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1 Executive Summary 

The Texas climate is characterized by extremes yet agriculture depends on reliable timing and availability 

of water during the growing season. Plants need water for photosynthesis where it is exchanged with 

atmospheric carbon to build biomass. As plants and crops grow, water in the root zone is depleted leading 

to stress and reduced productivity, unless it is replenished. When rainfall is insufficient, irrigation is 

applied to maintain root zone soil moisture and improve crop yields. In Texas, irrigated agriculture is the 

largest water-consumer. Most of this applied water is lost to evapotranspiration (ET), the combined 

processes of soil evaporation and plant transpiration – which consumes energy from solar radiation to 

convert liquid water into vapor. Regardless of its source, the water is returned to the atmosphere and 

removed from the terrestrial water cycle. An accurate estimate of crop ET can be used to estimate net 

irrigation water requirement (NIWR) as the difference between crop ET and effective precipitation. When 

NIWR is greater than zero, we assume this water must come from irrigation. We use net ET synonymously 

with NIWR herein. Similarly, we can derive NIWR from crop models which simulate irrigation based on 

crops transpiring at or near atmospheric demand. NIWR, the amount of water that the crop could 

transpire in excess of precipitation, is synonymous with irrigation demand, net consumptive use, and 

precipitation deficit.    

Accurate estimates of crop ET are needed to improve irrigation demand estimates for water planning at 

regional and state levels. Remote sensing has the potential to accurately map ET at unprecedented 

resolution and potentially with much less effort as these methods become operational. The state-of-the-

science is evolving rapidly but implementing a remotely sensed crop water program state-wide across the 

climatically diverse State of Texas is not trivial. Our goal is to provide a recommendation on which ET 

algorithms and NIWR methods are best suited for an operational, state-wide application, determine what 

ancillary data are required, and assess the quality and limitations of these methods and data sets. We use 

a variety of metrics to assess the various components of such calculations including the (1) ET algorithms 

by accuracy tiers and complexity, (2) available weather data from stations and (3) gridded meteorological 

products. To determine operational feasibility, we implemented a pilot study for 2010 and 2011 on eight 

counties including Brazos, Cameron, Carson, Dawson, Hale, Medina, Ochiltree, and Wharton. We used 

both the Mapping evapotranspiration at high resolution with internalized calibration (METRIC) remote 

sensing algorithm and the ET Demands numerical model to determine annual NIWR and compare these 

results to 2010 and 2011 Irrigation Water Use Estimates (IWUE) – the current methodology used annually 

at the county-level by the Texas Water Development Board.  

There is little doubt that remote sensing could produce state-wide irrigation water use estimates. Several 

other states are already using such technologies. Idaho, Nevada, and New Mexico are at the forefront of 

such programs while several programs are operating at the federal level within the U.S. Department of 

Agriculture (USDA) and the U.S. Geological Survey (USGS). Texas has a multitude of challenges ranging 

from its sheer size to its diversity of crops and rotations. Furthermore, remotely sensed ET requires good 

satellite images, good meteorological data, good algorithms and a dedicated staff to implement and 

assess them. Multispectral imagery is needed to produce land surface temperature (LST) and optical 

reflectance maps which derive an instantaneous ET map. Reference ET (ETr) from meteorological data at 
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the image acquisition time is used to spatially scale the evaporative fraction of ET (ETrF) across the image. 

Temporally, weather data is used to compute 24-hour totals of ET cumulated into daily totals between 

acquisition dates and summed over the growing season. All of the ET algorithms we present use this 

general workflow but differ in the formulation of ETrF and underlying parameterization of the land and 

boundary layer. The process involves many steps along the path to a time-integrated estimate of actual 

ET and ultimately NIWR.  

We found several gridded weather data sets to be accurate but slightly biased in their ability to produce 

spatially distributed precipitation totals and ETr. We also found the algorithms to be robust but with 

varying degrees of accuracy and complexity. Throughout this process and pilot study, we found several 

notable limitations of these technologies. One of the biggest is the availability of cloud-free imagery where 

the eastern half of Texas has very low cloud-free probability. A cloud-free pixel is required approximately 

every month to produce a reasonable estimate of ET over the irrigated croplands of interest. The high 

spatial resolution of Landsat is offset by a longer return period of 8-16 days. Other satellites are more 

frequent (MODIS) but provide coarser resolutions (1km). Combining such data, fusion, would aid areas of 

high cloud cover but at increasing complexity to the algorithms. Cloud masks are also evolving quickly 

which improve the efficacy of detecting and mitigating clouds.  

Remotely sensed ET is feasible for Texas. With confidence, we believe the algorithms are valid, the results 

are reproducible and reasonable (possibly biased high), and the data requirements (imagery, gridded data, 

soil moisture, etc.) can be met. We found crop ET was well reproduced using METRIC; however, when 

summed over respective crop acreage, the NIWR became unrealistically high. This bias results from the 

use of ETr that is likely biased and as well as an over-estimation of irrigated acreage. With more concerted 

effort and time to devote to quality control and assessment (e.g. verifying pixels are irrigated), we have 

no doubt these numbers can be improved upon, if such a program moves forward. However, it will take 

commitment from the State to equip and train its staff. Our pilot project laid the groundwork but certainly 

needs refinement. Experts in the field should be consulted to build the State’s capacity. Once in-house 

capacity (2 or 3 years down the road) is achieved, the annual staff commitment is one senior scientist with 

a strong remote sensing background and a minimum of two technicians with good computational skills. 

Remote sensing adds a new tool to quantify field-scale ET but it also requires substantial commitment to 

data processing, quality control, time, skill and effort. There is currently not a turnkey solution to this 

problem although we predict many of these algorithms are moving to cloud-based computing. Regardless, 

there is substantial benefit to getting on board with remote sensing sooner than later for the Texas Water 

Development Board.   
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2 Introduction and Background 

Water resource managers and planners across Texas must balance the current and future water demands 

from industry, agriculture, and municipal water use with its ephemeral supply, precipitation (PPT). 

Irrigation is the largest water-consumer in the State, using 7.83 million acre-feet (maf) in 2014 with 82% 

of that coming from groundwater [TWDB, 2014]. Groundwater recharge, though difficult to quantify, is 

estimated to range from <0.1 to 4.6 in yr-1 across Texas where PPT ranges from 8.8 in yr-1 in the west to 

46.4 in yr-1 in the east [Keese et al., 2005]. Groundwater storage in the Texas High Plains has decreased by 

46 maf since irrigation began in the 1950s with water level declines of ≤4.27 ft yr-1 [Scanlon et al., 2010]. 

Thus, groundwater across much of the irrigated lands in Texas is nonrenewable.  

The Texas climate is characterized by extremes and agriculture depends on reliable timing and availability 

of water. Plants need water for photosynthesis where it is exchanged for atmospheric carbon and used to 

build biomass. As plants or crops grow, water in the root zone is depleted leading to stress and reduced 

productivity unless it is replenished. To reduce such risk, irrigation is often used to supplement PPT and 

increase soil moisture storage. Even in regions of higher rainfall, irrigation can increase yields while crop 

production is likely not possible without it in far-west Texas.  

The 2017 Texas State Water Plan [TWDB, 2017] projects an 11% decrease in existing water supplies from 

15.2 maf in 2020 to 13.6 maf by 2070 while the population is expected to increase by 70%. Water demand 

from irrigators is also expected to decrease by 18% due to improved efficiencies and conservation 

practices, reduced groundwater availability and water rights transfers away from agriculture. In 

particularly, if all irrigation conservation strategies are adopted, then this is expected to increase two-fold 

from 0.639 maf yr-1 in 2010 to 1.33 maf y-1 by 2070. These water conservation strategies include the 

adoption of new technologies like low energy precision application that can allow farmers to grow more 

with less irrigation. With predicted shortages of water supply, improving estimates of irrigation water use 

in Texas would be a valuable tool for local and regional water managers. Satellite based measurement of 

evapotranspiration (ET) is just such a technology that could provide farmers and local districts with 

guidance and knowledge of actual crop water use, and also provide the Texas Water Development Board 

(TWDB) with more accurate and defensible irrigation water use estimates.  

This feasibility study is the first step towards the validation remotely sensed measurement of ET to 

quantify irrigation water use in climatically diverse regions growing a variety of crops across Texas. 

Satellite technology is the next step to improve such estimates. Therefore, our goal is to assess the 

feasibility of applying remote sensing to quantify irrigation water use across Texas. Our assessment 

includes the technical, operational, and economic implementation of these methods through a scientific 

assessment of the algorithms and time integration methods, limitations and advantages of these 

algorithms, availability and complexity of the algorithms, ancillary data requirements, computational 

resources, and technical expertise to implement and maintain such a program.   

2.1 Terminology of Evapotranspiration 

Evapotranspiration (ET) refers to the combined processes of evaporation and plant transpiration – both 

of which consume solar radiation (energy) which converts liquid water in the biosphere into vapor. This 

water, whether from rain or irrigation, is returned to the atmosphere and essentially removed from the 
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terrestrial water cycle. Water loss to ET by crops is directly proportional to their growth and productivity 

which is all regulated by the stomata on leaf surfaces which open to obtain CO2 but release water vapor. 

Reference ET (ETr) is a standardized and reproducible index approximating the climatic demand for water. 

This flux (units of length [L] per time [t]) is the theoretical ET over an extensive surface of well-watered 

and actively growing reference vegetation, usually alfalfa (ETr) or grass (ETo). Crop ET (ETc) is the scaled ETr 

according to a time-varying crop coefficient (Kc). None of these are either a direct measures of ET nor do 

they directly equate to irrigation water use. 

The net irrigation water requirement (NIWR) is the quantity or depth of water required for crop growth 

in excess of the effective rainfall that infiltrates into the root zone. NIWR is calculated as (potential or 

actual) ET minus effective PPT and represents the amount of additional water that the crop and bare soil 

would transpire or evaporate in excess of PPT residing in the root zone. NIWR is comparable to the terms 

irrigation demand, consumptive use, and PPT deficit. We also use NIWR synonymously for the ET 

measured from satellite or potential ET from our ET Demands Model (Section 6.2) minus precipitation – 

this additional quantity coming from irrigation. 

Traditionally, NIWR requires some knowledge of the spatial and temporal distribution of both weather 

and vegetation to calculate ETr and PPT, such that:  

  ( ) ( ) ( )C rNIWR t K t ET t PPT t    (1) 

where t is time in the unit of choice. As discussed in detail later (Section 4.1), KC values are crop-specific, 

varying throughout the growing season. Satellite-based methods determine actual ET which differs from 

a traditional NIWR estimate which assumes well-watered conditions and healthy crops. The use of remote 

sensing is arguably the only way to estimate actual ET over large areas. However, remote sensing of ET 

produces an instantaneous snapshot which must be temporally scaled by some ancillary measure of ETr 

to quantify weekly, monthly, seasonal or annual ET, referred to as time integration. Finally, net ET equates 

to water depth resulting from the satellite (actual) ET minus any effective PPT which is essentially a 

measure of irrigation water use.  

2.2 Current Practices for Net Irrigation Water Requirements  

TWDB produces irrigation water use estimates (IWUE) for all 254 counties in Texas annually. The complete 

methodology is presented at http://www.twdb.texas.gov/conservation/agriculture/irrigation/index.asp. 

We summarize it briefly here. Beginning in 2003, the total cropped acreage is based on Farm Service 

Agency (FSA) records of certified irrigated crop acreage aggregated into major crop type by county. This 

acreage is compared to historical averages and the five-year mean irrigation rate by crop is applied and 

adjusted per county.   

IWUE is calculated based on ETr and an empirical correction factor based on historical data over the 

previous 5 years. The annual IWUE estimates are further adjusted and revised based on precipitation, 

weather data, irrigation water availability, and cropping patterns. This final IWUE is then adjusted based 

on annual surface water diversion data (TCEQ), estimates of waste water reuse in each county, and 

revisions provided voluntarily by groundwater conservation districts and other local water authorities. 

The reported IWUE provide the best known representation of actual irrigation water use in Texas. TWDB 

http://www.twdb.texas.gov/conservation/agriculture/irrigation/index.asp
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staff are tasked with investigating ways to improve this process and remotely sensed ET has the potential 

to better quantify irrigation water use.   

2.3 Generalized Workflow to Derive Remotely Sensed net ET 

Remote sensing would improve state-wide irrigation water use estimates. Several states are already using 

such technologies and many federal agencies are working to operationalize such tools. However, none of 

these methods are currently there and they all require committed resources to implement at any scale. 

Several western states (e.g. Idaho, Nevada, and New Mexico) are at the forefront of such programs. In 

Texas, we have a multitude of challenges from extensive cloud cover in the east to insufficient irrigated 

acreage maps. High resolution ET mapping using Landsat takes 10 paths and nearly 7 rows to completely 

cover Texas (Figure 2). Derivation of ET requires two key components: thermal (and optical) imagery and 

weather data. Imagery acquired from satellite, aircraft of unmanned aerial systems contains the visual 

and thermal infrared (TIR) bands needed to produce surface temperature and optical reflectance. These 

data are used to scale the instantaneous ETr spatially across the TIR image – cooler areas have higher ET 

and warmer areas low ET. Weather data are next used to compute the instantaneous ET map into daily 

totals of ET as well as between image acquisition dates. All of the ET algorithms we present use this general 

workflow (Figure 3) which ultimately provides the framework the remainder of this report.   

The ET methods proposed in this study allow improved quantification of crop consumptive water-use, 

independent of crop type, crop yields, or irrigation metering. Remote sensing of ET also has a significant 

advantage by providing the ability to reconstruct historic water use and change since the mid-1980s, using 

Landsat 5 and 7 satellites. The launch of Landsat 8 will allow continuity of these techniques into the future 

(Figure 1). For over 40 years, the Landsat Mission has provided global multispectral data. The Landsat 

Thematic Mapper (TM) sensor was onboard Landsat 4 and 5 from 1982 to 1993. Images consist of seven 

spectral bands with a spatial resolution of 30 m for Bands 1 to 5 and 120 m resampled to 30 m pixels for 

TIR Band 6. The Landsat Enhanced Thematic Mapper Plus (ETM+) sensor was only on Landsat 7 beginning 

in 1999. Images consist of eight spectral bands with a spatial resolution of 60 m for TIR Band 6. The Scan 

Line Corrector on the ETM+ failed on May 31, 2003 which results in about 20% of each image is missing. 

Beginning in February of 2013, the Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor 

images consist of nine spectral bands with a spatial resolution of 100 m for TIR Bands 10. Landsat 9 is 

expected to be operational by 2020 and Landsat 10 is already under development – thus its longevity is 

very likely as our higher spatial resolutions and additional bands.  

Landsat 7 and Landsat 8 satellites both travel in sun synchronous orbits at an altitude of 705 kilometers 

(438 miles) moving from north to south over the sunlit side of the Earth. Each satellite makes a complete 

orbit every 99 minutes covering the entire globe every 16 days. Their combined orbits are offset to allow 

8-day repeat coverage of any Landsat scene area. Along with weather station or spatial weather products, 

these are the required data (Figure 3). We begin the process by defining the time period and study area 

which for TWDB would likely be a county or groundwater conservation district (GCD). Next, the satellite 

images are acquired for the study. If needed, multiple images are merged and clipped to the bounding 

area of interest. For example, a county may not lie completely within one scene. Next, non-croplands, 

clouds and water bodies are masked. At this point, it is critical to determine if there is enough valid 

imagery to proceed. Generally, a minimum of one pixel per month over the growing period is required to 
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interpolate NIWR. Each clipped and masked image is processed to calculate various inputs required by the 

ET algorithms (Section 4.1) including spectral reflectance, radiance, vegetation Indices (VI), etc. The ET 

algorithm is implemented and a map of the relative fraction of ET (ETrF) is produced. This image is 

converted to actual ET at every cropped pixel in the image by scaling the instantaneous ETr from 

corresponding weather data at the time of the overpass to this ETrF map. The weather data is used to 

cumulate the actual ET in daily, monthly totals by preserving this instantaneous ratio of ET between image 

acquisition dates (section 4.2). The net ET, actual ET minus PPT, equates to the irrigated water use for that 

pixel, crop, or county (i.e. NIWR).  

This process (Figure 3) involves many steps along the path to a time integrated estimate of NIWR. All 

weather data (gridded or station-based) must be carefully evaluated to check for inconsistent data, gaps, 

or generally errors (Section 4.3). Gridded products are generally more robust because they blend ground 

and satellite observations with models to produce continuous and validated mesoscale weather data. 

However, they may be less representative of surface conditions under irrigated agriculture and are often 

biased high in terms of ETr
 (Section 5.3). Few of these processes are automated and a trained technician 

is required to evaluate nearly every step. Our goal is to evaluate this process and estimate its feasibility 

to provide improved irrigation water use estimates across Texas.      

2.4 Water Savings 

This technical feasibility study was an appraisal of the current state-of-the-science satellite ET and PPT 

methodologies applicable to estimate NIWR at a scale such as Texas. Thus, it was a research-based effort 

and not directly related to any demonstration project with tangible water savings.  Our results, if 

implemented through technology transfer to the State, could be used to evaluate the efficiency of 

conservation plans and/or programs, and to enhance the value of future water conservation programs. 

For example, Bonneville Power in Oregon provide farmers rebates of $5.25/acre for using science-based 

irrigation scheduling. Satellite methods could provide near real-time irrigation scheduling while also 

providing quantification of actual ET.  

Regardless, the participants in this study are committed to the development of such techniques to 

improve agricultural and other water conservation. Furthermore, reliable ET and NIWR are desperately 

needed to more accurately assess the state’s groundwater supplies (i.e. groundwater availability models). 

The potential for defensible water rights accounting could greatly aid water rights transfers and 

compliance agreements. The application of remote sensing techniques to estimate ET also has the 

potential to provide better estimates of Kc for various crops and even native vegetation related to 

ecosystem services. ET is a major consumptive user of water resources across the globe and its 

quantification along with each component of the water balance is critical to assess water conservation.    

2.5 Study Plan and Report Format 

This feasibility study identifies remote sensing and modeling technologies capable of estimating ET and 

PPT with the end goal of improving NIWR across the diverse climate of Texas. We assess current state-of-

the-science methods and models to quantify ET and NIWR including all the applicable data sets required 

to produce full seasonal estimates. The general goal of this feasibility study is to provide the TWDB with 
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a review on commonly used approaches, an estimate of the most feasible approaches, and the required 

level of effort for implementation.  

This study provided an initial feasibility report in Year 1 (May 2014), followed by a stakeholders’ webinar 

(October 14, 2015) and culminating in this final report. The initial feasibility study concluded Year 1 with 

a report and subsequent stakeholder meeting that laid out the implementation design presented here. 

The workshop resulted plan of course to obtain the eight counties of interest, define the scales, and needs 

for implementation of the more feasible ET algorithms.  

The project was divided into five tasks with two milestones. Tasks 1 through 4 included a comprehensive 

assessment of the satellite-based ET algorithms (Section 5.1), precipitation products and other gridded 

data sets required by ET algorithms (Section 5.4), time integration methods for ET algorithms (Section 

4.1), and the development and assessment of validation data for net irrigation water requirement. These 

results were presented in our initial feasibility report (Milestone 1) and a stakeholder workshop (October 

14, 2015) with presentation of initial feasibility study. The webinar is currently archived at:  

http://www.twdb.texas.gov/conservation/agriculture/doc/10_14_2015_Remote_Sensing_Irrigation_Wa

ter_Use_Study.mp4  

Following this workshop, we agreed to eight counties: Brazos, Cameron, Carson, Dawson, Hale, Medina, 

Ochiltree, and Wharton, based on their distribution in different climatic zone, variety of croplands, and 

each was nearly contained within one Landsat image. The final task (5) involved implementation of highly 

feasible ET algorithms at selected locations, and the production of this final feasibility report. We had 

planned to implement two ET algorithms including METRIC and S-SEBI (see Table 1) but our resources 

were limited and the image classification using either algorithm would not change the overall feasibility.   

The specific goals of the this ET feasibility study were to (1) determine which available ET and NIWR 

approaches are most feasible under various climates, crops and irrigation technologies across Texas using 

operational data sets and algorithms, (2) test these methods over specific regions within the State, and 

(3) determine true feasibility and limitations from demonstration trials. Remotely sensed ET and modeled 

NIWR estimates are only as good as the input data, and model assumptions made about ET behavior in 

between satellite image “snap shots”, and validation is difficult; however, we address these issues and 

the requirements to implement such a program at the state-level (Section 7). 

 

 

http://www.twdb.texas.gov/conservation/agriculture/doc/10_14_2015_Remote_Sensing_Irrigation_Water_Use_Study.mp4
http://www.twdb.texas.gov/conservation/agriculture/doc/10_14_2015_Remote_Sensing_Irrigation_Water_Use_Study.mp4
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Figure 1. Sample image (Landsat 8) from April 3, 2013 showing agricultural fields near Wiggins, CO. Left is a color 
composite of shortwave infrared, near-infrared and visible green light and right is the same area as shown by one of 
the LDCM thermal bands. The inset pair shows three center pivot irrigation fields in greater detail. Darker areas in 
the thermal band indicate cooler temperatures (and higher ET). 
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Figure 2. Landsat World Reference System 2 (WRS-2) path and row overlay for Texas in relation to the five climatic 
regions from the Digital Climatic Atlas of Texas and cultivated land as mapped by the USDA. 
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Figure 3. Workflow to produce net ET from satellite and weather data. 
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3 Study Methodology 

Our goal is to provide a recommendation on which ET algorithms and NIWR methods are best suited for 

operational state-wide application, determine what ancillary data are required, and assess the quality and 

limitations of these methods and data. Most remote sensing ET algorithms require satellite-based thermal 

and optical images to derive an instantaneous map of ET. Imagery is further needed to estimate other 

model inputs such as the normalized vegetative indices (NDVI), albedo, and other requirements such as 

land cover and land use – both used to estimate roughness height, map crop type, and irrigated agriculture 

footprints. At the county scale in Texas, Landsat imagery would most commonly be used due to its high 

TIR resolution, its return interval (8 to 16 days depending on Landsat combinations and path overlap 

areas) and the overall quality in georectification. Landsat is also freely available.  

The following section details our assessment of each component we foresee to implement, to estimate 

net ET and NIWR across the state using satellite technologies. We further assess a preliminary 

implementation of an algorithm workflow in sub-regions across the State’s varied climatology.  

3.1 Regionalizing the State of Texas 

Texas has a diverse climatology with strong gradients of increasing temperature from north to south and 

increasing PPT from west to east. To capture this variability in our assessment, we selected two methods 

to partition the State by (1) mean annual precipitation (MAP) and (2) climatic zone. The latest 30-year 

normals from 1980-2010 from Oregon State’s Parameter-elevation Regressions on Independent Slopes 

Model (PRISM) data were used at 4km resolution. The state-wide mean MAP is 731 ± 307 mm (± one 

standard deviation), ranging from 207 to 1560 mm. We then contoured MAP at 200 mm bands assigned 

each monitoring station into one of five categories: <400, 400-600, 600-800, 800-1000 and >1000 mm 

(Figure 4a).  

To capture both the PPT and temperature gradients, we also selected five climatic zones reported in the 

Digital Climatic Atlas of Texas [Narasimhan et al., 2005] based on prior 30 year monthly means (1971-

2000) of PPT, maximum and minimum temperature, dew point temperature and mean monthly wind 

speed. In all, 60 data layers were used by Narasimhan et al. [2005] to identify unique climatic zones of 

varying size across Texas. We used ground-based weather stations for validation of data products and 

categorized each station into one of five zones constrained to county boundaries (Figure 4b).     

3.2 Metrics for Feasibility for Remotely Sensed ET Algorithms 

The feasibility of implementing these remote sensing technologies was comprehensively assessed to in 

Sections 4 and 5 which include an overview of algorithms and methods. Our feasibility analysis uses the 

Environmental and Water Resources Institute ET committee standards which recognizes four tiers of 

required accuracy and integrity in remote sensing estimation of ET: 

Tier 1 (lowest level): Exploratory spatial distribution of water consumption by vegetation with ±30% 

uncertainty. This level is useful for differentiating irrigated versus non-irrigated land. 

Tier 2: Image based products for differentiating the spatial distribution of water consumption where 

human review is exercised, and where optically or thermally-based algorithms are utilized that have a 
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generally correct, but limited physical basis. This approach is applicable to annual reporting with minimal 

computational effort, project-scale water management, or national-level surveys.  

Tier 3: Spatial maps of ET showing variation over time and space at the monthly time scale and with 

sufficient accuracy for use in parameterizing or driving hydrologic models, including ground-water 

recharge and depletion estimation, surface water accounting on streams and stream flow depletion, for 

general basin-wide water balances, and for developing crop coefficients. 

Tier 4 (highest level): For support of water rights, transfers, and litigation. This tier requires a large amount 

of human oversight and review, and sufficient physics in algorithms to quantify important impacts of 

vegetation or surface characteristics on the surface energy balance and transformation of energy to latent 

heat. It should also employ robust means for time-integration that includes adjustment for background 

evaporation from exposed soil due to PPT wetting for the integrated period as opposed to that occurring 

at the time of the snapshot. This tier of applications must be admissible in courts of law and among the 

common applications communities. A targeted accuracy might be within 10%.  

The algorithm summary (Section 5, Table 5) presents an assessment of the advantages and limitations of 

each and serves as the basis for our implementation (Section 6) and the feasibility of a program state-

wide (Section 7). The overall success of a remotely sensed ET program in Texas includes not only the 

quality and availability of the climate and cloud-free satellite image data, model requirements, 

assumptions, and accuracy, but also the technical training, staffing costs, and transfer of expertise to 

TWDB staff. 

3.3 Cloud probability  

Remotely sensed estimates of ET are very sensitive to cloud contamination, especially in the thermal band 

(Figure 5). Daily MODIS cloud flag images from 2005 to 2012 were used to evaluate the probability of 

obtaining successive sequences of cloud free images over the course of a growing season. Estimation of 

probabilities for successfully producing growing season ET maps utilized daily cloud masks extracted from 

the daily MODIS at-surface reflectance (MOD09GA) data for Texas and surrounding states. The MOD09GA 

data product was retrieved from the online Data Pool, courtesy of the National Aeronautics and Space 

Administration (NASA) Land Processes Distributed Active Archive Center, USGS/Earth Resources 

Observation and Science Center, Sioux Falls, South Dakota 

(https://lpdaac.usgs.gov/data_access/data_pool). This particular MODIS dataset was selected for two 

reasons. First, the MOD09GA data set contains the State quality assurance (QA) and MOD35_L2 cloud 

mask data at 1 km spatial resolution. For each pixel, the State QA data specifies status of the cloud state 

(bit 0-1), cloud shadow (bit 2), and cirrus detected level (bit 8-9). Second, MOD09GA data sets have been 

projected and geo-located from the raw swath format to a gridded sinusoidal projection and separated 

into 10° latitude by 10° longitude (at the equator) tiles. This makes it relatively straight-forward to work 

with the data and to directly compare the cloud masks between different days and years. At each 1 km 

pixel, if there were multiple images for a day, the pixel that was the most cloud and cloud shadow free, 

and had the smallest view angle (closest to nadir), and the lowest solar zenith angle, was selected. This 

process mitigated some of the view angle issues identified, where estimated cloud fraction increased 

towards the edge of the scan path due to larger effective pixel sizes, oblique views of sides of clouds, and 

https://lpdaac.usgs.gov/data_access/data_pool
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longer observation paths with thickening of haze effects. However, this phenomenon and tendency to 

overstate cloudiness toward swath edges may be an issue for the southern states, including Texas. Lastly, 

we assume our county cloud probabilities at 1km are independent of image resolution.  

Growing seasons were computed using the University of Idaho Gridded Surface Meteorological Data (UofI 

METDATA) 4 km daily minimum and maximum air temperature [Abatzoglou, 2013]. UofI METDATA is a 

combination of gridded 800 m PRISM monthly climate data and 12 km regional-scale reanalysis North 

America Land Data Assimilation System (NLDAS) hourly forcing data [Mitchell et al., 2004]. The use of UofI 

METDATA created a spatially and temporally complete and high-resolution gridded daily minimum and 

maximum temperature dataset temperature dataset to calculate the beginning and end of the growing 

season. 

One km pixels were conservatively flagged as cloudy if the cloud state (bit 0-1) was cloudy or mixed, the 

cloud shadow state (bit 2) was true, or the cirrus state (bit 8-9) was small, average, or high. Cloud free 

probabilities were calculated for both a fixed growing season from April 1 - October 31 (day of year 91–

304 for non-leap years) as well as for a spatially variable growing season. The UofI METDATA was used to 

estimate the beginning of the growing season using a cumulative growing degree-day (CGDD) approach 

with a threshold of 300 °C-days from January 1, base temperature of zero, and negative daily average 

temperatures set to zero. The CGDD approach has been widely used as a basis for representing crop 

development and allows for transferability across regions. The selected threshold of 300°C-days was 

calibrated based on field observations across the western U.S. for most perennial crops such as alfalfa, 

and provided a consistent means to identify the primary period when vegetation growth is expected to 

occur and when seasonal ET demands by the atmosphere are highest. The end of the growing season was 

identified as the first day after the start of the growing season when the minimum air temperature was 

less than or equal -7°C. 

