# Final Report Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer

#### **Prepared** by

Steven C. Young, Ph.D., P.E., P.G. Tom Ewing, Ph.D., P.G Scott Hamlin, Ph.D., P.G. Ernie Baker, P.G. Daniel Lupton



**Prepared for:** 

**Texas Water Development Board** P.O. Box 13231, Capitol Station Austin, Texas 78711-3231



2012 JUN 29 AM 10: 18

AGATARTSININGA TOARTHOU

**June 2012** 

1004831113\_Final Report

# Final Report Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer

### Prepared by

Steven C. Young, Ph.D., P.E., P.G. Tom Ewing, Ph.D., P.G Scott Hamlin, Ph.D., P.G. Ernie Baker, P.G. Daniel Lupton



**Prepared** for:

**Texas Water Development Board** P.O. Box 13231, Capitol Station Austin, Texas 78711-3231



Texas Water Control Texas Water Development Board

**Final Report** Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer

Steven C. Young, Ph.D., P.E., P.G. **Daniel Lupton INTERA Incorporated** 

Tom Ewing, Ph.D., P.G. **Frontera Exploration Consultants** 

Scot Hamlin, Ph.D., P.G

Ernie Baker, P.G.

June 2012

## **Geoscientist seal**

This report documents the work of the following Licensed Geoscientists:

Steve C. Young, P.G.

Dr. Young was the Project Manager for the work and was responsible for oversight on the project and the final interpretation of the lithologic and water quality analysis of the geophysical logs.



Thomas E Ewing, P.G. #1320

Dr. Ewing was primarily responsible for developing the chronostratigraphy of the Gulf Coast Aquifer.

This page is intentionally blank.

# **Table of Contents**

| Exec | utive                                    | Summary                                                     | xiii |  |  |  |  |  |
|------|------------------------------------------|-------------------------------------------------------------|------|--|--|--|--|--|
| 1.0  | Intro                                    | duction                                                     |      |  |  |  |  |  |
|      | 1.1                                      | Approach for Defining Stratigraphy                          |      |  |  |  |  |  |
|      | 1.2                                      | Approach for Defining Lithology and Generating Sand Maps    |      |  |  |  |  |  |
| 2.0  | Gulf                                     | Coast Aquifer Geologic Setting                              |      |  |  |  |  |  |
|      | 2.1                                      | Overview                                                    |      |  |  |  |  |  |
|      | 2.2                                      | Structural Features                                         |      |  |  |  |  |  |
|      |                                          | 2.2.1 Faulting and Subsidence                               |      |  |  |  |  |  |
|      |                                          | 2.2.2 Salt Domes in Southeast Texas and Southwest Louisiana |      |  |  |  |  |  |
|      |                                          | 2.2.2.1 Salt Dome Geology                                   |      |  |  |  |  |  |
|      |                                          | 2.2.2.2 Natural Resources                                   |      |  |  |  |  |  |
|      |                                          | 2.2.2.3 Groundwater Chemistry                               |      |  |  |  |  |  |
|      | 2.3                                      | Depositional Systems                                        |      |  |  |  |  |  |
|      | 2.4                                      | Depositional History                                        |      |  |  |  |  |  |
| 3.0  | Strat                                    | igraphic and Hydrogeologic Framework                        |      |  |  |  |  |  |
|      | 3.1                                      | Previous Studies                                            |      |  |  |  |  |  |
|      | 3.2                                      | Fleming Group: Oakville and Lagarto Formations              |      |  |  |  |  |  |
|      | 3.3                                      | Goliad Formation                                            |      |  |  |  |  |  |
|      | 3.4                                      | Willis Formation                                            |      |  |  |  |  |  |
|      | 3.5                                      | Lissie Formation                                            |      |  |  |  |  |  |
|      | 3.6                                      | Beaumont Formation                                          |      |  |  |  |  |  |
|      | 3.7                                      | Holocene Deposits                                           |      |  |  |  |  |  |
| 4.0  | Info                                     | mation sources                                              |      |  |  |  |  |  |
|      | 4.1                                      | Geophysical Logs                                            |      |  |  |  |  |  |
|      |                                          | 4.1.1 Resistivity Logs                                      |      |  |  |  |  |  |
|      |                                          | 4.1.2 Spontaneous Potential Logs                            |      |  |  |  |  |  |
|      |                                          | 4.1.3 American Petroleum Institute Format                   |      |  |  |  |  |  |
|      | 4.2                                      | Approach for Obtaining Geophysical Logs                     |      |  |  |  |  |  |
|      |                                          | 4.2.1 Geophysical logs' Sources                             |      |  |  |  |  |  |
|      |                                          | 4.2.2 Geophysical Logs Selected for the Study               |      |  |  |  |  |  |
|      | 4.3                                      | Literature Review                                           |      |  |  |  |  |  |
|      | 4.4                                      | Paleontology Data                                           |      |  |  |  |  |  |
| 5.0  | App                                      | roach for Stratigraphic Interpretation                      |      |  |  |  |  |  |
|      | 5.1                                      | Chronostratigraphic Conceptual Framework                    |      |  |  |  |  |  |
|      | 5.2                                      | Methodology                                                 |      |  |  |  |  |  |
| 6.0  | Gulf                                     | Coast Aquifer Stratigraphy                                  |      |  |  |  |  |  |
| 2.0  | 6.1                                      | Chronostratigraphic Surfaces and Aquifer Boundaries         | 6-1  |  |  |  |  |  |
|      | 6.2 Structural Configuration of Surfaces |                                                             |      |  |  |  |  |  |

| 7.0  | .0 Approach for Lithologic Interpretation |                                                                   |      |  |  |  |  |  |
|------|-------------------------------------------|-------------------------------------------------------------------|------|--|--|--|--|--|
|      | 7.1                                       | Lithology Classification                                          | 7-1  |  |  |  |  |  |
|      | 7.2                                       | Depositional Facies Classification                                |      |  |  |  |  |  |
| 8.0  | Gulf                                      | f Coast Aquifer Lithology                                         | 8-1  |  |  |  |  |  |
|      | 8.1                                       | Sand Thickness and Percent                                        | 8-1  |  |  |  |  |  |
|      |                                           | 8.1.1 Chicot Aquifer                                              |      |  |  |  |  |  |
|      |                                           | 8.1.2 Evangeline Aquifer                                          |      |  |  |  |  |  |
|      |                                           | 8.1.3 Middle Lagarto (Burkeville confining unit)                  |      |  |  |  |  |  |
|      |                                           | 8.1.4 Jasper Aquifer                                              |      |  |  |  |  |  |
|      | 8.2                                       | Depositional Facies                                               |      |  |  |  |  |  |
|      |                                           | 8.2.1 Chicot Aquifer                                              |      |  |  |  |  |  |
|      |                                           | 8.2.2 Evangeline Aquifer                                          |      |  |  |  |  |  |
|      |                                           | 8.2.3 Middle Lagarto Unit (Burkeville confining unit)             |      |  |  |  |  |  |
|      |                                           | 8.2.4 Jasper Aquifer                                              |      |  |  |  |  |  |
| 9.0  | Gulf                                      | f Coast Water Ouality                                             |      |  |  |  |  |  |
|      | 9.1                                       | Terminology                                                       |      |  |  |  |  |  |
|      |                                           | 9.1.1 Fresh and Brackish Groundwater                              |      |  |  |  |  |  |
|      |                                           | 9.1.2 Total Dissolved Solids and Specific Conductivity            |      |  |  |  |  |  |
|      | 9.2                                       | Analysis of Geophysical Logs                                      |      |  |  |  |  |  |
|      |                                           | 9.2.1 Approach                                                    |      |  |  |  |  |  |
|      |                                           | 9.2.2 Results                                                     |      |  |  |  |  |  |
|      | 9.3                                       | Analysis of Water Well Measurements                               |      |  |  |  |  |  |
|      |                                           | 9.3.1 Approach                                                    |      |  |  |  |  |  |
|      |                                           | 9.3.2 Results                                                     |      |  |  |  |  |  |
| 10.0 | Refe                                      | erences                                                           | 10-1 |  |  |  |  |  |
| Appe | ndix 4                                    | A Geophysical Logs Listing, including Location and Use            |      |  |  |  |  |  |
| Appe | ndix l                                    | B Listing of Geophysical Logs Stratigraphic Contacts              |      |  |  |  |  |  |
| Appe | ndix (                                    | C Estimated Total Sand Thickness at Each Geophysical Log Location |      |  |  |  |  |  |

### Appendix D Response TWDB Comments on Draft Report and Responses to Comments

## List of Figures

| Figure 1-1  | Map of the study area showing the locations of the dip-oriented and strike-  |
|-------------|------------------------------------------------------------------------------|
| -           | oriented cross-sections used to develop the stratigraphic surfaces           |
| Figure 2-1  | Map of the Gulf of Mexico basin showing major structural elements and        |
|             | stratigraphic provinces. Modified from Ewing (1991)                          |
| Figure 2-2  | Regional dip-oriented cross section of Cenozoic strata on the northwestern   |
|             | margin of the Gulf of Mexico basin. Modified from Galloway and others        |
|             | (1991) and Sharp and others (1991)                                           |
| Figure 2-3  | Map showing major growth fault zones and shallow salt domes in the           |
|             | onshore part of the Texas coastal zone. Modified from Ewing (1990) and       |
|             | Hamlin (2006)                                                                |
| Figure 2-4  | Schematic cross section showing active surface fault. The fault zone is      |
|             | composed of deformed sediment having high vertical hydraulic                 |
|             | conductivity locally. Aquifer sands are offset across the fault and          |
|             | commonly are thicker on the downthrown side owing to greater                 |
|             | subsidence and sedimentation there. Modified from Verbeek and Clanton        |
|             | (1979)                                                                       |
| Figure 2-5  | Cross section showing typical surface expression of an active fault. The     |
| C           | fault scarp is generally modified by erosion into a subtle topographic step. |
|             | Vegetation changes near the fault line mark the boundary between dryland     |
|             | on the upthrown block and wetland on the downthrown block. Modified          |
|             | from Verbeek and Clanton (1979)                                              |
| Figure 2-6  | Lineation map of the Texas coastal zone in the Houston Embayment area.       |
| C           | Lineations are the surface expressions of faults or fractures (Kreitler,     |
|             | 1976). The entire Texas coastal plain is covered by lineations, although     |
|             | only the more coastward lineations are mapped here. Modified from            |
|             | Fisher and others (1972, 1973) and McGowen and others (1976)                 |
| Figure 2-7  | Map of subsidence and active surface faults in the Houston metropolitan      |
| C           | area. Modified from Holzer (1984) and Shah and Lanning-Rush (2005)           |
| Figure 2-8  | Map showing locations of salt domes in southeast Texas and southwest         |
| C           | Louisiana. Approximate dome sizes, shapes, and depths are shown.             |
|             | Individual salt domes identified by number (Table 1)                         |
| Figure 2-9  | Cross section of Barbers Hill salt dome in Chambers County showing the       |
| C           | salt stock, cap rock mineralogical zones, and enclosing hydrostratigraphic   |
|             | intervals (modified from Hamlin and others, 1988). This cross section has    |
|             | no vertical exaggeration (vertical and horizontal scales are equal). Cap-    |
|             | rock layering is generally more complicated than shown here and varies       |
|             | widely among domes                                                           |
| Figure 2-10 | Regional dip-oriented cross section of the upper Texas Gulf Coast            |
| 8           | showing salt domes and enclosing strata (modified from Hamlin, 1986).        |
|             | Line of section located in Figure 2-8                                        |
| Figure 2-11 | Cross section of Boling salt dome in Wharton County showing salt stock.      |
| 0           | cap rock, and surrounding sediments (modified from Seni and others.          |
|             | 1985). Freshwater sands surround the dome, but muds and thin saline-         |

|                        | water sands overlie the dome. Groundwater salinities are interpreted from resistivity logs (freshwater sands have $>20$ ohm-m resistivity) 2-27 |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2-12            | Map of lower Chicot sand thickness around Barbers Hill salt dome                                                                                |
|                        | (modified from Hamlin and others, 1988). The lower Chicot sand is                                                                               |
|                        | widespread in the Houston area (Wesselman, 1971, 1972; Baker, 1979) 2-27                                                                        |
| Figure 2-13            | Map of surficial sediments and depositional facies around Barbers Hill salt                                                                     |
|                        | dome (from Fisher and others, 1972). Pleistocene channel sand follows                                                                           |
|                        | peripheral low area east of the dome, whereas fine-grained interchannel                                                                         |
| -                      | facies cover the dome crest                                                                                                                     |
| Figure 2-14            | Photograph showing catastrophic collapse and sinkhole that formed over                                                                          |
|                        | Hull salt dome in 2008 in the town of Daisetta, Liberty County, Texas                                                                           |
|                        | (from Horswell, 2009)                                                                                                                           |
| Figure 2-15            | Map of Barbers Hill salt dome showing locations of storage caverns in the                                                                       |
|                        | salt stock and brine disposal wells in the cap rock as they existed in 1984                                                                     |
|                        | (modified from Seni and others, 1984c)                                                                                                          |
| Figure 2-16            | Cross section showing storage caverns and brine disposal wells at Barbers                                                                       |
|                        | Hill salt dome (modified from Seni and others, 1984c). Line of section                                                                          |
|                        | located in Figure 8. Storage cavern locations, depths, and dimensions are                                                                       |
|                        | accurate, but geometric details are generalized. Storage cavern geometries                                                                      |
|                        | are commonly delineated using sonar, and a sonar survey was available for                                                                       |
| 5. 0.15                | one cavern on this section (third cavern from the right)2-31                                                                                    |
| Figure 2-17            | Cross section of Barbers Hill salt dome showing salt stock, cap rock, and                                                                       |
|                        | surrounding sediments (modified from Hamlin and others, 1988).                                                                                  |
|                        | Groundwater salinities are interpreted from resistivity logs. Sands become                                                                      |
|                        | thinner and more saline with proximity to the dome. Sand thickness of the                                                                       |
| <b>F</b> ' <b>2</b> 10 | lower Chicot sand is shown in Figure 2-12.                                                                                                      |
| Figure 2-18            | Hydrograph of a long-term cap rock injection test at Barbers Hill salt                                                                          |
|                        | dome showing brine-level changes in a cap rock observation well during                                                                          |
|                        | controlled brine disposal in two other cap rock wells (from Hamlin and                                                                          |
|                        | others, 1988). Water levels in nearby Chicot aquifer and Evangeline                                                                             |
|                        | aquifer water wells are around 100 feet below sea level or similar to cap                                                                       |
|                        | rock brine levels when no disposal is occurring. However, water levels in                                                                       |
| E                      | nearby water wells were not monitored during the injection test                                                                                 |
| Figure 2-19            | Resistivity map of the lower Unicot aquifer at Barbers Hill salt dome                                                                           |
|                        | (modified from Hamin and others, 1988). Water wells completed in this                                                                           |
|                        | lower Chicol sand are also snown along with total dissolved solids                                                                              |
|                        | demo flamba delineate a high aclinity plume extending every from the solt                                                                       |
|                        | dome franks defineate a mgn-samily plume extending away from the sail                                                                           |
| Eigura 2 20            | Cohematic diagram showing a fluvial denositional system with its                                                                                |
| Figure 2-20            | schematic diagram showing a nuvial depositional system with its                                                                                 |
|                        | Modified from Calloway and others (1070)                                                                                                        |
| Figure 2 21            | Schematic drawing of Quaternary denositional systems of the Taxas                                                                               |
| Figure 2-21            | Coastal Plain Modified from Winker (1070) and Calloway and others                                                                               |
|                        | (1086)                                                                                                                                          |
|                        | (1700)                                                                                                                                          |

| Figure 2-22  | Positions of principal fluvial-deltaic depocenters and interdeltaic       |             |
|--------------|---------------------------------------------------------------------------|-------------|
|              | shorelines for selected depositional episodes, northwest GOM. Modified    |             |
|              | from Galloway (1989b) and Galloway and others (2000)                      | 2-34        |
| Figure 2-23  | Chronostratigraphic chart of Miocene to Holocene depositional episodes,   |             |
|              | northwest GOM.                                                            | 2-35        |
| Figure 3-1   | Geologic map of the Texas Coastal Plain. Source: Barnes (1992)            | 3-16        |
| Figure 3-2   | Schematic dip cross section showing relationships between outcropping     |             |
|              | formations and subsurface stratigraphy, central coastal plain, Texas.     |             |
|              | Modified from Doering (1956).                                             | 3-17        |
| Figure 3-3   | Schematic cross section of lower Miocene stratigraphy showing             |             |
|              | depositional sequences and lithostratigraphic and biostratigraphic        |             |
|              | boundaries. Source: Galloway and others. (1986)                           | 3-17        |
| Figure 3-4   | Net-sandstone isopach map of the Oakville Formation also showing          |             |
|              | depositional systems. Red dotted line separates updip fluvial systems     |             |
|              | from downdip delta and shore-zone systems. Modified from Galloway         |             |
|              | and others. (1986).                                                       | 3-18        |
| Figure 3-5   | Net-sandstone isopach map of the Lagarto Formation also showing           |             |
| U            | depositional systems. Red dotted line separates updip fluvial systems     |             |
|              | from downdip delta and shore-zone systems. Modified from Galloway         |             |
|              | and others. (1986)                                                        | 3-18        |
| Figure 3-6   | Schematic cross section of middle-upper Miocene stratigraphy showing      |             |
| 0            | depositional sequences and lithostratigraphic and biostratigraphic        |             |
|              | boundaries. From Morton and others. (1988).                               | 3-19        |
| Figure 3-7   | Percent sandstone maps of Goliad and equivalent middle-upper Miocene      |             |
| 8            | sequences. From Hoel (1982) and Morton and others. (1988).                |             |
| Figure 3-8   | Sand percent map of the Willis Formation southeast Texas and south        |             |
| i iguie 5 0  | Louisiana Modified from Weiss (1992)                                      | 3-21        |
| Figure 3-9   | Sand percent map of the Lissie Formation, southeast Texas and south       |             |
| i iguie 5 y  | Louisiana. Modified from Weiss (1992).                                    | 3-21        |
| Figure 3-10  | Simplified map of surface sediment types covering Matagorda County to     |             |
| inguie 5 10  | the Louisiana border showing Pleistocene (Beaumont Formation) and         |             |
|              | Holocene deposits Modified from Fisher and others (1972–1973) and         |             |
|              | McGowen and others (1976a b)                                              | 3-22        |
| Figure 4-1   | Idealized SP and resistivity curve showing the responses corresponding to |             |
| I iguite i i | alternating sand and clay strata that are saturated with groundwater that |             |
|              | has significant increases in total dissolved concentrations with denth    |             |
|              | Modified from Driscoll (1986)                                             | 4-9         |
| Figure 4-2   | Schematic showing the location of the Kelly Bushing relative to the       | ד י         |
| I Iguie + 2  | ground level and the oil rig                                              | 4-10        |
| Figure 4-3   | Example of a geophysical well log that uses the American Petroleum        | 1 10        |
| I iguie + 5  | Institute format                                                          | 4-10        |
| Figure $4-4$ | Location of the approximately 800 logs used to characterize the           | 1 10        |
| 1 15010 T-T  | stratigraphy and lithology of the northern portion of the Gulf Coast      |             |
|              | Aquifer System                                                            | <u>/_11</u> |
|              |                                                                           | 1 1         |

| Figure 5-1            | Schematic cross section showing small-scale depositional cycles (parasequences) and larger-scale sequence bounded by maximum flooding             |      |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>T</b> : <b>7 2</b> | surfaces.                                                                                                                                         | 5-8  |
| Figure 5-2            | Schematic cross section showing correlation strategies.                                                                                           | 5-8  |
| Figure 5-3            | (b) lithostratigraphic correlation                                                                                                                | 5-9  |
| Figure 6-1            | Stratigraphic column showing correlations among age, geologic formations, hydrogeologic units, paleomarkers, and relative change of coastal onlap | 6-9  |
| Figure 6-2            | Contours for the Oakville geologic unit showing: (a) base elevation and (b) thickness.                                                            | 6-10 |
| Figure 6-3            | Vertical cross-section of the geological units near dip section 9 in Figure 1-1                                                                   | 6-11 |
| Figure 6-4            | Vertical cross-section of the geological units near dip section 7 in Figure 1-1.                                                                  | 6-12 |
| Figure 6-5            | Vertical cross-section of the geological units near dip section 5 in Figure 1-1                                                                   |      |
| Figure 6-6            | Vertical cross-section of the geological units near dip section 3 in Figure 1-1                                                                   | 6-14 |
| Figure 6-7            | Vertical cross-section of the geological units near dip section 1 in Figure                                                                       | 6-15 |
| Figure 6-8            | Vertical cross-section of the geological units near dip section -1 in Figure 1-1                                                                  | 6-16 |
| Figure 6-9            | Vertical cross-section of the geological units near strike section B-B'                                                                           | 6-17 |
| Figure 6-10           | Contours for the lower Lagarto geologic unit showing: (a) base elevation<br>and (b) thickness.                                                    | 6-18 |
| Figure 6-11           | Contours for the Jasper Aquifer showing: (a) base elevation and (b) thickness                                                                     |      |
| Figure 6-12           | Contours for the middle Lagarto Formation, which is associated with the Burkeville Unit, showing: (a) base elevation and (b) thickness,           | 6-20 |
| Figure 6-13           | Contours for the upper Lagarto geologic unit showing: (a) base elevation<br>and (b) thickness.                                                    | 6-21 |
| Figure 6-14           | Contours for the lower Goliad geologic unit showing: (a) base elevation<br>and (b) thickness.                                                     |      |
| Figure 6-15           | Contours for the upper Goliad geologic unit showing: (a) base elevation<br>and (b) thickness                                                      |      |
| Figure 6-16           | Contours for the Evangeline Aquifer showing: (a) base elevation and (b) thickness                                                                 | 6-24 |
| Figure 6-17           | Contours for the Willis geologic unit showing: (a) base elevation and (b) thickness                                                               |      |
| Figure 6-18           | Contours for the Lissie geologic unit showing: (a) base elevation and (b) thickness.                                                              |      |
| Figure 6-19           | Contours for the Beaumont geologic unit showing: (a) base elevation and (b) thickness                                                             | 6-27 |
| Figure 6-20           | Contours for the Chicot Aquifer showing: (a) base elevation and (b) thickness.                                                                    | 6-28 |

| Figure 6-21     | Schematic showing outcrop and subcrop locations of geologic units in a three dimensional block (a) and in a man view (b) | 6 20         |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|--------------|
| Figura 6 22     | Surface geology map from Parnes (1002) showing the estimated locations                                                   | 0-29         |
| Figure 0-22     | of the subcrop of selected geologic upits                                                                                | 6 30         |
| Figure 7 1      | Example calculation of not and percent and from a spontaneous potential                                                  | 0-30         |
| rigule /-1      | (SP) log curve                                                                                                           | 7-6          |
| Figure 7-2      | Example analysis of a geophysical log showing a binary and four-phase                                                    | /-0          |
| riguie 7-2      | classification of lithology (taken from Young and Kelley 2006)                                                           | 7_7          |
| Figure $7_3$    | Example analysis of a geophysical log showing a binary and four-phase                                                    | /-/          |
| riguie 7-5      | classification of lithology (taken from Young and Kelley 2006)                                                           | 7_8          |
| Figure $7_{-}4$ | Example analysis of a geophysical log showing a binary and four-phase                                                    | / 0          |
| I iguic 7-4     | classification of lithology (taken from Young and Kelley 2006)                                                           | 7_0          |
| Figure 8-1      | Man of the Chicot Aquifer showing total sand thickness                                                                   | 7-7<br>8-7   |
| Figure 8-2      | Map of the Beaumont geologic unit showing: (a) percentage sand                                                           | 0-7          |
| Figure 0-2      | coverage and (b) depositional facies                                                                                     | 8-8          |
| Figure 8-3      | Man of the Beaumont geologic unit showing total sand thickness                                                           | 8-0          |
| Figure 8-4      | Map of the Lissie geologic unit showing: (a) percentage sand coverage                                                    | 0-7          |
| Tiguie 0-4      | and (b) depositional facies                                                                                              | 8-10         |
| Figure 8-5      | Man of the Lissie geologic unit showing total sand thickness                                                             | 8-10<br>8-11 |
| Figure 8-6      | Map of the Willis geologic unit showing: (a) percentage sand coverage                                                    | 0-11         |
| riguie 8-0      | and (b) depositional facies                                                                                              | 8-12         |
| Figure 8 7      | Man of the Willis geologic unit showing total and thickness                                                              | 0-12<br>8 13 |
| Figure 8 8      | Map of the Evangeline Aquifer showing total sand thickness                                                               | 0-13<br>8 14 |
| Figure 8-0      | Map of the upper Goliad geologic upit showing: (a) percentage sand                                                       | 0-14         |
| riguie o-y      | coverage and (b) depositional facies                                                                                     | 8-15         |
| Figure 8-10     | Man of the upper Goliad geologic upit showing total sand thickness                                                       | 0-15<br>8-16 |
| Figure 8-11     | Map of the lower Goliad geologic unit showing: (a) percentage sand                                                       | 0-10         |
| riguie o-ri     | coverage and (b) depositional facies                                                                                     | 8-17         |
| Figure 8-12     | Man of the lower Goliad geologic unit showing total sand thickness                                                       | 0-17<br>8_18 |
| Figure 8-13     | Map of the upper L agarto geologic unit showing: (a) percentage sand                                                     | 0 10         |
| I iguie 0 15    | coverage and (b) depositional facies                                                                                     | 8-19         |
| Figure 8-14     | Man of the upper I agarto geologic unit showing total sand thickness                                                     | 0 17<br>8-20 |
| Figure 8-15     | Map of the Burkeville confining unit (middle I agarto geologic unit)                                                     | 0 20         |
| I iguie 0-15    | showing: (a) percentage sand coverage and (b) denositional facies                                                        | 8-21         |
| Figure 8-16     | Man of the Burkeville confining unit (middle I agarto geologic unit)                                                     | 0 21         |
| I iguie o io    | showing total sand thickness                                                                                             | 8-22         |
| Figure 8-17     | Man of the Jasper Aquifer showing total sand thickness                                                                   | 0 22<br>8_23 |
| Figure 8-18     | Map of the lower Lagarto geologic unit showing: (a) percentage sand                                                      | 0-23         |
| liguie o lo     | coverage and (b) depositional facies                                                                                     | 8-24         |
| Figure 8-19     | Man of the lower Lagarto showing total sand thickness                                                                    | 8-25         |
| Figure 8-20     | Man of the Oakville geologic unit showing (a) percentage sand coverage                                                   | 0 23         |
| 1 15010 0 20    | and (b) depositional facies                                                                                              | 8-26         |
| Figure 8-21     | Man of the Oakville geologic unit showing total sand thickness                                                           | 0 20<br>8_27 |
| Figure 9-1      | Specific conductivity of salt solutions (modified from Moore, 1966)                                                      |              |

| Figure 9-2            | Percentage of the Chicot Aquifer estimated to be fresh water with a TDS concentration less than 1,000 ppm, as determined by the analysis of | 0.10  |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------|
| E' 0.2                | geophysical logs.                                                                                                                           | 9-10  |
| Figure 9-3            | TDS sequentiation between 1,000 mms and 2,000 mms as determined by                                                                          |       |
|                       | a TDS concentration between 1,000 ppm and 3,000 ppm, as determined by                                                                       | 0 1 1 |
| <b>F'</b> 0.4         | the analysis of geophysical logs                                                                                                            | 9-11  |
| Figure 9-4            | with a TDS concentration more than 3,000 ppm, as determined by the                                                                          | 0.12  |
|                       | Demonstrations of the Even colling. A quifer estimated to be fresh water with a                                                             | 9-12  |
| Figure 9-5            | TDS concentration loss than 1,000 mm as determined by the analysis of                                                                       |       |
|                       | TDS concentration less than 1,000 ppm, as determined by the analysis of                                                                     | 0.12  |
| <b>F</b> ' 0 (        | geophysical logs.                                                                                                                           | 9-13  |
| Figure 9-6            | Percentage of the Evangeline Aquifer estimated to be slightly saline water                                                                  |       |
|                       | with a TDS concentration between 1,000 ppm and 3,000 ppm, as                                                                                | 0 1 4 |
| <b>F</b> ' 0 <b>7</b> | determined by the analysis of geophysical logs                                                                                              | 9-14  |
| Figure 9-7            | Percentage of the Evangeline Aquifer estimated to be moderately saline                                                                      |       |
|                       | water with a TDS concentration more than 3,000 ppm, as determined by                                                                        | o 1 = |
| <b>F</b>              | the analysis of geophysical logs                                                                                                            | 9-15  |
| Figure 9-8            | Percentage of the Burkeville confining unit (middle Lagarto Formation)                                                                      |       |
|                       | estimated to be fresh water with a TDS concentration less than 1,000 ppm,                                                                   |       |
|                       | as determined by the analysis of geophysical logs.                                                                                          | 9-16  |
| Figure 9-9            | Percentage of the Burkeville confining unit (middle Lagarto Formation)                                                                      |       |
|                       | estimated to be slightly saline water with a TDS concentration between                                                                      |       |
|                       | 1,000 ppm and 3,000 ppm, as determined by the analysis of                                                                                   | –     |
|                       | geophysical logs                                                                                                                            | 9-17  |
| Figure 9-10           | Percentage of the Burkeville confining unit (middle Lagarto Formation)                                                                      |       |
|                       | estimated to be moderately saline water with a TDS concentration more                                                                       |       |
|                       | than 3,000 ppm, as determined by the analysis of geophysical logs                                                                           | 9-18  |
| Figure 9-11           | Percentage of the Jasper Aquifer estimated to be fresh water with a TDS                                                                     |       |
|                       | concentration less than 1,000 ppm, as determined by the analysis of                                                                         |       |
|                       | geophysical logs                                                                                                                            | 9-19  |
| Figure 9-12           | Percentage of the Jasper Aquifer estimated to be slightly saline water with                                                                 |       |
|                       | a TDS concentration between 1,000 ppm and 3,000 ppm, as determined by                                                                       |       |
|                       | the analysis of geophysical logs                                                                                                            | 9-20  |
| Figure 9-13           | Percentage of the Jasper Aquifer estimated to be moderately saline water                                                                    |       |
|                       | with a TDS concentration more than 3,000 ppm, as determined by the                                                                          |       |
|                       | analysis of geophysical logs                                                                                                                | 9-21  |
| Figure 9-14           | Map of water well locations in the Chicot Aquifer with at least one                                                                         |       |
|                       | measurement of TDS concentrations.                                                                                                          | 9-22  |
| Figure 9-15           | Map of water well locations in the Evangeline Aquifer with at least one                                                                     |       |
|                       | measurement of TDS concentrations.                                                                                                          | 9-23  |
| Figure 9-16           | Map of water well locations in the Burkeville confining unit with at least                                                                  |       |
|                       | one measurement of TDS concentrations.                                                                                                      | 9-24  |
| Figure 9-17           | Map of water well locations in the Jasper Aquifer with at least one                                                                         |       |
|                       | measurement of TDS concentrations                                                                                                           | 9-25  |

## List of Tables

| Table 2-1 | Simplified stratigraphic and hydrogeologic chart of the northwestern Gulf<br>of Mexico basin. Texas coastal zone (Galloway and others, 1991: Sharp |      |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
|           | and others. 1991)                                                                                                                                  | 2-3  |
| Table 2-2 | Simplified stratigraphic and hydrogeologic chart of the northwestern Gulf                                                                          |      |
|           | and others (1991)                                                                                                                                  | 2-10 |
| Table 3-1 | Fleming Group depositional facies (Galloway and others, 1982, 1986)                                                                                | 3-5  |
| Table 3-2 | Fleming Group depositional systems (Spradlin, 1980; Galloway, and                                                                                  |      |
|           | others, 1982, 1986).                                                                                                                               | 3-6  |
| Table 3-3 | Goliad Formation depositional facies (Hoel, 1982)                                                                                                  | 3-9  |
| Table 3-4 | The Goliad Formation fluvial depositional systems (Hoel, 1982; Morton                                                                              |      |
|           | and others, 1988)                                                                                                                                  | 3-11 |
| Table 4-1 | Types of log header data                                                                                                                           | 4-4  |
| Table 4-2 | Selected tables and fields from the Microsoft Access database used to                                                                              |      |
|           | manage information on the 666 well logs analyzed for the study                                                                                     | 4-7  |
| Table 7-1 | Description of the four textural classes used to characterize the lithology                                                                        |      |
|           | of the LCRA-SAWS Water Project (LSWP) wells.                                                                                                       | 7-2  |
| Table 7-2 | Depositional Facies Definition and Predicted Flow Characteristics                                                                                  |      |
|           | [modified from Table 3.1.3 in Young and Kelley (2006)].                                                                                            | 7-4  |
| Table 9-1 | Groundwater classifications based on TDS (from Collier, 1993)                                                                                      | 9-1  |
| Table 9-2 | Relationship among TDS, specific conductivity, and resistivity (from                                                                               |      |
|           | Collier, 1993).                                                                                                                                    | 9-3  |
| Table 9-3 | General criteria used by Mr. Baker to estimate the TDS from the                                                                                    |      |
|           | geophysical logs                                                                                                                                   | 9-4  |
| Table 9-4 | Aquifer codes used in Gulf Coast query                                                                                                             | 9-7  |
|           | -                                                                                                                                                  |      |

This page intentionally left blank.

## **Executive Summary**

This report documents the development of the structure, lithology, and depositional framework for the Gulf Coast Aquifer system from the Brazos River north to the Sabine River and into Louisiana. The project is part of a long-term plan to update the Groundwater Availability Models (GAMs) for the Gulf Coast Aquifer.

The structure of the Gulf Coast Aquifer system is comprised of, from shallowest to deepest, the Chicot Aquifer, the Evangeline Aquifer, the Burkeville confining unit, and the Jasper Aquifer, with parts of the Catahoula Formation acting as the Catahoula Confining System. In this study, aquifer units have been subdivided on the basis of chronostratigraphic correlation to yield subaquifer layers. The boundaries for the geologic units were traced from outcrop formation boundaries to identifiable flooding surfaces in the deeper subsurface, where paleontological control constrained geologic ages of surfaces at nearshore and offshore geophysical log locations.

The Chicot Aquifer subaquifer layers include, from the shallowest to deepest, the Beaumont and Lissie Formations of Pleistocene age and the Pliocene-age Willis Formation. The Evangeline Aquifer subaquifer layers include the upper Goliad Formation of earliest Pliocene and late Miocene age, the lower Goliad Formation of middle Miocene age, and the upper unit of the Lagarto Formation (a member of the Fleming Group) of middle Miocene age. The Burkeville confining unit is defined as the middle unit of the Lagarto Formation of middle and early Miocene age, which is the chronostratigraphic layer with the most widespread clayey interval between the Evangeline and Jasper Aquifers. For this study, the Jasper Aquifer includes the lower Lagarto unit of early Miocene age, the early Miocene Oakville sandstone member of the Fleming Group, and the sandy intervals of the Oligocene-age Catahoula Formation. Elevations from the established base Jasper surface in the Source Water Assessment Program dataset were used close to the outcrop and were merged with the chronostratigraphic base of the Oakville Sandstone defined in this study.

As part of this project, approximately 800 geophysical logs were used to map stratigraphy, lithologic profiles, and estimates of water quality in the northern Gulf Coast Aquifer system. The 800 geophysical logs include 666 wells that were analyzed as part of this study and

approximately 125 logs that were analyzed as part of a similar TWDB study of the southern portion of the Gulf Coast Aquifer (Young and others, 2010).

The method used to develop geologic surfaces focuses on identifying clay-dominated flooding surfaces of the same age that form the boundaries of episodes that deposit the coarse sediment of an aquifer. Depositional facies modeling, including an analysis of depositional cyclicity,was used to better construct a regional framework for the flooding surfaces and the spatial variation of the aquifer-matrix properties. In the northern Gulf Coast region, the existing data from Young and others (2010) was augmented to generate surfaces for nine geologic units along 12 dip sections. In addition, the data from Young and others (2010) was augmented with lithologic picks to develop maps of sand percentages and total sand thickness maps for the Chicot, Evangeline, and Jasper Aquifers and their respective geologic formations. Like the study of Young and others, (2010), llithologic picks are based on a four-class system consisting of: 1) sand; 2) clay; 3) sand-with-clay; and 4) clay-with-sand. Using the lithologic information, geologic layers were developed.

To assist in the development of hydraulic conductivity distributions for each geologic unit, depositional facies maps were developed. The deposition facies provide information on factors that affect groundwater flow such as the sorting, arrangement, and sizes of the particles in a deposit and how the deposit is or is not interconnected to similar and different deposits.

For each of the geophysical logs used for the lithologic interpretation, an estimate of the water quality was made for each interval assigned a lithology classification. For each of these intervals, the water quality was classified as fresh, slightly saline, or moderately saline. These classifications are based on the concentration of Total Dissolved Solids (TDS). Fresh water is defined as having a TDS concentration less than 1,000 ppm. Slightly saline water has a TDS between 1,000 and 3,000 ppm, and moderately saline water has a TDS between 3,000 and 10,000 ppm. Using these results, maps of percent fresh water were generated for the Chicot, Evangeline, and Jasper Aquifer

xiv

## **1.0 Introduction**

The current groundwater availability models (GAMs) for the northern region (Kasmarek and Robinson, 2004), the central region (Chowdhury and others, 2004), and the southern region (Chowdhury and Mace, 2007) of the Gulf Coast Aquifer are based on stratigraphy developed from the Source Water Assessment and Protection (SWAP) Program. For these GAMs, the Gulf Coast Aquifer includes the Chicot Aquifer, the Evangeline Aquifer, the Burkeville Confining System, and the Jasper Aquifer. One of the obstacles to improving the GAMs predictive accuracy is that the SWAP database contains limited stratigraphic and lithologic information at the scale of the geologic formations that comprise the aquifers. In a continual effort to improve the GAMs, the Texas Water Development Board (TWDB) has determined that additional stratigraphic and lithologic information beyond what is available from the SWAP data would be beneficial for improving the predictive accuracy of future GAMs.

