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OBJECTIVE

To solve the three-dimensional, continuity equation for the vertical velocity given prior solutions
for the horizontal velocities and subject to the kinematic boundary conditions at the free surface
and the bottom of the water column.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The relevant governing equation is the three-dimensional continuity equation:
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where u, v, w define the velocity components in the coordinate directions x, y, z. The subscript
“z” has been added to the horizontal derivatives to emphasize that these derivatives are computed
in a level coordinate system. We desire to solve this equation for w subject to the free-surface
and bottom kinematic boundary conditions:
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where ug, vs, w, are the velocity components at the free surface (z={) and uy, vy, Wy, are the
velocity components at the bottom (z=-A) assuming a slip condition is applied at the base of the
water column.

ADCIRC utilizes a generalized stretched vertical coordinate system in which the vertical
dimension is transformed from z, ranging from -4 to {, to ¢, ranging from b to @, where b and a
are arbitrary constants. (Most models assume b=-1, a=0. ADCIRC assumes b=-1, a=1. Herein
we carry a and b explicitly for the sake of generality.) Using the chain rule we can relate
derivatives in the level (2) coordinate reference frame to derivatives in the stretched (o)
coordinate reference frame:

Figure 1. Schematic of level and stretched coordinates



RESULTS
Idealized Inlet problem — horizontal velocity and elevation solutions provided by QUODDY

Figure 3. Idealized inlet grid

Figure 4. Idealized inlet bathymetry
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where the total water column depth, H=h+, has been introduced in Eq. (6).
Using Eqgs. (2) — (6), the 3D continuity equation in stretched vertical coordinates is:
o ) 30),
o + +(a- ) = 7
Y
while the kinematic free surface and bottom boundary conditions simplify to:
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Eqgs. (7) — (9) introduce a stretched-coordinate, vertical velocity, o, that is related to the true
vertical velocity by:
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As discussed by Muccino et al. (1997), the solution of Eq. (1) for w with the boundary conditions
in Egs. (2), (3) is an over determined problem, since a first order differential equation admits
only one boundary condition constraint on the solution. It is ciear that the same problem exists
with the solution of Eq. (7) for ® using the boundary conditions in Egs. (8), (9). Previous
modelers have dealt with this problem either by ignoring one of the boundary conditions (e.g.,
solving Eq. (1) and satisfying only the bottom boundary condition) or by taking a vertical
derivative of the 3D continuity, thereby creating a second order differential equation that allows

the introduction of both surface and bottom boundary conditions (Lynch and Wermner, 1987,
1991). Differentiating over the vertical yields:
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for Egs. (1) and (7), respectively. Muccino et al., (1997) suggest two additional method for
computing w from Eqs. (1) - (3): a least squares approach and an adjoint approach. Both
methods solve the over determined problem in a “best fit” sense with the least squares method
operating on the discrete equations and the adjoint method operating on the continuous
equations. In test problems, Muccino et al. (1997) found that the least squares and the adjoint
approaches yielded essentially identical numerical solutions for w and that this solution was
preferable to that obtained by ignoring one boundary condition or computing w using the second
order version of the continuity equation.

It is insightful to briefly review the form of the solution that is obtained using the adjoint method:
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where L weights the relative contribution of the boundary conditions vs the interior solution in
determining the “best fit”. Eq. (13) indicates that the vertical velocity obtained using the adjoint
method, wgg, is constructed as the sum of the solution to Eq. (1) satisfying the bottom boundary
condition, w,, and a correction that is proportional to the misfit between w; at the free surface
and the free surface boundary condition, w,. Furthermore, Eq. (13) indicates that the correction
term varies linearly over the depth. In the limit of L =0, (which places all of the weight on the
boundary conditions and eliminates any influence of the interior solution), Eq. (13) reduces to:

wa,f,»=wl+(ws~w|(<§'))th Sor L=0 (14)

In this case the adjoint correction is a linear function of depth that is zero at the bottom and equal
to the surface boundary condition misfit at the free surface. Consequently, the adjoint solution
exactly satisfies both the bottom and surface boundary conditions. In the limit of L—eo, (which
places all of the weight on the interior solution), Eq. (13) reduces to:

w,,dj—>w,+(ws—-w1(())% for L—oo (15)

In this case the adjoint correction approaches a constant over the depth that is equal to the
average value of the boundary condition misfit at the free surface. Clearly, intermediate values
of L generate a correction that falls between these limits.

Note, an adjoint correction is easily derived for the stretched-coordinate vertical velocity:
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This correction has the same basic behavior as described above.