Daily MODIS cloud masks were used to generate binary masks for each year indicating which pixels were 

cloudy or cloud free during each month of the growing season. At each pixel, if at any time during the 

growing season the time between cloud free images exceeded a stated threshold, the pixel and year were 

flagged as “failed” in regard to their capability to produce reliable estimates of growing season ET using 

our definition (here) of reliability. As described previously, in general, reliable estimates of ET require a 

maximum time gap between images of less than 32 days. However, to fully capture rapid changes in 

vegetation growth associated with green up in spring and harvests of forage, an image every 16 days is 

valuable. Therefore, separate probabilities were generated for both of these gap thresholds (16 and 32 

days) and for both fixed (April 1 – October 31) and variable growing season periods. The probability of a 

successful retrieval of field scale growing season ET for a MODIS pixel location-year was calculated by 

dividing the number of successful years by the total number of years (16). Results are presented in Section 

5.3. 

3.4 Available Monitoring Networks in Texas 

Station based climate data have been traditionally used for driving many ET algorithms, and are also 

required to validate gridded estimates of ETr and PPT. We selected readily available national networks 

and local university networks for our evaluations over an eight year period (2005 to 2012). Our primary 
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concern are rates and potential biases in gridded estimates of ETr and PPT over the precipitation classes 

and climatological classes defined previously (Section 3.1). Prior work by Marek et al. [2010] reviewed the 

existing ET networks in Texas and found them to be sparse across Texas and generally lacking in any 

standardization or quality control on the data. Also, Moorhead et al. [2015] found that there is significant 

high bias (e.g. 2.2 mm d-1 for ETr) in gridded estimates of ETr when compared to the Texas ET networks 

due to boundary layer conditioning from irrigated agriculture and subsequent reduced ET that gridded 

mesoscale products could not adequately represent. Additionally, most networks utilize either a standard 

tipping bucket or a weighing gage to quantify PPT. All gages are sensitive to wind [WMO, 2008] and 

wetting losses on the containers to evaporation although shielding can decrease these errors. Weighing 

gages record the weight of a container continuously either by means of a spring mechanism or a balance. 

The weight is indifferent to rainfall intensity or solid verses liquid PPT. Tipping gages tend to under collect 

due to their small orifice and inefficient tipping under high intensity events. Thus, a weighing gage is 

considered somewhat more accurate. Our available networks consist of both tipping and weighing gages 

(Figure 4). The number and regionalized climate classes are presented in Table 1.  

West Texas Mesonet (WTM) is operated by Texas Tech University [Schroeder et al., 2005] and initiated in 

1999 to provide free real-time weather and agricultural information for residents of the South Plains 

region of western Texas. The network had 79 surface meteorological stations available over our time 

period. The networks uses shielded weighing gages for PPT. In addition, the WTM collects all the required 

parameters to calculate ETr. The WTM was Phase 1 on the now defunct Heart of Texas Network. Daily 

data were obtained for via http://www.mesonet.ttu.edu/    

TexasET Network (TETN) is operated by Texas A&M University beginning in 1994 and includes 49 weather 

stations located statewide. TETN displays daily weather and ETr data, heat units, and other data; offers 

interactive, easy-to-use calculators that allow users to determine the irrigation water requirements of 

crops and landscapes; and, provides several other tools (e.g., for downloading data and setting up 

automatic email notifications of customized weather data and irrigation recommendations). TETN collects 

all the required parameters to calculate ETr and even provides the value daily. However, due to data 

availability, data cost, and quality control issues (Section 5.3) (e.g. time required to quality control, gap 

fill, and make data adjustments, and lack of access to hourly data), these data were excluded from ETr 

calculations. Daily PPT data from tipping gages was accessed through http://TexasET.tamu.edu 

Climate Reference Network (CRN) operated by the National Oceanic and Atmospheric Administration 

(NOAA) includes comprehensive climate and soil moisture data at 115 stations nation-wide with 8 in 

Texas. This network is located outside agricultural areas and wind measurements are made at 1.5 m 

elevation. Soil moisture sensors at depths of 5, 10, 20, 50, and 100 cm in triplicate, as is air temperature 

and humidity. We accessed hourly data from https://www.ncdc.noaa.gov/crn/ 

Historical Climatology Network (HCN) is a designated subset of the NOAA Cooperative Observer Program 

(COOP) Network—the HCN sites having been selected according to their spatial coverage, record length, 

data completeness, and historical stability [Menne et al., 2009]. The resulting network contains 1,219 

COOP stations nationwide with 27 operating in Texas. The daily and monthly data include maximum and 

minimum temperature, PPT amount, snowfall amount, and snow depth and are extensively quality 

controlled. Most HCN data uses recording PPT gage although all stem from COOP networks, they are 

http://www.mesonet.ttu.edu/
http://texaset.tamu.edu/
https://www.ncdc.noaa.gov/crn/
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considered highly representative. We accessed daily data for Texas at 

http://cdiac.ornl.gov/ftp/ushcn_daily/ 

Soil Climate Analysis Network (SCAN): The U.S. Department of Agriculture (USDA) provides 

comprehensive soil moisture and climate data at 200 stations in 40 states. There are currently 14 SCAN 

sites operating in Texas; however, only 5 were operating over our study period. This network has a 

standardized depth profile of soil moisture sensors at 5, 10, 20, 50, and 100 cm along with standard 

meteorological sensors for calculating ETr. PPT is measured by a tipping bucket gage. Data are freely 

available at http://www.wcc.nrcs.usda.gov/scan/ 

Lower Colorado River Authority (LCRA) Hydromet Network consists of 241 tipping bucket PPT gages. 

Some include air temperature and humidity while new additions will include ETr stations. Historical daily 

totals for all stations were provided by staff at LCRA and is not readily available. Near real-time data for 

the past 14 days are available at http://hydromet.lcra.org/  

Daily historical data (WTM, TETN, HCN and LCRA) were considered quality controlled and not modified. 

Hourly data were converted to daily data by first removing any days consisting of less than 20 total hours. 

The hourly data were summed to daily PPT, averaged for solar radiation and wind speed, and the daily 

maximum and minimum derived for air temperature and humidity. We assessed a total of 401 

observational data sets. Most of these data were in the 600-800 (43%), 800-1000 (22%) or 400-600 (21%) 

mm y-1 precipitation classes while fewer stations were found in <400 mm y-1 (5%) and >1000 mm y-1 

precipitation classes (Table 1). For example, WTM has no stations in areas >800 mm y-1 while LCRA is 

predominantly in the 600-800 mm y-1 class. Climate class shows similar trends with very little data outside 

the El Paso area or in east Texas.  

3.5 Gridded Meteorological Products 

Satellite ET is scaled based on available energy (i.e. ETr) which comes from weather data either an on-

ground stations or a gridded products. The source of this water can be either PPT or irrigation. However, 

seepage loses, shallow groundwater, spring discharge, playa lakes may also contribute water available for 

ET. When satellite ET exceeds soil moisture storage from PPT, the additional water likely comes from 

irrigation. A good spatially explicit measure of rainfall is required to obtain NIWR. As discussed in the prior 

section, time integration also requires knowledge of any changes to the water or energy balance between 

satellite passes. In particular, any PPT that has fallen between image collection dates must be accounted 

for to obtain an accurate NIWR. Much like ET algorithms, many gridded meteorological products at daily 

and sub-daily time steps exist and are derived from a combination of data sources. With regards to spatial 

estimates of NIWR, telemetered rain gauges are sparse and prone to error; radar estimates of PPT are 

subject to calibration errors and siting issues; and geostationary satellites have lower accuracy. The 

National Weather Service’s River Weather Forecast, for example, produces hourly PPT mosaics in the 

Multisensor Precipitation Estimator (MPE) Quantitative PPT Estimate Product which combines Doppler 

radar and gauge data into a distributed PPT array at 4 km grid [Kitzmiller et al., 2013]. The Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) system uses 

neural network function classification/approximation procedures to compute an estimate of rainfall rate 

at 4 km grids of the infrared brightness temperature image provided by geostationary satellites [Hsu et 

http://cdiac.ornl.gov/ftp/ushcn_daily/
http://www.wcc.nrcs.usda.gov/scan/
http://hydromet.lcra.org/
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al., 1997; Hong et al., 2004]. Both of these products continue to evolve as new tools and statistical 

techniques are evaluated. Recently, other methods use downscaled data from land surface models  

forcings to develop high-resolution surface meteorological products that include air temperature, 

humidity, PPT and solar radiation needed for ET algorithms [Abatzoglou, 2013]. This feasibility evaluated 

six derived PPT products of different derivations from gages to satellites (Table 2).  

Daymet is a collection of algorithms designed to interpolate and extrapolate daily meteorological 

observations to produce gridded estimates of weather parameters. Daymet relies on elevation data and 

discrete observations of maximum and minimum temperature, and PPT from ground-based 

meteorological stations. Output parameters include daily surfaces of minimum and maximum 

temperature, precipitation, humidity, and radiation produced on a 1 km gridded surface over the 

conterminous United States (CONUS). The Daymet model is based on Thornton et al. [1997] and 

maintained by Oak Ridge National Laboratory (http://daymet.ornl.gov).  

The latest version of the Parameter-elevation Regressions on Independent Slopes Model (PRISM) climate 

mapping system combines topography and gage data to produce daily PPT and maximum and minimum 

temperature at 4km resolution [Daly et al., 2008]. The data are produced in near-real time over CONUS 

by researchers at Oregon State University (http://www.prism.oregonstate.edu/).  

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Cloud 

Classification System (PERSIANN-CCS) extracts local and regional cloud features from infrared 

geostationary satellite imagery (GOES) in estimating fine-scale (0.04° or ~3 km every 30 min) rainfall 

distribution cumulated every 3 hours [Hong et al., 2004]. Data over CONUS was accumulated into daily 

totals by Hong at the University of Oklahoma. The data are maintained in near-real time by the University 

of California at Irvine (http://chrs.web.uci.edu/PERSIANN-CCS/).  

The Stage IV radar product is produced by the National Centers for Environmental Prediction- 

Environmental Modeling Center. The process begins by mosaicking rainfall estimates from adjacent WSR-

88D radar-only products with a myriad rain gauge networks followed by manual quality control and 

adjustment by National Weather Service Forecasters. The product is at 5-minute intervals at a 4 km scale 

available at http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/. Data over CONUS was 

accumulated into daily totals by Dr. Hong at the University of Oklahoma. 

The North American Land Data Assimilation System Project Phase 2 (NLDAS) is a land surface model 

initiated as a joint collaboration between federal agencies and university partners [Mitchell et al., 2004]. 

The NLDAS-2 forcings comprise hourly PPT and air temperature, specific humidity at 2 m height, 

downward shortwave and longwave radiation, and wind speed at 10 m height [Xia et al., 2012]. PPT is 

derived from gage data and orographic enhancement using the PRISM algorithm while other data is 

derived from NCEP North American Regional Reanalysis (NARR) as described by Mesinger et al. [2006]. 

The data are available in netCDF format at http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings. We also 

evaluated the downscaled bias corrected 4-km NLDAS-2 product using higher resolution (0.8 km) PRISM 

data to scale surface meteorological over CONUS from 1979 to 2010 [Abatzoglou, 2013].  

Gridded data products (Table 2) provide higher spatial coverage than individual stations and generally 

have a more quality controlled data set. The accuracy of PPT is critical to the net ET as this value is 

http://daymet.ornl.gov/
http://www.prism.oregonstate.edu/
http://chrs.web.uci.edu/PERSIANN-CCS/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings
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subtracted from the total growing season ET. These products of varying derivation and complexity will be 

assessed over Texas and within its five PPT bands and climatic zones. The observational data from the last 

section was used to statistically assess the collocated gridded products. We selected several conventional 

statistics related to time series analysis, dichotomous statistics related to event detection, and accuracy 

indices that aggregate these into simple skill scores ranging between 0 and 1. The statistics were 

calculated for each of the 401 observation locations by extracting the collocated grid cell from each 

gridded P product and comparing the daily time series from 2006-2012 between days of available data 

(designated as ‘n’). Appendix A lists the conventional and dichotomous statistics used in the analysis. 
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Table 1. Meteorological networks and their precipitation and climate classes used for validation over the years from 
2006-2012 

  
Precipitation Class (mm y-1) Climate Class* 

ID All <400 

400-

600 

600-

800 

800-

1000 >1000 1 2 3 4 5 

WTM 79 7 59 13 0 0 42 33 1 0 0 

TETN 41 8 7 9 10 7 9 3 12 5 12 

CRN 8 2 3 0 2 1 1 3 1 1 2 

HCN 27 2 7 5 7 6 6 4 6 6 5 

SCAN 5 0 4 0 0 1 4 0 0 1 0 

LCRA 241 0 3 147 69 22 0 12 192 37 0 

Total 401 19 83 174 88 37 62 55 212 50 19 

*As defined in by Narasimhan et al. 2005.   

 

Table 2. Gridded precipitation products chosen for validation. 

Product Meteorological Parameters 

Spatial 

resolution 

(km) Time step 

Time 

Duration Derivation 

Daymet Precipitation, daily max/min 

temperature 

1 Daily 1980-pres. Gage, DEM 

PRISM Parameter-elevation Regressions on 

Independent Slopes Model 

~4 Daily 1981-pres. Gage, DEM 

PERSIANN-

CCS 

Precipitation  ~4 0.5, 3, 6hr 2002-pres. Satellite 

StageIV Precipitation 4 5 minute 2001-pres. Radar and 

gage 

NLDAS-12 Precipitation, air temperature, vapor 

pressure, wind speed (10m), solar 

radiation, potential ET 

12 1hr 1979-pres. Gage and 

PRISM 

NLDAS-4 NLDAS-12 downscaled and biased 

corrected using PRISM topographic 

relationships 

4 1hr 1979-2012 Gage and 

PRISM 
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Figure 4. Six monitoring networks in Texas were used for observational data including (1) West Texas Mesonet 
(WTM) from Texas Tech University, Texas ET Network (TETN) from Texas A&M University, NOAA’s Climate reference 
Network (CRN), USDA’s Soil Climate Analysis Network (SCAN), and the Lower Colorado River Authority’s (LCRA) 
Hydromet. Monitoring stations were further categorized based on their (a) mean annual precipitation from 30-year 
normal from 4 km gridded PRISM (1980-2010), and (b) their 5 climatic zones.  
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Figure 5. Landsat 5 thermal data for path 31 row 35. Left image shows cloud-free observation from September 4, 
2010. Dark pixels are agricultural land and water bodies. The image at right was collected 16 days later on September 
20 when cumulus clouds obscure much of the scene. The darkest pixels in this image are clouds. Agricultural land 
and water bodies appear in a lighter gray tone.  
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4 Algorithms and Products for Estimating Evapotranspiration 

Contrary to uncertainty in Texas weather, its climatology is fairly straightforward: mean annual 

temperature increases from north to south while MAP increases from west to east [Nielson-Gammon, 

2011]. The climate in Texas is strongly influenced by three large geographical features: the Rocky 

Mountains, the central plains, and the Gulf of Mexico. These features route and partition the atmospheric 

transport of cooler air masses from the north and warmer humid air from the south. Regardless of the 

region, irrigation is utilized across the entire State. In agriculture, ET is the major consumptive use (net 

loss) of soil moisture storage whether it is derived from PPT or irrigation. Although irrigation minimizes 

farmers’ risk and can typically increases yield, the volume is often not well documented over a growing 

season and must be estimated from ancillary data. For the water planner, the variability of PPT and applied 

irrigation make deterministic quantification of irrigation water use challenging at the county and state 

level. Remote sensing adds a new tool to quantify field-scale ET but it also requires substantial 

commitment to data processing, quality control, time, skill and effort. There is currently not a turnkey 

solution and many variants exist.  

4.1 Satellite-based ET algorithms 

Traditionally, crop ET (ETC) is estimated by multiplying a weather-based ETr by a crop coefficient (KC), 

determined according to the crop type and growth stage [Allen et al., 1998]; however, the method is 

limited to an idealized, well-watered (non-water limited) plant in homogeneous terrain and climate. Field-

scale measurements of ET using micrometeorology, such as Bowen ratio and eddy covariance, provide 

ETC, but are site- and time-specific, require many assumptions, corrections, maintenance visits, and may 

suffer from errors of up to 30% [Allen et al., 2011]. Micrometeorological estimates of ETC are also difficult 

to spatially distribute and scale to operational levels required. In contrast, satellite data are ideally suited 

for deriving spatially continuous fields of ET [Moran and Jackson, 1991; Bastiaanssen et al., 1998; Allen et 

al., 2007].  

Most remote sensing ET methods are based on TIR bands used to derive LST for each pixel in a satellite 

image (Table 3). LST is used to estimate various components of the surface energy balance and scale ETr. 

There are typically two approaches to estimate ET from remotely sensed data based on (1) vegetation 

indices or (2) LST energy balance models. Early satellite-based ET models used vegetative indices (VI) to 

derive a Kc and scale ETr
  by developing a map of relative fraction of ETr termed ETrF [Heilman et al., 1982; 

Huete, 1988]. Such methods utilize surface reflectance in the red and near infrared bands to compute 

indices such as the Normalized Difference Vegetation Index (NDVI) or the enhanced vegetation index. 

These indices are highly correlated to vegetation vigor (Figure 6) and have been successfully used to 

estimate ETrF. The relationship between VI and Kc is empirically derived for each crop/vegetation type 

using local ET measurements [Anderson et al., 2012] or can be calibrated with ancillary satellite-based 

energy balance (EB) models [Tasumi et al., 2005; Tasumi and Allen, 2007]. However, because VI 

approaches are insensitive to soil wetness and acute plant stress, there is potential for large error in ETc 

due to bare soil evaporation and reduced transpiration from water limitations and plant physiological 

controls. VI-only methods tend to overestimate ET when stress develops rapidly, and before biomass is 

able to physically adjust to the water shortage through leaf senescence or leaf drop. VI methods tend to 
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miss reductions in stomatal conductance caused by acute water stress that is not reflected in reductions 

in biomass. This was verified by a study applying a remotely sensed EB model and a VI based ETrF model 

over a rain-fed corn and soybean production region in Iowa during a prolonged dry-down period 

[Gonzalez-Dugo et al., 2009]. 

Energy balance ET models use LST and other surface characteristics to estimate the latent energy (LE) as 

the residual of the EB equation: 

 nLE R G H     (2) 

where Rn is net long and short wave solar radiation, G is ground (i.e. soil) heat flux, and H is sensible heat 

flux to the air (all units of energy or W m-2). Conversion of LE to water equivalence (i.e. mm or inches) 

requires a correction for water density and the latent heat of vaporization, both terms are dependent on 

temperature.   

A variety of EB models have been developed that differ in how they distribute ET, their overall complexity, 

and their ancillary data requirements. In general, these models rely on the following expansion of H 

derived from satellite-based LST:  

 
 a p a

n

a

C LST T
LE R G

r

 
     (3) 

where ρa is air density (kg m-3), Cp is specific heat capacity of the air (J kg-1 C-1), Ta is air temperature (C), 

and ra is aerodynamic resistance (s m-1). These methods generally assume a linear relationship between 

the LST-Ta calculated at extreme pixels (hot and cold) in each satellite image. The use of end-member 

pixels assumes H is negligible at the cold pixel and all total available energy is partitioned solely to LE; 

conversely at the hot pixel, LE is assumed to be near or at zero [Price, 1990]. A suite of models exist in this 

class, see reviews by Gowda et al. [2007] and Anderson et al. [2012]. Many of these algorithms are based 

on equation (3) but differ with respect to how various components of H are derived, how data are used, 

and how satellite images or “snap shots” of ET are integrated in time over daily, monthly or growing 

season totals. Visual bands, land cover maps and topography are also required to estimate Rn and G at 

each pixel. Together, H, LE, and ETrF are estimated and represents ET for a given pixel in an image at the 

moment in time (e.g. 10:00 am for Landsat).  

Unfortunately, the spatial resolution of satellite data is negatively correlated with the temporal resolution 

(i.e. return times) (Table 3). For example, Landsat satellites return every 8-16 days so the snapshot of ET 

must be integrated between return intervals called time integration. Linear or spline interpolation of ETrF 

values between image dates is usually accomplished at the per pixel level to estimate daily ET, where the 

instantaneous ETrF is multiplied by the concurrent weather station (or gridded product) ETr value. In this 

approach, it is assumed that per pixel ET changes in proportion to the change in daily ETr at the weather 

station. In this case, ETr is used as an index for relative change based on weather conditions, while pixel 

specific information about the actual ET relative to ETr is represented by interpolated ETrF values. In the 

case of riparian and irrigated environments, relying on ETr to represent a daily index of relative change 

according to daily weather conditions is fairly robust given that these environments experience advective 

conditions and are typically energy limited, not water limited. In other words, the coldest pixel within a 
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scene has an actual ET very close to ETr. This is the foundation of these algorithms: coldest pixel transpiring 

at or near ETr and the hottest pixels essentially not transpiring.  

The current state-of-the-science algorithms are grouped (A-D) based primarily on their origination 

algorithm (Table 4). For example, Group A algorithms evolved from the Surface Energy Balance Index 

(SEBI) originally proposed by Menenit and Choudhury [1993]. Although considered potentially a very 

important need across Texas’ diverse climate, few VI and EB approaches rely on weather station derived 

ETr
 for constraining and computing instantaneous ET, and time integrated monthly and annual actual ET. 

We will test the validity and assess the feasibility and implementation of the recommended methods, as 

discussed in Section 6. 

4.2 Time Integration Methods to Quantify Irrigation Water Use  

Monthly or seasonal ET maps are derived from a series of ETrF “snap shot” images interpolated between 

acquisition dates on a pixel by pixel first into a daily total based on ETr, then cumulating these daily 

interpolated ETrF images by the respective ET for a given season. The instantaneous ETinst is calculated by 

dividing by the latent heat of vaporization (λ) at the instant of the satellite image by 

 3,600inst

w

LE
ET


   (4) 

where ETinst is now in mm h-1 and λw is the density of water (~1000 kg m-3) and λ, the latent heat of 

vaporization, is defined as 

   62.501 0.00236( 273.15) 10LST       (5) 

The instantaneous ETrF is computed for every pixel in the image at the time of the satellite overpass as 

the ratio of ETinst from satellite and ETr from weather.  The daily ET (mm d-1) for a 24 hour period (ETr24) 

and the cumulative ET over some time period from day m to n as 

   24( )

n

cum r i r i

i m

ET ET F ET


   (6) 

Because satellite imagery only provides instantaneous information at the time of acquisition, daily ETr is 

used to account for daily variations in atmospheric water demand (i.e. air temperature, humidity, solar 

radiation, and wind speed). Two major assumptions are 1) ETrF is constant over the 24-hour period and 2) 

ET is proportional to daily ETr. These assumptions are generally met for agricultural vegetation due to 

limited regulation of stomatal conductance, photosynthesis and transpiration [Mcnaughton and Jarvis, 

1991; Allen et al., 1998; Tolk and Howell, 2001; Hunsaker et al., 2003; Cammalleri et al., 2014a].  

The interpolation of ETrF between image dates is not unlike the construction of a traditional Kc curve [Allen 

et al., 1998], where interpolation is done between discrete values for Kc [Wright, 1982]. Generally one 

satellite image (ETinst) per month is sufficient to construct an accurate ETrF function for purposes of 

interpolating seasonal ET [Allen et al., 2007]. However, cloud contamination (thermal sensors do not see 

through clouds) and PPT events between satellite acquisitions decrease the accuracy. Examples of 

interpolating ETrF to estimate daily and monthly ET are given in Allen et al. [2007] and Singh et al. [2008]. 
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If a specific pixel must be masked out of an image because of cloud cover, then a subsequent image date 

can be used during the interpolation, however, the ETrF curve will have reduced accuracy. In addition, 

substantial time and effort may be required to adjust for ‘background’ evaporation caused by differences 

in antecedent PPT between two image dates (where one date is used to provide information for cloud 

filling of the other). During the gap filling, the interpolated values for the clouded and cloud-shadowed 

areas are adjusted for differences in residual soil moisture between the acquisition dates. This procedure, 

or a similar one, is required to remove artifacts of precipitation-derived ET that are unique to specific 

image dates, but that may not be representative of the image date represented by the ETrF from the 

previous and the following images. Regardless of the remote sensing algorithm, careful consideration of 

time integration is essential for accurate ET estimation of cumulative totals in Texas due to the high 

potential for both cloudy scenes and discrete PPT events between satellite overpasses. Fusing Landsat-

derived ET images with higher frequency TIR images (i.e. MODIS) is also discussed in Section 6.  

4.3 Net Irrigation Water Requirement from Numerical Models 

Lastly, NIWR models have been developed to study historical and future irrigation water demand. 

Application of these models regionally involves the following considerations: 1) spatial structure and 

resolution at which water balance variables will be calculated (i.e. gridded or point weather stations); 2) 

soil classes and characteristics that govern infiltration and water holding capacity; 3) crop characteristics 

that describe root access to soil moisture and related effects on ET; 4) meteorological variables forcing 

the simulations (i.e. precipitation, temperature, solar radiation, humidity, and wind speed), and ETr type 

(i.e. simple temperature base or physically based); 5) model structure and physics such as simulation of 

energy balance, soil water balance, non-growing season ET and PPT accumulations, seasonal crop 

development and harvest for different crop types, and variable growing season lengths; 6) time step for 

simulating the soil water balance, crop development, and ETC (i.e. daily or monthly); and 7) calibration 

objectives such as simulated versus measured green-up and harvest dates, killing frost temperatures, or 

ETC.  

Among available models, there are several types that generally satisfy these criteria: 

1. Reference ET, dual crop coefficient, daily soil water balance, ETC models outlined by the American 

Society of Civil Engineers (ASCE) and Food and Agriculture Organization (FAO) of the United 

Nations, FAO Irrigation and Drainage Paper 56 [Allen et al., 1998; ASCE-EWRI, 2005] 

2. Full crop simulation and growth models that consider the water, nitrogen, and carbon balances, 

such as the Decision Support System for Agrotechnology Transfer (DSSAT) [Jones et al., 2003], or 

Cupid soil-plant-atmosphere model [Norman, 1979]. 

3. Agro-economic models [McCarl and Spreen, 1980; McCarl et al., 1999] are used primarily to 

forecast future scenarios and optimize commodity prices but such models could forecast irrigation 

water demand but are generally not applicable here. 

Our implementation of the ET Demands Models (Type 1 above) is described in Section 6.2. The following 

Section 5 include the study methodology, followed by our implementation and feasibility assessment.   
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Table 3. Satellites products available for ET estimations. 

 Return interval 

Spatial resolution 

Product Availability TIR SWIR VNIR 

Thermal sensor satellites 

Landsat 5 16 days 120 m 30 m  1985 – 2011 

Landsat 7 16 days 60 m 30 m  1999 to present * 

Landsat 8 (LDM) 16 days 100 m 30 m  May 2013  

ASTER 16 days 90 m 15 m  1999 to present (sporadic) 

AVHRR 12 hours 1100 m 1100 m  1992 – present 

Spectroradiometer satellites 

GOES 1-7 15 min 4 km 1/4 km  1975 – 1999 

GOES 8+ 15 min  4 km 1/4 km  1994 – present 

MODIS 12 hours 1 km 250 m  1999 – present 

VIIRS 12 hours 375 m 375 m 750 m 2012 – present 

Other multispectral satellites 

SPOT 1-4 4 days  20 m  1986 to 2012 

SPOT 5-6 On demand  10 m  2002 to present 

CBERS 1 & 2 CCD 26 days  20 m  1999 to early 2010 

Ikonos On demand  4 m  1999 to present 

RapidEye On demand  6.5 m  2008 to present (constellation) 

Quickbird On demand  2.44  2002 to present 

GeoEye-1 On demand  0.5  2008 to present 

*Data gaps present in Landsat 7 ETM+ data following scan line failure on May 31, 2003. 

TIR, thermal infrared; SWIR, short-wave infrared; VNIR, very near infrared 

ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer; AVHRR, Advanced Very High 

Resolution Radiometer; CBERS, China-Brazil Earth Resources Satellite;  GOES, Geostationary Operational 

Environmental Satellite; MODIS, Moderate Resolution Imaging Spectroradiometer; SPOT, Systeme 

Probatoire d'Observation de la Terre; VIRIS, Visible Infrared Imaging Radiometer Suite; VIIRS, Visible 

Infrared Imaging Radiometer Suite;  
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Table 4. Energy balance (Groups A, B, and C) and fusion-based (Group D) ET models to be evaluated. 

ET Algorithm Name 

Group A SEBI Surface Energy Balance Index [Menenti and Choudhury, 1993] 
 

SEBS Surface Energy Balance System [Su, 2002] 
 

S-SEBI Simplified SEBI [Roerink et al., 2000]  

Group B TSM Two Source Model [Norman et al., 1995] 
 

TSM-DTD Two Source Model Dual Temperature Difference [Norman et al., 2000] 
 

ALEXI Atmospheric Land Exchange Inverse Model [Anderson et al., 1997; Anderson et al., 

2007a; b] 

Group C SEBAL Surface Energy Balance Algorithm for Land [Bastiaanssen et al., 1998; 

Bastiaanssen et al., 2005] 
 

METRIC Mapping ET with Internalized Calibration [Allen et al., 2007; Allen et al., 2013] 

Group D STARFM Spatial Temporal Adaptive Reflectance Fusion Model [Gao et al., 2006] 

 DisALEXI Disaggregated Atmospheric Land Exchange Inverse Model [Kustas et al., 2003; 

Norman et al., 2003] 
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Figure 6. Normalized Difference Vegetation Index for northeast Texas during a wet (September 30, 2010) and a dry 
year (September 30, 2011). 

