lack of correlation, as mentioned in Hodges (2002):

1. Other hydraulic variables, such as the Reynolds number or turbulent intensities, may
be significantly correlated to functional habitats made up of LWD.

2. Froude number is important but its measurement in the presence of LWD was faulty
(because strongly affected by secondary currents and/or fluctuating velocities associ-
ated with turbulence).

3. There are some scales of LWD for which no correlation exists between flow type and
habitat. (For some scales – in particular very large pieces of wood –, it might be more
successful to consider woody debris as being part of stream morphology rather than
functional habitat).

12

1.1.3 Effects of LWD on stream morphology

Although this review is intended to mainly center on the hydraulics of LWD, for the sake
of completeness and because modifications of stream morphology eventually affect the flow
pattern – whether there is woody debris or not –, we should briefly review the effects of LWD
on stream morphology. Following the suggestion of Harmon et al. (1986), the geomorphic
roles of LWD can be grouped into effects on landforms and on transport and storage of
sediment. A priori, modifications of landforms are more significant to affecting, in turn, the
flow field whereas sediment transport is more likely to matter on an ecological point of view
even if changes in local bed roughness – and thus flow resistance – are expected as well.

Many studies showed that pools were associated with the presence of large woody debris
lying on the bed or partially spanning the channel with one end supported on the bank and
the other on the streambed (Keller and Swanson (1979), Cherry and Beschta (1989), Mutz
(2000)). A generic situation is delineated in Figure 1.4. LWD can increase pool frequency
and variability in pool depths (Harmon et al., 1986). In addition to locally scouring the
stream bottom, erosion may also increase channel width as water is diverted around the
obstruction (Keller and Swanson, 1979).

log
free surface

stored sediment pool

Figure 1.4: Idealized diagram showing concept of pool formation. Redrawn from Keller and
Swanson (1979).

Even if stream morphology is affected, time scales of acting processes are much larger
than that associated with streamflow features. As an example, the presence of LWD may
deflect the flow toward the bank, thereby accelerating stream erosion. But, whereas changes
in the flow field occur on short time scales, bank erosion happens on much larger time
scales. Moreover, the acceleration of the latter is exclusively caused by diverted flow, hence
advocating the need to study streamflow patterns in the first place.

1.1.4 Indirect effects of LWD

As suggested by the cause-effect relationships diagram in Figure 1.2, LWD indirectly
affects stream ecology through changes in flow patterns (link v in the diagram) and stream
morphology (link vi). Indeed, as we have seen, the presence of LWD creates regions of low-
speed flow, which are preferred habitats or refuges for many fish species. Also, the diversity
in pool distribution and depth has been proved to enhance fauna variety. Furthermore,
sediment that is retained by LWD may contain organic matters that are beneficial to stream
ecosystem. Now, as it was already mentioned earlier, there exists a close relationship between
flow patterns and stream morphology (represented by link iv in the diagram). Although we
do not intend to review these indirect relationships between LWD and ecology (namely

13

links iv to vi) – they were the topic of many studies in the past –, the aim of the above
considerations was to support the proposition that stream hydrology is found at the center
of those interactions and that a closer and detailed look at the direct relationship between
LWD and flow patterns, without being the panacea, is likely to furnish many answers.

1.2 Objectives

Evaluation of flow resistance on a global scale (a zero-dimensional method) does not gen-
erally require any assessment of LWD distribution more accurate than that given by its
planform density. The knowledge of flow resistance is of high significance when it comes
to managing flow capacity. In particular, for regulated rivers, in which flow capacity is to
be maximized, the optimum debris loading will be the minimum required to maintain eco-
logical integrity. On the other hand, flow resistance is very likely to be poorly correlated
to local stream ecosystems. The so-called field of ecohydrology, linking channel hydraulics
and morphology (Kemp et al., 2000), is chiefly concerned with local in-stream physical ef-
fects. Ecohydrology therefore becomes relevant when local in-stream measurements – of flow
types and morphological features – are available, or provided by a hydrodynamic model.
Not surprisingly, in this respect, the two-dimensional finite element model of physical fish
habitats developed by Ghanem et al. (1996) appeared to be significantly better than a one-
dimensional approach, such as the application of HEC-2. Their results strongly encourage
the utilization of such model dimensionality – with adequate subgrid scale parameterization
to account for the presence of LWD – to predict physical habitat distribution in streams
with woody debris.

Nonetheless, 2D models require detailed bathymetry surveys as well as methods allowing
for the identification of LWD in the data set. The latter requirement is crucial in the modeling
process because it allows for discerning what would be true bathymetry behind that polluted
by LWD. Furthermore, knowing the locations of LWD is useful for aquatic habitat analysis.

The objective of this research is to develop a systematic approach to identify LWD within
a bathymetry survey data set in order to produce two outputs:

1. Bathymetric data set devoid of LWD, ready to use in 2D modeling (e.g., for interpola-
tion).

2. A set of LWD locations, ready to use in aquatic habitat analysis.

This thesis describes the steps taken to achieve this objective.

14

Chapter 2

Methods

Over the past decade, two-dimensional (2D) hydraulic models of rivers and streams have
been supplanting one-dimensional (1D) models for use in aquatic habitat analysis (CITE).
The increase of model dimensionality allows better representation of the spatial structure of
the flow depth and velocity that affects habitat availability, while simultaneously reducing the
need for extensive field data over multiple river discharge rates for model calibration (CITE).
However, there does appear to be a conservation of difficulty. While requiring less flow data
from the field, the 2D models require more detailed bathymetric surveys. Furthermore, the
survey result must be interpolated to the 2D model grid (see Figure 2.1), so the complex
relationship between the survey resolution, model resolution and method of interpolation
affects the final accuracy of the model bathymetry (CITE paper on MEBAA that Barney
and Tim are working on?). For smooth bathymetries, there is little difficulty in developing
accurate translations from survey data to model; however, in rivers with significant bottom
structure (e.g., LWD, Figure 1.1), simple data averaging and interpolation methods may
lead to misrepresentation of the bottom bathymetry (see Figure 2.2) that can distort the
depth and velocity results of a model. In this thesis, we examine systematic methods for
identifying LWD in single-beam echo sounder data so that the river bathymetry (rather than
the LWD) can be appropriately interpolated to the model grid.

Figure 2.1: Surveyed bathymetry data points (dots) must be interpolated to the finite element
mesh.

15

���
���
���
���
���
���
���

���
���
���
���
���
���
���

Mean depth

Average distance

Figure 2.2: Distortion of bathymetry data due to the presence of large woody debris.

As a part of an aquatic habitat analysis for the Sulphur River, Texas (Osting at al , 2003),
the Texas Water Development Board (TWDB) conducted a fine-scale bathymetric survey
of a 1.36 km river reach on the mainstem Sulphur River. Streamflow in the Sulphur River
is generally from west to east and drains approximately 9300 square kilometers. Data of
hydraulic site located just north of IH-30 and just west of the US-259 bridge that crosses
the river is under examination in this paper. The river bathymetry was surveyed using an
echosounder (Knudsen Engineering’s 320BP High Frequency 200 kHz Portable Echosounder)
recording an average of nine depth measurements per second, while the boat position was
recorded only once per second using a differential Global Positioning System (GPS). The
TWDB used a single-frequency (L1) Trimble ProXRS GPS receiver with real-time satellite
differential correction (DGPS) service provided by Omnistar. The boat speed (based on
GPS data) averaged 1.4 m s−1 with a standard deviation of 0.5 m s−1. Previously, TWDB
bathymetric surveys used the average of the nine depth measurements taken around each
GPS data point, giving an effective survey resolution along the boat track of 1.5 m. However,
as LWD may have width scales on the order of 10 cm, it follows that averaging the sounding
data over a GPS position will distort the computed bottom boundary as illustrated in Figure
2.2. Using a linear estimate of the boat velocity from GPS data and distributing the depth
measurements uniformly along this track, the survey resolution is approximately 16 cm. As
shown in Figure 2.3, this higher-resolution bathymetry shows spikes that are significantly
moderated in the averaged bathymetry, and appear to distort the smoothness of what might
be expected to be true bathymetry.

It was impractical to provide direct physical confirmation of the correlation between the
data spikes (e.g., Figure 2.5) and LWD at the high flow rates under which the Sulphur
River bathymetric surveys were conducted. While it is reasonable to infer such correlation
based on the photographic evidence of emergent LWD at low flow rates (e.g., Figure 1.1),
to improve our confidence in this inference we conducted a separate field test to examine
the performance of the depth sounder over a known piece of LWD. On April 2, 2003, we
located a piece of emergent LWD in the Guadalupe River of Central Texas (see Figure 2.6)
that had a submerged section approximately 60 centimeters below the water surface. To
provide controlled and repeatable data collection over the LWD and across the river during
the relatively high flow rate period, a rope was stretched across the river and the boat was
hand towed at speeds of 0.4 m s−1 and 0.6 m s−1, which is somewhat slower than the 1.4

16

1 I;:::]

--'--------------~

1245 1250 1255 1260 1265

1

2

3

4

5

6

7

Distance [m]

De
pt

h
[m

]

Figure 2.3: Distributed depth measurements along boat track are represented by points while the
solid line is the averaged bathymetry.

Figure 2.4: One of the boat tracks for the Sulphur River bathymetric survey conducted on May
2001 by TWDB between (33◦ 18’ 31.23” N, 94◦ 43’ 37.57” W) and (33◦ 18’ 24.18” N, 94◦ 43’ 09.70”
W).

17

280 285 290 295 300 305 310

0

1

2

3

4

5

6

Distance [m]

D
ep

th
 [m

]

Figure 2.5: Section of Sulphur River bathymetry containing spikes. The average distance between
depth measurements is 16 cm and for the purpose of clarity, linear interpolation has been performed.

m s−1 speed used in the Sulphur River survey. The results of higher speed surveys can be
estimated by sub-sampling the data sets. It is clear from Figure 2.7 that the signature of
the LWD in the Guadalupe River data set is similar to the spikes seen in the Sulphur River
(Figure 2.5).

Figure 2.6: Submerged piece of woody debris in Guadalupe River.

18

0 5 10 15 20 25 30 35

0

1

2

3

4

5

6

7

Distance [m]

D
ep

th
 [m

]

Figure 2.7: Surveyed cross-section of Guadalupe River over submerged piece of LWD (represented
by the spike on the left side). Top and middle graphs show profiles obtained at different boat speeds
(0.4 m s−1 and 0.6 m s−1, respectively). Bottom graph is a decimated version of the top graph,
sub-sampled at every 4th data point.

19

Chapter 3

Statistical techniques

The aim of this chapter is to evaluate what statistical analysis techniques can yield in
terms of LWD spatial distribution.

3.1 Moving average

Computing the mean depth for each distinct GPS position, we obtain profiles that are
smoothened out as shown in Figure 3.1. The title of this section might be misleading
inasmuch as, strictly speaking, the process of computing the average per GPS position does
not equate a moving average in our case. Indeed, the number of depth soundings included
in the mean depth calculations varies from six to ten, with 86% of mean depths calculated
from sets containing nine depth soundings. For this process to be a moving average, each
successive mean depth ought to be computed from sets containing exactly the same number
of depth soundings. We will, however, continue to refer to it as a moving average.

Examination of these profiles allows for making the following comments. Computing the
mean depth for each distinct GPS position inevitably leads to the disappearance of some
spikes when these only consist of one or two depth soundings. On the other hand, broader
spikes linger after averaging. This dual situation can be seen in Figure 3.1, especially graph
(d), where only spikes around distances of 1250 m and 1260 m remain after averaging while
spikes situated at positions 1180 m and 1225 m completely vanish. Similarly, examining
graph (b) permits to witness the absence of spikes in the mean depth profile at distances of
300 m and 370 m. Yet, severe spikes can be seen in on the dotted line at the same locations.

One would then legitimately enquire as to why such an averaging process – accompanied
with a loss of valuable information – would take place. The answer lies within the realm of
numerical computations. In hydrodynamic modeling of rivers, grid resolutions very seldom
attain values below one meter so that, eventually, bathymetry data will be interpolated at
computational nodes that are of the order of one meter apart (for the finest grid resolutions).
Consequently, there is no possibility for keeping intermediate depth soundings per se (16
centimeters apart, on average), yet crucial need for these coalesced data (the mean depth in
our case) to contain as much information associated with intermediate depth soundings as
possible. This consideration should be the principle criterion upon which any selection of
statistical or spectral technique is made.

20

(a) (b)

(c) (d)

100 120 140 160 180 200

3.5

4

4.5

5

5.5

6

6.5

7

Distance [m]

D
ep

th
 [m

]

280 300 320 340 360 380

0

1

2

3

4

5

6

Distance [m]

D
ep

th
 [m

]

900 950 1000

0

1

2

3

4

5

6

Distance [m]

D
ep

th
 [m

]

1180 1200 1220 1240 1260

0

1

2

3

4

5

6

7

Distance [m]

D
ep

th
 [m

]

Figure 3.1: Selected sections of bathymetry data: diamonds represent mean depths for each
distinct GPS position while the dotted line is the bathymetry including all depth measurements.

21

The moving average, as it was presented, conducts to a loss of extremely valuable infor-
mation. Most spikes simply get absorbed into the calculation of the mean depth, leading
to a much smoother profile. It should be pointed out, however, that some spikes remain
visible in the smooth profile. This occurs when the spikes are formed by a large set of depth
soundings. In that situation, the mean depth is closer to the would-be woody debris depth
than the streambed depth. On the other hand, when the spike is made of one or two depth
soundings, the mean depth reaches a value close to that of the streambed depth. This dual
situation is illustrated in Figure 3.2.

(a)

(b)

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

0

1

2

3

4

5

Distance [m]

De
pt

h
[m

]

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230

0

0.5

1

1.5

2

2.5

3

Distance [m]

De
pt

h
[m

]

Figure 3.2: Influence of the number of depth soundings (represented by ◦) forming the spike on
the calculation of the mean depth (represented by ♦). (a) A spike caught by seven depth soundings
leads to a high mean depth, close to the spike depth itself. (b) Spikes made of one or two depth
soundings do not result in an observable disruption of the smooth profile.

For the sake of completeness, the same comparison analysis may be performed on the
Guadalupe River survey results. Namely, a superimposition of the original profile (containing
all depth soundings) and the mean depth profile. As it was previously suggested, slow-pace
river crossings should lead to spatially wide LWD signatures, that is including a significant
number of depth soundings. A corollary is the subsistance of a spiky signature in the mean
depth profile. This is illustrated in Figure 3.3.

3.2 Moving average and standard deviation

The aforementioned scenario suggests that some improvement be made to this simple
averaging technique. Together with the mean depth, it turns out to be informative to
compute the standard deviation of the set of depth soundings. A large standard deviation is
expected to result from sets containing spikes shaped by one or two depth soundings. This

22

(a)

(b)

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

Distance [m]

De
pt

h
[m

]

20 21 22 23 24 25 26 27 28 29 30 31

0.5

1

1.5

2

2.5

3

Distance [m]

De
pt

h
[m

]

Figure 3.3: For the pilot study in the Guadalupe River, slow-pace crossings lead to spatially-wide
LWD signatures (depth measurements are represented by ◦). The mean depth profile (dotted line
and ♦) reflects this peculiarity. (a): Depth measurements taken at a slow pace from right bank to
left bank. (b): Depth measurements taken at a faster pace from right bank to left bank.

expectation proves true and previously-studied bathymetry profiles are shown in Figure 3.4.
A close look at graphs (b) at distances 300 m and 370 m and (d) at distances 1180 m and
1225 m permits to establish the usefulness of computing the standard deviation. Indeed,
these locations do not feature any spike in the mean depth profile but a large standard
deviation – indicative of the presence of spikes in the original profile – is clearly visible.

The combination of mean depth and standard deviation allows for keeping some infor-
mation regarding the location of spikes. However, width and depth of LWD still remain
unknown. The averaging process, which gives rise to a bathymetry that neither is totally
smooth nor contains all its original spikes, is rendered useless by the latter property. One
would rather wish to work with a bathymetry that is completely disposed of disruptive
spikes, yet still know where those spikes lie within the profile in order to model LWD effects
properly.

3.3 Semivariogram

The semivariogram approach as been widely applied in mining geostatistics for which it
was originally developed (Journel and Huijbregts, 1978). The semivariogram has been used
as a basic statistical method for investigating roughness properties of bed profiles obtained
from field work and laboratory experiments (Oliver and Webster (1986), Robert (1988) and
Robert and Richards (1988)).

23

(a) (b)

(c) (d)

100 120 140 160 180 200

3.5

4

4.5

5

5.5

6

6.5

7

Distance [m]

D
ep

th
 [m

]

280 300 320 340 360 380

0

1

2

3

4

5

6

Distance [m]

D
ep

th
 [m

]

900 950 1000

0

1

2

3

4

5

6

Distance [m]

D
ep

th
 [m

]

1180 1200 1220 1240 1260

0

1

2

3

4

5

6

7

Distance [m]

D
ep

th
 [m

]

Figure 3.4: On each graph, the dotted line is the bathymetry profile represented by all depth
soundings. The diamonds are the mean depths, as in Figure 3.1. Error bars indicate standard
deviations.

24

11\ .
• I.I.. 1 ~.~'>' . r V~i~' :f ~L -

'",. ··14· '
\. .. 1"'V'1 I .

. I

II

~ T.:

' .. h (11 ~~ .
I t i 411
f 1 I ~,

'. 1.··· : .
.J V

I

. ~ ..,}!
[j\ ' !'\ flJ' , j /! " "

", ... 1' .." \. r. : .. 'il~ \ ,""" j V ", -V~ 1 ,

Under the stationarity hypothesis1, the semivariogram function γ(h) takes the following
form Journel and Huijbregts (1978):

2γ (h)
.
= Var [Z(x)−Z(x + h)] = E

[
(Z(x)−Z(x + h))2] (3.1)

where h is the lag and Z(x) is the random variable of interest. In our situation, the random
variable is the stream depth and the stationarity hypothesis translates to assuming that the
semivariogram function does not depend upon the locations defining the lag h but rather only
depends upon h itself. Such an assumption renders statistical inference possible (Journel and
Huijbregts, 1978).

In practice, only discrete samples are available and the empirical semivariogram γ̂(h),
reads (Robert and Richards (1988) and Robert (1988))

2γ̂(h) =
1

(N − h)

N−h∑
i=1

[Z(xi + h)−Z(xi)]
2 ,

where N is the number of measurements.

The function γ(h) summarizes the spatial variation in the data. It is customary to fit
standard mathematical functions to sample semivariograms from which parameters can give
insight into the nature of spatial variation of bed elevations. It should be emphasized,
however, that the usefulness of this approach resides in its ability to extract information
on larger-scale bedforms by bypassing erratic smaller-scale components. In this respect, we
should not expect the semivariogram to yield valuable information on the spikes since its
main purpose is to get rid of them. Keeping in mind that our utlimate goal is to find a way
to separate – or filter out – all spurious spikes from an otherwise smooth bed profile, the
semivariogram technique ought to be regarded as a way to evaluate to what extent such a
filter affects larger-scale bedforms.

Due to boat speed variations, the bathymetry sampling interval (∆ξ) is not constant.
In order to compute the semivariogram, the bathymetry was subsequently interpolated at a
constant value of ∆ξ = 15 cm for a total number of samples N = 12,000. The semivariogram
is shown in Figures 3.5 and 3.6, using linear and log-log scales, respectively.

On both Figures 3.5 and 3.6, the thick dotted line is the empirical semivariogram calculated
from the bathymetry samples and the dashed line is an exponential curve fit obeying the
following law:

c [1− exp (−h/r)] (3.2)

where c = 0.92 and r = 7.73 have been obtained by minimizing the residual sum of squares.

1A random variable is said to be stationary when its spatial law is invariant under translation.

25

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

Lag h [m]

γ(
h)

/2
 σ

2 [−
]

Figure 3.5: The thick dotted line represents the observed semivariogram. The exponential curve
fit is depicted by the dashed line. The so-called sill, or a priori semivariance of the set, is found to
be c = 0.92.

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

Lag h [m]

γ(
h)

/2
 σ

2 [−
]

Figure 3.6: Same as Figure 3.5
on a log-log scale.

26

The semivariogram was calculated for lags up to a quarter of the series length (as recom-
mended in Robert and Richards (1988)), i.e., up to 450 m. Beyond that point, results
obtained from statistical inference may become questionable.

In his review of semivariogram general forms, Robert (1988) distinguishes between two
general cases. Sand-bed profiles yield an unmistakable periodic oscillation at a more or less
constant value of γ(h) (identified as c in Figure 3.5). Semivariograms of gravel-bed profiles
present totally different statistical properties. When plotted on a log-log scale, they present
two distinct linear increases of γ(h) with distance. Clearly, none of the semivariograms in
Figures 3.5 and 3.6 present these properties. It is not clear why this semivariogram does not
fall into one of the aforementioned categories but it might be caused by the coarseness of
the sample. Indeed, Robert (1988) used a sampling interval of 5 mm, a factor of 20 smaller
than ours.

3.4 Scale-space analysis

3.4.1 Presentation of the method

The scale-space filtering technique was introduced by Witkin (1983) for the analysis of
signals and subsequently adapted by Bergeron (1996) to analyze stream-bed roughness. The
modified technique provides a multiscale version of bed profiles that allows the identification
of single roughness elements at all scales of observation. Two steps can be outlined:

1. Successive applications of Gaussian filter on the original data. The original
signal is progressively smoothened by successively applying a Gaussian filter of mean
µ = 0 and standard deviation σ. The so-called scale-space image is a two-dimensional
representation of smoothened versions of the original signal. Such a scale-space image is
shown in Figure 3.7 after nine applications of the Gaussian filter of standard deviation
σ = 10 m.

2. Construction of fingerprint. Each smoothened signal features peaks and troughs,
some of them disappearing with increasing smoothening, as can be seen in Figure 3.7.
A fingerprint is obtained by plotting the location of these features (peak or trough)
against the smoothing level. The fingerprint associated with our previous example
is shown in Figure 3.8 for 50 levels of smoothing, i.e., 50 applications of the same
Gaussian filter.

The effect of the progressive smoothing can be visualized in Figure 3.7. Between approx-
imately 220 and 400 meters, three main peaks are clearly distinguishable. On the sixth
smoothened profile, between the same locations, those three peaks have collapsed into one
main peak. A similar observation may be made for the bedform located between 1450 and
1550 meters. The first level of smoothing removes all details while preserving the general
shape of the bedform. However, not only does Gaussian filtering simplify the signal by re-
moving small-scale features, it also distorts it by broadening and flattening the remaining
features (Bergeron, 1996). It should be pointed out that the distortion of the signal, inherent
to Gaussian filtering, renders it useless for the very purpose of modeling. Yet, we should

27

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

20

25

30

35

40

45

50

55

Distance [m]

B
ed

 e
le

va
tio

ns
 r

el
at

iv
e

to
 a

rb
itr

ar
y

da
tu

m
 [m

]

Figure 3.7: Scale-space image issuing from nine successive applications of a Gaussian filter of
standard deviation of σ = 10 m. Original profile is at bottom.

(a)

(b)

(c)

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

S
m

oo
th

in
g

le
ve

l

0 200 400 600 800 1000 1200 1400 1600 1800

0

2

4

6

8

D
ep

th
[m

]

0 200 400 600 800 1000 1200 1400 1600 1800
0

5

10

15

S
m

oo
th

in
g

le
ve

l

Distance [m]

Figure 3.8: Fingerprint obtained by plotting the location of features (peak or trough) against the
level of smoothing. Gaussian filter (σ = 10 m) has been applied 50 times. (a) 50-level fingerprint.
(b) Bathymetry profile. (c) Zoomed fingerprint: 15 first levels.

28

be able to gather information on the structure of the signal at different scales, which is the
objective of this technique.

The fingerprint contains the information required for a multiscale description of the signal.
Each closed arch (visible for lower levels of smoothing in Figure 3.8) corresponds to a feature.
Small arches are associated with small-scale features that disappear rapidly. Bigger arches
correspond to larger scale features persisting over a wide range of scales (Bergeron, 1996).
We may now examine how the fingerprint presented in Figure 3.8 relates to the scale-space
image. Since only the first nine smoothened signals are shown in the scale-space image, we
will investigate the fingerprint below a smoothing level of 10. The bottom graph in Figure
3.8 purposedly focuses on those lower smoothing levels. The small closed arch located at
1000 meters is to be related with the small bedform that can be seen in the original profile
in the scale-space image. In the latter, it may be observed that this peaky feature persists
for seven levels of smoothing, after which, it is totally flattened and collapses into a larger
scale feature. Now, in the fingerprint, the arch closes at a smoothing level of eight. This
exhibits coherence with the scale-space image. Two additional similar examples can be
spotted around the locations 700 meters and 1600 meters. In the former, the three peaks
first coalesce to form a larger, flattened, bedform, which eventually collapses into a new larger
scale feature. Finally, as we may expect by looking at the original signal at the bottom of the
scale-space image, a major bedform is located at 1500 meters. The ninth smoothened signal
still clearly features this bedform. Moreover, as illustrated in the top graph of Figure 3.8,
its persistence – at least up to the 50 levels of smoothing – is characterized by the vertical
dotted line at 1500 meters. The same conlusion can be made regarding the persistence of
the three big peaks around 300 meters.

The previous experiment – with a filter of standard deviation σ = 10 m – proves useful to
collect information on relatively large-scale features. Nonetheless, no valuable information
on the structure of sharp spikes – our interest – is available. It is closely related to the
utilization of an inadequate standard deviation. All spikes disappeared after the first level
of smoothing, thereby rendering arch formations impossible. This outcome suggests the use
of a smaller standard deviation.

3.4.2 Implementation

Strictly speaking, the Gaussian filter is given by

g(x) =
1

σ
√

2π
exp

(− (x− µ)2 /2σ2
)
. (3.3)

Filtering consists in convolving the original signal with the Gaussian filter :

F (x) = f(x) ? g(x)

=

∫
f(u− x)

1

σ
√

2π
exp

(− (u− µ)2 /2σ2
)
du, (3.4)

where the integral is computed over the range of f(x).

29

The bathymetry data that we are using is discrete and the above theoretical framework
must be adapted accordingly. Several issues must be taken care of in the implementation.
Since the filter is symmetrical, the discrete convolution is equivalent to replacing every sample
by a weighted average of the bed profile over the width of the Gaussian filter, centered at the
sample under consideration. In theory, the width of the filter is infinite so that a practical
width must be selected. Following the recommendation of Bergeron (1996), a filter halfwidth
4σ was used. As a result, the filter could not be applied to bed elevations situated at the
extremities of the dataset. The sampling interval of our dataset is not constant so that,
for each bed elevation, the number of samples comprising the weighted average varies. This
leads to some computational inefficiency – the filter width must be determined for each bed
elevation – but interpolating the original profile to produce constant sampling intervals would
inevitably lead to distortion of sharp spikes. The final step consists in the identification of
peaks and troughs within each filtered profile. The whole procedure is performed by a C
program, whose output is a series of vectors containing the locations of features for each
level of smoothing. Plotting such information is straightforward in Matlab.

3.4.3 Applications

As previously suggested, a new experiment with a smaller standard deviation must be
effectuated. The mean sampling interval being 16 cm, a standard deviation of σ = 20
cm has been chosen. This will ensure that all bed elevations within 80 cm of a given
sample be included in the calculation of the associated weighted average. The fingerprints
associated with bathymetry sections presented earlier in this paper – namely bathymetry
sections of Figure 3.1a-d – are presented in Figures 3.9 through 3.12 and are discussed
below. Gaussian filtering has been applied 200 times. Each figure features three graphs.
The center one represents the bathymetry profile being analyzed while the top and bottom
plots are fingerprints. The top one shows all 200 smoothing levels and the bottom graph
zooms on the 50 first smoothing levels, which allows for identifying smaller scale arches.

Whereas fingerprints seem to be an adequate technique to identifying large-scale bathymetry
features, a lack of coherence appears when it comes to spotting extraneous spikes. In Figure
3.9), we may put three spikes under scrutiny. They are located right before 120 meters, at
140 meters and right after 170 meters, respectively, and are indicated by arrows. The first
spike is shaped by one sounding but no arch is associated with it. Instead, at this location,
the fingerprint is characterized by a quasi-vertical line signifying that, whatever the smooth-
ing level up to 200, this very location remains a peak in the profile. On the other hand,
arches are associated with both remaining spikes. However, they are out of proportion. Both
are approximately one-meter high but the second spike is shaped by eight soundings and the
third one is made by three soundings. We would expect the second arch to be roughly of
the same height as the third one, although the latter is very much bigger.

In Figure 3.10, spikes located at 350 meters and 370 meters (this location features a set of
three spikes) are source of some inconsistency as well. The big arch associated with the first
spike is visible on the bottom graph. Small arches corresponding to the second set are more
readily distinguishable on the zoomed fingerprint on the top graph. Whether the big arch
constitutes an overestimation – or the small arches constitute an underestimation – of the

30

(a)

(b)

(c)

90 100 110 120 130 140 150 160 170 180 190 200
0

50

100

150

200

S
m

oo
th

in
g

le
ve

l

90 100 110 120 130 140 150 160 170 180 190 200

0

2

4

6

8

D
ep

th
[m

]

90 100 110 120 130 140 150 160 170 180 190 200
0

10

20

30

40

50

S
m

oo
th

in
g

le
ve

l

Distance [m]

Figure 3.9: Fingerprint of bathymetry section presented in Figure 3.1a.

(a)

(b)

(c)

280 300 320 340 360 380
0

50

100

150

200

S
m

oo
th

in
g

le
ve

l

280 300 320 340 360 380

0

2

4

6

8

D
ep

th
[m

]

280 300 320 340 360 380
0

10

20

30

40

50

S
m

oo
th

in
g

le
ve

l

Distance [m]

Figure 3.10: Fingerprint of bathymetry section presented in Figure 3.1b.

31

" ii, 11 II, ii-Ill. ;, ,,~ ,,,"

lUi

(a)

(b)

(c)

860 880 900 920 940 960 980 1000
0

50

100

150

200

S
m

oo
th

in
g

le
ve

l

860 880 900 920 940 960 980 1000

0

2

4

6

8

D
ep

th
[m

]

860 880 900 920 940 960 980 1000
0

10

20

30

40

50

S
m

oo
th

in
g

le
ve

l

Distance [m]

Figure 3.11: Fingerprint of bathymetry section presented in Figure 3.1c.

(a)

(b)

(c)

1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270
0

50

100

150

200

S
m

oo
th

in
g

le
ve

l

1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270

0

2

4

6

8

D
ep

th
[m

]

1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270
0

10

20

30

40

50

S
m

oo
th

in
g

le
ve

l

Distance [m]

Figure 3.12: Fingerprint of bathymetry section presented in Figure 3.1d.

32

I
\,

~, O. .~ n n " ~

n .Jl ! j
" .,1 ... , 1 ,It

,0/ ~ "

,\
LW~E i,;W\ FL' ------'-' . i.;,~ -'-""--'-_.L.LiLliiiL! ,,-"Ii 1_ ~o1L.E ~ ;";j,J.~_J1J _ 1,

effect of related spikes is not certain. However, the discrepancy between those rises doubts
again as to the reliability of this method to systematically pinpoint spikes and produce
relevant information. Although spikes located at 370 meters are higher – approximately two
meters –, they lead to disproportionate arch sizes.

In Figure 3.11, two arches (indicated by arrows) draw our attention. Both are similar in
shape and size. Nevertheless, while the second one is associated with a three meter high
spike, no spike is the source of the first arch.

Finally, the fingerprint in Figure 3.12 is more coherent by itself – spikes of similar size lead
to equivalent arches –, yet fails to provide us with a consistent representation when compared
with previous fingerprints. The spike indicated by an arrow in Figure 3.12 is approximately
two meters high with an arch closing at the 15th level of smoothing. Nonetheless, the second
exhibited spike in Figure 3.11 roughly spans three meters while its associated arch persists
for more than 50 levels of smoothing (it closes around the 60th level).

The fingerprint method, as it was implemented and with the sampling interval that we
have used, does not produce consistent, valuable information. Although it is not clear as yet
how the technique could be improved, it should not be disposed of too rapidly. We ought
to keep in mind that our framework departs from Bergeron’s in two major ways, which is
very likely the cause of the lack of success in our situation. First, Bergeron (1996) worked
on coarse gravel-bed streams while the Sulphur and Guadalupe rivers have a sandy bed.
Secondly – and probably the most influenceable factor –, our mean sampling interval is of an
order of magnitude larger than Bergeron’s. Although fine enough for gathering the general
bathyemtry structure, it might be inadequately coarse when scale-space analysis is to be
employed. Such sampling interval is able to catch spikes – and render them as erratic noise
in the signal – but is not appropriate to seize the structure of the spike, caused by plausible
piece of woody debris. It it questionable that such erratic spikes as those shaped by a single
sounding should actually contribute the bed structure. Another reason for that conjecture
is that most of the severe spikes have a relative height of more than one meter. Hence, it is
extremely unlikely that the causing woody debris be lying on the stream bed at the surveying
location. Consequently, they do not belong to the stream bottom structure per se. It should
not be too unexpected that a technique devised to analyzing bed structure fail to represent
these particular pieces of LWD.

3.5 Final comments on statistical techniques

It was attempted to make use of statistical analysis techniques in order to gather infor-
mation on severe spikes featured within finely-sampled bathymetry profile. The most likely
cause of these spikes is the presence of LWD. Among the experimented methods were basic
ones (moving average, standard deviation) as well as other inordinary methods (semivari-
ogram, scale-space analysis). It should be pointed out that none of these methods proposes
a systematic way – that is, a procedure that would not require human interaction or inter-
pretation – of identifying spikes and outputing their locations.

33

However, simpler techniques turn out to produce more relevant information than sophisti-
cated ones. The former were essentially useful to ensuring the presence of spikes by combining
the use of moving averages (eventually indispensable for any modeling step) and standard
deviations. The sole use of moving averages inevitably conducts to a loss of information,
namely disappearance of spikes – but not all of them. The latter property renders it useless
as an identification tool. A moving average is mereley a low-pass filter of poor quality and
only ensure narrow spikes (higher-frequency components) to be filtered out effectiveley while
preserving wider spikes by smoothing them out. Any utilization of such smoothened data in
modeling would produce unrealistic bathymetry profiles, caused by the presence of spurious
flattened peaks that do not naturally belong to the stream bed. This observation suggests
that an effective filter be found. This issue is the current reasearch topic of the authors.
Superimposing the standard deviation onto the moving average permits to manifest the
presence of spikes where the profile has been flattened out. Nevertheless, it also turns out
that broader spikes generally engender a small standard deviation. It then becomes arguable
whether the smoothened peaky feature is part of the bed profile or comes from actual LWD.

Among the more sophisticated methods, the semivariogram is designed to account for the
general pattern of bathymetry profiles. When using very fine sampling, the semivariogram
has been proved an effective tool allowing the separation of stream-bed roughness into a
grain and a form component – for the case of gravel beds. As for sand-bed profiles, the
semivariogram usually gives rise to relevant parameters associated with sand ripples. The
profile that we obtained does not present the characteristics of a gravel-bed profile, nor that
of a sand-bed profile. The most likely cause of this result is the use of a inappropriately
coarse sampling interval, a factor a 20 larger than that used by Robert (1988).

Although scale-space analysis seems to be an effectual way of rendering a two-dimensional
picture of the general structure of bed profiles, our attempt to obtain a representation of
spurious spikes was pervaded with inconsistencies. As mentioned above, it is not certain
whether a finer sampling interval would have led to more coherent fingerprints. It is very
conceivable that spurious spikes act less as bathymetry structural components and consist
more of noise that should be filtered out. Such interpretation makes these iconsistencies less
surprising, as these alleged pieces of woody debris are not part of the general bathymetry
structure. These must therefore be filtered out before any further attempt of analyzing the
bed structure. Spectral or wavelet analysis should provide a way of doing so and presumably
constitutes the direction to follow.

34

Chapter 4

Filtering techniques

The distortion of the averaged bathymetry (see Figure 2.3) – leading to erroneous inter-
polated grid data – requires that spurious spikes be removed. A first attempt of identifying
the latter had been presented in the previous chapter. Although a combination of simple
statistical methods (such as moving average and standard deviation) proved to be relevant
in pointing out the presence of spikes, it does not provide a systematic way of dtermining
the spike locations. Although effectual in rendering two-dimensional pictures of bed pro-
file structures (Bergeron, 1996), scale-space analysis did not fulfill our expectations either.
As previously suggested, it is very conceivable that spurious spikes act less as bathymetry
structural components and consist more of erratic noise that should be filtered out.

Even though the sampling interval is fine enough for gathering the general bathyemtry
structure, it might be inadequately coarse when scale-space analysis is to be employed. Such
sampling interval is able to catch severe disruptions of bathymetry profile – and render
them as erratic noise in the signal – but might not be appropriate to seize the structure of
these very disruptions, caused by plausible piece of woody debris. It it questionable that
such erratic spikes as those shaped by a single sounding should actually contribute the bed
structure. Another reason for that conjecture is that most of the severe spikes have a relative
height of more than one meter. Hence, it is extremely unlikely that the causing woody debris
be lying on the stream bed at the surveying location. Consequently, they do not belong to the
stream bottom structure per se. It should not be too unexpected that a technique devised to
analyzing bed structure fail to represent these particular pieces of LWD. Under the scope of
this assumption, inconsistencies pervading the 2D picture of bed structure are less surprising
and more legitimate.

The aforementioned considerations suggest that, prior to analyzing river bottom struc-
ture, those extraneous spikes need be removed. Because spikes present these sharp depth
transitions in the signal (depth changes of up to three meters from one sample to the next),
they are associated with high-frequency components in the spectral domain. Similarly, for
time-dependent signals, high-frequency components are produced by sharp changes of signal
values within a short time period. By its broad objective of modifying certain frequencies
relative to others, filtering naturally comes to mind (Oppenheim and Schafer, 1999). The
following subsections present linear and nonlinear filtering techniques, all designed to remove
high-frequency components in a signal. In order to compare filters, an artificial bathymetry
has been synthesized (see Figure 4.1).

35

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

A

B

C

Figure 4.1: Synthesized bathymetry providing a benchmark for filters. Both narrow spikes are
made up of one data point while the broader spike contains six data points.

Synthesizing an artificial bathymetry allows for including bottom features without any
restrictions. Hence, it gives the possibility to add sharp edges or severe peaks – we intend
to remove the latter – that are known to constitute difficulties to certain techniques. As-
sessment of what it takes for a particular technique to fail is also easily rendered possible.
Nevertheless, one should keep in mind that a manufactured bathymetry will never succeed
at faithfully representing natural landforms. There is therefore no guarantee that a suc-
cessful method for artificial profiles yield similar-quality results for realistic profiles. Our
synthesized bathymetry features two sharp edges as well as three spikes, two narrow (labels
A and B) and one broader (label C) in Figure 4.1. The left edge is particularly steep and
is not very likely to be encountered in reality. The right edge is not as steep (the slope is
similar to that of Figure 2.5) but the spike lying on the slope (label B) a priori constitutes
an extra difficulty. Therefore, a challenge for a filter is to be able to preserve sharp edges
while filtering out spikes. A trade-off is not acceptable.

Noise has been added to the profile – after peaks were created – to liken small-scale erratic
components that we may identify on natural bathymetric profiles (e.g., see Figure 2.5 and
Figure 2.7). In order to quantitatively evaluate off-trend components, a closer look at the
Guadalupe River data was deemed necessary. We focused on the bathymetry profile between
10 and 25 meters (see Figure 2.7) and lowpass-filtered it to obtain the trend. This step is
depicted on Figure 4.2a. The trend was then subtracted from the original bathymetry,
allowing on Figure 4.2b for a direct assessment of what the noise should be in the artificial
profile. A peak-to-peak noise of 0.05 meter has been added to the synthetic bathymetry.
The noise was modeled with a random number generator of uniform distribution between
0 and 1. Each random number was then multiplied by 0.05. The bathymetry data off the
trend are believed to be caused by a combination of several factors. Those are most likely
real bathymetric features but could also be boat pitching and rolling while recording depth
soundings. Finally, inherent measurements errors should not be ruled out, although their
influence should be very small.

36

(a)

(b)

10 15 20 25

2

2.1

2.2

2.3

2.4

2.5

2.6

D
ep

th
 [m

]

10 15 20 25
−0.1

−0.05

0

0.05

0.1

Distance [m]

R
el

at
iv

e
de

pt
h

ar
ou

nd
 tr

en
d

lin
e

[m
]

Figure 4.2: Both graphs focus on the Guadalupe River bathymetry between 10 and 25 meters
(see Figure 2.7 for the entire profile). (a) The thin line is the original bathymetry and the thick line
is a lowpass filtered version (cutoff normalized frequency of 0.1) showing the trend. (b) Difference
between both bathymetries gives insight into the erratic component of the measurement.

4.1 Linear filtering

The advantage of utilizing linear filtering is dual: mathematical analysis is relatively
simple and execution is very fast. Both those characteristics are closely associated with
the convolution nature of linear filtering. Once a filter has been designed, a finite-length
kernel must be convoluted with the signal. A filter kernel is a truncated version in the time
domain of the inverse Fourier Transform of the ideal filter in the frequency domain. Linear
convolution can efficiently be computed using Fast Fourier Transform (FFT) algorithms, via
circular convolution. Basic FFT algorithms can perform this operation in O(L log2 L), where
L is the size of the signal (Oppenheim and Schafer, 1999). However, linear filters compute
new values from neighboring data points; they tend to blur the signal and remove sharp
details that do not necessarily consist of noise.

Linear filters fall into two categories: Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) filters. FIR filters are unconditionally stable – no feedback is used – but
require larger convolution kernels than IIR filters, rendering their execution slower. Never-
theless, the latter are only conditionally stable – feedback is used – and particular care must
be taken when designing them (Oppenheim and Schafer, 1999). In the following, the results
of an FIR filter of order 50 and an IIR filter of order 10 are presented.

37

As explained above, extraneous spikes – that we want to cut out – inherently present sharp
depth changes from one sample to the next. High-frequency components are therefore asso-
ciated with them in the spectral domain. Among digital filters, lowpass filters are designed
to remove all signal components whose frequency is beyond the so-called cutoff frequency
while all low-frequency components are preserved (in the case of ideal lowpass filters). Since
spikes lead to high frequencies, the use of a proper lowpass filter is expected to fulfill our
goal.

Whatever lowpass filter is employed, a cutoff frequency must be appropriately chosen,
hence constituting a major drawback of linear filtering. Indeed, the frequency content of
the signal is unknown a priori so that a cutoff frequency cannot safely be selected prior to
examining the Fourier transform of the signal, which yields its frequency content. Even so,
the relevance of such frequency content might be questionable: higher-frequency components
are associated with sharp transitions, be it a spike or an edge. Cutting off these components
will inevitably lead to edge blurring, a phenomenon that we wish to avoid. Furthermore,
broader spikes contain lower-frequency components that will be conserved with a lowpass
filter. This occurs because, among samples shaping the spike, those at the middle have values
close to that of adjacent samples. Those middle samples do not lead to high frequencies and
might not be effectively filtered out. The selection of an adequate cutoff frequency is far
from being straighforward.

4.1.1 FIR filter

A Hamming-windowed linear filter of order 50 (with four different cutoff frequencies) has
been used as a first experiment to filter out spurious spikes (see Figure 4.3). Windowing
is used to truncate the ideal lowpass filter (that would be of infinite duration) in the time
domain.

It is evident from Figure 4.3 that there is a trade-off between the goals that we intend to
achieve: preserving edges while cutting out spikes. Whereas the use of a relatively low cutoff
frequency leads to a fair removal of the three spikes, both edges a unacceptably smoothened
out, which distorts the original profile (e.g., Figure 4.3a). The opposite phenonemon occurs
with the highest cutoff frequency. Edges are very well preserved but the higher cutoff fre-
quency somewhat conserves spikes too. Finally, it should be pointed out that none of the
cutoff frequencies yields a satisfactory removal of the broader spike (label C). A bump still
lingers.

4.1.2 IIR filter

The most common IIR filters are the Butterworth, Type 1 Chebyshev, Type 2 Chebyshev
and Elliptic filters. Although all but Type 2 Chebyshev have been tested, only the results
of Butterworth filtering will be presented. The other filters essentially give similar results
when applied to our artificial bathymetry. A Butterworth filter of order 10 with the same
four cutoff frequencies has been employed (see Figure 4.4).

38

(a) (b)

(c) (d)

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]
0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]
D

ep
th

 [m
]

Figure 4.3: The dotted and solid lines represent the original and filtered signals, respectively. An
FIR filter of order 50 has been used. Normalized cutoff frequencies are: (a) 0.025, (b) 0.05, (c) 0.1
and (d) 0.15.

(a) (b)

(c) (d)

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

Figure 4.4: The dotted and solid lines represent the original and filtered signals, respectively. A
Butterworth filter of order 10 has been used. Normalized cutoff frequencies are: (a) 0.025, (b) 0.05,
(c) 0.1 and (d) 0.15.

39

~-.~'.~ .. -"."-----, :

~,j '\'/~\'j'C

Overall, Butterworth filter performance is less satisfactory than that of FIR filtering.
In addition, an attempt of increasing its order leads to instabilities for the lowest cutoff
frequency so that 10 is the maximum allowable order with this set of frequencies. The
presence of ripples around the left-hand broader spike (see Figs 4.4c and 4.4d) renders the
filtered bathymetry even less faithful to the original profile devoid of spikes.

4.2 Nonlinear filtering

As illustrated in Figs 4.3 and 4.4, linear filtering trades off between spike removal and
edge preservation. Moreover, it cannot successfully dispose of broad spikes (label C), which
contain both low- and high-frequency components.

Spikes added to our artificial bathymetry (and featured in Figure 2.5) are typical of so-
called impulse noise, namely large, isolated “errors”. Some nonlinear techniques, however,
perform very well at accomplishing this tandem objective of removing impulse noise and
keeping edges undisturbed. Unfortunately, their execution time is slower than that of linear
filtering techniques – sorting operation is required for each data point – and mathematical
analysis is generally more complex. Two nonlinear filters are introduced: the erosion filter
and the median filter. The latter is widely used in image processing to filter out “salt-and-
pepper noise”, that is bits that are flipped with a certain probability. Median filtering is
generally capable of restoring the original image without blurring the edges.

Both techniques use the concept of order statistics. For each data point x̃ in the sequence
x(n), a length-(2N + 1) set of neighboring data points is formed by taking those N points
preceding x̃ and those N points succeeding it. This set is then algebraically ordered. Erosion
filtering works by replacing x̃ with the minimum of the ordered set. Median filtering is
obtained by replacing x̃ with the median of the ordered set. These steps are depicted in
Figure 4.5 for median filtering with N = 2, where x(n) is the original sequence containing a
spike and y(n) is the filtered sequence. Graphs (a) and (c) show filtering of sample 7. The
order statistics centered at this sample (see dashed box in Figure 4.5a) contains the following
points {2.5 3.0 6.5 8.0 4.5}. The ordered set is {2.5 3.0 4.5 6.5 8.0} so that the median is
4.5. the last step consists in replacing sample 7 by this value. This is illustrated in Figure
4.5c where the circled sample is the result of the filer. Filtering sample 8 follows the same
process and is shown on graphs (b) and (d). The order statistics is {3.0 6.5 8.0 4.5 5.0} and
the ordered set becomes {3.0 4.5 5.0 6.5 8.0}. The median is 5.0, which becomes the value
of substitution in the filtered sequence (circled sample on graph (d)). Note that erosion
filtering takes the minimum of the order statistics instead of the median.

Filtering the first and last N data points of the signal is problematic in that too few
elements are available in the ordered set. Common practice is to append the signal with end
values: N new data points (each equal to the first data point of the signal) are appended to
the beginning and N new data points (each equal to the last data point of the signal) are
appended to the end.

40

(a) (b)

(c) (d)

2 4 6 8 10 12 14
0

2

4

6

8

n

x(
n)

2 4 6 8 10 12 14
0

2

4

6

8

n

x(
n)

2 4 6 8 10 12 14
0

2

4

6

8

n

y(
n)

2 4 6 8 10 12 14
0

2

4

6

8

n

y(
n)

Figure 4.5: Illustration of median filtering for N = 2. x(n) and y(n) are the original and filtered
sequences, respectively. The dashed box contains the five samples to be algebraically ordered. Plots
(a) and (c) show the filtering of sample 7 and plots (b) and (d) show the filtering of sample 8. The
sample of interest is circled in each case.

4.2.1 Erosion filter

By definition, erosion filtering works by taking the minimum of any ordered set. A modi-
fication is necessary in our case. The bathymetry is defined by the depth rather than height
relative to an arbitrary datum. Thus, erosion filtering was implemented by taking the maxi-
mum instead of the minimum of each ordered set; the spikes consisting of lowest values. The
effect of erosion filtering is shown in Figure 4.6, where four different filter lengths have been
used.

Whereas the length-3 erosion filter is able to eradicate both impulses (see Figure 4.6a),
it cannot remove the broader one. The only effect of the filter is to erode the spike by two
data points (from six to four data points). A length-7 erosion filter is required to remove the
broad spike (see Figure 4.6b). Nevertheless, with higher-order erosion filters, undesirable side
effects appear. They keep eradicating all spikes but also erode the bump, thereby distorting
the bathymetry and generating a discrepancy with the original, devoid of spikes, bathymetry.
Moreover, the higher the order, the larger the discrepancy (e.g., Figure 4.6d). Depending
whether a surveyed bathymetry contains broad spikes, a high-order filter might be necessary
– at the cost of distorting other bottom structural elements – which is unwelcome.

4.2.2 Median filter

Median filtering has been experimented with four filter lengths. Results are shown in
Figure 4.7.

41

(a) (b)

(c) (d)

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]
0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]
D

ep
th

 [m
]

Figure 4.6: The dotted and solid lines represent the original and erosion-filtered signals, respec-
tively. The following filter lengths have been used: (a) 3 (N = 1), (b) 7 (N = 3), (c) 11 (N = 5)
and (d) 13 (N = 6).

(a) (b)

(c) (d)

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

0 10 20 30 40 50

2.5

3

3.5

4

4.5

5

5.5

Distance [m]

D
ep

th
 [m

]

Figure 4.7: The dotted and solid lines represent the original and median-filtered signals, respec-
tively. The following filter lengths have been used: (a) 3 (N = 1), (b) 13 (N = 6), (c) 17 (N = 8)
and (d) 25 (N = 12).

42

/

J

I_~ __ CC'C '\ •

I \
r--) _-,--. -._.

Unlike erosion filtering, a length-13 median filter is required to eradicate the broader
spike (see Figure 4.7b) while length-3 filters already remove impulses, as shown in Figure
4.7a. Two higher-order median filters (length-17 and length-25) have been used in order
to show how both bump edges are left undisturbed while all spikes are perfectly eradicated
(see Figs 4.7c and 4.7d). In addition to the nonlinearity of median filtering, the only price
to pay for such satisfactory results is the use of a relatively high order – hence, increased
computational effort – if broad spikes characterize surveyed bathymetries. Nevertheless, not
only do we do away with the trade-off between edge rentention and spike rejection (inherent
to linear techniques), the filtering computational complexity also remains linear in O(kL),
where L is the cardinal of the data set to be filtered and k is the complexity associated
with finding the median of the set at each data point. The best “find median” algorithm –
developped by Hoare (1961) – has a performance k = O(2N + 1) and is therefore linear in
the filter order. Nevertheless, for reasonable data set sizes, linear filtering execution – with
performance O(L log2 L) – remains faster. For instance, a data set should contain over 107

data points for the length-25 median filter performance to overcome that of linear filtering.

4.3 Applications

It is evident from the benchmark that linear filtering is largely outperformed by nonlinear
filtering, and median filtering in particular. Although execution of the latter is slower, this
drawback is largely compensated by its effective capacity for eradicating spikes of various
widths. Furthermore, under the assumption that the spikes be mere artifacts, a method
consisting in replacing data points belonging to spikes by data points belonging to actual
stream bottom – i.e. erosion and median filtering – is physically sounder than any linear
filtering averaging technique.

Both nonlinear filters have been utilized on three 100-meter sections of surveyed bathymetry.
Median-filtered bathymetry is shown in Figure 4.8 while erosion-filtered bathymetry is de-
picted in Figure 4.9.

Although the erosion filter length required to remove all spikes is almost half that of
median filtering, side effects are unacceptable. This latter conclusion is already visible on
Figure 4.9 but direct comparison of both filters makes it evident. In Figure 4.10b, the
asbolute difference between original and filtered bathymetries is shown for both filters. An
assessment of filter performance – as regards spikes removal – can be made by examining
Figure 4.10a. For instance, the interval between 320 and 330 meters is expected to be
undisturbed since no severe spike is present. However, it is made of a somewhat sharp
edge and thus constitutes an a priori difficulty for erosion filtering. Median filtering very
satisfactorily conserves the bathymetry, yielding absolute differences that do not exceed 15
cm, that is a relative difference of 8 % at this spot. On the other hand, erosion-filtered
bathymetry differs from the original one by up to 80 cm, which amounts to a 20 % relative
difference at this spot. Overall, in accordance with our benchmark results regarding erosion
filtering, the latter performs relatively poorly in presence of steeper edges (e.g., Figure 4.10
between 270 and 290 m and 300 and 350 m.).

43

(a)

(b)

(c)

280 300 320 340 360 380

0

2

4

6

860 880 900 920 940 960 980 1000

0

2

4

6

D
ep

th
 [m

]

1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270

0

2

4

6

Distance [m]

Figure 4.8: The dotted line and solid lines represent the original and filtered signals, respectively.
A length-23 median filter has been used. This is the minimum length required to eradicate broad
spikes situated at approximately 290 and 355 meters on graph (a).

(a)

(b)

(c)

280 300 320 340 360 380

0

2

4

6

860 880 900 920 940 960 980 1000

0

2

4

6

D
ep

th
 [m

]

1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270

0

2

4

6

Distance [m]

Figure 4.9: The dotted line and solid lines represent the original and filtered signals, respectively.
A length-13 erosion filter has been used. This is the minimum length required to eradicate broad
spikes situated at approximately 290 and 355 meters on graph (a).

44

(a)

(b)

280 300 320 340 360 380

0

1

2

3

4

5

6

D
ep

th
 [m

]

280 300 320 340 360 380
0

1

2

3

4

Distance [m]

A
bs

. d
iff

. i
n

ba
th

ym
et

rie
s

[m
] erosion

median

Figure 4.10: Evaluation of erosion and median filtering performance. (a) Original bathymetry.
(b) Dotted and solid lines represent absolute differences between original and filtered bathymetries,
for erosion and median filters, respectively.

45

:' J-o

Median filtering offers a very viable way of processing LWD-polluted bathymetry profiles.
Unlike linear filtering, it does not encounter the inherent trade-off between spike rejection
and edge retention so that sharp structural bed elements are preserved. In this respect,
erosion filtering is of inferior quality as well in that it erodes large-scale bed structural
elements, thereby distorting the bathymetry. Median filtering constitutes a practical way of
disposing of spikes and producing a smooth, workable – e.g., for interpolation – bathymetry.
It also consists of a helpful stream habitat analysis tool. Comparison of filtered and original
bathymetries allows for identifying those data points whose value is beyond a fixed datum.
It may then be decided upon whether these pinpointed data points belong to LWD, in which
case a mapping of LWD locations within the stream is rendered possible (the technique has
been employed in Osting at al (2003)) and is depicted in Figure 4.12.

46

 3
3.

30
6

 3
3.

30
65

 3
3.

30
7

 3
3.

30
75

 3
3.

30
8

 3
3.

30
85

 3
3.

30
9

 3
3.

30
95 -9

4.
72

8
-9

4.
72

7
-9

4.
72

6
-9

4.
72

5
-9

4.
72

4
-9

4.
72

3
-9

4.
72

2
-9

4.
72

1
-9

4.
72

-9
4.

71
9

Latitude [deg.]

Lo
ng

itu
de

 [d
eg

.]

Figure 4.11: Scatter plot of all bathymetry survey tracks in Sulphur River

47

 3
3.

30
6

 3
3.

30
65

 3
3.

30
7

 3
3.

30
75

 3
3.

30
8

 3
3.

30
85

 3
3.

30
9

 3
3.

30
95 -9

4.
72

7
-9

4.
72

6
-9

4.
72

5
-9

4.
72

4
-9

4.
72

3
-9

4.
72

2
-9

4.
72

1
-9

4.
72

-9
4.

71
9

Latitude [deg.]

Lo
ng

itu
de

 [d
eg

.]

Figure 4.12: Mapping of LWD locations based upon spikes in the dataset that have a relative
height greater than 0.5 m. The median filter is of length 23.

48

.'

.. •

+
+

..

•

+

+

.'

. .

Chapter 5

Conclusion

The more frequent use of two-dimensional hydrodynamic rivers models also requires more
detailed bathymetry surveys. For smooth bathymetries, there is little difficulty in developing
accurate translations from survey data to model; however, in rivers with significant bottom
structure – as is the case in the Sulphur River –, simple data averaging and interpolation
methods may lead to misrepresentation of the bottom bathymetry.

Given the fine bathymetry gathered by Texas Water Development Board, it was necessary
to identify in the data set what was true bathymetry from what was caused by large woody
debris. To do so, the hypothesis was laid out that severe disruptive spikes in the data set be
the signature of large woody debris. Two groups of methods have been investigated to serve
our objective: statistical techniques and filtering techniques.

Simple statistical methods, such as moving average and standard deviation, were useful to
diagnose the presence of spikes in the averaged set. However, spikes were inconsistently pro-
cessed by the moving average: while narrow peaks were cut out, broader peaks were merely
flattened and remained. None of these simple methods constitutes a practical, systematic
way of identifying spikes. Turning to more involved techniques, such as semivariogram and
scale-space analysis, did not provide us with a viable alternative.

Unlike the first group of methods, the second group focused more on separating spikes from
the true bathymetry. An artificial bathymetry presenting both sharp edges and spikes was
manufactured to assess the effectiveness of techniques in eradicating spikes while preserving
edges. Linear lowpass filtering was first tried out but failed at fulfilling that goal. Nonlinear
filters – median and erosion filters – were far more succesful at preserving sharp edges and
cutting off spikes. Median filtering is specifically designed to serve that goal and is therefore
not hindered by the inherent tradeoff associated with linear filters. Erosion filtering, while
eradicating spikes, also erodes large-scale bathymetric features and is therefore outperformed
by median filtering, which leaves large-scale features undisturbed.

Median filtering may be considered a very effective – and simple – technique to filter out
spikes generated by the presence of submerged large woody debris in rivers. In addition,
not only does median filtering yield a smooth, applicable bathymetry, it also gives LWD
locations, which is of high interest in aquatic habitat analysis.

49

1D one-dimensional

2D two-dimensional

DTFT Discrete Time Fourier Transform

FIR Finite Impulse Response

IIR Infinite Impulse Response

LWD large woody debris

FFT Fast Fourier Transform

GPS Global Positioning System

TWDB Texas Water Development Board

50

Appendix A

Pictures of LWD in Sulphur River

This appendix contains more pictures of LWD in the Sulphur River. All pictures were
taken on (date ?) by Texas Water Development Board (TWDB) during low flow.

Figure A.1: Emergent LWD in the Sulphur River (Northeast Texas).

Figure A.2: Emergent LWD in the Sulphur River (Northeast Texas).

51

Figure A.3: Emergent LWD in the Sulphur River (Northeast Texas).

Figure A.4: Emergent LWD in the Sulphur River (Northeast Texas).

Figure A.5: Emergent LWD in the Sulphur River (Northeast Texas).

52

Appendix B

Bathymetry Process 1.1: User’s guide

B.1 Introduction

The program bp provides tools to process raw bathymetry data, export processed data for
use under Matlab, identify LWD (using median filtering) and export filtered bathymetry.

For Linux users, if Gnuplot is available on the machine where bp is installed, plotting is
an option and allows for producing scatter plots of depth measurement locations as well as
original and filtered bathymetries. The latter is particularly convenient for assessing the
quality of a filter before quitting bp.

The interface between C and Gnuplot is provided by the gnuplot i library written by N.
Devillard (ndevilla.free.fr).

B.2 Installation

This section describes the requirements and the steps necessary to compile and run bp.

B.2.1 Requirements

For Linux, the following is required :

• C compiler (gcc).

• make (to interpret the Makefile).

• Gnuplot is optional.

For Windows, a C or C++ compiler is required. I have not tried to compile and run it
under Windows but I was told it works well.

The Windows version does not support Gnuplot. The interface gnuplot i uses POSIX
pipes that are not supported under Windows.

53

B.2.2 Compilation of the source

Under Linux, the only thing to do is to type make from within the directory containing
the source. Note that make all or make os linux will do the same.

Under Windows, the first thing to do is to edit the file os.h and comment out the line #

define OS LINUX. This will ensure that all Gnuplot-related instructions in the source code
be removed by the preprocessor. It is now ready for compilation. By using the Makefile, just
type make os win. Without using the Makefile, I don’t know but make sure not to include
graphs.* and gnuplot i.* in the compilation.

B.2.3 Completion

When installing under Linux, make sure the directories gnuplotdata and gnuplotfigs

are in the same directory as the binary.

B.3 Utilization

bp must be invoked with two arguments. The usage is

bp file prefix

where file is the file containing the raw data and prefix is the prefix of all output files
(more on that below). Note that invoking

bp --help

will display a short help message reminding the user how to run bp.

B.3.1 Processing raw data

This corresponds to item 1 in the main menu and leads to the raw data menu that
permits the user to choose among three data file configurations. The menu items are self-
explanatory.

Processing raw data must be performed prior to any other task. It reads the file, stores
all data into memory and computes statistics (such as mean depth per GPS position).

B.3.2 Identifying Large Woody Debris

This selection corresponds to item 2 in the main menu and leads to the lwd identi-
fication menu from which two identification methods are proposed. Both are based on
median filtering1. Under each selection, the user is required to enter a filter half-length.

1Refer to section B.4 for a brief overview of median filtering or section 4.2 for more detailed explanations.

54

First method The first method filters the data with a single filter half-length. The user
is then invited to enter a discriminatory height h. LWD identification works as follows.
The difference between original and filtered bathymetries is calculated and all spikes whose
height is larger than h are viewed as belonging to a piece of woody debris. In parallel to this
process, two files are created. Median-filtered data are exported into prefix.flt and LWD
locations are exported into prefix.lwd. The format of prefix.flt is

LON1 LAT1 H1

LON2 LAT2 H2

...

where LON, LAT and H are the longitude, latitude and filtered bathymetry data point,
respectively. The format of prefix.lwd is

LON1 LAT1 I1

LON2 LAT2 I2

...

where I is the data point index within the data set.

Second method The second method performs median filtering with several filter half-
lengths. If K is the filter half-length entered by the user, filtering will be performed with
filter half-lengths 1 2 . . . K. For each filtering, the two same files as above are created,
namely prefix ##.flt and prefix ##.lwd where ## is replaced by one of the filter half-
lengths. The second method allows for distinguishing between spike widths, as explained in
the appendix.

B.3.3 Exporting processed data

Processed data may be exported into Matlab scripts. The following files are created when
selecting item 3 in the main menu. Within each of these files, the first lines describe the
content.

• prefix sum.m : This file contains summarized data per GPS position.

• prefix fin.m : This file contains all depth measurements with GPS positions linearly
interpolated between known positions.

• prefix lum.m : Obselete and not useful anymore. Will be disabled in subsequent
versions.

B.3.4 Plotting

Plotting with Gnuplot is only available in the Linux version2. Selecting item 4 in the main
menu enables the plotting menu. Three graphs may be produced, either in paper version
(Encapsulated Postscript format) or on the screen. The first two items in this menu produce
scatter plots of GPS locations. The ’Fine scatter plot’ option linearly interpolates between

2Who wants to use Windows anyway ?

55

GPS positions to plot all depth measurement locations. The third menu item produces a
two-graph page comparing original and filtered bathymetries. For each of these plots, the
user is asked whether to produce a paper graph or not. In addition, for the third graph, the
x-axis range must be entered (or enter 0 0 for the entire range).

B.4 Median filtering

A median filter of length 2N + 13 works the following way : for each depth sounding, we
build a data set made of the N soundings preceding it, the N soundings following it and
the sounding itself. We now have a data set of 2N + 1 soundings. The center sounding is
replaced by the median of this set. This type of filtering ensures that all edges be conserved.
Therefore, sharp changes in the bathymetry will not be affected. Only spikes will be totally
removed. Specifying a filter half-length of N will remove spikes whose width contains up to
N soundings.

3Note that the user enters the filter half-length N .

56

Appendix C

Code listing

/* ----------------------------------

*

* main.c

*

* Laurent White

*

* Date of creation : 2002 -12 -19

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include "os.h"

include "preprocess.h"

include "raw.h"

include "identifylwd.h"

include "stdev.h"

include "postprocess.h"

/* If compiling under Linux , include Gnuplot extension */

ifdef OS_LINUX

include "graphs.h"

include "gnuplot_i.h"

endif

int main (int argc , char ** argv)

{

int n_gps_positions; /* Number of different locations

* found in input file */

gps_position * gps_positions; /* Array of struct gps_position */

int main_menu_choice;

int return_value;

#ifdef OS_LINUX

gnuplot_ctrl *h;

#endif

/* Handle arguments */

if (handle_arguments (argc , argv) == 0)

return 0;

/* Allocate memory */

gps_positions = (gps_position *) malloc (MAX_GPS_POSITIONS * sizeof(gps_position));

/* Display signature */

(void) display_signature ();

/* Enter main menu loop */

main_menu_choice = MM_NONE;

n_gps_positions = -1;

/* Initialization of Gnuplot */

ifdef OS_LINUX

h = gnuplot_init ();

endif

while (1)

{

switch (main_menu_choice)

{

case MM_RAW:

/* Read raw data and compute statistics */

n_gps_positions = process_raw (argv [1], gps_positions);

if (n_gps_positions == 0) /* An error occurred in ’process_raw ’ */

{

free (gps_positions);

return 0;

57

}

if (n_gps_positions == -1)

break;

break;

case MM_LWD:

/* LWD identification */

return_value = identify_LWD (argv [2], gps_positions , n_gps_positions);

if (return_value == 0) /* An error occurred in ’identify_LWD ’ */

{

free (gps_positions);

return 0;

}

if (return_value == -1)

break;

break;

case MM_EXP:

/* Export to Matlab */

return_value = export_to_matlab (argv [2], gps_positions , n_gps_positions);

break;

ifdef OS_LINUX

case MM_GRA:

/* Plotting */

return_value = plotting_menu (gps_positions , n_gps_positions , h);

break;

endif

case MM_EXIT:

printf ("Bye.\n");

/* Free memory */

free (gps_positions);

return 1;

break;

}

(void) display_main_menu ();

printf (" Selection : ");

scanf ("%d" , & main_menu_choice);

} /* End main menu loop */

ifdef OS_LINUX

gnuplot_close (h);

endif

return 1;

}

58

/* ----------------------------------

*

* os.h

*

* Laurent White

*

* Date of creation : 2003 -02 -21

*

* ---------------------------------- */

ifndef OS_H

define OS_H

/* If compiling for Windows , comment the next line */

define OS_LINUX

endif /* OS_H */

59

/* ----------------------------------

*

* defs.h

*

* Laurent White

*

* Date of creation : 2003 -02 -21

*

* ---------------------------------- */

ifndef DEFS_H

define DEFS_H

define MAX_FNAME_SIZE 128

/* Define the reference locations */

/* For Raw data 1 */

define LONGITUDE_1 94.0

define LATITUDE_1 33.0

define LONG_C_1 ’W’

define LAT_C_1 ’N’

/* For Raw data 2 */

define LONGITUDE_2 94.0

define LATITUDE_2 33.0

define LONG_C_2 ’W’

define LAT_C_2 ’N’

/* For Raw data 3 */

define LONGITUDE_3 97.0

define LATITUDE_3 29.0

define LONG_C_3 ’W’

define LAT_C_3 ’N’

/* Maximum allowable number of distinct GPS positions */

define MAX_GPS_POSITIONS 65536

/* Maximum allowable number of soundings at one GPS position */

define MAX_SOUNDINGS 256

/* Conversion factor : number of feet per meter */

define CONV_FEET_M 3.28083990

/* Earth radius */

define RE 6400000

/* Structure defining a GPS position */

typedef struct

{

int id;

double longitude;

double latitude;

int n_soundings; /* Number of soundings */

double soundings[MAX_SOUNDINGS]; /* Depth soundings */

double timestamps[MAX_SOUNDINGS]; /* Time stamps of soundings */

double depth_mean; /* Mean depth of soundings */

double depth_mean_smooth; /* Depth of smoothed bath. */

double depth_var; /* Variance of soundings */

double depth_var_smooth;

double slope; /* Local slope (using the mean depths) */

double slope_mean; /* Mean slope of all slopes between

this position and the next one */

double slope_var; /* Variance of all slopes between

this position and the next one*/

double distance; /* Distance between this position and

the next one */

} gps_position;

/* Constants used in Main Menu management */

define MM_NONE -1

define MM_RAW 1

define MM_LWD 2

define MM_EXP 3

define MM_GRA 4

define MM_EXIT 9

endif /* DEFS_H */

60

/* ----------------------------------

*

* preprocess.h

*

* Laurent White

*

* Date of creation : 2003 -02 -19

*

* ---------------------------------- */

ifndef PREPROCESS_H

define PREPROCESS_H

void display_help ();

void display_signature ();

void display_main_menu ();

int handle_arguments (int argc , char ** argv);

endif /* PREPROCESS_H */

61

/* ----------------------------------

*

* preprocess.c

*

* Laurent White

*

* Date of creation : 2003 -02 -19

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include "os.h"

include "preprocess.h"

void display_help ()

/*

Arguments : /

#

Action : Display help.

#

Return : /

*/

{

printf ("Usage : bp [FILE] [PREFIX]");

printf ("\n\nThis program processes the raw data \

contained in FILE and outputs all results\n");

printf ("in files whose prefix is PREFIX .\n");

printf ("Please refer to manual for detailed help.\n");

printf ("\nFor bugs , please contact lwh@mail.utexas.edu (2003).\n");

}

void display_signature ()

/*

Arguments : /

#

Action : Display signature.

#

Return : /

*/

{

int system_call;

/* Execute ’clear ’ shell command */

system_call = system ("clear");

printf ("\n");

printf ("---\n");

printf ("This is bp (Bathymetry Process) version 1.1. \n");

printf ("Author : Laurent White (lwh@mail.utexas.edu). \n");

printf (" University of Texas at Austin . \n");

printf (" Environmental and Water Resources Engineering . \n");

printf (" Civil Engineering Department . \n");

printf (" \n");

ifndef OS_LINUX

printf ("Windows version . Gnuplot extension disabled . \n");

endif

ifdef OS_LINUX

printf ("Linux version . Gnuplot extension enabled . \n");

printf (" . All graphs are made with Gnuplot 3.7.3. \n");

printf (" . The interface between C and Gnuplot is provided by \n");

printf (" the gnuplot_i library written by N. Devillard . \n");

endif

printf ("---\n");

printf ("\n");

} /* display_signature */

int handle_arguments (int argc , char ** argv)

/*

Arguments : Same as ’Main’

#

Action : Verification of the number of arguments and

check if the user asked for help.

#

Return : 0 if an error occurred or the user asked for help . 1 otherwise.

*/

{

if (((argc == 2) && strncmp (argv [1], "--help" , 6)) || (argc < 2))

{

printf ("\n");

printf ("Error.\nThe source file and the prefix must be specified .\n");

printf ("\nUse the option \’--help\’ for help");

printf ("\n\n");

return 0;

}

/* Display help message if enquired by user*/

if (! strncmp (argv [1], "--help" , 6))

62

{

(void) display_help ();

return 0;

}

if (argc < 3)

{

printf ("\n");

printf ("Error.\nThe source file and the prefix must be specified .\n");

printf ("\nUse the option \’--help\’ for help");

printf ("\n\n");

return 0;

}

return 1;

} /* handle_arguments */

void display_main_menu ()

/*

Arguments : /

#

Action : Display help.

#

Return : /

*/

{

printf ("\nMAIN MENU\n");

printf ("---------\n\n");

printf ("--\n");

printf ("| Process raw data 1 |\n");

printf ("| Identify LWD 2 |\n");

printf ("| Export processed data 3 |\n");

ifdef OS_LINUX

printf ("| Plotting 4 |\n");

endif

printf ("| |\n");

printf ("| Exit 9 |\n");

printf ("--\n");

printf ("\n");

} /* display_main_menu */

63

/* ----------------------------------

*

* raw.h

*

* Laurent White

*

* Date of creation : 2002 -12 -19

* Last update : 2002 -06 -20

*

* ---------------------------------- */

ifndef RAW_H

define RAW_H

include "defs.h"

int process_raw (char *fname_raw , gps_position * gps_positions);

int read_raw (char *fname_raw , gps_position * gps_positions);

int read_single_sounding_raw1 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp);

int read_single_sounding_raw2 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp);

int read_single_sounding_raw3 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp);

int compute_statistics (gps_position * gps_positions , int n_gps_positions);

double compute_depth_mean (gps_position *gps);

double compute_depth_variance (gps_position *gps);

double compute_slope (gps_position *gps1 , gps_position *gps2);

double compute_slope_mean (gps_position *gps1 , gps_position *gps2);

double compute_slope_variance (gps_position *gps1 , gps_position *gps2);

double compute_distance (gps_position *gps1 , gps_position *gps2);

endif

64

/* --

*

* raw.c

*

* Laurent White

*

* Date of creation : 2002 -12 -19

* Last update : 2003 -06 -20

*

* --- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include <math.h>

include "defs.h"

include "raw.h"

int process_raw (char *fname_raw , gps_position * gps_positions)

/*

Arguments : fname_raw is the name of the raw data file.

gps_positions is an array of (struct gps_position).

#

Action : 1. Read all soundings , eliminate invalid ones and lump them into

GPS position (using the structure gps_position)

2. Compute all statistics for each GPS position . That is , mean depth

depth variance , slope , mean slope (same as previous one) and slope

variance.

#

Return : Number of distinct GPS positions

-1 if the user wants to return to the main menu.

0 if an error occurred.

*/

{

int n_gps_positions; /* Number of distinct gps positions */

/* Read the file and lump it into distinct GPS positions */

n_gps_positions = read_raw (fname_raw , gps_positions);

if (n_gps_positions == -1)

return -1;

if (n_gps_positions == 0)

return 0;

/* Compute all statistics for each GPS position */

printf (" Computing statistics for each GPS position ...\n");

(void) compute_statistics (gps_positions , n_gps_positions);

printf ("Processing done . %d distinct GPS positions \

have been detected .\n\n" , n_gps_positions);

/* Return the number of GPS positions */

return n_gps_positions;

} /* process_raw */

int read_raw (char *fname_raw , gps_position * gps_positions)

/*

Arguments : fp_raw is pointer to a stream.

gps_positions is an array of (stuct gps_positions)

#

Action : Reads all lines in the file pointed by fp_raw (according

to the conversion string specified in ’read_single_sounding_rawN ’),

where N is the raw data ID number.

Do not take into account records that are invalid . For each

GPS position in the array , we update the longitude , latitude , number

of soundings and array of depth soundings . Each GPS position is

ready for statistics computation.

#

Returns : Number of distinct GPS positions.

Returns 0 if an error occurred.

Returns -1 if the user wants to return to the Main Menu.

*/

{

/* Variables */

double longitude;

double latitude;

double ref_longitude; /* Reference longitude */

double ref_latitude; /* Reference latitude */

double depth;

double timestamp; /* Time stamp of sounding */

int valid;

int n_invalid_soundings; /* Number of invalid soundings */

int n_soundings; /* Total number of soundings */

int n_distinct_positions; /* Number of distinct GPS positions */

int n_local; /* Counter of soundings for a given GPS location */

int index;

int choice;

FILE *fp_raw; /* File pointer to raw data file */

65

/* Initializations */

n_invalid_soundings = 0;

n_soundings = 0;

n_distinct_positions = 0;

ref_longitude = 1000.0;

ref_latitude = 1000.0; /* Set the reference position outside any

* physical range so that the first sounding

* is always a new position

*/

/* Open file */

fp_raw = fopen (fname_raw , "r");

if (fp_raw == NULL)

{

printf ("Opening file ’%s ’ failed .\n", fname_raw);

return 0;

}

/* Display menu */

printf ("\nRAW DATA MENU\n");

printf ("-------------\n\n");

printf ("--\n");

printf ("| Sulphur River (May 2001) 1 |\n");

printf ("| Sulphur River (January 2002) 2 |\n");

printf ("| Guadalupe River (April 2003) 3 |\n");

printf ("| |\n");

printf ("| Return to Main Menu 9 |\n");

printf ("--\n");

printf ("\n");

printf (" Selection : ");

scanf ("%d" , &choice);

if (choice == 9)

return -1;

printf ("\n");

printf ("\nProcessing all soundings in ’%s ’...\n" , fname_raw);

printf ("\n");

printf (" Lumping soundings into common GPS positions ...");

fflush (stdout);

/* Loop through all soundings */

while (! feof(fp_raw))

{

/* Increment counter of all soundings */

n_soundings ++;

switch (choice)

{

case 1:

valid = read_single_sounding_raw1 (fp_raw , \

&longitude , & latitude , &depth , & timestamp);

if (valid == -1)

return -1;

break;

case 2:

valid = read_single_sounding_raw2 (fp_raw , \

&longitude , & latitude , &depth , & timestamp);

if (valid == -1)

return -1;

break;

case 3:

valid = read_single_sounding_raw3 (fp_raw , \

&longitude , & latitude , &depth , & timestamp);

if (valid == -1)

return -1;

break;

case 0:

return -1;

break;

default:

return -1;

break;

}

if (valid)

{

if ((latitude == ref_latitude) && (longitude == ref_longitude))

/* Same GPS position */

{

n_local ++;

gps_positions[index]. n_soundings ++;

gps_positions[index]. soundings[n_local -1] = depth;

gps_positions[index]. timestamps[n_local -1] = timestamp;

}

else

/* New GPS position */

66

{

/* Increment the counter of distinct GPS positions */

n_distinct_positions ++;

/* Current coordinates become reference coordinates */

ref_longitude = longitude;

ref_latitude = latitude;

/* Sets the number of soundings for that GPS position to 1 */

n_local = 1;

/* Set values for new GPS position */

index = n_distinct_positions - 1;

if (index > (MAX_GPS_POSITIONS - 1))

{

fprintf (stderr , "Error . The index in \

’read_raw ’ is greater \

than the maximum allowed value .\n");

return -1;

}

gps_positions[index].id = n_distinct_positions;

gps_positions[index]. n_soundings = 1;

gps_positions[index]. longitude = ref_longitude;

gps_positions[index]. latitude = ref_latitude;

gps_positions[index]. soundings[n_local -1] = depth;

gps_positions[index]. timestamps[n_local -1] = timestamp;

/* Initialization of all statistics */

gps_positions[index]. depth_mean = 0.0;

gps_positions[index]. depth_var = 0.0;

gps_positions[index].slope = 0.0;

gps_positions[index]. slope_mean = 0.0;

gps_positions[index]. slope_var = 0.0;

gps_positions[index]. distance = 0.0;

}

}

else

/* Increment counter of invalid soundings */

n_invalid_soundings ++;

} /* end fp_raw */

printf (" (Detected %d invalid soundings out of %d soundings).\n" , \

n_invalid_soundings , n_soundings);

/* Close stream */

fclose (fp_raw);

return n_distinct_positions;

} /* read_raw */

int read_single_sounding_raw1 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp)

/*

Arguments : fp_raw : pointer to a stream.

longitude , latitude , depth : data associated with current sounding.

The file MUST contain data using the format of SULPHUR RIVER SITE 1.

#

Action : Reads a line in the file pointed by fp_raw and

assigns values to longitude ,

latitude and depth.

#

Return : A non -zero integer if the sounding is valid.

In this case , the arguments ’longitude ’, ’latitude ’

and ’depth ’ have well -defined values.

#

0 if the sounding is invalid.

-1 if a reading error occurred.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have NULL values.

*/

{

/* Variable starting with underscore are used to scan the file */

int _day;

int _month;

int _year;

int _hour;

int _min;

double _sec;

double _depth;

int _quality;

double _tranducer_depth;

int _speed_sound;

double _lat_deg;

double _lat_min;

double _long_deg;

double _long_min;

char _lat;

char _long;

int _tmp;

67

int n_read;

int valid;

/* Read the sounding (the nasty conversion string will convert raw1 data ONLY !!) */

n_read = fscanf (fp_raw , \

"%2d%2d%4d,%2d%2d%6lf,HF ,%8lf ,%d, %4lf ,%4d,%5d ,%2lf %9lf%1c,%3lf %9lf%1c\n",

&_day , & _month , &_year , &_hour , &_min , &_sec , &_depth , & _quality ,

&_tranducer_depth , & _speed_sound , &_tmp ,

&_lat_deg , & _lat_min , &_lat , & _long_deg , & _long_min , & _long);

if (n_read != 17)

{

printf ("\nError while reading raw data file !\n");

return -1;

}

/*

* Check for validity of sounding : a quality of 1 indicates

* a valid sounding . Also , the latitude must be North and

* the longitude must be west.

*/

valid = (_quality == 1) && (_lat == LAT_C_1) && (_long == LONG_C_1);

/*

* If the degree part of the coordinate is 0, set it to

* the reference location.

*/

if (_lat_deg == 0)

_lat_deg = LATITUDE_1;

if (_long_deg == 0)

_long_deg = LONGITUDE_1;

/* Set the values of the arguments */

*longitude = _long_deg + _long_min / 60.0;

*latitude = _lat_deg + _lat_min / 60.0;

*depth = _depth / CONV_FEET_M;

*timestamp = (double) (_hour *3600 + _min *60 + _sec);

/*

* Change longitude to its opposite if it is ’West ’ longitude.

* Idem for latitude if it’s ’South ’ latitude

*/

if (_long == ’W’)

*longitude *= -1;

if (_lat == ’S’)

*latitude *= -1;

/* If sounding is invalid , set NULL to arguments */

if (! valid)

{

longitude = NULL;

latitude = NULL;

depth = NULL;

}

return valid;

} /* read_single_sounding_raw1 */

int read_single_sounding_raw2 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp)

/*

Arguments : fp_raw : pointer to a stream.

longitude , latitude , depth : data associated with current sounding.

The file MUST contain data using the format of SULPHUR RIVER SITE 2.

#

Action : Reads a line in the file pointed by fp_raw and assigns values to longitude ,

latitude and depth.

#

Return : A non -zero integer if the sounding is valid.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have well -defined values.

#

0 if the sounding is invalid.

-1 if a reading error occurred.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have NULL values.

*/

{

/* Variable starting with underscore are used to scan the file */

int _day;

int _month;

int _year;

int _hour;

int _min;

double _sec;

double _depth;

int _quality;

double _lat_deg;

68

double _lat_min;

double _long_deg;

double _long_min;

char _lat;

char _long;

int _latency;

int n_read;

int valid;

/* Read the sounding (the nasty conversion string will convert raw2 data ONLY !!) */

n_read = fscanf (fp_raw , \

"%2d%2d%4d,%2d%2d%6lf ,%8lf ,%d,%2lf %9lf%1c,%3lf %9lf%1c,%4d\n",

&_day , & _month , &_year , &_hour , &_min , &_sec , &_depth , & _quality ,

&_lat_deg , & _lat_min , &_lat , & _long_deg , & _long_min , &_long ,

&_latency);

if (n_read != 15)

{

printf ("\nError while reading raw data file !\n");

return -1;

}

/*

* Check for validity of sounding : a quality of 1 indicates

* a valid sounding . Also , the latitude must be North and

* the longitude must be west.

*/

valid = (_quality == 1) && (_lat == LAT_C_2) && (_long == LONG_C_2);

/*

* If the degree part of the coordinate is 0, set it to

* the reference location.

*/

if (_lat_deg == 0)

_lat_deg = LATITUDE_2;

if (_long_deg == 0)

_long_deg = LONGITUDE_2;

/* Set the values of the arguments */

*longitude = _long_deg + _long_min / 60.0;

*latitude = _lat_deg + _lat_min / 60.0;

*depth = _depth;

*timestamp = (double) (_hour *3600 + _min *60 + _sec);

/*

* Change longitude to its opposite if it is ’West ’ longitude.

* Idem for latitude if it’s ’South ’ latitude

*/

if (_long == ’W’)

*longitude *= -1;

if (_lat == ’S’)

*latitude *= -1;

/* If sounding is invalid , set NULL to arguments */

if (! valid)

{

longitude = NULL;

latitude = NULL;

depth = NULL;

}

return valid;

} /* read_single_sounding_raw2 */

int read_single_sounding_raw3 (FILE *fp_raw , double *longitude , \

double *latitude , double *depth , double * timestamp)

/*

Arguments : fp_raw : pointer to a stream.

longitude , latitude , depth : data associated with current sounding.

The file MUST contain data using the format of GUADALUPE RIVER.

#

Action : Reads a line in the file pointed by fp_raw and assigns values to longitude ,

latitude and depth.

#

Return : A non -zero integer if the sounding is valid.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have well -defined values.

#

0 if the sounding is invalid.

-1 if a reading error occurred.

In this case , the arguments ’longitude ’,

’latitude ’ and ’depth ’ have NULL values.

*/

{

/* Variable starting with underscore are used to scan the file */

int _day;

int _month;

int _year;

69

int _hour;

int _min;

double _sec;

double _depth;

int _quality;

double _tranducer_depth;

double _lat_deg;

double _lat_min;

double _long_deg;

double _long_min;

char _lat;

char _long;

int _tmp;

int _latency;

int n_read;

int valid;

/* Read the sounding (the nasty conversion string will convert raw3 data ONLY !!) */

n_read = fscanf (fp_raw , \

"%2d%2d%4d,%2d%2d%6lf ,%5d,%8lf ,%d, %4lf ,%2lf %9lf%1c,%3lf %9lf%1c,%4d\n",

&_day , & _month , &_year , &_hour , &_min ,

&_sec , &_tmp , &_depth , & _quality ,

&_tranducer_depth ,

&_lat_deg , & _lat_min , &_lat ,

&_long_deg , & _long_min , &_long ,

&_latency);

if (n_read != 17)

{

printf ("\nError while reading raw data file !\n");

return -1;

}

/*

* Check for validity of sounding : a quality of 1 indicates

* a valid sounding . Also , the latitude must be North and

* the longitude must be west.

*/

valid = (_quality == 1) && (_lat == LAT_C_3) && (_long == LONG_C_3);

/*

* If the degree part of the coordinate is 0, set it to

* the reference location.

*/

if (_lat_deg == 0)

_lat_deg = LATITUDE_3;

if (_long_deg == 0)

_long_deg = LONGITUDE_3;

/* Set the values of the arguments */

*longitude = _long_deg + _long_min / 60.0;

*latitude = _lat_deg + _lat_min / 60.0;

*depth = _depth;

*timestamp = (double) (_hour *3600 + _min *60 + _sec);

/*

* Change longitude to its opposite if it is ’West ’ longitude.

* Idem for latitude if it’s ’South ’ latitude

*/

if (_long == ’W’)

*longitude *= -1;

if (_lat == ’S’)

*latitude *= -1;

/* If sounding is invalid , set NULL to arguments */

if (! valid)

{

longitude = NULL;

latitude = NULL;

depth = NULL;

}

return valid;

} /* read_single_sounding_raw3 */

int compute_statistics (gps_position * gps_positions , int n_gps_positions)

/*

#

#

Return : 1 no error was encountered while calculating the statistics.

0 if an error occurred.

*/

{

int i;

double dist;

/* Compute mean depth and depth variance */

for (i = 0 ; i < n_gps_positions ; i++)

{

70

(void) compute_depth_mean (gps_positions + i);

(void) compute_depth_variance (gps_positions + i);

}

/* Compute mean slope and slope variance */

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

{

dist = compute_distance (gps_positions + i, gps_positions + i + 1);

if (dist > 0.0)

{

(void) compute_slope (gps_positions + i, gps_positions + i + 1);

(void) compute_slope_mean (gps_positions + i, gps_positions + i + 1);

(void) compute_slope_variance (gps_positions + i, gps_positions + i + 1);

}

else

fprintf (stderr , \

" Distance (%f) between GPS%d and GPS%d is \

negative or equal to 0. GPS%d will be skiped .\n" ,\

dist , i, i+1, i);

}

return 1;

} /* compute_statistics */

double compute_depth_mean (gps_position *gps)

/*

Arguments : gps is a pointer to (struct gps_position),

representative of a valid GPS position.

#

Action : Compute the mean of all depths at GPS position . Assign it to gps.

#

Return : mean of all depths at GPS position.

*/

{

int N; /* Number of soundings */

int i; /* Counter */

double sum_depth; /* Running sum of all depths */

/* Retrieve the number of soundings for the GPS position */

N = (* gps). n_soundings;

/* Initialiazes the sum of depths */

sum_depth = 0.0;

for (i = 0 ; i < N ; i++)

sum_depth += (* gps). soundings[i];

/* Compute the mean depth , assign it to GPS position

* and set it as return value (vive le C !) */

return ((* gps). depth_mean = (sum_depth / N));

} /* compute_depth_mean */

double compute_depth_variance (gps_position *gps)

/*

Arguments : gps is a pointer to (struct gps_position),

representative of a valid GPS position.

#

Action : Compute the variance of all depths at GPS position and assign it to gps.

#

Return : variance of all depths at GPS position.

*/

{

int N;

int i;

double depth_mean; /* Mean depth of GPS position */

double sum_squared_difference; /* Running sum of (h_i - h_avg)^2 */

/* Retrieve the number of soundings and the mean depth for the GPS position */

N = (* gps). n_soundings;

depth_mean = (* gps). depth_mean;

/* Initialiazes the running sum */

sum_squared_difference = 0.0;

for (i = 0 ; i < N ; i++)

sum_squared_difference += pow ((* gps). soundings[i] - depth_mean , 2);

/* Compute the variance , assign it to GPS position

* and set it as return value (vive le C !) */

return ((* gps). depth_var = (sum_squared_difference / N));

} /* compute_depth_variance */

double compute_slope (gps_position *gps1 , gps_position *gps2)

/*

Arguments : gps1 and gps2 are pointers to (struct gps_position),

representative of valid GPS positions.

71

#

Action : Calculate the slope between GPS positions using the mean depths

at each position in the calculation . Assign it to gps1.

#

Return : Slope between GPS positions using the mean depths in the calculation.

*/

{

double dist;

double mean_depth1;

double mean_depth2;

dist = (* gps1). distance; /* Distance between GPS1 and GPS2 */

if (dist == 0.0)

{

fprintf (stderr , \

"Error. Distance between GPS%d and GPS%d \

must be computed before computing the slope .\n",\

(*gps1).id , (* gps2).id);

return 0;

}

mean_depth1 = (* gps1). depth_mean;

mean_depth2 = (* gps2). depth_mean;

return ((* gps1).slope = (mean_depth2 - mean_depth1) / dist);

} /* compute_slope */

double compute_slope_mean (gps_position *gps1 , gps_position *gps2)

/*

Arguments : gps1 and gps2 are pointers to (struct gps_position),

representative of valid GPS positions.

#

Action : Calculate the mean of all possible slopes between both GPS positions

and assign it to gps1.

#

Return : Mean of all possible slopes between both GPS positions.

*/

{

int N1;

int N2;

double dist; /* Distance between GPS positions */

int i;

int j;

double sum_slope; /* Running sum of all possible slopes */

/* Distance between GPS positions */

dist = (* gps1). distance;

if (dist == 0.0)

{

fprintf (stderr , \

"Error. Distance between GPS%d and GPS%d \

must be computed before computing the slope .\n",

(*gps1).id , (* gps2).id);

return 0;

}

/* Retrieve the number of soundings at each GPS position */

N1 = (* gps1). n_soundings;

N2 = (* gps2). n_soundings;

/* Compute sum of all possible slopes */

sum_slope = 0.0;

for (i = 0 ; i < N1 ; i++)

for (j = 0 ; j < N2 ; j++)

sum_slope += ((* gps2). soundings[j] - (* gps1). soundings[i]) / dist;

return ((* gps1). slope_mean = sum_slope / (N1*N2));

} /* compute_slope_mean */

double compute_slope_variance (gps_position *gps1 , gps_position *gps2)

/*

Arguments : gps1 and gps2 are pointers to (struct gps_position),

representative of valid GPS positions.

#

Action : Calculate the variance of all possible slopes between both GPS positions

and assign it to gps1.

#

Return : Variance of all possible slopes between both GPS positions.

*/

{

int N1;

int N2;

double dist; /* Distance between GPS positions */

int i;

int j;

double slope_ij; /* Slope between sounding i

of GPS1 and sounding j of GPS2 */

72

double slope_mean; /* Mean of all slopes between GPS1 and GPS2 */

double sum_squared_difference; /* Running sum of all possible slopes */

/* Distance between GPS positions */

dist = (* gps1). distance;

if (dist == 0.0)

{

fprintf (stderr , \

"Error. Distance between GPS%d and GPS%d \

must be computed before computing the slope .\n",

(*gps1).id , (* gps2).id);

return 0;

}

/* Mean of all slopes between GPS positions */

slope_mean = (* gps1). slope_mean;

/* Retrieve the number of soundings at each GPS position */

N1 = (* gps1). n_soundings;

N2 = (* gps2). n_soundings;

/* Compute sum of all possible slopes */

sum_squared_difference = 0.0;

for (i = 0 ; i < N1 ; i++)

for (j = 0 ; j < N2 ; j++)

{

slope_ij = ((* gps2). soundings[j] - (* gps1). soundings[i]) / dist;

sum_squared_difference += pow (slope_ij - slope_mean , 2);

}

return ((* gps1). slope_var = sum_squared_difference / (N1*N2));

} /* compute_slope_variance */

double compute_distance (gps_position *gps1 , gps_position *gps2)

/*

Arguments : gps1 and gps2 are pointers to (struct gps_position),

representative of valid GPS positions between which

the distance is to be calculated.

#

Action : Calculate the distance between both GPS positions and assign it

to gps1.

#

Return : Distance between GPS positions.

*/

{

double lambda1; /* GPS1 - longitude (rad.) */

double phi1; /* GPS1 - latitude (rad.) */

double lambda2; /* GPS2 - longitude (rad.) */

double phi2; /* GPS2 - latitude (rad.) */

double x1 ,y1,z1; /* GPS1 - Cartesian coordinates */

double x2 ,y2,z2; /* GPS2 - Cartesian coordinates */

double L_sq; /* Distance of straight line

between (x1,y1,z1) and (x2 ,y2 ,z2) */

double alpha; /* Angle between radii defined by GPS1 and GPS2 */

/* Retrieve spherical coordinates (M_PI is defined in math.h) */

lambda1 = (* gps1). longitude * M_PI / 180.0;

phi1 = (* gps1). latitude * M_PI / 180.0;

lambda2 = (* gps2). longitude * M_PI / 180.0;

phi2 = (* gps2). latitude * M_PI / 180.0;

/* Conversion to Cartesian coordinates (RE = Earth radius) */

x1 = RE * cos (phi1) * cos (lambda1);

y1 = RE * cos (phi1) * sin (lambda1);

z1 = RE * sin (phi1);

x2 = RE * cos (phi2) * cos (lambda2);

y2 = RE * cos (phi2) * sin (lambda2);

z2 = RE * sin (phi2);

/* Distance (squared) between positions */

L_sq = pow (x1-x2 , 2) + pow (y1 -y2 , 2) + pow (z1-z2 , 2);

/* Compute the angle between both positions (Generalized Pythagoras) */

alpha = acos (1.0 - L_sq / (2.0* pow(RE ,2)));

return ((* gps1). distance = alpha*RE);

} /* compute_distance */

73

/* ----------------------------------

*

* postprocess.h

*

* Laurent White

*

* Date of creation : 2002 -12 -19

*

* ---------------------------------- */

ifndef POSTPROCESS_H

define POSTPROCESS_H

include "defs.h"

int export_to_dx (char *basename , int items);

int export_to_matlab (char *prefix , gps_position * gps_positions , \

int n_gps_positions);

int export_to_sms (char *prefix , gps_position * gps_positions , \

int n_gps_positions);

endif /* POSTPROCESS_H */

74

/* ----------------------------------

*

* postprocess.c

*

* Laurent White

*

* Date of creation : 2002 -12 -20

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include "postprocess.h"

int export_to_dx (char *basename , int items)

/*

input_file : file basename containing the data to be exported into a DX format

items : number of items in the file (number of positions)

*/

{

FILE *fp_in;

FILE * fp_pos;

FILE * fp_dat;

FILE *fp_dx;

char fname_in [100]; /* File with processed data */

char fname_pos [100]; /* DX file : positions */

char fname_dat [100]; /* DX file : data */

char fname_dx [100]; /* DX file : field structure */

int _day;

int _month;

int _year;

double _time;

double _latitude;

double _longitude;

double _depth;

double _var;

int _tmp;

/* -----------------------

* --- Opens the files ---

* ----------------------- */

strcpy (fname_in , basename);

strcat (fname_in , ".pro");

fp_in = fopen (fname_in , "r");

if (fp_in == NULL)

{

printf ("Opening file ‘%s’ failed .\n" , fname_in);

return 0;

}

strcpy (fname_pos , basename);

strcat (fname_pos , ".pos");

fp_pos = fopen (fname_pos , "w");

if (fp_pos == NULL)

{

printf ("Opening file ‘%s’ failed .\n" , fname_pos);

return 0;

}

strcpy (fname_dat , basename);

strcat (fname_dat , ".dat");

fp_dat = fopen (fname_dat , "w");

if (fp_dat == NULL)

{

printf ("Opening file ‘%s’ failed .\n" , fname_dat);

return 0;

}

strcpy (fname_dx , basename);

strcat (fname_dx , ".dx");

fp_dx = fopen (fname_dx , "w");

if (fp_dx == NULL)

{

printf ("Opening file ‘%s’ failed .\n" , fname_dx);

return 0;

}

/* ------------------------------

* --- Writes to the dx files ---

* ------------------------------ */

while (! feof(fp_in))

{

fscanf (fp_in , "%2d-%2d-%4d %lf %lf %lf %lf %lf %d\n",

&_day , &_month , &_year , &_time ,

&_latitude , & _longitude , &_depth , &_var , & _tmp);

fprintf (fp_pos , "%.10f %.10f\n" , _longitude , _latitude);

fprintf (fp_dat , "%lf\n", _depth);

75

}

fprintf (fp_dx , "# POSITIONS\n");

fprintf (fp_dx , "object 1 class array type float rank 1 shape 2 items %d\n",

items);

fprintf (fp_dx , "data file %s,0\n\n", fname_pos);

fprintf (fp_dx , "# DATA\n");

fprintf (fp_dx , "object 2 class array type float rank 0 items %d\n", items);

fprintf (fp_dx , "data file %s,0\n" , fname_dat);

fprintf (fp_dx , "attribute \" dep\" string \" positions \"\n\n");

fprintf (fp_dx , "# FIELD\n");

fprintf (fp_dx , "object \" irregular positions \" class field\n");

fprintf (fp_dx , "component \" positions \" value 1\n");

fprintf (fp_dx , "component \" data \" value 2\n");

/* Closes files */

fclose (fp_in);

fclose (fp_pos);

fclose (fp_dat);

fclose (fp_dx);

return -1;

} /* export_to_dx */

int export_to_matlab (char *prefix , gps_position * gps_positions , int n_gps_positions)

/*

prefix : prefix of filenames used to export data to use under Matlab.

gps_positions : array of GPS positions (struct gps_position), each one containing

all data associated with it

(mean depth , distance to next position , ...)

n_gps_positions : number of distinct GPS positions (number of elements in the array)

#

ACTION : Export the data into three files :

’prefix.sum ’, ’prefix.lum ’ and ’prefix.fin’

’prefix.sum ’ contains summarized data for each GPS position.

’prefix.lum ’ is made up of a series of arrays numbered GPS1 to GPSN (where

N = n_gps_positions). Each array contains all depth measurements associated

with the GPS position.

’prefix.fin ’ is a fine version of the bathymetry obtained by using ALL

depth measurements (spread equidistantly between adjacent GPS positions).

*/

{

/* Variables */

FILE * fp_lum;

FILE * fp_sum;

FILE * fp_ori;

FILE * fp_fin;

char fname_lum [128]; /* Filename of file containing lumped data */

char fname_sum [128]; /* Filename of file containing summarized data */

char fname_ori [128]; /* Filename of file containing fine bathymetry -- not for MATLAB */

char fname_fin [128]; /* Filename of file containing fine bathymetry */

int i;

int j;

int n_skipped = 0;

double ksi; /* Curvilinear coordinate */

int n_local; /* Number of soundings at current GPS position */

double delta_ksi; /* Local increment in curvilinear coordinate */

double delta_x; /* Local increment in longitude */

double delta_y; /* Local increment in latitude */

double x;

double y;

if (n_gps_positions <= 0)

{

printf ("\nNo data to export ...\n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found . Make sure to process the data first !\n");

printf ("Aborting ...\n");

return 0;

}

/* -- */

/* I/O management */

/* -- */

strcpy (fname_lum , prefix);

strcat (fname_lum , "_lum.m");

fp_lum = fopen (fname_lum , "w");

if (fp_lum == NULL)

{

printf ("Opening file ’%s’ failed in ’export_to_matlab ’.\n", fname_lum);

return 0;

}

strcpy (fname_sum , prefix);

strcat (fname_sum , "_sum.m");

76

fp_sum = fopen (fname_sum , "w");

if (fp_sum == NULL)

{

printf ("Opening file ’%s’ failed in ’export_to_matlab ’.\n", fname_sum);

return 0;

}

strcpy (fname_ori , prefix);

strcat (fname_ori , ".ori");

fp_ori = fopen (fname_ori , "w");

if (fp_ori == NULL)

{

printf ("Opening file ’%s’ failed in ’export_to_matlab ’.\n", fname_ori);

return 0;

}

strcpy (fname_fin , prefix);

strcat (fname_fin , "_fin.m");

fp_fin = fopen (fname_fin , "w");

if (fp_fin == NULL)

{

printf ("Opening file ’%s’ failed in ’export_to_matlab ’.\n", fname_fin);

return 0;

}

printf ("\nExporting processed data for use under Matlab ...\n");

/* -- */

/* Exportation of summarized data (prefix.sum) */

/* -- */

printf (" Exporting summarized data to ’%s’\n", fname_sum);

fprintf (fp_sum , "%% X,Y : Cartesian coordinates .\n");

fprintf (fp_sum , "%% HM ,HV : Mean depth and variance of depth.\n");

fprintf (fp_sum , "%% S,SM,SV : Slope , mean slope (same as previous), \

variance of slope.\n");

fprintf (fp_sum , "%% T : Time stamps .\n");

fprintf (fp_sum , "%% N : Number of soundings at each position .\n");

fprintf (fp_sum , "DATA = [\n");

for (i = 0 ; i < n_gps_positions ; i++)

{

if ((gps_positions[i]. distance > 0) || (i == (n_gps_positions -1)))

fprintf (fp_sum , "%.10f %.10f %f %f %f %f %f %f %d\n",

gps_positions[i].longitude , gps_positions[i].latitude ,

gps_positions[i].depth_mean , gps_positions[i].depth_var ,

gps_positions[i].slope ,

gps_positions[i].slope_mean ,

gps_positions[i].slope_var ,

gps_positions[i]. timestamps [0], gps_positions[i]. n_soundings);

else

n_skipped ++;

}

fprintf (fp_sum , "];\n\n");

fprintf (fp_sum , "X = DATA (: ,1);\n");

fprintf (fp_sum , "Y = DATA (: ,2);\n");

fprintf (fp_sum , "HM = DATA (: ,3);\n");

fprintf (fp_sum , "HV = DATA (: ,4);\n");

fprintf (fp_sum , "S = DATA (1:%d,5);\n", n_gps_positions - 1 - n_skipped);

fprintf (fp_sum , "SM = DATA (1:%d ,6);\n", n_gps_positions - 1 - n_skipped);

fprintf (fp_sum , "SV = DATA (1:%d ,7);\n", n_gps_positions - 1 - n_skipped);

fprintf (fp_sum , "T = DATA (: ,8);\n");

fprintf (fp_sum , "N = DATA (: ,9);\n");

fprintf (fp_sum , "clear DATA;\n");

printf (" %d GPS position(s) has(have) been skipped .\n", n_skipped);

/* -- */

/* Exportation of lumped data (prefix.lum) */

/* -- */

printf (" Exporting lumped data to ’%s’\n\n" , fname_lum);

for (i = 0 ; i < n_gps_positions ; i++)

{

fprintf (fp_lum , "%% (%.10f,%.10f)\n",

gps_positions[i].longitude , gps_positions[i]. latitude);

fprintf (fp_lum , "GPS%d = [\n" , gps_positions[i].id);

for (j = 0 ; j < gps_positions[i]. n_soundings ; j++)

fprintf (fp_lum , "%.8f \n", gps_positions[i]. soundings[j]);

fprintf (fp_lum , "];\n\n");

}

77

/* -- */

/* Exportation of fine bathymetry (prefix.fin) */

/* -- */

printf (" Exporting fine bathymetry to ’%s’\n\n" , fname_fin);

fprintf (fp_fin , "%% X : Longitude [deg .].\n");

fprintf (fp_fin , "%% Y : Latitude [deg .].\n");

fprintf (fp_fin , "%% KSI : Curvilinear coordinates .\n");

fprintf (fp_fin , "%% H : Local depth measurement .\n");

fprintf (fp_fin , "%% HM : Mean depth measurement .\n");

fprintf (fp_fin , "%% T : Timestamps .\n");

fprintf (fp_fin , "DATA = [\n");

ksi = 0.0;

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

{

/* Current GPS position */

x = gps_positions[i]. longitude;

y = gps_positions[i]. latitude;

/* Retrieve the number of soudings for the current GPS position */

n_local = gps_positions[i]. n_soundings;

/* Compute the increment in ksi. Note : we divide by n_local and not

(n_local -1) because the last sounding associated with the current GPS

position must not lie on the next one */

delta_ksi = gps_positions[i]. distance / n_local;

delta_x = (gps_positions[i+1]. longitude - x) / n_local;

delta_y = (gps_positions[i+1]. latitude - y) / n_local;

for (j = 0 ; j < n_local ; j++)

{

fprintf (fp_fin , "%.10f %.10f %.8f %.8f %.8f %.3f\n",

x, y, ksi ,

gps_positions[i]. soundings[j],

gps_positions[i].depth_mean ,

gps_positions[i]. timestamps[j]);

fprintf (fp_ori , "%.10f , %.10f , %.10f\n",

x, y, gps_positions[i]. soundings[j]);

ksi += delta_ksi;

x += delta_x;

y += delta_y;

}

}

fprintf (fp_fin , "];\n\n");

fprintf (fp_fin , "X = DATA (: ,1);\n");

fprintf (fp_fin , "Y = DATA (: ,2);\n");

fprintf (fp_fin , "KSI = DATA (: ,3);\n");

fprintf (fp_fin , "H = DATA (: ,4);\n");

fprintf (fp_fin , "HM = DATA (: ,5);\n");

fprintf (fp_fin , "T = DATA (: ,6);\n");

fprintf (fp_fin , "clear DATA;\n");

/* -- */

/* Close streams */

/* -- */

fclose (fp_lum);

fclose (fp_sum);

fclose (fp_ori);

fclose (fp_fin);

return -1;

} /* export_to_matlab */

int export_to_sms (char *prefix , gps_position * gps_positions , int n_gps_positions)

/*

prefix : prefix of filenames used to export data to use under Matlab.

gps_positions : array of GPS positions (struct gps_position), each one containing

all data associated with it

(mean depth , distance to next position , ...)

n_gps_positions : number of distinct GPS positions (number of elements in the array)

*/

{

/* Variables */

FILE * fp_sms;

char fname_sms [128]; /* Filename of file containing lumped data */

int i;

int n_skipped = 0;

/* -- */

/* I/O management */

/* -- */

78

strcpy (fname_sms , prefix);

strcat (fname_sms , "_sms.m");

fp_sms = fopen (fname_sms , "w");

if (fp_sms == NULL)

{

printf ("Opening file ’%s’ failed in ’export_to_SMS ’.\n", fname_sms);

return 0;

}

printf ("\nExporting processed data for use under SMS ...\n");

/* -- */

/* Exportation of summarized data (prefix.sum) */

/* -- */

printf (" Exporting summarized data to ’%s’\n", fname_sms);

fprintf (fp_sms , "%% X,Y : Cartesian coordinates .\n");

fprintf (fp_sms , "%% HM : Mean depth.\n");

for (i = 0 ; i < n_gps_positions ; i++)

{

if ((gps_positions[i]. distance > 0) || (i == (n_gps_positions -1)))

fprintf (fp_sms , "%.10f , %.10f , %f\n",

gps_positions[i].longitude , gps_positions[i].latitude ,

gps_positions[i]. depth_mean);

else

n_skipped ++;

}

printf (" %d GPS position(s) has(have) been skipped .\n", n_skipped);

fclose (fp_sms);

return -1;

} /* export_to_sms */

79

/* --

*

* medianfilter.h

*

* Laurent White

*

* Date of creation : 2003 -06 -16

* Last update : 2003 -06 -17

*

* --- */

ifndef MEDIANFILTER_H

define MEDIANFILTER_H

int median_filter (double *H_ori , double *H_flt , int length , int N);

double median (double *H, int length);

void bubble_sort (double *H, int length);

endif /* MEDIANFILTER_H */

80

/* --

*

* medianfilter.c

*

* Laurent White

*

* Date of creation : 2003 -06 -16

* Last update : 2003 -06 -17

*

* NOTE : in the arguments , ’length ’ ALWAYS refers to

* the number of elements in the array that

* is passed as argument . And N ALWAYS refers

* to half the length of the median filter ;

* the length being (2*N + 1).

* --- */

include <stdlib.h>

include <stdio.h>

include <math.h>

include "defs.h"

include "medianfilter.h"

int median_filter (double *H_ori , double *H_flt , int length , int N)

/*

Arguments : H_ori is the original signal.

H_flt is the filtered signal (returned by the function).

length is the number of elemnts in H_ori and H_flt.

N is half the length of the filter.

#

Action : Filter the original signal H_ori. The filtered signal is

H_flt.

#

Return : 0 if an error occurred . 1 otherwise.

*/

{

int i;

double * H_temp;

/* Create appended array */

H_temp = (double *) malloc ((length + 2*N) * sizeof (double));

if (H_temp == NULL)

{

printf ("Memory allocation failure in ’median_filter ’.\n");

return 0;

}

/*

* Append H_temp with N * H_ori [0] and N*H_ori[length], i.e.

* the first N values of H_temp are filled with H_ori [0] and

* the N last values of H_temp are filled with H_ori[length].

*/

for (i = 0 ; i < N ; i++)

{

H_temp[i] = H_ori [0];

H_temp[length + 2*N - 1 - i] = H_ori[length -1];

}

/* Copy H_ori to the central part of H_temp */

for (i = N ; i < (length + N) ; i++)

H_temp[i] = H_ori[i-N];

/* Median filtering */

for (i = 0 ; i < length ; i++)

{

H_flt[i] = median (H_temp + i , 2*N+1);

}

return 1;

} /* median_filter */

double median (double *H, int length)

/*

Arguments : ’H’ is an array of ’length ’ elements.

#

Action : Compute the median of the array.

#

Return : The median of the array.

*/

{

int i;

double * H_sort;

/* Create a copy of the array whose median is to be calculated . */

/* Necessary because the sorting function alters the array. */

H_sort = (double *) malloc (length * sizeof (double));

for (i = 0 ; i < length ; i ++)

H_sort[i] = H[i];

/* Sort the array */

81

(void) bubble_sort (H_sort , length);

/* Return the median */

if (fmod ((double) length , 2.0) != 0.0)

/* length is odd */

return H_sort [(length -1)/2];

else

/* length is even */

return (H_sort[length /2 - 1] + H_sort[length /2]) / 2.0;

/* Free memory */

free (H_sort);

} /* median */

void bubble_sort (double *H, int length)

/*

Arguments : ’H’ is the array to be sorted. It contains

’length ’ elements.

#

Action : Sorts the array.

#

Return : /

*/

{

int i;

int j;

double temp;

for (i = length - 1 ; i > 0 ; i--)

for (j = 0 ; j < i ; j++)

if (H[j] > H[j+1]) /* compare neighboring elements */

{

temp = H[j]; /* swap H[j] and H[j+1] */

H[j] = H[j+1];

H[j+1] = temp;

}

} /* bubble_sort */

82

/* --

*

* identifylwd.h

*

* Laurent White

*

* Date of creation : 2003 -06 -17

*

* --- */

ifndef IDENTTIFYLWD_H

define IDENTTIFYLWD_H

include "defs.h"

int identify_LWD (char *fname_out , gps_position * gps_positions , int n_gps_positions);

void create_fine_bathymetry (gps_position * gps_positions , \

int n_gps_positions , \

double *X, double *Y, double *KSI , double *H);

int median_filter_single_file (char *prefix , \

double *X, double *Y, \

double *KSI , double *H_ori , int length);

int median_filter_separate_files (char *prefix , double *X, \

double *Y, double *KSI , double *H_ori , int length);

int spot_LWD (char *prefix , double *X, \

double *Y, double *H_ori , \

double *H_flt , int length , \

int N, int flag , double height);

endif /* IDENTIFYLWD_H */

83

/* --

*

* identifylwd.c

*

* Laurent White

*

* Date of creation : 2003 -06 -17

*

* --- */

include <stdio.h>

include <stdlib.h>

include <string.h>

include <math.h>

include "identifylwd.h"

include "medianfilter.h"

include "stdev.h"

include "defs.h"

int identify_LWD (char *prefix , gps_position * gps_positions , int n_gps_positions)

/*

Arguments : prefix : prefix used to create output files.

gps_positions : array of ’n_gps_positions ’

struct gps_position (cfr. defs.h)

#

Action : Identification of LWD :

1. Creation of fine bathymetry (to be filtered subsequently)

2. Specification of filter length (user enters it)

3. Filtering of signal.

4. Comparison of original and filtered signals to spot LWD.

Output results.

#

Return : 0 if an error occurred , 1 otherwise.

-1 if the user wants to return to the main menu.

*/

{

/* ---------

* Variables

* --------- */

double *X; /* Array of longitudes */

double *Y; /* Array of latitudes */

double *KSI; /* Array of curvilinear coordinates */

double * H_ori; /* Array of depth soundings */

int i;

int length;

int choice;

if (n_gps_positions <= 0)

{

printf ("\nNo data to examine ... \n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found . \

Make sure to process the data first !\n");

printf ("Aborting ...\n");

return -1;

}

/* Display menu */

printf ("\nLWD IDENTIFICATION MENU\n");

printf ("-------------------------\n\n");

printf ("---\n");

printf ("| Median filter (common file) 1 |\n");

printf ("| Median filter (seperate files) 2 |\n");

printf ("| Standard deviation 3 |\n");

printf ("| |\n");

printf ("| Return to Main Menu 9 |\n");

printf ("---\n");

printf ("\n");

printf (" Selection : ");

scanf ("%d" , &choice);

if (choice == 9) /* Return to main menu */

return -1;

/* ---------------

* Allocate memory

* --------------- */

length = 0;

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

length += gps_positions[i]. n_soundings;

X = (double *) malloc (length * sizeof (double));

Y = (double *) malloc (length * sizeof (double));

H_ori = (double *) malloc (length * sizeof (double));

KSI = (double *) malloc (length * sizeof (double));

84

/* -----------

* Fill arrays

* ----------- */

(void) create_fine_bathymetry (gps_positions , n_gps_positions , X, Y, KSI ,

H_ori);

switch (choice)

{

case 1:

(void) median_filter_single_file (prefix , X, Y, KSI ,

H_ori , length);

break;

case 2:

(void) median_filter_separate_files (prefix , X, Y, KSI ,

H_ori , length);

break;

case 3:

(void) stdev_identification (prefix , gps_positions ,

n_gps_positions);

break;

}

free (X);

free (Y);

free (H_ori);

free (KSI);

return 1;

} /* identify_LWD */

void create_fine_bathymetry (gps_position * gps_positions ,

int n_gps_positions , double *X,

double *Y, double *KSI , double *H)

/*

Arguments : ’ gps_positions ’ is an array of ’n_gps_positions ’ struct gps_position

(cfr defs.h).

X, Y : empty arrays to be filled with

H : empty array to be filled with detailed bathymetry.

#

Action : Browse the array of GPS positions and fill the other arrays. In particular ,

all soundings between two distinct GPS positions are given an interpolated

GPS position determined by calculating the distance between the

GPS position and dividing by the number of soundings.

#

Return : /

*/

{

int i;

int j;

int index;

double x;

double y;

double delta_x;

double delta_y;

double ksi;

double delta_ksi;

int n_local;

index = 0;

ksi = 0.0;

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

{

/* Current GPS position */

x = gps_positions[i]. longitude;

y = gps_positions[i]. latitude;

/* Retrieve the number of soudings for the current GPS position */

n_local = gps_positions[i]. n_soundings;

/* Compute the increment in ksi. Note : we divide by n_local and not

(n_local -1) because the last sounding associated with the current GPS

position must not lie on the next one */

delta_x = (gps_positions[i+1]. longitude - x) / n_local;

delta_y = (gps_positions[i+1]. latitude - y) / n_local;

delta_ksi = gps_positions[i]. distance / n_local;

for (j = 0 ; j < n_local ; j++)

{

X[index] = x;

Y[index] = y;

H[index] = gps_positions[i]. soundings[j];

KSI[index] = ksi;

x += delta_x;

y += delta_y;

ksi += delta_ksi;

85

index ++;

}

}

} /* create_fine_bathymetry */

int median_filter_single_file (char *prefix , double *X,

double *Y, double *KSI , double *H_ori , int length)

/*

Arguments : prefix : prefix of output file name.

X, Y : arrays of longitudes , latitudes associated with the bathymetry

(this is used to export the locations of spotted LWD)

H_ori : Original bathymetry.

H_flt : Filtered bathymetry.

length : number of elements contained in all arrays

#

Action :

#

Return : 0 if an error occurred . 1 otherwise.

*/

{

/* ---------

* Variables

* --------- */

char fname_flt[MAX_FNAME_SIZE];

char fname_gnuplot[MAX_FNAME_SIZE];

FILE *fp_flt;

FILE *fp_gnuplot;

double * H_flt;

int N;

int i;

double height;

int n_locations;

H_flt = (double *) malloc (length * sizeof (double));

/* ----------------------------------

* Filter & identification parameters

* ---------------------------------- */

printf ("\nEnter half -length of median filter : ");

scanf ("%d" , &N);

printf ("\nFiltering signal with median filter of length %d... " , 2*N+1);

fflush (stdout);

if (median_filter (H_ori , H_flt , length , N) == 0)

{

printf ("An error occurred while filtering !\n");

return 0;

}

printf ("Done\n");

/* ----------------------

* Output filtered signal

* ---------------------- */

/* Open output file */

strcpy (fname_flt , prefix);

strcat (fname_flt , ".flt");

fp_flt = fopen (fname_flt , "w");

if (fp_flt == NULL)

{

printf ("Opening file ’%s’ failed in ’identify_LWD ’.\n", fname_flt);

return 0;

}

/* Open gnuplot data source file */

strcpy (fname_gnuplot , "gnuplotdata/medflt.dat");

fp_gnuplot = fopen (fname_gnuplot , "w");

if (fp_gnuplot == NULL)

{

printf ("Opening file ’%s’ failed in ’identify_LWD ’.\n", fname_gnuplot);

return 0;

}

fprintf (fp_gnuplot , "# %d (length of median filter)\n" , 2*N+1);

printf ("Exporting filtered data into ’%s ’... ", fname_flt);

fflush (stdout);

for (i = 0 ; i < length ; i++)

{

/* Export for use under Matlab */

fprintf (fp_flt , "%.10f , %.10f , %.8f\n", X[i], Y[i], H_flt[i]);

/* Export for use with Gnuplot */

fprintf (fp_gnuplot , "%.8f %.8f %.8f %.8f\n",

86

KSI[i], H_ori[i], H_flt[i], fabs(H_ori[i] - H_flt[i]));

}

printf ("Done \n\n");

/* --------

* Spot LWD

* -------- */

printf ("Enter discriminative height [m] : ");

scanf ("%lf" , &height);

n_locations = spot_LWD (prefix , X, Y, H_ori , H_flt , length , N, 1, height);

fclose (fp_flt);

fclose (fp_gnuplot);

free (H_flt);

return 1;

} /* median_filter_single_file */

int median_filter_separate_files (char *prefix ,

double *X, double *Y, double *KSI , double *H_ori , int length)

/*

Arguments : prefix : prefix of output file name.

X, Y : arrays of longitudes , latitudes associated with the bathymetry

(this is used to export the locations of spotted LWD)

H_ori : Original bathymetry.

length : number of elements contained in all arrays

#

Action :

#

Return : 0 if an error occurred . 1 otherwise.

*/

{

/* ---------

* Variables

* --------- */

char fname_fltN[MAX_FNAME_SIZE];

char prefixN[MAX_FNAME_SIZE];

FILE *fp_fltN;

double * H_flt;

int N;

int i;

int j;

double height;

int common_height;

int n_locations; /* Number of locations for one filtering level */

int n_total_locations; /* Total number of locations for all filtering levels */

H_flt = (double *) malloc (length * sizeof (double));

/* ----------------------------------

* Filter & identification parameters

* ---------------------------------- */

printf ("\nEnter half -length of median filter : ");

scanf ("%d" , &N);

printf ("\nUse same height for identification of all spikes [1|0] ? ");

scanf ("%d" , & common_height);

if (common_height != 0)

{

printf ("Enter discriminative height [m] : ");

scanf ("%lf" , &height);

}

/* Filtering with filters of half -lengths 1 to N */

n_total_locations = 0;

for (j = 1 ; j < N+1 ; j++)

{

/* Filtering with median filter of half -length j */

printf ("\nFiltering signal with median filter of length %d... " , 2*j+1);

fflush (stdout);

if (median_filter (H_ori , H_flt , length , j) == 0)

{

printf ("An error occurred while filtering !\n");

return 0;

}

printf ("Done\n");

/* ----------------------

* Output filtered signal

* ---------------------- */

87

/* Open output file */

sprintf (fname_fltN , "%s_%02d.flt", prefix , j);

fp_fltN = fopen (fname_fltN , "w");

if (fp_fltN == NULL)

{

printf ("Opening file ’%s ’ failed in ’identify_LWD ’.\n", fname_fltN);

return 0;

}

printf ("Exporting filtered data into ’%s ’... ", fname_fltN);

fflush (stdout);

for (i = 0 ; i < length ; i++)

fprintf (fp_fltN , "%.10f %.10f %.8f\n" , X[i], Y[i], H_flt[i]);

printf ("Done \n");

fclose (fp_fltN);

/* --------

* Spot LWD

* -------- */

if (common_height == 0)

{

printf ("Enter discriminative height [m] : ");

scanf ("%lf" , &height);

}

sprintf (prefixN , "%s_%02d", prefix , j);

n_locations = spot_LWD (prefixN , X, Y, H_ori , H_flt , length , j, 2, height);

n_total_locations += n_locations;

} /* End filtering */

printf ("\nTotal number of suspected locations containing LWD : %d\n\n",

n_total_locations);

free (H_flt);

return 1;

} /* median_filter_separate_files */

int spot_LWD (char *prefix , double *X,

double *Y, double *H_ori ,

double *H_flt , int length , int N, int flag , double height)

/*

Arguments : fname_lwd : name of output file.

X, Y : arrays of longitudes , latitudes associated with the bathymetry

(this is used to export the locations of spotted LWD)

H_ori : Original bathymetry.

H_flt : Filtered bathymetry.

length : number of elements contained in all arrays

N : median filter half length

flag : 1 to identify spikes made of 1 to N soundings

2 to identify spikes made of N soundings only

#

Action : Compare original and filtered bathymetries to identify spikes that are

higher (relatively to the bottom) than a height specified by the user.

Locations where such spikes exist will be considered LWD -locations.

#

Return : 0 if an error occurred . 1 otherwise.

*/

{

/* ---------

* Variables

* --------- */

FILE *fp_lwd;

char fname_lwd[MAX_FNAME_SIZE];

int i;

int j;

double diff;

int n_spotted_lwd; /* Total number of spotted LWD */

int n_detected_soundings ; /* Local number of soundings shaping spike */

/* -----------

* Output file

* ----------- */

sprintf (fname_lwd , "%s.lwd" , prefix);

fp_lwd = fopen (fname_lwd , "w");

if (fp_lwd == NULL)

{

printf ("Opening file ’%s’ failed in ’spot_LWD ’.\n", fname_lwd);

return 0;

}

/* --

* Examine difference between original and filtered signals

* --*/

if (flag == 1) /* Detection of spikes shaped by up to N soundings */

88

{

n_spotted_lwd = 0;

for (i = 0 ; i < length ; i++)

{

diff = H_ori[i] - H_flt[i];

n_detected_soundings = 0;

if (-diff >= height)

{

n_spotted_lwd ++;

n_detected_soundings ++;

/* Modified on 2003.08.18 for use under fucking Windoze (for Vanketesh) */

if (n_detected_soundings < N+1)

fprintf (fp_lwd , "%.10f , %.10f, %.8f\n" , X[i], Y[i], -diff);

}

}

printf ("\n");

printf ("Number of suspected locations containing LWD : %d\n\n", n_spotted_lwd);

}

else /* Detection of spikes shaped by EXACTLY N soundings */

{

n_spotted_lwd = 0;

n_detected_soundings = 0;

for (i = 0 ; i < length ; i++)

{

diff = H_ori[i] - H_flt[i];

if (-diff >= height)

n_detected_soundings ++;

else

{

if (n_detected_soundings == N)

{

for (j = i-N ; j < i ; j++)

fprintf (fp_lwd , "%.10f %.10f %d\n" , X[j], Y[j], j+1);

n_spotted_lwd += n_detected_soundings;

}

n_detected_soundings = 0;

}

}

printf ("Number of suspected locations containing LWD : %d\n", n_spotted_lwd);

}

fclose (fp_lwd);

return n_spotted_lwd;

} /* spot_LWD */

89

/* ----------------------------------

*

* graphs.h

*

* Laurent White

*

* Date of creation : 2003 -07 -23

*

* ---------------------------------- */

ifndef GRAPHS_H

define GRAPHS_H

include "gnuplot_i.h"

int scatter_plot (gps_position * gps_positions ,

int n_gps_positions , gnuplot_ctrl *h);

int scatter_plot_fin (gps_position * gps_positions ,

int n_gps_positions , gnuplot_ctrl *h);

int filteredbath_plot (gps_position * gps_positions ,

int n_gps_positions , gnuplot_ctrl *h);

int plotting_menu (gps_position * gps_positions ,

int n_gps_positions , gnuplot_ctrl *h);

void display_plotting_menu ();

endif /* GRAPHS_H */

90

/* ----------------------------------

*

* graphs.c

*

* Laurent White

*

* Date of creation : 2003 -07 -23

*

* ---------------------------------- */

include <stdio.h>

include <stdlib.h>

include "gnuplot_i.h"

include "defs.h"

include "graphs.h"

void display_plotting_menu ()

/*

* Arguments : /

*

* Action : Display plotting menu on the screen

*

* Return : /

*

* */

{

printf ("\nPLOTTING MENU\n");

printf ("-------------\n\n");

printf ("--\n");

printf ("| Scatter plot 1 |\n");

printf ("| Fine scatter plot 2 |\n");

printf ("| Original and filtered bathymetries 3 |\n");

printf ("| |\n");

printf ("| Return to Main Menu 9 |\n");

printf ("--\n");

printf ("\n");

} /* display_plotting_menu */

int plotting_menu (gps_position * gps_positions , int n_gps_positions , gnuplot_ctrl *h)

/*

* Arguments : ’ n_gps_positions ’ struct gps_position are passed.

* h is the Gnuplot handle (defined and initialized in main.c)

*

* Action : Display plotting menu.

*

* Return : -1 if user chooses to go back to main menu . 1 otherwise.

*

* */

{

int choice;

choice = -1;

while (1)

{

switch (choice)

{

case 1:

(void) scatter_plot (gps_positions , n_gps_positions , h);

break;

case 2:

(void) scatter_plot_fin (gps_positions , n_gps_positions , h);

break;

case 3:

(void) filteredbath_plot (gps_positions , n_gps_positions , h);

break;

case 9:

return -1;

break;

}

(void) display_plotting_menu ();

printf (" Selection : ");

scanf ("%d" , &choice);

}

return 1;

} /* plotting_menu */

int scatter_plot (gps_position * gps_positions , int n_gps_positions , gnuplot_ctrl *h)

/*

91

* Arguments : ’ n_gps_positions ’ struct gps_position are passed.

* h is the Gnuplot handle (defined and initialized in main.c)

*

* Action : Scatter plot of GPS positions.

*

* Return : 0 if an error occurred . 1 otherwise.

*

* */

{

/* Variables */

FILE * fp_gnuplot;

char fname_gnuplot[MAX_FNAME_SIZE];

char fname_output[MAX_FNAME_SIZE];

int i;

int output_style;

/* I/O Management */

strcpy (fname_gnuplot , "gnuplotdata/scatter.dat");

fp_gnuplot = fopen (fname_gnuplot , "w");

if (fp_gnuplot == NULL)

{

printf ("An error occurred when opening file ’%s ’ !", fname_gnuplot);

return 0;

}

/* Check if there are data to plot */

if (n_gps_positions <= 0)

{

printf ("\nNo data to plot ...\n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found . Make sure to process the data first !\n");

printf ("Aborting ...\n");

return 0;

}

/* Reset all Gnuplot commands */

gnuplot_cmd (h, "reset");

/* Write into Gnuplot source file */

fprintf (fp_gnuplot , "# GNUPLOT Scatter plot\n");

for (i = 0 ; i < n_gps_positions ; i++)

fprintf (fp_gnuplot , "%.10f %.10f\n",

gps_positions[i].longitude ,

gps_positions[i]. latitude);

fclose (fp_gnuplot);

/* Scatter plot */

printf ("Paper [1] or screen [2] version (Default) ? ");

scanf ("%d" , & output_style);

/* Depending on output style , sets different terminals */

if (output_style == 1)

{

strcpy (fname_output , "gnuplotfigs/scatter.eps");

gnuplot_cmd (h, "set terminal postscript \" Helvetica \" 15");

gnuplot_cmd (h, "set output ’%s’" , fname_output);

printf ("Output file is : ’%s’\n", fname_output);

}

else

gnuplot_cmd (h, "set terminal x11");

/* Effective plotting takes place now ! */

gnuplot_cmd (h, "set nolabel");

gnuplot_cmd (h, "set grid");

gnuplot_cmd (h, "plot ’%s’ notitle with dots", fname_gnuplot);

return 1;

} /* scatter_plot */

int scatter_plot_fin (gps_position * gps_positions , int n_gps_positions ,

gnuplot_ctrl *h)

/*

* Arguments : ’ n_gps_positions ’ struct gps_position are passed.

* h is the Gnuplot handle (defined and initialized in main.c).

*

* Action : Scatter plot of GPS positions (’fin ’ stands for ’fine ’ -- new

* GPS positions have been added between existing ones by linear

* interpolation).

*

* Return : 0 if an error occurred , 1 otherwise.

*

* */

{

/* Variables */

FILE * fp_gnuplot;

92

char fname_gnuplot[MAX_FNAME_SIZE];

char fname_output[MAX_FNAME_SIZE];

int i;

int j;

double ksi;

double x,y;

int n_local;

double delta_ksi;

double delta_x ,delta_y;

int output_style;

/* I/O Management */

strcpy (fname_gnuplot , "gnuplotdata/scatter_fin.dat");

fp_gnuplot = fopen (fname_gnuplot , "w");

if (fp_gnuplot == NULL)

{

printf ("An error occurred when opening file ’%s ’ !", fname_gnuplot);

return 0;

}

/* Check if there are data to plot */

if (n_gps_positions <= 0)

{

printf ("\nNo data to plot ...\n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found . Make sure to process the data first !\n");

printf ("Aborting ...\n");

return 0;

}

/* Reset all Gnuplot commands */

gnuplot_cmd (h, "reset");

/* Write into Gnuplot source file */

ksi = 0.0;

fprintf (fp_gnuplot , "# GNUPLOT Scatter plot (fine bathymetry)\n");

for (i = 0 ; i < (n_gps_positions - 1) ; i++)

{

/* Current GPS position */

x = gps_positions[i]. longitude;

y = gps_positions[i]. latitude;

/* Retrieve the number of soudings for the current GPS position */

n_local = gps_positions[i]. n_soundings;

/* Compute the increment in ksi. Note : we divide by n_local and not

(n_local -1) because the last sounding associated with the current GPS

position must not lie on the next one */

delta_ksi = gps_positions[i]. distance / n_local;

delta_x = (gps_positions[i+1]. longitude - x) / n_local;

delta_y = (gps_positions[i+1]. latitude - y) / n_local;

for (j = 0 ; j < n_local ; j++)

{

fprintf (fp_gnuplot , "%.10f %.10f\n", x, y);

ksi += delta_ksi;

x += delta_x;

y += delta_y;

}

}

fclose (fp_gnuplot);

printf ("Paper [1] or screen [2] version (Default) ? ");

scanf ("%d" , & output_style);

/* Depending on output style , sets different terminals */

if (output_style == 1)

{

strcpy (fname_output , "gnuplotfigs/scatter_fin.eps");

gnuplot_cmd (h, "set terminal postscript \" Helvetica \" 15");

gnuplot_cmd (h, "set output ’%s’" , fname_output);

printf ("Output file is : ’%s’\n", fname_output);

}

else

gnuplot_cmd (h, "set terminal x11");

/* Scatter plot */

gnuplot_cmd (h, "set nolabel");

gnuplot_cmd (h, "set grid");

gnuplot_cmd (h, "plot ’%s’ notitle with dots", fname_gnuplot);

return 1;

} /* scatter_plot_fin */

int filteredbath_plot (gps_position * gps_positions , int n_gps_positions ,

gnuplot_ctrl *h)

/*

* Arguments : ’ n_gps_positions ’ struct gps_position are passed.

* h is the Gnuplot handle (defined and initialized in main.c)

93

*

* Action : Plotting of two graphs on the same page/screen : top one is the original

* bathymetry . Bottom one is the median filtered bathymetry.

*

* IMPORTANT !! The source file used by Gnuplot is created within the function

* ’median_filter_single_file ’ while exporting the data for use under Matlab.

*

* Return : 0 if an error occurred , 1 otherwise.

*

* */

{

/* Variables */

char fname_output[MAX_FNAME_SIZE];

char fname_gnuplot[MAX_FNAME_SIZE];

FILE * fp_gnuplot;

int output_style;

char title1 [128];

char title2 [128];

char title3 [128];

char tmp [32];

double x0 ,x1; /* Range of x-axis */

int filter_length;

/* Reset all Gnuplot commands */

gnuplot_cmd (h, "reset");

/* Open Gnuplot source file to get title */

strcpy (fname_gnuplot , "gnuplotdata/medflt.dat");

fp_gnuplot = fopen (fname_gnuplot , "r");

if (fp_gnuplot == NULL)

{

printf ("An error occurred when opening file ’%s ’ !", fname_gnuplot);

return 0;

}

fscanf (fp_gnuplot , "%s %d" , tmp , & filter_length);

fclose (fp_gnuplot);

/* Check if there are data to plot */

if (n_gps_positions <= 0)

{

printf ("\nNo data to plot ...\n");

printf ("Either an error occurred while processing the raw data\n");

printf ("or no data have been found . \

Make sure to process the data first !\n");

printf ("Aborting ...\n");

return 0;

}

/* Which output version ? */

printf ("Paper [1] or screen [2] version (Default) ? ");

scanf ("%d" , & output_style);

printf ("\nEnter x-axis range using ’x0 x1 ’ \

format (for full range , enter 0 twice) : ");

scanf ("%lf %lf" , &x0 , &x1);

/* Depending on output style , sets different terminals */

if (output_style == 1)

{

strcpy (fname_output , "gnuplotfigs/medflt.eps");

gnuplot_cmd (h, "set terminal postscript \" Helvetica \" 10");

gnuplot_cmd (h, "set output ’%s’" , fname_output);

printf ("Output file is : ’%s’\n", fname_output);

}

else

gnuplot_cmd (h, "set terminal x11");

/* Effective plotting takes place now ! */

/* Titles */

sprintf (title1 , "Median -filtered bathymetry (filter length : %d)",

filter_length);

sprintf (title2 , "Original bathymetry");

sprintf (title3 , "Absolute difference between bathymetries");

gnuplot_cmd (h, "set nolabel");

gnuplot_cmd (h, "set grid");

gnuplot_cmd (h, "set multiplot");

gnuplot_cmd (h, "set yrange [] reverse");

gnuplot_cmd (h, "set size 1 ,0.333");

/* x-axis range */

if ((x0 == 0.0) || (x1 == 0.0))

gnuplot_cmd (h, "set xrange []");

else

gnuplot_cmd (h, "set xrange [%f:%f]", x0 , x1);

/* Plot 1 (top) */

gnuplot_cmd (h, "set origin 0 ,0.666");

gnuplot_cmd (h, "plot ’gnuplotdata/medflt.dat ’ using 1:3 title \"%s\"with l",

title1);

94

/* Plot 2 (middle) */

gnuplot_cmd (h, "set origin 0 ,0.333");

gnuplot_cmd (h, "set ylabel \" Depth [m]\"");

gnuplot_cmd (h, "plot ’gnuplotdata/medflt.dat ’ using 1:2 title \"%s\" with l",

title2);

/* Plot 3 (bottom) */

gnuplot_cmd (h, "set origin 0,0");

gnuplot_cmd (h, "set ylabel \"\"");

gnuplot_cmd (h, "set xlabel \" Distance [m]\"");

gnuplot_cmd (h, "set yrange [] noreverse");

gnuplot_cmd (h, "plot ’gnuplotdata/medflt.dat ’ using 1:4 title \"%s\" with l",

title3);

/* Restore normal setting */

gnuplot_cmd (h, "set nomultiplot");

return 1;

} /* filteredbath_plot */

95

/* --

*

* stdev.h

*

* Laurent White

*

* Date of creation : 2003 -09 -08

*

* --- */

include "defs.h"

double background_stdev (gps_position * gps_positions , int n_gps_positions);

int compute_smooth_bathymetry (gps_position * gps_positions , int n_gps_positions ,

double bg_stdev , double factor);

int stdev_identification (char *prefix ,

gps_position * gps_positions , int n_gps_positions);

96

/* --

*

* stdev.c

*

* Laurent White

*

* Date of creation : 2003 -09 -08

*

* --- */

include <stdlib.h>

include <stdio.h>

include <math.h>

include <string.h>

include "defs.h"

include "stdev.h"

int compute_smooth_bathymetry (gps_position * gps_positions , int n_gps_positions ,

double bg_stdev , double factor)

/*

* Arguments : gps_positions : array of ’n_gps_positions ’

* struct gps_position (cfr. defs.h)

*

* Action : Compute a smoothed bathymetry by discriminating those soundings

* that form the spike in a set of data whose standard deviation is

* larger than F*(background std deviation) where F is

* an arbitrary factor entered by the user and the background

* standard deviation is the RMS of all depth standard deviations.

*

* Return : 0 if an error occurred , 1 otherwise.

*

*/

{

double running_sum;

double current_sounding;

int i;

int j;

int n_local; /* Number of soundings in local smoothed average */

double mean; /* Mean depth for GPS position */

double std; /* Standard deviation for GPS position */

running_sum = 0.0;

n_local = 0;

printf (" Computing smooth bathymetry ...\n");

for (i = 0 ; i < n_gps_positions ; i++)

{

running_sum = 0.0;

n_local = 0;

/* Get mean and std deviation for current GPS position */

mean = gps_positions[i]. depth_mean;

std = sqrt (gps_positions[i]. depth_var);

if (std > factor * bg_stdev)

/* Suspected presence of LWD: calculate mean by excluding

* those points belonging to LWD. Points related to LWD

* are those shallower . */

for (j = 0 ; j < gps_positions[i]. n_soundings ; j++)

{

current_sounding = gps_positions[i]. soundings[j];

if (current_sounding - mean > 0.0)

/* Sounding belongs to spike */

{

running_sum += current_sounding;

n_local ++;

}

} /* End browsing soundings associated

w/ current GPS location */

/* If no sounding is within the range , the smoothed

* is simply taken to be the mean including all soundings */

if (n_local != 0)

gps_positions[i]. depth_mean_smooth = running_sum / n_local;

else

gps_positions[i]. depth_mean_smooth = mean;

} /* End browsing GPS locations */

return 1;

} /* compute_smooth_bathymetry */

int stdev_identification (char *prefix ,

gps_position * gps_positions , int n_gps_positions)

/*

* Arguments : prefix : prefix of output file name.

* X, Y : arrays of longitudes , latitudes associated with the bathymetry

* (this is used to export the locations of spotted LWD)

97

* H_ori : Original bathymetry.

* length : number of elements in all arrays

*

* Action : None

*

* Return : 0 if an error occurred , 1 otherwise.

*

*/

{

double bg_stdev ; /* Background standard deviation */

double factor; /* Discriminatory factor */

int i;

char fname_std_smooth[MAX_FNAME_SIZE];

char fname_std_lwd[MAX_FNAME_SIZE];

FILE * fp_std_smooth;

FILE * fp_std_lwd;

/* IO management */

strcpy (fname_std_smooth , prefix);

strcat (fname_std_smooth , ".std_smooth");

fp_std_smooth = fopen (fname_std_smooth , "w");

if (fp_std_smooth == NULL)

{

printf ("Opening file ’%s’ failed in ’identify_LWD ’.\n",

fname_std_smooth);

return 0;

}

strcpy (fname_std_lwd , prefix);

strcat (fname_std_lwd , ".std_lwd");

fp_std_lwd = fopen (fname_std_lwd , "w");

if (fp_std_lwd == NULL)

{

printf ("Opening file ’%s’ failed in ’identify_LWD ’.\n",

fname_std_lwd);

return 0;

}

/* Compute background stdev (RMS of all std dev) */

bg_stdev = background_stdev (gps_positions , n_gps_positions);

/* LWD identification */

printf ("\nLWD identification ...\n");

printf (" Enter discriminatory factor : ");

scanf ("%lf" , &factor);

for (i = 0 ; i < n_gps_positions ; i++)

{

if (sqrt(gps_positions[i]. depth_var) > factor * bg_stdev)

fprintf (fp_std_lwd , "%.10f %.10f\n",

gps_positions[i].longitude ,

gps_positions[i]. latitude);

}

/* Compute smooth bathymetry */

printf ("\nCompute smooth bathymetry ...\n");

printf (" Enter discriminatory factor : ");

scanf ("%lf" , &factor);

(void) compute_smooth_bathymetry (gps_positions , n_gps_positions ,

bg_stdev , factor);

for (i = 0 ; i < n_gps_positions ; i++)

fprintf (fp_std_smooth , "%.10f %.10f %.10f\n",

gps_positions[i].longitude ,

gps_positions[i].latitude ,

gps_positions[i]. depth_mean_smooth);

fclose (fp_std_smooth);

fclose (fp_std_lwd);

return 1;

} /* stdev_identification */

double background_stdev (gps_position * gps_positions , int n_gps_positions)

/*

* Arguments : gps_positions : array of ’n_gps_positions ’

* struct gps_position (cfr. defs.h)

*

* Action : None

*

* Return : The RMS (square root of the mean of the square) of

* all standard deviations.

*

*/

{

double running_sum;

int i;

running_sum = 0.0;

for (i = 0 ; i < n_gps_positions ; i++)

running_sum += gps_positions[i]. depth_var;

98

return sqrt (running_sum / n_gps_positions);

} /* background_stdev */

99

Bibliography

Timothy B. Abbe, David R. Montgomery, 1996. Large woody debris jams, channel hydraulics
and habitat formation in large rivers. Regulated Rivers : Research and management. Vol.
12, Nos. 2-3, 201-221.

N. E. Bergeron, 1996. Scale-space analysis of stream-bed roughness in coarse gravel-bed
streams. Mathematical geology. Vol. 28, No. 5, 537-561.

Barry J. F. Biggs, 1996. Hydraulic habitat of plants in streams. Regulated Rivers : Research
and management. Vol. 12, Nos 2-3, 131-144.

J. B. Butler, S. N. Lane and J. H. Chandler, 2001. Characterization of the structure of river-
bed gravels using two-dimensional fractal analysis. Mathematical geology. Vol. 33, No. 3,
301-330.

J. Cherry and R. L. Beschta, 1989. Coarse woody debris and channel morphology : a flume
study. Water Resources Bulletin Vol. 25, No. 5, 1031-1036.

J. A. Davis and L. A. Barmuta, 1989. An ecologically useful classification of mean and
near-bed flows in streams and rivers. Freshwater biology. Vol. 21, 271-282.

Syndi J. Dudley, J. Craig Fischenich, Steven R. Abt, 1998. Effect of woody debris entrapment
on flow resistance. Journal of the American Water Resources Association Vol. 34, No 5,
1189-1197.

A. Ghanem, P. Steffler, F. Hicks, C. Katopodis, 1996. Two-dimensional hydraulic simula-
tion of physical habitat conditions in flowing streams. Regulated Rivers : Research and
management. Vol. 12, Nos. 2-3, 185-200.

Marc Gerhard, Michael Reich, 2000. Restoration of streams with large wood : effects of
accumulated and built-in wood on channel morphology, habitat diversity and aquatic
fauna. Internationl Review of Hydrobiology. Vol. 85, No. 1, 123-137.

Christopher J. Gippel, 1995. Environmental hydraulics of large woody debris in streams and
rivers. Journal of Environmental Engineering. Vol. 121, No. 5, 388-395.

C. J. Gippel, I. C. O’Neill, B. L. Finlayson, I. Schnatz, 1996. Hydraulic guidelines for the
reintroduction and management of large woody debris in lowland rivers. Regulated Rivers
: Reasearch and Management. Vol. 12, 223-236.

C. J. Gippel, B. L. Finlayson, I. C. O’Neill, 1996. Distribution and hydraulic significance of
large woody debris in a lowland Australien river. Hydrobiologia. Vol. 318, 179-194.

100

M. E. Harmon, J. F. Franklin, F. J. Swanson, S. V. Gregory, J. D. Lattin, N. H. Anderson,
S. P. Cline, N. G. Aumen, J. R. Sedell, G. W. Lienkaemper, K. Cromack Jr. and K. W.
Cummins, 1986. Ecology of coarse woody debris in temperate ecosystems. Advances in
Ecological Research. Vol. 15, 133-302.

Hoare, C.A.R., 2003. Algorithm 63 (partition) and algorithm 65 (find). Communications of
the ACM. Vol. 4 pp. 321-322, 1961.

B. R. Hodges, 2001. Effects of large woody debris in habitat models : some thoughts on
future research directions. Civil Engineering Department, EWRE, University of Texas at
Austin. Internal note.

F. M. Henderson, 1966. Open Channel Flow. Macmillan, New York, N Y.

Subhash C. Jain and John F. Kennedy, 1974. The spectral evolution of sedimentary bed
forms. Joural of Fluid Mechanics. Vol. 63, No. 2, 301-314.

Journel, A. G. and Huijbregts, Ch. J. 1978. Mining Geostatistics. Academic Press Inc. (Lon-
don) LTD..

Edward A. Keller and Frederick J. Swanson, 1979. Effects of large organic material on channel
form and fluvial processes. Earth Surface Processes. Vol. 4, No. 4, 361-380.

Joanna L. Kemp, David M. Harper, Giuseppe A. Crosa, 2000. The habitat-scale ecohy-
draulics of rivers. Ecological Engineering. Vol. 16, 17-29.

Land and Water Australia, 2002. Fact Sheet 7 : managing woody debris in rivers. Land &
Water Australia’s National Riparian Lands Research and Development Program.

Thomas E. Lisle, 1995. Effects of coarse woody debris and its removal on a channel affected
by the 1980 eruption of Mount St. Helens, Washington. Water Resources Research. Vol.
31, No. 7, 1797-1808.

Michael Manga and James W. Kirchner, 2000. Stress partitioning in streams by large woody
debris. Water Resources Research. Vol. 36, No. 8, 2373-2379.

Martin J. Marriott, 1996. Prediction of effects of woody debris removal in flow resistance.
Journal of Hydraulic Engineering. Vol. 122, No. 8, 471-472.

G. W. Minshall, 1984. Aquatic insect-substratum relationships. The Ecology of Aquatic In-
sects. V. H. Resh and D. M. Rosenberg. Praeger Publishers, New York, N.Y., 358-400.

H. M. Norris, 1955. Flow in rough conduits. Transactions of the American Society of Civil
Engineers. Vol. 120, 373-398.

Michael Mutz, 2000. Influences of woody debris on flow patterns and channel morphology in
a low energy, sand-bed stream reach. International Review of Hydrobiology. Vol. 85, No.
1, 107-121.

Carl F. Nordin and James H. Algert, 1966. Spectral analysis of sand waves. Journal of the
Hydraulics Division, ASCE. Vol. 92, No. HY5, 95-114.

101

A. R. M. Nowell and M. Church, 1979. Turbulent flow in a depth-limited boundary layer.
Journal of Geophysical Research. Vol. 84, 4816-4824.

M. A. Oliver and R. Webster, 1986. Semi-variograms for modelling the spatial pattern of
landform and soil properties. Earth surface processes and landforms. Vol. 11, 491-504.

Oppenheim, A. V. and Schafer, R. W. 1999. Discrete-Time Signal Processing, second edition.
Prentice Hall Signal Processing Series.

Osting, T., Mathews, R., Austin, B. 2003. Analysis of Instream Flows for the Sulphur River:
Hydrology, Hydraulics and Fish Habitat Utilization. (Draft submitted to the US Army
Corps of Engineers) Texas Water Development Board (Surface Water Availabiliy Section).

S. Petryk and G. Bosmajian, 1975. Analysis of flow through vegetation. Journal of the
Hydraulics Division, ASCE. Vol. 101, No. HY7, 871-884.

K. G. Ranga Raju, O. P. S. Rana, G. L. Asawa, A. S. N. Pillai, 1983. Rational assessment
of blockage effect in channel flow past smooth circular cylinders. Journal of Hydraulic
Reasearch. Vol. 21, No. 4, 289-302.

Robert, A. 1988. Statistical properties of sediment bed profiles in alluvial channels. Mathe-
matical Geology. Vol. 20, 205-225.

A. Robert and K. S. Richards, 1988. On the modelling of sand bedforms using the semivar-
iogram. Earth Surface Processes and Landforms. Vol. 13, 459-473.

A. Robert, 1991. Fractal properties of simulated bed profiles in coarse-grained channels.
Mathematical geology. Vol. 23, No. 3, 367-382.

F. D. Shields Jr. and N. R. Nunnally, 1984. Environmental aspects of clearing and snagging.
Journal of Environmental Engineering. Vol. 110, No. 1, 152-165.

F. D. Shields Jr. and Christopher J. Gippel, 1995. Prediction of effects of woody debris
removal on flow resistance. Journal of Hydraulic Engineering. Vol. 121, No. 4, 341-354.

K. Sullivan, T. E. Lisle, C. A. Dolloff, G. E. Grant and L. Reid, 1987. Stream channels: the
link between forest and fishes. Streamside management, forestry and fishery interactions.
E. O. Salo and T. W. Cundy editions, Coll. of Forest Resour., University of Washington,
Seattle, Washington, 39-97.

W. J. Young, 1992. Clarification of the criteria used to identify near-bed flow regimes. Fresh-
water biology. Vol. 28, 383-391.

L. White, 1992. On the utilization of the semi-variogram in geostatistics. Civil Engineering
Department, EWRE, University of Texas at Austin. Internal note.

Witkin, A. P. 1983. Scale-space filtering: Proc. Eighth Intern. Joint Conference on Artificial
Intelligence (IJCAI) (Karlsruhe, Germany). Vol. 2, 1019-1022.

102