The primary objective of this study is to provide the stratigraphic surfaces and sand thickness maps of the geological formations that compose the Gulf Coast Aquifer system from the Brazos River north to the Sabine River and the Texas State line and into Louisiana using an approach consistent with the approach used by Young and others (2010). Young and others (2010) used sequence stratigraphy for defining geological units that comprise the Gulf Coast Aquifer System from the Brazos River south to the Rio Grande. For this study, the Chicot Aquifer includes, from the shallowest to deepest, the Beaumont and Lissie Formations of Pleistocene age and the Pliocene-age Willis Formation. The Evangeline Aquifer includes the upper Goliad Formation of earliest Pliocene and late Miocene age, the lower Goliad Formation of middle Miocene age, and the upper unit of the Lagarto Formation (a member of the Fleming Group) of middle Miocene age. The Burkeville confining unit is associated with the middle unit of the Lagarto Formation of middle and early Miocene age. As noted by Baker (1979) the Burkeville is not restricted to a single geological unit and represents the low permeability deposits that contribute to the hydraulically isolating the Jasper and the Evangeline Aquifers. The Jasper Aquifer includes the lower Lagarto unit of early Miocene age, the early Miocene Oakville sandstone member of the Fleming Group, and the sandy intervals of the Oligocene-age Catahoula Formation.

#### 1.1 Approach for Defining Stratigraphy

Investigations of the Gulf Coast Aquifer began in the late 1880's. Since that time, numerous studies have contributed toward our understanding of the formations in that aquifer. Central to our approach are the selected studies that provide an overarching stratigraphic framework.

With regard to naming conventions, we rely on the founding work of Doering (1935), who was perhaps the first to use the nomenclature most commonly used today (from the surface downward), the Beaumont, Lissie, Willis, Goliad, Lagarto, and Oakville. With regard to nomenclature, we also reference Baker (1979). He was among the first to establish an accurate stratigraphic framework using a lithostratigraphic correlation of the Gulf Coast Aquifer that relied on good understanding of geologic processes.

With regard to defining the stratigraphy surfaces, our analysis is based on chronostratigraphic rather than lithostratigraphic correlation techniques. Lithostratigraphic correlations rely on the interpretation from well logs of formation lithologies and boundaries between different lithologies (e.g., mud on sand) and then correlating those boundaries between wells. Prior to the 1980s, lithofacies correlations were the most common technique to define stratigraphy. Since the 1980's, an improved understanding of depositional processes has shown that lithostratigraphic correlations are more suspect for mischaracterizing the continuity and size of a formation than are chronostratigraphic correlations. Chronostratigraphic correlations focus on identifying clay-dominated flooding surfaces of the same age that form the boundaries of episodes that deposit the coarse sediment of an aquifer. As part of our approach, we used depositional facies modeling, including an analysis of depositional cyclicity, to better construct a regional framework for the flooding surfaces and the spatial variation of the aquifer-matrix properties.

Where appropriate, our sequence stratigraphy and chronostratigraphic correlations are based on the concepts and methods used by the Gulf Basin Depositional Synthesis Project (GBDS), the LCRA-SAWS Water Project (LSWP), and the TWDB study for the southern portion of the Gulf Coast Aquifer. The GBDS project conducted by the Texas Bureau of Economic Geology and funded by a consortium of petroleum companies to characterize the Cenozoic depositional history of the Gulf of Mexico Basin. Among the key papers that explains some of these concepts and methods are Galloway (1989b), Galloway and others (2000), and Galloway (2005). The LSWP project included a chronostratigraphic analysis of the Chicot and Evangeline Aquifers across a 10-county region intersected by the Colorado River. Among the papers that describe the LSWP study are Knox and others (2006), Young and Kelley (2006), and Young and others (2009). The TWDB study is described by Young and others (2010).

Dr. Thomas Ewing is the geologist primarily responsible for making the stratigraphic picks on 350 geophysical logs. Dr. Ewing analyzed logs along twelve dip-oriented cross-sections. These dip sections included three dip sections 10, 9, and 8 presented in Young and others (2010) and eight new dip sections, which are numbered from 7 to -1. Figure 1-1 shows the location of the twelve dip sections. For dip sections 10, 9, and 8 Dr. Ewing picks made his stratigraphic picks on the same geophysical logs used by Mr. Paul Knox (Young and others, 2010).

Within the area of overlapping picks on dip sections 10, 9, and 8, there are locations where Dr. Ewing and Mr. Knox made different picks for the same geologic unit. One of the reasons for these differences is that the two geologist worked toward the dip sections from different directions. Mr. Knox worked northward from the San Marco Arch and Dr. Ewing worked southward from the Houston Embayment. Because of these differences, difference preferences were assigned to each geologist picks based on the log location.

In developing, the stratigraphic surfaces, all of the picks associated with dip section 10 are those made by Mr. Knox. For dip section 9, Mr. Knox's. picks were given preference over Dr. Ewing's picks. For dip section 8, Mr. Ewing's picks were given preference over Mr. Knox's picks. These preferences were given so that stratigraphic surfaces generated from this project would be consistent and match with the stratigraphic surfaces provided by Young and others (2010) at dip section 10.

#### 1.2 Approach for Defining Lithology and Generating Sand Maps

Lithologic analyses were performed independently of the stratigraphic correlations. As a result, there are logs that have stratigraphic picks but not lithologic picks and vice versa. The lithology picks are based on using four textural classes instead of the traditional "binary" system of classifying lithology from geophysical logs. The "binary" system classifies lithology into either sand beds or clays beds based on the "kicks" provided by the spontaneous potential log or the

resistivity log. The four textual classes used are (1) sand, basically; (2) clay, basically; (3) sand and clay but basically sand; and, (4) clay and sand but basically clay. This classification scheme is used to provide a more accurate representation of the lithology for vertical intervals where sands and clays are alternating and have individual bed thicknesses of less than 20 feet.

The boundaries between the four textural classes are based on the "kicks" in the resistivity logs and are supplemented by "kicks" in the spontaneous potential logs. Resistivity logs record an apparent electrical resistance in and within the vicinity of the borehole at different depths. Spontaneous potential (SP) logs record naturally occurring electrical potentials (voltages) that occur in the borehole at different depths.

Our textural classes are the same as those used by Young and others (2010) to characterize the southern portion of the Gulf Coast Aquifer. To ensure consistency among all of the lithologic analyses, Mr. Ernie Baker performed all of lithologic analyses for this study. Also, Mr. Baker is the geologist who made all of the lithologic picks used by Young and others (2010).

The sand maps produced for the study area are based on Mr. Baker's lithologic profiles for approximately 590 logs. These maps were generated for selected lithostratigraphic units based on interpolation of the total sand thickness generated at each geophysical log. Interpolation of the sand thickness values was performed using ordinary kriging. Where appropriate, the generated contours were adjusted based on our interpretation of the depositional history and environments responsible for the sand distributions.



Figure 1-1 Map of the study area showing the locations of the dip-oriented and strike-oriented cross-sections used to develop the stratigraphic surfaces.

This page intentionally left blank.

## 2.0 Gulf Coast Aquifer Geologic Setting

### 2.1 Overview

The Gulf of Mexico (GOM) is a small semi-enclosed ocean basin surrounded by continental shelves and coastal plains (Bryant and others, 1991). The GOM is a circular structural basin, 940 miles in diameter, and filled with 0 to 9.4 miles of sediments ranging from Triassic to Holocene in age (Salvador, 1991) (Figure 2-1). The GOM basin probably originated in the Triassic time from rifting within the North American plate as it was drifting away from the African and South American plates (Salvador, 1991). Intermittent marine flooding of the proto-GOM rift valley formed extensive evaporite deposits (mainly salt) during the Jurassic period. Early Cretaceous carbonate platforms and shelf margins rimmed the GOM and provided a foundation for subsequent terrigenous clastic sedimentation during the Cenozoic period (Winker and Buffler, 1988). In the north and west parts of the GOM, Cenozoic sediments form thick sequences of sandstones and mudstones that overlie Cretaceous carbonates and extend basinward to the base of the modern continental slope (Figure 2-2). GOM stratigraphy is generalized in Table 2-1.

Three major stratigraphic-structural margins surround the deep ocean basin that forms the center of the GOM: 1) northern and northwestern margin of terrigenous clastic sedimentation; 2) western and southwestern structurally modified margin; and 3) eastern and southeastern carbonate-evaporite margin (Ewing, 1991; Galloway et al., 1991) (Figure 2-1). The eastern carbonate margin includes the Florida and Yucatan platforms and is characterized by low subsidence and limited clastic sediment input. The Floridian carbonate aquifer system is the main groundwater resource in the U.S. part of the eastern carbonate province (Miller, 1986). The western structurally modified margin of the Gulf Coast in Mexico includes a relatively narrow clastic coastal plain and continental shelf that have been affected by Laramide (early Cenozoic) compressional deformation. Sandy coastal aquifer systems similar to those in Texas are not well developed in Mexico (Sharp and others, 1991). The northern and northwestern clastic margin (northwest GOM) spans coastal Texas, coastal Louisiana, and adjacent offshore areas (Figure 2-1). The northwest GOM includes the major sand and sandstone aquifer systems

of the Gulf Coast (Weiss, 1992; Chowdhury and Turco, 2006) of which one, the Gulf Coast Aquifer, is the focus of this report.

The northwest GOM includes two broad zones that parallel the basin margins: the interior zone and the coastal zone (Ewing, 1991). The interior zone defines the updip margin of the basin and extends downdip to the relict Early Cretaceous shelf margin (Figure 2-1). The interior zone is dominated by Cretaceous carbonates and Paleogene terrigenous clastics (Figure 2-2). The Edwards (Balcones Fault Zone), Carrizo-Wilcox, Queen City-Sparta, and Yegua-Jackson Aquifers occur in the northwest GOM interior zone (Table 2-1). The coastal zone extends from the Early Cretaceous shelf margin to the base of the modern continental slope (Figure 2-1). Basinward of the stable Cretaceous carbonate platform, subsidence increases greatly, and Cenozoic clastic sequences become much thicker. In the onshore part of the coastal zone, Paleogene sediments are dominated by deltaic, shore-zone, and marine depositional systems below the base of fresh water. Overlying Neogene sediments are dominantly nonmarine depositional systems. The Gulf Coast Aquifer of Texas is located within these onshore Neogene sediments (Table 2-1, Figure 2-2).

The northwest GOM encompasses several second-order structural elements inherited from the early formation of the basin. The Rio Grande embayment is an area of enhanced subsidence and greater sediment thickness centered on the modern Rio Grande river in South Texas and northeastern Mexico. The Burgos Basin in northeastern Mexico forms the south part of the Rio Grande embayment (Ewing, 1991; Hernandez-Mendoza and others, 2008). The Houston embayment is a similar subsidence trough centered in southeast Texas (Figure 2-1). The Mississippi embayment is a larger synclinal feature coinciding with the modern lower Mississippi River valley and delta. Although these embayments began in the Mesozoic as active tectonic structures, they became passive loading-induced depocenters during the Cenozoic (Ewing, 1991). In the coastal zone of the northwest GOM, these embayments are distinguished by enhanced subsidence and greater cumulative sediment thickness. The San Marcos arch separates the Rio Grande and Houston embayments in coastal Texas, forming a broad area of relatively lower subsidence and thinner cumulative sediment thickness (Figure 2-1).

Table 2-1Simplified stratigraphic and hydrogeologic chart of the northwestern Gulf of Mexico basin, Texas coastal zone (Galloway<br/>and others, 1991; Sharp and others, 1991).

| ERA      | Peri       | Period Epoch |              | Age<br>(M.Y.) | Stratigraphic Unit     | Dominant<br>Lithology | Hydrogeologi              | c Unit     |  |  |
|----------|------------|--------------|--------------|---------------|------------------------|-----------------------|---------------------------|------------|--|--|
|          |            |              | Holocene     | 0.02          | Alluvium               | sand                  | Alluvium/Beaumont         |            |  |  |
|          | Quaternary |              | Distoana     | 0.02          | Beaumont               | sand                  | Aquifer                   |            |  |  |
|          |            |              | Fleistocelle | 1.0           | Lissie/Alta Loma       | sand                  | Chipot Aquifor            |            |  |  |
|          |            |              | Pliocene     | 1.8           | Willis                 | sand                  | Chicot Aquilei            | Gulf Coast |  |  |
|          |            | Naogana      |              | 5.5           | Goliad                 | sand                  | Evangeline Aquifer        | Aquifer    |  |  |
|          |            | Neogene      | Miocene      |               | Fleming/Lagarto        | mud                   | Burkeville Aquitard       |            |  |  |
|          |            |              |              | 22.0          | Fleming/Oakville       | sand                  | Jasper Aquifer            |            |  |  |
|          |            |              | Oligogana    | 25.9          | Catahoula/Frio/Anahuac | sand and mud          | aquitard                  |            |  |  |
| Canazaia |            |              | Oligocelle   | 22.0          | Vicksburg              | mud                   | aquitard                  |            |  |  |
| Cenozoic | Tertiary   |              |              | 55.9          | Jackson                | sand and mud          | Vegua Jackson Aquifer     |            |  |  |
|          |            | Paleogene    | Eocene       |               | Yegua                  | sand and mud          | regua-Jackson Aquiter     |            |  |  |
|          |            |              |              |               | Sparta                 | sand                  | Queen City Smonte A qui   | for        |  |  |
|          |            |              |              |               | Queen City             | sand and mud          | Queen City-Sparta Aquiter |            |  |  |
|          |            |              |              |               | Reklaw                 | mud                   | aquitard                  |            |  |  |
|          |            |              |              | 55.9          | Upper Wilcox/Carrizo   | sand                  |                           |            |  |  |
|          |            |              |              | 55.8          | Middle Wilcox          | mud                   | Carrizo-Wilcox Aquifer    |            |  |  |
|          |            |              | Paleocene    |               | Lower Wilcox/Simsboro  | sand and mud          |                           |            |  |  |
|          |            |              |              | 65 5          | Midway                 | mud                   | aquitard                  |            |  |  |
|          | Cratagoous | Upper        |              | 05.5          |                        | carbonate             |                           |            |  |  |
|          | Cletaceous | Lower        |              | 145 5         | Edwards                | carbonate             | Edwards (BFZ) Aquifer     |            |  |  |
| Mesozoic | Jurassia   | Upper        |              | 145.5         |                        | carbonate             |                           |            |  |  |
|          | JULASSIC   | Middle       |              | 201.6         | Louann salt            | evaporite             | salt domes                |            |  |  |
|          | Triassic   |              |              | 201.0         |                        |                       |                           |            |  |  |

The northwest GOM coastal zone is composed of terrigenous clastic sediments and sedimentary rocks that dip gently and thicken toward the center of the GOM. Older sediments are more indurated and dip more steeply than younger sediments (Figure 2-2). These stratigraphic patterns reflect increasing subsidence toward the central GOM and progradational deposition (infilling incrementally from the margin). Paleo-shoreline positions typically oscillated broadly in response to relative sea-level fluctuations, but continental margin outbuilding was progressive so that each successive major stratigraphic interval (e.g., Carrizo-Wilcox) extends basinward of the underlying interval. Minor stratigraphic intervals (e.g., Queen City-Sparta) typically do not extend basinward but instead stack vertically (aggradational deposition) upon underlying intervals (Figure 2-2).

#### 2.2 Structural Features

Geologic structures related mainly to sediment loading and gravity tectonics disrupt and deform Cenozoic sediments in the northwest GOM. Growth faults are syndepositional normal faults that form mainly by gravitational failure during rapid sediment loading along an unstable shelf margin and upper slope (Winker and Edwards, 1983). Coast-parallel growth fault zones mark shelf-margin positions of major Cenozoic depositional episodes, which get younger basinward (Figure 2-3). Sediments deposited during active growth faulting typically thicken on the downthrown sides of the faults because downward and basinward displacement creates local subsidence troughs and increased accommodation space. Greatest displacement and sediment thickening occur in shelf margin and upper-slope depositional settings.

#### 2.2.1 Faulting and Subsidence

Faulting and subsidence not only affect aquifer properties and groundwater availability in the Gulf Coast Aquifer but also cause land loss and property damage. In the Houston Embayment, active surface faults are commonly upward extensions of deep-seated growth faults. Surface faults also occur around salt domes, but dome-related faults are shorter (<3 miles) and more localized than are growth faults (>6 miles) (Veerbeek, 1979). Gulf Coast growth faults form by differential sediment loading and gravity slumping near the shelf margin. The seaward side of a growth fault is typically displaced downward relative to the landward side (Figure 2-4). Because the downthrown fault block is topographically lower than the upthrown block, greater

thicknesses of sediment are deposited on the downthrown block (Figure 2-4). Antithetic faults, having opposing sense of movement (downward displacement on the landward side) locally accompany down-to-the-coast growth faults, forming complete fault-bounded blocks that are downthrown on all sides. Maximum displacement (several thousand feet) on growth faults occurs in deep formations, such as the Wilcox and Frio, and decreases upward. In the Gulf Coast aquifer, maximum fault displacements are a few hundred feet, and surface expressions of active faults are generally only a few feet (Verbeek, 1979) (Figure 2-5).

Growth faults are not isolated surfaces but instead form zones of sediment deformation that commonly impede horizontal groundwater flow and enhance vertical flow. Displacement (offset) of sand bodies across fault zones reduces horizontal transmissivity (Kreitler and others, 1977) (Figure 2-4). Fluid-pressure buildup at depth results in upward flow of water, gas, and oil through vertical permeability pathways within fault zones. Linear distributions of saline-water plumes in shallow aquifer sands are associated with active faults in Louisiana (Kuecher and others, 2001). Faults compartmentalize groundwater flow. Pumpage within a fault block can result in water-level declines that are restricted to that block, while water levels in surrounding blocks are less affected (Kreitler, 1977). Decreased fluid pressures in semi-isolated fault blocks may result in increased sediment compaction leading to surface subsidence over the downthrown block. In the natural system through geologic time, sedimentation tends to infill topographically downthrown blocks, accentuating loading and reactivating fault movement. On the modern coastal plain, however, sedimentation may be restricted by dams and channel diversions, and downthrown fault blocks tend to become wetlands or submerged areas (Gagliano, 1999, 2005) (Figure 2-5).

Active faults in the Gulf Coast Aquifer typically display mappable surface expressions. Lineations are straight, lengthy surface features that, in part, represent the surface traces of faults and locally coincide with boundaries between zones of differential subsidence (Kreitler, 1976). Over 7,000 miles of lineations have been mapped on the Texas Coastal Plain (Fisher and others, 1972, 1973; McGowen and others, 1976a,b) (Figure 2-6). Lineations are identified by color variations on aerial photographs and are coincident with geomorphic features, such as rectilinear drainage patterns and vegetation changes (Kreitler, 1976). Not all lineations are active surface faults. The following criteria are used to identify surface faults: (1) breaks in man-made

structures caused by displacement of the land surface, (2) presence of topographic scarps, (3) recognition of faults in the shallow subsurface using electric log correlations, coring, or trenching, and (4) lineations observed on aerial photographs (Kreitler, 1976). Active surface faults commonly display surficial displacement and subtle scarps (Figures 2-4 and 2-5). Recently, Lidar (an acronym for light detection and ranging, analogous to radar but with laser light as a source) has been used to map fault-related scarps having only a few feet of relief (Shah and Lanning-Rush, 2005; Saribudak and Nieuwenhuise, 2006; Engelkemeir and Khan, 2007, 2008). Some active surface faults do not form discrete scarps but instead form zones of deformed ground tens to hundreds of feet wide. Lineation mapping is the best tool for identifying deformed zones in undeveloped areas, but in urban areas, surface deformation is made obvious by cracked foundations, buckled roads, and damaged buildings (Verbeek, 1979).

On the Texas Coastal Plain, the most detailed investigations of shallow faulting have been conducted in the Houston area (Harris County). More than 300 active surface faults with a total length exceeding 300 miles have been mapped in the Houston metropolitan area (Holzer, 1984; Shah and Lanning-Rush, 2005) (Figure 2-6). Houston area active faults typically have 1.0- to 1.5-feet-high scarps and displacement rates of about 1 inch/year (Holzer and Gabrysch, 1987). Some data suggest that fault movement is related to groundwater fluid pressure. Modern displacement rates are greater than estimated prehistoric rates (Holzer and Gabrysch, 1987), and declining pressures in the Gulf Coast Aquifer have accelerated movement on some surface faults (Kreitler, 1976). Geophysical surveys suggest dewatering and compaction on the downthrown sides of active faults (Saribudak and Nieuwenhuise, 2006). Fault displacement rates have decreased in some areas, for example southeast Houston, where groundwater pumpage was reduced and water levels were allowed to recover (Kreitler, 1977; Holzer and Gabrysch, 1987).

Land-surface subsidence has been a particular problem in the Houston area for decades (Coplin and Galloway, 1999) but also occurs widely throughout the Texas and Louisiana coastal zones. In low-lying coastal areas, subsidence is 100 times greater than global sea-level rise and is the main cause of flooding and wetlands loss (Anderson and Milliken, 2005). Subsidence is a natural process resulting from compaction of sediments during burial, but groundwater withdrawal increases compaction within the Gulf Coast Aquifer (Kasmarek and others, 2009). The weight of subsurface material (aquifer matrix plus stored groundwater) is supported by both

fluid pressure and grain-to-grain contacts in the matrix. Lowering fluid pressures puts more of the overburden weight on the sedimentary matrix, causing compaction (rearrangement of clay particles to decrease total aquifer volume). Compaction-related reduction of aquifer volume causes the land surface to subside. A well-defined subsidence bowl is centered on southeast Houston, where land-surface elevations have decreased as much as 10 feet (Figure 2-7). Subsidence in Houston is closely related to groundwater withdrawal, but the influence of faulting is less well understood (Engelkemeir and Khan, 2007). Clearly, subsidence and faulting have both natural and anthropogenic causes. Regional, long-term subsidence of the Gulf of Mexico basin, sediment loading and compaction around the basin margins, salt movement, and gravity slumping are all natural processes that result in subsidence and faulting (Kuecher and others, 2001). Subsurface fluid withdrawal (groundwater and petroleum) contributes to both regional and local subsidence (Paine, 1993; Sharp and Hill, 1995) and probably also to increased displacement on shallow faults (Kreitler, 1977; Holzer and Gabrysch, 1987).

Groundwater availability and quality in the Gulf Coast Aquifer are affected by faulting and landsurface subsidence. Because compaction is largely irreversible, subsidence results in permanent reduction of aquifer volume and groundwater storage. Groundwater availability may also be limited in a practical way owing to the negative impacts of subsidence. In order to mitigate subsidence in the Houston-Galveston area, for example, a planned transition from groundwater to surface water as the primary source of water supply has been in progress since the 1970s. Along with salt domes, faults are the primary conduits for vertical groundwater flow and saltwater intrusion in the Gulf Coast Aquifer. Whereas the effects of salt domes are relatively local, growth faults form regional vertical permeability conduits and horizontal transmissivity barriers that are perpendicular to the dominant groundwater flow direction (southeast). Abundant growth faults at depth and lineations on the land surface suggest that most if not all of the sand bodies in the Gulf Coast Aquifer are intersected by faults.

#### 2.2.2 Salt Domes in Southeast Texas and Southwest Louisiana

Salt domes are common geologic features along the upper Texas Coast and in southwest Louisiana. In the Texas part of the northern Gulf Coast Aquifer, there are 50 salt domes that are less than 15,000 feet deep (Figure 2-8). An additional 17 salt domes at similar depths are located in southwest Louisiana within 60 miles of the Texas border (Figure 2-8). Many more deep salt structures exist below 15,000 feet but are not covered in this report. Shallow salt domes have the greatest potential to affect groundwater quality. There are 35 shallow salt domes in the northern Gulf Coast Aquifer in Texas that range in depth from 0 (land surface) to 1,500 feet (Figure 2-8, Table 2-2). The average depth of these shallow Texas domes is 565 feet.

Salt domes typically include three elements: salt stock, cap rock, and surrounding uplifted sediments. The core of a salt dome forms a vertically elongate, cylindrical stock, consisting of 90 to 99 percent crystalline rock salt (halite). Cap rock composed of sulfate and carbonate minerals commonly overlies the crest of the salt stock and drapes down the uppermost flanks (Figure 2-9). Salt stock and cap rock are enclosed in sediments and sedimentary rocks of the Gulf Coast Aquifer and deeper intervals. Salt-dome crests are generally one to three miles in diameter. Gulf Coast salt domes extend downward many 1,000s of feet, but their true shapes at depth are largely unknown.

Shallow salt domes have the potential to increase groundwater salinities in the Gulf Coast Aquifer in two ways: first by direct dissolution and transport of soluble dome minerals and second by providing pathways for groundwater mixing between shallow freshwater and deep saline-water aquifers. The salt domes of the Texas Gulf Coast have been thoroughly explored in the search for oil and gas, but the effects of shallow salt domes on groundwater quality have been less well studied. The purpose of this chapter is to review the available literature on the salt domes of the upper Texas Gulf Coast and summarize our current understanding of salt dome hydrogeology.

#### 2.2.2.1 Salt Dome Geology

Salt domes are geologic structures that grow and develop as sediments are being deposited around them (Seni and Jackson, 1984; Halbouty, 1979). The salt originally formed bedded evaporite deposits in the ancestral Gulf of Mexico during the Jurassic period. A thick (greater than 20,000 feet) sequence of sedimentary rocks now overlies the salt source layer (Figure 2-10). Salt, which is a low-density, ductile mineral, is gravitationally mobilized by sediment loading, forming a variety of upwelling structures, one of which is the cylindrical salt dome. The growth of salt structures, in turn, influences the structure and stratigraphy of surrounding sediments and sedimentary rocks. Uplift and upward drag occur against the salt stock and over its crest. Steeply dipping strata terminate against the salt stock, and shallower layers arch over the dome

crest (Figure 2-10). The zone of uplift near the dome is surrounded by areas of subsidence and downwarping caused by salt withdrawal at depth (Figure 2-10). Faults and fractures are also common features of salt dome growth.

Salt dome growth also influences the topography of the overlying land surface. Positive topographic relief is linked to dome growth and uplift, whereas subsidence of the topographic surface is linked to dissolution of the dome crest (Seni and Mullican, 1986; Mullican, 1988). Of the shallow domes along the upper Texas Gulf Coast, sixty-three percent have positive topographic relief over their crests (Seni and others, 1984d; Beckman and Williamson, 1990) (Table 2-2). Warping of the depositional surface, either on the coastal plain or in the shallow marine environment, influences sedimentation patterns. On the coastal plain, muddy sediments tend to be deposited over dome crests, and sandy sediments tend to be deposited in surrounding low-lying areas (Figures 2-11, 2-12, 2-13). Elevation of the sea floor over dome crests can decrease water depths sufficiently to allow reefs to grow (Rezak, 1984). The Oligocene *Heterostegina* Limestone, which is composed of carbonate reef facies, occurs within the Anahuac Formation marine shale around Barbers Hill, Boling, Nash, Stratton Ridge, and West Columbia salt domes and is exposed in a quarry at the crest of Damon Mound salt dome (Collins, 1986).

Salt dome cap rock is composed mainly of anhydrite, gypsum, and calcite arranged in heterogeneous layers (Figure 2-9). Cap rock formation results from salt dissolution. Anhydrite (calcium sulfate), the main impurity in the salt stock, forms a residual accumulation at the dome crest. Commonly, a thin layer of loose, sand-size anhydrite crystals directly overlies top of salt. As salt continues to dissolve and more anhydrite accumulates, it compacts and recrystallizes, forming the lower part of the cap rock (Figure 2-9). Circulating groundwater converts anhydrite into gypsum (hydrous calcium sulfate), and sulfate-reducing bacteria convert anhydrite into calcite (calcium carbonate), and to a lesser extent, native sulfur and metallic sulfides (Bodenlos, 1970; Kyle and Price, 1986). Thus, the upper part of the cap rock is typically composed of gypsum and calcite (Figure 2-9). Cap rock layering, however, is irregular and varies greatly from dome to dome. Structural deformation and fracturing are common, as are cavernous voids. Gulf Coast cap rocks range in thickness from 0 to 2,000 feet (Table 2-2). Cap rocks are direct evidence for dissolution of salt by groundwater.

|                     | , .                      |            |                  | <b>x</b> 1     | G               |             |                      | <b>1</b>  |             | G         | T             |        |
|---------------------|--------------------------|------------|------------------|----------------|-----------------|-------------|----------------------|-----------|-------------|-----------|---------------|--------|
| Map<br>Number       |                          | County     | Depth<br>(ft) to | Donth(ft)      | Land            | Cap-        | A anifor at          | Produ     | iction      | Storage   | Cap-          | Topo-  |
| Number<br>(See      | Salt Dome Name           | or         | $(\Pi)$ to       | to Solt        | Flovotion       | KOCK        | Aquiter at           | Gulfum    | Salt        | Covorme   | ROCK<br>Drine | Poliof |
| (See<br>Figure 2.8) |                          | Parish     | Dock             | to Sait        | (ft mel)        | (ft)        | Dome 1 op            | Sulfur    | Or<br>Brino | Caverns   | Disposal      | (ft)   |
| 1 Tigure 2-0)       | ALLEN                    | BD A ZODIA | 760              | 1 380          | (It IIISI)<br>5 | (II)<br>620 | Chicot               | No        | No          | No        | No            | 0      |
| 2                   |                          |            | 2 020            | 1,360          | 40              | 020         | Deen                 | No        | No          | No        | No            | 5      |
| 3                   | BADREDS HILL             | CHAMBERS   | 3,930            | 1,000          | 75              | 650         | Chicot               | No        | Vos         | Vas       | Vas           | 55     |
|                     | BARDERS HILL<br>BATSON   |            | 1.080            | 1,000          | 80              | 320         | Evangelina           | No        | No          | No        | No            | 33     |
| 5                   | BAISON                   | FORT REND  | 450              | 600            | 80              | 150         | Chicot               | Vos       | No          | No        | No            | -4     |
| 5                   | BIG HILI                 | IEEEEDSON  | 200              | 1 300          | 30              | 1100        | Chicot               | No        | No          | Vos       | Vos           | 30     |
| 7                   | BI UE PIDCE              | FORT REND  | 143              | 230            | 85              | 87          | Chicot               | No        | Vos         | Vas       | Vos           | 20     |
| 8                   | BOUING                   | WHAPTON    | 380              | 075            | 75              | 505         | Chicot               | Vos       | No          | Vas       | Vos           | 44     |
| 0                   | BDENHAM                  | AUSTIN     | 700              | 1.834          | 300             | 1134        | Lasper               | No        | No          | Vas       | No            | -44    |
| 9                   | DREINHAIM<br>DRVAN MOUND |            | 680              | 1,034          | 10              | 297         | Chipot               | N0<br>Voc | NO<br>Voc   | Vas       | No            | -30    |
| 10                  | CEDAR DOINT              |            | 10.200           | 1,007          | 10              | 307         | Deen                 | No        | No          | No        | No            | 0      |
| 11                  |                          | IEEEEDSON  | 8 200            | 8 200          | 0               | 0           | Deep                 | No        | No          | No        | No            | 0      |
| 12                  | CLAW LAKE                | DDAZODIA   | 6,200            | 8,200<br>1,400 | 12              | 800         | Chiaot               | NO<br>Voc | No          | NO        | No            | 4      |
| 13                  |                          | DRAZORIA   | 000              | 520            | 13              | 520         | Chiest               | Vac       | No          | 1 es      | No            | -4     |
| 14                  | DAMON MOUND              | DRAZORIA   | 5 000            | 5.000          | 20              | 330         | Lasman               | 1 es      | No          | No        | No            | 0      |
| 13                  | DANGUK I                 | LIDEDTY    | 3,000            | 3,000          | 100             | 400         | Jasper<br>Evengeline | No        | No          | No        | No            | 165    |
| 10                  | ESPERSON                 | LIDENTI    | 600              | 1,200          | 55              | 400         | Door                 | No        | No          | No        | No            | 105    |
| 17                  | EANINETT                 |            | 740              | 2,000          | 15              | 1260        | Chipp                | N0<br>Vac | No          | NO        | NO            | 5      |
| 18                  | FANNETT                  | MATACOPDA  | 740<br>825       | 2,000          | 13              | 275         | Chicot               | Ves       | No          | I es      | No            | 20     |
| 20                  |                          | I IDEDTV   | 7 525            | 7 580          | 20              | 45          | Deep                 | No        | No          | No        | No            | 20     |
| 20                  |                          |            | 7,333            | 7,380          | 10              | 45          | Chiaot               | No        | No          | No        | No            | 0      |
| 21                  |                          |            | 95               | 1 100          | 20              | 050         | Chicot               | N0<br>Voc | No          | No        | No            | 20     |
| 22                  | HOCKLEY                  |            | 76               | 1,100          | 170             | 930         | Chicot               | No        | Voc         | No        | No            | 20     |
| 23                  | HOCKLET<br>HOSKINS MOUND |            | 574              | 1,000          | 20              | 924<br>406  | Chicot               | Vos       | No          | No        | No            | -20    |
| 24                  |                          | LIREDTV    | 260              | 600            | 20              | 340         | Chicot               | No        | No          | Vos       | Vos           | 14     |
| 25                  | HUMBLE                   | HARRIS     | 200              | 1 200          | 75              | 500         | Chicot               | No        | No          | No        | No            | _0     |
| 20                  | I ONG POINT              | FORT BEND  | 550              | 930            | 75              | 380         | Chicot               | Ves       | No          | No        | No            | -9     |
| 27                  |                          | CHAMBERS   | 3 275            | 5 430          | 5               | 2155        | Evangelina           | No        | No          | No        | No            | 0      |
| 20                  | MANVEL                   | RPAZOPIA   | 3,273            | 3,430          | 55              | 2133        | Deen                 | No        | No          | No        | No            | 0      |
| 30                  | MARVEL                   | MATAGODDA  | 1 350            | 1 420          | 55              | 70          | Chicot               | No        | Vos         | Vos       | Vos           | 0      |
| 30                  | MARKHAM<br>MOSS DI LIEE  | LIDEDTV    | 625              | 1,420          | 25              | 10          | Chicot               | NO<br>Voc | No          | Vas       | Vas           | 22     |
| 31                  | MUSS BLUFF<br>MVKAWA     | HARRIS     | 7 100            | 7 100          | 50              | 473         | Deen                 | No        | No          | No        | No            | 0      |
| 32                  | NACH                     | FORT REND  | 620              | 7,100          | 55              | 330         | Chicot               | Vos       | No          | No        | Vos           | 5      |
| 33                  |                          | I IREDTV   | 520              | 930            | 55<br>85        | 220         | Chicot               | No        | No          | NU<br>Voc | Vac           | 2      |
| 34                  | OPANCE                   | OPANCE     | 7 120            | 7 120          | <u> </u>        | 220         | Deen                 | No        | No          | No        | No            | -2     |
| 36                  | ORCHARD                  | FORT BEND  | 285              | 360            | 110             | 84          | Chicot               | Ves       | No          | No        | Ves           | -5     |
| 36                  | ORCHARD                  | FORT BEND  | 285              | 369            | 110             | 84          | Chicot               | Yes       | No          | No        | Yes           | -5     |

# Table 2-2Simplified stratigraphic and hydrogeologic chart of the northwestern Gulf of Mexico basin, Texas coastal zone (Galloway<br/>and others, 1991; Sharp and others, 1991).