  

September 2010 September 2011 
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5 Assessment of ET Algorithms and Data Requirements   

Currently, there is no operational ET algorithm nor is there any turnkey solution to temporally integrate 

between satellite overpasses. The process to obtain ET from remotely sensed data is convoluted and 

currently requires a knowledgeable expert to both acquire the necessary data, process the images, 

integrate the data over the growing season and quality control the results. First, we present background 

data on the ET algorithms from the literature. Next, we evaluate the probability of cloud-free image 

acquisition and gridded data sets over Texas. Lastly, we present a summary of these finding and their 

operational readiness.  

5.1 Residual Energy Balance Methods for ET 

The combination of thermal and optical remote sensing is the most robust approach estimate the spatial 

and temporal variability of ET at an operational level [Gowda et al., 2007]. The two most common 

approaches use either the land surface energy balance or reflectance-based crop coefficients [Gowda et 

al., 2008]. Energy based methods rely on estimates of LST to derive ET as the residual of the energy 

balance (Eq. 2). Reflectance approaches commonly use red and near-infrared reflectance to compute 

vegetation indices such as NDVI which is used to scale ETr from meteorological stations. Either method 

requires high quality satellite imagery that is cloud free.  

Reflectance based ET models have some advantages over energy balance in that VI is easily computed, VI 

responds more slowly to surface moisture conditions, and the algorithms are simpler. However, VI-based 

models are less accurate particularly under water stressed or bare soil conditions, and meaningful results 

are difficult to obtain under heterogeneous land cover. In addition, VI-based ET models give little 

indication of ET during pre-plant, emergence, or senescence periods [Anderson et al., 2012]. In other 

words, VI-based ET models do not correlate directly with actual rates of ET. For example, VI is indifferent 

to over–watered fields (i.e. flooded) or bare soil evaporation (i.e. pre-emergent fields). As such, we ruled 

out the use of ET models, and instead focus primarily on EB models. However, VI-based models are useful 

to determine irrigated acreage and for non-growing season applications when LST differences between 

are minimal (i.e. EB methods would not work). 

The use of EB algorithms to produce ET maps is the most robust approach due to reliance on both optical 

and thermal imagery data. We group these algorithms according to the origination algorithm (Table 2). 

Group A algorithms evolved from the Surface Energy Balance Index (SEBI) originally proposed by Menenit 

and Choudhury [1993]. SEBI produces a location dependent ETr and Ts range to account for spatial 

variability of ET due to albedo and aerodynamic roughness by implementing a crop water stress index and 

contrast between wet (cool) and dry (hot) areas to derived the ETrR scaled between 0 and total available 

energy - which is assumed constant over the day. Expanding on SEBI, Su [2002] developed Surface Energy 

Balance System (SEBS) which includes estimation of atmospheric turbulent fluxes and ETrR using satellite 

earth observation data, in combination with meteorological information at other scales. SEBS includes a 

set of tools for the determination of the land surface physical parameters, such as albedo, emissivity, 

temperature, vegetation coverage, etc., from spectral reflectance and radiance; an extended model for 

the determination of the roughness length for heat transfer; and a new formulation for the determination 

of the ETrR on the basis of energy balance at limiting cases. Its main limitation is the requirement of 
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aerodynamic roughness height from vegetation indices which can saturate at higher vegetation densities 

and the relationships are dependent on vegetation type. It also requires daily estimates of on-ground ETr. 

To overcome some of the limitation of SEBS, Roerink et al. [2000] simplified this method (S-SEBI) by 

considering constant atmospheric conditions to derive estimates of ET by determining a reflectance 

dependent maximum temperature for dry conditions and a reflectance dependent minimum temperature 

for wet conditions.  

Group B is based on the two-source model (TSM) where energy fluxes are partitioned between soil and 

vegetation. The difference between the thermodynamic temperatures of soil and vegetation contribute 

differently to the measured LST in proportion to the fraction of radiometer view. Their respective 

aerodynamic temperatures and resistance to turbulent transfer are independently modeled resulting in a 

two-source energy balance model [Norman et al., 1995] or TSEB. More recently, the TSEB has evolved into 

a time-differential temperature Atmosphere-Land Exchange inverse (ALEXI) model that relates diurnal LST  

from geostationary satellites which operate regionally at coarser spatial scale [Anderson et al., 2007b]. 

Currently, ALEXI is running at daily time steps over the U.S. using the GOES satellite at ~10km resolution. 

TSEB requires a surface-atmospheric boundary layer system and a vegetation/soil resistance model, a 

time-coupled atmospheric boundary layer model; all of which requires significant initial parameterization 

of boundary conditions and daily interpretation of multiple images.  

Group C is also based originally on SEBS. The Surface Energy Balance Algorithm for Land (SEBAL) algorithm 

estimates the spatial variation of hydro-meteorological parameters empirically, requires only field 

information on short wave atmospheric transmittance, LST and vegetation height [Bastiaanssen et al., 

1998]. Furthermore, it calculates the fluxes largely independently from land cover and can handle TIR 

images at resolutions between a few meters to a few kilometers. For SEBAL, H is estimated from a linear 

bulk aerodynamic resistance model between LST and Ta  which can only be estimated from a wet (H = 0) 

and dry pixel (LE = 0). This method eliminates the need for accurate LST and Ta measurements. Spawning 

from SEBAL, Mapping Evapotranspiration with Internalized Calibration (METRIC) is internally calibrated 

using ground-based ETr to establish and maintain EB at the wet and dry pixels [Allen et al., 2007]. The 

calibration is done for each image using an hourly estimate of ETr from weather data at the image 

collection time. The use of ETr for the extrapolation of instantaneous ET from periods of 24 hours and 

longer compensates for regional advection effects by not tying the ET to available energy (i.e. Rn - G), 

since ET can exceed daily available energy in many arid or semi-arid locations due to the oasis effect.  

Cloud-free images at high spatial resolution (i.e. Landsat) throughout the growing season are the basis 

and limitation to all of the above algorithms. In contrast, Group D takes advantage of the high spatial 

resolution from Landsat imagery coupled to the increased temporal data from other imaging satellites to 

composite maps at higher spatial and temporal resolutions. Spatial and temporal adaptive reflectance 

fusion model (STARFM) blends 16-day Landsat ETM+ data at 30m with daily MODIS surface reflectance at 

500m to produce synthetic LST daily at ETM+ resolution [Gao et al., 2006]. Higher spatial resolution can 

be also obtained by disaggregating the TIR geostationary GOES image to Landsat using disALEXI [Norman 

et al., 2003; Anderson et al., 2011].  

In general, Group B and C are the current state-of-the-science and robustly tested under many 

environmental conditions while sensor fusion (Group D) is perhaps the future-of-the-science. SEBS was 
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applied to 15 Landsat images evaluated against lysimeter data at Bushland, TX and found to have an RMSE 

of 0.11 mm h-1
 (20.8%) when locally derived G was used [Gowda et al., 2013]. Many of these algorithms 

were assessed during the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 

Southern High Plains in the Texas Panhandle [Evett et al., 2012]. Instantaneous ET from aircraft imagery 

using SEBAL had a mean bias error (MBE) and root mean square error (RMSE) of 0.13 and 0.15 mm h-1 

(23.8 and 28.2%), respectively, with hot and cold pixel selection accounting for 20% of the variability in ET 

from lysimeter data [Paul et al., 2013]. STARFM fusion using DisALEXI maps had an accuracy of 0.9 mm d-

1 under more humid conditions in Mead, NE and but failed to capture ET spikes immediately following 

afternoon irrigation in Bushland, TX, resulting in errors of 1.5 mm d-1 [Cammalleri et al., 2014b]. Thus, the 

spatial extent of irrigated fields is missed; however, rainfall likely occurs at a spatial scale large enough for 

MODIS to capture. Allen et al [2011] further summarizes instantaneous error from remote energy balance 

errors of 10-20% and VI models at 15-40%.  

From 46 published studies using SEBAL, METRIC, SEBS, TSEB, and ALEXI (among other), Karimi and 

Bastiaanssen [2015] found seasonal ET had high accuracy (95 ± 5.0%) while accuracy of rainfall data from 

satellites was slightly lower (82 ± 15%) and land use /land cover was 85 ±7%. Thus, the ET algorithms are 

fairly robust while satellite PPT and land use are more error prone. We address PPT in Section 5.4; 

however, we are limited to the CDL for annual land use and land cover (discussed further in our pilot 

study, Section 6.4) and it is not perfect.  

Table 5 presents our opinion of the feasibility of these ET algorithms for Texas. Group A, based upon SEBS, 

have evolved but are complex in that they require many parameters and are more sensitive to input bias 

(i.e. surface temperature and weather data), and are not commonly used in operations, reducing their 

feasibility. Group B distinguishes between bare soil evaporation and ETC but it also requires significant 

boundary condition parameterization; it is complex and lacks spatial resolution unless the use of research 

code (like DisALEXI) is applied. Group C improves field scale accuracy levels; however, the increase in 

accuracy adds complexity and is subject to cloud-free data availability. Both SEBAL and METRIC are open 

source codes published in the literature, are widely used, and can be easily adapted by the end-user. 

METRIC is particularly suited to advective conditions and there is potential access to the full suite of 

METRIC algorithms and developers. Lastly, Group D may prove to be the highly feasible, but these are 

currently research algorithms and the sources codes are not available or easily implemented. Thus, they 

are also considered non-operational at this point.   

5.2 Numerical Modeling of NIWR using ET Demands 

Remotely sensed methods require cloud-free images hampering their use in some areas of Texas (Section 

5.3). While full crop simulation and growth models have many research advantages, and are largely 

physically based, the American Society of Civil Engineers and FAO-56 irrigation water demand 

methodology are possibly well suited for operational application at local and regional scales. This 

methodology is currently being used in Arizona, California, Colorado, Idaho, Kansas, Nebraska, Nevada, 

New Mexico, and by the Bureau of Reclamation for the Lower Colorado River Accounting System and ET 

Toolbox models [Jensen, 1998; Brower, 2008]. The University of Idaho, Nevada Division of Water 

Resources, and Desert Research Institute (DRI) have recently modified and enhanced the ASCE and FAO-

56 ETr and dual crop coefficient approach, and have made state wide applications of the modified model, 



Irrigation Water Use Estimates with Remote Sensing Technologies  

31 
 

named the ET Demands Model [Allen et al., 2005; Allen and Robison, 2009; Huntington and Allen, 2010; 

Huntington et al., 2015] 

Actual ET for multiple crop types is estimated in the ET Demands model at each grid cell or weather station 

following the FAO-56 dual crop coefficient approach as 

  s cb e rET K K K ET    (7) 

where the stress coefficient (Ks), the basal crop coefficient (Kcb), and soil water evaporation (Ke) are 

dimensionless ranging from 0 to 1. Daily Kcb values over a season, commonly referred as a crop coefficient 

curve, represent impacts on ET from changes in vegetation phenology, which can vary from year to year 

depending on the start, duration, and termination of the growing season, all of which are dependent on 

temperature conditions. A daily soil water balance over the simulated effective root zone is required and 

computed in ET Demands to calculate Ks.   

The soil and root zone water balance in ET Demands is based on a two stage drying procedure following 

the work of Allen et al. [1998; 2005]. Research has shown that the relatively simple two-stage drying soil 

water balance model is fairly robust in simulating bare soil evaporation when compared to more physically 

based models like HYDRUS [Allen, 2011]. Soil attributes are obtained from the Natural Resources 

Conservation Service State Soil Geographic (STATSGO) database. STATSGO is a spatial soils geographic 

information system (GIS) database and contains attributes of the physical character of soils needed for 

estimating soil water holding and infiltration parameters in the ET Demands Model’s dual soil and root 

zone water balance and runoff modules. Specifically, STATSGO attributes are used to estimate the spatial 

distribution of total evaporable water and readily evaporable water used in the soil water balance, and 

total available water and readily available water used in the root zone water balance. These parameters 

affect the estimation of irrigation scheduling, evaporation losses from soil, deep percolation below root 

zones, antecedent soil moisture condition, and runoff. For a full description on the background of soil and 

root zone water balance parameters see Allen et al. [1998; 2005].  

For this work, basal crop coefficient (Kcb) curves from Allen and Robison [2009] were adopted. Rather than 

a linear interpolation approach for estimating the Kcb between specified time intervals and growth points 

three different methods are utilized based on thermal heat units, to simulate the effect of air and soil 

temperature on vegetation development, start, duration, and termination of yearly growing season and 

non-growing seasons. The three methods to define the advancement of the Kcb curve utilized in ET 

Demands are (1) normalized CGDD from planting or greenup to effective full cover, with this ratio 

extended until termination, (2) percent time from planting to effective full cover, with this ratio extended 

until termination, and (3) percent time from planting to effective full cover and then number of days after 

full cover to termination. These Kcb development approaches allow for time interpolation and shape of 

crop specific Kcb curves to be a function of CGDD and temperature dependent planting or greenup 

estimates rather than specified and constant calendar dates.  

5.3 Cloud-free potential in Texas 

First, we reviewed 47 full scene areas (Figure 7) of Landsat 5 Thematic Mapper (TM) images of Texas from 

January 2005 to November 2011. The raw image counts per climate division and annual statics for each 
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scene are fully presented in Appendix B. Cloud-free counts increase from east to west along the PPT 

gradient as proximity to the Gulf Coast increases (Figure 7). Repeat storm system can intersect re-visit 

opportunities, leading to long stretches of low cloud-free image availability. The year 2007 was a 

particularly challenging year due to above average rainfall across most of the state. Landsat 5 data 

collection was also lower than average during that year. Both factors combined to greatly reduce cloud-

free image collection. In contrast, cloud-free observations increased during 2011, a year of record 

drought. 

Next, eight Landsat 5 scenes were compared with overall availability during the same time (Table 6). These 

scenes intersect areas with the most agricultural activity, complete county containment within scene 

extent, and metering programs. In coastal areas, less than 20% of total TM observations are sufficiently 

cloud-free for consideration. Of images rated as having 10% or less cloud cover with the Automatic Cloud 

Cover Assessment (ACCA) algorithm, only 41 to 54% meet the cloud-free criteria. In the Texas High Plains, 

cloud-free observations are available at least 40% and a higher percentage of images rated by the ACCA 

algorithm as having < 10% cloud cover are actually cloud-free.  

The analysis of cloud-free status by climate division further reinforces the feasibility of using Landsat 

observations for western agricultural areas. During the 7 year analysis period, 601 clear images were 

collected over Climate Division 1 in Far West Texas and the Texas Panhandle, an area that requires twelve 

scenes for complete coverage. Climate Divisions 2, 3, and 4 had 990, 552, and 289 cloud-free scenes. In 

contrast, 289 clear images were collected during the same period in Climate Division 5, South Texas. 

Climate Division 5 requires nine complete scenes with fragments of three additional scenes for complete 

coverage. The use of Landsat observations in the coastal plains and East Texas is more problematic but 

worth investigating. Increased collection capacity with the launch of the Landsat 8 satellite in 2013 and 

continued tasking of Landsat 7 will increase observation opportunity for the state. 

Lastly, we estimated probabilities of success in producing reliable growing season ET are displayed 

separately in Figures 8 and 9 for 1, 2, and 4 Landsat satellites for each combination of growing season 

length estimate and maximum gap threshold. We first calculated the probabilities for the fixed growing 

season with one satellite and 16 day (Figure 8a) or a two satellite 8 day (Figure 8b) return time over a fixed 

growing season. Second, we relaxed the constraints using a variable growing season based on crop and a 

32 day clear sky view with a single satellite 16 day (Figure 9a) and two satellite 8 day (Figure (9b) return 

interval. As expected, the likelihood of successfully producing full growing season ET maps increases when 

there are more satellites and is greatest in regions where the climate is drier. The western portion of Texas 

has much higher probabilities, especially if only one Landsat is available. Probabilities followed somewhat 

similar trends for the two methods for estimating growing season length (fixed vs. variables). However, 

using the more likely estimate of growing season based on air temperature tended to reduce probabilities 

of success where actual growing seasons extend beyond April – October. In general, with only a single 

Landsat satellite having revisit time of 16 days, only small portions of west Texas had even 30 to 60% 

chance of successful production of growing season ET in any particular year (Figures 8a and 9a), when at 

least one clear look every 32 days is required. The rest of Texas generally had probabilities of success well 

below 20% for any one year. With two satellites (i.e. combined use of Landsat 5 and 7, or Landsat 7 and 

8), probabilities of success increased to about 80-90% for west Texas and 40-50% over the panhandle. The 
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lowest potential for satellite retrievals are clearly south Texas where probabilities seldom exceed 10%. Of 

course, the constraints could be further relaxed at the expense of accuracy and quality in the growing 

season ET. Likewise, Group D algorithms using sensor fusion may be required in the lower probability 

areas.  

5.4 Gridded data sets 

5.4.1 Precipitation 

To obtain accurate estimates of NIWR from remotely sensed ET, we need accurate PPT to determine the 

fraction of total ET not obtained from irrigation. We assessed 6 gridded PPT products against 423 on-

ground stations from 6 networks operating in Texas (Figure 4). Several observational data sets were hourly 

(CRN, SCAN and WTM). These data were screened to assure over 20 hours per day were available then 

hourly PPT was totaled for each day. Other networks (HCN, LCRA and TETN) were included directly as daily 

totals. Of our available networks in Texas over the 2006 to 2012 period, CRN provides nearly 100% daily 

data while HCN, LCRA and SCAN are generally >80% (Table 7). TETN and WTM are generally less reliable 

with annual days of data near 60%. Regardless, coverage over Texas is sparse and we chose to not exclude 

any network despite data gaps. We also focus on daily totals over longer cumulative periods (weeks, 

months or growing season) to avoid introducing more uncertainties in assessing the gridded products.  

The statistics defined in Appendix A can be summarized more efficiently here by three measures: root 

mean square error (RMSE), probability of detection (POD), and precipitation accuracy index (PAI). RMSE 

(mm d-1) is a quadratic scoring rule which measures the average magnitude of the error giving a relatively 

high weight to bigger errors. POD is a dichotomous statistics that represents the fraction of observed days 

with rain detected by the model ranging from perfect prediction (1) to poor (0) prediction. PAI is combines 

normalized conventional (RMSE, MBE, and R2) and dichotomous (POD and false alarm ratio) into a single 

skill estimate, also ranging from perfect (1) to poor (0). Given our period of record, we assessed daily PPT 

totals from Daymet, forcing data for NLDAS at 12 km (NLDAS-12) and downscaled, bias corrected NLDAS 

data at 4 km (NLDAS-4), PRISM, satellite-based PERSIANN-CSS and radar-based Stage IV.  

State-wide, RMSE values ranged from 0.009 to 6.5 mm d-1, while Daymet had the lower mean RMSE (0.327 

mm d-1) and Stage IV the largest (0.491 mm d-1) across all observational data sets (Table 8). The range (one 

standard deviation) was similar for all 6 products near 0.45 mm d-1. Since RMSE is implicitly lower in 

regions of lower precipitation, values in west Texas (Climate Zone 1 and 2) should be lower (than more 

mesic areas of east Texas (Zones 3 and 4). However, all 6 products have the highest RMSE in Climate Zone 

2 and similar skills across the others (Table 9). Precipitation bands based on 30-year normal of PRISM data 

also indicate lower RMSE values in the west (<200 mm y-1), highest values for 200-400 mm y-1 (Table 9). 

Both Daymet and NLDAS-12 show the lowest RMSE values for either Climate Division or PPT Band (Figure 

10).  

Ability to detect events, based on POD, was highest for NLDAS-12 (0.643) and lowest for Stage IV (0.315) 

(Table 8). Generally, with a fewer number of events in west Texas, POD translates to lower POD scores 

(~0.4) since a single miss would carry much more weight (Table 10). Stage IV, again, has particularly low 

skill at POD, while NLDAS-12 is >0.5 across all Climate Divisions and PPT Bands. The combined score, PAI, 

was highest for Daymet (0.650) and lowest for Stage IV (0.478) (Table 8) which is also observable across 



Irrigation Water Use Estimates with Remote Sensing Technologies  

34 
 

the network map (Figure 11). When further summarized within each network, it is clear the CRN 

corresponds best to all products while HCN clearly favors Daymet (Figure 12). Of note, Daymet (and 

PRISM) likely uses both CRN and HCN in its algorithm, while LCRA data could be considered more 

independent. Thus, we can see Daymet, NLDAS-12 perform well across all networks, while SCAN and TETN 

generally have the lower PAI for all products.  

The ease of implementation, skill in both conventional and dichotomous statistics, and state-wide 

representativeness indicate Daymet and NLDAS-12 are superior PPT product. Radar and satellite products 

were very difficult to work with due to their binary structure, verse netCDF and higher errors [Serrat-

Capdevila et al., 2013].  

5.4.2 Reference Evapotranspiration  

Accurate reference ET (ETr) estimates that are representative of well-watered conditions are needed for 

both satellite based estimates of ET maps as well as time integration between images. Weather stations 

located in irrigated regions are ideal to capture local effects of well-watered vegetation and the associated 

micro-climate that results. However, stations are generally not in well-watered areas, and the data quality 

can be poor [Marek et al., 2010]. The sensors, ideally at 2m elevation, must include air temperature and 

humidity, wind speed and solar radiation to calculate ETr. Gridded NLDAS forcing data at 4km or 12km 

could potentially also be used if they are representative or are bias corrected. Of our available monitoring 

networks in Texas, only two contain the required data readily available to calculate ETr: WTM and SCAN. 

TETN’s historical data only includes daily minimum humidity and wind speed at 4am (although more data 

is available for purchase). We used station data for the period 2002-2012 from these networks. Of the 79 

WTM stations, 51 had acceptable data, and of the 7 SCAN stations available, only two had acceptable 

data. Appendix C summarizes the stations used, and reasons for exclusion.  

Daily data were first assess for quality control [Allen, 2008]. Scripts were written to display all variables, 

provide options, and correct or omit data for each station. The most common variable needing correction 

at each station was measured solar radiation (Rs). Appendix C lists corrections made to each station. 

Measured Rs is commonly under or over measured due to debris on the pyranometer window, non-level 

base plate, sensor miscalibration or drift, or obstructions. Corrections to measured Rs were made to each 

station using the theoretical clear sky solar radiation, Rso_b [ASCE-EWRI, 2005], where the ratio Rs /Rso_b 

for the top 10 percentile of measured Rs for specified time windows (usually 60 days) was used to scale 

the respective measured Rs for all days within the time window. These correction procedures were applied 

as needed for the entire study period of measured Rs, based on visual inspection of Rs and Rso_b. 

Time series of gridded 4 km and 12 km NLDAS forcing (weather) data was extracted for each station 

location to compute ETr and compare NLDAS derived ETr to acceptable and quality controlled respective 

weather station derived ETr. If weather station data were missing for extended periods of time, no 

comparisons were made for those periods. Small amounts of weather station data we filled based on long 

term daily means and added variance (Appendix C).  

Results of the comparison indicate that ETr is generally well simulated using NLDAS derived weather data 

(Tables 11). Ratios of the mean annual NLDAS-4 km estimated ETr to the measured ETr from 53 stations 

were found to range from 0.80 to 1.12, with an average of 0.99, a standard deviation of 0.04, and average 
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RMSE for annual estimated ETr of 152 mm y-1 (Table 11). Seven day 4 km NLDAS ratios of estimated range 

from 0.91 to 1.12 with an average of 1.00, a standard deviation of 0.16, and an average RMSE for 

estimated ETr of 6.5 mm week-1. Ratios of the mean annual NLDAS-12 km estimated ETr to the measured 

ETr from 53 stations were found to range from 0.86 to 1.17 with an average of 1.03, a standard deviation 

of 0.05, and average RMSE for annual estimated ETr of 175 mm y-1 (Table 12). Seven day NLDAS-12 km 

ratios of estimated to measured ETr were found to range from 0.90 to1.17 with an average of 1.03, a 

standard deviation of 0.18, and average RMSE for estimated ETr of 7.5 mm week-1.  

In general both the NLDAS products (4 and 12km) seem sufficient for estimating ambient ETr at multiple 

time steps in Texas with the 4km product having less error than the 12km product. Figure 13 illustrates 

scatter plots of daily, monthly, and annual station and 4km NLDAS estimated ETr for WTM Abernathy 

(Station Number 1) as an example. While these results are promising, bias correction is required to 

estimate ETr that is representative of well-watered conditions. Moorhead et al. [2015] found a +2.2 mm 

d-1 bias in NLDAS 12km estimated ETr when compared to the TETN data. Bias correction of gridded ETr 

data was not implemented in this product due to the limited scope of work, but is required for full 

implementation of irrigation demand model estimates of NIWR, and satellite based estimates of ET.  

5.5 Summary of Each Available Technology and Workshop 

The initial feasibility study, completed in Year 1 of the project, concluded with a Stakeholders’ Workshop 

posted on TWDB website (Link). To summarize, there is little doubt that ET algorithms are robust; they all 

vary in the spatial scaling of ETrF across a given scene, but all are essentially constrained by the 

atmospheric demand (i.e. ETr). In a similar feasibility study for Oklahoma (and where ground observations 

of actual ET are plentiful), satellite estimations showed agreement with ground observations with daily 

ET bias <15% and seasonal bias less than 8% [Khan et al., 2010]. The accuracies and tiers presented in 

Table 5 are valid and would do not pose any limitation for Texas provided sufficient cloud-free imagery 

exists every 30 days. The advantages and disadvantages of each are presented in Table 5. Group A-C are 

more applicable at the county-level. Group D which integrates finer-scale Landsat with coarse-scale 

MODIS to find cloud-free scenes may improve feasibility in more humid regions of Texas but at a 

significant cost to time and expertise of staff. Regardless, all of these techniques and algorithms are 

complicated and varying in degrees of pre- and post-processing is required. This, on the other hand, is 

particularly challenging in more humid areas such as Lower Rio Grande Valley and Coastal Prairie. West 

Texas and the southern High Plains have much higher probabilities of quality satellite data.  

All ET algorithms produce a scalable map of ETrF and each map must be masked for clouds and clipped to 

known areas of irrigated agriculture then integrated between snapshots using weather data (either 

station or gridded data) to estimate ET. Cloud masks are constantly improving and becoming more 

operations for both Landsat and MODIS imagery [Zhu and Woodcock, 2012; 2014; Zhu et al., 2015]. 

Perhaps, the more pressing challenge is discerning irrigated from non-irrigated agriculture. NASS 

georeferenced boundaries are considered proprietary ad no longer released. This is perhaps the largest 

challenge facing the operational readiness of such a program: in many cases our irrigated lands are not 

spectrally distinct from dryland agriculture. As we will point out in the following section, our only available 

resource to mask out native vegetation is currently the NASS CDL. Additionally, the CDL may specify 

‘cotton’ but if ETc for that pixel exceeds PPT we must assume that pixel is irrigated. However, even with 

http://www.twdb.texas.gov/conservation/agriculture/doc/10_14_2015_Remote_Sensing_Irrigation_Water_Use_Study.mp4
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its inherent flaws, the CDL is operational with crop-type accuracies ranging from 85-95% and freely 

provided annually [Boryan et al., 2011]; but it does not distinguish irrigated lands, failed crops or multi-

rotational crops accurately.  

Weather data are particularly sparse over Texas. Many gridded products, NLDAS and Daymet in particular, 

produce very high quality PPT data. However, these products do not directly represent the more humid 

microclimates around irrigated agricultural and may bias ETr slightly higher. Porter et al. [2012] found 

station-based ETr was most sensitive wind speed and air temperature, thus over-estimating actual ET. 

Ground stations that measure ETr are particularly deficient in both number and quality in Texas. 

Furthermore, many of these are associated with non-agricultural environments; so much like the gridded 

products, ETr may be biased slightly high. For example, ETr calculated from NLDAS data sets in Texas was 

1-2 mm d-1 higher simply due to higher air temperatures and wind speeds [Moorhead et al., 2015]. Relative 

humidity and air temperature would be the most affected which could be bias-corrected if ETr was 

noticeably over-estimated. For now, these products are very operational and recommended for further 

assessment with possible bias correction. The following section implements the METRIC algorithms and 

gridded NLDAS weather data to produce annual NIWR for 2010 (wet) and 2011 (dry) year across eight 

counties in Texas. The goal is to fully assess efforts required, from start to finish, to produce annual county 

estimates.  
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Table 5. Feasibility assessment of ET algorithms for Groups A, B, C, and D. 

ET Algorithm Accuracy Feasibility Justification Complexity 

Group A SEBI Tier 3 Low Disadvantages: albedo and aerodynamic 

roughness, antiquated method 

Low 

 
SEBS Tier 4 Moderate Similar limitations to SEBI, also requires daily 

met data, SEBAL is more current 

Moderate 

 
S-SEBI Tier 2 High Simplified version, easy time integration at 

the expense of accuracy 

Low 

Group B TSM Tier 3 Low Advantages: separate soil/veg ET; 

disadvantages: no time integration, 

antiquated method 

Moderate 

 
ALEXI Tier 3 Low Advantage: time differential LST and robust 

time integration; disadvantage: course 

spatial resolution and complexity 

High 

Group C SEBAL Tier 3/4 Moderate Advantages: no land cover required, high 

accuracy; disadvantages: no ET at hot cell, 

complicated algorithms 

High 

 
METRIC Tier 3/4 High Advantages: similar to SEBAL but ET 

constrained by soil water balance; 

disadvantages: complicated algorithms and 

calibration, but calibration process has been 

automated of operational application 

High  

Group D STARFM 

DisALEXI 

Tier 4 Moderate Advantages: no cloud issues; disadvantages: 

complicated, requires significant in-house 

algorithm development 

High 
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Table 6. Comparison of total Landsat 5 observations during period of January 2005 through November 2011 for 
select scenes in Texas. 