NUMERICAL IMPLEMENTATION

The previous section provides several possible approaches for use in determining w and @ in
ADCIRC. Testing of various of these options is described below. In each case a vertical
sequence of three nodes indicated by superscripts i-1, i, i+1 is assumed. Superscripts - and +
indicate quantities evaluated over the intervals {i-1,1} and {i, i+1), respectively, (e.g., Az*=z""" -
7). Since ADCIRC utilizes stretched coordinates, Az = HAG/(a-b).
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Figure 2. notation used in vertical discretization

(i) Second Derivative approach using Eqs. (11), (2), (3).
Using centered, finite differences, Eq. (11) can be discretized as:

s () -G) o)

az2 oz\ 9z %(AZJ“*'AZ_) %(Az++AZ_) (17

) |:Wi+l '_( 1 1 } wi—1i|
+ - +_W ++ - + -
(az"+Az7) Az AT A7) Az

and
el
iéﬁ+_§f_ _ ox, 9y, dx, 0y, _
aZ axz ayz l(AZ++AZ_)
12 i i i-1 (18)
t(ou, )" (v Y] alfou, ov) (o ov
2{| ax, 9y, dx. 9y, )| 2|\ dx; 9dy.) |ox. 9y,

S (8 +ar)



yielding

w1+1 ,‘[ 1 1 ) w;—l
- W + — |+ =
Az’ A" Az Az
i+1 iT i -7 ] (19)
1 du v du ov ou ov ou v
— | =+ +|—=+=| | —=+— |+ +—
2 ox. ayz dx. ayz ox. ayz ox. ayz

The left hand side of Eq. (19) is efficiently solved using a standard tri-diagonal matrix solver,
however, it is not entirely clear how to evaluate the right hand side of Eq. (19). It appears that
the QUODDY and FUNDY models simplify the right hand side by canceling the inner terms,
yielding:
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Both Eqgs. (19) and (20) require the evaluation of level coordinate horizontal derivatives of
horizontal velocity. These are converted to horizontal derivatives in stretched coordinates using
Eqgs. (4) and (5), thereby requiring the additional evaluation of vertical derivatives of the
horizontal velocity. These vertical derivatives are computed as a simple difference over the
intervals {i-1, i} or {i, i+1} for evaluation of the terms in [] or []*, respectively. For example,
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Notice that if Eq. (19) is discretized, the inner terms cancel only if (%‘—) (au] Thus, the
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fully discretized version of Eqgs. (19) and (20) are different.



Given a solution for w, ¢ is obtained directly from Eq. (10). The top and bottom rows of the
matrix problem generated from Eq. (19) are modified to insert the free surface and bottom
boundary conditions into the problem.

(ii) Second Derivative approach using Egs. (12), (8), (9).

This approach is similar to approach (i) except that Eq. (12) is used to produce a solution for
and w then is computed from Eq. (10). This approach is attractive since Eq. (12) is written in
terms of horizontal derivatives in the stretched coordinate system, thereby minimizing the
additional computations required to convert horizontal derivatives back to level coordinates.
However, initial experience with this approach was highly unsatisfactory, presumably because
the vertical derivative applied to the terms on the right hand side of Eq. (12) eliminates the time
derivative term found there (at least in the initial implementation). This clearly removes an
important physical effect from « . It is likely that this problem can be corrected by carefully
computing this combined derivative. This could be looked into further.

(iii) First Derivative approach using Egs. (1), (2), (3), with or without the adjoint correction.
Eq. (1) is discretized as:
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Eq. (26) is solved explicitly for w, using the bottom boundary condition to initiate the
calculation. The right hand side of Eq. (26) requires evaluation of level coordinate horizontal
derivatives of horizontal velocity. These are converted to horizontal derivatives in stretched
coordinates using Egs. (4), (5), thereby requiring the additional evaluation of vertical derivatives
of the horizontal velocity. These vertical derivatives are computed as a simple difference over
the interval {i-1, i}. Given a solution for w, * is obtained directly from Eq. (10). If desired the
adjoint correction, Eq. (13), can be applied once w has been computed from Eq. (27).

(iv) First Derivative approach using Egs. (7), (8), (9), with or without the adjoint correction.
This approach is similar to approach (iii} except that Eq. (7) is used to produce a solution for ¢
and w then is computed from Eq. (10). This approach is attractive since Eq. (7) is written in
terms of horizontal derivatives in the stretched coordinate system, thereby minimizing the



additional computations required to convert horizontal derivatives back to level coordinates. If
desired the adjoint correction, Eq. (16), can be applied once * has been computed.

HORIZONTAL DISCRETIZATION

ADCIRC utilizes two different integration rules in implementing the FE method in the horizontal
dimension. (In some cases the integration my be further approximated using lumping.) The
GWCE equation uses an exact integration, i.e.,
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while the momentum equations use an approximate integration
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In these expressions the integration has been applied over each element » , (n=1...NE}))
containing node i, A, is the area of element n and A; is the total area of all elements containing
node i.

If » represents a horizontal derivative (and is therefore constant over an element) and

[9,a0= % , Egs. (28) and (29) simplify to:
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Physically, the difference between the integrations in Eqs. (30) and (31) is that the exact
integration computes the integrated horizontal derivative at node i as the sum of the horizontal
derivatives in all elements surrounding node i weighted by the particular element’s area. The
approximate integration computes the integrated horizontal derivative at node i as an unweighted
sum of the horizontal derivatives in the elements surrounding node i multiplied by the total area
of all elements surrounding node i. The two methods are equal for a uniform grid.



2" derivative options either based on Eq. (19) or Eq. (20) gave seemingly good, smooth and
comparable results.

1* derivative option gave most reasonable results when the adjoint correction was applied
with L=0. In this case the result matched the 2™ derivative option based on Eq. (19) to 5 - 6
decimal places.

Solutions for w are identical to 4 — 5 decimal places (single precision calculations) whether w
is solved directly or via e .

Vancouver Island problem — horizontal velocity solutions provided by FUNDY

Results quite sensitive to horizontal integration rule!

If horizontal derivatives are computed using the exact integration rule, solutions for w are
identical to 4 — 5 decimal places (single precision calculations) whether w is solved directly
orvias .

2 derivative option based on Eq. (19) again matches 1* derivative method with L=0.

2™ derivative option based on Eq. (20) gives significantly different results, generally stronger
upwelling, than other methods as shown by Julia earlier. This did not show up in idealized
inlet problem because of very small bathymetric and surface elevation gradients.

If exact horizontal integration is used, the methodological choices seem to collapse to a
choice between the adjoint method (with L=0 or not) and the 2" derivative method based on

Eq. (20).
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Quarter Annular Tidal Problem — horizontal velocity and elevation solutions from analytical
solution

N/
)
/1
N
A
%
-
2
(7
%
7

Bathymetric Profile

NN
NN
VN

N

‘E‘.‘ﬂ

X

oy

i

73
¥
70
b
'447
7
Pt

4|
'y

ANV Ny
N
PR

o
N
A%
A

7 y‘”"

ol
L7
0
b
]
e
<4
)
(Y
i
77
X

Ny
NN By N
oK
o
N ;,é
Y
A

Xy AT,
e SO S iy

LTS

o

SR

OIS
‘t?‘.‘""&”%"é"fﬁb T

A SRS
S S S

40 a0 a0 100
radial distance {(t*1000)

A AL AT [
BT R A AR
R R

Figure 5. Finite element grid used for the quarter-annular tidal problem

e QOuter boundary forced with M2 tide.
o 2™ derivative option based on Eq. (19) again matches 1% derivative method with L=0.

» 1% derivative method with L=0 gives consistently better results than 2™ derivative option
using Eq. (20) (QUODDY/FUNDY solution)
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Figure 6. Horizontal and vertical velocities at nodes 200, 418 and 825 at
the beginning of the tidal cycle
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DISCUSSION

It appears that out of the multiple methods for computing w, as long as the exact integration is
used for the horizontal derivative terms (i) it makes no difference whether one computes  or w
first, and (i) the 2" derivative scheme based on Eq. (19) is equivalent to the 1* derivative adjoint
scheme with L=0. The first of these findings should be the case and is encouraging to verify.
The second finding also seems reasonable, since a 2" derivative equation should admit an
additional term that is linear in depth into the solution beyond that which satisfies the 1
derivative equation. Since the solution of the 2™ derivative equation is forced to satisfy both the
surface and bottom boundary conditions, this should be equivalent to adding a linear correction
to the 1* derivative equation that is zero at the bottom and causes the solution to exactly satisfy
the surface boundary condition. A comparison of the discrete equations further confirms this. If
Eq. (27) is subtracted from the equivalent equation for the interval {i, i+1}, the result becomes:
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This is identical to the discrete equations for the 2™ derivative approach obtained in Eq. (19).
Thus a linear combination of 1% derivative equations is equivalent to the 2" derivatives,
suggesting the solution using either approach will be identical, provided both boundary
conditions are enforced.

(32)

Therefore, the primary issues appears to be whether to use an adjoint 1* derivative or 2nd
derivative (Eq. 19) solution or a 2™ derivative (Eq. 20) approach. Based on comparisons to the
analytical solution for w in the quarter annular tidal problem, the adjoint, 1* derivative approach
seems preferable.

Vertical velocity calculation is very sensitive to both horizontal discretization and vertical
discretization.
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