#### Table 2-2, continued

| Мар         |                  | Greet     |         |           | Land      | Cap-      |            | Production |       |         | Cap-     | Торо-   |
|-------------|------------------|-----------|---------|-----------|-----------|-----------|------------|------------|-------|---------|----------|---------|
| Number      | Salt Dome Name   | or        | (ft) to | Depth(ft) | Surface   | Rock      | Aquifer at |            | Salt  | Storage | Rock     | graphic |
| (See        | Buit Donie Runie | Parish    | Cap     | to Salt   | Elevation | Thickness | Dome Top   | Sulfur     | or    | Caverns | Brine    | Relief  |
| Figure 2-8) |                  |           | Rock    |           | (ft msl)  | (ft)      |            |            | Brine |         | Disposal | (ft)    |
| 37          | PIERCE JUNCTION  | HARRIS    | 730     | 950       | 60        | 220       | Chicot     | No         | Yes   | Yes     | Yes      | 8       |
| 38          | PORT NECHES      | ORANGE    | 6,950   | 6,950     | 5         | 0         | Deep       | No         | No    | No      | No       | 0       |
| 39          | RACCOON BEND     | AUSTIN    | 11,000  | 11,000    | 150       | 0         | Deep       | No         | No    | No      | No       | 0       |
| 40          | SAN FELIPE       | WALLER    | 3,160   | 4,200     | 120       | 1040      | Deep       | No         | No    | No      | No       | 0       |
| 41          | SARATOGA         | HARDIN    | 1,500   | 1,900     | 90        | 400       | Evangeline | No         | No    | No      | No       | 8       |
| 42          | SOUR LAKE        | HARDIN    | 500     | 720       | 50        | 220       | Chicot     | No         | No    | Yes     | No       | 10      |
| 43          | SOUTH HOUSTON    | HARRIS    | 4,406   | 4,406     | 35        | 0         | Jasper     | No         | No    | No      | No       | 0       |
| 44          | SOUTH LIBERTY    | LIBERTY   | 320     | 480       | 20        | 160       | Chicot     | No         | No    | No      | No       | -16     |
| 45          | SPINDLETOP       | JEFFERSON | 700     | 1,200     | 20        | 500       | Chicot     | Yes        | Yes   | No      | No       | 12      |
| 46          | STRATTON RIDGE   | BRAZORIA  | 850     | 1,308     | 10        | 458       | Chicot     | No         | Yes   | Yes     | No       | 13      |
| 47          | SUGARLAND        | FORT BEND | 3,450   | 4280      | 65        | 830       | Jasper     | No         | No    | No      | No       | -10     |
| 48          | THOMPSON         | FORT BEND | 9,315   | 9,315     | 55        | 0         | Deep       | No         | No    | No      | No       | 0       |
| 49          | WEBSTER          | HARRIS    | 10,500  | 10,500    | 30        | 0         | Deep       | No         | No    | No      | No       | 0       |
| 50          | WEST COLUMBIA    | BRAZORIA  | 740     | 790       | 30        | 50        | Chicot     | No         | No    | No      | No       | -15     |
| 51          | BIG LAKE         | CAMERON   | 12,910  | 12,910    | 3         | 0         | Deep       | No         | No    | No      | ?        | ?       |
| 52          | BLACK BAYOU      | CAMERON   | 881     | 1,035     | 3         | 154       | Chicot     | No         | No    | Yes     | ?        | ?       |
| 53          | CALCASIEU LAKE   | CAMERON   | 1,490   | 2,369     | 3         | 879       | Chicot     | No         | No    | No      | ?        | ?       |
|             | CAMERON          |           |         |           |           |           |            |            |       |         |          |         |
| 54          | MEADOWS          | CAMERON   | 4,770   | 4,770     | 3         | 0         | Evangeline | No         | No    | No      | ?        | ?       |
| 55          | EAST HACKBERRY   | CAMERON   | 3,000   | 3,330     | 3         | 330       | Evangeline | No         | No    | Yes     | ?        | ?       |
| 56          | EDGERLY          | CALCASIEU | 3,800   | 3,898     | 10        | 98        | Jasper     | No         | No    | No      | ?        | ?       |
| 57          | IOWA             | CALCASIEU | 7,902   | 7,902     | 20        | 0         | Deep       | No         | No    | No      | ?        | ?       |
| 58          | LOCKPORT         | CALCASIEU | 8,160   | 8,160     | 3         | 0         | Deep       | No         | No    | No      | ?        | ?       |
| 59          | NORTH STARKS     | CALCASIEU | 9,031   | 9,031     | 40        | 0         | Deep       | No         | No    | No      | ?        | ?       |
|             |                  | JEFFERSON | ,       |           |           |           | •          |            |       |         |          |         |
| 60          | ROANOKE          | DAVIS     | 11,585  | 11,585    | 25        | 0         | Deep       | No         | No    | No      | ?        | ?       |
| 61          | STARKS           | CALCASIEU | 1,157   | 1,538     | 30        | 381       | Chicot     | Yes        | Yes   | No      | ?        | ?       |
| 62          | SULPHUR MINES    | CALCASIEU | 390     | 1,460     | 5         | 1070      | Chicot     | Yes        | Yes   | Yes     | ?        | ?       |
| 63          | SWEET LAKE       | CAMERON   | 8,560   | 8,560     | 3         | 0         | Deep       | No         | No    | No      | ?        | ?       |
| 64          | VINTON           | CALCASIEU | 384     | 700       | 3         | 316       | Chicot     | No         | No    | No      | ?        | ?       |
|             |                  | JEFFERSON |         |           |           |           |            | 1          | 1     |         |          |         |
| 65          | WELSH            | DAVIS     | 6,315   | 6,315     | 20        | 0         | Deep       | No         | No    | No      | ?        | ?       |
| 66          | WEST HACKBERRY   | CAMERON   | 1,200   | 1,790     | 3         | 590       | Chicot     | No         | Yes   | Yes     | ?        | ?       |
|             |                  | JEFFERSON |         | ,         |           |           |            |            |       |         |          |         |
| 67          | WOODLAWN         | DAVIS     | 10,726  | 10,726    | 30        | 0         | Deep       | No         | No    | No      | ?        | ?       |

#### 2.2.2.2 Natural Resources

Salt domes provide a variety of natural resources. Structural deformation and cap rock formation have created prolific petroleum reservoirs. Oil and gas are trapped in uplifted strata surrounding or overlying salt domes and in the cap rock itself. In addition to petroleum, salt from the salt stock and sulfur from the cap rock are the main commodities derived from Gulf Coast salt domes in Texas (Table 2-2). Salt is recovered from domes by room and pillar mining and also by dissolution and production through brine wells. Sulfur is also produced through wells. The cap rock is injected with hot water to melt the sulfur, which has a low melting point (245°F), and then molten sulfur and water are produced to the surface.

Salt domes also provide space for storage and disposal (Seni and others, 1985). Solution-mined caverns in the salt stock have been created both for brine production and for storage of various petroleum products, most commonly liquefied petroleum gas (LPG). The volume of some storage caverns exceeds ten million barrels. Storage cavern use has expanded greatly since the 1960's. Crude oil for the U.S. Strategic Petroleum Reserve is stored in caverns at Bryan Mound and Big Hill salt domes. Cavern construction creates large volumes of concentrated brine, and permeable zones in cap rocks are commonly used for brine disposal (Seni and others, 1984c). The potential for disposal and isolation of chemical and radioactive wastes in salt dome caverns in Texas has been evaluated but not put into practice (Seni and others, 1984a).

Resource development and production can create geologic and hydrologic instabilities around salt domes (Seni and others, 1985). Land-surface subsidence, sometimes involving catastrophic collapse and sinkhole formation, is common where large amounts of sulfur, salt, and/or petroleum have been extracted from the salt dome (Mullican, 1988) (Table 2-2). Spectacular examples of surficial collapse and sinkhole formation related to sulfur production have occurred at Boling and Orchard salt domes (Mullican, 1988). More recently (2008), a large sinkhole abruptly formed over Hull salt dome in the town of Daisetta in Liberty County (Figure 2-14). Although sulfur has not been extracted there, Hull salt dome has a long-term history of drilling for oil and gas. The exact cause of the Daisetta sinkhole, however, has not yet been determined (Horswell, 2009).

Anthropogenic sources of aquifer contamination at salt domes include cap-rock brine disposal and storage facility failure. High-volume brine disposal elevates cap rock fluid pressures in shallow intervals laterally adjacent to freshwater sands, reversing pre-development hydraulic gradients and creating the potential for aquifer contamination (Hamlin and others, 1988). Petroleum storage cavern facilities have failed and leaked product into surrounding freshwater sands (Seni and others, 1984b, 1985). Barbers Hill salt dome has the greatest concentration of underground storage caverns in the world and historically has been the site of high-volume caprock brine disposal (Figures 2-15, 2-16). Gas storage and transportation facilities are concentrated at Barbers Hill, which is located 20 miles east of Houston, and numerous accidents have occurred, the most recent being in early 2011 (Fowler, 2011). Accidents at salt dome cavern storage operations usually involve failures of well casing strings or surface facilities; the caverns themselves have been remarkably stable (Miyazaki, 2009). The hydrogeology of Barbers Hill salt dome is described in more detail in subsequent sections of this chapter.

#### **Hydrogeologic Units**

A salt dome in the Gulf Coast Aquifer forms a complex system of hydrogeologic units. The salt stock is a cylindrical vertical aquiclude. The cap rock rests on the salt stock like an inverted cup. Cap rocks are essentially karstic aquifers whose hydrodynamic properties are controlled by fracturing and dissolution. Irregularly distributed networks of vuggy to cavernous porosity are common in cap rock. Drillers call these networks "lost-circulation zones" because of the difficulty of establishing drilling-fluid circulation in wells penetrating cavernous intervals. These are also the intervals favored for brine disposal because they readily accept high injection rates. However, cap rock also includes areas composed of dense calcite and anhydrite, which have low hydraulic conductivity.

The salt stock and cap rock are encased in interbedded sandy aquifers and muddy aquitards. Even though fine-grained, muddy layers become more abundant with proximity to a salt dome, owing to topographic effects previously discussed, sandy layers commonly overlie domes and locally contact the cap rock surface (Figures 2-11, 2-17). In these interbedded sand and mud layers, hydraulic conductivity in the horizontal direction is typically many times greater than it is in the vertical direction. However, the potential for high vertical hydraulic conductivity exists within the zone of structural deformation around the salt dome. Gulf Coast salt domes contact
freshwater sands in the Chicot, Evangeline, and Jasper aquifers, as well as saline-water sands in more deeply buried intervals (Figures 2-11, 2-17, Table 2-2).

#### **Groundwater Flow**

In the salt-dome environment, groundwater flow is driven not only by hydraulic-head gradients but also by density gradients. The density gradients arise from the high thermal conductivity of salt and from groundwater salinity variations due to dissolution of the salt itself (Evans and others, 1991). Few studies have reported head and density distributions in the vicinity of Texas coastal salt domes. Work done in East Texas, where salt domes penetrate the Carrizo-Wilcox aquifer, suggests that dome-related uplift creates local recharge areas over some salt-dome crests, but in general regional flow patterns are not affected by the presence of salt domes (Fogg and others, 1983). Studies in Louisiana, where salt domes penetrate the Gulf Coast Aquifer, document upward groundwater flow around deeper dome flanks but downward flow at shallower levels (Evans and others, 1991), although the focus of the Louisiana studies was the interval below the base of freshwater.

At Barbers Hill salt dome, which penetrates Evangeline and Chicot freshwater sands in Chambers County, head measurements and pumping tests were conducted in the cap rock aquifer, which is saturated with dense brine (Hamlin and others, 1988). Barbers Hill salt dome has a history of intense development, including oil production, salt-cavern storage, and cap rock brine disposal. Water-level data are available from cap rock disposal wells. When the effects of density variations were normalized, a hydraulic gradient directed radially outward and upward from the cap rock was revealed. The present magnitude and direction of this hydraulic gradient is attributable both to lowering of fluid pressures in the Chicot and the Evangeline aquifers by long-term pumping in the Houston area and to elevation of fluid pressures in the cap rock by high-volume brine disposal.

Controlled brine injection tests at Barbers Hill salt dome indicated that the cap rock is a single integrated aquifer with leaky vertical and lateral boundaries. Because of the arched shape of the cap rock, the vertical boundary corresponds to vertical and lateral contacts with freshwater sands, and the lateral boundary is the lower edge down the dome flanks that is in contact with deeper saline-water sands (Figures 2-9, 2-17). Within the cap rock, water levels stabilized in

observation wells during a long-term brine injection test, showing that groundwater must be exiting the cap rock (Figure 2-18). During the brine injection test, however, water levels were not monitored in nearby Chicot and Evangeline water wells, so the exact destination of leaking cap rock brines was not documented.

Development of both fresh groundwater and salt-dome resources has increased the potential for contamination of shallow aquifers. In pre-development steady-state groundwater flow systems, salt-dome related contamination remained localized by high freshwater heads in surrounding sands and the tendency for high-density brines to flow downward. The combination of lowered heads in the Gulf Coast Aquifer and increased heads in cap rocks has created hydraulic gradients directed outward from the salt dome toward adjacent freshwater sands. Resource extraction and leakage of stored petroleum product have further perturbed the natural system. Most of the available evidence for salt-dome-related contamination of the Gulf Coast Aquifer is at least 20 years old. More recent hydraulic and hydrochemical data, including data collected periodically through time, are needed for proper risk analysis and for a more comprehensive understanding of shallow groundwater flow near salt domes.

Numerical modeling of groundwater flow systems around salt domes has proved challenging owing to the complications of extreme salinity and density variations and complex boundary conditions (Konikow and others, 1997). Fogg and others (1983) modeled groundwater flow in the Carrizo-Wilcox aquifer around a salt dome but without explicitly including the dome itself or salinity variations. Their model helped identify recharge and discharge areas and flow paths in freshwater aquifer sands relative to the position of the salt dome, so that the movement of potential dome-related contaminants might be predicted. Their model also showed the importance of sand-body distribution and interconnection as controls on flow near salt domes. Hamlin and others (1988) modeled the cap rock aquifer at Barbers Hill salt dome, using the results of controlled brine injections tests, but did not include the surrounding Chicot and Evangeline sands or salinity/density variations. Nevertheless, their model accurately reproduced water-level measurements and demonstrated that the cap rock boundaries are leaking. Models of groundwater flow around Gulf Coast salt domes in Louisiana, which explicitly include both the salt dome and salinity/density variations, emphasize the importance of density-driven flow (Evans and others, 1991). The Louisiana models show that salt dissolved at the dome crest is carried down the dome flanks below the zone of freshwater.

#### 2.2.2.3 Groundwater Chemistry

Hydrochemical patterns in groundwater near salt domes provide information about flow of dome-related fluids into surrounding freshwater aquifers. The most commonly available data for measuring groundwater salinities in the near-dome environment are geophysical logs from oil and gas wells, because an empirical relationship can be established between groundwater salinity and electrical conductivity (Jones and Buford, 1951) and because most salt domes have been densely drilled in the quest for petroleum. Using geophysical logs, anomalously high salinities in shallow sands were documented near salt domes in Chambers, Fort Bend, and Jefferson counties (Wesselman, 1971, 1972).

At Barbers Hill salt dome, Hamlin and others (1988) used closely spaced well logs to map individual sand bodies and groundwater salinities near the dome, revealing a complicated pattern of vertical and lateral salinity variation (Figure 2-17). In one lower Chicot aquifer sand, a plume of high-salinity groundwater extends away from the salt dome in the direction of regional groundwater flow (Figure 2-19). Similar saline plumes extending away from salt domes in the direction of groundwater flow have been documented in the Carrizo-Wilcox aquifer in East Texas (Fogg and others, 1983) and in Germany (Klinge and others, 2002).

Chemical and isotopic analyses of groundwater are less abundantly available than are geophysical logs but can be used to reveal both fluid sources and flow patterns. Banga and others (2002) used multi-element chemistry and isotopic tracers to document vertical flow patterns in deep sandstones (below freshwater) around South Liberty salt dome in Liberty County, showing that oil field brines near the salt dome are a mixture of shallow meteoric waters and deep formation waters. The presence of a meteoric component in deep brines indicates downward flow along the flanks of the salt dome. The implication of the South Liberty salt dome study is that shallow fresh groundwater flows across the top of the salt dome, dissolves salt, becomes increasingly dense, and then flows downward along the dome flanks driven by a density gradient.

The evidence for dissolution of salt dome minerals in shallow groundwater is conclusive. Shallow salt domes extend well into the zone of freshwater and are surrounded laterally and vertically by Gulf Coast Aquifer sands. As salt dissolves at the dome crest, an insoluble residue accumulates, forming the cap rock. Within the cap rock itself, chemical reactions occur that require the presence of low-temperature, low-salinity groundwaters (Kyle and Price, 1986). Geophysical logs have been used to identify high-salinity plumes within otherwise freshwater sands near several Gulf Coast salt domes and to map actual sand/dome contacts (Wesselman 1971, 1972; Hamlin and others, 1988). Indeed, dissolution of salt domes by groundwater has been documented, and the amount of salt removed has been quantified (Seni and Jackson, 1984; Bruno and Hanor, 2003).

Although salt actively goes into solution at the crests of shallow salt domes, most of the highsalinity groundwater thus formed flows downward driven by density gradients. Recent studies document downward flow along salt-dome flanks and the control of faults and sand distribution on flow paths (Banga and others, 2002; Bruno and Hanor, 2003). Although upward flow occurs in deep zones below the base of freshwater (Evans and others, 1991), upward movement and mixing of dense saline groundwater from deep zones into the low-density freshwater zones appear unlikely.

## 2.3 Depositional Systems

A depositional system is a three-dimensional body of sediment deposited in a contiguous suite of process-related sedimentary environments (Fisher and McGowen, 1967). Each sedimentary environment produces specific genetic facies (Figure 2- 20). Neogene Formations of the onshore northwest GOM coastal zone, which includes the Gulf Coast Aquifer, are mainly composed of nonmarine alluvial (fluvial) depositional systems. Because Miocene through Quaternary coastal plains had similar shoreline trends, climate gradients, physiography, and sediment source areas, Quaternary depositional systems that are exposed at the surface provide a good analog for underlying Neogene coastal plain depositional systems (Galloway, 1981).

The Quaternary coastal plain of Texas encompasses a mosaic of fluvial systems of various types, sizes, and sediment composition (Morton and McGowen, 1980; Galloway, 1981; Blum and Price, 1998; Anderson and Fillon, 2004) (Figure 2-21). Extrabasinal rivers have large drainage

basins that extend well beyond the coastal plain, whereas basin-fringe and intrabasinal rivers have drainage basins marginal to and within the coastal plain. Extrabasinal rivers have persistently occupied the major embayments and still do so today; the Rio Grande, Houston, and Mississippi embayments are occupied by the Rio Grande, Colorado/Brazos, and Mississippi rivers, respectively. The point of entry of an extrabasinal river onto the coastal plain is stable owing to valley entrenchment across the slightly uplifted margin of the coastal zone (Winker, 1979). Basinward from the entry point, fluvial systems are free to migrate laterally, constructing alluvial aprons composed of sand-rich channel-fill facies and mud-rich floodplain facies (3-21). In a fluvial channel, the proportion of bed load (sand and gravel) to suspended load (silt and clay) influences channel morphology and resulting sand-body geometry (Schumm, 1977). Bedload channel systems form broad belts of sandstone with good lateral connectivity, whereas mixed- and suspended-load channel systems are more lenticular and isolated in mud-rich floodplain facies (Galloway, 1981). Superposition of channel systems in extrabasinal rivers results in sand bodies that are thicker than original channel depths.

Quaternary alluvial aprons grade basinward into deltaic and shore-zone depositional systems. On the modern Texas Coastal Plain, sand-rich deltaic headlands are constructed by major extrabasinal rivers in the Rio Grande and Houston embayments, while basin-fringe and intrabasinal rivers feed bay-head deltas on the San Marcos arch (Figure 2-21). This pattern persisted throughout the Neogene with some important exceptions (see Section 2.4, Depositional History). Bay, lagoon, barrier island, and shelf depositional systems fringe the onshore and nearoffshore parts of the northwest GOM coastal zone. Most transported sediment bypasses these coastal plain systems to be stored permanently in shelf-margin and continental slope depositional systems (Galloway and others, 2000). Neogene shelf-margin and slope systems, however, are located offshore under the modern continental shelf and thus are not part of the Gulf Coast Aquifer.

## 2.4 Depositional History

Cenozoic sediments of the northwest GOM are monotonous sequences of interbedded sandstones and shales that lack distinctive lithostratigraphic units of regional extent (Galloway and others, 1991). Stratigraphic subdivision relies on a combination of: 1) biostratigraphic zonation; 2) depositional models based on Quaternary examples; and 3) regionally cyclic depositional

episodes (Galloway and others, 2000). Biostratigraphic zonation is based primarily on extinction points of foraminifera (fossil protozoa) and other marine microfossils (Galloway and others, 1991; Lawless and others, 1997; Fillon and Lawless, 2000). Because marine fossils are not available in alluvial sediments, stratigraphic subdivision typically is extended updip to outcrop using lithologic boundaries, well log correlation techniques, and limited nonmarine (vertebrate faunas) biostratigraphy (Tedford and Hunter, 1984; Baskin and Hulbert, 2008; Lundelius, 1972).

A depositional episode is a period of focused deposition and progradation of the shoreline followed by nondeposition and transgression (marine flooding) of the coastal plain (Galloway and others, 1991, 2000). The physical product of a depositional episode is a genetic stratigraphic sequence (Galloway, 1989a). At any one time, active deposition is localized, while adjacent areas receive little or no sediment. Thus, a genetic stratigraphic sequence forms a stratigraphically and geographically distinct body of sediment bounded by surfaces of transgression or nondeposition (Frazier, 1974; Galloway, 1989a). The location of deposition (depocenter) shifts through time owing to geographic variations in sediment supply, which are controlled by tectonic events in the sediment source area (Winker, 1982). The timing and cyclicity of progradational and transgressive events depends upon the interplay of sediment supply, subsidence, and sea-level change (Galloway, 1989b). In the northwest GOM, genetic stratigraphic sequences typically consist of one or more major extrabasinal fluvial systems that supply progradational deltaic systems. Smaller intrabasinal fluvial systems and interdeltaic shore-zone systems separate deltaic headlands (Galloway and others, 1991) (Figure 2-21).

Early Cenozoic (Paleogene, Table 2-1) depositional episodes in the northwest GOM were responses first to mountain building in the southern Rocky Mountains and later to explosive volcanism in West Texas and Mexico (Winker, 1982; Morton and Galloway, 1991; Galloway, 2005). Large volumes of sand, silt, and clay were delivered to the northwest GOM. In response, extrabasinal fluvial-deltaic systems developed first in the Houston embayment and then in the Rio Grande embayment (Figure 2-22). Abundant sediment supply in the Paleogene overwhelmed sea-level fluctuations and controlled sequence development (Morton and Galloway, 1991). In the Neogene (Miocene-Pliocene), however, continental glaciers began forming in Antarctica (Fillon and Lawless, 2000), and the resulting high-amplitude sea-level fluctuations began exerting greater influence on sequence formation (Galloway and others, 1986; Morton and others, 1988) (Figure 2-23). Miocene genetic stratigraphic sequences are bounded by transgressive surfaces that can usually be related to glacio-eustatic highstands (global sealevel rises attributable to melting glaciers), but tectonic activity in the source areas was still controlling locations of sediment input into the northwest GOM. Tectonic development of the Rio Grande Rift in New Mexico disrupted drainage systems feeding the Rio Grande and Houston embayments so that large extrabasinal fluvial systems began shifting northeast into the Mississippi embayment (Winker, 1982) (Figure 2-22). Uplift of the Edwards Plateau along the Balcones Fault Zone in Central Texas supplied abundant Cretaceous calcareous detritus to smaller Miocene fluvial systems on the Texas Coastal Plain (Galloway and others, 1986; Morton and others, 1988). The principal middle-late Miocene fluvial-deltaic system in Texas was located on the San Marcos Arch (Figure 2-22). During the Plio-Pleistocene (Table 2-1), tectonic quiescence and high-frequency glacio-eustatic fluctuations (this time from northern hemisphere glaciation) resulted in multiple cross-cutting and superimposed alluvial valley fills and preservation of thin sequences on the Texas Coastal Plain (Blum and Price, 1998).



Figure 2-1 Map of the Gulf of Mexico basin showing major structural elements and stratigraphic provinces. Modified from Ewing (1991).



Figure 2-2 Regional dip-oriented cross section of Cenozoic strata on the northwestern margin of the Gulf of Mexico basin. Modified from Galloway and others (1991) and Sharp and others (1991).



Figure 2-3 Map showing major growth fault zones and shallow salt domes in the onshore part of the Texas coastal zone. Modified from Ewing (1990) and Hamlin (2006).



Figure 2-4 Schematic cross section showing active surface fault. The fault zone is composed of deformed sediment having high vertical hydraulic conductivity locally. Aquifer sands are offset across the fault and commonly are thicker on the downthrown side owing to greater subsidence and sedimentation there. Modified from Verbeek and Clanton (1979).



Figure 2-5 Cross section showing typical surface expression of an active fault. The fault scarp is generally modified by erosion into a subtle topographic step. Vegetation changes near the fault line mark the boundary between dryland on the upthrown block and wetland on the downthrown block. Modified from Verbeek and Clanton (1979).



Figure 2-6 Lineation map of the Texas coastal zone in the Houston Embayment area. Lineations are the surface expressions of faults or fractures (Kreitler, 1976). The entire Texas coastal plain is covered by lineations, although only the more coastward lineations are mapped here. Modified from Fisher and others (1972, 1973) and McGowen and others (1976).



Figure 2-7 Map of subsidence and active surface faults in the Houston metropolitan area. Modified from Holzer (1984) and Shah and Lanning-Rush (2005).



Figure 2-8 Map showing locations of salt domes in southeast Texas and southwest Louisiana. Approximate dome sizes, shapes, and depths are shown. Individual salt domes identified by number (Table 1).



Figure 2-9 Cross section of Barbers Hill salt dome in Chambers County showing the salt stock, cap rock mineralogical zones, and enclosing hydrostratigraphic intervals (modified from Hamlin and others, 1988). This cross section has no vertical exaggeration (vertical and horizontal scales are equal). Cap-rock layering is generally more complicated than shown here and varies widely among domes.



Figure 2-10 Regional dip-oriented cross section of the upper Texas Gulf Coast showing salt domes and enclosing strata (modified from Hamlin, 1986). Line of section located in Figure 2-8.



Figure 2-11 Cross section of Boling salt dome in Wharton County showing salt stock, cap rock, and surrounding sediments (modified from Seni and others, 1985). Freshwater sands surround the dome, but muds and thin saline-water sands overlie the dome. Groundwater salinities are interpreted from resistivity logs (freshwater sands have >20 ohm-m resistivity).



Figure 2-12 Map of lower Chicot sand thickness around Barbers Hill salt dome (modified from Hamlin and others, 1988). The lower Chicot sand is widespread in the Houston area (Wesselman, 1971, 1972; Baker, 1979).



Figure 2-13 Map of surficial sediments and depositional facies around Barbers Hill salt dome (from Fisher and others, 1972). Pleistocene channel sand follows peripheral low area east of the dome, whereas fine-grained interchannel facies cover the dome crest.



Figure 2-14 Photograph showing catastrophic collapse and sinkhole that formed over Hull salt dome in 2008 in the town of Daisetta, Liberty County, Texas (from Horswell, 2009).





Figure 2-15 Map of Barbers Hill salt dome showing locations of storage caverns in the salt stock and brine disposal wells in the cap rock as they existed in 1984 (modified from Seni and others, 1984c).

#### Final Report - Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer



Figure 2-16 Cross section showing storage caverns and brine disposal wells at Barbers Hill salt dome (modified from Seni and others, 1984c). Line of section located in Figure 8. Storage cavern locations, depths, and dimensions are accurate, but geometric details are generalized. Storage cavern geometries are commonly delineated using sonar, and a sonar survey was available for one cavern on this section (third cavern from the right).



Figure 2-17 Cross section of Barbers Hill salt dome showing salt stock, cap rock, and surrounding sediments (modified from Hamlin and others, 1988). Groundwater salinities are interpreted from resistivity logs. Sands become thinner and more saline with proximity to the dome. Sand thickness of the lower Chicot sand is shown in Figure 2-12.



Figure 2-18 Hydrograph of a long-term cap rock injection test at Barbers Hill salt dome showing brine-level changes in a cap rock observation well during controlled brine disposal in two other cap rock wells (from Hamlin and others, 1988). Water levels in nearby Chicot aquifer and Evangeline aquifer water wells are around 100 feet below sea level or similar to cap rock brine levels when no disposal is occurring. However, water levels in nearby water wells were not monitored during the injection test.



Figure 2-19 Resistivity map of the lower Chicot aquifer at Barbers Hill salt dome (modified from Hamlin and others, 1988). Water wells completed in this lower Chicot sand are also shown along with total dissolved solids measurements. Low resistivities around the southern and southwestern dome flanks delineate a high-salinity plume extending away from the salt dome in the down-flow direction.



Figure 2-20 Schematic diagram showing a fluvial depositional system with its component depositional environments and resulting genetic facies. Modified from Galloway and others (1979).



Figure 2-21 Schematic drawing of Quaternary depositional systems of the Texas Coastal Plain. Modified from Winker (1979) and Galloway and others (1986).



Figure 2-22 Positions of principal fluvial-deltaic depocenters and interdeltaic shorelines for selected depositional episodes, northwest GOM. Modified from Galloway (1989b) and Galloway and others (2000).



**Figure 2-23** Chronostratigraphic chart of Miocene to Holocene depositional episodes, northwest GOM. Lithostratigraphic and hydrostratigraphic boundaries are approximate. Depositional episodes from Galloway and others (2000) and sea-level curve from Haq and others (1987). Geologic ages in millions of years ago (Ma) from Berggren and others (1995).

This page intentionally left blank.

# **3.0** Stratigraphic and Hydrogeologic Framework

The Gulf Coast Aquifer in Texas encompasses all stratigraphic units above the Vicksburg Formation (Ashworth and Hopkins, 1995; George and others, 2011) (Table 2-1). The lowermost stratigraphic unit is the Catahoula Formation (including the Frio and Anahuac in the deep subsurface), which is an aquitard everywhere except near the outcrop (Wood and others, 1963). In the overlying Fleming Group, the Oakville Sandstone is approximately equivalent to the Jasper Aquifer and the Lagarto Clay to the Burkeville Aquitard (Wesselman, 1967; Baker, 1979) (Figure 2-23). The Goliad, Willis, and Lissie Formations, which contain most of the fresh-water resources in the Gulf Coast Aquifer (Wood and others, 1963), are the focus of this description. The Goliad Formation is approximately equivalent to the Evangeline Aquifer, although the Evangeline includes some underlying Fleming sands locally (Baker, 1979). The Chicot Aquifer comprises all sands between the top of the Evangeline and the land surface (Baker, 1979) (Figure 2-23). Although Pliocene-Pleistocene stratigraphy in the shallow subsurface of the Texas Coastal Plain is complex, the primary components of the Chicot Aquifer are the Willis, Lissie, and Beaumont Formations (Ashworth and Hopkins, 1995; George and others, 2011). In southeast Texas, the Montgomery and Bentley Formations are approximately equivalent to the Lissie Formation (Baker, 1979; Dutton and Richter, 1990).

# 3.1 **Previous Studies**

The earliest geologic studies focused on outcrop description and correlation (Deussen, 1914, 1924; Barton, 1930; Trowbridge, 1932; Plummer, 1932; Price, 1933, 1934; Weeks, 1933, 1945; Doering, 1935, 1956; Bernard and LeBlanc, 1965). Outcrop mapping culminated in the publication by the Bureau of Economic Geology (BEG) of the *Geologic Atlas of Texas (GAT)* (Aronow and Barnes, 1968; Shelby and others, 1968; Proctor and others, 1974; Aronow and Barnes, 1975; Aronow and others, 1975; Brewton and others, 1976a; Brewton and others, 1976b) (Figure 3-1) and the *Environmental Geologic Atlas of the Texas Coastal Zone* (Brown and others, 1976, 1977, 1980; McGowen and others, 1976a,b). These studies demonstrated that outcropping Miocene to Holocene Formations are composed of unconformity-bounded, seaward dipping, nonmarine clastic wedges. In updip areas, each formation erosionally truncates and onlaps the underlying formation (Figure 3-2). Thin erosional remnants, isolated terraces,

onlapping veneers, and Holocene alluvial cover make it difficult to establish regional correlations between outcropping and subsurface stratigraphic intervals (Winker, 1979; DuBar and others, 1991).

Subsurface stratigraphic analysis of the Texas Gulf Coast was originally developed for petroleum exploration but became an essential tool for characterization of aquifer composition, correlation, and structure. Subsurface mapping was initially based on analysis of rock cuttings and fossils produced during the well drilling process. However, by the 1930s, geophysical (electrical) well logs provided a major source of data for formation identification and correlation. Early subsurface studies focused on the stratigraphic and structural framework of Gulf Coast Formations (e.g., Applin and others, 1925; Barton and others, 1933; Bornhauser, 1947, 1958; Williamson, 1959; Murray, 1961). Subsequent studies developed the concepts of depositional systems and facies (e.g., Boyd and Dyer, 1964; Rainwater, 1964; Fisher and McGowen, 1967). More recently, the concepts and techniques of sequence stratigraphy and chronostratigraphic correlation have been used to refine the stratigraphic framework and depositional history of the GOM (Galloway, 1989b; Lawless and others, 1997; Fillon and Lawless, 2000; Galloway and others, 2000; Hernandez-Mendoza and others, 2008). Gulf Coast subsurface stratigraphy, depositional systems, and structure are summarized in a series of well log cross sections published by BEG (Dodge and Posey, 1981; Morton and others, 1985; Galloway and others, 1994).

Subsurface analysis in Texas groundwater studies began early and has been an equal partner with petroleum studies in the development of our understanding of Gulf Coast stratigraphy. Early publications by the Texas Board of Water Engineers and the U.S. Geological Survey (USGS) used well logs to delineate aquifer boundaries and sand distribution in the subsurface (e.g., Rose, 1943; Lang and others, 1950; Jones, 1956). Numerous countywide and regional studies of geology and groundwater resources by the Texas Water Commission (later the Texas Water Development Board) refined aquifer stratigraphy (e.g., Baker, 1964; Wesselman, 1967). Building on stratigraphic interpretations from both petroleum and groundwater resources, Baker (1979) published a series of well log cross sections covering the entire Texas Gulf Coast, which became the standard reference for aquifer stratigraphy in the region.

The USGS conducts regional studies of major aquifer systems for resource evaluation and management. As part of their Regional Aquifer-System Analysis (RASA) Program, the USGS published a series of reports on major aquifer systems across the Gulf Coastal Plain from Texas to Florida (Grubb, 1984, 1987; Ryder, 1988; Weiss, 1992; Hosman, 1996; Williamson and Grubb, 2001; Ryder and Ardis, 2002). These reports assemble hydrogeologic data and interpretations and present the results of numerical simulations. The hydrostratigraphic units developed for the RASA Program, however, have generally not been adopted in recent Texas-based studies. Instead, the Chicot and Evangeline Aquifer designations that were established regionally by Baker (1979) have been retained (e.g., Chowdhury and Turco, 2006; Knox and others., 2006; Young and others, 2010).

A second USGS program, the Source Water Assessment and Protection (SWAP) Program, developed a computer-based data set of surfaces (stratigraphic boundaries) for the Chicot and Evangeline Aquifers. The primary source data set to generate the SWAP surfaces consist of digitized points taken from the surface contours for the Chicot and Evangeline Aquifers found in Carr and others (1985). Carr and others (1985) do not provide control points for these contours, nor do they explain the method used to develop the contours. Thus, the uncertainty associated with the original contours is largely unknown. In developing its SWAP data set, the USGS blended the information from Carr and others (1985) with information from Jorgensen (1975), Baker (1979, 1986), and geologic outcrops mapped on BEG's GAT sheets. The outcrop information provided by the GAT sheets was used to estimate the updip region of the aquifers. The information from Baker (1979, 1986) was used to smoothly transition between the more detailed works of Jorgensen (1975) in the Houston area with the general framework established by Carr and others (1985). The SWAP aquifer surfaces were used in developing conceptual models for TWDB groundwater availability models (GAMs) of the Gulf Coast Aquifer (Chowdhury and Mace, 2003; Chowdhury and others, 2004; Kasmarek and Robinson, 2004). The SWAP data, however, are based on stratigraphic studies conducted in the 1970s and 1980s, which are being superseded by more recent studies using sequence stratigraphic techniques and ties to offshore chronostratigraphy (Knox and others., 2006; Young and others., 2010).

## **3.2 Fleming Group: Oakville and Lagarto Formations**

The Fleming Group of the Texas Coastal Plain is early Miocene in age and comprises the Oakville and Lagarto Formations (Galloway and others, 1986) (Figure 2-23, Table 2-1). The Fleming Group is bounded by regional marine shales in downdip areas and by the bases of massive fluvial sandstones updip. Fleming boundaries were traced updip through the nonmarine interval to outcrop using correlation, projection, lithology, and minor datum changes (Galloway and others, 1986) (Figure 3-3). The lower boundary was delineated by correlating between the Anahuac Shale downdip and the base of massive Oakville sandstone updip and in outcrop, and the upper boundary was delineated by similarly connecting the Amphistegina B Shale downdip with the base of massive Goliad sandstone updip. The Oakville and Lagarto Formations together compose a major fluvial-deltaic depositional episode in which the Oakville forms the lower progradational part, and the Lagarto forms the upper retrogradational part. In the onshore area, the Oakville is generally sand-rich, whereas the Lagarto is relatively more mud-rich. The Oakville and Lagarto Formations are separated by a marine transgressive shale downdip and a lithologic boundary updip (Figure 3-3).

The Fleming Group crops out across the entire Texas coastal plain except in South Texas where it is overlapped by a thin interval of Goliad gravel and caliche (Galloway and others, 1986) (Figure 3-3). The Oakville Formation ranges from 300 to 700 feet thick at outcrop to 1,000 to 2,000 feet thick near the modern shoreline, whereas the Lagarto Formation ranges from 700 to 1,400 feet thick at outcrop to 2,000 to 3,000 feet thick near the coast (Baker, 1979; Galloway and others, 1982, 1986). The Fleming Group dips coastward 50 to 60 feet per mile (Wood and others, 1963). Oakville sandstone is thickest (>900 feet) across a broad area in South Texas (Figure 3-4). The Lagarto Formation also contains thick sandstone in the far northeast part of the Texas coast, and both contain thick sandstone in the near offshore area (Figures 3-4 and 3-5). Across the broad middle coast from Nueces County in the southwest to Chambers County in the northeast, both formations contain relatively less sandstone, and several large regions in and near outcrop are marked by low sandstone (<200 feet) in both formations (Figures 3-4 and 3-5). Although net sandstone is low locally near outcrop in the Oakville Formation, sandstone percent is high because the gross Oakville interval is thin (Galloway and others, 1986). Across much of

the outcrop and near outcrop area, the Oakville forms a thinner high-sand interval, and the overlying Lagarto forms a thicker low-sand interval.