  Calculated with 

ACCA algorithm 

Visual 

inspection 

Percent of total available 

observations 

 

Scene 

Identifier 

All 

available 

scenes 

50% 

or 

less 

20% 

or 

less 

10% 

or 

less Cloud-free 50% 20% 10% 

Cloud-

free 

%10 

that 

are 

cloud-

free 

p25r39 143 97 64 43 23 67.8% 44.8% 30.1% 16.1% 53.5% 

p26r40 137 108 73 54 24 78.8% 53.3% 39.4% 17.5% 44.4% 

p26r42 138 110 71 44 18 79.7% 51.4% 31.9% 13.0% 40.9% 

p27r42 140 101 78 62 37 72.1% 55.7% 44.3% 26.4% 59.7% 

p28r40 141 103 74 62 37 73.0% 52.5% 44.0% 26.2% 59.7% 

p29r37 145 102 85 79 51 70.3% 58.6% 54.5% 35.2% 64.6% 

p30r36 145 120 102 92 61 82.8% 70.3% 63.4% 42.1% 66.3% 

p31r35 143 117 90 75 57 81.8% 62.9% 52.4% 39.9% 76.0% 

 

 

Table 7. Percentage of daily precipitation data available from existing monitoring networks in Texas. 

Network N 2005 2006 2007 2008 2009 2010 2011 2012 

CRN 8 99.9% 99.8% 99.1% 99.3% 99.8% 99.7% 99.7% 99.5% 

HCN 49 86.9% 86.1% 84.1% 87.7% 85.8% 83.5% 79.9% 75.9% 

LCRA 241 76.7% 83.7% 90.2% 97.8% 99.5% 100.0% 99.9% 100.0% 

SCAN 5 32.2% 93.6% 72.9% 78.1% 86.0% 95.9% 82.2% 79.6% 

TETN 41 39.1% 43.1% 49.7% 60.5% 72.1% 71.6% 62.7% 60.1% 

WTM 79 0.0% 56.5% 58.3% 59.5% 64.2% 67.8% 69.8% 74.4% 
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Table 8. State-wide performance of 6 gridded PPT products against all weather networks. 

 
Daymet NLDAS-12 NLDAS-4 PERSIANN PRISM Stage IV 

RMSE 0.327 0.352 0.351 0.398 0.383 0.491 

STD 0.460 0.453 0.453 0.448 0.450 0.433 

Min 0.009 0.026 0.030 0.026 0.029 0.034 

Max 6.50 6.47 6.47 6.47 6.48 6.41 

POD 0.471 0.643 0.532 0.488 0.438 0.315 

STD 0.156 0.160 0.164 0.105 0.118 0.043 

Min 0.092 0.148 0.075 0.181 0.074 0.059 

Max 0.907 0.955 0.888 0.740 0.938 0.667 

PAI 
0.650 0.616 0.604 0.560 0.570 0.478 

STD 0.101 0.075 0.083 0.043 0.055 0.016 

Min 0.439 0.466 0.458 0.447 0.448 0.415 

Max 0.947 0.860 0.867 0.686 0.915 0.569 

 

Table 9. Root mean square error (mm d-1) for 6 PPT products by climate division and annual precipitation band.  

Climate 

Division Daymet NLDAS-12 NLDAS-4 PERSIANN PRISM Stage IV 

1 0.300 0.383 0.384 0.398 0.405 0.487 

2 0.443 0.492 0.492 0.518 0.515 0.600 

3 0.308 0.305 0.302 0.367 0.344 0.463 

4 0.314 0.360 0.359 0.398 0.373 0.491 

5 0.345 0.392 0.389 0.414 0.414 0.505 

PPT Band (mm y-1) 

200 0.177 0.233 0.234 0.250 0.257 0.348 

400 0.437 0.512 0.511 0.528 0.531 0.611 

600 0.318 0.315 0.313 0.373 0.352 0.468 

800 0.290 0.306 0.304 0.362 0.345 0.460 

1000 0.309 0.369 0.368 0.403 0.375 0.492 
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Table 10. Probability of detection for 6 PPT products by climate division and annual precipitation band. 

Climate 

Division Daymet NLDAS-12 NLDAS-4 PERSIANN PRISM Stage IV 

1 0.461 0.517 0.416 0.396 0.335 0.320 

2 0.479 0.605 0.503 0.472 0.417 0.305 

3 0.472 0.690 0.575 0.524 0.461 0.309 

4 0.464 0.604 0.486 0.451 0.451 0.355 

5 0.485 0.677 0.573 0.493 0.489 0.280 

PPT Band (mm y-1) 
     

200 0.396 0.518 0.432 0.428 0.379 0.298 

400 0.475 0.560 0.459 0.429 0.371 0.312 

600 0.470 0.683 0.569 0.519 0.455 0.306 

800 0.482 0.687 0.571 0.518 0.472 0.315 

1000 0.480 0.580 0.463 0.428 0.443 0.362 
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Table 11. Comparison of ETr between weather station and collocated NLDAS 4km grid cell. 

 

  

Station 

Number
Station Name Start Date End Date

Number 

of Days 

Analyzed 

out of 

2556 

Possible

Average 

Annual 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Standard 

Deviation of 

Average 

Annual Ratio 

of Estimated 

ETr to 

Measured 

ETr

Annual RMSE 

(mm/yr)

Average 

Monthly 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Standard 

Deviation 

of Average 

Monthly 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Monthly 

RMSE 

(mm/mo)

Average 

Weekly 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Standard 

Deviation of 

Weekly 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Weely RMSE 

(mm/wk)

Average 

Daily Ratio 

of 

Estimated 

ETr to 

Measured 

ETr

Standard 

Deviation 

of Daily 

Ratio of 

Estimated 

ETr to 

Measure

d ETr

Daily 

RMSE 

(mm/d)

Station 

Annual 

Average 

ETr 

(mm/yr)

NLDAS 

Annual 

Average 

ETr 

(mm/yr)

1 5ENE Abernathy 1/1/2006 12/31/2012 2545 0.97 0.03 120.31 0.96 0.08 17.5 0.97 0.12 5.7 1.06 0.50 1.58 2770 2676

5 1NE Amherst 1/1/2006 12/31/2012 2545 0.98 0.02 68.72 0.98 0.07 13.3 0.99 0.14 5.2 1.08 0.59 1.51 2753 2699

6 2E Andrews 1/1/2006 12/31/2012 2541 1.05 0.02 160.54 1.05 0.06 18.4 1.06 0.12 5.7 1.14 0.63 1.50 2841 2987

7 6SSW Anton 1/1/2006 12/31/2012 2547 1.01 0.03 64.18 1.01 0.08 16.8 1.02 0.14 5.7 1.11 0.61 1.60 2784 2799

8 3NE Aspermont 1/1/2006 12/31/2012 2546 1.01 0.04 96.55 1.00 0.09 17.9 1.01 0.14 6.1 1.09 0.44 1.63 2633 2654

11 2S Brownfield 1/1/2006 12/31/2012 2547 0.93 0.03 204.98 0.92 0.07 21.2 0.93 0.12 6.5 1.01 0.52 1.64 2907 2716

13 2NNE Childress 1/1/2006 12/31/2012 1951 0.90 0.03 262.01 0.89 0.09 26.2 0.91 0.15 7.9 0.99 0.48 2.05 2851 2557

14 2WSW Clarendon 1/1/2006 12/31/2012 2519 1.04 0.04 121.97 1.03 0.08 17.5 1.05 0.16 6.2 1.15 0.55 1.65 2614 2705

16 2N Coyanosa 1/1/2006 12/31/2012 586 0.91 0.05 131.69 0.93 0.07 17.3 0.94 0.14 4.8 1.01 0.41 2.40 3116 2943

18 2NE Dimmitt 1/1/2006 12/31/2012 2550 0.94 0.02 176.93 0.94 0.07 18.8 0.95 0.13 6.2 1.04 0.55 1.61 2830 2664

20 2NNE Floydada 1/1/2006 12/31/2012 2530 0.95 0.03 161.53 0.94 0.07 18.9 0.95 0.12 6.2 1.05 0.56 1.67 2766 2625

21 3WNW Fluvanna 1/1/2006 12/31/2012 2538 0.99 0.02 71.27 0.98 0.06 14.1 0.99 0.13 5.5 1.08 0.54 1.59 2825 2780

22 2NE Friona 1/1/2006 12/31/2012 2520 0.96 0.03 126.45 0.96 0.07 15.4 0.98 0.14 5.5 1.05 0.47 1.58 2786 2682

23 2 ESE Gail 1/1/2006 12/31/2012 2533 1.11 0.02 286.09 1.10 0.07 28.3 1.12 0.14 7.9 1.21 0.56 1.74 2679 2961

24 3W Goodlett 1/1/2006 12/31/2012 2418 0.96 0.04 137.48 0.95 0.08 18.0 0.97 0.16 6.6 1.06 0.52 1.74 2676 2575

25 5SSW Graham 1/1/2006 12/31/2012 2538 0.94 0.03 204.29 0.93 0.07 22.0 0.95 0.13 7.2 1.04 0.56 1.80 2966 2779

26 10WSW Guthrie 1/1/2006 12/31/2012 2508 0.99 0.04 102.12 0.99 0.09 18.1 1.00 0.15 6.3 1.09 0.53 1.74 2740 2710

27 3N Hart 1/1/2006 12/31/2012 2548 1.04 0.04 142.60 1.03 0.10 22.3 1.05 0.15 6.4 1.14 0.63 1.52 2561 2666

28 1NW  Haskell 1/1/2006 12/31/2012 1332 1.02 0.04 73.61 1.01 0.09 12.9 1.02 0.16 4.8 1.10 0.44 1.85 2752 2831

29 2NW Hereford 1/1/2006 12/31/2012 2463 0.98 0.04 114.27 0.97 0.09 16.4 0.98 0.14 5.5 1.04 0.41 1.51 2582 2472

31 1SSE Jayton 1/1/2006 12/31/2012 2545 1.01 0.03 77.38 1.00 0.09 17.7 1.01 0.14 5.9 1.09 0.49 1.55 2581 2615

35 2SE Lamesa 1/1/2006 12/31/2012 2546 1.05 0.04 163.18 1.05 0.08 19.9 1.06 0.14 6.0 1.14 0.55 1.54 2630 2768

36 4S Levelland 1/1/2006 12/31/2012 2529 0.99 0.03 95.14 0.98 0.09 19.3 0.99 0.13 6.1 1.07 0.46 1.60 2835 2795

38 3WNW Lubbock-TTU 1/1/2006 12/31/2012 2386 1.02 0.03 96.89 1.02 0.06 13.1 1.03 0.12 4.9 1.13 0.55 1.49 2688 2759

39 1E McLean 1/1/2006 12/31/2012 2472 1.06 0.05 177.43 1.05 0.10 22.3 1.06 0.17 7.0 1.17 0.62 1.67 2542 2700

40 1NE Memphis 1/1/2006 12/31/2012 2537 1.11 0.04 280.72 1.11 0.09 28.8 1.12 0.16 7.8 1.19 0.46 1.68 2325 2588

42 1ENE Morton 1/1/2006 12/31/2012 2547 0.97 0.02 105.76 0.96 0.08 17.1 0.98 0.13 5.8 1.06 0.54 1.57 2865 2774

43 2SSW Muleshoe 1/1/2006 12/31/2012 2506 0.99 0.04 99.18 0.99 0.10 17.4 1.00 0.17 6.0 1.08 0.52 1.66 2639 2594

44 1S Northfield 1/1/2006 12/31/2012 1646 0.99 0.03 62.75 0.98 0.09 14.4 0.99 0.15 5.3 1.09 0.54 1.85 2716 2705

45 4ENE Odell 1/1/2006 12/31/2012 600 0.94 0.04 85.25 0.95 0.08 12.9 0.96 0.15 4.5 1.06 0.52 2.59 2882 2799

47 6S of Olton 1/1/2006 12/31/2012 2546 0.97 0.02 92.58 0.96 0.07 13.8 0.97 0.12 5.1 1.05 0.48 1.48 2744 2662

48 10SW Paducah 1/1/2006 12/31/2012 2528 0.98 0.03 100.67 0.97 0.08 17.6 0.98 0.15 6.5 1.07 0.52 1.76 2815 2760

50 2E Pampa 1/1/2006 12/31/2012 2538 0.95 0.03 132.19 0.95 0.07 15.1 0.96 0.13 5.5 1.05 0.57 1.48 2552 2435

53 3N Plains 1/1/2006 12/31/2012 2500 0.99 0.03 76.93 0.99 0.07 12.4 1.00 0.14 5.2 1.09 0.62 1.53 2837 2810

54 1S Plainview 1/1/2006 12/31/2012 2547 1.05 0.03 161.69 1.05 0.07 18.0 1.06 0.12 5.4 1.15 0.56 1.44 2536 2674

55 1NE Post 1/1/2006 12/31/2012 2538 1.01 0.03 70.84 0.99 0.08 17.7 1.01 0.14 6.3 1.11 0.55 1.71 2763 2777

57 1SE Ralls 1/1/2006 12/31/2012 2548 1.00 0.03 74.65 1.00 0.08 15.2 1.02 0.14 5.6 1.11 0.61 1.56 2717 2720

58 12W Lubbock (Reese) 1/1/2006 12/31/2012 2548 0.97 0.03 134.20 0.97 0.07 17.3 0.98 0.13 5.9 1.07 0.58 1.63 2864 2772

61 1SW Seagraves 1/1/2006 12/31/2012 2384 1.07 0.05 162.39 1.07 0.15 22.0 1.08 0.20 6.5 1.16 0.63 1.69 2687 2815

62 2NNE Seminole 1/1/2006 12/31/2012 2501 1.00 0.02 51.69 0.99 0.07 12.8 1.00 0.11 4.8 1.07 0.51 1.41 2789 2804

63 3NW Seymour 1/1/2006 12/31/2012 1148 1.03 0.07 112.87 1.06 0.10 14.7 1.08 0.16 5.0 1.17 0.50 2.00 2703 2868

64 7ESE Silverton  1/1/2006 12/31/2012 2535 0.92 0.04 247.87 0.92 0.08 26.1 0.94 0.15 8.0 1.06 0.68 1.93 2735 2511

65 2NE Slaton 1/1/2006 12/31/2012 2546 0.97 0.03 107.63 0.97 0.07 16.8 0.99 0.14 6.2 1.09 0.57 1.73 2815 2740

66 3E Snyder 1/1/2006 12/31/2012 2540 0.91 0.04 270.59 0.91 0.06 25.8 0.92 0.12 7.6 0.99 0.46 1.79 2892 2640

67 1W Spur 1/1/2006 12/31/2012 2543 1.12 0.04 297.00 1.11 0.10 31.7 1.11 0.15 8.4 1.19 0.47 1.77 2432 2713

70 8WSW Sundown 1/1/2006 12/31/2012 2541 0.97 0.03 106.22 0.96 0.08 16.5 0.97 0.13 5.7 1.06 0.59 1.55 2885 2808

71 3NNE Tahoka 1/1/2006 12/31/2012 2544 0.94 0.03 191.02 0.93 0.07 21.5 0.95 0.13 6.8 1.04 0.55 1.73 2849 2674

73 2ENE Tulia 1/1/2006 12/31/2012 2547 0.98 0.04 116.15 0.97 0.08 17.3 0.99 0.14 6.1 1.10 0.63 1.65 2722 2652

74 2WSW Turkey 1/1/2006 12/31/2012 2217 0.89 0.05 271.03 0.89 0.09 28.3 0.91 0.16 8.6 1.00 0.50 2.10 2835 2568

76 1E Wall 1/1/2006 12/31/2012 1144 1.00 0.08 92.38 1.03 0.09 14.0 1.05 0.19 5.1 1.13 0.46 1.91 2895 2977

79 6SSW Wolfforth 1/1/2006 12/31/2012 2542 0.94 0.03 201.59 0.93 0.08 23.6 0.95 0.13 7.1 1.03 0.51 1.74 2870 2685

80 SCAN_BUSHLAND 1/1/2006 12/31/2012 1438 0.80 0.10 498.67 0.87 0.41 61.0 0.93 0.69 17.6 1.14 1.59 4.57 3133 2616

81 SCAN_PRAIRIE_VIEW 1/1/2006 12/31/2012 2374 1.00 0.20 397.17 1.01 0.30 52.0 1.04 0.40 14.4 1.18 0.93 2.79 2267 2241

Average 2320 0.99 0.04 152 0.98 0.09 20.1 1.00 0.16 6.5 1.09 0.56 1.77 2745 2708
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Table 12. Comparison of ETr between weather station and collocated NLDAS 12km grid cell. 

 

Station 

Number
Station Name Start Date End Date

Number 

of Days 

Analyzed 

out of 

2556 

Possible

Average 

Annual 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Standard 

Deviation of 

Average 

Annual Ratio 

of Estimated 

ETr to 

Measured 

ETr

Annual RMSE 

(mm/yr)

Average 

Monthly 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Standard 

Deviation 

of Average 

Monthly 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Monthly 

RMSE 

(mm/mo)

Average 

Weekly 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Standard 

Deviation of 

Weekly 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Weely RMSE 

(mm/wk)

Average 

Daily Ratio 

of 

Estimated 

ETr to 

Measured 

ETr

Standard 

Deviation 

of Daily 

Ratio of 

Estimated 

ETr to 

Measured 

ETr

Daily 

RMSE 

(mm/d)

Station 

Annual 

Average 

ETr 

(mm/yr)

NLDAS 

Annual 

Average 

ETr 

(mm/yr)

1 5ENE Abernathy 1/1/2006 12/31/2012 2550 1.00 0.04 89 0.99 0.12 24.8 1.00 0.15 6.9 1.08 0.46 1.55 2772 2779

5 1NE Amherst 1/1/2006 12/31/2012 2550 1.02 0.04 116 1.01 0.11 23.6 1.02 0.16 6.6 1.10 0.52 1.51 2754 2803

6 2E Andrews 1/1/2006 12/31/2012 2545 1.05 0.04 165 1.04 0.10 25.0 1.05 0.13 6.8 1.12 0.56 1.48 2843 2974

7 6SSW Anton 1/1/2006 12/31/2012 2552 1.06 0.04 186 1.05 0.12 29.5 1.06 0.17 7.8 1.15 0.56 1.65 2786 2940

8 3NE Aspermont 1/1/2006 12/31/2012 2550 1.07 0.05 207 1.05 0.13 31.3 1.07 0.18 8.2 1.14 0.47 1.67 2636 2812

11 2S Brownfield 1/1/2006 12/31/2012 2552 0.97 0.03 121 0.95 0.10 22.3 0.96 0.14 6.6 1.03 0.47 1.56 2910 2814

13 2NNE Childress 1/1/2006 12/31/2012 1954 0.94 0.04 182 0.92 0.14 27.5 0.94 0.19 7.7 1.01 0.47 1.85 2854 2683

14 2WSW Clarendon 1/1/2006 12/31/2012 2523 1.05 0.05 173 1.04 0.12 26.8 1.05 0.18 7.4 1.13 0.52 1.61 2616 2747

16 2N Coyanosa 1/1/2006 12/31/2012 586 0.93 0.03 97 0.95 0.07 13.8 0.96 0.13 3.7 1.01 0.37 1.92 3116 2965

18 2NE Dimmitt 1/1/2006 12/31/2012 2555 0.98 0.03 100 0.97 0.10 19.5 0.98 0.14 6.1 1.06 0.47 1.50 2832 2787

20 2NNE Floydada 1/1/2006 12/31/2012 2534 1.00 0.04 111 0.98 0.10 22.8 0.99 0.15 6.6 1.08 0.54 1.57 2768 2754

21 3WNW Fluvanna 1/1/2006 12/31/2012 2543 1.03 0.04 133 1.02 0.10 24.3 1.03 0.15 6.8 1.11 0.55 1.54 2828 2906

22 2NE Friona 1/1/2006 12/31/2012 2525 1.02 0.04 120 1.01 0.10 21.3 1.02 0.14 6.1 1.09 0.43 1.50 2788 2833

23 2 ESE Gail 1/1/2006 12/31/2012 2538 1.12 0.04 336 1.11 0.11 37.0 1.12 0.16 9.3 1.20 0.54 1.77 2682 3004

24 3W Goodlett 1/1/2006 12/31/2012 2422 1.01 0.05 111 1.00 0.12 24.7 1.02 0.20 7.2 1.10 0.59 1.64 2680 2745

25 5SSW Graham 1/1/2006 12/31/2012 2543 0.97 0.03 144 0.96 0.10 24.3 0.97 0.16 7.5 1.06 0.56 1.71 2969 2865

26 10WSW Guthrie 1/1/2006 12/31/2012 2511 1.05 0.06 191 1.05 0.12 28.3 1.06 0.17 7.8 1.15 0.57 1.70 2741 2879

27 3N Hart 1/1/2006 12/31/2012 2553 1.10 0.05 291 1.09 0.14 39.7 1.10 0.18 9.8 1.19 0.58 1.78 2562 2827

28 1NW  Haskell 1/1/2006 12/31/2012 1334 1.10 0.07 179 1.07 0.11 24.0 1.09 0.18 6.4 1.16 0.45 1.75 2754 2930

29 2NW Hereford 1/1/2006 12/31/2012 2467 1.03 0.04 131 1.02 0.11 22.9 1.03 0.14 6.4 1.10 0.43 1.49 2586 2660

31 1SSE Jayton 1/1/2006 12/31/2012 2549 1.09 0.04 254 1.08 0.13 34.0 1.09 0.18 8.8 1.17 0.53 1.70 2584 2824

35 2SE Lamesa 1/1/2006 12/31/2012 2551 1.11 0.04 287 1.10 0.10 32.4 1.12 0.16 8.2 1.20 0.55 1.62 2632 2906

36 4S Levelland 1/1/2006 12/31/2012 2534 1.01 0.04 99 1.00 0.13 28.4 1.01 0.16 7.6 1.08 0.42 1.63 2837 2870

38 3WNW Lubbock-TTU 1/1/2006 12/31/2012 2391 1.05 0.03 165 1.05 0.09 22.9 1.06 0.14 6.4 1.14 0.50 1.46 2690 2849

39 1E McLean 1/1/2006 12/31/2012 2476 1.09 0.04 227 1.06 0.14 33.2 1.08 0.19 8.8 1.17 0.60 1.74 2545 2744

40 1NE Memphis 1/1/2006 12/31/2012 2541 1.16 0.06 382 1.14 0.13 41.2 1.16 0.19 10.2 1.23 0.52 1.87 2327 2690

42 1ENE Morton 1/1/2006 12/31/2012 2552 1.00 0.03 67 0.99 0.11 23.3 1.00 0.15 6.6 1.07 0.49 1.54 2867 2864

43 2SSW Muleshoe 1/1/2006 12/31/2012 2511 1.02 0.04 118 1.01 0.12 23.2 1.03 0.17 6.7 1.10 0.50 1.60 2641 2695

44 1S Northfield 1/1/2006 12/31/2012 1648 1.02 0.04 89 1.00 0.14 24.1 1.02 0.19 6.6 1.11 0.54 1.79 2718 2793

45 4ENE Odell 1/1/2006 12/31/2012 600 0.95 0.01 65 0.95 0.06 9.2 0.95 0.11 3.2 1.01 0.33 1.64 2882 2779

47 6S of Olton 1/1/2006 12/31/2012 2551 1.03 0.04 120 1.01 0.11 25.3 1.02 0.15 6.9 1.09 0.47 1.51 2746 2815

48 10SW Paducah 1/1/2006 12/31/2012 2532 1.03 0.04 130 1.01 0.12 25.8 1.03 0.18 7.6 1.12 0.56 1.71 2817 2885

50 2E Pampa 1/1/2006 12/31/2012 2542 0.99 0.03 83 0.97 0.10 18.8 0.98 0.15 5.8 1.06 0.52 1.39 2554 2523

53 3N Plains 1/1/2006 12/31/2012 2503 1.03 0.03 108 1.01 0.10 21.3 1.03 0.15 6.4 1.11 0.52 1.52 2838 2908

54 1S Plainview 1/1/2006 12/31/2012 2552 1.11 0.05 294 1.09 0.10 32.7 1.10 0.14 8.2 1.19 0.53 1.57 2538 2807

55 1NE Post 1/1/2006 12/31/2012 2543 1.05 0.04 165 1.03 0.12 29.4 1.05 0.17 8.0 1.14 0.55 1.73 2765 2894

57 1SE Ralls 1/1/2006 12/31/2012 2553 1.04 0.04 134 1.03 0.10 23.7 1.04 0.16 6.7 1.13 0.55 1.52 2719 2814

58 12W Lubbock (Reese) 1/1/2006 12/31/2012 2553 1.00 0.05 128 0.99 0.10 23.0 1.01 0.15 6.7 1.09 0.53 1.57 2866 2861

61 1SW Seagraves 1/1/2006 12/31/2012 2388 1.10 0.05 249 1.11 0.16 31.1 1.11 0.22 8.1 1.19 0.60 1.74 2688 2919

62 2NNE Seminole 1/1/2006 12/31/2012 2505 1.05 0.03 150 1.04 0.09 22.4 1.05 0.14 6.3 1.12 0.52 1.44 2791 2925

63 3NW Seymour 1/1/2006 12/31/2012 1150 1.09 0.04 179 1.09 0.09 20.0 1.11 0.14 5.4 1.17 0.38 1.60 2705 2977

64 7ESE Silverton  1/1/2006 12/31/2012 2539 0.95 0.05 185 0.94 0.12 27.3 0.95 0.17 8.0 1.06 0.61 1.82 2737 2602

65 2NE Slaton 1/1/2006 12/31/2012 2551 1.02 0.04 97 1.00 0.11 23.0 1.02 0.16 6.9 1.11 0.54 1.65 2817 2856

66 3E Snyder 1/1/2006 12/31/2012 2545 0.97 0.04 131 0.96 0.09 20.5 0.97 0.14 6.5 1.04 0.47 1.54 2895 2808

67 1W Spur 1/1/2006 12/31/2012 2547 1.17 0.05 428 1.16 0.13 45.7 1.17 0.18 11.2 1.24 0.51 1.98 2435 2848

70 8WSW Sundown 1/1/2006 12/31/2012 2546 1.01 0.03 77 1.00 0.11 24.3 1.01 0.15 6.9 1.09 0.51 1.56 2887 2924

71 3NNE Tahoka 1/1/2006 12/31/2012 2549 0.96 0.04 140 0.95 0.11 25.3 0.97 0.16 7.3 1.05 0.53 1.68 2852 2749

73 2ENE Tulia 1/1/2006 12/31/2012 2551 1.01 0.05 126 0.99 0.12 24.8 1.01 0.16 7.2 1.11 0.58 1.64 2723 2748

74 2WSW Turkey 1/1/2006 12/31/2012 2221 0.89 0.07 262 0.89 0.13 32.1 0.90 0.19 9.2 0.98 0.47 2.05 2837 2554

76 1E Wall 1/1/2006 12/31/2012 1146 1.07 0.05 152 1.08 0.08 17.4 1.10 0.15 4.9 1.15 0.38 1.55 2897 3101

79 6SSW Wolfforth 1/1/2006 12/31/2012 2547 0.97 0.03 136 0.96 0.11 26.5 0.97 0.16 7.5 1.04 0.47 1.67 2872 2772

80 SCAN_BUSHLAND 1/1/2006 12/31/2012 1439 0.86 0.12 414 0.92 0.41 53.6 0.97 0.68 16.3 1.20 1.59 4.41 3133 2784

81 SCAN_PRAIRIE_VIEW 1/1/2006 12/31/2012 2375 0.98 0.22 444 0.98 0.33 58.0 1.00 0.42 15.5 1.13 0.90 2.96 2267 2200

Average 2324 1.03 0.05 175 1.02 0.12 27.1 1.03 0.18 7.5 1.11 0.54 1.72 2747 2811
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Figure 7. Frequency of cloud-free scenes per year within climate division of the High Plains (1), Edwards Plateau and 
Rolling Plains (2), North Texas (3), East Texas (4), the Rio Grande and southern Coastal Plain (5), and state-wide.  
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Figure 8. Probability of successful ET across Texas for a complete growing season for any particular year based on 
the requirement of at least one cloud free image every 32 days using (a) 1 satellite with a 16 day return cycle, (b) 2 
satellites with an 8 day return cycle, for a fixed growing season from April 1st - October 31st. 
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Figure 9. Probability of successful ET across Texas for a complete growing season based on the requirement of at 
least based one cloud free image every 32 days using (a) 1 satellite with a 16 day return cycle, (b) 2 satellites with an 
8 day return cycle, for a variable growing season. 
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Figure 10. State-wide root mean square error (RMSE, mm d-1) for each of 6 PPT products.  

 

 

 

Figure 11. State-wide precipitation accuracy index (PAI) for each of 6 PPT products. 
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Figure 12. Precipitation accuracy index (PAI) by monitoring network for all 6 PPT products.  
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Figure 13. Daily, monthly, and annual ETr between a ‘good’ Abernathy monitoring stations and collocated 4km NLDAS 
forcing data (2006-2012).  
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6 Feasibility Pilot Study: county ET implementation   

A State-wide program requires that irrigation water use be accumulated annually, per county for all the 

major agriculture regions of Texas which range from humid, cloudy regions of the Coastal Plains to arid 

west Texas. The feasibility of using remotely sensed ET data has some advantages over current IWUE but 

requires significant data processing, interpretation and overall logistics to implement. To evaluate these 

logistics of operationalizing such a program for Texas, we designed a pilot study loosely based on the 

Nevada State Engineer, Division of Water Resources Program developed by DRI co-Investigators. 

Following our TWDB workshop and discussions with TWDB staff, we chose eight counties (Figure 14) 

covering a range of agricultural and climatological challenges across Texas. These counties include four in 

the High Plains (Carson, Dawson, Hale, and Ochiltree) predominantly growing cotton and winter wheat; 

two counties in the Coastal Plain (Brazos and Wharton) growing corn, cotton and rice; Cameron County in 

the lower Rio Grande Valley growing cotton and sorghum; and Medina County in the Winter Garden 

region growing a full mix of crops. For simplicity, these counties are along similar Landsat paths and 

generally within a single Landsat scene. For each county, we derive an annual METRIC-based ET and NIWR 

estimated for 2010 and 2011 growing seasons with NLDAS-derived ETr, and PPT. Our pilot study years 

cover two climatically different yet adjacent years; one wet and one dry. 

We developed and tested a time integration workflow that relied on ETrF derived from Landsat into net 

ET totals summarized in section 6.1. Section 6.2 employs the ET Demands model to determine the upper 

limit of potential NIWR. The model has heritage traced to FAO-56 ETc and dual crop coefficient approach, 

with the source code is also readily available at DRI (Huntington et al., 2015; Huntington and Allen, 2015). 

Lastly, Section 6.3 presents Irrigation Water Use Estimates (IWUE) from TWDB for these counties and the 

TWDB Metering Data for specific crops during both years. We provide direct comparisons between our 

remote sensing, survey and metered data estimates of annual irrigation water use (i.e. NIWR).  

6.1 Results: actual ET from Remote Sensing for 2010 and 2011 

Our preliminary feasibility study results outlined in Section 5 were used to direct this pilot study, 

implementing a remotely-based irrigation water use estimate in eight counties using both the actual 

(METRIC) and potential (ET Demands) irrigation water use for two climatically diverse years. Locations 

were further selected to minimize the total number of scenes required to produce county-wide estimates. 

A satellite image is instantaneous in time. As a satellite descends along its path, the on-ground times are 

very similar between adjacent scenes. However, the satellite must complete an entire earth orbit before 

beginning the next path. Thus, counties contained within the same path (i.e. column) can be processed at 

essentially the same time step; while a county covering two or more paths (i.e. rows) requires processing 

steps to sync timing and merge images. This effort is factored into our estimate for state-wide 

implementation but is beyond the current scope of this pilot study. In-house experience with METRIC at 

DRI, its broad application among practitioners and researchers along with the adoption by state and 

federal courts, and the availability of automated software makes METRIC an obvious choice for a Level 3 

accuracy ET product potentially feasible for Texas.  

METRIC was implemented using the processing outlined by Morton et al. [2013] and illustrated in Figure 

15. Clouds were automatically screened using the F-MASK algorithm [Zhu and Woodcock, 2012]. METRIC 
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was calibrated using a Monte-Carlo approach of 10 different runs in an automated framework and the 

selection of the hot and cold pixel was varied based on best candidate pixels. The median was computed 

to produce the ETrF map for each Landsat scene.  

All cropland and ET results from our pilot study are presented in Appendix D through H. Pixels within each 

county were extracted from all available Landsat (5/7) imagery, then masked to exclude non-agricultural 

areas based on the CDL (see Appendix D). Cloud free pixels were used to derive ETrF maps of croplands in 

each scene with the annual means are presented in Appendix E. These maps were scaled to time 

synchronous ETr derived from NLDAS and integrated daily and summed to annual ET maps (Appendix F). 

Lastly, the derived annual ET estimates, per-pixel cloud free scene counts were computed for each county 

study area are illustrated in Appendix G.  

METRIC ET results (Appendix H) illustrate the large variability within each county, between crop types, 

and amongst years. For example, cotton in Brazos County consumed 39.6 inches of actual ET in 2010 and 

57.7 inches in 2011. In Dawson County, cotton ET consumed 33.8 inches in 2010 and 47.8 inches in 2011. 

Borrelli et al. [1998] presented mean crop consumptive use values for cotton of 26.9 inches the Upper 

Coast and 36.2 inches in the High Plains. Our values are similar for 2010 which was closer to an average 

year; however, 2011 was far from average resulting is much higher ETr resulting from the aridity brought 

on by drought conditions. This further highlights the need to produce annual data as means are seldom 

the case.    

The annual per county totals are presented in Figure 16 including annual ET from METRIC, precipitation 

from NLDAS, ETr calculated from NLDAS, and NIWR. METRIC ET ranged from 40 inches in Hale to nearly 

70 inches in Wharton in 2010 and was similar to 2011, except for Brazos County. On the other hand, PPT 

was much lower in 2011 with only fractions of rainfall in all counties. Drought results in anonymously high 

ETr due to increased solar radiation, higher Ta, and lower humidity. In 2010, ETr ranged between 80 and 

100 inches while increasing in 2011 to nearly 120 inches. We derive NIWR by subtracting ET from 

precipitation. For 2010, most counties consumed 20 inches with Ochiltree and Wharton higher. By 2011, 

NIWR doubled to nearly 40 inches across all counties. Regardless of drought, 40 inches is a lot of irrigation 

and perhaps an artifact of NLDAS ETr, used for time integration between satellite images. Furthermore, 

when scaled by CDL acreage, the volumes of applied irrigation can quickly exceed 1 maf. Thus, the NIWR 

is very sensitive to both ETr and CDL acreage as our results will demonstrate.  

Next, we evaluate the per-pixel cloud free Landsat scene counts for each county study area (Appendix G) 

was used. As previously mentioned, at least one cloud-free scene is required per month to adequately 

perform time integration of ETrF. For both years, pilot study counties in the High Plains (Carson, Hale and 

Ochiltree) and Winter Garden (Medina) satisfy this criteria with ~10 – 24 cloud free scenes per year. 

Coastal and southern counties (Brazos, Cameron and Wharton) generally do not in 2010 while 2011 

produced better results for Brazos County. Given more time and resources, a fusion-based (Group D) 

algorithm such as STARFM would be preferred but was infeasible without additional software 

development. For actual implementation, a satellite fusion method should be considered for areas with 

higher probabilities of cloud cover.  
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6.2 Results: ET Demands Model 

The complete results by county and year are presented in Appendix I. The ET Demand NIWR can be 

considered the upper boundary since the model essentially maintains an equilibrium between root zone 

soil moisture and atmospheric demand for water through irrigation. Figure 17 compares the annual 

METRIC net ET to the ET-Demands derived NIWR across all crops and acreage for both 2010 and 2011. For 

both years and nearly all counties, METRIC net ET from was correlated with ET Demands NIWR and 

consistently greater than METRIC. This is to be expected since ET Demands assumes well-watered, optimal 

conditions while the reality has more stress and deficit irrigation that Landsat can measure. Interestingly, 

2011 has a slope of 1.11 implying that net ET was ~90% of maximum. However, 2010 has a much greater 

slope (2.15) using less than 50% of the maximum potential NIWR. These results indicate the ET Demands 

model would provide a suitable upper bounds for maximum potential irrigation water while METRIC 

would provide a more conservative (and likely realistic) actual irrigation water use estimate. For water 

planning, the ET Demands might suffice and it requires significantly less time and technical expertise, but 

only reflects optimal conditions, and not the actual ET that occurs due to water limitations and crop stress, 

nor can it account for crop failure.  

6.3 Irrigation Water Use Estimates and Metering Data 

For further comparison, we extracted the Irrigation Water Use Estimates (IWUE) for 2010 and 2011 for 

each of our eight selected counties (http://www.twdb.texas.gov/waterplanning/waterusesurvey/ 

estimates/index.asp). The annual irrigation totals are presented in Table 13 and Figure 18. Generally, 2011 

used nearly twice the irrigation (1.8 maf) as 2010 (0.9 maf) over these counties. Brazos County had the 

lowest increase (19%) in 2011 while Cameron, Dawson, and Medina all increased over 100%. Counties 

were predominantly irrigated from groundwater in the north, and surface water in the south. Cameron, 

in particular, is solely on surface water irrigation while Wharton has a more even split. The goal of a state-

wide remotely sensed ET program would be to reproduce IWUE using an ET algorithm which relies solely 

on satellite and meteorological data.  

The irrigation metering program in Texas differs from most states’ in that participation is voluntary [Turner 

et al., 2011]. Beginning in 1998, the metering program has evolved to cover 16 groundwater conservation 

districts (Figure 19). The High Plains are represented by the Panhandle, North Plains, Mesa, Hudspeth and 

Culberson GCDs – all of which began metering prior to 2005. The Winter Gardens area is represented by 

Uvalde, Medina and Evergreen (also pre-2005) while the Coastal Plains have active metering in the Lower 

Neches Valley and Coastal Bend (pre-2005). Metering data obtained from TWDB was pulled from files and 

reports, and summarized in Table 14. In general, the area weighted cumulative metering data is 50% less 

than our estimations from METRIC (Figure 20). Direct comparison is difficult: the acreage of metering is 

small, many of the meters do not contain comparable CDL crops, or the crop is mixed. In particular, alfalfa 

NIWR is much lower at all metering sites (4-41 inches) compared to 34-100 inches from METRIC.  Clearly, 

there is a need for both expansion and standardization of the metering program would benefit water 

conservation State-wide and validation for crop-specific ET estimates from satellite data.  

 
multi-cropping in Medina  

http://www.twdb.texas.gov/waterplanning/waterusesurvey/%20estimates/index.asp
http://www.twdb.texas.gov/waterplanning/waterusesurvey/%20estimates/index.asp
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6.4 Pilot study results: a county-by-county summary 

At the county level, both METRIC and the ET Demands model are producing greater net ET and NIWR 

volumes than either the IWUE or metering program data (Figure 21, Table 15). We note that the CDL 

classified a large amount of acreage with substantial ET exceeding PPT as Fallow/Idle Crops (Number 61). 

Data from the FSA (link) compares favorably with the CDL (Table 15) in 2011. The FSA reports total planted 

acres as 1,780 million compared to 1,766 million (excluding fallow) in the CDL over our eight counties. 

Conversely in 2010, FSA reports 3,213 million acres verse the CDL total of 1,741 million acres. 

Unfortunately, the FSA cannot provide spatial reference for their acreage nor can we differentiate 

irrigated parcels so direct comparisons are not possible between these numbers and our METRIC analysis 

which uses CDL crop mask to total NIWR per county.  We do present METRIC results with and without 

(METRIC*) fallow crops ET contribution (Table 15) since it is unclear why there is discrepancy between 

CDL and FSA data. Regardless, the IWUE were considerably lower than METRIC. In particular for 2011, 

both METRIC and METRIC* were 300% higher than IWUE. In general, only a few counties were comparable 

and only in 2010. For example, Wharton had nearly 1,000,000 acres of fallow land in both years resulting 

in an extremely large METRIC NIWR. Since the crop ET values seem reasonable, it must be the scaling to 

irrigated acreage that causes the NIWR to escalate. Such issues are unavoidable and difficult to reconcile 

without maps of irrigated lands. Such areas may be abandoned or simply classification errors. For now, 

we simply present our results with and without (*) CDL fallow idle crop land and provide a complete 

summary of each county briefly here including annual cropping patterns (see Appendix J).  

Brazos County was the lowest irrigator using <45,000 ac-ft in either year, switching from a mix of water 

sources to solely groundwater in 2011 (Table 13). Total cropped acreage was 24,663 in 2010 increasing to 

70,361 acres in 2011 (Appendix H). Of the pilot counties, Brazos also had the lowest agricultural footprint 

with crops concentrated along its western border (Appendix D). In both years, cotton and corn were the 

dominant crops (Append J). Brazos County is in the >1000 mm precipitation class and climate zone 4. Our 

pilot study notes the following:  

 Sufficient cloud-free images were available for 2011; very limited for 2010 

 METRIC estimates of corn ET: 37.2 in (2010) and 61.0 in (2011) 

 METRIC estimates cotton ET: 39.6 in (2010) and 57.7 in (2011)  

 Pecan ET was anomalously high: 72.8 in (2010) and 70.2 in (2011) but acreage was very low: 31 

ac (2010) and <1 ac (2011) 

 MAP was 29.5in (2010) and 20.3in (2011) 

 All methods produced similar irrigation estimates ranging from 18,000-35,500 ac-ft in 2010 to 

42,000-118,000 ac-ft in 2011 

 Irrigation doubled from 2010 to 2011 

Despite the lack of cloud-free pixel in 2010, METRIC and ET Demands both produced values comparable 

to TWDB’s IWUE.  

Cameron County relies solely on surface water from the Rio Grande consuming 255,000 ac-ft in 2010 and 

537,217ac-ft in 2011 (Table 13). Cropped acreage dropped from 204,510 ac in 2010 to 156,962 ac in 2011.  

https://www.fsa.usda.gov/news-room/efoia/electronic-reading-room/frequently-requested-information/crop-acreage-data/index
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The crops were predominantly sorghum and cotton. Cameron County is in the 600-800 mm precipitation 

class and climate zone 5. We note the following: 

 Insufficient in cloud-free imagery for both years; thus actual ET was constrained mostly to the 

time integrated ETr data 

 METRIC estimates for Sorghum ET: 48.3 in (2010) and 45.1 in (2011) 

 METRIC estimates for cotton ET: 44.4in (2010) and 37.2 in (2011) 

 Sugarcane ET was anomalously high: 60.8in (2010) and 75.5 in (2011) on roughly 6,000 acreages 

 MAP was 34.8in (2010) and 17.7 in (2011) 

 Total irrigation water use from METRIC was comparable to IWUE at 248,000 ac-ft in 2010 and but 

lower for 2011 at 365,000 ac-ft 

Cameron was the only county with higher irrigation water use estimate from IWUE (Figure 21). Despite 

the 2011 drought, actual ET was lower in 2011, but net usage was higher from the lack of offsetting 

precipitation. Moreover, cloud-free pixels were problematic in both years. Nonetheless, all methods 

produced highly consistent irrigation water use estimates.  

Carson County relies primarily on groundwater for irrigation consuming 60,000 ac-ft in 2010 and 96,000 

ac-ft in 2011 (Table 13). Cropped acreage was ~200,000 ac for both years consisting primarily of winter 

wheat and cotton. Carson County is in the 400-600 mm precipitation class and climate zone 1. We note 

the following: 

 Sufficient in cloud-free imagery for both years 

 Clear omission of center-pivot irrigation in the CDL for both years (see appendix E) 

 METRIC estimates for winter wheat ET: 38.5 in (2010) and 42.1 in (2011) 

 METRIC estimates for cotton ET: 37.3 in (2010) and 48.1 in (2011) 

 Alfalfa ET was anomalously high: 63.7 in (2010) and 81.7 in (2011) but on small acreages of 400 

and 200, respectively 

 MAP was 27.5 in (2010) and 8.9 in (2011) – very hard hit by the drought 

 Winter wheat irrigation from metering data (Table 14) was 10.9 in (2010) and 37.9 in (2011) 

 Cotton irrigation from metering data Is considerably lower at 13.9 in (2010) and 39.0 in (2011) 

 Net ET from METRIC was considerably higher than IWUE which was 200,000 ac-ft in 2010, 

reaching 600,000ac-ft in 2011 

METRIC net ET was several times greater than IWUE irrigation data despite the omission of obvious center-

pivot systems in the southeastern corner and center of Carson County. The ETrF maps (Appendix F) neglect 

these areas from the METRIC net ET. The total cropped acreage in the CDL did not change much between 

years despite significant drought conditions. Fallow/Idle croplands were actually greater in 2010 (31,648 

ac) than in 2011 (21,493 ac). The modest increase in irrigation reported in the IWUE despite the drought 

suggests a lot of land went fallow. However, METRIC suggests a significant amount of continued irrigation. 

Metered data are comparable to METRIC net ET.  

Dawson County relies solely on groundwater consuming 79,000 ac-ft in 2010 and 158,000 ac-ft in 2011 

(Table 13). Cropped acreage dropped modestly from 390,800 ac in 2010 to 376,103 ac in 2011. Cotton is 
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the dominant crop. Dawson County is also in the 400-600 mm precipitation class on the border of climate 

zones 1 and 2. We note the following: 

 Sufficient in cloud-free imagery for both years 

 METRIC estimates of ET for Cotton: 38.3 in (2010) and 43.2 in (2011) 

 MAP was 24.5 in (2010) and 4.6 in (2011) – extremely hard hit by the drought  

 Cotton irrigation from metering data was considerably higher at 39.5 in (2010), not reported in 

2011 

 Alfalfa ET was anomalously high: 75.1in on 1200 ac in 2010 and 101 in on 400 ac in 2011 

 Net ET from METRIC was considerably higher than IWUE, which was 478,000 ac-ft in 2010 and 

reaching 1,370,000 ac-ft in 2011   

Unlike Carson County, center pivot systems were included in CDL of cropped acreage. However, the 

METRIC net ET is extremely high. We believe much of this cotton may be rain fed which cannot be omitted 

without an ‘irrigated lands’ mask. However, ET greatly exceeded rainfall suggesting irrigation (or 

significant bare soil evaporation) was present plus some bias in ETr used in time integration.       

Hale County relies primarily on groundwater consuming 219,525 ac-ft in 2010 and 389,173 ac-ft in 2011 

(Table 13). Cropped acreage increased modestly from 406,698 ac in 2010 to 416,842 ac in 2011. Cotton is 

the dominant crop and lesser amounts of winter wheat and corn. Hale County is also in the 400-600 mm 

precipitation class in climate zones 1. We note the following: 

 Sufficient in cloud-free imagery for both years 

 METRIC estimates for cotton ET: 38.0 in (2010) and 48.2 in (2011) 

 METRIC estimates for corn ET: 49.6 in (2010) and 67.3 in (2011) 

 MAP was 24.8 in (2010) and 6.4 in (2011) – also hard hit by the drought; 

 Cotton irrigation from metering data was 13.3 in (2010) and 18.3 in (2011) 

 Corn irrigation from metering data was 16.1 in (2010) and 24.5 in (2011) 

 Net ET from METRIC was considerably higher than the IWUE for both 2010 and 2011 at 1,350,000 

ac-ft in and 1,720,000 ac-ft, respectively.   

METRIC net ET was nearly an order of magnitude greater than IWUE. The total cropped acreage in the 

CDL did increased 300,000 ac between years despite significant drought conditions yet CDL Fallow/Idle 

croplands were insignificant in both years. Again, the 2011 drought resulted in a substantial increase in 

the estimated irrigation according to the IWUE despite a significant amount of failed crop acres in the 

county. However, METRIC suggests a significant amount of continued ET (i.e. irrigation continued well into 

the drought). 

Medina County relies on both surface and groundwater consuming 49,006 ac-ft in 2010 and 99,120 ac-ft 

in 2011 (Table 13). Cropped acreage decreased modestly from 114,139 ac in 2010 to 108,675 ac in 2011. 

Cropping is a mix of corn, sorghum, winter wheat and cotton; however, cotton was predominant in 2011. 

Medina County is in the ~600 mm precipitation class in climate zone 3 on the border with zone 5. We note 

the following: 

 Sufficient in cloud-free imagery for both years 
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 METRIC estimates for cotton ET: 46.3 in (2010) and 47.5 in (2011) 

 METRIC estimates for corn ET: 38.7 in (2010) and 52.6 in (2011) 

 MAP was 30.2 in (2010) and 14.1 in (2011) 

 Net ET from METRIC was higher than the IWUE for both 2010 and 2011 at 146,000 ac-ft in 2010 

and 278,000 ac-ft, respectively 

METRIC net ET was several times greater than IWUE but within reasonable values. Fallow/Idle croplands 

were insignificant in both years. Despite the complexity and multi-cropping in Medina, METRIC performed 

well; the ET Demands models NIWR were much higher, as expected.   

Ochiltree County relies solely on groundwater consuming 60,484 ac-ft in 2010 and 109,671 ac-ft in 2011 

(Table 13). Cropped acreage was 289,040 ac in 2010 and 291,618 ac in 2011. Winter wheat and sorghum 

were the dominant crops in both years. Ochiltree County is in the 400-600 mm precipitation class in 

climate zone 1. We found the following: 

 Sufficient in cloud-free imagery for both years 

 METRIC estimates for winter wheat ET: 45.6 in (2010) and 46.6 in (2011) 

 METRIC estimates for sorghum ET: 47.6 in (2010) and 42.7 in (2011) 

 Corn ET was anomalously high: 61.0 in (2010) and 73.8 in (2011) on over 2,000ac 

 MAP was 28.2 in (2010) and 9.4 in (2011) 

 Net ET from METRIC was significantly higher than the IWUE for both 2010 and 2011 at 452,828 

ac-ft in 2010 and 946,951 ac-ft, respectively 

METRIC net ET was nearly an order of magnitude greater than IWUE. Fallow/Idle croplands were very 

small in both years of the CDL. Much like the other High Plains counties (Carson, Dawson, and Hale), 

designating irrigated from rain-fed agriculture might significantly lower irrigation water use estimates. 

However, the data suggests ET greatly exceeding available precipitation.     

Wharton County relies on an even split between surface and groundwater consuming 234,000 ac-ft in 

2010 and 371,254 ac-ft in 2011 (Table 13). Cropped acreage was 444,626 ac in 2010 to 457,308 ac in 2011.  

Corn, cotton, and rice were the dominant crops. Wharton County is in the >1000 mm precipitation class 

in climate zones 4. We found the following: 

 Marginal (7-9 scene counts) cloud-free imagery for both years 

 METRIC estimates for corn ET: 44.5 in (2010) and 47.7 in (2011) 

 METRIC estimates for cotton ET: 36.2 in (2010) and 42.8 in (2011) 

 METRIC estimates for rice ET: 52.9 in (2010) and 76.4 in (2011) 

 MAP was 41.9 in (2010) and 17.5 in (2011) 

 Corn irrigation from metering data was 15.9in (2010) 

 Cotton irrigation  from metering data was 11.2 (2010) 

 Rice irrigation  from metering data was 21.8 (2010) 

 Net ET from METRIC was similar to IWUE in 2010 at 254,329 ac-ft; however, 2011 reached 

1,450,000 ac-ft 
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The total cropped acreage in the CDL was similar between years at 450,000 ac; however, fallow/Idle 

croplands was 209,000 ac in 2010 and 213,000 ac in 2011 – nearly 50% of the total cropped lands. These 

idle lands also had a significant net ET of 207,543 ac-ft in 2010 and 748,498 ac-ft in 2011 – essentially the 

largest water consumer in both years. Thus, the CDL designation fallow land is questionable. Metering 

data per crop was higher than with METRIC net ET for 2010; no data was available for 2011. The lack of 

cloud-free image and questionable CDL data make Wharton particularly challenging in our pilot study.  

Overall, the pilot study results indicate a good correspondence between crop-specific ET from METRIC, 

metered data and expected values from Borelli et al [1998]. Note, that the ET algorithms do not require 

crop type, unlike a crop model such as ET Demands. Time integration using gridded data sets such NLDAS 

to generate ETr may suffice in many areas of Texas although, METRIC ET and net ET results are likely bias 

high due to NLDAS ETr being biased high. Cloud contamination east of the Balcones Escarpment may 

require some MODIS/Landsat fusion-based algorithm to refine net ET. More importantly for upscaling 

pixels to county estimates, the CDL needs refined beyond simply separating croplands from native 

vegetation – irrigated lands need to be delineated.  

Texas has less dichotomy between rain-fed and irrigated agriculture. The CDL, which uses satellite multi-

spectral data, could be locally refined either using additional remotely sensing data or manual mapping 

of irrigated lands. Regardless, ET greatly exceeded PPT in much of the High Plains resulting in a METRIC-

derived net ET that was excessively large often greater than 1 maf per county. Center pivot irrigation is 

generally easy to identify in arid, irrigated lands of the west. Surprisingly, the CDL missed several center 

pivots in Carson County but this would only have increased the net ET which was already too high.  

Counties with substantially lower percentages of agriculture (Brazos, Cameron, Medina, and perhaps 

Wharton) seemed most comparable to IWUE while regions of predominantly agriculture (Carson, Dawson, 

Hale and Ochiltree) may simply over-estimate irrigated acreage. Lastly, this pilot study was to assess 

feasibility highlighting the need for rigorous QA and operator experience which was not possible given 

our resources for the pilot study.  Further refinement is obviously required but beyond the scope of this 

report. It does allow us a baseline to assess implementation as we will outline in the next sections.        
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Table 13. Irrigation water use estimates for 2010 and 2011. All volumes are in acre-feet. 

County Year Irrigation 

Irrigation 

Ground 

Water 

Irrigation 

Surface 

Water Year Irrigation 

Irrigation 

Ground 

Water 

Irrigation 

Surface 

Water 

BRAZOS 2010 35,541 31,834 3,707 2011 42,402 38,700 3,702 

CAMERON 2010 255,000 0 255,000 2011 537,217 0 537,217 

CARSON 2010 60,069 59,823 246 2011 95,956 95,956 0 

DAWSON 2010 78,974 78,974 0 2011 158,441 158,441 0 

HALE 2010 219,643 219,525 118 2011 389,173 389,019 154 

MEDINA 2010 49,006 33,903 15,103 2011 99,120 60,046 39,074 

OCHILTREE 2010 60,484 60,484 0 2011 109,671 109,671 0 

WHARTON 2010 234,003 118,336 115,667 2011 371,254 181,384 189,870 
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Table 14. Annual county irrigation estimates based on metering data by crop.  

 

Source County Year N

Crop 

Acreage

Metered 

Amount

Metered 

Units

Meter 

Irrigation 

(in) CDL Crop

Metric 

net ET (in)

Coastal Bend Wharton 2010 5 676 3144 inches 4.7 Alfalfa NA

GCD Wharton 2010 10 1974 9228 inches 4.7 Corn 15.90

Wharton 2010 2 397 1307 inches 3.3 Cotton 11.20

Wharton 2010 28 2495 31350 inches 12.6 Aquaculture 2.5

Wharton 2010 42 7081 131071 inches 18.5 Rice 21.80

2010 87 12623 176101 inches 14.0 Total 6.47

Mesa GCD Dawson 2010 2 234 1.29E+08 Gal. 20.2 Alfalfa 50.39

Dawson 2010 109 11998 3.97E+09 Gal. 12.2 Cotton 39.46

Dawson 2010 32 3969 1.69E+09 Gal. 15.6 Mixed 36.43

Dawson 2010 6 598 2.61E+08 Gal. 16.1 Other 29.30

Dawson 2010 1 120 2.83E+07 Gal. 8.7 Sorghum 26.07

Dawson 2010 6 720 1.23E+08 Gal. 6.3 Wheat 19.28

2010 156 17639 6.20E+09 Gal. 12.9 Total 28.47

Mesa GCD Dawson 2011 4 253 2.81E+08 Gal. 41.0 Alfalfa 101.24

Dawson 2011 113 12471 7.74E+09 Gal. 22.9 Corn 61.98

Dawson 2011 3 360 2.21E+08 Gal. 22.6 Mixed 57.10

120 13084 8.25E+09 23.2 Total 66.97

Panhandle  Carson 2010 9 2813 5.99E+08 Gal. 7.8 Alfalfa 34.41

GCD Carson 2010 39 8004 2.27E+09 Gal. 10.5 Corn 26.68

Carson 2010 32 5767 1.14E+09 Gal. 7.2 Cotton 13.93

Carson 2010 47 17802 3.65E+09 Gal. 7.6 Mixed NA

Carson 2010 14 3590 6.84E+08 Gal. 7.0 ?

Carson 2010 6 2149 3.70E+08 Gal. 6.3 Sorghum 9.46

Carson 2010 18 4920 1.38E+09 Gal. 10.3 Wheat 10.93

2010 165 45045 1.01E+10 Gal. 8.2 Total 16.82

Panhandle  Carson 2011 10 3123 4153 ac/ft 16.0 Alfalfa 73.21

GCD Carson 2011 33 6890 7236 ac/ft 12.6 Corn 60.62

Carson 2011 52 12173 13665 ac/ft 13.5 Cotton 39.04

Carson 2011 47 18194 21796 ac/ft 14.4 Mixed NA

Carson 2011 7 1784 1507 ac/ft 10.1 Sorghum 28.34

Carson 2011 17 3948 8532 ac/ft 25.9 Wheat 37.86

2011 166 46112 56888 ac/ft 14.8 Total 45.13

TAWC Hale/Floyd 2010 7 1577 9664 Inches 6.1 Alfalfa 39.10

Hale/Floyd 2010 4 361 5830 Inches 16.1 Corn 24.56

Hale/Floyd 2010 2 154 731 Inches 4.7 Cotton 13.34

Hale/Floyd 2010 11 1414 14582 Inches 10.3 Mixed

2010 24 3507 30808 Inches 8.8 Total 21.60

TAWC Hale/Floyd 2011 5 824 15982 Inches 19.4 Alfalfa 74.44

Hale/Floyd 2011 2 140 3430 Inches 24.5 Corn 60.87

Hale/Floyd 2011 6 629 11478 Inches 18.3 Cotton 41.87

Hale/Floyd 2011 13 2012 43407 Inches 21.6 Mixed NA

2011 26 3605 74298 Inches 20.6 Total 56.60
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Table 15. Annual county-wide irrigation totals (acre feet) based on both FSA and CDL cropped acres with and without 
(*) fallow/idle land.  

County   Year  

 FSA 
Planted 

Acres   

 FSA 
Failed 
Acres  

 Acres 
(CDL)  

 Acres* 
(CDL)  

 IWUE  
(ac-ft)  

 METRIC 
ET (ac-ft)  

 METRIC 
ET* (ac-ft)  

 ET 
Demands  

 BRAZOS  2010 94,592 - 24,663 20,676 35,541 21,047 18,056 48,066 

CAMERON  2010 232,250 802 206,713 192,374 255,000 247,790 215,644 414,963 

 CARSON  2010 546,156 3,950 204,510 172,862 60,069 199,380 192,041 508,076 

 DAWSON  2010 567,516 7,483 390,800 383,207 78,974 478,361 467,397 1,161,363 

 HALE  2010 579,365 28,341 406,698 396,297 219,643 512,061 500,917 1,088,518 

 MEDINA  2010 160,456 56 114,139 96,483 49,006 146,341 111,856 207,039 

OCHILTREE  2010 486,214 2,691 289,040 243,857 60,484 452,828 411,568 654,782 

WHARTON  2010 546,680 1,579 444,626 235,379 234,003 254,329 46,788 324,778 

 SUM  

 
3,213,229 44,901 2,081,190 1,741,134 992,720 2,312,136 1,964,267 4,407,585 

 County   Year  

 FSA 
Planted 

Acres   

 FSA 
Failed 
Acres  

 Acres 
(CDL)  

 Acres* 
(CDL)  

 IWUE  
(ac-ft)  

 METRIC 
ET (ac-ft)  

 METRIC 
ET* (ac-ft)  

 ET 
Demands  

 BRAZOS  2011       47,067             264        70,361        69,735        42,402     118,073     115,866        90,666  

CAMERON  2011     189,595          8,369      156,962      156,532      537,217      365,727      364,402      408,443  

 CARSON  2011    231,708        26,164      202,568      181,076        95,956      601,211      554,279      700,503  

 DAWSON  2011     220,000     301,437      376,103      371,856      158,441   1,369,920   1,344,754   1,773,593  

 HALE  2011     394,624      165,485      416,842      410,911      389,173   1,502,822   1,486,980   1,510,286  

 MEDINA  2011     101,821          9,518      108,675        85,274        99,120      278,010      229,110      262,105  

OCHILTREE  2011     302,492        10,076      291,618      246,573      109,671      946,957      829,360      867,420  

WHARTON  2011     292,805       12,717      457,308      244,270      371,254   1,454,605      706,107      564,545  

 SUM  

 
1,780,113 534,031 2,080,438 1,766,227 1,803,234 6,637,323 5,630,858 6,177,560 
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Figure 14. Eight counties selected to maximize different climatologies and inherent challenges to satellite-based ET 
estimates across Texas while minimizing the number of satellite paths.  
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Figure 15. Automated METRIC workflow from Morton et al., (2013). The dashed boxes represent Monte Carlo 
processes to interactively find the hot and cold calibration pixels that generate the ETrF map.  
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Figure 16. Summary of METRIC annual results per county with ET averaged over all croplands, annual precipitation 
from NLDAS, annual ETr and annual NIWR (ET-PPT). 
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Figure 17. Correlation between net ET derived from METRIC and the NIWR form the ET Demands model for 2010 
and 2011.  

 

 

 

 

Figure 18. Irrigation Water Use Estimates (acre-feet) for 2010 and 2011.  
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Figure 19. Entities participating in TWDB's Metering Program. The 5 pilot study counties overlap program 
participants including the Panhandle GCD (Carson), Mesa UWCD (Dawson), High Plains UWCD (Hale), Medina County 
GCD (Medina, not in 2010-2011), and Coastal Bend GCD (Wharton).  
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Figure 20. NIWR measured by irrigation meters in collocated counties and crops paired with pilot study METRIC 
NIWR results.  

 

Figure 21. Annual irrigation totals (acre feet) for 2010 and 2011 per county from the TWDB irrigation water use 
estimates (IWUE), net ET from METRIC, and NIWR from the ET Demands model.   
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7 Conclusions 

This report illustrates that remotely sensed ET is feasible for Texas. With confidence, we believe the 

algorithms are valid, the results are reasonable (but currently biased high), and the data requirements 

(imagery, gridded data, etc.) can be met. However, it will take commitment from the State, effort from 

staff and collaboration with researchers to implement. All regions of the State will pose a unique challenge 

from clouds to crop classification. We assessed many state-of-the-science algorithms and implemented 

one in our pilot study. Though complicated and challenging, many of these methods are becoming 

operational, albeit slowly. Furthermore, computations and data storage are moving to cloud-based 

technologies such as Google Earth-Engine (see EEFlux cloud implementation of METRIC at http://eeflux-

training.appspot.com/). This feasibility test not only provides a conclusive document to the Texas Water 

Development Board, but has also developed the scripts and data methods for technology transfer to staff 

at the Texas Water Development Board.  

Our pilot study produced annual estimates of net ET or the Net Irrigation Water Requirement (NIWR) 

using METRIC along with a dual-crop soil water balance model, respectively. Although this was a simple 

but time consuming effort to logistically assess the process, the actual results are encouraging but not 

without issues. Eastern counties lacked cloud-free imagery; our mapping of irrigated versus non-irrigated 

lands is poor, gridded estimates of ETr and therefore METRIC ET and net ET estimates are possibly biased 

high (we lack ground data for validation), and we do not have much beyond the IWUE to validate NIWR 

against. In this final section, we include a summary of all costs associated with data products and 

hardware, staff time, and training for implementation, required technical expertise for each method, 

accuracy and applicability of each technology, and time estimate for full implementation and validation 

requirements for estimates.  

7.1 Expertise, training, and time required for staff implementation 

There are several paths for TWDB to implement remotely sensed products into annual per county 

irrigation water use estimates. Universities or consultants could produce the data with oversight by 

TWDB. However, as the state water planner agency, it should be done in house by committed staff that 

understand Texas agriculture and water-use, and can advance with the technologies and drive the 

operational readiness of the methods. Unfortunately, the technology is not currently quite there. Experts 

in the field should be consulted to build the State’s capacity. Once this capacity (2 or 3 years down the 

road) is achieved, the annual staff commitment is summarized as the following (based on the workflow in 

Figure 3). In ID and NV, there is an experiences and well-versed remote sensing profession and 1 or 2 

junior level technicians with geographical information system skills and remote sensing backgrounds. We 

refer to them as ‘senior and ‘junior’.   

The workflow is estimated per image scene assuming Landsat/METRIC type algorithm with Tier 3 accuracy 

(Table 16). The commitment per year for one scene is a half week (17 hours) for the senior person and 

nearly a full week (36 hrs) for a junior technician. Texas is large requiring 48 Landsat tiles to completely 

cover it. We can assume we only need to process 40 of these (rough estimate) totaling 680 and 1440 for 

senior and junior staff, respectively. That is essentially one senior and two junior staff devoted half time 

to this effort.   
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Table 16. Estimate of workforce hours to generate annual net ET per Landsat scene area. Based on the workflow 
presented in Figure 3.  

Steps Task Description 

Senior 

Person (hr) 

Junior 

Person (hr) 

1 Define Project Identify counties or regions of interest, 

determine geographical boundaries and time 

period of interest 

4 
 

2 Acquire Data Obtain (manually) available imagery: Landsat, 

MODIS, CDL 

 
4 

3 Create Masks Assess scenes for cloud contamination, ideally 

using an automated tool, like F-Mask. Process 

CDL to exclude non-cropped vegetation 

1 8 

4 Image Processing Calculate image derivatives required for ET 

algorithm 

1 8 

5 Run ET Algorithm Calculate initial ETrF map and evaluate hot/cold 

pixels and general distribution of ETc 

4 
 

6 Weather Data Extract and process weather data, QA/QC and 

calculate spatially distributed ETr and 

precipitation 

1 4 

  
Estimate overpass times for each scenes and 

extract needed parameters for ETrF maps 

1 
 

7 Time Integration Compile images, interpolate ETrF maps 

between satellite acquisitions times 

1 8 

  
QA/QC integration, compare against other data 

sources or expert knowledge 

2 
 

8 Data Summary Aggregate daily ETc estimates and rainfall into 

defined project boundaries and sum into totals 

2 4 

  
Total labor per processed scene (hr) 17 36 

  
Number of scenes to analyze (48 over Texas) ~40 

 

  
Total Man-Hours Per Year 680 1440 

 

Computationally, these algorithms require high-level computers, ideally dual-cores with substantial RAM 

and multiple monitors to aid visualization of the results. The standard Dell business workstation is ~$3000 

and would suffice. Systems must have a GIS-based software (e.g. ArcMap, Global Mapper, QGIS) and a 
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scripting capabilities. Python and many other programming languages are free and often a requirement 

to implement the algorithms and to automate the more routine processing tasks. Lastly, data storage can 

be substantial, if all the historical runs are archived, considering the 48 Landsat scenes required to cover 

Texas and each scene is 300MB of data. Revisit times between satellites are every 8 days but we can 

assume we only retain 20 images per growing season to produce ET. However, each scene had 5 

derivatives such as spectral and at-satellite reflectance, radiance, albedo, NDVI, etc. These are generally 

archived as well.  That totals 1.7 TB of data per year in Landsat imagery alone (Table 17).    

 

Table 17. Annual data storage requirements for Landsat imagery. 

48 Landsat scenes over Texas 

5 Landsat Derivatives Required per scene 

20 Images per year likely 

5760 Total Images per year 

300 Image Size (MB) 

1.73 Total (TB) per year 

 

MODIS tiles use a sinusoidal projection covering a much larger area but at a coarser spatial resolution 

(1km) than Landsat (30m). However, they are also daily data sets. Data storage requirements could double 

should a fusion-based method be necessary. Along with various gridded and/or weather station data, it 

would be safe to double the data storage requirement to 3 TB/year.   Cloud storage and computing is 

evolving, and may be an option as EEFlux or similar cloud computing ET programs and products develop 

in the coming years (e.g. ClimateEngine.org). 

7.2 Accuracy and applicability of remotely sensed ET 

Clearly, remote sensing opens many doors into water resource management across Texas. The methods 

presented herein can derive a physically based and constrained estimate of actual ET. Subtracting this 

value from gridded rainfall totals can provide a value of net ET at unprecedented spatial resolution. It can 

also potentially provide a historical perspective of net ET over the past three decades. However, such data 

are difficult to evaluate directly since little field data exist at the appropriate scale. As presented in Table 

5, each class of algorithm can produce a range of accuracy, which generally correlates well with its level 

of complexity, data requirements, and skills of the practitioner.  

Currently, several approaches have been used to validate satellite-based ET data in Texas including 

lysimeters [Evett et al., 2012; Paul et al., 2013], micrometeorological data using eddy covariance or Bowen 

ratio [Todd et al., 2000; Heilman et al., 2009], as well as sap flow measurements [Colaizzi et al., 2012]. All 

of these methods are equally complicated, field-intensive, commonly have errors of 20% in energy 

balance closure [Wilson et al., 2002; Foken, 2008]. In addition many field methods have inadequate 

boundary conditions for irrigated agriculture [Huntington et al., 2011] or simply do not scale accurately 
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[Famiglietti and Wood, 1995]. Allen et al. [2011] provide an estimate of typical ET measurement error 

ranging from 5-15% for lysimeters to 10-20% for remote sensing energy balance algorithms. These errors 

increase substantially with novice personnel and common equipment malfunctions. Furthermore, there 

is a general lack of active stations monitoring ETr and actual ET in Texas, challenging the validation of any 

ET product.  

7.3 Limitations and recommendations of satellite ET technologies in Texas 

We summarize the limitations of an irrigation water use estimate from remotely sensed ET methods as:  

 Clouds 

 Operational readiness of the ET algorithms 

 Robustness of time integration 

 Lack of station data in irrigated environments 

 Insufficient validation data (e.g. metered data from specific, single cropped fields) 

 Irrigated lands are not spectrally distinct from dryland agriculture (e.g. irrigated crop mask) 

 Bare soil evaporation or carry-over soil water storage 

Clouds are an obvious a hindrance for much of the State. Cloud masks are continually being improved. 

Some irrigated areas will inevitably be cloudy. Landsat’s ~8day return intervals can be augmented (fused) 

with 1km MODIS (daily) but there is a loss of spatial resolution. Many advanced algorithms can deal with 

this but they require more expertise to implement. In general, none of the algorithms are operational:  

ready to use, out-of-the-box solutions. METRIC, which we used in the pilot study, is no exception. The 

original code is quite archaic but researchers are moving it to more accessible programming languages 

(Python, C++, Matlab) and even automated platforms (i.e. Google Earth Engine). Committed stakeholders, 

like TWDB, would move this process forward and we expect more advances in the near future.  

Time integration requires reliable weather data and knowledge of soil moisture storage. We found that 

NLDAS produces excellent rainfall but also reliable ETr – although biased high. On-ground data will always 

be a large challenge for a state covering as much territory, climatology, and agricultural practices as Texas. 

It would be difficult and costly to maintain meteorological station(s) in every county. However, some 

stations in irrigated agriculture designed to validate ETr would be very valuable. Net ET produced monthly 

here assumes no change in soil water storage between months. Our results in Wharton and much of the 

north Texas had significantly greater net ET than is likely attributable to irrigation. We suspect soil 

moisture storage prior to the growing season may be a substantial source of water available for ET later. 

Thus, more detailed knowledge of soil moisture would reduce this uncertainly. In the western states 

where such net ET programs are operational, irrigation is a requirement for crop growth.  They have nearly 

no rainfall during the growing season, less native vegetation transpiring within satellite scenes, and have 

fewer clouds. The irrigated agriculture is much more obvious from satellites. For Texas, we have more 

challenges; some of these limitations are only specific to certain areas (i.e. clouds and weather data) like 

east Texas, others are ubiquitous.  
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7.4 Time estimate for full implementation and final thoughts 

Through this exercise, our team produced a conclusive feasibility report on the ET algorithms, available 

data sets and costs (hardware, software, and man-hours) to implement a state-wide program. The 

minimum requirements would be met by one senior scientist with a solid remote sensing background and 

two junior technician with half-time commitments. The implementation time would take several years to 

launch and likely require full-time commitments from the assigned staff until the program became more 

operational.  

This feasibility study essentially lays the groundwork to implement a state-wide ET, precipitation, and 

irrigation water-use program including the image processing, ET algorithms and fusion methods to 

quantify irrigated water use regardless of climate, crop type, or available data. Several research areas 

could be filled by researchers including assistance operationalizing the methodology, automating and 

validating irrigated land mapping (and CDL), measuring ETr in representative agricultural areas, and using 

advanced meteorological methods, such as eddy covariance or scintillometry to measure ET for validation. 

Lastly, the irrigation metering program produced two significant findings related to this research. First, it 

showed that metered crops water use was consistently lower than net ET from satellite imagery. This 

discrepancy may suggest that satellite ET is incorrect – or it may suggest that metering promotes water 

conservation. Secondly, the metering data per crop shows good correlation with satellite ET and with 

better implementation could also be used to better validate satellite ET methods. Ideally, the meters 

would be geolocated and recorded monthly along with PPT and in a standardized format over a single 

uniform crop type.      

In summary, we fully believe the state of Texas has the need and abilities implement remote sensing into 

their state-wide irrigation water use estimation program. We have the expertise to build such a program 

at our universities and we have the dedicated staff to implement it at the TWDB.   
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Appendix A: Statistical analysis of gridded precipitation data 

1. Conventional Statistics 

Mean absolute error (MAE) measures the average magnitude of the errors in a set of forecasts, without 

considering their direction (or sign). It measures accuracy for continuous variables. The MAE is a linear 

score which means that all the individual differences are weighted equally in the average.  

𝑀𝐴𝐸 =
1

𝑛
∫(𝑆𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 

Where n is the number of corresponding days of gridded or simulated (S) and observed (O) data from 

gages.   

Root mean square error (RMSE) is a quadratic scoring rule which measures the average magnitude of 

the error. Since the errors are squared, RMSE gives a relatively high weight to bigger errors. This means 

the RMSE is most useful when large errors are particularly undesirable. 

𝑅𝑀𝑆𝐸 = [
1

𝑛
∫(𝑆𝑖 − 𝑂𝑖)2

𝑛

𝑖=1

]

1
2⁄

 

Both the MAE and RMSE range from 0 to ∞ and have units equal to their data source. They are 

negatively-oriented scores: lower values indicate a better prediction. 

Percent bias (PBIAS) measures the average tendency of the simulated values to be larger or smaller than 

their observed ones. The optimal value of PBIAS is 0.0, with low-magnitude values indicating accurate 

model skill while positive values indicate overestimation and negative values indicate underestimation. 

𝑃𝐵𝐼𝐴𝑆 =
∫ (𝑆𝑖 − 𝑂𝑖)

𝑛

𝑖=1

∫ (𝑂𝑖)
𝑛

𝑖=1

∗ 100 

Correlation coefficient (R) and coefficient of determination (R2) are the degree of collinearity between 

simulated and observed data. Pearson’s R ranges from -1 to +1 indicating the direction of correlation 

while a values near 0 indicate poor correlations. Variance is described by R2 ranging between 0 and 1 

with a higher value indicating less variance between the model and the observations. Both R and R2 are 

more sensitive to outliers but do provide a simple measure of simulated performance.  

2. Dichotomous Statistics 

Dichotomous statistics determine the probability that an event occurred and whether or not the gridded 

product forecast that event. For our analysis, we are simply comparing observed and simulated days 

with rainfall. There are four combinations of dichotomous (‘yes’ or ‘no’) predictions: 

1. Hit: event occurred and was predicted 

2. Miss: event occurred by not predicted 

3. False alarm: event predicted by did not occur 

4. Correct negative: event predicted to not occur and no event occurred 
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Frequency bias (FB) indicates the tendency for a model to under-predict (FB<1) or over-predict (FB>1) 

events  

𝐹𝐵 =
ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
 

A score of 1 is perfect. The probability of detection (POD) measures the fraction of observed days with 

rain detected by the model as  

𝑃𝑂𝐷 =
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
 

which ranges from 0 (poor) to 1 (perfect). The false alarm ratio (FAR) determines the fraction of 

simulated precipitation days that did not occur as 

𝐹𝐴𝑅 =
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

3. Accuracy Index 

Precipitation has both a length component (how much it rained) as well as an event component (did it 

rain).  The former is determined through conventional statistics and the latter through dichotomous; 

together these are normalized into an accuracy index [Ebert et al., 2007]. The precipitation accuracy 

index (PAI) consists of five prior variables including normalized RMSE and MBE, R2, POD, and FAR. 

Normalization is performed by subtracting the minimum value from each and dividing by its range 

(maximum – minimum). The PAI is calculated as the weighted average of these five by 

𝑃𝐴𝐼 =
1

5
(1 − 𝑛𝑅𝑀𝑆𝐸) +

1

5
(1 − 𝑛𝑀𝐴𝐸) +

1

5
(𝑅2) +

1

5
(𝑃𝑂𝐷) +

1

5
(1 − 𝐹𝐴𝑅) 

The PAI ranges from 0 (poor) to 1 (perfect) skill index which includes both conventional and 

dichotomous performance.   
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Appendix B: Landsat 5 Thematic Mapper Data  

Table B1. Total number of cloud-free observations from January 2005 to November 2011 by climate division. 

Scene 
Identifier 

Named Location Climate 
Division 
Primary 

Climate 
Division 
Secondary 

Climate 
Division 
Tertiary 

Total 
Count 

p24r38 Hemphill 5     47 

p24r39 Orange 5     36 

p25r37 Texarkana 5 
  

43 

p25r38 Nacogdoches 5 
  

30 

p25r39 Houston 5 
  

23 

p25r40 Freeport 5 
  

23 

p26r36 Hugo 5     38 

p26r37 Mount Pleasant 5 3   43 

p26r38 Corsicana 5 3   37 

p26r39 College Station 5     31 

p26r40 Victoria 5 4   24 

p26r41 Corpus Christi 4     24 

p26r42 Brownsville 4     18 

p27r36 Denison 3 
  

46 

p27r37 Dallas 3 5 
 

44 

p27r38 Waco 3 5 
 

42 

p27r39 Austin 3 5 4 32 

p27r40 San Antonio 4 3 
 

33 

p27r41 Freer 4 
  

37 

p27r42 McAllen 4 
  

37 

p28r36 Wichita Falls 3 2   54 

p28r37 Mineral Wells 3 2   53 

p28r38 Brownwood 3 2   51 

p28r39 Kerrville 3 2   42 

p28r40 Eagle Pass 4 3   37 

p28r41 Laredo 4     35 

p29r35 Allison 1 
  

50 

p29r36 Childress 2 1 3 53 

p29r37 Abilene 2 
  

51 

p29r38 San Angelo 2 
  

46 

p29r39 Sonora 2 3 
 

38 

p29r40 Del Rio 4 2 
 

44 

p30r35 Borger 1     54 

p30r36 Amarillo 1 2   61 

p30r37 Lubbock 1 2   61 

p30r38 Midland 2 1   57 

p30r39 Fort Stockton 2     66 
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p30r40 Big Bend 2     73 

p31r35 Dalhart 1 
  

57 

p31r36 Muleshoe 1 
  

66 

p31r37 Brownfield 1 2 
 

72 

p31r38 Pecos 2 1 
 

67 

p31r39 Fort Davis 2 1 
 

61 

p31r40 Terlingua 2 
  

78 

p32r38 Van Horn 1 2   76 

p32r39 Candelaria 1 2   84 

p33r38 El Paso 1 
  

70 

 

Table B2. Annual counts of cloud-free Landsat 5 Thematic Mapper observations in Texas with summary statistics  

Scene 
Identifie
r 

Total 
Coun
t 

2005 
Coun
t 

2006 
Coun
t 

2007 
Coun
t 

2008 
Coun
t 

2009 
Coun
t 

2010 
Coun
t 

2011 
Coun
t 

Mea
n 

Mi
n 

Ma
x 

Media
n 

p24r38 47 3 5 3 10 10 7 9 6 3 10 7 
p24r39 36 4 4 1 9 6 7 5 5 1 9 5 
p25r37 43 3 7 6 7 6 6 8 6 3 8 6 
p25r38 30 0 5 3 8 4 5 5 4 0 8 5 
p25r39 23 0 6 1 3 4 4 5 3 0 6 4 
p25r40 23 0 5 3 4 5 3 3 3 0 5 3 
p26r36 38 8 7 3 2 6 5 7 5 2 8 6 
p26r37 43 6 5 5 4 7 6 10 6 4 10 6 
p26r38 37 6 6 2 2 10 4 7 5 2 10 6 
p26r39 31 5 6 2 3 5 4 6 4 2 6 5 
p26r40 24 3 2 4 3 4 5 3 3 2 5 3 
p26r41 24 1 2 4 2 4 5 6 3 1 6 4 
p26r42 18 2 2 2 3 3 3 3 2 2 3 3 
p27r36 46 7 7 6 5 9 4 8 6 4 9 7 
p27r37 44 9 5 2 4 9 7 8 6 2 9 7 
p27r38 42 9 3 3 7 7 5 8 6 3 9 7 
p27r39 32 7 2 3 4 5 5 6 4 2 7 5 
p27r40 33 6 3 2 4 6 6 6 4 2 6 6 
p27r41 37 6 5 2 4 6 6 8 5 2 8 6 
p27r42 37 6 5 3 5 7 6 5 5 3 7 5 
p28r36 54 9 8 2 11 9 6 9 7 2 11 9 
p28r37 53 6 7 4 8 7 11 10 7 4 11 7 
p28r38 51 8 10 4 4 7 7 11 7 4 11 7 
p28r39 42 6 5 3 4 6 7 11 6 3 11 6 
p28r40 37 6 5 3 3 6 5 9 5 3 9 5 
p28r41 35 3 3 3 2 7 6 11 5 2 11 3 
p29r35 50 6 7 3 10 7 7 10 7 3 10 7 
p29r36 53 7 8 4 10 5 7 12 7 4 12 7 
p29r37 51 4 9 3 10 8 6 11 7 3 11 8 
p29r38 46 2 8 1 8 6 10 11 6 1 11 8 
p29r39 38 4 5 1 7 5 7 9 5 1 9 5 
p29r40 44 5 8 2 7 6 7 9 6 2 9 7 
p30r35 54 9 9 4 9 6 9 8 7 4 9 9 
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p30r36 61 10 7 6 12 8 10 8 8 6 12 8 
p30r37 61 6 7 4 13 10 11 10 8 4 13 10 
p30r38 57 5 8 6 11 12 8 7 8 5 12 8 
p30r39 66 8 8 9 11 10 11 9 9 8 11 9 
p30r40 73 7 6 9 13 12 13 13 10 6 13 12 
p31r35 57 5 11 7 8 9 9 8 8 5 11 8 
p31r36 66 7 12 8 10 8 11 10 9 7 12 10 
p31r37 72 8 12 8 10 10 12 12 10 8 12 10 
p31r38 67 7 12 5 10 9 13 11 9 5 13 10 
p31r39 61 5 9 6 8 8 13 12 8 5 13 8 
p31r40 78 10 9 9 11 9 14 16 11 9 16 10 
p32r38 76 9 12 8 14 10 13 10 10 8 14 10 
p32r39 84 13 12 13 16 9 10 11 12 9 16 12 
p33r38 70 8 11 3 11 14 10 13 10 3 14 11 
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Appendix C: Reference ET stations and statistics 

Table C1. West Texas Mesonet and SCAN stations used for assessing NLDAS estimated ETr to weather station 
computed ETr. 

Station Name Station Corrections  Additional Notes 

5ENE Abernathy 1 RS   

1NE Amherst 5 RS   

2E Andrews 6 RS RH Adjusted RH about 5% for a couple years. 

6SSW Anton 7 RS   

3NE Aspermont 8 RS   

2S Brownfield 11 RS   

2NNE Childress 13 RS 

1 year missing, data needed heavy 

correction. 

2WSW Clarendon 14 RS RH 

Filled in ~ 1 month missing temp and RH 

values with monthly avgs 

2N Coyanosa 16 

RS MISSING 

DATA Only about 1.5 years present. 

2NE Dimmitt 18 RS RS adjusted ~-10% between 2010 and 2011. 

2NNE Floydada 20 RS   

3WNW Fluvanna 21 RS RS adjusted ~-10% in several places. 

2NE Friona 22 RS 

RS adjusted ~-10% in several places. RS 

missing ~1.5 month data. 

2 ESE Gail 23 RS   

3W Goodlett 24 RS RH  

Filled in ~ 2 months missing temp and RH 

values with monthly avgs in 2 locations 

5SSW Graham 25 RS   

10WSW Guthrie 26 RS   

3N Hart 27 RS   

1NW  Haskell 28 

RS MISSING 

DATA Missing 2006-2009, processed anyways. 

2NW Hereford 29 RS 

Threw out ~3 months of RS data due to 

sensor malfunction. 
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1SSE Jayton 31 RS   

2SE Lamesa 35 RS RH RH adjusted ~5% 

4S Levelland 36 RS   

3WNW Lubbock-

TTU 38 RS RH 

First half of 2006 missing, corrected RH 

about 10%. 

1E McLean 39 RS Two months of 2009 are missing. 

1NE Memphis 40 RS   

1ENE Morton 42 RS   

2SSW Muleshoe 43 RS   

1S Northfield 44 

RS MISSING 

DATA 

2006-Early 2008 is missing, corrected 

anyways. 

4ENE Odell 45 

RS MISSING 

DATA Only about 1.5 years present. 

6S of Olton 47 RS   

10SW Paducah 48 RS RS adjusted ~-10% in several places. 

2E Pampa 50 RS   

3N Plains 53 RS   

1S Plainview 54 RS   

1NE Post 55 RS   

1SE Ralls 57 RS   

12W Lubbock 

(Reese) 58 RS 

RS needed to be de-spiked in several 

locations. 

1SW Seagraves 61 RS First half of 2008 missing. 

2NNE Seminole 62 RS   

3NW Seymour 63 

RS RH MISSING 

DATA 

2006-Late 2009 is missing, corrected 

anyways, adjusted RH about 5%. 

7ESE Silverton  64 RS RH Removed bad RH value in one location. 

2NE Slaton 65 RS   

3E Snyder 66 RS   
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1W Spur 67 RS Corrected RS +10% in one location. 

8WSW Sundown 70 RS   

3NNE Tahoka 71 RS   

2ENE Tulia 73 RS 

Didn't de-spike precip because the high 

value seemed natural. 

2WSW Turkey 74 RS 

2006 is missing, eliminated about 2 months 

of bad data from RS 

1E Wall 76 

RS MISSING 

DATA 

2006-Late 2009 is missing, corrected 

anyways. 

6SSW Wolfforth 79 RS RH Corrected RH  +5% 

SCAN_BUSHLAND 1 

RS MISSING 

DATA Late 2005-2009 is missing. 

 

RS = solar radiation 

RH = relative humidity 
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Appendix D.  Croplands for 2010 and 2011 extracted from CDL for pilot study counties. 
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Appendix E. METRIC average ETrF results for pilot study counties and masked to CDL cropland areas. 
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Appendix F. METRIC annual ET results for pilot study counties and masked to CDL cropland areas. 
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Appendix G. Cloud free Landsat 5/7 scene counts used to develop METRIC annual ET totals per county. 
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Appendix H. Annual crop water balance summaries from METRIC for each pilot study county. County 

totals are bolded and means italicized. County totals are shown with and without ‘Fallow or Idle Cropland’.  
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COUNTY YEAR CDL_NUM CDL_NAME PIXELS ACRES ETr (ft) ET (ft) PPT (ft) ET (ac-ft) PPT (ac-ft) NET ET (ac-ft) ET (in) PPT (in) NET ET (in)

Brazos 2010 1 Corn 31,810    7,074            7.54 3.10 2.40 21,906           17,003           4,903              37.2 28.8 8.3

Brazos 2010 2 Cotton 50,996    11,341         7.52 3.30 2.41 37,460           27,305           10,155           39.6 28.9 10.7

Brazos 2010 3 Rice 697          155               7.48 4.70 2.51 728                 389                 339                 56.4 30.1 26.2

Brazos 2010 4 Sorghum 4,356       969               7.60 3.17 2.31 3,073              2,242              831                 38.1 27.8 10.3

Brazos 2010 5 Soybeans 1,906       424               7.48 3.35 2.44 1,419              1,036              383                 40.2 29.3 10.8

Brazos 2010 6 Sunflower 1               0                    7.46 6.07 2.46 1.3                  0.5                  0.8                  72.8 29.5 43.3

Brazos 2010 23 Spring Wheat 4               1                    7.44 4.31 2.46 3.8                  2.2                  1.6                  51.7 29.5 22.2

Brazos 2010 24 Winter Wheat 237          53                  7.62 3.25 2.38 172                 126                 46                    39.1 28.6 10.5

Brazos 2010 26 Dbl Crop WinWht Soybeans 5               1                    7.72 4.65 2.44 5.2                  2.7                  2.5                  55.8 29.3 26.5

Brazos 2010 28 Oats 2,461       547               7.44 4.68 2.47 2,562              1,352              1,210              56.2 29.6 26.5

Brazos 2010 36 Alfalfa 8               2                    7.72 3.45 2.45 6.1                  4.4                  1.8                  41.4 29.4 12.0

Brazos 2010 43 Potatoes 8               2                    7.44 1.52 2.51 2.7                  4.5                  (1.8)                 18.3 30.1 0.0

Brazos 2010 48 Watermelons 8               2                    7.70 1.73 2.54 3.1                  4.5                  (1.4)                 20.8 30.5 0.0

Brazos 2010 57 Herbs 2               0                    7.46 3.64 2.53 1.6                  1.1                  0.5                  43.7 30.3 13.4

Brazos 2010 58 Clover Wildflowers 1               0                    7.69 4.95 2.63 1.1                  0.6                  0.5                  59.3 31.6 27.7

Brazos 2010 61 Fallow Idle Cropland 17,930    3,988            7.57 3.13 2.38 12,482           9,492              2,990              37.6 28.6 9.0

Brazos 2010 74 Pecans 141          31                  7.59 6.07 2.27 190                 71                    119                 72.8 27.2 45.6

Brazos 2010 92 Aquaculture 19             4                    7.50 4.76 2.58 20                    11                    9.2                  57.1 31.0 26.1

Brazos 2010 236 Dbl Crop WinWht Sorghum 308          68                  7.42 3.28 2.46 225                 168                 57                    39.4 29.5 9.9

Total 24,663         80,262           59,216           21,047           46.2 29.5 17.8

No fallow/idle 20,676         67,780           49,724           18,056           

Brazos 2011 1 Corn 15,565    3,462            10.12 5.08 1.71 17,588           5,926              11,663           61.0 20.5 40.4

Brazos 2011 2 Cotton 84,685    18,833         10.05 4.81 1.70 90,506           32,082           58,424           57.7 20.4 37.2

Brazos 2011 3 Rice 296          66                  9.93 7.17 1.67 472                 110                 362                 86.1 20.1 66.0

Brazos 2011 4 Sorghum 5,883       1,308            10.23 4.58 1.74 5,997              2,272              3,725              55.0 20.8 34.2

Brazos 2011 5 Soybeans 284          63                  10.14 4.69 1.70 296                 108                 189                 56.3 20.4 35.9

Brazos 2011 23 Spring Wheat 55             12                  9.91 4.88 1.69 60                    21                    39                    58.6 20.2 38.3

Brazos 2011 24 Winter Wheat 2,132       474               10.10 5.46 1.72 2,587              814                 1,773              65.5 20.6 44.9

Brazos 2011 27 Rye 3               1                    10.28 5.29 1.66 3.5                  1.1                  2.4                  63.5 19.9 43.6

Brazos 2011 28 Oats 686          153               10.03 5.05 1.69 770                 258                 512                 60.6 20.3 40.3

Brazos 2011 36 Alfalfa 28             6                    10.19 4.64 1.71 29                    11                    18                    55.7 20.5 35.2

Brazos 2011 46 Sweet Potatoes 1               0                    10.30 4.25 1.63 0.9                  0.4                  0.6                  51.0 19.6 31.4

Brazos 2011 58 Clover Wildflowers 3               1                    10.15 4.83 1.72 3.2                  1.1                  2.1                  58.0 20.6 37.3

Brazos 2011 61 Fallow Idle Cropland 2,812       625               10.02 5.24 1.71 3,279              1,072              2,207              62.9 20.6 42.3

Brazos 2011 74 Pecans 2               0                    9.90 5.85 1.68 2.6                  0.7                  1.9                  70.2 20.2 50.0

Brazos 2011 92 Aquaculture 15             3                    9.87 7.32 1.68 24                    6                      19                    87.8 20.1 67.7

Brazos 2011 206 Carrots 3               1                    10.00 4.90 1.70 3.3                  1.1                  2.1                  58.8 20.4 38.4

Brazos 2011 236 Dbl Crop WinWht Sorghum 4               1                    10.20 4.98 1.73 4.4                  1.5                  2.9                  59.8 20.7 39.1

Brazos 2011 238 Dbl Crop WinWht Cotton 54             12                  9.90 3.98 1.68 48                    20                    28                    47.8 20.2 27.6

Total 70,361         269,717         151,644         118,073         62.0 20.3 41.7

No fallow/idle 69,735         266,438         150,571         115,866         
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COUNTY YEAR CDL_NUM CDL_NAME PIXELS ACRES ETr (ft) ET (ft) PPT (ft) ET (ac-ft) PPT (ac-ft) NET ET (ac-ft) ET (in) PPT (in) NET ET (in)

Cameron 2010 1 Corn 72,168    16,050         8.28 4.00 2.76 64,158           44,343           19,815           48.0 33.2 14.8

Cameron 2010 2 Cotton 288,167  64,087         8.04 3.53 2.67 226,201         170,921         55,280           42.4 32.0 10.4

Cameron 2010 3 Rice 133          30                  8.45 5.56 2.70 165                 80                    85                    66.8 32.4 34.4

Cameron 2010 4 Sorghum 463,674  103,119       8.00 4.02 2.84 414,683         292,425         122,258         48.3 34.0 14.2

Cameron 2010 5 Soybeans 5,395       1,200            8.14 3.70 2.99 4,442              3,587              855                 44.4 35.9 8.5

Cameron 2010 44 Other Crops 464          103               7.92 4.28 2.88 441.8              297.3              144.4              51.4 34.6 16.8

Cameron 2010 45 Sugarcane 28,041    6,236            8.27 5.07 2.77 31,587.8        17,287.3        14,300.5        60.8 33.3 27.5

Cameron 2010 48 Watermelons 2               0                    7.69 1.64 3.17 0.7                  1.4                  (0.7)                 19.7 38.1 0.0

Cameron 2010 49 Onions 871          194               8.36 2.89 2.69 560.3              521.1              39.2                34.7 32.3 2.4

Cameron 2010 61 Fallow Idle Cropland 64,479    14,340         8.03 5.23 2.99 75,039           42,893           32,146           62.8 35.9 26.9

Cameron 2010 72 Citrus 3,980       885               8.30 5.11 2.74 4,521.4          2,421.1          2,100.3          61.3 32.8 28.5

Cameron 2010 92 Aquaculture 121          27                  7.78 3.73 3.41 100.3              91.7                8.6                  44.7 40.9 3.8

Cameron 2010 212 Oranges 175          39                  8.41 5.60 2.71 217.9              105.6              112.4              67.2 32.5 34.6

Cameron 2010 239 Dbl Crop Soybeans Cotton 259          58                  8.53 5.18 2.79 298.1              160.9              137.2              62.1 33.5 28.6

Cameron 2010 241 Dbl Crop Corn Soybeans 1,561       347               7.81 4.89 3.42 1,698.0          1,188.6          509.4              58.7 41.1 17.6

Total 206,713       824,114         576,325         247,790         51.5 34.8 17.9

No fallow/idle 192,374       749,075         533,431         215,644         

Cameron 2011 1 Corn 33,373    7,422            9.19 4.55 1.15 33,802           8,517              25,285.4        54.7 13.8 40.9

Cameron 2011 2 Cotton 387,933  86,274         8.85 3.10 1.22 267,449         104,984         162,465         37.2 14.6 22.6

Cameron 2011 3 Rice 1               0                    9.29 1.15 1.13 0                      0                      0                      13.7 13.5 0.2

Cameron 2011 4 Sorghum 252,188  56,085         8.83 3.76 1.21 210,640         67,981           142,659         45.1 14.5 30.5

Cameron 2011 5 Soybeans 506          113               8.08 2.77 1.40 311                 157                 154                 33.2 16.8 16.5

Cameron 2011 24 Winter Wheat 183          41                  9.25 4.36 1.15 178                 47                    131                 52.4 13.8 38.5

Cameron 2011 36 Alfalfa 326          73                  9.44 6.19 1.08 449                 79                    370                 74.3 13.0 61.3

Cameron 2011 44 Other Crops 334          74                  8.41 3.68 1.30 273                 97                    176                 44.1 15.6 28.5

Cameron 2011 45 Sugarcane 27,552    6,127            9.24 6.29 1.16 38,528           7,088              31,441           75.5 13.9 61.6

Cameron 2011 57 Herbs 99             22                  9.02 5.77 1.22 127                 27                    100                 69.2 14.6 54.6

Cameron 2011 61 Fallow Idle Cropland 1,936       431               8.84 4.31 1.23 1,856              531                 1,325              51.7 14.8 36.9

Cameron 2011 72 Citrus 1,110       247               8.85 6.65 1.24 1,641.5          305.5              1,335.9          79.8 14.9 64.9

Cameron 2011 212 Oranges 242          54                  8.67 6.56 1.28 353                 69                    284                 78.7 15.3 63.4

Total 156,962       555,608         189,881         365,727         54.7 17.7 37.1

No fallow/idle 156,532       553,752         189,350         364,402         



Irrigation Water Use Estimates with Remote Sensing Technologies  
 

115 
 

 

 

COUNTY YEAR CDL_NUM CDL_NAME PIXELS ACRES ETr (ft) ET (ft) PPT (ft) ET (ac-ft) PPT (ac-ft) NET ET (ac-ft) ET (in) PPT (in) NET ET (in)

Carson 2010 1 Corn 76,944    17,112         8.48 4.56 2.34 78,036           39,997           38,040           54.7 28.0 26.7

Carson 2010 2 Cotton 218,513  48,596         8.48 3.44 2.28 167,144         110,746         56,397           41.3 27.3 13.9

Carson 2010 4 Sorghum 53,607    11,922         8.40 3.11 2.32 37,101           27,706           9,395              37.3 27.9 9.5

Carson 2010 5 Soybeans 1,042       232               8.52 4.02 2.35 931                 544                 387                 48.2 28.2 20.1

Carson 2010 6 Sunflower 82             18                  8.50 3.60 2.30 66                    42                    24                    43.2 27.6 15.6

Carson 2010 10 Peanuts 75             17                  8.46 4.62 2.45 77                    41                    36                    55.5 29.4 26.1

Carson 2010 24 Winter Wheat 422,285  93,914         8.44 3.21 2.30 301,644         216,106         85,538           38.5 27.6 10.9

Carson 2010 26 Dbl Crop WinWht Soybeans 2               0                    8.44 3.21 2.16 1                      1                      0                      38.6 25.9 12.7

Carson 2010 27 Rye 3               1                    8.45 3.25 2.19 2                      1                      1                      39.1 26.3 12.7

Carson 2010 28 Oats 664          148               8.67 3.33 2.37 492                 350                 142                 40.0 28.5 11.5

Carson 2010 29 Millet 2               0                    8.43 4.35 2.19 2                      1                      1                      52.2 26.2 25.9

Carson 2010 33 Safflower 310          69                  8.69 3.49 2.33 240                 161                 80                    41.9 28.0 13.8

Carson 2010 36 Alfalfa 2,000       445               8.53 5.30 2.44 2,360              1,084              1,275              63.7 29.2 34.4

Carson 2010 60 Switchgrass 2               0                    8.25 2.43 2.12 1                      1                      0                      29.2 25.4 3.8

Carson 2010 61 Fallow Idle Cropland 142,304  31,648         8.44 2.51 2.28 79,511           72,172           7,339              30.1 27.4 2.8

Carson 2010 74 Pecans 46             10                  8 4 2 40                    24                    17                    47.1 27.7 19.4

Carson 2010 205 Triticale 97             22                  9 3 2 71                    47                    24                    39.3 26.2 13.2

Carson 2010 225 Dbl Crop WinWht Corn 729          162               8.39 4.84 2.28 784                 370                 415                 58.0 27.4 30.7

Carson 2010 236 Dbl Crop WinWht Sorghum 316          70                  8.41 3.61 2.34 254                 165                 89                    43.3 28.1 15.2

Carson 2010 238 Dbl Crop WinWht Cotton 558          124               8.48 3.75 2.29 465                 285                 181                 45.0 27.5 17.5

Total 204,510       669,222         469,843         199,380         44.3 27.5 16.8

No fallow/idle 172,862       589,711         397,671         192,041         

Carson 2011 1 Corn 77,624    17,263         10.38 5.79 0.74 99,953           12,750           87,203           69.5 8.9 60.6

Carson 2011 2 Cotton 243,018  54,046         10.45 4.01 0.76 216,782         40,950           175,832         48.1 9.1 39.0

Carson 2011 4 Sorghum 158,606  35,273         10.29 3.10 0.73 109,189         25,900           83,289           37.1 8.8 28.3

Carson 2011 5 Soybeans 431          96                  10.45 5.18 0.70 497                 67                    430                 62.2 8.4 53.8

Carson 2011 10 Peanuts 6               1                    10.46 6.81 0.79 9                      1                      8                      81.8 9.5 72.3

Carson 2011 23 Spring Wheat 290          64                  10.57 3.88 0.73 250                 47                    203                 46.6 8.7 37.9

Carson 2011 24 Winter Wheat 330,527  73,507         10.37 3.51 0.74 257,936         54,624           203,312         42.1 8.9 33.2

Carson 2011 27 Rye 530          118               10.73 2.56 0.74 302                 87                    215                 30.7 8.8 21.9

Carson 2011 36 Alfalfa 1,101       245               11 7 1 1,667              173                 1,494              81.7 8.5 73.2

Carson 2011 61 Fallow Idle Cropland 96,642    21,493         10.30 2.92 0.74 62,749           15,817           46,931           35.0 8.8 26.2

Carson 2011 74 Pecans 26             6                    10.23 4.84 0.71 28                    4                      24                    58.0 8.5 49.6

Carson 2011 225 Dbl Crop WinWht Corn 47             10                  10.55 6.94 0.75 73                    8                      65                    83.2 9.0 74.3

Carson 2011 236 Dbl Crop WinWht Sorghum 852          189               10.30 5.33 0.76 1,010              145                 865                 64.0 9.2 54.8

Carson 2011 238 Dbl Crop WinWht Cotton 1,152       256               10.47 6.00 0.77 1,537              197                 1,340              72.0 9.2 62.8

Total 202,568       751,981         150,770         601,211         58.0 8.9 49.1

No fallow/idle 181,076       689,232         134,953         554,279         
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COUNTY YEAR CDL_NUM CDL_NAME PIXELS ACRES ETr (ft) ET (ft) PPT (ft) ET (ac-ft) PPT (ac-ft) NET ET (ac-ft) ET (in) PPT (in) NET ET (in)

Dawson 2010 1 Corn 944             210          8.71 5.34 2.05 1,121          430                690                    64.0 24.6 39.5

Dawson 2010 2 Cotton 1,615,170 359,205 8.76 3.19 2.02 1,147,189 725,497       421,691            38.3 24.2 14.1

Dawson 2010 4 Sorghum 6,992          1,555      8.72 4.22 2.05 6,565          3,187            3,378                 50.7 24.6 26.1

Dawson 2010 5 Soybeans 17                4              8.69 4.72 2.13 18                8                    10                       56.7 25.5 31.2

Dawson 2010 6 Sunflower 2,529          562          8.65 3.28 2.23 1,845          1,255            590                    39.4 26.8 12.6

Dawson 2010 10 Peanuts 3,253          723          8.73 4.45 2.01 3,217          1,451            1,766                 53.4 24.1 29.3

Dawson 2010 24 Winter Wheat 76,073       16,918    8.73 3.67 2.06 62,022       34,841          27,181              44.0 24.7 19.3

Dawson 2010 26 Dbl Crop WinWht Soybeans 16                4              8.65 5.87 1.94 21                7                    14                       70.4 23.2 47.2

Dawson 2010 27 Rye 159             35            8.76 3.08 2.05 109             73                  36                       36.9 24.6 12.3

Dawson 2010 28 Oats 238             53            8.72 3.47 2.00 184             106                78                       41.6 24.0 17.6

Dawson 2010 29 Millet 117             26            8.69 4.94 1.94 129             50                  78                       59.3 23.2 36.0

Dawson 2010 33 Safflower 3                  1              8.76 3.94 1.94 3                  1                    1                         47.3 23.3 24.0

Dawson 2010 36 Alfalfa 5,687          1,265      8.63 6.26 2.06 7,914          2,603            5,311                 75.1 24.7 50.4

Dawson 2010 61 Fallow Idle Cropland 34,143       7,593      8.77 3.47 2.03 26,343       15,380          10,963              41.6 24.3 17.3

Dawson 2010 74 Pecans 21                5              8.77 4.74 2.00 22                9                    13                       56.9 24.0 32.9

Dawson 2010 205 Triticale 56                12            8.71 4.80 2.05 60                25                  34                       57.6 24.6 33.1

Dawson 2010 225 Dbl Crop WinWht Corn 35                8              8.68 5.13 2.09 40                16                  24                       61.5 25.1 36.4

Dawson 2010 236 Dbl Crop WinWht Sorghum 834             185          8.75 4.78 2.09 886             387                499                    57.3 25.0 32.3

Dawson 2010 238 Dbl Crop WinWht Cotton 10,952       2,436      8.73 4.55 2.09 11,084       5,081            6,003                 54.6 25.0 29.6

Total 390,800 1,268,770 790,409       478,361            53.0 24.5 28.5

No fallow/idle 383,207 1,242,427 775,029       467,397            

Dawson 2011 1 Corn 55                12            11.21 5.53 0.37 68                4                    63                       66.4 4.4 62.0

Dawson 2011 2 Cotton 1,645,937 366,047 11.19 3.99 0.39 1,458,831 142,483       1,316,349        47.8 4.7 43.2

Dawson 2011 4 Sorghum 2,840          632          11.14 4.52 0.39 2,854          244                2,610                 54.2 4.6 49.6

Dawson 2011 24 Winter Wheat 3,707          824          11.12 4.64 0.39 3,826          322                3,504                 55.7 4.7 51.0

Dawson 2011 27 Rye 1,011          225          11.15 5.55 0.38 1,248          86                  1,162                 66.6 4.6 62.0

Dawson 2011 36 Alfalfa 1,785          397          11.10 8.81 0.37 3,496          147                3,349                 105.7 4.4 101.2

Dawson 2011 61 Fallow Idle Cropland 19,095       4,247      11.15 6.32 0.39 26,823       1,658            25,165              75.8 4.7 71.1

Dawson 2011 74 Pecans 34                8              11.13 8.34 0.38 63                3                    60                       100.0 4.5 95.5

Dawson 2011 236 Dbl Crop WinWht Sorghum 1                  0              11.31 6.78 0.36 2                  0                    1                         81.4 4.3 77.0

Dawson 2011 238 Dbl Crop WinWht Cotton 16,686       3,711      11.10 5.15 0.39 19,104       1,448            17,656              61.8 4.7 57.1

Total 376,103 1,516,314 146,394       1,369,920        71.5 4.6 67.0

No fallow/idle 371,856 1,489,491 144,737       1,344,754        
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COUNTY YEAR CDL_NUM CDL_NAME PIXELS ACRES ETr (ft) ET (ft) PPT (ft) ET (ac-ft) PPT (ac-ft) NET ET (ac-ft) ET (in) PPT (in) NET ET (in)

Hale 2010 1 Corn 169,781     37,758         8.44 4.14 2.09 156,163         78,872           77,292           49.6 25.1 24.6

Hale 2010 2 Cotton 1,295,746 288,167       8.43 3.17 2.06 912,765         592,539         320,226         38.0 24.7 13.3

Hale 2010 4 Sorghum 36,815       8,187            8.43 3.37 2.08 27,608           17,014           10,594           40.5 24.9 15.5

Hale 2010 5 Soybeans 188             42                  8.44 3.79 2.11 159                 88                    70                    45.5 25.4 20.2

Hale 2010 6 Sunflower 2,734          608               8.47 3.71 2.17 2,256              1,320              936                 44.5 26.0 18.5

Hale 2010 10 Peanuts 281             62                  8.45 4.12 2.06 257                 129                 129                 49.4 24.7 24.7

Hale 2010 24 Winter Wheat 252,748     56,210         8.44 3.42 2.04 192,397         114,864         77,534           41.1 24.5 16.6

Hale 2010 26 Dbl Crop WinWht Soybeans 24                5                    8.44 4.21 2.12 22                    11                    11                    50.5 25.4 25.1

Hale 2010 27 Rye 18                4                    8.44 3.44 2.09 14                    8                      5                      41.3 25.1 16.2

Hale 2010 28 Oats 675             150               8.42 3.53 2.04 531                 307                 224                 42.4 24.5 17.9

Hale 2010 29 Millet 48                11                  8.49 3.84 2.27 41                    24                    17                    46.1 27.2 18.9

Hale 2010 33 Safflower 57                13                  8.42 3.47 2.05 44                    26                    18                    41.6 24.6 17.0

Hale 2010 36 Alfalfa 5,825          1,295            8.45 5.37 2.11 6,956              2,735              4,221              64.4 25.3 39.1

Hale 2010 42 Dry Beans 52                12                  8.41 3.11 2.16 36                    25                    11                    37.3 25.9 11.4

Hale 2010 43 Potatoes 2                  0                    8.44 3.29 1.87 1                      1                      1                      39.4 22.4 17.0

Hale 2010 60 Switchgrass 19                4                    8.61 2.12 2.00 9                      8                      1                      25.5 24.0 1.5

Hale 2010 61 Fallow Idle Cropland 46,770       10,401         8.43 3.11 2.04 32,353           21,209           11,144           37.3 24.5 12.9

Hale 2010 74 Pecans 346             77                  8.44 4.10 1.97 316                 152                 164                 49.2 23.6 25.6

Hale 2010 205 Triticale 839             187               8.43 4.54 2.11 848                 393                 455                 54.5 25.3 29.3

Hale 2010 225 Dbl Crop WinWht Corn 3,317          738               8.44 5.18 2.03 3,818              1,496              2,322              62.1 24.3 37.8

Hale 2010 236 Dbl Crop WinWht Sorghum 3,445          766               8.45 4.57 2.02 3,501              1,546              1,955              54.8 24.2 30.6

Hale 2010 237 Dbl Crop Barley Corn 19                4                    8.46 4.82 1.91 20                    8                      12                    57.9 23.0 34.9

Hale 2010 238 Dbl Crop WinWht Cotton 8,975          1,996            8.46 4.52 2.15 9,013              4,291              4,722              54.2 25.8 28.4

Total 406,698       1,349,128     837,067         512,061         46.4 24.8 21.6

No fallow/idle 396,297       1,316,775     815,858         500,917         

Hale 2011 1 Corn 129,817     28,871         10.69 5.60 0.53 161,804         15,356           146,448         67.3 6.4 60.9

Hale 2011 2 Cotton 1,636,450 363,937       10.68 4.02 0.53 1,461,693     191,862         1,269,831     48.2 6.3 41.9

Hale 2011 4 Sorghum 7,197          1,601            10.68 5.01 0.53 8,014              849                 7,165              60.1 6.4 53.7

Hale 2011 5 Soybeans 85                19                  10.68 5.46 0.53 103                 10                    93                    65.5 6.4 59.1

Hale 2011 6 Sunflower 11                2                    10.67 5.13 0.53 13                    1                      11                    61.6 6.4 55.2

Hale 2011 10 Peanuts 23                5                    10.68 5.69 0.54 29                    3                      26                    68.3 6.4 61.8

Hale 2011 24 Winter Wheat 64,470       14,338         10.69 4.15 0.53 59,501           7,651              51,850           49.8 6.4 43.4

Hale 2011 27 Rye 1                  0                    10.70 7.04 0.53 2                      0                      1                      84.5 6.4 78.1

Hale 2011 28 Oats 341             76                  10.67 4.96 0.52 376                 39                    337                 59.5 6.2 53.3

Hale 2011 29 Millet 2                  0                    10.64 2.91 0.52 1                      0                      1                      34.9 6.2 28.7

Hale 2011 36 Alfalfa 4,396          978               10.71 6.74 0.53 6,586              521                 6,065              80.8 6.4 74.4

Hale 2011 43 Potatoes 100             22                  10.78 6.56 0.54 146                 12                    134                 78.7 6.5 72.2

Hale 2011 61 Fallow Idle Cropland 26,670       5,931            10.70 3.20 0.53 18,968           3,126              15,842           38.4 6.3 32.1

Hale 2011 74 Pecans 58                13                  10.75 5.91 0.54 76                    7                      69                    70.9 6.4 64.5

Hale 2011 205 Triticale 521             116               10.66 4.01 0.52 464                 60                    404                 48.1 6.2 41.8

Hale 2011 225 Dbl Crop WinWht Corn 1,131          252               10.67 7.10 0.53 1,785              133                 1,651              85.1 6.4 78.8

Hale 2011 236 Dbl Crop WinWht Sorghum 316             70                  10.70 6.39 0.54 449                 38                    411                 76.7 6.5 70.2

Hale 2011 238 Dbl Crop WinWht Cotton 2,748          611               10.70 4.59 0.53 2,804              323                 2,481              55.1 6.3 48.7

Total 416,842       1,722,813     219,991         1,502,822     63.0 6.4 56.6

No fallow/idle 410,911       1,703,846     216,866         1,486,980     
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COUNTY YEAR CDL_NUM CDL_NAME PIXELS ACRES ETr (ft) ET (ft) PPT (ft) ET (ac-ft) PPT (ac-ft) NET ET (ac-ft) ET (in) PPT (in) NET ET (in)

Medina 2010 1 Corn 148912 33,117         7.74 3.22 2.54 106,759         84,195           22,563           38.7 30.5 8.2

Medina 2010 2 Cotton 55467 12,336         7.75 3.86 2.56 47,579           31,623           15,956           46.3 30.8 15.5

Medina 2010 4 Sorghum 87432 19,444         7.76 3.77 2.49 73,232           48,369           24,862           45.2 29.9 15.3

Medina 2010 6 Sunflower 4161 925               7.66 3.11 2.67 2,876              2,472              405                 37.3 32.1 5.2

Medina 2010 10 Peanuts 646 144               7.80 4.19 2.42 602                 348                 253                 50.3 29.1 21.2

Medina 2010 12 Sweet Corn 17 4                    7.70 3.03 2.45 11                    9                      2                      36.3 29.4 7.0

Medina 2010 21 Barley 7 2                    7.76 4.08 2.45 6                      4                      3                      49.0 29.4 19.6

Medina 2010 23 Spring Wheat 1010 225               7.80 3.99 2.44 896                 547                 349                 47.9 29.2 18.6

Medina 2010 24 Winter Wheat 101662 22,609         7.78 4.09 2.48 92,479           56,060           36,419           49.1 29.8 19.3

Medina 2010 27 Rye 359 80                  8.02 4.51 2.36 360                 188                 172                 54.1 28.3 25.8

Medina 2010 28 Oats 33297 7,405            7.78 3.93 2.51 29,111           18,567           10,544           47.2 30.1 17.1

Medina 2010 29 Millet 14 3                    7.73 3.78 2.60 12                    8                      4                      45.3 31.2 14.1

Medina 2010 33 Safflower 7 2                    7.72 3.35 2.66 5                      4                      1                      40.2 31.9 8.3

Medina 2010 36 Alfalfa 12 3                    7.80 4.17 2.36 11                    6                      5                      50.0 28.3 21.7

Medina 2010 44 Other Crops 29 6                    7.75 3.86 2.43 25                    16                    9                      46.3 29.1 17.2

Medina 2010 53 Peas 1 0                    7.72 4.52 2.88 1                      1                      0                      54.2 34.6 19.6

Medina 2010 57 Herbs 1 0                    7.74 4.93 2.38 1                      1                      1                      59.2 28.6 30.6

Medina 2010 58 Clover Wildflowers 5 1                    7.77 4.93 2.67 5                      3                      3                      59.1 32.0 27.1

Medina 2010 61 Fallow Idle Cropland 79392 17,656         7.78 4.39 2.43 77,437           42,951           34,486           52.6 29.2 23.4

Medina 2010 67 Peaches 54 12                  7.59 3.61 2.85 43                    34                    9                      43.4 34.2 9.2

Medina 2010 74 Pecans 313 70                  7.76 4.78 2.58 333                 180                 153                 57.4 30.9 26.4

Medina 2010 205 Triticale 184 41                  7.80 4.58 2.62 188                 107                 80                    55.0 31.4 23.6

Medina 2010 236 Dbl Crop WinWht Sorghum 32 7                    7.87 2.67 2.43 19                    17                    2                      32.0 29.1 2.9

Medina 2010 238 Dbl Crop WinWht Cotton 213 47                  7.84 3.66 2.39 173                 113                 60                    43.9 28.7 15.2

Medina 2010 243 Cabbage 2 0                    7.83 3.95 2.19 2                      1                      1                      47.4 26.3 21.1

Total 114,139       432,167         285,825         146,341         47.5 30.2 17.3

No fallow/idle 96,483         354,730         242,875         111,856         

Medina 2011 1 Corn 110599 24,597         9.86 4.38 1.20 107,723         29,425           78,298           52.6 14.4 38.2

Medina 2011 2 Cotton 158529 35,256         9.86 3.95 1.20 139,436         42,154           97,282           47.5 14.3 33.1

Medina 2011 4 Sorghum 44321 9,857            9.85 3.14 1.18 30,964           11,615           19,349           37.7 14.1 23.6

Medina 2011 6 Sunflower 3768 838               9.88 3.46 1.22 2,900              1,021              1,880              41.5 14.6 26.9

Medina 2011 10 Peanuts 7 2                    9.82 6.06 1.16 9                      2                      8                      72.7 14.0 58.8

Medina 2011 23 Spring Wheat 4751 1,057            9.88 4.17 1.15 4,403              1,215              3,189              50.0 13.8 36.2

Medina 2011 24 Winter Wheat 47065 10,467         9.88 3.30 1.18 34,561           12,401           22,161           39.6 14.2 25.4

Medina 2011 27 Rye 203 45                  9.89 3.16 1.08 143                 49                    94                    37.9 13.0 24.9

Medina 2011 28 Oats 12801 2,847            9.85 3.34 1.18 9,507              3,371              6,136              40.1 14.2 25.9

Medina 2011 36 Alfalfa 2 0                    9.79 4.54 1.23 2                      1                      1                      54.5 14.8 39.8

Medina 2011 42 Dry Beans 73 16                  9.85 4.97 1.17 81                    19                    62                    59.7 14.0 45.7

Medina 2011 44 Other Crops 2 0                    9.86 3.36 1.17 1                      1                      1                      40.3 14.0 26.3

Medina 2011 47 Misc Vegs & Fruits 90 20                  9.82 3.83 1.16 77                    23                    53                    46.0 13.9 32.0

Medina 2011 61 Fallow Idle Cropland 105221 23,401         9.88 3.22 1.14 75,466           26,565           48,901           38.7 13.6 25.1

Medina 2011 74 Pecans 26 6                    9.82 5.75 1.21 33                    7                      26                    69.0 14.5 54.5

Medina 2011 205 Triticale 29 6                    9.79 4.57 1.19 29                    8                      22                    54.8 14.3 40.5

Medina 2011 211 Olives 5 1                    9.86 3.56 1.10 4                      1                      3                      42.8 13.2 29.6

Medina 2011 225 Dbl Crop WinWht Corn 152 34                  9.82 4.53 1.21 153                 41                    112                 54.3 14.6 39.8

Medina 2011 236 Dbl Crop WinWht Sorghum 319 71                  9.85 2.94 1.18 208                 83                    125                 35.2 14.1 21.1

Medina 2011 238 Dbl Crop WinWht Cotton 692 154               9.79 3.21 1.21 493                 186                 308                 38.5 14.5 24.0

Medina 2011 243 Cabbage 3 1                    9.89 2.84 1.10 2                      1                      1                      34.0 13.2 20.9

Total 108,675       406,197         128,187         278,010         47.0 14.1 33.0

No fallow/idle 85,274         330,731         101,622         229,110         
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COUNTY YEAR CDL_NUM CDL_NAME PIXELS ACRES ETr (ft) ET (ft) PPT (ft) ET (ac-ft) PPT (ac-ft) NET ET (ac-ft) ET (in) PPT (in) NET ET (in)

Ochiltree 2010 1 Corn 96908 21,552         8.43 5.08 2.39 109,539         51,429           58,110           61.0 28.6 32.4

Ochiltree 2010 2 Cotton 125905 28,001         8.31 4.05 2.35 113,480         65,824           47,656           48.6 28.2 20.4

Ochiltree 2010 4 Sorghum 145972 32,463         8.19 3.97 2.26 128,864         73,216           55,647           47.6 27.1 20.6

Ochiltree 2010 5 Soybeans 7535 1,676            8.45 4.89 2.44 8,199              4,086              4,113              58.7 29.3 29.5

Ochiltree 2010 6 Sunflower 705 157               8.42 4.02 2.43 631                 380                 250                 48.3 29.1 19.1

Ochiltree 2010 10 Peanuts 38 8                    8.53 4.96 2.35 42                    20                    22                    59.5 28.2 31.3

Ochiltree 2010 24 Winter Wheat 711867 158,315       8.23 3.80 2.28 602,032         360,598         241,434         45.6 27.3 18.3

Ochiltree 2010 26 Dbl Crop WinWht Soybeans 597 133               8.49 5.35 2.43 710                 323                 387                 64.2 29.2 35.0

Ochiltree 2010 27 Rye 12 3                    8.14 3.69 2.29 10                    6                      4                      44.3 27.5 16.8

Ochiltree 2010 28 Oats 812 181               8.13 3.35 2.20 604                 398                 207                 40.2 26.4 13.7

Ochiltree 2010 29 Millet 1 0                    8.54 5.05 2.31 1                      1                      1                      60.7 27.8 32.9

Ochiltree 2010 33 Safflower 181 40                  8.13 3.57 2.22 144                 90                    54                    42.9 26.7 16.2

Ochiltree 2010 36 Alfalfa 1842 410               8.36 5.76 2.41 2,360              986                 1,375              69.1 28.9 40.3

Ochiltree 2010 61 Fallow Idle Cropland 203168 45,183         8.18 3.18 2.27 143,726         102,466         41,260           38.2 27.2 11.0

Ochiltree 2010 74 Pecans 15 3                    8.37 5.31 2.32 18                    8                      10                    63.7 27.9 35.8

Ochiltree 2010 205 Triticale 170 38                  8.20 3.89 2.29 147                 87                    60                    46.6 27.5 19.1

Ochiltree 2010 225 Dbl Crop WinWht Corn 334 74                  8.37 5.01 2.59 372                 193                 180                 60.1 31.1 29.0

Ochiltree 2010 236 Dbl Crop WinWht Sorghum 1649 367               8.28 4.75 2.33 1,743              855                 888                 57.0 28.0 29.1

Ochiltree 2010 238 Dbl Crop WinWht Cotton 1962 436               8.37 5.14 2.46 2,244              1,074              1,170              61.7 29.5 32.2

Total 289,040       1,114,865     662,037         452,828         53.6 28.2 25.4

No fallow/idle 243,857       971,139         559,572         411,568         

Ochiltree 2011 1 Corn 121474 27,015         10.22 6.15 0.76 166,224         20,604           145,620         73.8 9.2 64.7

Ochiltree 2011 2 Cotton 84723 18,842         10.15 4.50 0.77 84,814           14,523           70,292           54.0 9.2 44.8

Ochiltree 2011 4 Sorghum 256549 57,055         9.96 3.56 0.80 202,878         45,599           157,279         42.7 9.6 33.1

Ochiltree 2011 5 Soybeans 11449 2,546            10.26 5.66 0.76 14,401           1,941              12,461           67.9 9.1 58.7

Ochiltree 2011 10 Peanuts 1 0                    9.92 5.48 0.79 1                      0                      1                      65.8 9.5 56.3

Ochiltree 2011 24 Winter Wheat 621038 138,115       10.01 3.88 0.79 536,537         109,089         427,448         46.6 9.5 37.1

Ochiltree 2011 27 Rye 43 10                  9.83 3.25 0.81 31                    8                      23                    39.0 9.8 29.3

Ochiltree 2011 28 Oats 3 1                    10.19 3.88 0.77 3                      1                      2                      46.5 9.2 37.3

Ochiltree 2011 36 Alfalfa 3070 683               10.28 7.01 0.77 4,784              527                 4,257              84.1 9.3 74.8

Ochiltree 2011 61 Fallow Idle Cropland 202546 45,045         9.95 3.42 0.80 153,856         36,260           117,597         41.0 9.7 31.3

Ochiltree 2011 74 Pecans 9 2                    10.05 5.55 0.79 11                    2                      10                    66.6 9.5 57.0

Ochiltree 2011 205 Triticale 1941 432               10.13 3.75 0.77 1,619              332                 1,287              45.0 9.2 35.8

Ochiltree 2011 225 Dbl Crop WinWht Corn 1599 356               10.28 6.80 0.75 2,416              268                 2,149              81.5 9.0 72.5

Ochiltree 2011 236 Dbl Crop WinWht Sorghum 5565 1,238            10.17 6.51 0.77 8,057              958                 7,099              78.1 9.3 68.8

Ochiltree 2011 238 Dbl Crop WinWht Cotton 1256 279               10.25 5.91 0.78 1,650              217                 1,433              70.9 9.3 61.5

Total 291,618       1,177,284     230,327         946,957         60.2 9.4 50.9

No fallow/idle 246,573       1,023,427     194,068         829,360         
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COUNTY YEAR CDL_NUM CDL_NAME PIXELS ACRES ETr (ft) ET (ft) PPT (ft) ET (ac-ft) PPT (ac-ft) NET ET (ac-ft) ET (in) PPT (in) NET ET (in)

Wharton 2010 1 Corn 416044 92,526         6.97 3.70 3.48 342,734         321,908         20,826           44.5 41.7 2.7

Wharton 2010 2 Cotton 270276 60,108         6.98 3.02 3.49 181,360         209,480         (28,120)          36.2 41.8 0.0

Wharton 2010 3 Rice 211530 47,043         6.96 4.41 3.22 207,505         151,610         55,895           52.9 38.7 14.3

Wharton 2010 4 Sorghum 94433 21,001         6.93 3.54 3.50 74,390           73,448           942                 42.5 42.0 0.5

Wharton 2010 5 Soybeans 54728 12,171         6.98 3.18 3.43 38,656           41,771           (3,115)            38.1 41.2 0.0

Wharton 2010 6 Sunflower 5 1                    7.03 5.13 3.20 6                      4                      2                      61.5 38.4 23.1

Wharton 2010 24 Winter Wheat 3370 749               6.97 3.89 3.45 2,916              2,585              331                 46.7 41.4 5.3

Wharton 2010 28 Oats 377 84                  6.93 3.96 3.14 332                 263                 69                    47.5 37.7 9.8

Wharton 2010 49 Onions 1 0                    6.88 4.26 4.36 1                      1                      (0)                    51.1 52.3 0.0

Wharton 2010 57 Herbs 556 124               6.91 2.54 4.10 314                 507                 (193)                30.5 49.2 0.0

Wharton 2010 61 Fallow Idle Cropland 940882 209,247       6.97 4.32 3.33 904,251         696,710         207,542         51.9 40.0 11.9

Wharton 2010 74 Pecans 129 29                  7.01 4.93 3.23 141                 93                    49                    59.1 38.8 20.4

Wharton 2010 92 Aquaculture 6068 1,349            6.83 3.90 3.69 5,266              4,981              285                 46.8 44.3 2.5

Wharton 2010 239 Dbl Crop Soybeans Cotton 869 193               6.96 2.36 3.30 456                 638                 (183)                28.3 39.6 0.0

Total 444,626       1,758,328     1,503,999     254,329         45.5 41.9 6.5

No fallow/idle 235,379       854,077         807,289         46,788           

Wharton 2011 1 Corn 354665 78,876         8.73 3.98 1.44 313,685         113,458         200,227         47.7 17.3 30.5

Wharton 2011 2 Cotton 422430 93,946         8.71 3.57 1.45 335,064         136,018         199,046         42.8 17.4 25.4

Wharton 2011 3 Rice 216696 48,192         8.84 6.36 1.42 306,634         68,273           238,362         76.4 17.0 59.4

Wharton 2011 4 Sorghum 50218 11,168         8.64 3.90 1.48 43,598           16,533           27,066           46.8 17.8 29.1

Wharton 2011 5 Soybeans 15484 3,444            8.78 3.86 1.42 13,282           4,897              8,385              46.3 17.1 29.2

Wharton 2011 24 Winter Wheat 25823 5,743            8.82 4.52 1.41 25,947           8,103              17,844           54.2 16.9 37.3

Wharton 2011 26 Dbl Crop WinWht Soybeans 972 216               8.83 4.69 1.44 1,014              312                 702                 56.3 17.3 39.0

Wharton 2011 27 Rye 546 121               8.53 4.96 1.58 602                 192                 411                 59.5 18.9 40.6

Wharton 2011 28 Oats 569 127               8.89 4.44 1.43 562                 182                 380                 53.3 17.2 36.1

Wharton 2011 44 Other Crops 27 6                    8.83 4.97 1.43 30                    9                      21                    59.6 17.2 42.4

Wharton 2011 57 Herbs 527 117               8.78 4.14 1.43 485                 167                 317                 49.6 17.1 32.5

Wharton 2011 61 Fallow Idle Cropland 957931 213,039       8.82 4.95 1.43 1,053,701     305,203         748,498         59.4 17.2 42.2

Wharton 2011 74 Pecans 870 193               8.59 6.42 1.58 1,242              306                 936                 77.0 19.0 58.0

Wharton 2011 92 Aquaculture 9309 2,070            8.56 7.44 1.50 15,405           3,108              12,297           89.3 18.0 71.3

Wharton 2011 239 Dbl Crop Soybeans Cotton 227 50                  8.59 3.67 1.45 185                 73                    112                 44.0 17.4 26.6

Total 457,308       2,111,437     656,832         1,454,605     57.5 17.5 40.0

No fallow/idle 244,270       1,057,736     351,629         706,107         
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Appendix I. Annual water balance data from ET Demands Model 

 

COUNTY Etd Etd_name Year PMETo ETact ETpot PPT Irrigation Runoff DPerc NIWR CDL NIWR

in in in in in in in in acres ac-ft

Brazos 3 Alfalfa Hay 2010 67.9 63.3 63.4 7.6 52.7 0.1 5.3 55.8 2            8              

Brazos 4 Grass Hay 2010 67.9 44.2 44.9 7.6 36.6 0.0 4.5 37.4 -           

Brazos 7 Field Corn 2010 67.9 33.3 35.2 7.6 24.8 0.2 1.8 25.9 7,074     15,252      

Brazos 58 Cotton 2010 67.9 39.5 41.0 7.6 31.9 0.0 2.8 31.9 11,341    30,176      

Brazos 60 Sorghum 2010 67.9 40.2 41.9 7.6 31.0 0.0 2.9 32.6 969        2,630       

2010 Total 48,066      

Brazos 3 Alfalfa Hay 2011 83.6 81.6 81.6 5.0 76.0 0.0 7.3 76.6 -           

Brazos 4 Grass Hay 2011 83.6 57.0 58.0 5.0 52.2 0.0 5.1 52.1 6            27            

Brazos 7 Field Corn 2011 83.6 44.3 47.4 5.0 40.6 0.1 2.9 39.4 3,462     11,354      

Brazos 58 Cotton 2011 83.6 52.3 54.3 5.0 46.4 0.0 4.2 47.4 18,833    74,353      

Brazos 60 Sorghum 2011 83.6 50.2 53.1 5.0 45.5 0.0 3.7 45.2 1,308     4,931       

2011 Total 90,666      

Cameron 4 Grass Hay 2010 68.3 40.2 41.6 8.2 32.4 0.0 3.1 32.0 -           

Cameron 7 Field Corn 2010 68.3 31.1 33.5 8.2 23.3 0.0 1.8 22.9 16050 30,611      

Cameron 58 Cotton 2010 68.3 34.8 36.8 8.2 26.9 0.0 3.2 27.1 64087 144,775    

Cameron 60 Sorghum 2010 68.3 36.0 38.5 8.2 26.9 0.1 2.7 27.9 103119 239,576    

2010 Total 414,963    

Cameron 4 Grass Hay 2011 75.0 42.3 44.5 3.7 37.0 0.0 3.7 38.6 73 233          

Cameron 7 Field Corn 2011 75.0 32.6 35.8 3.7 27.9 0.0 2.6 28.8 7422 17,839      

Cameron 58 Cotton 2011 75.0 36.3 39.1 3.7 31.7 0.0 3.3 32.7 86274 234,866    

Cameron 60 Sorghum 2011 75.0 36.8 40.5 3.7 34.0 0.0 3.3 33.3 56085 155,506    

2011 Total 408,443    

Carson 3 Alfalfa Hay 2010 72.7 65.3 66.2 7.5 59.7 0.0 5.2 57.8 445        2,143       

Carson 4 Grass Hay 2010 72.7 59.4 60.0 7.5 51.6 0.0 4.2 51.9 -           

Carson 7 Field Corn 2010 72.7 47.6 49.6 7.5 39.4 0.0 2.8 40.1 17,112    57,167      

Carson 13 Winter Grain 2010 72.7 40.7 44.6 7.5 31.4 0.0 1.7 33.2 93,914    259,986    

Carson 58 Cotton 2010 72.7 44.2 46.0 7.5 35.3 0.0 3.3 36.7 48,596    148,722    

Carson 60 Sorghum 2010 72.7 47.8 49.7 7.5 40.6 0.0 3.3 40.3 11,922    40,057      

2010 Total 508,076    

Carson 3 Alfalfa Hay 2011 84.8 76.3 77.3 2.2 71.4 0.0 6.7 74.1 245        1,512       

Carson 4 Grass Hay 2011 84.8 69.6 70.9 2.2 68.3 0.0 5.8 67.4 -           

Carson 7 Field Corn 2011 84.8 55.7 58.4 2.2 52.5 0.0 3.8 53.5 17,263    76,986      

Carson 13 Winter Grain 2011 84.8 46.3 50.8 2.2 45.7 0.0 3.0 44.1 73,507    270,188    

Carson 58 Cotton 2011 84.8 47.5 50.8 2.2 45.4 0.0 3.5 45.3 54,046    204,035    

Carson 60 Sorghum 2011 84.8 52.5 56.0 2.2 48.9 0.0 4.1 50.3 35,273    147,782    

2011 Total 700,503    

Dawson 3 Alfalfa Hay 2010 72.9 63.8 64.4 6.1 59.7 0.0 5.5 57.8 1,265     6,088       

Dawson 4 Grass Hay 2010 72.9 54.2 55.2 6.1 48.2 0.0 4.1 48.1 -           

Dawson 13 Winter Grain 2010 72.9 41.8 45.3 6.1 33.3 0.0 2.8 35.7 16,918    50,382      

Dawson 58 Cotton 2010 72.9 42.8 44.7 6.1 36.4 0.0 3.5 36.7 359,205  1,100,012 

Dawson 60 Sorghum 2010 72.9 43.7 46.1 6.1 38.1 0.0 3.2 37.7 1,555     4,881       

2010 Total 1,161,363 

Dawson 3 Alfalfa Hay 2011 87.8 78.9 79.8 1.1 75.0 0.0 7.4 77.8 397        2,573       

Dawson 4 Grass Hay 2011 87.8 66.4 68.2 1.1 65.5 0.0 5.9 65.3 -           

Dawson 13 Winter Grain 2011 87.8 45.5 50.6 1.1 45.7 0.0 3.6 44.4 824        3,053       

Dawson 58 Cotton 2011 87.8 59.0 61.1 1.1 56.7 0.0 5.4 57.9 366,047  1,765,391 

Dawson 60 Sorghum 2011 87.8 50.0 53.8 1.1 48.7 0.0 4.6 48.9 632        2,576       

2011 Total 1,773,593 
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COUNTY Etd Etd_name Year PMETo ETact ETpot PPT Irrigation Runoff DPerc NIWR CDL NIWR

in in in in in in in in acres ac-ft

Hale 3 Alfalfa Hay 2010 69.6 60.4 61.0 6.3 53.6 0.0 5.4 54.2 1,295     5,846       

Hale 4 Grass Hay 2010 69.6 54.2 54.8 6.3 48.0 0.0 4.2 47.9 -           

Hale 7 Field Corn 2010 69.6 42.6 44.5 6.3 36.4 0.0 2.6 36.2 37,758    113,974    

Hale 13 Winter Grain 2010 69.6 39.3 42.3 6.3 30.8 0.0 2.4 33.0 56,210    154,496    

Hale 58 Cotton 2010 69.6 39.2 41.4 6.3 31.2 0.0 2.9 32.9 288,167  790,552    

Hale 60 Sorghum 2010 69.6 41.0 43.0 6.3 34.5 0.0 3.3 34.7 8,187     23,649      

2010 Total 1,088,518 

Hale 3 Alfalfa Hay 2011 84.3 75.6 76.4 1.5 74.8 0.0 7.4 74.0 978        6,033       

Hale 4 Grass Hay 2011 84.3 67.2 68.5 1.5 64.6 0.0 5.8 65.6 -           

Hale 7 Field Corn 2011 84.3 53.7 56.3 1.5 50.8 0.0 4.4 52.1 28,871    125,440    

Hale 13 Winter Grain 2011 84.3 44.3 49.1 1.5 43.4 0.0 3.4 42.8 14,338    51,139      

Hale 58 Cotton 2011 84.3 45.1 48.5 1.5 44.3 0.0 3.3 43.6 363,937  1,321,347 

Hale 60 Sorghum 2011 84.3 49.0 52.6 1.5 45.8 0.0 4.4 47.4 1,601     6,328       

2011 Total 1,510,286 

Medina 4 Grass Hay 2010 67.9 42.9 44.2 6.7 34.2 0.0 3.2 36.2 3            8              

Medina 7 Field Corn 2010 67.9 33.1 35.4 6.7 26.7 0.0 2.0 26.4 33,117    72,888      

Medina 13 Winter Grain 2010 67.9 31.1 35.6 6.7 21.2 0.1 1.6 24.4 22,609    46,030      

Medina 58 Cotton 2010 67.9 39.3 41.1 6.7 32.3 0.0 3.0 32.6 12,336    33,515      

Medina 60 Sorghum 2010 67.9 40.2 42.3 6.7 31.5 0.0 3.3 33.7 19,444    54,598      

2010 Total 207,039    

Medina 4 Grass Hay 2011 82.2 51.9 53.7 3.6 49.9 0.0 4.5 48.3 0            2              

Medina 7 Field Corn 2011 82.2 40.8 43.9 3.6 37.3 0.0 2.9 37.2 24,597    76,309      

Medina 13 Winter Grain 2011 82.2 31.6 38.3 3.6 28.4 0.0 2.2 28.1 10,467    24,477      

Medina 58 Cotton 2011 82.2 46.2 48.9 3.6 42.0 0.0 3.9 42.6 35,256    125,230    

Medina 60 Sorghum 2011 82.2 47.5 50.8 3.6 44.5 0.0 3.8 43.9 9,857     36,087      

2011 Total 262,105    

Ochiltree 3 Alfalfa Hay 2010 67.8 59.1 59.7 7.4 48.0 0.2 4.8 51.9 410        1,773       

Ochiltree 4 Grass Hay 2010 67.8 55.0 55.6 7.4 47.7 0.0 4.1 47.7 -           

Ochiltree 7 Field Corn 2010 67.8 46.2 47.7 7.4 37.6 0.2 2.6 38.9 21,552    69,942      

Ochiltree 13 Winter Grain 2010 67.8 37.1 39.5 7.4 29.2 0.2 2.4 30.0 158,315  395,234    

Ochiltree 58 Cotton 2010 67.8 41.8 43.1 7.4 33.6 0.1 3.2 34.6 28,001    80,707      

Ochiltree 60 Sorghum 2010 67.8 46.7 48.4 7.4 40.7 0.1 3.7 39.6 32,463    107,126    

2010 Total 654,782    

Ochiltree 3 Alfalfa Hay 2011 78.6 71.1 71.9 2.4 69.8 0.0 6.2 68.7 683        3,911       

Ochiltree 4 Grass Hay 2011 78.6 64.0 65.2 2.4 61.8 0.0 5.4 61.6 -           

Ochiltree 7 Field Corn 2011 78.6 52.7 55.1 2.4 49.7 0.0 3.3 50.3 27,015    113,263    

Ochiltree 13 Winter Grain 2011 78.6 43.3 46.8 2.4 40.3 0.0 3.5 40.8 138,115  470,121    

Ochiltree 58 Cotton 2011 78.6 43.9 46.6 2.4 41.3 0.0 3.3 41.4 18,842    65,077      

Ochiltree 60 Sorghum 2011 78.6 47.6 50.8 2.4 43.3 0.0 4.3 45.2 57,055    215,047    

2011 Total 867,420    

Wharton 4 Grass Hay 2010 60.2 39.6 40.0 8.9 28.7 0.0 3.3 31.1 -           

Wharton 7 Field Corn 2010 60.2 29.0 30.5 8.9 17.8 0.1 1.6 20.1 92,526    155,158    

Wharton 58 Cotton 2010 60.2 33.8 35.0 8.9 23.0 0.0 2.5 25.1 60,108    125,515    

Wharton 60 Sorghum 2010 60.2 33.9 35.1 8.9 24.7 0.0 2.7 25.2 21,001    44,105      

2010 Total 324,778    

Wharton 4 Grass Hay 2011 75.0 47.7 49.1 4.2 44.0 0.0 4.0 43.5 -           

Wharton 7 Field Corn 2011 75.0 37.6 39.9 4.2 34.5 0.0 2.5 33.4 78,876    219,788    

Wharton 58 Cotton 2011 75.0 43.8 45.8 4.2 40.4 0.0 3.3 39.6 93,946    309,688    

Wharton 60 Sorghum 2011 75.0 41.7 44.4 4.2 37.8 0.0 3.8 37.7 11,168    35,068      

2011 Total 564,545    
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Appendix J. Major crop percentages by county and year extracted from the CDL.  
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Appendix K. TWDB staff comments on the February 24, 2017 

 

page 1, paragraph 2 (and elsewhere throughout) 

“…compare these results to the TWDB’s Historical Water Use Survey–the current methodology used 
annually at the county-level.” This statement, and other similar statements and/or references to the 
HWUS throughout the draft report, inaccurately describes the annual process by which TWDB staff 
estimate agricultural irrigation water use for every county in Texas. The first revised scope of work (Task 
6, Milestone 2) of the contract states that “the final goal of this project is to identify tools with the ability 
to improve upon the current estimation methodology used by the Texas Water Development Board in 
developing annual irrigation water use estimates…” It is therefore essential that the current methodology 
be understood and described accurately within this report. Please consult the online description of the 
methodology and/or confer with TWDB staff to correct all references to the Historical Water Use Survey 
and related errors throughout.  

See also page 4, section 2.2; page 49, paragraphs 1 and 2; page 51, section 6.3; page 52, section 6.4; page 
67, paragraph 2; and all associated tables and figures that incorrectly reference the Historical Water Use 
Survey. 

Response: There was considerable confusion between the nomenclature of Historical Water Use 
Estimates, Historical Water Use Surveys (HWUS) and Irrigation Water Use Estimates (IWUE). Any 
reference to HWUS was replaced with IWUE which were extracted for 2010 and 2011 from 

http://www2.twdb.texas.gov/ReportServerExt/Pages/ReportViewer.aspx?%2fWU%2fSumFinal_CountyReport&rs:Co
mmand=Render 

Furthermore, the methodology to produce IWUE (Section 2.2) was edited to currently 2015 reported data 
– all reference to MODIS methodology was removed as it was not fully adopted by TWDB.  

page 56, paragraph 4 

Task 5 (Implementation of most feasible ET algorithms at select sites) in the first revised scope of work 
states “for each county, we will compute an annual water use estimate of 2010 (wet) and 2011 (dry).” 
The report directly contradicts this statement on page 56: “Lastly, this pilot study was to assess feasibility 
and not an actual water-use assessment in the select counties.” Please correct or remove this error. 

Response: error removed and sentence edited.  

page 58, Table 14 

The Texas Alliance for Water Conservation (TAWC) is not a groundwater conservation district (GCD). 

Response: table 14 heading changed to account for TAWC as a non-GCD source of data.  

page 71, paragraph 3 

“In summary, we fully believe the state of Texas has the need, even the obligation to implement a 
statewide irrigation water use program and satellite ET is the only method available.” As is noted above, 
this sentence misinterprets the TWDB’s existing agricultural irrigation water use estimation program and 
misrepresents the goal of this project which is to investigate the feasibility of using remote sensing to 
augment the TWDB’s current methodology. 

http://www2.twdb.texas.gov/ReportServerExt/Pages/ReportViewer.aspx?%2fWU%2fSumFinal_CountyReport&rs:Command=Render
http://www2.twdb.texas.gov/ReportServerExt/Pages/ReportViewer.aspx?%2fWU%2fSumFinal_CountyReport&rs:Command=Render
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Response: sentence edited to read: “In summary, we fully believe the state of Texas has the need and 
abilities implement remote sensing into their state-wide irrigation water use estimation program.” 
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