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EXECUTIVE SUMMARY

Woodley Weather Consultants (WWC) has made an assessment of cloud seeding for rain
enhancement as a water management strategy for Texas under contract with the Texas Water
Development Board (TWDB). The results are presented in this Final Report, which also has a
strong educational component. The investigation is broken down into the following tasks:

e Task 1. Compilation of worldwide evidence concerning the efficacy of cold-cloud seeding
for rain enhancement. This includes results obtained in Texas during intermittent
experimentation in the period 1986-1994 and in Thailand for the Royal Thai Government
(RTG) in a randomized six-year (1993-1998) cloud seeding experiment. Both experiments,
which were under the direction of Dr. Woodley, suggest, but do not prove, that cloud seeding
increases rainfall.

e Task 2. Estimation of statewide seeding opportunities in the growing season (1 April through
30 September) using calculations from satellite imagery made during the 1999 and 2000
seasons by the research team of Woodley and Rosenfeld for the Texas Natural Resource
Conservation Commission (TNRCC).

e Task 3. Estimation of the amount of additional rainfall to be expected in Texas from seeding
under various weather regimes as a function of space and time using the information obtained
in Tasks 1 and 2. The original intent was to do this for periods of above normal, normal and
below-normal rainfall to provide an estimate of the quantity and reliability of the rainfall
enhancements to be expected in Texas from cloud seeding under these three natural rainfall
scenarios. Because of normal to below normal rainfall during the period of study, however,
the above—normal scenario could not be examined.

e Task 4. Estimation of the impacts and reliability of increased seeding induced rainfall on the
water supply. It includes a more detailed case study of the potential hydrological impacts of
cloud seeding on the Edwards Aquifer.

e Task 5. Determination of the operational costs of producing potential increases in water
supply from cloud seeding.

The study does not include performing any estimates of agricultural or other economic
benefits from cloud seeding. A review of the first draft of this Final Report by the Texas Water
Development Board under contract No. 2000-483-343 is provided in Appendix G.

Major Study Assumptions and Uncertainties

This investigation is a broad, conceptual examination of the potential impacts of
hypothetical seeding induced rainfall (HSIR) on the hydrogeology of Texas. Because of the
many assumptions and uncertainties inherent to the study, its results must be view qualitatively
rather than quantitatively. Most critical is the assumption that glaciogenic cloud seeding
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enhances rainfall on an area basis. Although the collective evidence suggests that cloud seeding
increases rainfall from individual clouds and cloud clusters, proof of its efficacy on an area basis
does not exist (Task 1). Much of this research is based on the results of a randomized cloud
seeding experiment over floating targets in Thailand. Although the apparent seeding effects are
large, ranging as high as +91%, they are not statistically significant and they are confounded by
the natural rainfall variability. A more realistic, but still uncertain, estimate of the effect of
seeding, based on linear regression, is +43% for floating targets of about 2,000 km”. In addition,
the climate and terrain differences between Thailand and Texas raise additional questions about
the transferability of the Thai results to Texas. Further, the apparent seeding effects in Thailand
and elsewhere must be extrapolated to hydrogeologic areas of various size, typically larger much
larger than the targets of past experimentation, in order to meet the goals of this study. In one
scenario, these extrapolations are made as a function of satellite inferred cloud microphysical
structure (Task 2); again based on past research results in Thailand. Because of these
uncertainties, a range is assigned (i.e., low, middle and high) to the hypothetical area seeding
effects to be superimposed on the radar-estimated rainfalls (Task 3). Further quantification
would not be reliable in view of the uncertainties.

In view of the many uncertainties associated with this study, many of which are beyond
reliable quantification, it is emphasized that the HSIR values generated are meant to be
illustrative of likely potential general impacts on surface and groundwater resources, consistent
with hydrogeologic principles and the hydrogeologic settings of the study areas. The values
should not be considered definitive or precise and have not been subjected to an intense
statistical analysis since such results would suggest a greater certainty in the values than in fact
exists. The data produced by this study are meant to guide future research to areas where HSIR
would likely be most productive. However, the radar-estimated natural area rainfall, likely
accurate to within + 20% on a monthly basis, during the period of study has influenced these
guidelines, Thus, those areas that did not appear suitable for cloud seeding intervention might
have fared differently had the input natural rainfalls been greater.

Natural Processes and Seeding Concepts

As background for Task 1, the study begins with an overview of the physics of clouds
and precipitation, including a discussion of the processes leading to the formation of clouds and
the development of cloud condensates. This leads naturally to the presentation of precipitation
augmentation concepts, including cloud seeding to improve precipitation efficiency (PE),
sometimes called “static” cloud seeding, and seeding to alter the circulations that sustain the
clouds, leading to increased cloud growth, duration and rainfall, sometimes called “dynamic”
cloud seeding. Both are misnomers.

“Static” seeding is a misnomer, because it is not possible to produce the hypothesized
microphysical changes in the clouds without changing their dynamics. If “static” seeding
initiates and augments rainfall from clouds, their downdrafts will be affected. This is a dynamic
effect, so “static” seeding affects cloud dynamics. Conversely, “dynamic seeding,” which is the
approach used in Texas, focusing primarily on enhancing rainfall by altering the circulations that
sustain the clouds, can only attain its purpose by first producing changes in the cloud
microphysical structure.
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The history of the “dynamic” cloud seeding conceptual model from the mid-1960°s to the
present is addressed in detail because of the pivotal role it plays in Texas. In its present form the
conceptual model involves a hypothesized series of meteorological events beginning initially on
the scale of individual treated clouds or cells and cascading ultimately to the scale of clusters of
clouds. This seeding is hypothesized to produce rapid glaciation of the supercooled cloud liquid
water content (SLWC) in the updraft by freezing preferentially the largest drops so they can rime
the rest of the cloud water into graupel (soft irregular snow pellets). This seeding-induced
graupel is postulated to grow much faster than raindrops of the same mass so that a larger
fraction of the cloud water 1s converted into precipitation before being lost to other processes. Ice
multiplication is not viewed as a significant factor until most of the cloud water has been
converted into precipitation. This faster conversion of cloud water into ice precipitation enhances
the release of latent heat, increases cloud buoyancy, invigorates the updraft, and acts to spur
additional cloud growth and/or support the growing ice hydrometeors produced by the seeding.
These processes result in increased precipitation and stronger downdrafts from the seeded cloud
and increased rainfall in the unit overall through downdraft interactions between groups of
seceded and non-seeded clouds, which enhance their growth and merger. “Secondary seeding,”
whereby non-seeded clouds ingest ice nuclei and ice embryos produced by earlier seedings, is
thought also to play a role in the precipitation enhancements.

The Design, Conduct and Evaluation of Seeding Experiments

Issues of relevance to the design, conduct and evaluation of cloud seeding experiments
are addressed. Such experiments begin with a conceptual model of the sequence of
meteorological events to be expected after seeding, leading ultimately to increased precipitation.
This is followed by a systematic program of measurement using aircraft, radar and satellites to
determine whether the clouds in the prospective target area have the characteristics assumed by
the conceptual model.

The pre-experiment measurements are followed by the selection of a design (e.g,
crossover, target-control and single target) by which the efficacy of the seeding in increasing
precipitation is to be tested. The crossover design, which is the most efficient, involves two
targets with a buffer zone between them. On each day of suitable conditions a treatment decision,
which specifies which target is to be seeded and which is to be left untreated, is drawn from a
randomized sequence. The experiment then proceeds according to the randomized tnstructions.
The evaluation of the crossover experiment is made by forming the double ratio:
R1S/R2NS//RINS/R2S where R1S and RINS refers to the rainfall (R) in Target 1 when it was
seeded (S) and non-seeded (NS), respectively, and R2S and R2NS refers to the rainfall (R) in
Target 2 when it was seeded (S) and not-seeded (NS), respectively. This design requires that the
rainfalls in the two targets be highly correlated (e.g., correlation > 0.70).

A second alternative is the target-control experiment. With this design the treatment
decision is randomized for the target (i.e., S or NS) and the upwind control is never seeded. The
evaluation of the target-control experiment is done by forming the double ratio:
RS/CS//RNS/CNS where RS and RNS refer to the target rainfall on S and NS days, respectively,
and CS and CNS refer to the rainfall in the control area on S and NS days, respectively. Seeding
is never done in the control area. Thus, it serves to detect biases on the S and NS days and this
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mean bias in the form of the ratio CS/CNS is used to correct for what is assumed to be a
corresponding bias in the target. Again, the utility of this approach depends on a strong
correlation between the rainfall in the target and the rainfall in the upwind control area. Such
correlations normally do not exist in convective regimes such as those in Texas.

The third alternative is the single target design for which the treatment decision is
randomized (i.e., either S or NS). The single target can be fixed to the earth or it can drift with
the wind. This design is the least efficient, because only one target is seeded on each day and
there is no formal way to account for the natural rainfall variability by using control areas.
Despite its limitations, the single target design is the only one that has been possible for dynamic
cloud seeding experiments in Texas.

All three designs require randomization of the treatment decisions. This is done to avoid
the possibility of human bias in the selection of the treatment decision. Randomization also
makes it possible to employ “double-blind” procedures whereby the treatment decision is not
known by the experimenters in the field and the analysts in the laboratory until the analysis of
the experiment has been completed. In addition, randomization, if employed for many cases, is
useful also in minimizing the impact of the natural rainfall variability that usually confounds the
interpretation of cloud seeding experiments.

Within the context of a given design there are several types of experiments. If successful,
the most persuasive is one in which the design, conduct and evaluation of the experiment are
specified beforehand (i.e., a priori). Everything is done according to the a priori design and the
results of the experiment are evaluated, where a P value of 0.05 normally is deemed necessary to
achieve statistical significance. “P-values” refer to the results of statistical tests where a P-value
is the probability that a particular result could have occurred by chance. The lower the P-value
the stronger the result and the lower the probability it could have occurred by chance. The
statement that a result is statistically significant is reserved for a priori experiments.

If the intent of a particular experiment is to confirm the results obtained by seeding
elsewhere in the world, it should attempt to duplicate all that was done in that experiment.
Further, it should state what is to be done beforehand. When this is done, the experiment
becomes an a priori confirmatory experiment. If completed successfully with P values < 0.05,
the experiment would be statistically significant.

Experiments whose designs and execution change during the course of the experiment
are considered exploratory. Likewise, experiments that achieve P values < 0.05 for after-the-fact
(i.e., a posteriori) analyses of seeding effects are also considered exploratory. Most experiments
fall into this category. An exploratory experiment with strong P-value support still cannot be
judged statistically significant and is, therefore, not as persuasive as the a priori experiment. The
only way to solidify the results from an exploratory experiment is to confirm them with a priori
experimentation, either in the same area or in another part of the world.

A major challenge comes in the conduct of the experiment. The biggest problem is

delivering the nucleant to the clouds at the times and places it is needed. If individual clouds are
to be seeded and evaluated, the nucleant must be introduced when the cloud is in its active
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growth phase. If seeding takes place late in the life of the cloud, the hypothesized changes are
not likely to take place. Likewise, if groups of clouds are to be seeded over either a fixed or
floating target area, many clouds actually must be seeded repetitively in a timely fashion in order
to enhance the rainfall over that area.

A crucial aspect of all rain enhancement experiments is the estimation of target rainfalls.
The word “estimation” 1s used rather than “measurement,” because there is no way to measure
rainfall with absolute accuracy, especially convective rainfall with strong cores and gradients.

Radar is an attractive alternative for the estimation of convective rainfall, because it
provides the equivalent of a very dense gauge network. Radar estimation of rainfall is, however,
a complex undertaking, involving determination of the radar parameters, calibration of the
system, anomalous propagation of the radar beam, concerns about beam filling and attenuation,
and the development of equations relating radar reflectivity to rainfall rate, where radar
reflectivity is proportional to the sixth power of the droplet diameters in the radar beam. Because
these Z-R equations depend on the drop sizes in the clouds, the radar is going to make errors in
estimating the precipitation, if the scanned clouds contain drop sizes that are different from those
that went into the derivation of the equations. Further, if the clouds of interest do not fill the
radar beam, errors will also result. Z-R relationships also are contaminated when hail is present
due to the transition from Rayleigh to Mie scattering at C-band wavelengths.

Such problems are not likely to engender much confidence in the short-term radar
estimation of rainfall, although it is shown in this report that the Texas NEXRAD radars perform
quite well over the period of a month or longer. Fortunately, the interest in cloud seeding
experiments is in the ratio of S to NS rainfalls. Thus, if the errors the radar makes apply equally
well to the S and NS clouds, the estimate of seeding effect should be unaffected by the errors. If
on the other hand, the radar under or overestimates the rainfall from the S clouds relative to the
NS clouds, the apparent seeding effect may be spurious, due not to the seeding but to radar
errors. This possibility was investigated during the Florida experiments by measuring the droplet
sizes in rainfall from S and NS clouds. No differences in drop sizes were detected (Cunning,
1976). Thus, the radar estimate of seeding effect should still be valid.

The absolute amount of rainfall to be realized from seeding is still in question, because of
evaporative losses in the drier air beneath the clouds. The only way this can be estimated is
through comparison of the radar rainfall estimates with the measurement of rainfall by rain
gauges in clusters or small arrays. Such comparisons will allow for adjustment of the radar
rainfall estimates everywhere within scan of the radar. With such a system the estimates should
be better than those provided by radar or rain gauges alone.

The evaluation phase of an experiment focuses on the results of the seeding. Even if the
conceptual model is valid and even if the seeding was conducted properly, there is still no
guarantee of success. Only if the natural rainfall variability, which can mask an effect of seeding,
can be overcome will it be possible to detect a seeding effect; given there is one to detect.

In theory, randomization of the treatment decision should take care of the natural rainfall
variability. If the experiment goes on long enough, it is assumed that an equal percentage of the
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naturally wet and dry days will be apportioned randomly to seeding and controls (i.e., not
seeded). If so, the mean rainfall differences between the seeded and non-seeded storms should be
a measure of the effect of seeding. If this is not so, the mean rainfall differences might be due to
the disproportionate random allocation of wet or dry days to either the seeded or not seeded
categories.

There are two ways to beat this unwanted outcome. The first is to conduct the
experiments for long periods to insure that the allocation of rain events is not biased. The second
is to devise a way to make accurate forecasts of rainfall in the target in the absence of seeding. If
this were possible, the evaluation of a seeding experiment would be trivial. One would predict
the target rainfall in the absence of seeding and then measure what actually occurred, secure in
the knowledge that the 