The Fleming Group comprises several large fluvial systems that grade downdip into equally large delta and shore-zone systems (Rainwater, 1964; Doyle, 1979; Spradlin, 1980; DuBar, 1983; Galloway and others, 1982, 1986). The fluvial systems include conglomeratic bed-load channel-fill sandstones and finer-grained mixed-load channel-fill sandstones (Table 3-1). Channel-fill sandstones range from 500 feet to 5 miles wide and 3 to 30 feet thick. Broad, dip-oriented, sand-rich belts near outcrop and in middip areas are composed of superposed and laterally amalgamated channel-fill and channel-margin splay facies (Figures 3-4 and 3-5). Channel belts are encased in mud-dominated floodplain facies. Downdip near the modern shoreline, coastal-barrier and beach-ridge facies form thick sequences of strike-aligned, massive sandstone in both formations.

| Facies                                    | Composition<br>grain size                                               | Sedimentary<br>structures                                                          | Thickness | Width              | Vertical<br>trend (log<br>pattern) | Depositional<br>systems                                                                             |
|-------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------|--------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|
| Conglomeratic<br>bed-load<br>channel      | Medium to<br>coarse sand,<br>gravel up to<br>pebble size,<br>mud clasts | Planar bedding,<br>low-angle<br>tabular cross-<br>bedding, trough<br>cross-bedding | 3–15 ft   | 1,000–<br>5,000 ft | Blocky,<br>irregular               | Santa Cruz fluvial<br>system, southwest<br>part of Moulton/<br>Point Blank<br>streamplain<br>system |
| Sandy bed-<br>load channel                | Fine to coarse<br>sand, local<br>gravel, mud<br>clasts                  | Planar bedding,<br>trough and<br>tabular cross-<br>bedding                         | 10–20 ft  | 1–5 mi             | Blocky,<br>irregular               | Santa Cruz fluvial<br>system                                                                        |
| Mixed-load<br>channel                     | Fine to coarse<br>sand, silt, mud,<br>mud clasts                        | Trough cross-<br>bedding, planar<br>bedding, ripple<br>and wavy<br>lamination      | 15–30 ft  | 500–<br>2,500 ft   | Fining<br>upward                   | Moulton/Point<br>Blank streamplain<br>system                                                        |
| Amalgamated<br>small channel<br>and splay | Very fine to coarse sand, silt                                          | Trough cross-<br>bedding, planar<br>bedding, ripple<br>and wavy<br>lamination      | 10-25 ft  | 1–3 mi             | Irregular to<br>fining<br>upward   | Moulton/Point<br>Blank streamplain<br>system                                                        |
| Crevasse<br>splay and<br>sheet splay      | Fine to coarse<br>sand, silt, sandy<br>mud, mud clasts                  | Planar<br>lamination,<br>ripples, small-<br>scale cross<br>bedding                 | 3–15 ft   | 1,000–<br>5,000 ft | Interbedded<br>fine and<br>coarse  | All fluvial<br>systems                                                                              |

Table 3-1Fleming Group depositional facies (Galloway and others, 1982, 1986).

| Facies                                     | Composition<br>grain size         | Sedimentary<br>structures                               | Thickness                           | Width                                                 | Vertical<br>trend (log<br>pattern) | Depositional<br>systems                                                                               |
|--------------------------------------------|-----------------------------------|---------------------------------------------------------|-------------------------------------|-------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|
| Floodplain,<br>coastal bays<br>and lagoons | Silt, clay, sandy<br>mud, caliche | Massive,<br>horizontal<br>lamination,<br>roots, burrows | Variable                            | Fill<br>inter-<br>channel<br>areas<br>(miles)         | No trend<br>(shale<br>baseline)    | All fluvial<br>systems                                                                                |
| Coastal barrier<br>and beach<br>ridge      | Fine to coarse sand               | Not reported                                            | Individual<br>units not<br>reported | Several<br>miles<br>wide,<br>tens of<br>miles<br>long | Blocky,<br>massive                 | North Padre delta<br>system,<br>Matagorda<br>barrier/strandplain<br>system, Calcasieu<br>delta system |

Table 3-1, continued

Major extrabasinal fluvial channel belts in the Fleming Group are located in South Texas and in the northeast near the Louisiana border (Figures 3-4 and 3-5). In South Texas, the Santa Cruz fluvial system (Table 3-2) is composed of coarse sand and gravel and is partly covered at outcrop by similarly coarse facies in the Goliad Formation (Galloway and others, 1982, 1986). Most Santa Cruz fluvial sandstones occur in the Oakville Formation; except for a few areas, the Lagarto Formation is dominated by mud-rich interchannel (floodplain) facies. In the northeast corner of the Texas coastal plain, the Newton fluvial system (Table 3-2) is just a small part of a large, lower Miocene fluvial-deltaic depocenter in Louisiana (Figure 2-22). Across the broad middle coast, the Moulton/Point Blank streamplain system (Table 3-2) comprises numerous small fluvial channel and splay sandstones encased in floodplain mudstones (Spradlin, 1980; Galloway and others, 1986).

Table 3-2Fleming Group depositional systems (Spradlin, 1980; Galloway, and others, 1982, 1986).

| Depositional<br>system             | Location (Gulf<br>Coast GAMs)                              | Principal facies                                                                             | Sandstone<br>geometry                                                              | Oakville sand<br>content                                                            | Lagarto sand<br>content                    |
|------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------|
| Santa Cruz fluvial                 | southern GC<br>GAM, southwest<br>part of central GC<br>GAM | bed-load<br>channel fill,<br>sheet splay,<br>floodplain                                      | multiple dip-<br>oriented low-<br>sinuosity<br>channel belts                       | 200–900 ft, 40–<br>80 %                                                             | mostly <500 ft,<br>20–40 %                 |
| Moulton/Point<br>Blank streamplain | central GC GAM,<br>southwest part<br>northern GC GAM       | amalgamated<br>small channel<br>and splay,<br>floodplain, bed-<br>load channel<br>(Oakville) | thin sinuous<br>channel and<br>splay belts<br>encased in<br>floodplain<br>mudstone | mostly <300 ft,<br>local pockets of<br>>500 ft, 20–60<br>%, increasing<br>southwest | <300 ft, <40 %,<br>increasing<br>northeast |

| Depositional<br>system                             | Location (Gulf<br>Coast GAMs)                              | Principal facies                                                   | Sandstone<br>geometry                                           | Oakville sand<br>content | Lagarto sand<br>content                                                               |
|----------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------|
| Newton fluvial                                     | northeast part<br>northern GC GAM                          | mixed-load<br>channel,<br>crevasse splay,<br>floodplain            | coalesced<br>channel and<br>splay belts,<br>minor<br>floodplain | 300–900 ft, 40–<br>80 %  | 300–900 ft, 40–<br>80 %                                                               |
| North Padre delta<br>(onshore part)                | southern GC<br>GAM, southwest<br>part of central GC<br>GAM | coastal barrier<br>and beach ridge,<br>coastal bays and<br>lagoons | strike-aligned,<br>vertically<br>stacked                        | 500–1000 ft,<br>20–50 %  | 200–900 ft, 10–<br>40 %                                                               |
| Matagorda<br>barrier/strandplain<br>(onshore part) | central GC GAM,<br>southwest part<br>northern GC GAM       | coastal barrier<br>and beach ridge,<br>coastal bays and<br>lagoons | strike-aligned,<br>vertically<br>stacked                        | 300–900 ft, 20–<br>40 %  | 300–500 ft (10–<br>40 %) updip,<br>>900 ft (40–60<br>%) along<br>present<br>shoreline |
| Calcasieu delta                                    | northeast part<br>northern GC GAM                          | coastal barrier<br>and beach ridge,<br>coastal bays and<br>lagoons | strike-aligned,<br>vertically<br>stacked                        | 300–700 ft, 20–<br>40 %  | 900–1100 ft,<br>40–60 %                                                               |

Table 3-2, continued

Delta systems in the Fleming Group display strongly strike-aligned sandstone orientations (Figures 3-4 and 3-5). Redistribution of sand along strike away from deltaic headlands by shore-zone waves and currents resulted in strike-elongate stacks of massive sandstone in downdip areas (Galloway and others, 1986) (Figure 2-21). The North Padre delta system (Table 3-2) is the seaward extension of the Santa Cruz fluvial system in South Texas. Much of the sand delivered to the North Padre delta system was redistributed to the northeast into the Matagorda barrier/ strandplain system (Table 3-2), especially in near offshore areas (Figures 3-4 and 3-5). The Calcasieu delta system (Table 3-2) is the seaward extension of the North Padre 3-2) is the seaward extension of the Newton fluvial system in the northeast. Calcasieu deltaic sandstones are thickest in the Lagarto Formation.

Fleming Group depositional systems constructed a framework of dip-oriented fluvial sandstone belts updip to middip and strike-oriented shore-zone sandstone belts downdip. Fluvial and shore-zone sandstones are well interconnected only in South Texas and far northeast coastal Texas. Across the broad middle coast, shore-zone sandstones are more isolated, grading updip into mud-dominated lagoonal and floodplain facies (Figures 3-4 and 3-5). Furthermore, much of Fleming shore-zone sandstone lies seaward of the modern shoreline. In South Texas, Lagarto sandstones generally thin downdip, whereas Oakville sandstones thicken downdip. The Oakville is distinctly sandier than the Lagarto in South Texas. Along the middle coast, thick Lagarto sandstones form a strike-aligned belt in coastal areas of Matagorda and Brazoria Counties, but this sandstone belt grades landward into low-sandstone areas (Figure 3-5). The Oakville is relatively sand-poor along the coast in Matagorda and Brazoria Counties but is somewhat sandier than the Lagarto in adjacent middip areas (Figure 3-4). The Lagarto is generally sandier than the Oakville along the upper coast.

## **3.3 Goliad Formation**

The Goliad Formation of the Texas Coastal Plain is primarily middle-to-late Miocene in age (Morton and others, 1988) (Figure 2-23, Table 2-1). The Goliad includes vertebrate fossils ranging in age from middle Miocene to earliest Pliocene (Baskin and Hulbert, 2008). At outcrop and in the shallow subsurface, the Goliad Formation is bounded by regional unconformities at the base of massive fluvial sandstones, but downdip, the Goliad is bounded by marine transgressive shales (Figure 3-6). A minor datum change is required to tie downdip marine paleontologic markers to updip lithologic markers (Morton and others, 1988). The lithostratigraphic Goliad Formation occurs only in the onshore part of the Texas Coastal Plain, where it is defined by nonmarine depositional systems and facies (Solis, 1981; Hoel, 1982). In extreme South Texas and northeastern Mexico (Burgos basin), however, the Goliad-equivalent interval is composed of shore-zone and marine depositional systems (Morton and others, 1988). In the modern offshore area, middle-upper Miocene sequences include fluvial, deltaic, and marine depositional systems (Doyle, 1979; Morton and others, 1988; Galloway and others, 2000).

The Goliad Formation ranges in thickness from 200 feet at outcrop to about 1,400 feet near the modern shoreline. The Goliad does not display significant thickness changes attributable to differential subsidence across the San Marcos arch and into adjacent embayments but does thicken (15–20%) locally across the major growth fault zones shown in Figure 3-3 (Hoel, 1982). Goliad strata dip coastward about 10 to 20 feet per mile. Net sandstone thicknesses range from 100 to 800 feet, and sandstone content decreases regionally to the southwest (Morton and others, 1988). Sandstones in the upper Goliad typically are less conglomeratic and thinner bedded than are those in the lower Goliad (Hoel, 1982; Morton and others, 1988).

Goliad fluvial depositional systems comprise channel-fill and interchannel facies (Hoel, 1982) (Table 4-1). Fluvial channel-fill facies are composed mainly of medium- to coarse-grained sand and gravel, displaying large-scale cross-bedding. Hoel (1982) recognized both bed-load and mixed-load channel-fill facies in Goliad outcrops (Table 4-1). Gravelly coarse sand, sandy gravel, and pebble-to-cobble-sized gravel dominate bed-load channel-fill facies. Vertical stratigraphic successions in bed-load channel-fill facies are irregular, and grain size and sorting vary greatly. Mixed-load channel-fill facies, however, commonly display fining-upwards vertical grain-size trends. Coarse sand and sandy gravel are overlain by medium-to-fine sand, and very fine sand and silt cap the mixed-load channel-fill facies cause blocky log patterns whereas mixed-load channel-fill facies cause fining-upwards log patterns.

Interchannel facies include sandy crevasse splays, and muddy floodplain and playa lake facies. Crevasse-splay facies formed where flood waters breached channel levees and deposited broad aprons of sandy sediment on the floodplain (Table 3-1). Crevasse splays associated with mixedload channels are finer grained than those associated with bed-load channels (Hoel, 1982). Floodplain facies surround channel-fill and crevasse-splay facies and were deposited across interchannel areas during floods. Mottled red clays dominate floodplain successions, and secondary calichification and pedogenesis are pervasive (Hoel, 1982). Playa facies have been identified only in Brooks and San Patricio Counties (Hoel, 1982). In playa facies, gypsum occurs as interbeds and interstitial precipitates. The environment of deposition of playa facies was probably an arid-region evaporitic lake (inland sabkha facies of Hoel [1982]).

| Facies                    | Composition grain<br>size                                 | Sedimentary<br>structures                                             | Thickness | Width           | Vertical<br>trend (log<br>pattern) | Fluvial<br>systems   |
|---------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|-----------|-----------------|------------------------------------|----------------------|
| Bed-load<br>channel       | Coarse sand, gravel<br>up to cobble size,<br>mud clastics | Large planar and trough cross-bedding                                 | 25–60 ft  | ~103 ft         | Blocky,<br>irregular               | Realitos,<br>Tomball |
| Mixed-<br>load<br>channel | Medium-coarse sand,<br>gravelly sand, mud<br>clasts       | Large and small trough<br>cross-bedding, low-<br>angle planar bedding | 30–60 ft  | ~103–<br>104 ft | Fining<br>upward                   | Eagle<br>Lake        |

Table 3-3Goliad Formation depositional facies (Hoel, 1982).

| Facies            | Composition<br>grain size                 | Sedimentary<br>structures                            | Thickness | Width                                 | Vertical<br>trend (log<br>pattern) | Fluvial<br>systems |
|-------------------|-------------------------------------------|------------------------------------------------------|-----------|---------------------------------------|------------------------------------|--------------------|
| Crevasse<br>splay | Medium-fine<br>sand, silt, gravel<br>lags | Ripple, wavy and parallel lamination                 | 10–30 ft  | ~103–104 ft                           | Fining<br>upward                   | All                |
| Floodplain        | Silt, clay, caliche                       | Massive, horizontal<br>lamination, roots,<br>burrows | Variable  | Fill<br>interchannel<br>areas (miles) | No trend<br>(shale<br>baseline)    | All                |
| Playa lake        | Gypsum, sand,<br>silt, clay               | Horizontal<br>lamination, ripples,<br>chaotic        | 30–60 ft  | Miles                                 | Thin fining<br>upward<br>cycles    | Realitos           |

Table 3-3, continued

The Goliad Formation includes three large extrabasinal fluvial systems listed in Table 3-4. (Hoel, 1982; Morton and others, 1988). Each Goliad fluvial system contained multiple channel axes that formed an integrated drainage network. Channels preferentially reoccupied the same locations on the coastal plain, resulting in vertical stacking of sand bodies (Morton and others, 1988). Owing to an arid paleoclimate and lack of bank-stabilizing vegetation, Goliad fluvial channels had poorly developed levees, channel migration was relatively unconstrained, and channel-fill deposits tended to coalesce laterally (Hoel, 1982). Thus, Goliad channel-fill sand bodies form broad belts that are much thicker and wider than the river channels in which they were deposited.

Goliad fluvial systems vary in overall composition and sandstone development, and generally become sandier to the northeast (Table 3-3, Figure 3-7). The Realitos fluvial system occupies the Rio Grande embayment. This fluvial system includes spectacular pebble- and cobble-sized gravels in outcrop (Plummer, 1932; Hoel, 1982), but in middip positions, Realitos channel belts are narrow and include relatively less aggregate net sand than the other Goliad fluvial systems (Figure 3-7, Table 3-4). Realitos gravels include volcanic rock fragments, Permian limestone, and other compositions reflecting extrabasinal source areas in West Texas and beyond (Hoel, 1982). The Realitos fluvial system feeds small deltaic and barrier-lagoon depositional systems that are located under the modern South Texas shoreline and adjacent offshore area.

The Eagle Lake fluvial system is located (atypically) on the San Marcos arch and the adjacent southwestern part of the Houston embayment. Fluvial axes of the Eagle Lake system are broader and sandier than those of the Realitos system (Figure 3-7, Table 3-4). Individual channel-fill

sand bodies in the Eagle Lake system are slightly thicker than those in the other Goliad fluvial systems. Eagle Lake sand bodies are most developed in the upper part of the Goliad Formation (Hoel, 1982; Knox and others, 2006). The Eagle Lake fluvial system was the primary middle-late Miocene drainage conduit for the Texas part of the northwest GOM and supplied sediment to the South Brazos delta system located well offshore (Morton and others, 1988). The largest northwest GOM fluvial-deltaic drainage system in the middle-late Miocene was located in the Mississippi embayment (Figure 2-22).

| Depositional<br>system              | Location                             | Channel-belt<br>composition  | Channel-<br>belt width | Stratigraphic<br>position of<br>maximum<br>sand | Interchannel<br>composition             | Source<br>area                       | Overall<br>sand<br>content<br>(rank)  |
|-------------------------------------|--------------------------------------|------------------------------|------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------|
| Realitos bed-<br>load fluvial       | Rio Grande<br>embayment              | ≤400 ft sand,<br>40–50% sand | 5–15<br>miles          | lower and<br>upper Goliad                       | calcareous<br>mudstone,<br><20% sand    | West<br>Texas,<br>northern<br>Mexico | third<br>(lowest<br>sand<br>content)  |
| Eagle Lake<br>mixed-load<br>fluvial | North flank<br>San<br>Marcos<br>arch | ≤500 ft sand,<br>40–60% sand | 10–20<br>miles         | upper Goliad                                    | calcareous<br>mudstone,<br><20% sand    | Central<br>Texas                     | second                                |
| Tomball bed-<br>load fluvial        | Houston<br>embayment                 | ≤600 ft sand,<br>40–60% sand | 10–30<br>miles         | lower and<br>upper Goliad                       | mudstone and<br>sandstone,<br>>25% sand | East<br>Texas                        | first<br>(highest<br>sand<br>content) |

Table 3-4The Goliad Formation fluvial depositional systems (Hoel, 1982; Morton and<br/>others, 1988).

The Tomball fluvial system is located in the Houston embayment. Even though it was not the primary extrabasinal drainage conduit in Texas, the Tomball system is the sandiest of the three Goliad fluvial systems (Figure 3-7, Table 3-4). Tomball channel belts are broad and sand-rich, but interchannel areas are unusually sandy as well because of the abundance of crevasse-splay facies (Morton and others, 1988). During the middle Miocene, tectonic activity in the source areas disrupted drainage networks and shifted the axis of sedimentation northward from the Rio Grande embayment to the Houston and Mississippi embayments (Morton and others, 1988). For this reason, Tomball rivers transported larger volumes of sediment than more southerly rivers, and this large sediment influx was sustained though both middle and late Miocene depositional episodes. Tomball rivers supplied sediment to form the thick sand-rich, shore-zone facies of the Galveston Strandplain system in the southeast Texas offshore area (Morton and others, 1988).

## **3.4 Willis Formation**

The Willis Formation is approximately Pliocene in age (Galloway, 1989b). At outcrop, the Willis erosionally downcuts and locally truncates the underlying Goliad Formation and is in turn eroded and locally onlapped by the overlying Lissie Formation (Doering, 1935) (Figure 3-2). The Willis outcrop consists of cuesta-forming erosional remnants in the Houston Embayment and on the San Marcos Arch (Figure 3-1). The Willis does not outcrop in the Rio Grande Embayment, although Pliocene-age deposits are present there in the subsurface. Along the south and central Texas coast, Willis-equivalent strata have been mapped with the Lissie (Doering, 1956) or with the Goliad (Solis, 1981). Similar to the Goliad, the Willis is dominated by nonmarine, fluvial depositional systems in the onshore part of the Texas Coastal Plain (Guevara-Sanchez, 1974; Solis, 1981; Galloway and others, 2000). At outcrop, the Willis is composed of gravelly coarse sand in several upward-fining successions that are interpreted as incised valley fills overlain by transgressive deposits (Morton and Galloway, 1991). Near the modern shoreline and offshore, Willis deltaic and marine systems record four cyclic depositional episodes bounded by transgressive shales (Galloway and others, 2000) (Figure 2-23). The paleo Red River extended across the upper Texas Coastal Plain. This major Pliocene extrabasinal river for deltaic and continental margin progradation extends offshore from Houston. The ancestral Mississippi River in Louisiana was the second main source of sediment input during the Pliocene. Although the ancestral Mississippi River in Louisiana was the main source of sediment input during the Pliocene, the onshore part of the Willis is more sand-dominated in the Houston Embayment than it is in southwest Louisiana (Figure 3-8).

The Willis Formation ranges in thickness from about 100 feet at outcrop to 500 feet near the coast and also thickens northeastward (Knox and others, 2006). The Willis dips coastward about 15 to 20 feet per mile and is 1,000 to 2,000 feet deep at the modern shoreline (Doering 1935; Knox and others, 2006). Willis fluvial systems include dip-oriented sand-rich channel-fill facies and sand-poor interchannel areas, which grade toward the coast into shore-parallel deltaic and shore-zone sands and interdeltaic muddy bay deposits. Individual Willis sands vary widely in thickness from about 20 to 200 feet and are separated by muds of similar thickness (Knox and others, 2006). The abundance of sand in the Willis Formation is greater than 60% across most of the Houston Embayment but decreases downdip to around 40% along the coast (Figure 3-8).

## 3.5 Lissie Formation

The Lissie Formation is approximately early Pleistocene in age (DuBar and others, 1991). Pleistocene fossils have been found in the Lissie at several locations on the Texas coastal plain (Plummer, 1933). In Texas and southwest Louisiana, the Lissie outcrop is continuous except where cut by modern river valleys or where covered by Holocene windblown deposits in South Texas (Figure 3-1). North of the Brazos River, the Lissie Formation has been mapped at the surface as the Montgomery and Bentley formations (Barnes, 1992). At outcrop the Lissie is composed of fine-grained sand and sandy clay and unconformably overlies and onlaps the Willis (Morton and others, 1991). In the subsurface the Lissie is defined as the interval between the Willis and the Beaumont (Figure 3-2). The Lissie is dominated by nonmarine depositional systems in the onshore part of the Texas and Louisiana coastal plains, although shore-zone facies are prominent in some coastal counties (Guevara-Sanchez, 1974; Solis, 1981). Lissie deposition was strongly influenced by glacial-interglacial cycles on the North American continent. High-frequency glacio-eustatic sea-level fluctuations resulted in shorter depositional episodes, thinner genetic sequences, and greater erosional downcutting (Figures 2-23, 3-2).

The Lissie Formation ranges in thickness from about 100 feet at outcrop to greater than 700 feet at the coast (Knox and others, 2006). The Lissie dips coastward about 5 to 20 feet per mile and is 500 to 1000 feet deep at the modern shoreline (Doering, 1935; Knox and others, 2006). Lissie depositional facies patterns are similar to those of the Willis: dip-oriented fluvial channel sands separated by interchannel muds and grading downdip into shore-parallel sands and muds. In Lissie fluvial systems, individual sand bodies are 20 to 100 feet thick, whereas interbedded muds are generally less than 20 feet thick (Knox and others, 2006). Shore-zone and marine systems downdip, however, include much thicker muddy intervals. The Lissie Formation is >60% sand in updip fluvial systems and 20 to 60% sand in downdip shore-zone systems (Figure 3-9). Along the northeastern Texas coast, the Lissie is less sandy than is the Willis (Figures 3-8, 3-9). The sandiest part of the Lissie is located in southern Louisiana (Figure 3-9).

#### **3.6 Beaumont Formation**

The Beaumont Formation is late Pleistocene in age (DuBar and others, 1991). Pleistocene-age fossils have been found in the Beaumont at numerous locations on the Texas Coastal Plain
(Maury, 1920, 1922; Plummer, 1933; Price, 1934). The Beaumont outcrop covers a large part of the lower coastal plain except where cut by modern river valleys or covered by Holocene windblown sand in south Texas (Figure 3-1). The Beaumont is composed of clay-rich sediments transected by sandy fluvial and deltaic-distributary channels. The Beaumont also includes isolated segments of coast-parallel, sandy beach ridges known as the Ingleside barrier/strandplain system (Price, 1958) (Figure 3-10). The Beaumont depositional episode records a continuation of patterns that developed during deposition of the Lissie: high-frequency, glacio-eustatic, sea-level fluctuations (Figure 2-23) and dominant fluvial sediment input located in Louisiana (Galloway and others, 2000). Much of the original depositional morphology of Beaumont fluvial, deltaic, and marginal-marine systems, such as abandoned channels and relict beach ridges, can be seen at the surface in aerial photographs. At sea-level highstand, the position of the Beaumont shoreline approximately coincided with that of the modern shoreline (Solis, 1981; Knox and others, 2006). During sea-level lowstand, Beaumont-incised valleys extended many miles seaward of the present shoreline (Morton and others, 1991).

North of the Brazos River, the Beaumont Formation ranges in thickness from a thin veneer in updip areas to about 500 feet near the modern coast and thickens to the northeast (Guevara-Sanchez, 1974). The Beaumont dips coastward from 1 to 10 feet per mile (Guevara-Sanchez, 1974). Individual sands range from 20 to 50 feet thick, stacking locally to reach 150 feet in thickness (Knox and others, 2006). Interbedded muddy intervals are generally of similar thickness to the sands. Thicknesses of individual sands increase updip, whereas thicknesses of individual shales increase downdip. Fluvial channels display dip-oriented, meandering and distributary patterns at the surface. Within the channel belts, the Beaumont is 50 to 65% sand (Guevara-Sanchez, 1974). Channel belts are separated by sand-poor floodplain, delta-plain, and bay-lagoon systems.

## 3.7 Holocene Deposits

Holocene sediments were deposited within the last 18,000 years. In Texas Holocene sediments consist mainly of isolated river valley fills that merge coastward with bays, lagoons, and barrier islands (Fisher and others, 1972, 1973; McGowen and others, 1976a,b; DuBar and others, 1991) (Figure 3-10), whereas in south Louisiana, Holocene fluvial-deltaic sediments are widespread (Autin and others, 1991). Holocene depositional systems record the final period of sea-level rise

following the last North American glaciation, a rise that was punctuated by numerous stillstands and small reversals (McGowen and others, 1976). The base of the Holocene is an erosional surface that formed during sea-level lowstand at the end of the Pleistocene. River valleys were deeply incised into the preexisting Beaumont coastal plain and filled slowly with bay-estuary muds as sea-level rose. Subsequently, fluvial-deltaic systems prograded seaward filling the updip parts of the valleys with sandy alluvial deposits, but only the Colorado River, Brazos River, Mississippi River, and the Rio Grande have completely filled their valleys to the coast. The other Texas coastal river valleys are still partly occupied by bays and lagoons. In southeastern Texas, the sandiest parts of the Holocene are located in the Colorado and Brazos river valleys (Figure 3-10). In Louisiana, broad areas along the coast and in the wide Mississippi River valley are covered by Holocene sediments up to 400 ft thick (Autin and others, 1991) (Figure 3-1).



Figure 3-1 Geologic map of the Texas Coastal Plain. Source: Barnes (1992).



Figure 3-2 Schematic dip cross section showing relationships between outcropping formations and subsurface stratigraphy, central coastal plain, Texas. Modified from Doering (1956).



Figure 3-3 Schematic cross section of lower Miocene stratigraphy showing depositional sequences and lithostratigraphic and biostratigraphic boundaries. Source: Galloway and others. (1986).



Figure 3-4 Net-sandstone isopach map of the Oakville Formation also showing depositional systems. Red dotted line separates updip fluvial systems from downdip delta and shore-zone systems. Modified from Galloway and others. (1986).



Figure 3-5 Net-sandstone isopach map of the Lagarto Formation also showing depositional systems. Red dotted line separates updip fluvial systems from downdip delta and shore-zone systems. Modified from Galloway and others. (1986).

Final Report - Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer



Figure 3-6 Schematic cross section of middle-upper Miocene stratigraphy showing depositional sequences and lithostratigraphic and biostratigraphic boundaries. From Morton and others. (1988).



Figure 3-7 Percent sandstone maps of Goliad and equivalent middle-upper Miocene sequences. From Hoel (1982) and Morton and others, (1988).





Figure 3-8 Sand percent map of the Willis Formation, southeast Texas and south Louisiana. Modified from Weiss (1992).



Figure 3-9 Sand percent map of the Lissie Formation, southeast Texas and south Louisiana. Modified from Weiss (1992).



Figure 3-10 Simplified map of surface sediment types covering Matagorda County to the Louisiana border showing Pleistocene (Beaumont Formation) and Holocene deposits. Modified from Fisher and others (1972, 1973) and McGowen and others (1976a,b).

## 4.0 Information sources

The information used to develop the hydrostratigraphy of the Gulf Coast Aquifer can be divided into two data groups. One group consists of geophysical logs, and the other consists of the information used to help guide the analysis of the geophysical logs. This section describes the type of information associated with each data group used to characterize the chronostratigraphy and lithology of the Gulf Coast Aquifer.

## 4.1 Geophysical Logs

Extensive investigation of the subsurface conducted by the petroleum industry in the state of Texas has yielded a considerable number of geophysical logs that can be used to characterize the subsurface deposits. At the time of this writing, the Texas Railroad Commission was monitoring approximately 400,000 oil and gas wells in the state of Texas. The Texas Gulf Coast, particularly within the upper Cenozoic stratigraphy that includes the Gulf Coast Aquifer system, contains one of the largest concentrations of petroleum in the world (Nehring, 1991).

Geophysical logs are generated by lowering a measuring device into a borehole and taking a series of continuous measurements of the physical properties of the wellbore environment. A geophysical log typically contains a number of different curves acquired prior to completion of the well. Common geophysical logs include caliper, gamma, single-point resistance, normal resistivity, spontaneous potential, electromagnetic induction, fluid resistivity, temperature, flowmeter, television, and acoustic televiewer. The combination of a resistivity log and a spontaneous potential log are often referred to as an electrical log.

For this study, electrical logs were used extensively in the study because of their widespread use on the Gulf Coast for over 70 years and because they are particular well suited for developing sequences of clastic sediments. One of the limitation with using electrical logs for developing stratigraphy that most of the wells drilled after the 1970s do not record readings from the first several hundred feet of borehole. However, for developing groundwater availability models, data from as shallow as 100 ft below the ground surface can be important.

#### 4.1.1 Resistivity Logs

Resistivity logs record an apparent electrical resistance in and within the vicinity of the borehole at different depths. The unit of resistivity measurement is the ohm-meter<sup>2</sup> per meter. The reciprocal of resistivity is conductivity, which is measured in mhos per meter.

To generate a resistivity log, one or more electrodes are suspended on a cable and lowered into a borehole. An electric current is then forced to flow between an electrode at the surface and one or more electrodes that are downhole. The changes in the current losses are then recorded as the locations of the electrodes are moved up and down the borehole. The variations in the resistivity with depth are caused primarily by differences in the porosity and composition of the subsurface deposits and by the mineral content of the water contained in the strata and in the borehole.

The resistivity logs that were most commonly analyzed for this study consist of two electrodes downhole. When the separation of the electrodes is 16 inches or less, the configuration is called a short normal. If the two electrodes are separated by 64 inches, the configuration is called a long normal. The larger the spacing between the two downhole electrodes, the deeper the penetration of the measurement into the formation.

Dry formations will have very high resistivities because they are poor conductors of electricity. Saturation of a deposit reduces its resistivity because water is an electrical conductor. In general, saturated subsurface materials with low resistivity include silts, clays, and shales. Fresh water deposits composed of sands and gravel tend to have high resistivities. The resistivity of a formation will vary inversely with the total dissolved solids concentrations in its pore water. One of the reasons that clays tend to have low apparent resistivities is because their interstitial waters are often highly mineralized. On the other hand, sands and gravels saturated with fresh water tend to have high apparent resistivities because their surfaces are relatively inert and tend to release few minerals into solution.

Figure 4-1 illustrates how apparent resistivity can vary with differences in subsurface material and total dissolved solid concentrations in groundwater. In fresh water, the difference in the apparent resistivity between sandy and clayey deposits is considerably greater than in very brackish water. In fact, in salt water, the difference in apparent resistivity between a clay and a sand is subtle. In situations that involve heterogeneous deposit types and vertical variations in

water quality, analysis of the resistivity logs should be performed in concert with the analysis of other logs that provide independent information on either the characteristics of the deposits or the water quality.

Because the borehole fluids affect the resistivity measurement, the borehole diameters should be kept as small as possible. In a large-diameter hole or with short spacings between the electrodes, the resistivity will be heavily influenced by the drilling fluid. This is because the "zone of influence" of the electrodes may not extend very far into the formation (Driscoll, 1986). If the drilling fluid is quite clayey or salty (highly conductive), the formation resistivity may serve to partially mask the resistance of relatively thin sandy aquifers.

#### 4.1.2 Spontaneous Potential Logs

Spontaneous potential (SP) logs record naturally occurring electrical potentials (voltages) that occur in the borehole at different depths. The SP log primarily measures the electrochemical potential between a stationary reference at the surface and a moving electrode in the borehole.

The circuitry between the surface and the downhole electrode does not include an external source for an electric current. The electrochemical potential is generated by ions moving between the borehole fluid and the formation water. If there is no contrast in the ionic concentrations of the borehole fluid and the formation water, there is no electrochemical potential, and the SP potential is zero. The downhole electrode usually has a lower (more negative) potential than the surface electrode. SP logs only record relative values rather than the absolute values of resistivity tools.

The examples in Figure 4-1 illustrate the type of SP responses that can be expected in formations containing fresh water, brackish water, and salt water when the drilling fluid is composed of fresh water. As shown in Figure 4-1, at shallow depths where there may be little difference in the concentration of ions between the drilling fluids and the aquifer, the analysis of the SP log may be difficult because of the lack of deflections. However, at deeper depths where the formation waters are more mineralized than the drilling fluids, the leftward deflections (more negative values) in the SP logs are useful for identifying permeable strata. Despite the fact that the SP logs can provide potentially useful information on the location of permeable zones, there is no direct relationship between the magnitude of the SP deflection and either permeability or porosity because just a fraction of a millidarcy of permeability is sufficient to support the ionic

movement required to generate a SP deflection. The deflections associated with sands and gravels are more associated with their mineralogical differences than their permeability difference with clays and shales.

The analysis of an SP log begins with developing a "baseline" by connecting the potentials associated with the impermeable beds such as clays and shales. Deflections to the left of this baseline are usually associated with beds of coarse-grained deposits such as sands and gravels. If no clay layers are present in the lithologic profile, the SP log may not provide much useful information.

### 4.1.3 American Petroleum Institute Format

The standard format for geophysical logs used by the petroleum industry is set by the American Petroleum Institute (API). The API format includes a header file and a set of log curves. Table 4-1 summarizes categories of data contained in the API headers.

| Data Categories                    | Description                                                                                                          | Use                                                                                                                    |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Measurement Datum<br>/ Log Datum   | Elevation from which logged depths are measured                                                                      | Allows referencing of curve measurements to a selected datum such as sea level                                         |
| Kelly Bushing (KB)                 | An oil rig design component, specifically the device that transfers the torque of the rotary table to the drill stem | Elevation of KB is commonly used as the<br>measurement datum by the logging<br>engineer Often given as height above GL |
| Ground Level (GL)                  | Elevation of surface of ground at the well head                                                                      | Allows measured depths to be converted to absolute depths                                                              |
| Top of Logged<br>Interval (TLI)    | Shallowest measured depth                                                                                            | Determines whether the log covers the relevant stratigraphic interval                                                  |
| Bottom of Logged<br>Interval (BLI) | Deepest measured depth                                                                                               | Determines whether the log covers the relevant stratigraphic interval                                                  |
| Operator / Company                 | The person or company, either proprietor lessee, actually operating an oil well or lease                             | A searchable term used to identify and locate wells                                                                    |
| Lease                              | A parcel of land on which mineral<br>exploration rights have been granted by the<br>landowner to a lessee            | A searchable term used to identify and locate wells                                                                    |
| Well Number                        | A numbering system within a lease or other unit                                                                      | A searchable term used to identify and locate wells                                                                    |
| Well Field                         | A region encompassing several leases in which proven reserves exist                                                  | A searchable term used to identify and locate wells                                                                    |
| Permit Date or<br>Completion Date  | Date after which well installation is<br>permitted, date of complete of well<br>construction for production          | A searchable term used to identify and locate wells                                                                    |

#### Table 4-1Types of log header data.

The Kelly Bushing is an adapter that connects the drilling rig rotary table to the drill string. As shown in Figure 4-2, the Kelly Bushing exists near the elevation of the drill rig floor. The elevation of the Kelly Bushing is important because it is used as the measurement datum referenced by the log curves. Accurate datums for well log records are important because they establish the relationship between depths of stratigraphic events in the well and a universal datum – sea level. The well log header usually contains both the elevation of the Kelly Bushing and the ground level at the wellbore. Often, the height of the datum above ground level is provided.

For some of the log headers, no elevation information is available for either the ground level or the Kelly Bushing. To estimate the elevation of the Kelly Bushing in those instances, a computer script was written to estimate the ground elevation at the well bore location from the USGS Digital Elevation Model (DEM) of the Gulf Coast and then to add an additional 16 ft, which is the average height of the Kelly Bushing above ground level based on the headers of logs used in this study having completed elevation data.

Beneath the header, the main body of the geophysical log contains the log curves. Figure 4-3 shows an example header and set of log curves for a geophysical log used for this study. The logs are plotted on three tracks with a depth column dividing tracks 1 and 2. The vertical-scale plotting depth is always linear and is usually scaled as 1, 2, or 5 inches per 100 feet of depth. The three tracks for the logs can have different scales and are reserved for specific types of logs. Among the logs that are plotted on track 1 are SP, gamma ray, and caliper. Track 1 always uses a linear scale, whereas the other two tracks can use either a linear or logarithmic scale. Porosity and resistivity logs are always shown in track 2 or 3. At the top of each track, the scale and log types are shown.

### 4.2 Approach for Obtaining Geophysical Logs

The approach for obtaining geophysical logs focused on gathering information along a series of dip- and strike-oriented lines to develop stratigraphic cross-sections. Where appropriate, we used the same logs as previous stratigraphic studies. Key information gathered from previous studies included analysis of paleontology data, estimates of age of deposition, mapping of depositional systems, identification of flooding surfaces (explained in Section 6), and delineation

of geologic formations. As the logs were being collected along the dip-oriented and strikeoriented lines, additional logs were collected between the lines to fill in areas to benefit the generation of sand and facies maps and the correlation of stratigraphic surfaces across the study area.

A primary consideration in our log selection was a starting depth above 300 feet below ground surface. This consideration significantly reduced the number of candidate well logs because many drilling operations are not interested in characterizing the zone of fresh water that is cased off during the construction of an oil well.

### 4.2.1 Geophysical logs' Sources

At the beginning of the project, the initial search for suitable logs focused on the logs that had been used as part of four previous aquifer studies. Two of these studies are considered to be among the landmark studies of the Texas Gulf Coast Cenozoic. These studies were performed by Dodge and Posey (1981), whose study focused on the Tertiary-age deposits, and by Morton and others (1985), whose study focused on Miocene-age deposits. A third study provided a detailed chronostratigraphic analysis of the Yegua and Jackson Aquifers (Knox and others, 2006). A fourth study was a detailed chronostratigraphic analysis of the southern Gulf Coast Aquifer by Young and others (2010).

All of the logs selected from the four previous studies were combined with additional logs from our generalized search through the professional literature. Our search for logs included a review of maps and databases from the BEG, TWDB, the Texas Commission on Environmental Quality (TCEQ), the Texas Railroad Commission, and the Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE), which was formerly known as the U.S. Mineral Management Service (MMS). Additional logs were also assembled from the USGS offices in Austin and several private companies including The Subsurface Library.

### 4.2.2 Geophysical Logs Selected for the Study

Figure 4-4 shows the locations for approximately 800 logs that were used for our study. Out of the 800 logs, approximately 125 logs were analyzed as part of the TWDB study of the southern Gulf Coast (Young and others, 2010). Appendix A provides the information listed in Table 4-2

for the 666 logs for which lithologic or stratigraphic picks were made as part of this study.

Appendix B provides the stratigraphic contacts made by Dr. Ewing for this study.

| Table 4-2 | Selected tables and fields from the Microsoft Access database used to |
|-----------|-----------------------------------------------------------------------|
|           | manage information on the 665 well logs analyzed for the study.       |

| Field Name                       | Description                                                                                                                                                                             |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| API number                       | American Petroleum Institute (API) identification number.                                                                                                                               |  |
| NAD27 latitude                   | Latitude based on North American Datum 1927.                                                                                                                                            |  |
| NAD27 longitude                  | Longitude based on North American Datum 1927.                                                                                                                                           |  |
| Dip section/position             | If blank, the log is not associated with a dip cross-section. Otherwise, the dip number is listed, and the position of the log is counted from a northwest-to-southeast sequence.       |  |
| Strike section/position          | If blank, the log is not associated with a strike cross-section. Otherwise, the strike number is listed, and the position of the log is counted from a southwest-to-northeast sequence. |  |
| Company                          | Company operating the oil or gas lease.                                                                                                                                                 |  |
| Lease                            | Land parcel being leased for use of the oil or gas well.                                                                                                                                |  |
| County                           | County (Texas) or Parish (Louisiana) in which the lease is located.                                                                                                                     |  |
| State                            | Texas or Louisiana                                                                                                                                                                      |  |
| Lithology and water quality data | Indicates whether lithology picks and water quality interpretations were performed on the well log.                                                                                     |  |
| Paleo data                       | Indicates whether paleo data are associated with the log.                                                                                                                               |  |

### 4.3 Literature Review

A review of existing literature uncovered some key studies important to this investigation. The GAT maps, compiled as the Geologic Map of Texas (Barnes, 1992) provided surface outcrop data. Stratigraphic unit geometries and approximate depths were obtained from the cross-section sets of Dodge and Posey (1981) and Morton and others (1985). General structural features for the Gulf coast were obtained from the Tectonic Map of Texas (Ewing, 1991) and from papers within Jones and Freed (1996). More specific structural information was obtained from Galloway and others (1982; 1986). Numerous stratigraphic studies were valuable in assessing depositional setting, facies, and systems, including Galloway and others (1986), Morton and others (1988), Hoel (1982), Coleman (1990), Solis (1981), Knox and others (2006), Hernández-Mendoza (2008), and Galloway and others (2000). Aquifer studies that were reviewed included Baker (1979) and county water resource studies by USGS and TWDB, including Rogers (1967), Shafer (1960, 1965, 1968, 1970, 1974), Loshkot and others (1982), Hammond (1969), Marvin and others (1962), Harris (1965), Thompson (1966), Peckham (1965), Anders and Baker (1961),

Anders (1957), Dale (1952), Mason (1963), Myers and Dale (1961, 1966), Shafer and Baker (1973), Reeves (1967), Myers and Dale (1967), Baker, R.C., and Dale (1961), McCoy (1990), and Chowdhury and Mace (2007). Paleontological and chronological data from Paleo-Data, Inc. (2009) and from Galloway and others (2000) were referenced to establish the chronostratigraphic framework for this study.

#### 4.4 Paleontology Data

Paleontologic data are critical for defining geologic ages of stratigraphic intervals and surfaces. These data are collected during the drilling of oil and gas wells, and are more commonly associated with exploration drilling. Because the stratigraphic interval of the Gulf Coast Aquifer only produces hydrocarbons in the area beyond the current shoreline, the most useful data come from wells near the Texas shore and beyond. A collection of paleontologic data in digital form was obtained from the BEG, The University of Texas at Austin. The data are from wells drilled before 1980 either on land or within Texas submerged lands, which includes bays and the offshore area within 3 miles of the shoreline. For wells drilled beyond this area, data were collected from the MMS. These data are available digitally from the Bureau of Ocean Energy Management, Regulation and Enforcement website (http://boemre.gov).



Figure 4-1 Idealized SP and resistivity curve showing the responses corresponding to alternating sand and clay strata that are saturated with groundwater that has significant increases in total dissolved concentrations with depth. Modified from Driscoll (1986).

Final Report - Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer



Figure 4-2 Schematic showing the location of the Kelly Bushing relative to the ground level and the oil rig.



Figure 4-3 Example of a geophysical well log that uses the American Petroleum Institute format.



Figure 4-4 Location of the approximately 800 logs used to characterize the stratigraphy and lithology of the northern portion of the Gulf Coast Aquifer System.

This page intentionally left blank.

# 5.0 Approach for Stratigraphic Interpretation

This section identifies the geologic units that comprise the Chicot, Evangeline, and Jasper Aquifers and the Burkeville confining unit. For each of these units the maps of the base elevations and total thickness is provided.

#### 5.1 Chronostratigraphic Conceptual Framework

Modern techniques for stratigraphic correlation and mapping are based on the principles of sequence stratigraphy, which integrate depositional systems with chronostratigraphically significant surfaces (Van Wagoner and others, 1990). Chronostratigraphy (time-stratigraphy) deals with the age relationships of stratigraphic layers and surfaces. Sequence stratigraphy emphasizes surfaces of widespread extent that bound sedimentary packages (sequences) formed during a specific time period in related depositional environments. An example of related depositional environments would be a fluvial system connected to a delta with flanking bay-lagoon systems (e.g., Figure 2-21). Chronostratigraphic surfaces typically are not precisely synchronous throughout their extents, but they do separate layers of differing ages and depositional environments. Within the discipline of sequence stratigraphy, there are various interpretive models, but the fundamental components – related depositional facies bounded by chronostratigraphic surfaces – are determined objectively and are common to all models (Catuneanu and others, 2009).

For the purpose of defining layers in the Gulf Coast Aquifer, there are two key chronostratigraphic surfaces: erosional unconformities and marine flooding surfaces. In sequence stratigraphy, unconformities are surfaces separating younger from older strata along which there is evidence of erosional truncation or down cutting (Van Wagoner and others, 1990). In the Gulf Coast Aquifer, most unconformities are formed where fluvial systems have eroded valleys into older sediments (incised valleys). Marine flooding surfaces are created by relative sea-level rise and transgression of the coastal plain. Marine transgressions, which may also be erosive, are generally accompanied by interruption in the supply of sandy sediment and formation of muddy marine facies (Galloway and Hobday, 1996). The maximum flooding surface is a special type of marine flooding surface that marks the most widespread extent of coastal transgression (Figure 5-1).

Marine flooding surfaces make good boundaries for aquifer layers. Flooding surfaces are enclosed in mud-dominated layers (marine facies), are laterally extensive, and produce distinctive signatures on well logs. Marine facies associated with flooding surfaces commonly contain fossils with well-documented extinction times, which are useful for global chronostratigraphic correlation (biostratigraphic zonation). Flooding surfaces bound genetic stratigraphic sequences formed during progradational depositional episodes (see Section 2.4, Depositional history). In the Gulf Coast Aquifer, progradational systems are dominated by fluvial sand and related nonmarine facies (Figure 5-1). Thus, flooding surfaces lie within regionally correlative, mud-dominated layers that enclose sand-prone layers. Sand bodies may be interconnected within these layers but are rarely interconnected across flooding-surface boundaries. Transgression and marine flooding often do not extend across the entire coastal plain. Fluvial depositional systems may persist uninterrupted in one area while marine transgression is occurring in another area. Furthermore, all marine flooding surfaces have limits to their landward extents (Figure 5-1).

Although marine flooding surfaces are useful for tracing aquifer layer boundaries, depositional facies modeling and mapping are needed to characterize hydrogeologic properties within layers. The depositional environment controls intrinsic aquifer-matrix properties – porosity, permeability, and mineral composition – as well as larger-scale aquifer storage and flow properties related to sand-body size, shape, orientation, and interconnectivity. In a fluvial depositional system, for example, channel-fill sand bodies are elongated in the direction of depositional dip (coastward) (Figure 2-20). In the Gulf Coast Aquifer, regional structural dip and hydraulic gradient parallel fluvial sand-body elongation, enhancing the potential for coastward groundwater flow. In sand-dominated fluvial systems, such in some regions of the Lissie Formation, sand bodies are highly interconnected, whereas in sand-poor fluvial systems, such in some regions of the Beaumont Formation, sand bodies are more isolated in floodplain muds. In marine shore-zone depositional systems, strand-plain and barrier-island sand bodies are elongated perpendicular to the regional hydraulic gradient and are located at the interface between meteoric fresh waters and marine saline waters. Thus, shore-zone sand bodies are commonly sites of groundwater mixing and saltwater intrusion. Post-depositional controls compaction and intergranular cementation - modify aquifer properties inherited from the

depositional environment. The Gulf Coast Aquifer, however, which is relatively young geologically and not deeply buried, has not been affected significantly by post-depositional processes.

Within sequence stratigraphy, the concept of depositional cyclicity provides a framework for regional stratigraphic correlation and layer definition. Deposition is inherently episodic, periods of coastal plain progradation alternating with relative sea-level rise and marine transgression (see Section 2.4, Depositional history). Depositional cyclicity is controlled by the interplay of varying sediment supply, sea-level fluctuation, climate, and subsidence. In the Gulf Coast Aquifer, a relatively constant rate of coastward increasing subsidence provided space for younger sediments to accumulate above older sediments without major interruption. The climate of the Texas Coastal Plain also has not varied greatly during the depositional history of the Gulf Coast Aquifer. Uplift of the Rocky Mountains and other tectonic events provided a relatively continuous supply of sediment for rivers to transport to the coast, although the location of sediment input onto the coastal plain varied (Figure 2-22). Sea-level fluctuation, on the other hand, has been cyclic, rising and falling at rates in response to the formation and melting of glaciers. For the Gulf Coast Aquifer, the combination of localized sediment input and sea-level fluctuation has created systematic depositional cycles of sand-prone progradational facies alternating with mud-dominated transgressive facies (Figure 5-1).

Depositional cycles occur at various scales. A geologically brief depositional cycle, commonly called a parasequence, records a single, usually localized, progradational event followed by transgression (Van Wagoner and others, 1990; Galloway and Hobday, 1996). Parasequences range in thickness from about 10 to 200 feet and in lateral extent from about 10 to 2,000 square miles (Van Wagoner and others, 1990). A parasequence is composed of beds of sand or mud, each a few feet to a few tens of feet thick, which record single depositional events produced by storms or floods. Sandy beds within a parasequence extend progressively farther seaward as the fluvial-deltaic system progrades the shoreline. Rising sea level and diminished sediment supply combine to halt shoreline progradation and drown the coastal plain, capping the parasequence with a veneer of transgressive mud. Commonly, parasequence deposition is terminated when the fluvial-deltaic system moves to an adjacent part of the coastal plain. The process of lateral

migration of fluvial-deltaic systems eventually creates a regionally continuous wedge of coastal plain sediments composed of amalgamated parasequences.

Parasequences stack to form sequences of increasing scale and duration. Large, long-term sequences record the entire GOM Tertiary fill, but the most commonly described sequences span 1 to 5 million years, range widely in thickness from about 30 to 5,000 feet, and cover 500 to 30,000 square miles (Van Wagoner and others, 1990). The Gulf Coast Aquifer encompasses about 10 such sequences, corresponding to major depositional episodes and covering a time span of about 24 million years (Galloway and others, 2000) (Figure 2-23). The duration of Gulf Coast sequences generally decreases through time in response to increasingly high-frequency sea-level fluctuations (Figure 2-23). As defined by Galloway and others (Galloway, 1989b; Galloway and others, 2000), Gulf Coast sequences are bounded by maximum flooding surfaces and are composed of sets of parasequences displaying alternating progradational and retrogradational (transgressive) stacking patterns (Figure 5-1). Sequences are hierarchical – shorter, more localized sequences group to form longer more widespread sequences - and the conceptual framework of sequence stratigraphy can be adapted to fit the scale of resolution allowed by the available data (Catuneanu and others, 2009). The upper Goliad sequence, for example, may be further subdivided based on distinctive parasequence stacking patterns, similarity of depositional systems, and/or areal extents of flooding surfaces.

#### 5.2 Methodology

The methodology that we used to define and characterize layers in the Gulf Coast Aquifer is based on chronostratigraphic correlation and well log lithologic determination and has been developed and refined in similar studies of Texas coastal aquifer systems (Knox and others, 2006, 2007; Young and Kelley, 2006; Young and others, 2010). The basic work flow involves: 1) identification and correlation of flooding surfaces; 2) ranking of flooding surfaces and selection of aquifer layer boundaries; 3) systematic correlation of layers throughout the study area using a grid of cross sections; and 4) facies-based sand mapping within aquifer layers.

The task of identification and correlation of flooding surfaces started with the large scale and progressed toward smaller scales and higher resolutions (more numerous and thinner layers). Geophysical well logs were the basic data for stratigraphic correlation and lithologic

interpretation. First we reviewed previous studies in the geologic literature (see Section 3, Stratigraphic and Hydrogeologic Framework) and used their correlations and sequence interpretations as a starting point. Then we identified and correlated the most laterally extensive flooding surfaces, such as those that bound the major depositional episodes (Figure 2-23). Using well log pattern recognition and trial and error, we searched out additional flooding surfaces to further subdivide the sequences into aquifer layers. To systematize and control the quality of this process, we constructed a grid of dip- and strike-oriented cross sections across the study area (Figure 1-1). A goal was to develop chronostratigraphic surfaces for the same geologic units delineated by Young and others (2010) for the southern portion of the Gulf Coast Aquifer System.

Marine flooding surfaces, as previously discussed, are rarely as continuous as we would like, and so techniques must be applied to extend correlations beyond their limits. Near the coast and offshore, Miocene to Holocene sequences contain abundant marine facies and flooding surfaces, in which biostratigraphic zonation is well defined (Lawless and others, 1997; Fillon and Lawless, 2000). As we correlate these flooding surfaces landward, however, they grade into nonmarine facies and lose their distinctive well log signatures as well as marine biostratigraphic age control (Figure 5-2). In fluvial systems updip, depositional episodes commonly begin with erosion, followed by deposition of amalgamated channel sands (Galloway and others, 1986). Following the technique of Galloway and Morton (Galloway and others, 1986; Morton and others, 1988), we correlated the basal flooding surfaces updip as far as possible and then extended correlations toward the outcrop along the bases of major channel sands. In the Gulf Coast Aquifer, basal channel sands represent the initial pulse of a progradational sequence following marine transgression, even though no record of the transgression remains in updip areas.

The final step in the correlation process was to trace boundaries to outcrop. As we discussed in Section 3.1, previous studies, subsurface-to-surface correlations are difficult and still uncertain after many decades of geologic investigation (DuBar and others, 1991). Outcrop mapping is based on lithologic changes, soil characteristics, and topographic expression, whereas our subsurface correlations are based on chronostratigraphy and depositional systems. Nevertheless, we tied layer boundaries from the subsurface to outcrop contacts by: 1) referring to previous studies that established the general correspondence between outcrop and subsurface;

2) projecting correlations updip from the wells closest to the outcrop while maintaining inclinations (dips) established in the subsurface; and 3) projecting outcrop contacts downdip using dips measured at the surface (Figure 5-2).

A discussion of the differences between chronostratigraphic and lithostratigraphic correlation techniques is in order. Until the 1980s, most well log correlation was lithostratigraphic, but with the advent of sequence stratigraphy, new conceptual tools became available to correlate layers that may display varying lithologies but were deposited during a specific time interval under distinct environmental conditions. Such chronostratigraphic layers are more likely to be internally integrated, hydrogeologic systems. Lithostratigraphic correlation relies on the interpretation from well logs of formation lithologies and boundaries between different lithologies (mud on sand, for example) and then correlating those boundaries between wells. A thick marine shore-zone sand, for example, would be correlated to other thick marine sands based on lithology and position within the vertical profile (Figure 5-3). It is now known that, owing to depositional cyclicity and the offlapping nature of many facies, sands that apparently form a continuous sheet are actually separated laterally by thin fine-grained layers or veneers (Figure 5-3). Thus, lithostratigraphic correlation may result in overestimation of sand-body or clay-body continuity and/or miscorrelation of sand or clay bodies of differing ages. In general and in practice, however, the differences between the two techniques are more subtle than the extreme case illustrated in Figure 5-3, and in some cases lithologic boundaries coincide with chronostratigraphic surfaces. Pioneering work by Baker (1979) and others (see Section 3.1, Previous Studies) established accurate stratigraphic frameworks using lithostratigraphic correlation combined with a good understanding of geologic processes.

As part of this project, the software package called PETRA (IHS, 2009) was used to organize and help analyze the geophysical logs. PETRA was used to associate geophysical logs to the dip-oriented and strike-oriented cross-sections show in Figure 1-1 and to large print-out of crosssections. The cross-sections include profiles of the geophysical logs and were used to help identify new stratigraphic picks, confirm previous stratigraphic picks, and to check the stratigraphic surfaces for consistency. Checking of the stratigraphic surfaces included assessing impacts of nearby salt features (domes and pillars) and faults, calculating the thicknesses of the marked geologic units, placing paleomarkers into the stratigraphic chronologic column, and checking the dip angle between log picks.







#### Figure 5-2 Schematic cross section showing correlation strategies.

Maximum flooding surfaces (MFS) are the correlation boundaries of choice in the marine region but must be replaced in the nonmarine region with well log correlation, tracing channel bases, and dip projection. Modified from Knox and others (2006).



a) Chronostratigraphic correlation

b) Lithostratigraphic correlation





# Figure 5-3 Schematic cross section comparing (a) chronostratigraphic correlation to (b) lithostratigraphic correlation.

Identical (hypothetical) well logs are used in both sections, but their vertical positions are shifted to line up correlated sands. Sands are numbered to show the correct correlations. Using lithostratigraphic correlation, the top of the thickest marine sand is incorrectly assumed to be a continuous surface, whereas chronostratigraphic correlation uses marine flooding surfaces in a progradational context to correctly correlate the sands. Modified from Van Wagoner and others (1990).

This page intentionally left blank.

# 6.0 Gulf Coast Aquifer Stratigraphy

This section presents the geologic units that comprise the Chicot, Evangeline, and Jasper Aquifers and the Burkeville confining unit. For each of these units the maps of the base elevations and total thickness is provided.

#### 6.1 Chronostratigraphic Surfaces and Aquifer Boundaries

The Gulf Coast Aquifer is comprised of, from shallowest to deepest, the Chicot Aquifer, the Evangeline Aquifer, the Burkeville Confining System, and the Jasper Aquifer. In this study, aquifer units have been further subdivided on the basis of chronostratigraphic correlation to yield subaquifer layers. These layers are bounded by clay-dominated facies deposited during a sequence or parasequence flooding event. The layers consist of formations or parts of formations that have been historically considered part of a given aquifer. Formation boundaries were traced from outcrop boundaries provided by Barnes (1992) to identifiable flooding surfaces in the deeper subsurface, where paleontologic control constrained geologic ages of surfaces.

Figure 6-1 shows the relationship of chronostratigraphic units used in this study with respect to aquifer boundaries, paleontologic markers, geologic age, and epoch. The Chicot Aquifer includes, from the shallowest to deepest, the Beaumont and Lissie Formations of Pleistocene age and the Pliocene-age Willis Formation.

The Evangeline Aquifer includes the upper Goliad Formation of earliest Pliocene and late Miocene age, the lower Goliad Formation of middle Miocene age, and the upper unit of the Lagarto Formation (a member of the Fleming Group) of middle Miocene age.

The Burkeville unit historically has been defined by lithology. As noted by Baker (1979) the Burkeville unit transverses several geological formations and represents the low permeability deposits that lie between the Jasper and the Evangeline Aquifers. This definition is difficult to apply objectively to this study because the unit is not defined such that it could be comprised of deposits from one or more chronostratigraphic unit. For this study, the Burkeville unit is associated with the middle unit of the Lagarto Formation of middle and early Miocene age. The middle Lagarto Formation was identified by Young and others (2010) as having the lower sand content than either the lower and upper Lagarto Formations.

The Jasper Aquifer, as defined by Baker (1979) and reiterated by Chowdhury and Mace (2007), includes a sandy clay section below the highly clayey section of the Burkeville Confining System, the Oakville Sandstone of the Fleming Group, and sandy sections of the Catahoula Tuff and Catahoula Sandstone. For this study, the Jasper Aquifer is defined as including the lower Lagarto unit of early Miocene age, the early Miocene Oakville sandstone member of the Fleming Group, and the sandy intervals of the Oligocene-age Catahoula Formation. Elevations from the established base Jasper surface in the SWAP dataset were used close to the outcrop and were merged with the chronostratigraphic base of the Oakville Sandstone defined in this study.

The lowermost clayey unit of the Catahoula Formation, sometimes mapped in outcrop as the Frio Clay and equivalent in age to the Vicksburg Formation of the subsurface (Galloway, personal communication, 2009), is treated in this report as part of the Catahoula Confining System and is therefore not part of the Jasper Aquifer.

#### 6.2 Structural Configuration of Surfaces

Our primary study area was from the Brazos River eastward to westernmost Louisiana. Within this area we constructed 12 regional Gulf Coast dip sections at roughly 12-mile intervals, using logs that cover as much of the post-Jackson section as possible. Average control spacing was approximately one well every 3-4 miles along each dip section. Correlations were performed using both hardcopy log comparisons and examination of the computer-drafted uncorrelated section of the top 8,000 ft of section.

Geologic units in the Gulf Coast Aquifer system dip east or southeast toward the coast at a direction roughly perpendicular to the local shoreline. Consequently, the strike of geologic units is approximately parallel to the shoreline. Units also thicken toward the coast. Older units dip more steeply because of the accumulated subsidence and tilting since their deposition. Growth faults occur frequently in Gulf Coast geologic units and are most pronounced near the paleo-shelf margin of a geologic unit (the geomorphic shelf edge as the unit was being deposited). The shelf margin has grown toward the center of the Gulf of Mexico over time, so that growth faults of older units are well inland, and growth faults in units being deposited today are several tens of miles offshore (see Figures 2-2 and 3-2). Growth faults do not significantly impact the freshwater portions of the Gulf Coast Aquifer but may offset deeper parts of the Evangeline

Aquifer, Burkeville Unit, and Jasper Aquifer. Some older growth faults have continued to move slightly, and units within the Gulf Coast Aquifer may be impacted by localized changes in dip angle. Salt and shale movement and diapirism also modify structure under the Gulf Coast Aquifer system (see section 2.2.2 Salt Domes in Southeast Texas and Southwest Louisiana).

Figure 2-8 shows the locations of 67 salt domes in the study area. Based on our literature review, there is a wide-range of potential impacts from the salt dome activity on stratigraphic surfaces and groundwater flow. Some salt and shale activity has had no effect on Gulf Coast Aquifer layers, while other activities may have created localized areas of higher elevations in the lower layers of the aquifer. Still other salt and shale movement significantly impacts localized areas of the aquifer to a very shallow depth (Hamlin, 2006).

Figure 2-10 illustrates the type of impacts that salt domes can have on the stratigraphy in the northern Gulf Coast Aquifer system. The figure shows in Fort Bend and Brazoria counties the stratigraphy near salt domes is warped and distorted. Near the salt domes the stratigraphic surfaces are several hundreds of feet higher than the corresponding surfaces several miles away. In Figure 2-10, the salt dome's impact on the stratigraphy is usually greater with an increase in depth with some stratigraphic offsets reaching values up to thousands of feet in the deeper formations.

Because the stratigraphy near salt domes is not reflective of regional stratigraphy, geophysical signatures that appeared to have been impacted by salt-tectonic effects were not used to create the final surfaces. During the process of developing stratigraphic surfaces from the picks in Appendix B, we compared localized differences in surface elevations to maps of salt dome locations to help highlight areas of concern. Where salt activity appeared to have impacted our stratigraphic picks, we removed the picks from those locations prior to developing the regional surfaces for this study.

The development of the stratigraphy surfaces began by developing surfaces for dip section 6 and working southwest to develop surfaces for dip sections 7, 8, 9, 10, and 11 (see Figure 1-1). The process provided us with surfaces that overlapped and could be compared to surfaces developed by Young and others (2010) for dip sections 8 through 11. Because the two sets of picks were not identical in the overlapping area, difference preferences were assigned to picks made by Mr.

Knox for the southern study and to picks made by Dr. Ewing for this study. To develop the surfaces for this study we used Mr. Knox's picks for dip sections 10 and 11 and gave Mr. Knox's picks preference for dip section 9. For dip sections 7 through -1 we used Dr. Ewing's picks and gave Dr. Ewing's picks preference for dip section 8. These preferences were given so that stratigraphic surfaces generated from this study would be consistent and match with the stratigraphic surfaces provided by Young and others (2010) at dip section 10. Thus, for the purposes of producing a comprehensive chronostratigraphic structure for entire Gulf Coast, the surfaces from Young and others (2010) should be used south of dip section 10 and surfaces from this study should be used north of dip section 10.

Our analysis at each dip section began with identifying the Anahuac shale wedge near the downdip extent of a dip section. To help identify the Anahuac shale, the paleomarker Marginulina idiomorpha was used to identify the top of Frio and paleomarkers Heterostegina sp. and Bolivina perca were used to help identify the maximum flooding surface. Above the Anahuac Shale additional marine shale wedges were identified with some assistance from paleomarkers and log patterns and correlated throughout their zone of development. These paleomarkers included the following:

- Siphonina davisi (within Oakville)
- Marginulina A (base of lower Lagarto)
- Lower extent of Amphistegina B (base of middle Lagarto as identified by a maximum flooding surface)
- Upper extent of Amphistegina B (base of upper Lagarto)
- Cibicides opima ( base of lower Goliad)
- Textularia W stapperi (base of upper Goliad)
- Buliminella 1 (Based of Willis as identified by a Pliocene marine shale )

Above the Goliad formation, the base of Willis was picked immediately above the Pliocene shale. This elevation was followed updip to the base along a surface that connect thick sand packages and then extrapolated landward following knowledge of regional dips (correcting for salt tectonic effects) to the Willis outcrop. The Lissie and Beaumont formations were picked in

the mostly continental sequence by projection down from outcrop, following the base of major sandy valley-fill packages where possible.

Figure 6-2 shows the structural contours on the base and the thickness of the Oakville Formation. The structural contours indicate a relatively consistent dip of 70 to 80 feet per mile from the updip extent to the coastline. Figures 6-3 through 6-8 provide a better view of the dip of the Oakville Formation across the study area. These figures show that despite the consistency among the dip angle in the figures there the Oakville does dip slightly more toward Louisiana than it does toward the mid-section of the Texas Gulf Coast. Figures 6-3 through 6-8 also show that the dip angles for each geological above the Oakville generally decreasing with age. For instance, the dip angle for the Willis formation, which is the base of the Chicot Aquifer has a relatively consistent dip of 15 to 20 feet per mile from it updip extent to the coast.

An important feature of the cross-sections in Figures 6-3 through 6-8 is that across most of the northern Gulf Coast the two uppermost units ( the upper Goliad and lower Goliad Formations) of the Evangeline Aquifer do not outcrop. Instead, the updip boundary of these units terminate and pinch out into the Willis Formation. These pinch outs as well as pinch outs for other geologic units occur because of changes in subsidence rates (both through time and across the study area), eustatic sea level, and sediment supply, deposition of the various stratigraphic units of the Gulf Coast Aquifer deposits over time. In general terms, a geologic unit outcrops if it reaches ground surface and a geologic unit subcrops it if terminates and pinches out into a younger unit above itself. Bates and Jackson (1983) define a "subcrop" and an "outcrop" as:

*Outcrop* – that part of a geological formation or structure that appears at the surface of the earth; also, bedrock that is covered only by surficial deposits such as alluvium.

*Subcrop* – An occurrence of strata in contact with the undersurface of an inclusive stratigraphic unit that succeeds an important unconformity on which overstep is conspicuous; a "subsurface outcrop" that describes the areal limit of a truncated rock unit at a buried surface of unconformity. (b) An area within which a formation occurs directly beneath an unconformity.
The most pronounced areas in Figures 6-3 through 6-8 where subcrops occur are below the Willis Formation. These figures show that the erosional truncation of the units beneath the Willis generally becomes greater moving north from dip section 9 (Figure 6-3) toward dip section -1 (Figure 6-8). In dip section 9 (see Figure 6-3), the Willis Formation prevents the outcropping of the upper and lower Goliad formations whereas indip section -1 (see Figure 6-8) the Willis Formation prevents the outcropping of five formations (the upper and lower Goliad formations and the upper, middle, and lower Lagarto formations).

Figure 6-9 shows the variations in the base elevation and thickness of the geologic units along strike section B-B' shown in Figure 1-1. The figure shows that, along the strike, the base elevation of the Chicot Aquifer remains near -1100 ft msl but the base elevations of the Jasper and Evangeline Aquifer deepen toward the east. The base elevation of the Jasper Aquifer changes from about -5000 ft msl in the west to about -8000 ft msl in the east. In the west, the Evangeline Aquifer has a base elevation of about -3000 ft msl but has a base elevation of about --4800 ft msl in the east. In reviewing Figure 6-9, the reader should be aware of several issues regarding the irregular surfaces in the eastern portion of the Evangeline and Jasper Aquifer. These oscillations are not a result of well control but rather an artifact of how the rasters surfaces have been sampled to by the strike sections. The oscillations occur at the resolution of the rasters, which is 4000 ft, and are an artifact of the stair-step manner at in which elevations are picked off the raster to match the strike section.

In combination with Figure 6-2, Figures 6-10 through 6-20 provide the structural surfaces and thicknesses for the geologic formation and aquifers that comprise the Gulf Coast Aquifer system. Figures 6-2, 6-10, and 6-11 shows that pattern in the structural contours and total thicknesses of the Oakville Formation, the lower Largarto Formation, and the Jasper Aquifer are very similar. For the purpose of this study , the updip boundary of the Jasper Aquifer is defined by the updip boundary for Jasper Aquifer as defined by the Source Water Aquifer Program for the Jasper Aquifer (Strom and others , 2003). As a result of this delineation, the Jasper Aquifer extends beyond the Oakville Formation and includes a portion of the Catahoula formation.

Figure 6-12 provides the structural contours and thicknesses for the middle Lagarto Formation, which is associated with the Burkeville confining unit. These structure contours have a similar

pattern to underlying units with a dip from 65 to 80 feet per mile. Across most of the formation, its total thickness is between 400 and 800 feet.

Structural contours and total thicknesses of the three formations of the Evangeline Aquifer – the upper Lagarto, lower Goliad, and the upper Goliad – are shown in Figures 6-13, 6-14, and 6-15, respectively. The base of the Evangeline Aquifer, which corresponds to the base of the upper unit of the Lagarto Formation, as well as the total thickness of the Evangeline are shown in Figure 6-16. These structural features are similar to those in underlying units but the thickness and updip extents exhibit considerable more variability than the deeper units. This variability is caused by the significant erosion of the Evangeline formations by the Willis formation. As shown in Figure 6-16, the erosion truncation of the upper Goliad Formation is greatest in Harris County and is associated with deposition associated with the Houston Embayment (see Figure 2-22). Because of the significant erosion of the Goliad units, the updip boundary of these units are difficult to locate accurately because they are subcrops.

Figures 6-17, 6-18, and 6-19 show the structural contours and thickness of the geologic unit that comprise the Chicot – the Willis, Lissie, and Beaumont Formations. Figure 6-20 provides structural contours on the base of the Chicot Aquifer as well as the total thickness of the aquifer. The structure contours for both the Willis and the Lisse Formations show indications of possible fluvial axes where concave contours exit. In the Willis Formation, sets of concave axes exist in Hardin and Chambers Counties. In the Lissie Formation, sets of concave axes exist in Cameron Parish.

Among the concerns with delineating the structural contours in the outcrops areas of all the formations is the scarcity of geophysical logs with coverage to within 200 feet of the ground surface and the lack of thickness information associated with the mapped outcrop locations (Barnes, 1992). These two concerns become most acute where the geological units flatten and are suspected of becoming relatively thin near the surface and where thin veneers of alluvium or reworked deposits exist at ground surface. Because of the unknown thicknesses and accuracy of the mapped surface geology, we did not match our outcrop boundaries to the farthest updip boundary of the formation shown in a surface geology map. Rather, we used the surface geology map to guide our placement of the updip boundary. As a rule, we tried to place the updip boundary within the most updip regions of a formation's mapped outcrop.

6-7

Placement of the updip boundary of formations that subcrop is based on interpretations of the surface geology map and where the base of the geological formation intersect the geological surface above it based on the extrapolation of the stratigraphic picks in Appendix B. Figure 6-21 illustrates the occurrence of a single subcrop. In this situation the subcrop pinches out to a zero thickness below an overlying unit directly above it. This occurs because an updip portion of the second youngest unit was eroded, truncated, then covered by the deposition of an overlying geologic unit. Figure 6-21a shows vertical cross-sections where a light brown geological strata pinches out in to a yellowish upper strata. Figure 6-21b shows the updip boundaries as either outcrop or subcrop boundaries for all of the colored strata shown in Figure 6-21a. In map view (looking downward upon the surface), a solid line and a dashed line in Figure 6-21b mark the locations where the updip boundary of the brown strata occurs as an outcrop and as a subcrop, respectively. The subcrop situation shown in Figure 6-21 is analogous to the upper Goliad formation pinching out beneath the Willis formation. Figure 6-22 shows the locations of updip extend estimated for the geological formations that comprise the Gulf Coast Aquifer. These locations were used as the updip boundaries for all of the structural contours and thickness plots generated in this study.



Figure 6-1 Stratigraphic column showing correlations among age, geologic formations, hydrogeologic units, paleomarkers, and relative change of coastal onlap.



Figure 6-2 Contours for the Oakville geologic unit showing: (a) base elevation and (b) *thickness*.



Figure 6-3 Vertical cross-section of the geological units near dip section 9 in Figure 1-1.



Figure 6-4 Vertical cross-section of the geological units near dip section 7 in Figure 1-1.



Figure 6-5 Vertical cross-section of the geological units near dip section 5 in Figure 1-1.



Figure 6-6 Vertical cross-section of the geological units near dip section 3 in Figure 1-1.



Figure 6-7 Vertical cross-section of the geological units near dip section 1 in Figure 1-1.



Figure 6-8 Vertical cross-section of the geological units near dip section -1 in Figure 1-1.



Figure 6-9 Vertical cross-section of the geological units near strike section B-B'.



Figure 6-10 Contours for the lower Lagarto geologic unit showing: (a) base elevation and (b) thickness.







Figure 6-12 Contours for the middle Lagarto Formation, which is associated with the Burkeville Unit, showing: (a) base elevation and (b) thickness.



Figure 6-13 Contours for the upper Lagarto geologic unit showing: (a) base elevation and (b) thickness.



Figure 6-14 Contours for the lower Goliad geologic unit showing: (a) base elevation and (b) thickness.



Figure 6-15 Contours for the upper Goliad geologic unit showing: (a) base elevation and (b) thickness.



Figure 6-16 Contours for the Evangeline Aquifer showing: (a) base elevation and (b) thickness.



Figure 6-17 Contours for the Willis geologic unit showing: (a) base elevation and (b) thickness.



Figure 6-18 Contours for the Lissie geologic unit showing: (a) base elevation and (b) thickness.



Figure 6-19 Contours for the Beaumont geologic unit showing: (a) base elevation and (b) thickness.



Figure 6-20 Contours for the Chicot Aquifer showing: (a) base elevation and (b) thickness.



Figure 6-21 Schematic showing outcrop and subcrop locations of geologic units in a three-dimensional block (a) and in a map view (b).



Figure 6-22 Surface geology map from Barnes (1992) showing the estimated locations of the subcrop of selected geologic units.

# 7.0 Approach for Lithologic Interpretation

This section explains the approaches used to classify the deposits into groups related to their sand percentages and their depositional environments. These approaches are important because they indirectly determine the type of analysis that can be used to estimate spatial distribution of aquifer properties.

## 7.1 Lithology Classification

The geophysical logs were interpreted to develop a continuous lithology profile with depth. The traditional approach for this interpretation is to use a binary classification system. The "binary" system, namely aggregating or restricting the sediment beds (as shown on electric logs) into only two classes, either basically sand beds or clay beds, has been traditional through decades of Federal/State investigative studies of county or regional groundwater projects. Figure 7-1 provides an example using an SP log to determine lithology based on a binary system. The interpretation requires that a cutoff value (which is shown in Figure 7-1) be used to determine whether the deposit is classified as either a sand or a clay. For this project, Mr. Ernest Baker performed all of the lithologic interpretations visually.

Among the obstacles associated with interpreting a log for lithology is how to interpret relatively thin beds of sands and clays, which can be very time-consuming to track at a scale of less than a few feet. A common approach that Mr. Baker and many other log analysts have used is to ignore lithology changes that occur below a designated vertical interval. For this project, another approach was used, which involved using a four-class system. This system was first discussed by Young and Kelley (2006) and was used by Mr. Baker for the Gulf Coast Aquifer and then used for the study of the southern Gulf Coast (Young and others, 2010). The four-class system uses the four textural classes described in Table 7-1. Figure 7-2 compares the results from using the binary and four-class systems to interpret lithology from a log.

The reason for using the four-class system is to more precisely characterize the nature of the sand-clay relationship without having to expend the resources to define small-scale changes in the lithologic profile. With the commonly used approach of ignoring alternating sand and clay layers to implement the binary system, vertical intervals of intermixed sands and clays that

7-1

extend more than 20 or 30 feet are represented as either a sand or a clay. With the four-class system, there is less chance of falsely indicating too much sand or clay, and a greater chance of more accurately representing the thicker beds of sands. The increased level of specificity with the four-class system provides a lithologic description that better supports characterizing the aquifers' permeability and storage properties. For instance, a sand bed consisting of primarily sands typically will be more permeable than an equally thick bed of a sand mixed with clays. Similarly, a clay bed consisting primarily of clay typically will have a lower vertical permeability than does an equally thick bed of clay mixture with appreciable amounts of sand.

Table 7-1Description of the four textural classes used to characterize the lithology<br/>of the LCRA-SAWS Water Project (LSWP) wells.

| Class          | Description                                                                                                                |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Sand           | A vertical interval of 20 feet or more, composed of 50% to 95% sand-size grains or gravel                                  |  |
| Clay           | A vertical interval of 20 feet or more, composed of less than 20% sand-size grains                                         |  |
| Sand-with-clay | A vertical interval, composed of individual sand and clay beds less than 20 feet thick and composed of more sand than clay |  |
| Clay-with-sand | A vertical interval of 20 feet or more, composed of less than 20% sand-size grains                                         |  |

## 7.2 Depositional Facies Classification

Depositional facies can be viewed as how different environments arrange and pack sand beds. The basis for understanding deposition is that sediments are transported by well-understood processes that carry them from the hills from which they are eroded to a lower-energy resting place, such as the ocean or a floodplain. The environmental factors that govern the nature of the deposits include climate, ocean level, sediment sources, and chemistry. As these factors change over time, the composition of the deposits change, and cycles of repeating sequences of sand and clay occur. Based on a detailed study of depositional cycles from cores and geophysical logs, geologists have defined facies that characterize deposition in the fluvial and coastal environments of the Gulf Coast.

The depositional facies of aquifer layers provide information on factors that affect groundwater flow such as the sorting, arrangement, and sizes of the particles in a deposit and how the deposit is or is not interconnected to similar and different deposits. For this project, we have selected depositional facies based on the work of Galloway (2000) that have also been used by Young and Kelley (2006) and Young and others (2010). These facies can be divided into fluvial facies,

coastal facies, and shelf facies. Fluvial facies are associated with deposition in rivers and on the floodplains of rivers. Coastal facies are associated with depositions in coastal and shoreline environments. Shelf facies are associated with off-shore environments.

Galloway (2000) describes the deposition across a coastal plain of the Gulf Coast that was located updip of the shoreline during highstands of sea level and in an area between major axes of fluvial input, with the exception of the Corsair system of the middle and Late Miocene. As modified from Young and others (2010), the lithologies and depositional facies in this study included:

- Floodplain clays deposited during flooding of coastal streams and, less frequently, major rivers;
- Fluvial channel sands deposited within or immediately adjacent to coastal streams or major rivers;
- Coastal or deltaic bayfill clays, silts, and, rarely, sands deposited behind barrier islands, away from channels on alluvial aprons, or between deltaic distributary channels;
- Lower coastal plain fluvial or coastal sands deposited on alluvial aprons fed by streamplain systems or on delta plains of major extrabasinal rivers;
- Delta front sands, most likely deposited as narrow strike-elongated bodies of a wavedominated delta;
- Coastal sands deposited as barrier bars, strandplains, or delta fronts where local fluvial input is minor and sand is transported and deposited primarily by along-shore currents; and
- Shallow marine shelf clays and minor silts and sands deposited seaward of the highstand shoreline, which may include interbedded muddy floodplain, bayfill, or lagoonal lowstand deposits.

Based on the information from Galloway and others (2000), Young and others (2010) constructed the facies categories and descriptions listed in Table 7-2. Each facies in Table 7-2 has a different range of hydrologic flow characteristics as a consequence of varying grain size,

sorting, mineralogy, sedimentary features, and the degree to which contrasting lithologies are intimately interbedded. Also because of the long time period and large area associated with the project, there may be a large range in the hydraulic properties among deposits with the same facies because of the differences in environmental conditions and sediments that formed them. The flow characteristics ascribed to the different facies in Table 7-2 are generalized estimations and should be used as a relative measure for at the dimensions of typical bed deposit, which may be a foot to tens of feet thick. The effective hydraulic conductivity of the facies deposits are ultimately controlled by their site-specific conditions and measurement scale.

| Code | Facies                                        | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flow Character                                                                                                                                                                                 | Log<br>Profile                   |
|------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| FP   | Floodplain                                    | Clay-dominated interval of<br>floodplain and overbank clay, mud,<br>and silt, with rare interbedded fluvial<br>channel, levee, or splay sands less<br>than 20-ft thick.                                                                                                                                                                                                                                                                                                                                                                     | <b>Sand</b> : relative Kh rating of 2 (1<br>being lowest K, 7 being highest),<br>Kv rating of 2. <u>Kv/Kh ~ 0.3</u> .<br><b>Clay</b> : Kh rating of 1, Kv rating<br>of 2. <u>Kv/Kh ~ 0.1</u> . | See<br>Figures<br>7-3 and<br>7-4 |
| F    | Fluvial<br>Meanderbelt                        | Sand-dominated interval containing<br>fluvial channel (rarely levee and<br>splay) sands. Bankfull fluvial<br>channel depths or combinations of<br>channel sand thickness and other<br>facies exceed 30 ft in thickness.<br>Interbedded clays can include<br>channel abandonment and floodplain<br>with potential for development of soil<br>profiles or calichification.                                                                                                                                                                    | Sand: relative Kh rating of 7 (1<br>being lowest K, 7 being highest),<br>Kv rating of 5. <u>Kv/Kh ~ 0.5</u> .<br>Clay: Kh rating of 2, Kv rating<br>of 3. <u>Kv/Kh ~ 0.05</u> .                |                                  |
| FD   | Lower-Coastal<br>Plain Fluvial<br>and Coastal | Sand-dominated interval containing<br>fluvial and, rarely, distributary<br>channel, levee, splay, and coastal<br>sands often exceeding 30 ft in<br>thickness. Channel sands are<br>commonly stacked. Coastal sands<br>may include wave-networked<br>terminal fluvial deposits, minor<br>shorezone and tidal channel, and<br>localized incised-valley deposits.<br>Interbedded muds are most often silty<br>floodplain, bayfill, or lagoonal<br>deposits. Upward-coarsening silty<br>profiles occur far more frequently<br>than in F facies. | Sand: relative Kh rating of 4 (1<br>being lowest K, 7 being highest),<br>Kv rating of 4. <u>Kv/Kh ~ 0.4</u> .<br>Clay: Kh rating of 5, Kv rating<br>of 5. <u>Kv/Kh ~ 0.1</u> .                 |                                  |

Table 7-2Depositional Facies Definition and Predicted Flow Characteristics [modified<br/>from Table 3.1.3 in Young and Kelley (2006)].

### Table 7-2, continued

| Code | Facies                                                                | Definition                                                                                                                                                                                                                                                                                                                         | Flow Character                                                                                                                                                                     | Log<br>Profile |
|------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| BF   | Bayfill/Lagoon                                                        | Mud-dominated interval containing<br>interbedded bayfill, lagoonal, and<br>coastal plain deposits. Sands are<br>typically thin, spiky bayfill splay,<br>overbank, or washover deposits.                                                                                                                                            | <b>Sand</b> : relative Kh rating of 1 (1 being lowest K, 7 being highest), Kv rating of 1. <u>Kv/Kh ~ 0.5</u> . <b>Clay</b> : Kh rating of 3, Kv rating of 4. <u>Kv/Kh ~ 0.1</u> . |                |
| WD   | Wave-<br>Dominated<br>Delta                                           | Sand-dominated intervals containing<br>upward-coarsening to blocky mouth<br>bar, delta front, strandplain, or barrier<br>bar, and upward-fining distributary<br>channel deposits where sand-<br>component thicknesses of each<br>deposit typically exceed 30 ft. Clays<br>are prodelta, shelf, and bayfill /<br>lagoonal deposits. | <b>Sand</b> : relative Kh rating of 6 (1 being lowest K, 7 being highest), Kv rating of 6. <u>Kv/Kh ~ 0.5</u> . <b>Clay</b> : Kh rating of 7, Kv rating of 6. <u>Kv/Kh ~ 0.1</u> . |                |
| SF   | Shoreface /<br>Barrier Bar /<br>Delta Front /<br>Shorezone<br>Coastal | Sand-dominated intervals with<br>upward-coarsening to blocky (rarely<br>upward-fining) sand bodies<br>exceeding 30 ft in thickness. Clays<br>are prodelta, shelf, or bayfill /<br>lagoonal deposits.                                                                                                                               | <b>Sand</b> : relative Kh rating of 5 (1 being lowest K, 7 being highest), Kv rating of 7. <u>Kv/Kh ~ 0.7</u> . <b>Clay</b> : Kh rating of 6, Kv rating of 7. <u>Kv/Kh ~ 0.1</u> . |                |
| SH   | Shelf /<br>Lagoonal /<br>Bayfill /<br>Floodplain                      | Mud-dominated intervals with rare<br>sandy marine or non-marine scour or<br>reworked deposits. Clays are<br>commonly shelf deposits, with<br>lowstand facies such as FP, BF, or<br>lagoonal sediments.                                                                                                                             | Sand: relative Kh rating of 3 (1<br>being lowest K, 7 being highest),<br>Kv rating of 2. <u>Kv/Kh ~ 0.2</u> .<br>Clay: Kh rating of 4, Kv rating<br>of 1. <u>Kv/Kh ~ 0.01</u> .    |                |

No absolute values in terms of feet per day for hydraulic conductivity are provided in Table 7-2 because of the wide variety of sediment loads and range of energies associated with each depositional facies. The ranking of hydraulic conductivity values are intended to provide a relative measure of how hydraulic conductivity values vary among the sand and clay beds associated with different facies within a given depositional episode. The hydraulic conductivity rankings are based on the expected differences in the grain size, sorting, and packing characteristics associated with the sand and clay beds typically associated with each facies type. In general, Kh increases with increases with grain size and sorting and Kv/Kh decreases with increases in layering and stratification.



# Figure 7-1 Example calculation of net and percent sand from a spontaneous potential (SP) log curve.

First baselines are established for the end member lithologies, and then a cutoff is picked for measuring sand thickness and sand/mud ratio (sand percent). Source: Galloway and Hobday (1996).

#### Final Report - Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer



Figure 7-2Example analysis of a geophysical log showing a binary and four-phase<br/>classification of lithology (taken from Young and Kelley, 2006).<br/>Resistivity log is on the right-hand side, and spontaneous potential log is on the left-hand<br/>side. Each grid block has a height of 1 foot.



coastal plain facies (SH)

Figure 7-3 Example analysis of a geophysical log showing a binary and four-phase classification of lithology (taken from Young and Kelley, 2006).

Resistivity log is on the right-hand side and spontaneous potential log is on the left-hand side.



Figure 7-4 Example analysis of a geophysical log showing a binary and four-phase classification of lithology (taken from Young and Kelley, 2006).

Resistivity log is on the right-hand side and spontaneous potential log is on the left-hand side.

Final Report – Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer

This page intentionally left blank.

# 8.0 Gulf Coast Aquifer Lithology

The Gulf Coast Aquifer system is a mixture of interbedded sands and clays of various physical properties, sizes, shapes, and dimensions. As a result of these variations, considerable spatial variability occurs in the hydraulic properties of the deposits. This section provides maps of sand percentage, total sand thickness, and depositional facies to identify spatial differences among and within the geologic units that may be useful to modelers who are developing transmissivity maps of the Gulf Coast Aquifer System.

## 8.1 Sand Thickness and Percent

The factors that govern the transmissivity of an aquifer include a wide range of depositional characteristics that occur at a wide range of scale. These factors include different sizes and sorting of particles at the scale of less than 1 foot; the arrangement and orientation of beds at the scale of tens of feet, and the interconnection and distribution of different facies at the scale of hundreds of feet. Despite the complexities associated with these different factors, a simple approach commonly practiced in the groundwater industry is to estimate transmissivity based on sand fractions and total sand thickness.

The sand percentage for each geologic unit was calculated by summing the total sand amount across the thickness of the geologic unit and dividing by the amount of the thickness for which the lithology was characterized. Thus, if the geologic unit had a thickness of 100 feet but lithology was determined for only 85 feet and the total measured sand thickness was 75 feet, the sand percentage would be 88% (100\*75/85) and not 75% (100\*75/100). The total sand thickness was calculated by summing the sand amount associated with each of the four lithology groups identified by Mr. Baker. For the total sand thickness calculation, the sand class was assigned a sand percentage of 100%; the sand-with-clay class was assigned a sand percentage of 65%; the clay-with-sand class was assigned a sand percentage of 0%.

A continuous distribution of sand percentage for each geologic unit was constructed by interpolating the point values of sand percentages at locations where the geophysical log intersected at least 70% of the geologic unit. These distributions were then mapped onto a raster

8-1
grid using kriging algorithms provided in GSLIB (Deutsch and Journel, 1998). The raster grid had a resolution of 4,000 ft by 4,000 ft, and two-dimensional ordinary kriging was used for this process. These values were similar to those used in Young and others (2010) for mapping deposits in the Gulf Coast. The continuous distribution for the sand thickness was developed by multiplying the raster grid of total geologic unit thickness by the raster grid for the sand fraction. Appendix C provide the total sand thickness calculated for each geological unit for each geophysical log.

A recent study of the Chicot and Evangeline Aquifers in a 10-county area near Wharton County (Young and others, 2009; Young and Kelley, 2006) showed good correlations between sand fractions and hydraulic conductivity after different depositional environments had been considered. Based on these correlations, they were able to successfully calibrate a model using aquifer transmissivity values that were generated with relatively simple algorithms that relate transmissivity to sand fraction, total sand thickness, geologic unit, and facies type. An important component of these relationships is that they are sensitive to the unique conditions at the scale of the geologic unit and to the facies type within a geologic unit. This sensitivity is attributed to the fact that the geologic unit and the facies type can be indicators of the general nature, distribution, and interconnectivity of the sand beds that comprise the total sand thickness.

Figures 8-1 through 8-21 provide sand percentage and sand thickness maps for the Chicot Aquifer, Evangeline Aquifer, Burkeville confining unit, Jasper Aquifer, and the geologic units that compose the three aquifers. These figures show a wide range of sand percentages and sand thicknesses among the geologic units that comprise the Gulf Coast Aquifer system. Comparison of these maps to similar maps provided by Young and others (2010) may show differences in the areas where they overlap. The overlap areas occur between cross-sections 10 and the midpoint between cross-sections 7 and 8 (see Figure 1-1). Where differences occur between the two sets of sand maps, the mapped values in this study supersede the mapped values presented by Young and others (2010). There are three primary reasons for why differences may occur between the two sets of maps. One reason is that the contouring in the overlapping area is influenced by new information gather slightly outside of the overlapping area that was not available for contouring by Young and others (2010). A second reason is that addition sand information in the overlapping area is included in this study. A third reason is that there are

8-2

some adjustments to the top and bottom boundaries of the geology units north of dip-section 10, which affects the intervals over which sand thicknesses and sand percentages are tallied.

## 8.1.1 Chicot Aquifer

Figure 8-1 shows the sand thickness distribution for the Chicot Aquifer. The sand thicknesses increase toward the coast where it achieves values as high as about 1,500 ft. Among the three geologic units that comprise the Chicot Aquifer, the units all have distinctly different distributions of sand percentages. In the Beaumont unit (Figure 8-2), the sand percentages typically are between 40% and 60%. In both the Lissie unit (Figure 8-4) and the Willis unit (Figure 8-6), sand percentages greater than 60% are relatively common. In the Lissie unit, the higher sand percentages (60% to 100%) are found near Wharton, Fort Bend, and Waller Counties whereas the lower sand percentages (40% to 60%) are found near Liberty, Hardin, and Chambers counties. In the Willis unit (Figure 8-6), the sand percentage is highest in the eastern region near Fort Bend County where it is typically greater than 60% and frequently higher than 80%. Because the Beaumont, Lissie, and Willis Formations dip and thicken towards the coast, all of their maps for total sand thickness thicken toward the coast.

## 8.1.2 Evangeline Aquifer

Figure 8-8 shows the sand thickness distribution for the Evangeline Aquifer. The sand thickness increases toward the coast and approaches 3,000 feet near the coastline. In the upper Goliad (Figure 8-9), the sand percentages are typically between 40% and 60%. However, in the vicinity of Fort Bend County and Cameron Parish, sand percentages in the range between 60% and 80% are relatively common. The distribution of the sand percentages in the lower Goliad unit (Figure 8-11) mimic those for the upper Goliad unit except that the percentages tend to be about 10% lower and more spatially variable. Among the geologic units that comprise the Evangeline Aquifer, the upper Lagarto unit (Figure 8-13) has the lowest sand percentage with sand values usually between 20% and 60%. However, the upper Lagarto displays higher sand percentages that exceed 60% near the Louisiana/Texas boundary.

## 8.1.3 Middle Lagarto (Burkeville confining unit)

Figure 8-16 shows the sand thickness distribution for the middle Lagarto unit. Across most of the unit, the sand thicknesses vary between 100 and 200 feet and increase toward the coast. The

sand fraction distribution (Figure 8-15) shows that across most of the Burkeville unit, the sand percentages vary between 20% and 60%, have regions with less than 40% in the western part of the study area, and have regions with greater than 60% in the eastern part of the study area.

### 8.1.4 Jasper Aquifer

Figure 8-17 shows the sand thickness distribution for the Jasper Aquifer. The sand thickness increases toward the coast where it exceeds 1,000 feet. In the lower Lagarto (Figure 8-18), the areas of high and low sand percentages are similar to the sand percent distribution across the middle Lagarto unit, except in some areas they are slightly higher. Across the Oakville unit (Figure 8-20), the sand percentages distribution is highly variable but is commonly between 40% and 60%. In its updip region, the Oakville unit has localized areas with sand percentages greater than 60% and in its downdip region, the Oakville has localized area with sand percentages less than 40%.

## 8.2 Depositional Facies

The hydrological properties of the Gulf Coast Aquifer system and its component hydrogeologic units are governed strongly by the characteristics of the sediments laid down at the time of deposition. Sediment texture (grain size, sorting, etc.) and composition of framework grains and matrix material are dependent upon the influences of depositional energies, which vary with depositional setting. Sand body size, shape, orientation, and interconnection are similarly products of the depositional setting. Sediments and rocks deposited in a similar depositional setting can be grouped together as a "facies." Facies are in turn elements of a given "depositional system." Thus, sediments deposited in a fluvial depositional system can have relatively coarser grain size and good sorting when deposited in a high-energy river channel, and can be considered "fluvial" facies. In contrast, a fine-grained, often less well sorted sediment also deposited as part of a fluvial depositional system can be deposited in low-energy overbank and floodplain settings. The depositional system "floodplain facies." Sediments in a floodplain facies will have substantially poorer hydrologic properties as a result. Table 7-2 provides a summary of facies types and brief descriptions of each type.

## 8.2.1 Chicot Aquifer

Depositional facies within the Chicot Aquifer are shown in Figures 8-2, 8-4, and 8-6. For the Willis, Lissie, and Beaumont units, the most prevalent facies in the updip areas are the Fluvial/ Meanderbelt facies. Fluvial/Meanderbelt facies are characterized by zones of relatively high permeability associated with networks of sand beds with thicknesses greater than 30 feet. Along the eastern edge of all three formations, the Fluvial/Meanderbelt facies cover the entire width of each formation with the eastern coverage being the greatest for the Lisse and the least for the Beaumont. Within the matrix of the Fluvial/Meanderbelt facies, all of the units contain Floodplain facies. The most dominant coverage in the Lissie unit is from the Fluvial/Meanderbelt facies and the Floodplain facies. Floodplain facies include overbank sediments deposited from the major rivers responsible for the meanderbelt facies. Floodplan facies are characterized by zones of moderate to fair permeability associated with interbedded layers of clays, sands, and fine-grained deposits. In the central portion of the Lissie unit, the Fluvial/ Meanderbelt facies are separated by a dip-oriented band of floodplain facies with a width of 30 miles and extending from the updip to the downdip boundary of the facies map. Across the western and central coastal regions of the Willis and the Beaumont units, the dominant facies is the lower Coastal Plain Fluvial/Coastal facies. These facies typically include mixtures of sands and clays deposited from fluvial channels and terminal fluvial deposits.

## 8.2.2 Evangeline Aquifer

Within the Evangeline Aquifer, the dominant facies are Lower Coastal Plain Fluvial/Coastal facies. The distribution pattern of facies for the upper Lagarto (Figure 8-13) and the lower Goliad (Figure 8-11) units are very similar. Both units are characterized by a coverage consisting of approximately 70% are Lower Coastal Plain Fluvial/Coastal facies and approximately 15% sand-poor Bayfill/Lagoonal facies in the western part of the study area. The primary difference between the two units is that the higher percentage of Fluvial/Meanderbelt facies in the updip region of the lower Goliad unit. The transition from the lower Goliad unit to the upper Goliad unit includes an expansion of the updip Fluvial/Meanderbelt facies and the occurrence of Shorezone facies along the coast. The Shorezone facies are characterized by sands primarily associated with barrier islands and delta fronts and contain clays associated with prodelta, bayfill, and lagoonal deposits.

### 8.2.3 Middle Lagarto Unit (Burkeville confining unit)

Figure 8-15 shows the depositional facies associated with the middle Lagarto unit. The distribution of facies across the middle Lagarto unit are similar to the facies distribution across the upper and lower Lagarto units. The majority of the coverage is Lower Coastal Plain Fluvial/Coastal facies but a significant part of the coverage in the eastern area are the Bayfill/Lagoonal facies. Bayfill/Lagoonal facies are characterized by mud-dominated deposits containing occasional layers of sands. Among the three Lagarto units, the middle Lagarto unit has the largest continuous zone and greatest overall coverage by the Bayfill/Lagoonal facies.

### 8.2.4 Jasper Aquifer

Figures 8-18 and 8-20 present the facies maps for the lower Lagarto and Oakville units that comprise the Jasper Aquifer. Whereas the coverage of the lower Lagarto unit is dominated by a Lower Coastal Plain Fluvial/Coastal plain facies, the coverage of the Oakville is dominated by a Wave Dominated Delta facies. The difference in the facies coverage occurs because although both the Lagarto and Oakville units were formed during a major fluvial deltaic depositional episode, the Oakville units forms the lower progradational part and the Largarto forms the upper retro gradational part. The Bayfill/Lagoonal facies in the downdip regions of both units represents part of a marine transgressive shale that separates the two Jasper units.



Figure 8-1 Map of the Chicot Aquifer showing total sand thickness.



Figure 8-2 Map of the Beaumont geologic unit showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-3 Map of the Beaumont geologic unit showing total sand thickness.



Figure 8-4 Map of the Lissie geologic unit showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-5 Map of the Lissie geologic unit showing total sand thickness.



Figure 8-6 Map of the Willis geologic unit showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-7 Map of the Willis geologic unit showing total sand thickness.



Figure 8-8 Map of the Evangeline Aquifer showing total sand thickness



Figure 8-9 Map of the upper Goliad geologic unit showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-10 Map of the upper Goliad geologic unit showing total sand thickness.



Figure 8-11 Map of the lower Goliad geologic unit showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-12 Map of the lower Goliad geologic unit showing total sand thickness.



Figure 8-13 Map of the upper Lagarto geologic unit showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-14 Map of the upper Lagarto geologic unit showing total sand thickness.



Figure 8-15 Map of the Burkeville confining unit (middle Lagarto geologic unit) showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-16 Map of the Burkeville confining unit (middle Lagarto geologic unit) showing total sand thickness.



Figure 8-17 Map of the Jasper Aquifer showing total sand thickness.



Figure 8-18 Map of the lower Lagarto geologic unit showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-19 Map of the lower Lagarto showing total sand thickness.



Figure 8-20 Map of the Oakville geologic unit showing: (a) percentage sand coverage and (b) depositional facies.



Figure 8-21 Map of the Oakville geologic unit showing total sand thickness.

This page intentionally left blank.

# 9.0 Gulf Coast Water Quality

The quality of the groundwater in the Gulf Coast Aquifer System varies significantly. From the water supply perspective, a useful metric for measuring water quality is concentration of total dissolved solids (TDS). Groundwater is categorized as fresh water and as brackish water based on its measured TDS. In this section, estimates of fresh water are provided based on analysis of geophysical logs and water well data.

## 9.1 Terminology

## 9.1.1 Fresh and Brackish Groundwater

Total dissolved solids (TDS) is a measurement of all the dissolved solids in a specific water sample and is often used to classify groundwater based on water quality. Table 9-1 divides groundwater into five classes based on TDS. This project uses these five classes to characterize the groundwater of the Gulf Coast. LGB-Guyton and NRS Consulting (2003) have grouped the classes of slightly saline and moderately saline water under the general category of brackish groundwater. Thus, brackish groundwater by definition has a TDS between 1,000 ppm and 10,000 ppm, and fresh water has a TDS less than 1,000 ppm. Water with a TDS greater than 10,000 ppm is classified as being saline water (LGB-Guyton and NRS Consulting, 2003).

| Class                   | Total Dissolved Solids<br>(mg/L) | Example of Use                                                                                                                                                             |
|-------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fresh water             | 0 to 1,000                       | Drinking and all other uses                                                                                                                                                |
| Slightly saline water   | More than 1,000 to 3,000         | Drinking if fresh water is unavailable, irrigation, industrial, mineral extraction, oil and gas production                                                                 |
| Moderately saline water | More than 3,000 to 10,000        | Potential future drinking and limited livestock watering and<br>irrigation if fresh or slightly saline water is unavailable;<br>mineral extraction, oil and gas production |
| Very saline water       | More than 10,000 to 100,000      | Mineral extraction, oil and gas production                                                                                                                                 |
| Brine water             | More than 100,000                | Mineral extraction, oil and gas production                                                                                                                                 |

Table 9-1Groundwater classifications based on TDS (from Collier, 1993).

## 9.1.2 Total Dissolved Solids and Specific Conductivity

In the groundwater industry and for this report, TDS is used interchangeably with dissolved solids even through there is a real difference between the two measurements. Dissolved solids

refers to the sum of all the chemical constituents that were analyzed in a specific water sample. The practice of using TDS and dissolved solids interchangeably is generally acceptable as long as the water analysis has been designed and executed to account for 90% or more of the dissolved ions in solution. The major ions that comprise TDS for most groundwaters include silica, calcium, magnesium, sodium, chloride, bicarbonate, sulfate, and carbonate. Secondary ions that should be considered as part of the TDS measurement include fluoride, nitrate, potassium, manganese, iron, and aluminum.

Measurements of TDS usually are reported as parts per million by weight (ppm) or milligrams per liter (mg/L). For fresh and brackish water, the terms can be used interchangeably even though the two terms can differ because the weight of 1 liter of water depends on the solute concentrations. Hem (1985) estimates that for a typical groundwater sample, the analytical method is within  $\pm 5\%$  of the actual TDS value.

Specific conductivity is a measure of a water's ability to conduct electricity and therefore is a measure of a water's ionic activity. The standard unit of measure for specific conductance is microhms per centimeter (µmhos/cm) at 25°Celsius (77°Fahrenheit). The specific conductivity is affected by the nature and movement of the ions in solution. Thus, the specific conductivity is affected by the concentration of the ions, the activity of the ions, the electric charge on ions, and water temperature. When adjusting for temperature, a general rule of thumb stated in the literature is that specific conductivity increases about 2% per degree Celsius increase in temperature (Hem, 1982). Figure 9-1 illustrates how the relationships between concentration and specific conductivity can vary among different salts and is concentration dependent.

The reciprocal of electrical conductivity is electrical resistivity. The unit of measure for resistivity is the mirror inverse of the conductivity unit of mho, or ohm. The relationship between conductivity and resistivity is important to a log analyst because resistivity is one of the measurements that comprise most geophysical logs. The relationship between resistivity and conductivity is as follows:

Resistivity (ohm-m) = 10,000 / Specific Conductivity(µmhos/cm)

9-2

## 9.2 Analysis of Geophysical Logs

## 9.2.1 Approach

Any approach for estimating TDS from the geophysical logs involves three general steps. The first step is to estimate the resistivity of the formation water from a geophysical log. The second step is to convert the resistivity value into a specific conductivity value. The third step is to convert the specific conductivity into a TDS value. Thus, a TDS concentration estimated from the analysis of a geophysical log is dependent on the accuracy of the log analyst's ability to estimate the resistivity of the formation water and the relationship between the specific conductivity and TDS for the specific conditions at the borelog.

To illustrate the relationship among TDS, specific conductivity, and resistivity, we have created Table 9-2. In developing Table 9-2, we skipped the key step of interpreting the geophysical log to estimate the resistivity of the formation water. The conversion from resistivity to specific conductivity is performed by applying the equation discussed above. To calculate the TDS from specific conductivity, we used general relationships developed and reported by Collier (1993) in Table 3-1 for groundwater measurements taken in the Chicot, Evangeline, and Jasper Aquifers. For this example, we have selected resistivity values of 0.7, 2.5, 7.1, 15.4, and 30.8 and have calculated specific conductivities of 14000, 4000, 1400, 650, and 325 µmhos/cm., respectively, based on the above equation. For each of the five specific conductivities, Table 9-2 shows the TDS value calculated for the three aquifers using the relationships provided by Collier (1993) and shown in Table 9-2. The results in Table 9-2 show that the range in the calculated TDS values for the different aquifers increases with higher resistivity values because of the non-linarites in the TDS-specific conductivity relationships.

|                                                   | Relationship between TDS<br>(mg/L) and specific<br>conductivity (µmhos/cm) | Specific conductivity of formation water (µmhos/cm) |       |       |     |     |
|---------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|-------|-------|-----|-----|
| Aquifer                                           |                                                                            | 14,000                                              | 4,000 | 1400  | 650 | 325 |
| Chicot                                            | TDS = 1.283*SC 0.922                                                       | 8,530                                               | 2,687 | 1,021 | 503 | 266 |
| Evangeline                                        | TDS = 1.780*SC 0.994                                                       | 10,312                                              | 2,969 | 1,046 | 488 | 245 |
| Jasper                                            | $TDS = 0.751*SC \ 1.010$                                                   | 11,567                                              | 3,264 | 1,130 | 521 | 259 |
| Average TDS (mg/L) for three aquifers             |                                                                            | 10,136                                              | 2,973 | 1,066 | 504 | 256 |
| Percent variation in predicted TDS among aquifers |                                                                            | 30%                                                 | 19%   | 8%    | 7%  | 5%  |

#### Table 9-2Relationship among TDS, specific conductivity, and resistivity (from Collier, 1993).

The specific approach we used to estimate TDS from geophysical logs is similar to the general approach discussed above with the additional step of estimating the resistivity of the aquifer formation water from the geophysical log signatures. Mr. Baker performed all of the TDS interpretations for this project at the same time that he performed the lithologic interpretations. For every lithologic interval identified, Mr. Baker assigned a classification of fresh, slightly saline, or moderately saline water. Table 9-3 provides a description of the general criteria and assumptions used by Mr. Baker. Where appropriate, Mr. Baker deviated from the general criteria to accommodate site-specific conditions and adjusted his criteria as needed based on his 40 years of log analyst experience. Mr. Baker's approach is based on numerous references that include Schlumberger (1972), Keys and McCary (1971), Whitman (1965), and Alger (1966).

| Classification                            | Resistivity (ohms-m) of aquifer formation | Assumptions                                  |  |  |
|-------------------------------------------|-------------------------------------------|----------------------------------------------|--|--|
| Freshwater (<1,000 ppm TDS)               | > 15-20 ohms                              | Assume water has major calcium ions          |  |  |
| Slightly saline (1,000-3,000 ppm TDS)     | 8-15 ohms                                 | Calcium ions decreasing, sodium ions gaining |  |  |
| Moderately saline (3,000 -10,000 ppm TDS) | < 8 ohms                                  | Sodium and chloride ions predominate         |  |  |

Table 9-3General criteria used by Mr. Baker to estimate the TDS from the geophysical logs.

## 9.2.2 Results

For each of the major aquifers and the Burkeville confining unit, maps of the three water quality classifications in Table 9-3 were calculated using a two-step process. The first step was to determine the percentage of each water quality classification for each aquifer/geologic unit at approximately 600 geophysical log locations shown in Figure 4-4 with water quality information. This was accomplished by summing the vertical intervals associated with each classification and dividing by the total thickness the aquifer/geologic unit. The second step was to generate a continuous distribution of percentage of the different water classification by interpolating the point values using a kriging algorithm with a rectangular grid consisting of nodes spaced 4,000 feet apart.

Figures 9-2 through 9-13 are maps showing the percentage of fresh, slightly saline, and moderately saline water in the Chicot, Evangeline, and Jasper Aquifers and the Burkeville confining unit. Because of several simplifying assumptions in each analysis, the results should

be used as a guide to water quality at a regional scale. At the scale of a few tens square miles and less, the results should not be used without additional information to validate the reasonableness of the approach at the specific location of interest.

#### **Chicot Aquifer**

As shown in Figure 9-2, fresh water occupies most of the Chicot Aquifer. The higher percentage (80% to 100%) of fresh water occurs along strike in the central region of the aquifer. The lower percentages (0 to10%) of fresh water occurs approximately 30 miles from the coastline. As shown in Figure 9-3, slightly saline water occupies a volume considerably less than does the fresh water. The percentage of saline water greater than 40% are typically in the central region of the Chicot Aquifer but there are some areas with slightly saline water percent above 40% in the updip and downdip regions of the aquifer. The higher percentage (80% to 100%) of slightly saline water occurs in the vicinity of Chambers, Liberty, and Jefferson Counties. As shown in Figure 9-4, moderately saline water is most common near the downdip region of the Chicot Aquifer. The higher percentage (80% to 100%) of moderately saline water occurs along strike and is highest near and in Jefferson County.

#### **Evangeline Aquifer**

As shown in Figure 9-5, the percentages of freshwater in the Evangeline Aquifer greater than 50% is limited to the updip region of the aquifer. Figure 9-5 does not show any freshwater percentages greater than 10% within about 40 miles of the shoreline. As with the Chicot Aquifer, the percentage of freshwater changes very quickly over short distances as the percent of freshwater drops below 40%. As shown in Figure 9-6, the highest percentage (80% to 100%) of slightly saline water generally occurs along strike within the central region of the aquifer in the vicinity of Harris County, Liberty County, Calcasieu Parish, and Beauregard Parish. The lower percentages (0 to10%) occurs near the downdip extent of the Evangeline. As shown in Figure 9-7, the highest percentage (80% to 100%) of moderately saline water occurs along strike throughout the downdip region of the aquifer whereas the lower percentages (0 to10%) occur in the updip extent of the Evangeline.

#### **Burkeville Confining Unit**

As shown in Figure 9-8, the Burkeville confining unit has a footprint of freshwater percentage similar to the percentage footprint for Evangeline Aquifer except that it is smaller. The percentage of freshwater greater than 50% occurs across an updip region that covers between 10% and 30% of the aquifer. As with the previously mentioned aquifers, freshwater percentages for the Burkeville change quickly over short distances where the percent of freshwater drops below 40%. As shown in Figure 9-9, slightly saline water is predominant across the updip region that covers approximately 50% of the Burkeville confining unit. The spatial location of the slightly saline water is similar to that of the Evangeline, but contains the Burkeville has more areas with higher percentages (80% to 100%) of slightly saline water. The higher percentages generally occur along strike within the central and in the vicinity of Austin County, Fort Bend County, Harris County, Liberty County, Montgomery County, San Jacinto County, Waller County, Wharton County, and Beauregard Parish. As shown in Figure 9-10, moderately saline water occurs in approximately 60% to 75% of the Burkeville confining unit. The higher percentage (80% to 100%) of moderately saline water occurs near the downdip region of the aquifer.

#### **Jasper Aquifer**

As shown in Figure 9-11, the Jasper Aquifer has a footprint of freshwater percentage similar to the freshwater percentage footprint for the Burkeville confining unit except that it is smaller. The percentages of freshwater greater than 50% occur in a small updip areas that only cover 10% to 20% of the aquifer. As with the previously mentioned aquifers, freshwater percentages for the Jasper change quickly over short distances where the percent of freshwater drops below 40%. As shown in Figure 9-12, slightly saline water is predominant across the updip portions of the Jasper Aquifer. The slightly saline percentage footprint is similar to that of the Evangeline and the Burkeville, but contains more regions with a higher percentage (80% to 100%) of slightly saline water. As shown in Figure 9-11, moderately saline water is predominant across the downdip region that covers approximately 60% to 75% of the Jasper. As with the Evangeline and the Burkeville, there is a sharp gradient along strike in which the percentage of moderately saline water rapidly changes from 80% to less than 10% over distances typically less than 10 miles.

## 9.3 Analysis of Water Well Measurements

## 9.3.1 Approach

In July 2009, the TWDB database for water quality (GWDB.mdb) was queried for at least one TDS measurement in wells with the aquifer codes in Table 9-4 that are located north of dip section 10. The query produced 4,575 wells that had depths that are above the base of the Jasper. For wells that had multiple TDS measurements, the measurements were averaged to produce a single measurement. From this well population, 4,080 wells were assigned a TDS less than 1,000 ppm and 495 wells were assigned a TDS greater than 1,000 ppm.

## Table 9-4Aquifer codes used in Gulf Coast query

| Aquifer_Name                                        |  |  |
|-----------------------------------------------------|--|--|
| Alluvium and Evangeline Aquifer                     |  |  |
| Burkeville Aquiclude                                |  |  |
| Chicot and Evangeline Aquifers                      |  |  |
| Chicot Aquifer                                      |  |  |
| Chicot Aquifer, Lower                               |  |  |
| Chicot Aquifer, middle                              |  |  |
| Chicot Aquifer, upper                               |  |  |
| Evangeline and Jasper Aquifers                      |  |  |
| Evangeline Aquifer                                  |  |  |
| Evangeline Aquifer and Burkeville Aquiclude         |  |  |
| Evangeline Aquifer and upper Unit of Jasper Aquifer |  |  |
| Fleming Formation and Burkeville Aquiclude          |  |  |
| Gulf Coast Aquifer                                  |  |  |
| Jasper Aquifer                                      |  |  |
| Jasper Aquifer and Burkeville Aquiclude             |  |  |
| Jasper Aquifer and Catahoula Sandstone              |  |  |
| Jasper Aquifer, upper Unit                          |  |  |

## 9.3.2 Results

Figure 9-14 shows 3,105 wells with TDS concentrations for wells with depths that terminate in the Chicot Aquifer. Out of the 3,105 wells, 2,556 and 449 wells had TDS concentrations below 1,000 ppm and above 1,000 ppm, respectively. Except for Chambers County, every county has more wells with TDS concentrations below 1,000 ppm than above 1,000 ppm. In Jefferson and Brazoria counties, there are considerable TDS measurements with concentrations above

1,000 ppm but these measurements are less than the number of TDS measurements of less than 1,000 ppm. Overall, the areas of fresh water shown in Figure 9-14 are consistent and supportive of the areas of fresh water estimated from geophysical logs in Figure 9-2.

Figure 9-15 shows 668 wells with TDS concentrations for wells with depths that terminate in the Evangeline Aquifer. Out of the 668 wells, 650 and 18 wells had TDS concentrations below 1,000 ppm and above 1,000 ppm, respectively. Except for Chambers County (which has only three wells where TDS has been measured), every county has more wells with TDS concentrations below 1,000 ppm than above 1,000 ppm. Figure 6-15 shows that except for the vicinity of Harris County there is significantly less wells with TDS measurements in the Evangeline than in Chicot Aquifer. As for Figure 9-14, the areas of fresh water shown in Figure 9-15 are consistent and supportive of the areas of fresh water estimated from geophysical logs in Figure 9-5.

Figure 9-16 shows 234 wells with TDS concentrations for wells with depths that terminate in the middle Lagarto Formation. Out of the 234 wells, 230 and 4 wells had TDS concentrations below 1,000 ppm and above 1,000 ppm, respectively. Except for a few wells in Harris and Jasper counties, the vast majority of the wells are located near the updip extent of the middle Lagarto Formation. Overall, the areas of fresh water shown in Figure 9-16 are consistent and supportive of the areas of fresh water estimated from geophysical logs in Figure 9-8.

Figure 9-17 shows 568 wells with TDS concentrations for wells with depths that terminate in the Jasper Aquifer. Out of the 568 wells, 544 and 24 wells had TDS concentrations below 1,000 ppm and above 1,000 ppm, respectively. The figure shows that except for about 20 wells, the wells are located within about a 30 mile of the updip extend of the Jasper Aquifer. Overall, the areas of fresh water shown in Figure 9-17 are consistent and supportive of the areas of fresh water estimated from geophysical logs in Figure 9-11.



Figure 9-1 Specific conductivity of salt solutions (modified from Moore, 1966).


Figure 9-2 Percentage of the Chicot Aquifer estimated to be fresh water with a TDS concentration less than 1,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-3 Percentage of the Chicot Aquifer estimated to be slightly saline water with a TDS concentration between 1,000 ppm and 3,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-4 Percentage of the Chicot Aquifer estimated to be moderately saline water with a TDS concentration more than 3,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-5 Percentage of the Evangeline Aquifer estimated to be fresh water with a TDS concentration less than 1,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-6 Percentage of the Evangeline Aquifer estimated to be slightly saline water with a TDS concentration between 1,000 ppm and 3,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-7 Percentage of the Evangeline Aquifer estimated to be moderately saline water with a TDS concentration more than 3,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-8 Percentage of the Burkeville confining unit (middle Lagarto Formation) estimated to be fresh water with a TDS concentration less than 1,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-9 Percentage of the Burkeville confining unit (middle Lagarto Formation) estimated to be slightly saline water with a TDS concentration between 1,000 ppm and 3,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-10 Percentage of the Burkeville confining unit (middle Lagarto Formation) estimated to be moderately saline water with a TDS concentration more than 3,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-11 Percentage of the Jasper Aquifer estimated to be fresh water with a TDS concentration less than 1,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-12 Percentage of the Jasper Aquifer estimated to be slightly saline water with a TDS concentration between 1,000 ppm and 3,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-13 Percentage of the Jasper Aquifer estimated to be moderately saline water with a TDS concentration more than 3,000 ppm, as determined by the analysis of geophysical logs.



Figure 9-14 Map of water well locations in the Chicot Aquifer with at least one measurement of TDS concentrations.



Figure 9-15 Map of water well locations in the Evangeline Aquifer with at least one measurement of TDS concentrations.



Figure 9-16 Map of water well locations in the Burkeville confining unit with at least one measurement of TDS concentrations.



Figure 9-17 Map of water well locations in the Jasper Aquifer with at least one measurement of TDS concentrations

This page intentionally left blank.

## **10.0 References**

- Alger, R.P., 1966, Interpretation of electric logs in fresh water wells in unconsolidated formations, paper CC, in 7<sup>th</sup> Annual Symposium Transactions: Society of Professional Well Log Analysts, 25 p.
- Anders, R.B., 1957, Ground-water geology of Wilson County, Texas: Texas Water Commission Bulletin 5710, 62 p.
- Anders, R.B., and Baker, Jr., E.T., 1961, Ground-Water Geology of Live Oak County, Texas: Texas Board of Water Engineers Bulletin 6105, 93 p.
- Anderson, J.B., and Milliken, K., 2005, Long-term subsidence along the west Louisiana and east Texas coast (abs.), *in* Coastal subsidence, sea level and the future of the Gulf Coast: The Houston Geological Society, p. 1
- Anderson, J.B., and Fillon, R.H., eds., 2004, Late Quaternary stratigraphic evolution of the northern Gulf of Mexico margin: SEPM Special Publication No. 79, 314 p.
- Applin, E.R., Ellisor, A.E., and Kniker, H.T., 1925, Subsurface stratigraphy of the Coastal Plain of Texas and Louisiana: American Association of Petroleum Geologists Bulletin, v. 9, p. 79–122.
- Aronow, S., and Barnes, V.E., 1968, Geologic atlas of Texas, Houston sheet: The University of Texas at Austin, Bureau of Economic Geology.
- Aronow, S., and Barnes, V.E., 1975, Geologic atlas of Texas, Corpus Christi sheet: The University of Texas at Austin, Bureau of Economic Geology.
- Aronow, S., Brown, T.E., Brewton, J.L., Eargle, D.H., and Barnes, V.E., 1975, Geologic atlas of Texas, Beeville-Bay City sheet: The University of Texas at Austin, Bureau of Economic Geology.
- Ashworth, J.B., and Hopkins, J., 1995, Aquifers of Texas: Texas Water Development Board Report 345, 69 p.

- Autin, W.J., Burns, S.F., Miller, B.J., Saucier, R.T., And Snead, J.I., 1991, Quaternary Geology of the Lower Mississippi Valley, *in* Morrison, R.B., ed., Quaternary Nonglacial Geology; Conterminous U.S.: Boulder, Colorado, Geological Society of America, The Geology of North America, v. K-2, p. 547–581.
- Baker, E.T., Jr., 1964, Geology and Ground-water resources of Hardin County, Texas: Texas Water Commission Bulletin 6406, 174 p.
- Baker, R.C., Dale, O.C., and Baum, G.H., 1965, Ground-Water Condition in Menard County, Texas: Texas Water Commission Bulletin 6519, 92 p.
- Baker, Jr., E.T., 1979, Stratigraphic and hydrogeologic framework of part of the coastal plain of Texas: Texas Department of Water Resources Report 236, 43 p.
- Baker, Jr., E.T., 1986, Hydrology of the Jasper Aquifer in the Southeast Texas Coastal Plain: Texas Water Development Board Report 295, 64 p.
- Banga, T., Capuano, R.M., and van Nieuwenhuise, D.S., 2002, Fluid flow, stratigraphy and structure in the vicinity of the South Liberty salt dome, Texas: Gulf Coast Association of Geological Societies Transactions, v. 52, p. 25–36.
- Barnes, V.E., 1992, Geologic map of Texas: The University of Texas at Austin, Bureau of Economic Geology, State Map No. 3.
- Barton, D.C., 1930, Surface geology of coastal southeast Texas: American Association of Petroleum Geologists Bulletin, v. 14, p. 1301–1320.
- Barton, D.C., Ritz, C.H., and Hickey, M., 1933, Gulf Coast geosyncline: American Association of Petroleum Geologists Bulletin, v. 17, p. 1446–1458.
- Baskin, J.A. and Hulbert, Jr. R.C., 2008, Revised biostratigraphy of the middle Miocene to earliest Pliocene Goliad Formation of South Texas. Gulf Coast Association of Geological Societies Transactions, v. 58, P. 93-101.
- Bates, R.L., and Jackson, J.A., 1983, Dictionary of Geological Terms. Prepared by the American Geological Institute. Doubleday Publishers, New York. 570 pp.

- Beckman, J.D., and Williamson, A.K., 1990, Salt-dome locations in the Gulf Coastal Plain, south-central United States: U.S. Geological Survey Water-Resources Investigations Report 90-4060, 44 p.
- Berggren, W.A., Kent, D.V., Swisher, C.C., and Aubry, M.P., 1995, A revised Cenozoic geochronology and chronostratigraphy: Society of Sedimentary Geology (SEPM) Special Publication 54, p. 129–212.
- Bernard, H.A., and LeBlanc, R.J., 1965, Resume of the Quaternary geology of the northwestern Gulf of Mexico province, *in* H.E. Wright and D.G. Frey, eds., The Quaternary of the United States: Princeton University Press, Princetown, New Jersey, p. 137–185.
- Blum, M.D., and Price, D.M.,1998, Quaternary alluvial plain construction in response to glacioeustatic and climatic controls, Texas Gulf Coastal Plain: Society of Sedimentary Geology (SEPM) Special Publication No. 59, p. 31–48.
- Bodenlos, A.J., 1970, Cap-rock development and salt-stock movement, in Kupfer, D.H., editor, Geology and technology of Gulf Coast salt domes: Baton Rouge, Louisiana, School of Geosciences, Louisiana State University, p. 73–86.
- Bornhauser, M., 1947, Marine sedimentary cycles of Tertiary in Mississippi Embayment and central Gulf Coast area: American Association of Petroleum Geologists Bulletin, v. 31, p. 698–712.
- Bornhauser, M., 1958, Gulf coast tectonics: American Association of Petroleum Geologists Bulletin, v. 42, p. 339–370.
- Boyd, D.B., and Dyer, B.F., 1964, Frio barrier bar system of South Texas: Gulf Coast Association of Geological Societies Transactions, v. 14, p. 309–322.
- Brewton, J.L., Owen, F., Aronow, S., and Barnes, V.E., 1976a, Geologic atlas of Texas, Laredo sheet: The University of Texas at Austin, Bureau of Economic Geology.
- Brewton, J.L., Owen, F., Aronow, S. and Barnes, V.E. 1976b, Geologic atlas of Texas,McAllen-Brownsville sheet: The University of Texas at Austin, Bureau of Economic Geology.

- Brown, L.F., Jr., and others, 1976, Environmental geologic atlas of the Texas coastal zone– Corpus Christi area: The University of Texas at Austin, Bureau of Economic Geology, 123 p.
- Brown, L.F., Jr., and others, 1977, Environmental geologic atlas of the Texas coastal zone– Kingsville area: The University of Texas at Austin, Bureau of Economic Geology, 131 p.
- Brown, L.F., Jr., and others, 1980, Environmental geologic atlas of the Texas coastal zone– Brownsville-Harlingen area: The University of Texas at Austin, Bureau of Economic Geology, 140 p.
- Bruno, R.S., and Hanor, J.S., 2003, Large-scale fluid migration driven by salt dissolution, Bay Marchand Dome, offshore Louisiana: Gulf Coast Association of Geological Societies Transactions, v. 53, p. 97–107.
- Bryant, W.R., Lugo, J., Cordova, C. and Salvador, A., 1991, Physiography and bathymetry, *in*A. Salvador, ed., The geology of North America: the Gulf of Mexico basin, v. J:Boulder, Colorado, Geological Society of America, p. 13–30.
- Carr, J.E., Meyer, W.R., Sandeen, W.M., and McLane, I.R., 1985, Digital models for simulation of ground-water hydrology of the Chicot and Evangeline aquifers along the Gulf Coast of Texas: Texas Department of Water Resources, Report 289, 101 p.
- Catuneanu, O., and 27 others, 2009, Towards the standardization of sequence stratigraphy: Earth-Science Reviews, v. 92, p. 1–33.
- Chowdhury. A.H. and Mace, R.E., 2003, "A groundwater availability model of the Gulf Coast Aquifer in the Lower Rio Grande Valley, TX – Numerical simulations through 2050: Texas Water Development Board Report," 171 pp.
- Chowdhury, A., Wade, S., Mace, R.E., and Ridgeway, C., 2004, Groundwater Availability of the Central Gulf Coast Aquifer System: Numerical Simulations through 1999. Texas Water Development Board, unpublished report.

- Chowdhury, A.H., and Turco, M.J., 2006, Geology of the Gulf Coast aquifer, Texas, *in* Mace R.E., and others, eds., Aquifers of the Gulf Coast of Texas: Texas Water Development Board Report 365, p. 23–50.
- Chowdhury, A., and Mace, R.E., 2007, Groundwater Resource Evaluation and Availability Model of the Gulf Coast Aquifer in the Lower Grande Valley of Texas, Texas Water Development Board Report 368, p. 120.
- Collier, H., 1993, Borehole Geophysical Techniques for Determining the Water Quality and Reservoir Parameters of Fresh and Saline Water Aquifers in Texas, Report 343, Texas Water Development Board, Austin, TX.
- Collins, E.W., 1986, Salt diapirism-sedimentation relationships at Damon Mound Dome: stop1, in Seni, S.J., and Kyle, J.R., editors, Comparison of cap rocks, mineral resources, and surface features of salt domes in the Houston diapir province: Geological Society of America, Field Trip Guidebook, p. 103–118.
- Coleman, J.M., 1990, Depositional systems and the tectonic/eustatic of the Oligocene Vicksburg episode of the Northern Gulf Coast, Ph.D. Dissertation, University of Texas. Austin, TX.
- Coplin, L.S., and Galloway, D., 1999, Houston-Galveston, Texas—managing coastal subsidence, in Galloway, D., Jones, D.R., and Ingebritsen, S.E., eds., Land subsidence in the United States: U.S. Geological Survey Circular 1182, p. 35–48.
- Dale, O.C., 1952, Ground-Water Resources of Starr County, Texas: Texas Board of Water Engineers Bulletin 5209, 47 p.
- Deussen, A., 1914, Geology and underground waters of the southeastern part of the Texas Coastal Plain: U.S. Geological Survey Water-Supply Paper 335, 365 p.
- Deussen, A., 1924, Geology of the coastal plain of Texas west of Brazos River: U.S. Geological Survey Professional 126, 145 p.
- Deutsch, C.V., and Journel, A.G., 1998, GSLIB Geostatistical Software Library and User's Guide, Oxford University Press, New York, 340 p.

- Dodge, M.M., and Posey, J.S., 1981, Structural cross sections, Tertiary formations, Texas Gulf Coast: University of Texas at Austin, Bureau of Economic Geology.
- Doering, J.A., 1935, Post-Fleming surface formations of southeast Texas and south Louisiana: American Association of Petroleum Geologists Bulletin, v. 19, 651–688.
- Doering, J.A., 1956, Review of Quaternary surface formations of the Gulf Coast region: American Association of Petroleum Geologists Bulletin, v. 40, 1816–1862.
- Doyle, J.D., 1979, Depositional patterns of Miocene facies, middle Texas Coastal Plain: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 99, 28 p.
- Driscoll, F.G., 1986, Groundwater and Wells, Johnson Filtration Systems, Inc., St. Paul, MN, 1079 p.
- Dubar, J.R., 1983, Miocene depositional systems and hydrocarbon resources: the Texas Coastal Plain: The University of Texas at Austin, Bureau of Economic Geology, report prepared for U.S. Geological Survey under contract no. 14-08-0001-G-707, 99 p.
- Dubar, J.R., Ewing, T.E., Lundelius, Jr., E.L., Otvos, E.G., and Winker, C.D., 1991, Quaternary Geology of the Gulf of Mexico Coastal Plain, *in* Morrison, R.B., ed., Quaternary Non-Glacial Geology of the Conterminous United States: Boulder, Colorado, The Geological Society of America, The Geology of North America, v. K-2, p. 583–610.
- Dutton, A.R., and Richter, B.C., 1990, Regional geohydrology of the Gulf Coast Aquifer in Matagorda and Wharton Counties: Development of a numerical model to estimate the impact of water-management strategies: Contract report prepared for Lower Colorado River Authority, Austin, Texas, under Contract IAC (88-89) 0910, 116 p.
- Engelkemeir, R.M., and Khan, S.D., 2007, Near-surface geophysical studies of Houston faults: The Leading Edge, August 2007, p. 1004–1008.
- Engelkemeir, R.M., and Khan, S.D., 2008, Lidar mapping of faults in Houston, Texas, USA: Geosphere, v. 4, p. 170–182.

- Evans, D.G., Nunn, J.A., and Hanor, J.S., 1991, Mechanisms driving groundwater flow near salt domes: Geophysical Research Letters, v. 18, n. 5, p. 927–930.
- Ewing, T.E., 1990, Tectonic map of Texas: University of Texas at Austin, Bureau of Economic Geology, scale 1:750,000, 4 sheets.
- Ewing, T.E., 1991, Structural framework, *in* A. Salvador, ed., The geology of North America: the Gulf of Mexico basin, v. J: Boulder, Colorado, Geological Society of America, p. 31–52.
- Fillon, R.H., and Lawless, P.N. 2000, Lower Miocene-early Pliocene deposystems in the Gulf of Mexico: Regional sequence relationships: Gulf Coast Association of Geological Societies Transactions, v. 50, p. 411–428.
- Fisher, W.L., Brown, L.F., McGowen, J.H., and Groat, C.G., 1972, Environmental geologic atlas of the Texas coastal zone—Galveston-Houston area: The University of Texas at Austin, Bureau of Economic Geology, 91 p.
- Fisher, W.L., Brown, L.F., McGowen, J.H., and Groat, C.G., 1973, Environmental geologic atlas of the Texas coastal zone—Beaumont-Port Arthur area: The University of Texas at Austin, Bureau of Economic Geology, 93 p
- Fisher, W.L., and McGowen, J.H., 1967, Depositional systems in the Wilcox Group of Texas and their relationship to occurrence of oil and gas: Gulf Coast Association of Geological Societies Transactions, v. 17, p. 105–125.
- Fogg, G.E., Seni, S.J., and Kreitler, C.W., 1983, Three-dimensional ground-water modeling in depositional systems, Wilcox Group, Oakwood salt dome area, East Texas: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 133, 55 p.
- Fowler, T, 2011, Natural gas facility in Mont Belvieu explodes (updated): Fuelfix (insert website address).

- Frazier, D.E., 1974, Depositional episodes; Their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf Basin: The University of Texas at Austin, Bureau of Economic Geology Geological Circular 74-1, 28 p.
- Gagliano, S.M., 1999, Faulting, subsidence and land loss in coastal Louisiana, *in* Coast 2050:
   toward a sustainable coastal Louisiana, the appendices, Louisiana Department of Natural Resources, Baton Rouge, Louisiana, p. 1–45.
- Gagliano, S.M., 2005, Effects of earthquakes, fault movements, and subsidence on the south Louisiana landscape: The Louisiana Civil Engineer Journal of the Louisiana Section of the American Society of Civil Engineers, v. 13, p. 5–22.
- Galloway, W.E., Kreitler, C.W., and McGowen, J.H., 1979, Depositional and ground-water flow systems in the exploration for uranium: The University of Texas at Austin, Bureau of Economic Geology, 267 p.
- Galloway, W.E., 1981, Depositional architecture of Cenozoic Gulf Coastal Plain fluvial systems: SEPM Special Publication No. 31, p. 127–155.
- Galloway, W.E., Henry, C.D., and Smith, G.E., 1982, Depositional framework, hydrostratigraphy, and uranium mineralization of the Oakville Sandstone (Miocene), Texas Coastal Plain: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 113, 51 p.
- Galloway, W.E., Jirik, L.A., Morton, R.A., and DuBar, J.R., 1986, Lower Miocene (Fleming)
   depositional episode of the Texas Coastal Plain and continental shelf: The University of
   Texas at Austin, Bureau of Economic Geology Report of Investigations No. 150, 50 p.
- Galloway, W.E., 1989a, Genetic stratigraphic sequences in basin analysis I: Architecture and genesis of flooding-surface bounded depositional units: American Association of Petroleum Geologists Bulletin, v. 73, p. 125–142.
- Galloway, W.E., 1989b, Genetic stratigraphic sequences in basin analysis II: application to northeast Gulf of Mexico Cenozoic basin: American Association of Petroleum Geologists Bulletin, v. 73, p. 143–154.

- Galloway, W.E., Bebout, D.G., Fisher, W.L., Cabrera-Castro, R., Lugo-Rivera, J.E., and Scott, T.M., 1991, Cenozoic, in A. Salvador, ed., The geology of North America: the Gulf of Mexico basin, v. J: Boulder, Colorado, Geological Society of America, p. 245–324.
- Galloway, W.E., Liu, X., Travis-Neuberger, D., and Xue, L., 1994, Reference high-resolution correlation cross sections, Paleogene section, Texas Coastal Plain: The University of Texas at Austin, Bureau of Economic Geology.
- Galloway, W.E., and Hobday, D.K., 1996, Terrigenous clastic depositional systems: 2<sup>nd</sup> ed., New York, Springer-Verlag, 489.
- Galloway, W.E., Ganey-Curry, P.E., Li, X., and Buffler, R.T., 2000, Cenozoic depositional history of the Gulf of Mexico basin: American Association of Petroleum Geologists Bulletin, v. 84, p. 1743–1774.
- Galloway, W.E., 2005, Gulf of Mexico Basin depositional record of Cenozoic North American drainage basin evolution: International Association Sedimentologists Special Publication 35, p. 409–423.
- George, P.G., Mace, R E., and Petrossian, R., 2011, Aquifers of Texas, Report 380, Texas Water Development Board, Austin, TX.
- Grubb, H.F., 1984, Planning report for the gulf coast regional aquifer-system analysis in the Gulf of Mexico Coastal Plain, United States: U.S. Geological Survey Water-Resources Investigations Report 84-4219, 30 p.
- Grubb, H.F 1987, Overview of the Gulf Coast Regional Aquifer-System Analysis, *in* Vecchioli, J., and Johnson, A.I., eds., Aquifers of the Atlantic and Gulf Coastal Plain: American Water Resources Association Monograph no. 9, p. 101-118.
- Guevara-Sanchez, E.H., 1974, Pleistocene facies in the subsurface of the southeast Texas Coastal Plain: Ph.D. dissertation, The University of Texas at Austin, 133 p.
- Halbouty, M.T., 1979, Salt domes—Gulf region, United States and Mexico, 2nd edition: Houston, Texas, Gulf Publishing, 561 p.

- Hamlin, H.S., 1986, Texas coastal salt domes—Stratigraphic and structural interrelationships, *in* Seni, S.J., and Kyle, J.R., editors, Comparison of cap rocks, mineral resources, and surface features of salt domes in the Houston diapir province: Geological Society of America, Field Trip Guidebook, p. 27–42.
- Hamlin, H.S., Smith, D.A., and Akhter, M.S., 1988, Hydrogeology of Barbers Hill salt dome, Texas coastal plain: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations no. 176, 41 p.
- Hamlin, H.S., 2006, Salt domes in the Gulf Coast aquifer, *in* Mace, R.E., and others, eds., Aquifers of the Gulf Coast of Texas: Texas Water Development Board Report 365, p. 217–230.
- Hammond, Jr., W.W., 1969, Ground-Water Resources of Matagorda County, Texas: Texas Water Development Board Report 91, 163 p.
- Haq, B.U., Hardenbol, J., and Vail, P.R., 1987, Chronology of fluctuating sea levels since the Triassic: Science, v. 235, p. 1156–1167.
- Harris, H.B., 1965, Ground-water resources of LaSalle and McMullen counties, Texas: Texas Water Commission Bulletin 6520, 59 p.
- Hem, J.D., 1982, Conductance, a collective measure of dissolve ions, in R.A. Minear and Keigh,L.H. editors, Water analysis, v. 1, Inorganic species, pt. 1: Academic Press, p. 137-161.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water: U. S. Geological Survey Water Supply Paper 2254, 249 p.
- Hernandez-Mendoza, J.J., T.F. Hentz, L.H., DeAngelo, M.V., Wawrzyniec, T.F., Sakurai, S., Talukdar, S.C., and Holtz, M.H., 2008, Miocene chronostratigraphy, paleogeography, and play framework of the Burgos Basin, southern Gulf of Mexico: American Association of Petroleum Geologists Bulletin, v. 92, p. 1501–1535.
- Hoel, H.D., 1982, Goliad Formation of the south Texas Gulf Coastal Plain: regional genetic stratigraphy and uranium mineralization: Master's thesis, The University of Texas at Austin, 173 p.

- Holzer, T.L., 1984, Ground failure induced by ground water withdrawal from unconsolidated sediment, *in* Holzer, T.L., ed., Man-induced land subsidence: Geological Society of American Review of Engineering Geology, v. 6, p. 67–105.
- Holzer, T.L., and Gabrysch, R.K., 1987, Effect of water-level recoveries on fault creep, Houston, Texas: Ground Water v. 25, p. 392–397.
- Horswell, C., 2009, Daisetta sinkhole still a mystery 8 months after it formed: *Houston Chronicle*, January 5, 2009.
- Hosman, R.L., 1996, Regional stratigraphy and subsurface geology of Cenozoic deposits, Gulf
  Coastal Plain, South-Central United States—Regional aquifer system analysis—Gulf Coastal
  Plain: U.S. Geological Survey Professional Paper 1416-G, 35 p.
- Hosman, R.L. and Weiss, J.S., 1991, Geohydrologic units of the Mississippi.
- IHS, 2009, User's Manual for PETRA. Information Handling Services, Houston, TX.
- Jones, P.H. and Buford, T.B., 1951, Electric logging applied to ground-water exploration: Geophysics, v. 16, no. 1, p. 115–139.
- Jones, P.H. 1956, Water Resources of Southwest Louisiana. U. S. Geological Water Supply Paper 1364, 460 p.
- Jones, J.O., and Freed R.L., 1996, Structural Framework for the Northern Gulf of Mexico: Gulf Coast Association of Geological Societies, 754 pages.
- Jorgensen, D.G., 1975, Analog-model studies of the ground-water hydrology in the Houston District, Texas: Austin: Texas Water Development Board Report 190, 84 p.
- Kasmarek, M.C., Gabrysch, R.K., and Johnson, M.R., 2009, Estimated land-surface subsidence in Harris county, Texas, 1915-17 to 2001: U.S. Geological Survey Scientific Investigation Map 3097.
- Kasmarek, M.C., and Robinson, 2004, Hydrogeology and Simulation of Groundwater Flow and Land-Surface Subsidence in the Northern Part of the Gulf Coast Aquifer System, Texas. Scientific Investigation Report 2004-5102: United States Geological Society.

- Keys, W.S., and MacCary, L.M., 1971, Application of borehole geophysics to water-resources investigations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 2, Chapter E1, 126 p.
- Klinge, H., Schelkes, K., Rubel, A., Suckow, A., Schildknecht, F., and Ludwig, R., 2002, The saltwater/freshwater regime in the sedimentary cover of the Gorleben salt dome: Transport in Porous Media, v. 47, p. 125–148.
- Knox, P.R., Young, S.C., Galloway, W.E., Baker, Jr., E.T., and Budge, T., 2006, A stratigraphic approach to Chicot and Evangeline aquifer boundaries, central Texas Gulf Coast: Gulf Coast Association of Geological Societies Transactions, v. 56, p. 371–393.
- Konikow, L.F., Sanford, W.E., and Campbell, P. J., 1997, Constant-concentration boundary condition—Lessons from the HYDROCOIN variable-density groundwater benchmark problem: Water Resources Research, v. 33. no. 10, p. 2253–2261.
- Kreitler, C. W., 1976, Lineations and faults in the Texas coastal zone: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 85, 32 p.
- Kreitler, C.W., 1977, Fault control of subsidence, Houston, Texas: Ground Water, v. 15, p. 203-214.
- Kreitler, C.W., Guevera, E., Granata, G., and McKalips, D., 1977, Hydrogeology of Gulf Coast aquifers, Houston-Galveston area, Texas: Gulf Coast Association of Geological Societies Transactions, v. 27, p. 72–89.
- Kuecher, G.J., Roberts, H.H., Thompson, M.D., and Matthews, I., 2001, Evidence for active growth faulting in the Terrebonne delta plain, south Louisiana: implications for wetland loss and vertical migration of petroleum: Environmental Geosciences, v. 8, p. 77–94.
- Kyle, R.J., and Price, P.E., 1986, Sulfide mineralization in salt dome cap rocks, *in* Seni, S.J., and Kyle, J.R., editors, Comparison of cap rocks, mineral resources, and surface features of salt domes in the Houston diapir province: Geological Society of America, Field Trip Guidebook, p. 43–63.

- Lang, J.W., Winslow, A.G., and White, W.N., 1950, Geology and ground-water resources of the Houston district, Texas: Texas Board of Water Engineers, Bulletin 5001, 37 p.
- Lawless, P.N., Fillon, R.H., and Lytton III, R.G., 1997, Gulf of Mexico Cenozoic biostratigraphic, lithostratigraphic, and sequence stratigraphic event chronology: Gulf Coast Association of Geological Societies Transactions, v. 47, p. 271–282.
- LBG-Guyton and NRS Consulting, 2003, Brackish Groundwater Manual for Texas Regional Water Planning Groups, Texas Water Development Board, Austin, Texas.
- Loskot, C.L., Sandeen, W.M., and Follett, C.R., 1982, Ground-Water Resources of Colorado, Lavaca, and Wharton Counties, Texas: Texas Department of Water Resources Report 270, 199 p.
- Lundelius, E.L., 1972, Fossil vertebrates from the late Pleistocene Ingleside fauna, San Patricia County, Texas: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 77, 74 p.
- Marvin, R.F., Shafer, G.H., and Dale, O.C., 1962, Ground-Water Resources of Victoria and Calhoun Counties, Texas: Texas Board of Water Engineers Bulletin 6202, 147 p.
- Mason, C.C., 1963, Ground-Water Resources of Refugio County, Texas: Texas Water Commission Bulletin 6312, 115 p.
- Maury, C.J., 1920, Recent mollusks of the Gulf of Mexico and Pleistocene and Pliocene species from the Gulf states. Part I. Pelecypoda. Bull. Am. Paleontol. 8 (34): 115 pp.
- Maury, C.J.-Continued 1922, Recent Mollusca of the Gulf of Mexico and Pleistocene and Pliocene species from the Gulf States. Part II. Scaphopoda, Gastropoda Amphineura Cephalopoda. Bull. Am. PaleontoI. 9, (38): 34-142.
- McCoy, T.W., 1990, Evaluation of Ground-Water Resources in the Lower Rio Grande Valley, Texas: Texas Water Development Board Report 316, 48 p.
- McGowen, J.H., Brown, Jr., L.F., Evans, T.J., Fisher, W.L., and Groat, C.G., 1976a, Environmental geologic atlas of the Texas coastal zone—Bay City-Freeport area: The University of Texas at Austin, Bureau of Economic Geology, 98 p.

- McGowen, J.H., Brown, Jr., L.F., Evans, T.J., Fisher, W.L., and Groat, C.G, 1976b, Environmental geologic atlas of the Texas coastal zone–Port Lavaca area: The University of Texas at Austin, Bureau of Economic Geology, 107 p.
- Miller, J.A., 1986, Hydrogeologic framework of the Floridian aquifer system in Florida and in parts of Georgia, Alabama, and South Carolina: U.S. Geological Survey Professional Paper 1403-B, 91 p.
- Miyazaki, B., 2009, Well integrity: an overlooked source of risk and liability for underground natural gas storage. Lesson learned from incidents in the USA: Geological Society, London, Special Publications, v. 313, p. 163–172.
- Moore, E.J., 1966, A graphical description of new methods of determining equivalent NaCl concentration of chemical analysis, in 7<sup>th</sup> annual symposium transactions: Society of Professional Well Log Analysts, Houston, TX, 34 p.
- Morton, R.A., and McGowen, J.H., 1980, Modern depositional environments of the Texas Coast: The University of Texas at Austin, Bureau of Economic Geology Guidebook 20, 167 p.
- Morton, R.A., Jirik, L.A., and Foote, R.Q., 1985, Structural cross sections, Miocene series, Texas continental shelf: University of Texas at Austin, Bureau of Economic Geology.
- Morton, R.A., Jirik, L.A., and Galloway, W.E., 1988, Middle-Upper Miocene depositional sequences of the Texas Coastal Plain and continental shelf: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 174, 40 p.
- Morton, R.A., and Galloway, W.E., 1991, Depositional, tectonic and eustatic controls on hydrocarbon distribution in divergent margin basins: Cenozoic Gulf of Mexico case history: Marine Geology, v. 102, p 239–263.
- Morton, R.A., Sams, R.H., and Jirik, L.A., 1991, PlioPleistocene depositional sequences of the southeastern Texas continental shelf and slope: geologic framework, sedimentary facies, and hydrocarbon distribution: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 200, 80 p.

- Mullican, W.F., III, 1988, Subsidence and collapse at Texas salt domes: The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 88-2, 35 p
- Murray, G.E., 1961, Geology of the Atlantic and Gulf Coastal province of North America: New York, Harper and Brothers, 692 p.
- Myers, B.N., and O.C. Dale, 1966, Ground-Water Resources of Bee County, Texas: Texas Water Development Board Report 17, 101 p.
- Myers, B.N., and O.C. Dale, 1967, Ground-Water Resources of Brooks County, Texas: Texas Water Development Board Report 61, 87 p.
- Nehring, R., 1991, Chapter 15: oil and gas resources, in A. Salvador, ed., The geology of North America: the Gulf of Mexico basin, v. J: Boulder, Colorado, Geological Society of America, p. 445–494.
- Paine, J.G., 1993, Subsidence of the Texas coast: inferences from historical and late Pleistocene sea levels: Tectonophysics, v. 222, p. 445–458.
- Paleo-data. 2009, <u>www.paleodata.com</u>.
- Peckham, R.C., 1965, Availability and quality of ground water in Leon County, Texas: Texas Water Commission Bulletin 6513, 43 p.
- Plummer, F.B., 1933, Cenozoic systems in Texas, *in* Sellards, E.H., Adkins, W.S., and Plummer,
  F.B., eds., The geology of Texas, v. 1, stratigraphy: The University of Texas at Austin,
  Bureau of Economic Geology Bulletin No. 3232, p. 519–818.
- Preston, R.D., 1983, Occurrence and Quality of Ground Water in the Vicinity of Brownsville, Texas: Texas Department of Water Resources Report 279, 98 p.
- Price, W.A., 1933, Role of diastrophism in topography of Corpus Christi area, south Texas: American Association of Petroleum Geologists Bulletin, v. 17, p. 907–962.
- Price, W.A., 1934, Lissie Formation and Beaumont Clay in south Texas: American Association of Petroleum Geologists Bulletin, v. 18, p. 948–959.

- Price, W.A., 1958, Sedimentology and Quaternary geomorphology of south Texas.
  Supplementary to Field Trip Manual: Sedimentology of south Texas, Corpus Christi
  Geol. Soc. Spring Field Trip, 1958: Gulf Coast Assoc. Geol. Soc, Trans., v. 8, p. 41-75.
  (Abstract in Geoscience Abstracts, v. 1, no. 7, p. 4 (No. 1-1630), 1959.
- Proctor, C.V., Brown, T.E., Waechter, N.B., Aronow, S., and Barnes, V.E., 1974, Geologic atlas of Texas, Seguin sheet: The University of Texas at Austin, Bureau of Economic Geology.
- Rainwater, E.H., 1964, Regional stratigraphy of the Gulf Coast Miocene: Gulf Coast Association of Geological Societies Transactions, v. 14, p. 81–124.
- Reeves, R.D., 1967, Ground-Water Resources of Kendall County, Texas: Texas Water Development Board Report 60, 90 p.
- Rezak, R., 1984, Local carbonate production on a terrigenous shelf: Gulf Coast Association of Geological Societies Transactions, v. 35, p. 477–484.
- Rogers, L.T., 1967, Availability and Quality of Ground Water in Fayette County, Texas: Texas Water Development Board Report 56, 117 p.
- Rose, N.A., 1943, Progress report on the ground-water resources of the Texas City area, Texas: U.S. Geological Survey open-file report, 45 p.
- Ryder, P.D., 1988, "Hydrogeology and predevelopment flow in the Texas Gulf Coast Aquifer Systems," Unites States Geological Survey Water-Resources Investigations Report 87-4248, 109 p.
- Ryder, P.D., and Ardis, A.F., 2002, Hydrology of Texas Gulf Coast aquifer systems: U.S. Geological Survey Professional Paper 1416-E, 77 p.
- Salvador, A., 1991, Introduction, *in* A. Salvador, ed., The geology of North America: the Gulf of Mexico basin, v. J: Boulder, Colorado, Geological Society of America, p. 1–12.
- Saribudak, M., and Van Nieuwenhuise, B., 2006, Integrated geophysical studies over an active growth fault in Houston: The Leading Edge, March 2006, p. 332–334.

Shafer, G.H., 1968, Ground-Water Resources of Nueces and San Patricio Counties, Texas.

Schlumberger, 1972, Log Interpretation Volume I, Principals. Schlumberber Wireline and Testing, Sugarland, TX 130 p.

Schumm, S.A., 1977, The fluvial system: New York, John Wiley, 338 p.

- Seni, S.J., 1986, Texas coastal salt domes—Introduction and overview, *in* Seni, S.J., and Kyle, J.R., editors, Comparison of cap rocks, mineral resources, and surface features of salt domes in the Houston diapir province: Geological Society of America, Field Trip Guidebook, p. 3–24.
- Seni, S.J., Collins, E.W., Hamlin, H.S., Mullican, III, W.F., and Smith, D.A., 1985, Phase III— Examination of Texas salt domes as potential sites for permanent storage of toxic chemical waste: The University of Texas at Austin, Bureau of Economic Geology, report prepared for Texas Water Commission under interagency contract no. IAC (84-85)-2203, 310 p.
- Seni, S.J., Hamlin, H.S., and Mullican, III, W.F., 1984a, Technical issues for chemical waste isolation in solution-mined caverns in salt domes: The University of Texas at Austin, Bureau of Economic Geology, report prepared for Texas Department of Water Resources under interagency contract no. IAC (84-85)-1019, 8 p.
- Seni, S.J., Kreitler, C.W., Mullican, III, W.F., and Hamlin, H.S., 1984b, Utilization of salt domes for chemical-waste disposal: The University of Texas at Austin, Bureau of Economic Geology, report prepared for Texas Department of Water Resources under interagency contract no. IAC (84-85)-1019, 161 p.
- Seni, S.J., Mullican, III, W.F., and Hamlin, H.S., 1984c, Texas salt domes—Aspects affecting disposal of toxic-chemical waste in solution-mined caverns: The University of Texas at Austin, Bureau of Economic Geology, report prepared for Texas Department of Water Resources under interagency contract no. IAC (84-85)-1019, 94 p.
- Seni, S.J., Mullican, III, W.F., and Hamlin, H.S., 1984d, Texas salt domes—Natural resources, storage caverns, and extraction technology: The University of Texas at Austin, Bureau of

Economic Geology, report prepared for Texas Department of Water Resources under interagency contract no. IAC (84-85)-1019, 161 p.

- Seni, S.J., and Jackson, M.P.A., 1984, Sedimentary record of Cretaceous and Tertiary salt movement, East Texas basin-Times, rates, and volume of salt flow and their implications for nuclear waste isolation and petroleum exploration: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 139, 89 p.
- Seni, S.J. and Mullican, III, W.F., 1986, Topography over domes—Implications for dome growth and dissolution, *in* Seni, S.J., and Kyle, J.R., editors, Comparison of cap rocks, mineral resources, and surface features of salt domes in the Houston diapir province: Geological Society of America, Field Trip Guidebook, p. 89–100.
- Shah, S.D., and Lanning-Rush, J., 2005, Principal faults in the Houston, Texas, metropolitan area: U.S. Geological Survey Scientific Investigation Map 2874.
- Shafer, G.H., 1965, Ground-Water Resources of Gonzales County, Texas: Texas Water Development Board Report 4, 89 p.
- Shafer, G.H., 1968, Ground-Water Resources of Nueces and San Patricio Counties, Texas: Texas Water Development Board Report 73, 129 p.
- Shafer, G.H., 1970, Ground-Water Resources of Aransas County, Texas: Texas Water Development Board Report 124, 81 p.
- Shafer, G.H., and Baker, Jr., E.T., 1973, Ground-Water Resources of Kleberg, Kenedy, and Southern Jim Wells Counties, Texas: Texas Water Development Board Report 173, 153 p.
- Shafer, G.H., 1974, Ground-Water Resources of Duval County, Texas: Texas Water Development Board Report 181, 117 p.
- Sharp, Jr., J.M., and Hill, D.W., 1995, Land subsidence along the northeastern Texas Gulf coast: effects of deep hydrocarbon production: Environmental Geology, v. 25, p. 181–191.

- Sharp, Jr., J.M., Kreitler, C.W., and Lesser, J., 1991, Ground water, *in* A. Salvador, ed., The geology of North America: the Gulf of Mexico basin, v. J: Boulder, Colorado, Geological Society of America, p. 529–543.
- Shelby, C.A., M.K. Pieper, J., Aronow, S., and Barnes, V.E., 1968, Geologic atlas of Texas, Beaumont sheet: The University of Texas at Austin, Bureau of Economic Geology.
- Spradlin, S.D., 1980, Miocene fluvial systems: southeast Texas: The University of Texas at Austin, Master's thesis, 139 p.
- Solis I., 1981, Upper Tertiary and Quaternary depositional systems, Central Coastal Plain, Texas, The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 108, 89 p.
- Strom, E.N., Houston, V.E., and Garcia, A., 2003, Selected hydrogeologic datasets for the Jasper Aquifer, Texas. Open File Report 2003-299: United States Geological Survey, Reston, VA.
- Tedford, R.H., and Hunter, M.E., 1984, Miocene marine-nonmarine correlations, Atlantic and Gulf Coastal Plains, North America: *Palaeography, Palaeoclimatology, Palaeoecology*, vol. 47, pp.129-151.
- Thompson, G.L., 1966, Groundwater-resources of Lee County, Texas: Texas Water Development Board Report 20, 131. p.
- Trowbridge, A.C., 1932, Tertiary and Quaternary geology of the Lower Rio Grande region, Texas: U.S. Geological Survey Bulletin 837, 260 p.
- Van Wagoner, J.C., Mitchum, R.M., Campion, K.M., and Rahmanian, V.D., 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: concepts for high-resolution correlation of time and facies: American Association of Petroleum Geologists Methods in Exploration Series No. 7, 55 p.
- Verbeek, E.R., 1979, Surface faults in the Gulf Coastal Plain between Victoria and Beaumont, Texas: Tectonophysics, v. 52, p. 373–375.
- Verbeek, E.R., and Clanton, U.S., 1979, Clodine fault, southwestern Houston metropolitan area, Texas: U.S. Geological Survey Open-file Report 79-947, 25 p.
- Weeks, A.W., 1933, Lissie, Reynosa, and upland terrace deposits of coastal plain of Texas between Brazos River and Rio Grande: American Association of Petroleum Geologists Bulletin, v. 17, p. 453–487.
- Weeks, A.W., 1945, Quaternary deposits of the Texas Coastal Plain between Brazos River and Rio Grande: American Association of Petroleum Geologists Bulletin, v. 29, p. 1693– 1720.
- Weiss, J., 1992, Geohydrologic Units of the Coastal Lowland Aquifer System South-Central United States, Professional Paer 1416-C: U.S. Geological Survey, Denver, CO., 42 p.
- Wesselman, J.B., 1967, Ground-water resources of Jasper and Newton Counties, Texas: Texas Water Development Board Report 59, 167 p.
- Wesselman, J.B., 1971, Ground-water resources of Chambers and Jefferson counties, Texas: Texas Water Development Board Report 133, 173 p.
- Wesselman, J.B., 1972, Ground-water resources of Fort Bend County, Texas: Texas Water Development Board Report 155, 176 p.
- Whitman, H.M, 1965, Estimating Water Quality From Electric Logs, Department of Conservation, Louisiana Geological Survey and Louisiana Department of Public Works in cooperation with the United States Geological Survey
- Williamson, J.D.M., 1959, Gulf Coast Cenozoic History: Gulf Coast Association of Geological Societies Transactions, v. 9, p. 15–29.
- Williamson, A.K., and H.F., Gurbb, 2001, Groundwater Flow in the Gulf Coast Aquifer Systems South-Central United States Regional Aquifer System Analyses –Gulf Coast Plains: USGS Professional Paper 1416-F
- Winker, C.D., 1979, Late Pleistocene fluvial-deltaic deposition Texas Coastal Plain and shelf: Master's thesis: The University of Texas at Austin, 187 p.

- Winker, C.D., 1982, Cenozoic shelf margins, northwestern Gulf of Mexico: Gulf Coast Association of Geological Societies Transactions, v. 32, p. 427–448.
- Winker, C.D., and M.B. Edwards, 1983, Unstable progradational clastic shelf margins, in Stanley, D.J., and Moore, G.T., eds, The shelfbreak; Critical interface on continental margins: SEPM Special Publication 33, p. 139-157.
- Winker, C.D., and Buffler, R.T., 1988, Paleogeographic evolution of early deep-water Gulf of Mexico and margins, Jurassic to middle Cretaceous (Comanchean): American Association of Petroleum Geologists Bulletin, v. 72, p. 318–346.
- Wood, L.A., Gabrysch, R.K., and Marvin, R., 1963, Reconnaissance investigation of the groundwater resources of the Gulf Coast region, Texas: Texas Water Commission Bulletin 6305, 114 p.
- Young, S.C., and Kelley, V., eds., 2006, A site conceptual model to support the development of a detailed groundwater model for Colorado, Wharton, and Matagorda Counties: unpublished report prepared for the Lower Colorado River Authority, xxx p.
- Young, S.C., Kelley, V., Budge, T., Deeds, N., and Knox, P., 2009, Development of the LCRB Groundwater Flow Model for the Chicot and Evangeline Aquifers in Colorado, Wharton, and Matagorda Counties, prepared for the Lower Colorado River Authority, Austin, TX.
- Young, S.C., Knox, P.R., Baker, E., Budge, T., Hamlin, S., Galloway, B., Kalbouss, R., and Deeds, N., 2010, Hydrostratigraphic of the Gulf Coast Aquifer from the Brazos River to the Rio Grande: Texas Water Development Board Report, 203 p.

This page intentionally left blank.

# APPENDIX A

# Geophysical Logs Listing, including Location and Use

This page intentionally left blank.

## Appendix A Geophysical Logs Listing, including Location and Use

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                 | Lease                      | County           | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|-------------------------|----------------------------|------------------|-------|-------------------------------------|---------------|
| 171152004000        | 31.228681         | -92.957056         | -1/1                        |                                | Domestic Oil            | Pardee                     | Vernon           | LA    | X                                   |               |
| 171150002000        | 31.177184         | -93.07196          | -1/2                        |                                | Gamble, B.E.            | Pickering Lbr              | Vernon           | LA    |                                     |               |
| 171150002100        | 31.172684         | -93.118861         | -1/2A                       |                                | McElwee, W.T.           | Martin's Devel Fee         | Vernon           | LA    | Х                                   |               |
| 171150002200        | 31.029688         | -93.002156         | -1/3                        | D-D'/16                        | Burton, W.T.            | Fee                        | Vernon           | LA    | Х                                   |               |
| 171158800300        | 30.96809          | -93.092758         | -1/4                        | D-D'/15                        | Union Pacific Res       | Crosby 21 SWD              | Vernon           | LA    | Х                                   |               |
| 171152017900        | 30.926891         | -93.119859         | -1/5                        | D-D'/14                        | UPRC                    | USA 31                     | Vernon           | LA    |                                     |               |
| 171152013500        | 30.89056          | -93.17287          | -1/6                        | D-D'/13                        | Union Pacific Res       | Quinn 15                   | Vernon           | LA    |                                     |               |
| 170112090100        | 30.865993         | -93.105958         | -1/7                        |                                | Chesapeake Oper         | Triple R 20                | Beauregard       | LA    | Х                                   |               |
| 170112059000        | 30.742296         | -93.17896          | -1/8                        |                                | Smith Petroleum Company | Ensminger                  | Beauregard       | LA    |                                     |               |
| 170110016900        | 30.597198         | -93.154058         | -1/9                        | C-C'/16                        | Magnolia Pet            | Four 'C' McPherson         | Beauregard       | LA    |                                     |               |
| 170112053200        | 30.576498         | -93.270061         | -1/9A                       | C-C'/14                        | Goldking Pdn            | Jones, S.M.                | Beauregard       | LA    | Х                                   |               |
| 170110029800        | 30.513799         | -93.234859         | -1/10                       | C-C'/15                        | Texas Co                | Hollingsworth, I. Etal     | Beauregard       | LA    |                                     |               |
| 170110090600        | 30.416501         | -93.290959         | -1/11                       |                                | Shell Oil               | Edgewood Land & Logging    | Beauregard       | LA    |                                     |               |
| 170192183600        | 30.378302         | -93.258857         | -1/12                       |                                | Neumin Pdn              | Mayo Realty                | Calcasieu        | LA    | Х                                   |               |
| 170190045900        | 30.354702         | -93.40106          | -1/12A                      |                                | Union Prod              | Davis                      | Calcasieu        | LA    |                                     |               |
| 170190116300        | 30.32772          | -93.23687          | -1/13                       |                                | Shell Oil               | Lake Charles Naval Stores  | Calcasieu        | LA    |                                     |               |
| 170190145800        | 30.214206         | -93.307555         | -1/14                       |                                | Magnolia Pet            | Bordages, I.R.             | Calcasieu        | LA    | Х                                   |               |
| 170192162100        | 30.20016          | -93.30406          | -1/14A                      |                                | Mobil E&P               | Farquhar                   | Calcasieu        | LA    |                                     |               |
| 170190167400        | 30.143808         | -93.309355         | -1/15                       |                                | Hankamer Inv            | James, B                   | Calcasieu        | LA    |                                     |               |
| 170192020200        | 30.118409         | -93.320055         | -1/15A                      | B-B'/17                        | Damson Expl             | Louisiana Farm & Livestock | Calcasieu        | LA    | Х                                   |               |
| 170190184900        | 30.09673          | -93.40586          | -1/16                       | B-B'/16                        | Union Sulphur           | Ellender, E.               | Calcasieu        | LA    |                                     |               |
| 170230020800        | 30.026912         | -93.361856         | -1/17                       |                                | Stanolind O&G           | Gulf Land                  | Cameron          | LA    | Х                                   |               |
| 170230050900        | 30.000513         | -93.359356         | -1/18                       |                                | Mecom (US Oil of LA)    | Ellender, J.               | Cameron          | LA    | X                                   |               |
| 170230159900        | 29.984214         | -93.389356         | -1/19                       |                                | Hurt, H.                | Vincent, N et al           | Cameron          | LA    | X                                   |               |
| 170232228000        | 29.951415         | -93.414956         | -1/20                       |                                | The Expl                | Miami Corp                 | Cameron          | LA    | X                                   |               |
| 170230156200        | 29.895418         | -93.435656         | -1/21                       |                                | Texaco                  | Miami - Back Ridge         | Cameron          | LA    | X                                   |               |
| 170230177200        | 29.83212          | -93.43961          | -1/22                       |                                | Magnolia Pet            | Lutcher 'C'                | Cameron          | LA    |                                     |               |
| 170232122500        | 29.77681          | -93.39369          | -1/23                       |                                | Amoco Pdn               | Vincent Heirs              | Cameron          | LA    |                                     |               |
| 177004121502        | 29.56011          | -93.43163          | -1/24                       | A-A'/12                        | BHP Billiton Pet        | OCS-G-09387                | Offshore-Cameron | LA    |                                     |               |
| 177004084000        | 29.33696          | -93.46457          | -1/25                       |                                | Odeco O&G               | OCS-G-2828                 | Offshore-Cameron | LA    |                                     |               |
| 177014015000        | 29.23642          | -93.64023          | -1/26                       |                                | Hall-Houston Oil        | OCS-G-7615                 | Offshore-Cameron | LA    |                                     |               |
| 177014031202        | 29.173744         | -93.46166          | -1/27                       |                                | Forcenergy              | OCS-G-16141                | Offshore-Cameron | LA    |                                     |               |
| 177014036000        | 29.073046         | -93.436859         | -1/28                       |                                | Mariner En              | OCS-G-24733                | Offshore-Cameron | LA    | Х                                   |               |
| 177014018600        | 29.059745         | -93.676963         | -1/29                       |                                | Texas Gas Expl          | OCS-G-5308                 | Offshore-Cameron | LA    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                   | Lease                 | County           | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|---------------------------|-----------------------|------------------|-------|-------------------------------------|---------------|
| 170850422200        | 31.286983         | -93.472072         | 0/1                         |                                | Thompson Expl Drlg        | Pickering Lbr         | Sabine           | LA    | Х                                   |               |
| 171150002700        | 31.190687         | -93.489872         | 0/2                         |                                | Riley, F., Jr.            | Dixon                 | Vernon           | LA    | Х                                   |               |
| 171152000400        | 31.107089         | -93.499572         | 0/3                         |                                | Mallard Drlg              | Olin Un               | Vernon           | LA    | Х                                   |               |
| 171158800000        | 30.944494         | -93.47407          | 0/4                         | D-D'/11                        | Sonat Expl                | Sonat Minerals 27 SWD | Vernon           | LA    | Х                                   |               |
| 171152012000        | 30.968593         | -93.401768         | 0/4A                        | D-D'/12                        | Sonat Expl                | Sonat Minerals        | Vernon           | LA    |                                     |               |
| 170112061600        | 30.864497         | -93.518272         | 0/5                         | D-D'/10                        | ARCO (Atlantic Richfield) | Singletary (Joshlin)  | Beauregard       | LA    | Х                                   |               |
| 170112080000        | 30.78462          | -93.49522          | 0/6                         |                                | Falcon En of Tx           | Riceland Lbr          | Beauregard       | LA    |                                     |               |
| 170112040700        | 30.6501           | -93.50307          | 0/7                         |                                | Kirby Expl                | Boise Southern        | Beauregard       | LA    |                                     |               |
| 170110064200        | 30.6115           | -93.53987          | 0/8                         |                                | Magnolia Pet              | Lutcher-Moore         | Beauregard       | LA    | Х                                   |               |
| 170110075500        | 30.5325           | -93.554269         | 0/9                         | C-C'/13                        | Union Sulphur & Oil       | Lutcher-Moore         | Beauregard       | LA    |                                     |               |
| 170112105800        | 30.4753           | -93.560268         | 0/10                        |                                | Aminex USA                | Olympia Minerals      | Beauregard       | LA    |                                     |               |
| 170190001800        | 30.362803         | -93.583164         | 0/11                        |                                | Lamson-Bennett & Cole     | Lutcher-Moore         | Calcasieu        | LA    |                                     |               |
| 170190025500        | 30.280005         | -93.54016          | 0/12                        |                                | Jayred, W.B.              | Industrial Lbr        | Calcasieu        | LA    |                                     |               |
| 170190258300        | 30.26112          | -93.61978          | 0/12A                       |                                | Breder, G.W.              | Industrial Lbr        | Calcasieu        | LA    |                                     |               |
| 170190197200        | 30.178608         | -93.619662         | 0/13                        |                                | xxx-Moore Oil Inds        | Brooks, W.F>          | Calcasieu        | LA    |                                     |               |
| 170190207200        | 30.155108         | -93.56326          | 0/13A                       |                                | Cox & Hamon               | Jardell, J.           | Calcasieu        | LA    |                                     |               |
| 170190206500        | 30.08671          | -93.5564           | 0/14                        | B-B'/14                        | Nabors, W.C.              | C.O.G.                | DeSo             | LA    |                                     |               |
| 170190189600        | 30.09361          | -93.542359         | 0/14A                       | B-B'/15                        | Union Sulphur             | Burton-Bank           | Calcasieu        | LA    | Х                                   |               |
| 170232012700        | 30.039211         | -93.627362         | 0/15                        | B-B'/13                        | Shell Oil                 | Watkins, J.B.         | Cameron          | LA    | Х                                   |               |
| 170230011100        | 30.014612         | -93.54886          | 0/16                        |                                | Magnolia Pet              | Moore, R.A.           | Cameron          | LA    |                                     |               |
| 170230187700        | 29.85354          | -93.65672          | 0/17                        |                                | Texas Co                  | Miami Corp Fee        | Cameron          | LA    |                                     |               |
| 170230196800        | 29.830819         | -93.627059         | 0/18                        |                                | Magnolia Pet              | Cameron Land Co       | Cameron          | LA    | Х                                   |               |
| 170230204500        | 29.771222         | -93.600058         | 0/19                        |                                | Callery, F.A.             | Erselding, F. et al   | Cameron          | LA    | Х                                   |               |
| 177002020800        | 29.74685          | -93.63524          | 0/20                        |                                | Amerada Hess              | SL 10368              | Cameron          | LA    |                                     |               |
| 177004106800        | 29.69852          | -93.65901          | 0/21                        |                                | IS/Chevron                | OCS-G-21531           | Offshore-Cameron | LA    |                                     |               |
| 177000005500        | 29.537832         | -93.594961         | 0/24                        | A-A'/11                        | British American Oil      | OCS 0847              | Offshore-Cameron | LA    |                                     |               |
| 177014031600        | 29.36355          | -93.71683          | 0/25                        |                                | Basin Expl                | OCS-G-21053           | Offshore-Cameron | LA    |                                     |               |
| 177014015000        | 29.23642          | -93.64023          | 0/26A                       |                                | Texas Gas Expl            | OCS-G-5308            | Offshore-Cameron | LA    |                                     |               |
| 177014018600        | 29.059745         | -93.676963         | 0/27                        |                                | Hall-Houston Oil          | OCS-G-7615            | Offshore-Cameron | LA    | Х                                   |               |
| 424033027800        | 31.292386         | -93.878986         | 1/1                         |                                | Coffman, T.D.             | Temple-Eastex 90      | Sabine           | TX    | Х                                   |               |
| 424033019600        | 31.237488         | -93.918587         | 1/2                         |                                | Coffman, T.D.             | Temple-Eastex         | Sabine           | TX    |                                     |               |
| 424033034300        | 31.17107          | -93.84428          | 1/3                         |                                | N/A                       | N/A                   | Sabine           | TX    |                                     |               |
| 423513052100        | 31.153391         | -93.847284         | 1/3A                        |                                | Maersk En                 | Texaco                | Newton           | TX    | Х                                   |               |
| 423513052600        | 31.14586          | -93.89397          | 1/3B                        |                                | Union Pacific Res         | ARCO                  | Newton           | TX    |                                     |               |
| 423510004800        | 30.95765          | -93.82187          | 1/4                         |                                | Pan American              | Brown, E.W., jr.      | Newton           | TX    | Х                                   |               |
| 423513072600        | 30.794102         | -93.835981         | 1/5                         | D-D'/9                         | Geosouthern En            | Seybold               | Newton           | TX    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                   | Lease                | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|---------------------------|----------------------|--------------------|-------|-------------------------------------|---------------|
| 423510047800        | 30.729603         | -93.791579         | 1/6                         |                                | Kerr-McGee                | Sinclair-Atlantic    | Newton             | TX    |                                     |               |
| 423513003300        | 30.71436          | -93.85365          | 1/6A                        |                                | White Shield O&G          | Kirby-Arco           | Newton             | TX    |                                     |               |
| 422410009100        | 30.674804         | -93.879881         | 1/7                         |                                | Atlantic Refg - Sinclair  | Henderson, D.M.      | Jasper             | TX    |                                     |               |
| 423510009600        | 30.556304         | -93.834877         | 1/8                         |                                | Atlantic Refg - Sinclair  | Holmes, M.           | Newton             | TX    | Х                                   |               |
| 423510022600        | 30.466204         | -93.824375         | 1/9                         | C-C'/12                        | Humble O&R                | Kurth, J.H.          | Newton             | TX    |                                     |               |
| 423513038100        | 30.403906         | -93.854874         | 1/10                        |                                | Arco O&G                  | Arco B.E. Quinn 26   | Newton             | TX    |                                     |               |
| 423510028900        | 30.297007         | -93.841871         | 1/11                        |                                | Humble O&R                | Dyer et al           | Newton             | TX    | Х                                   |               |
| 423613081000        | 30.181809         | -93.85807          | 1/12                        |                                | Range Res                 | Smith, L.C.          | Orange             | TX    | Х                                   |               |
| 423610047400        | 30.11941          | -93.85017          | 1/13                        |                                | Sun Oil                   | Stark, W.J.L.        | Orange             | TX    |                                     |               |
| 423610055500        | 30.077411         | -93.869871         | 1/14                        | B-B'/11                        | Sun Oil                   | Lutcher-Moore Lbr Co | Orange             | TX    |                                     |               |
| 423610049000        | 30.042512         | -93.822469         | 1/15                        | B-B'/12                        | Scurlock Oil              | Phares               | Orange             | TX    |                                     |               |
| 423610131800        | 29.942814         | -93.828368         | 1/16                        |                                | Humble O&R                | Sabine Lake ST 8     | Orange             | TX    |                                     |               |
| 170230205500        | 29.864116         | -93.835866         | 1/17                        |                                | California                | SL 3463              | Cameron            | LA    | Х                                   |               |
| 170230207900        | 29.784417         | -93.906667         | 1/18                        |                                | British American Oil Pdcg | La 'G' SL 2875       | Cameron            | LA    |                                     |               |
| 422453035800        | 29.720819         | -93.878265         | 1/19                        |                                | McCormick O&G             | Kountze Arco Fee     | Jefferson          | TX    | Х                                   |               |
| 422450334300        | 29.679222         | -93.847665         | 1/20                        |                                | Hugh xxxouren etal        | Kountze-Stuart       | Jefferson          | TX    |                                     |               |
| 427153001100        | 29.545828         | -93.799364         | 1/21                        | A-A'/9                         | Superior Oil              | ST 14-L              | Offshore-Cameron   | TX    | Х                                   |               |
| 427084057200        | 29.438131         | -93.874168         | 1/22                        | A-A'/8                         | Spinnaker Expl            | OCS-G-23193          | Offshore-Jefferson | TX    | Х                                   |               |
| 427104013100        | 29.24994          | -93.85949          | 1/24                        |                                | Prime Nat Res             | OCS-G-14883          | Offshore-Jefferson | TX    |                                     |               |
| 427104005600        | 29.029945         | -93.864768         | 1/26                        |                                | Champlin Pet              | OCS-G-8169           | Offshore-Jefferson | TX    | Х                                   |               |
| 420050019200        | 31.21599          | -94.3519           | 2/1                         |                                | Walker, R.Y.              | Angelina Hardwood    | Angelina           | TX    | Х                                   |               |
| G0030024A           | 31.134445         | -94.263054         | 2/2                         |                                | Key WW Co                 | Caney Creek Rec Area | Angelina           | TX    | Х                                   |               |
| 420053011900        | 31.108394         | -94.260197         | 2/2A                        |                                | Cox, Cox & Goldking?      | USA                  | Angelina           | TX    | Х                                   |               |
| 422410025300        | 31.0529           | -94.24066          | 2/3                         |                                | Atlantic Refg             | H&TC RR Sec 249 Fee  | Jasper             | TX    |                                     |               |
| 424573011900        | 30.985697         | -94.291597         | 2/4                         |                                | Sun Oil                   | Shivers, A.          | Tyler              | TX    | Х                                   |               |
| 424570004100        | 30.843301         | -94.242794         | 2/5                         |                                | Dishman & Lucas           | Angelina Lumber      | Tyler              | TX    | Х                                   |               |
| 424570004300        | 30.788302         | -94.208892         | 2/6                         | D-D'/8                         | Spidle, A.A.              | International Paper  | Tyler              | TX    |                                     |               |
| 424570025600        | 30.72077          | -94.19273          | 2/7                         |                                | San Patricio Oil          | Cain                 | Tyler              | TX    |                                     |               |
| 424570024500        | 30.680904         | -94.256692         | 2/8                         |                                | Texas Co                  | Gouger GU 20/A       | McMullen           | TX    | Х                                   |               |
| 424570025400        | 30.638305         | -94.258191         | 2/9                         |                                | Atlantic Refg             | Rice                 | Tyler              | TX    |                                     |               |
| 424570037700        | 30.555906         | -94.24689          | 2/10                        |                                | Amer Repub - Hou- Sohio   | Kirby Lbr Co         | Tyler              | TX    | Х                                   |               |
| 421990011600        | 30.508307         | -94.136586         | 2/11                        |                                | Stanolind                 | Dy-Jackson           | Hardin             | TX    | Х                                   |               |
| 1-9                 | 30.451007         | -94.108184         | 2/12                        | C-C'/11                        | Gulf Oil                  | Temple Lbr Co        | Jasper             | TX    |                                     |               |
| 421993181100        | 30.386908         | -94.155584         | 2/13                        | C-C'/10                        | Arco O&G                  | Bankston Fee         | Hardin             | TX    | Х                                   |               |
| 421990035600        | 30.315209         | -94.200685         | 2/14                        |                                | Atlantic Refg - Sinclair  | Nona Mills           | Hardin             | TX    | Х                                   |               |
| 423610000400        | 30.21311          | -94.068279         | 2/15                        |                                | Gulf Oil                  | Miller-Vidor Land Co | Orange             | TX    |                                     |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                | Lease                     | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|------------------------|---------------------------|--------------------|-------|-------------------------------------|---------------|
| 422450016900        | 30.118412         | -94.140781         | 2/16                        |                                | Sun Oil                | Seale, W.                 | Jefferson          | TX    | Х                                   |               |
| 422453257200        | 30.005214         | -94.11788          | 2/17                        | B-B'/10                        | PB Energy Storage Svcs | Drig Disposal Well        | Jefferson          | TX    |                                     |               |
| 422450165400        | 29.955215         | -94.106579         | 2/18                        |                                | Humble O&R             | Texas Rice Land Co        | Jefferson          | TX    |                                     |               |
| 422450163700        | 29.911816         | -94.104478         | 2/19                        |                                | Union Sulphur & Oil    | Aubey, L. etal Un A       | Jefferson          | TX    | Х                                   |               |
| 422450211000        | 29.848917         | -94.093877         | 2/20                        |                                | Shell Oil              | Hebert-Broussard          | Jefferson          | TX    |                                     |               |
| 422453014300        | 29.796318         | -94.120378         | 2/21                        |                                | Amoco Pdn              | Broussard & Hebert        | Jefferson          | TX    | Х                                   |               |
| 422450299600        | 29.70562          | -94.086076         | 2/22                        |                                | Shell Oil              | McFaddin State            | Jefferson          | TX    | Х                                   |               |
| 426060001000        | 29.648121         | -94.005471         | 2/23                        |                                | Hunt Oil               | ST 43-S                   | Offshore-Jefferson | TX    |                                     |               |
| 427080001000        | 29.564524         | -94.004372         | 2/24                        |                                | Magnolia Pet           | SL 41142 HI Area          | Offshore-Jefferson | TX    | Х                                   |               |
| 427084046800        | 29.20282          | -93.98412          | 2/29                        |                                | Vastar Res             | OCS-G-14869               | Offshore-Jefferson | TX    |                                     |               |
| 2-6                 | 31.275087         | -94.691007         | 3/1                         |                                | Byers & Kurth          | Southern Pine Lbr         | Angelina           | TX    |                                     |               |
| 420053017100        | 31.193988         | -94.717507         | 3/2                         |                                | Redd & Willingham      | Copes Hrs                 | Angelina           | TX    | Х                                   |               |
| 423733048400        | 31.08869          | -94.694006         | 3/3                         |                                | Cities Service         | Champion Intl Corp        | Polk               | TX    | Х                                   |               |
| 423730000300        | 31.01856          | -94.65104          | 3/4                         |                                | Rinehart               | Carter, W.T.              | Polk               | TX    | Х                                   |               |
| 423730000600        | 30.8959           | -94.6469           | 3/4A                        |                                | Plummer, A.            | Pierce                    | Polk               | TX    |                                     |               |
| 424573010100        | 30.863897         | -94.552803         | 3/5                         |                                | Watson Oil             | Carter, W.T. & bros       | Tyler              | TX    | Х                                   |               |
| 2-10                | 30.812698         | -94.615004         | 3/6                         |                                | Justiss-Mears Oil      | Carter, W.T., & Bro       | Tyler              | TX    |                                     |               |
| 424570047700        | 30.700702         | -94.565202         | 3/7                         | D-D'/7                         | Gulf Oil               | Carter-Camden             | Tyler              | TX    | Х                                   |               |
| 2-12                | 30.575205         | -94.538999         | 3/8                         |                                | Shell Oil              | Kirby Lbr Co              | Tyler              | TX    |                                     |               |
| 424570006300        | 30.562105         | -94.519599         | 3/9                         |                                | Sinclair - Atlantic    | Chambers, T.W.            | Tyler              | TX    | Х                                   |               |
| 421993311900        | 30.41234          | -94.50264          | 3/10                        | C-C'/7                         | Kerr-McGee             | BlackStone                | Hardin             | TX    |                                     |               |
| G1000055B           | 30.396222         | -94.448789         | 3/11                        | C-C'/8                         | Lanford Drlg           | W Hardin WSC Honey Island | Hardin             | TX    | Х                                   |               |
| 421990063400        | 30.39544          | -94.38392          | 3/11A                       | C-C'/9                         | Atlantic - Sinclair    | Works, P.A. Fee           | Hardin             | TX    | Х                                   |               |
| 421990067400        | 30.300009         | -94.420792         | 3/12                        |                                | Jones, R.N Darcy H.P.  | Kirkpatrick etal          | Hardin             | TX    | Х                                   |               |
| 421990214800        | 30.170112         | -94.39109          | 3/13                        |                                | Humble O&R             | Piloff                    | Hardin             | TX    | Х                                   |               |
| 422453156200        | 30.102313         | -94.374189         | 3/14                        |                                | Arco O&G               | Arco Fee                  | Jefferson          | TX    | Х                                   |               |
| 422450012300        | 30.063014         | -94.335288         | 3/15                        |                                | Sun Oil                | