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Abstract

UTBEST-3D is a simulator for 3D shallow water equations with a
free surface that employs a local discontinuous Galerkin method. In
our previous simulator, UTBEST, we implemented the local discon-
tinuous Galerkin method for depth inegrated shallow water equations.
UTBEST-3D is to a great degree compatible with input and output
formats of UTBEST (and those of the ADCIRC simulator of Luettich
et al [4]).

1 Introduction

UTBEST-3D was developed at the Center for Subsurface Modeling(CSM),
University of Texas at Austin. The main purpose of this document is to
present a brief description of the mathematical and numerical models imple-
mented in UTBEST-3D as well as to give an overview of the main configu-
ration options of the simulator and input files.

†Center for Subsurface Modeling - C0200; Institute for Computational Engineering and
Sciences (ICES); The University of Texas at Austin; Austin, TX 78712. This research was
supported by NSF grant DMS-0107247 and the Texas Water Development Board.
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2 Mathematical Formulation

The mathematical model of three-dimensional constant density shallow water
flow includes momentum equations for the horizontal velocity components, a
continuity equation, and boundary and initial conditions. The domain over
which these equations are defined has a free surface described by a kinematic
boundary condition.

The conservative form of the momentum conservation equations can be
written as follows:

∂uxy

∂t
+ ∇ ·

(

uxyu
T −D∇uxy

)

+ g∇xyξ − fck × uxy = G, (1)

where ∇xy =
(

∂
∂x

, ∂
∂y

)

, ξ is the value of the z coordinate at the free surface,

u = (u, v, w)T is the velocity vector, uxy = (u, v)T is the vector of horizontal
velocity components, fc is the Coriolis coefficient, k = (0, 0, 1) a unit vertical
vector, g is acceleration due to gravity, G = (Gx, Gy) is a vector of body
forces (it can include atmospheric pressure terms, tidal forcing, etc.), and D
is a tensor of eddy viscosity coefficients defined as follows:

D =

(

Du 0
0 Dv

)

(2)

with Du, Dv being 3x3 symmetric positive-definite matrices.
The continuity equation can be written as

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (3)

We augment the system with the following boundary conditions:

• At the bottom, we have no normal flow

u(zb) · n = 0 (4)

and no slip for horizontal velocity components

u(zb) = v(zb) = 0. (5)

where zb is the value of the z coordinate at the sea bed and n =
(nx, ny, nz)

T is an exterior unit normal to the face.
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• The free surface boundary conditions have the form:

∂ξ

∂t
+ u(ξ)

∂ξ

∂x
+ v(ξ)

∂ξ

∂y
− w(ξ) = 0. (6)

∂u

∂n
=

∂v

∂n
= 0. (7)

On the lateral boundaries, we can have several types of boundary con-
ditions (note, that we assume all lateral boundaries to be strictly vertical;
therefore, if n = (nx, ny, nz)

T is an exterior normal to a lateral boundary face
then nz = 0):

• River boundary: Prescribed normal un and tangential uτ velocities

unx + vny = un, −uny + vnx = uτ , (8)

and prescribed surface elevation ξr(x, y, t)

ξ = ξr(x, y, t). (9)

• Land boundary: No normal flow

un = u · n = 0, (10)

and zero shear stress
∂uτ

∂n
= 0. (11)

• Open sea boundary: Zero normal derivative of the horizontal velocity
components

∂u

∂n
=

∂v

∂n
= 0, (12)

and prescribed surface elevation ξs(x, y, t)

ξ = ξs(x, y, t). (13)

• Radiation boundary: Zero normal derivative of the horizontal velocity
components

∂u

∂n
=

∂v

∂n
= 0. (14)
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Analytically, the free surface elevation can be computed using (6), but,
numerically, a more robust way to do it is to integrate the continuity equation
(3) over the depth and, taking into account the boundary conditions at the
top and bottom, obtain the following 2D equation for the surface elevation
commonly called the primitive continuity equation (PCE):

∂ξ

∂t
+

∂

∂x

∫ ξ

zb

udz +
∂

∂y

∫ ξ

zb

vdz = 0. (15)

The equation above or, alternatively, the wave equation derived by sub-
stituting the 2D momentum equations in (15) is a standard part of just about
every 2- and 3D shallow-water model in existence today, though using this
equation to compute the position of the free surface within a framework of a
3D solver based on the discontinuous Galerkin method is not trivial, that is
unless we resort to solving an auxiliary 2D problem as is done in many 3D
shallow water solvers. We will discuss this issue in some detail in section 4.

Let us denote h = ξ − zb. Then, we can rewrite conservation equations
(15), (1) in the following compact form:

∂h
∂t

+ ∇xy · CH = 0, (16)
∂uxy

∂t
+ ∇ · (CM −D∇uxy) = F, (17)

where

CH =

(

∫ ξ
zb

u dz
∫ ξ
zb

v dz

)

, CM =







u2 + gh uv
uv v2 + gh
uw vw





 , F =

(

Gx + g ∂zb

∂x
+ fcv

Gy + g ∂zb

∂y
− fcu

)

.

Thus, our system consists of the primitive continuity equation (16), two
momentum conservation equations for horizontal velocity components (17),
and the continuity equation (3).

3 General issues and solution strategy

3.1 Solution strategy

The general solution strategy employed in our implementation is not sub-
stantially different from ones found in other 3D solvers. The main differ-
ences lie in the fact that all state variables are approximated in space with
functions which are continuous on each element but can be discontinuous

4



across inter-element boundaries. For time stepping, we use explicit Runge-
Kutta methods, choosing the time step and scheme order appropriately to
keep the error of the time stepping algorithm well within the error of space
discretization.

Within a time step (substep in case of multistage Runge-Kutta meth-
ods), first, we solve the mass and momentum conservation equations. These
equations are tightly coupled and must be dealt with simultaneously. Then,
for given values of horizontal velocity components uxy = (u, v)T , we com-
pute vertical velocity w from the discrete continuity equation to obtain a
divergence-free velocity field. The latter equation is not time-dependent and
is solved as an initial value problem layer-by-layer starting at the bottom
and using the solution from the layer below (or boundary condition (4) at
the bottom in case of the bottommost layer) as an initial value.

Every few time steps the mesh geometry is updated using computed values
of the surface elevation. Frequency of mesh update can be chosen according
to the type of problem we are solving.

3.2 Computational mesh

The most common type of mesh employed in 3D finite element simulations of
shallow-water flow is a 2D grid projected vertically and subdivided into layers
using a Cartesian or σ-stretched coordinate system. This approach agrees
well with the physical anisotropy of the problem, in which the vertically
directed gravity force usually is the main body force acting on the system.
The grids in our implementation also belong to this type. In our model, we
use prismatic elements with triangular cross-section, strictly vertical lateral
faces, and flat but not necessarily parallel top and bottom faces.

Since the surface elevation is one of the primary variables approximated
in a discontinuous polynomial space, the grid determined by our discrete
solution would also have a discontinuous free surface, thus, the lateral faces
shared by neighboring elements in the uppermost layer of the mesh would,
in general, not match. This causes the boundary integrals over those faces
to be ill-defined. In order to avoid this problem, we smooth the free surface
of our mesh (e.g., by the least squares fit) and compute all 3D integrals on a
grid with a globally continuous free surface. This procedure only affects the
geometry of elements and faces in the uppermost layer of the computational
mesh and does not change in any way the computed values of the state
variables or the discontinuous character of the numerical solution. Thus,
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the local conservation properties of the Local Discontinuous Galerkin (LDG)
method are not degraded by this mesh smoothing postprocessing. In our
experiments, the stability and accuracy of the numerical solution did not
seem to be significantly influenced by the mesh smoothing algorithm used.

4 Space Discretization, the LDG method

To discretize our problem in space using the LDG method, we first intro-
duce an auxiliary flux variable Q and rewrite the momentum conservation
equations in the mixed form:

∂uxy

∂t
+ ∇ · (CM +

√
DQ) = F, (18)

Q = −
√
D∇uxy. (19)

Let Th be a general partition of our 3D domain Ω and let Ωe ∈ Th.
To obtain a weak formulation we multiply the equations above by smooth
test functions φ,Ψ ; integrate them on each element Ωe ∈ Th; and, finally,
integrate by parts obtaining the following expressions:

∫

Ωe

∂uxy

∂t
φ dxdydz +

∫

∂Ωe

(CM +
√
DQ) · n φ ds (20)

−
∫

Ωe

(CM +
√
DQ) · ∇φ dxdydz =

∫

Ωe

F φ dxdydz,
∫

Ωe

√
D−1 Q Ψ dxdydz = −

∫

∂Ωe

uxy Ψ · n ds (21)

+
∫

Ωe

uxy ∇ · Ψ dxdydz, (22)

where n is a unit exterior normal to Ωe. This weak formulation is well
defined for any uxy(t, x, y, z) ∈ H1(0, T ; V d−1); w(t, x, y, z) ∈ V, ∀t ∈ [0, T ];
φ(x, y, z) ∈ V d−1; Q(t, x, y, z) ∈ Y d−1, ∀t ∈ [0, T ]; and Ψ(x, y, z) ∈ Y d−1,
where

V
def
= L2(Ω)

⋂

{u : u|Ωe
∈ H1(Ωe), ∀Ωe ∈ Th}, (23)

Y
def
= L2(Ω)d

⋂

{q : q|Ωe
∈ H1(Ωe)

d, ∀Ωe ∈ Th}. (24)

Next, we seek to approximate (uxy(t, ·), w(t, ·), Q(t, ·)), the solution to the
weak problem, with a function (Uxy(t, ·), W (t, ·),Q(t, ·)) ∈ Uh × Wh × Zh,
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where Uh ⊂ V d−1, Wh ⊂ V , and Zh ⊂ Y d−1 are some finite-dimensional sub-
spaces. In order to do so we can use our weak formulation with one important
modification. Since our approximation space does not guarantee continuity
across the inter-element boundaries, the integrands in the boundary integrals
have to be replaced by suitably chosen numerical fluxes preserving consis-
tency and stability of the method. The semi-discrete finite element solution
(Uxy(t, ·),Q(t, ·)) is obtained by requiring that for any t ∈ [0, T ], all Ωe ∈ Th,
and for all (φ,Ψ) ∈ Uh × Zh the following holds:

∫

Ωe

∂Uxy

∂t
φ dxdydz +

∫

∂Ωe

(ĈM,n +
√
DQ̂ · n) φ ds (25)

−
∫

Ωe

(CM +
√
DQ) · ∇φ dxdydz =

∫

Ωe

F φ dxdydz,
∫

Ωe

√
D−1 Q Ψ dxdydz = −

∫

∂Ωe

Ûxy Ψ · n ds (26)

+
∫

Ωe

Uxy ∇ · Ψ dxdydz, (27)

where ĈM,n is a solution to the Riemann problem for the nonlinear boundary

flux CM ·n. We set Ûxy, Q̂ equal to the averages of the corresponding variables
on both sides of the discontinuity. (Note, that there are other possible choices
of Ûxy and Q̂.)

Discretization of the primitive continuity equation is done in a similar
way. Let Ωe,xy be the orthogonal projection of Ωe into the xy-plane. We
multiply (16) by a smooth test function δ = δ(x, y), integrate it over Ωe,xy,
and integrate by parts. Then, the mass balance in the water column corre-
sponding to the 2D element Ωe,xy can be expressed as

∫

Ωe,xy

∂h

∂t
δ dxdy +

∫

∂Ωe,xy

CH · n δ ds −
∫

Ωe,xy

CH · ∇xy δ dxdy = 0, (28)

Noting that CH =
(

∫ ξ
zb

udz,
∫ ξ
zb

vdz
)T

and using the facts that δ is indepen-
dent of z and that h > 0 we can transform the equation above as follows:

∫

Ωe,xy

∂h

∂t
δ dxdy +

∑

Ωe∈col(Ωe,xy)

∫

∂Ωe,lat

uxyh · n
h

δ ds (29)

−
∑

Ωe∈col(Ωe,xy)

∫

Ωe

uxyh · ∇xy

h
δ dxdydz = 0,
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where ∂Ωe,lat denotes the lateral boundary faces of prism Ωe, and col(Ωe,xy)
is the set of 3D elements in the water column corresponding to Ωe,xy. Note,

that the expression above is well defined for any δ(x, y) ∈ H def
= L2(Ωxy)

⋂{h :
h|Ωe,xy

∈ H1(Ωe,xy), ∀Ωe ∈ Th} and h(t, x, y) ∈ H1(0, T ;H), where Ωxy is the
orthogonal projection of the domain Ω into the xy-plane.

Analogous to the momentum conservation equations, we seek an approx-
imation H(t, ·) ∈ Hh to the solution of the weak problem H(t, ·), where
Hh ⊂ H is some finite dimensional subspace. Using the weak formulation,
(29) and replacing integrands in the boundary integrals by a suitable numer-
ical flux, we obtain our semi-discrete finite element solution H(t, ·) ∈ Hh by
requiring that for any t ∈ [0, T ], all Ωe ∈ Th, and for all δ ∈ Hh the following
holds:

∫

Ωe,xy

∂H

∂t
δ dxdy +

∑

Ωe∈col(Ωe,xy)

∫

∂Ωe,lat

ĈH

ξs − zb
δ ds (30)

−
∑

Ωe∈col(Ωe,xy)

∫

Ωe

UxyH · ∇xy

ξs − zb
δ dxdydz = 0.

Here ĈH is a solution to the Riemann problem for the normal boundary flux
UxyH · n, and ξs denotes the value of the z coordinate at the free surface
of the smoothed mesh. This boundary flux formulation has several impor-
tant advantages. It transforms integrals over 2D edges into integrals over
lateral faces of 3D elements, thus allowing us to solve the Riemann problem
for elevation simultaneously with the corresponding problem for the momen-
tum equations; it is consistent with the continuous formulation; and it takes
into account the coupling between velocity and elevation which is crucial for
stability of our numerical scheme.

Finally, we turn to the space discretization for continuity equation (3).
Unlike the mass and momentum conservation equations it is not time-dependent,
its main role being computation of the vertical velocity component w to main-
tain a divergence-free velocity field. Regarding the continuity equation with
the boundary condition at the bottom as an initial value problem for w, we
can solve it element by element in each water column starting at the bottom
and using the solution from the element below to provide an initial condition.

Multiplying (3) by a smooth test function σ, integrating it over Ωe, inte-
grating by parts, and re-ordering terms we obtain a weak formulation (recall
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that nz = 0 on the lateral faces):

∫

∂Ωe,top

w nz σ ds −
∫

Ωe

w

(

∂σ

∂z

)

dxdydz = (31)

∫

Ωe

uxy · ∇xyσ dxdydz −
∫

∂Ωe,bot

w nz σ ds −
∫

∂Ωe

uxy · n σ ds,

where ∂Ωe,top, ∂Ωe,bot denote the top and bottom boundaries of element Ωe.
We seek W (t, ·) ∈ Wh, where Wh is some finite dimensional subspace of

V , such that for given values of Uxy(t, ·) ∈ Uh, for all Ωe ∈ Th, and for all
σ ∈ Wh the following holds:

∫

∂Ωe,top

W nz σ ds −
∫

Ωe

W

(

∂σ

∂z

)

dxdydz = (32)

∫

Ωe

Uxy · ∇xyσ dxdydz −
∫

∂Ωe,bot

W− nz σ ds −
∫

∂Ωe

Ĉw σ ds,

where W− is an initial value for W taken from the element below (or a
boundary condition at the bottom in the case of the bottommost element),
and Ĉw is a numerical flux for the normal boundary flux function Uxy · n.

On the lateral boundaries Ĉw should be set equal to ĈH

ξs−zb
(comp. with (30))

in order to preserve the local mass conservation properties of our numerical
scheme. On horizontal faces it can be taken equal to the average or upwinded
value of the corresponding variables.

5 A shock detection algorithm for the discon-

tinuous Galerkin method

In this section, we will give a brief description of the shock detection al-
gorithm for discontinuous Galerkin methods developed by Krivodonova and
Flaherty with various collaborators. For details, see [3] and references therein.
This shock detection technique is based on superconvergence results for the
discontinuous Galerkin method for conservation laws [1].

Let T∆x be a partition of a 2- or 3D domain Ω, and let Ωe ∈ T∆x. We
denote by ∂Ωi

e, ∂Ωo
e the inflow (u · ne < 0) and the outflow (u · ne ≥ 0)

boundaries of Ωe, where u is the flow velocity vector, and ne is a unit exterior
normal to ∂Ωe. Let y be a state variable in our system. If y is smooth,
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then Ye ∈ P k(Ωe), the DG approximation for y on Ωe, has the following
superconvergence properties for k ≥ 0:

1

|∂Ωo
e|
∫

∂Ωo
e

(Ye − y)ds = O
(

∆x2k+1
e

)

, (33)

where |∂Ωo
e| is the measure of ∂Ωo

e.
This property of the DG solution can be exploited to construct a shock-

detector. We define

Ie = S

∣

∣

∣

∫

∂Ωi
e
[Y ]ds

∣

∣

∣

∆x(k+1)/2
e |∂Ωi

e|
, (34)

where [Y ] denotes the jump in the DG solution Y over the element boundary,
∆xe is the diameter of element Ωe, and S is a scaling parameter that can be
taken as S = ‖Y ‖−1

L∞(Ωe) for ∆xe small enough and Y bounded away from
zero. For Ie defined as above, we have Ie → 0 as ∆xe → 0 in smooth solution
regions whereas Ie → ∞ as ∆xe → 0 if y is discontinuous.

6 Numerical Results
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Figure 1: Galveston Bay finite ele-
ment mesh. Lengths are in meters.
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Figure 2: Galveston Bay bathymetry.
Lengths are in meters.

We conclude this report with a numerical example demonstrating capa-
bilities of UTBEST-3D when applied to baroclinic problems.
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Here, we consider a desalinization plant injecting water with a high con-
centration of salt into bay. The salinity of the bay water is set to 35ppt, the
plant outflow is taken to be 10 m3/s at 70ppt. The simulation was started
cold (zero surface elevation and velocity), and the following tidal forcing was
imposed on the open sea boundaries:

ξ̂(t) = 0.075 cos( t
25.82

+ 3.40) + 0.095 cos( t
23.94

+ 3.60)
+ 0.100 cos( t

12.66
+ 5.93) + 0.395 cos( t

12.42
+ 0.00)

+ 0.060 cos( t
12.00

+ 0.75) (meters).

(35)

In all runs, the time stepping was performed using explicit TVD Runge-
Kutta schemes described in [2] of the order matching the order of the space
discretization. The Riemann problems on the lateral boundary faces were
handled by Roe’s solver and those on horizontal faces by an upwind flux.
The initial 2D mesh and bathymetry are shown in Figures 1, 2. In the
vertical direction, the mesh was subdivided in up to five equidistant layers.

The problem was solved using piecewise linear approximation spaces with
one layer of adaptive mesh refinement. In Figure 3 we plot the salinity plume
in the vicinity of the desalinization plant outflow site for days 1-5.
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Figure 3: Desalinization plant outflow simulation. Lengths are in meters.
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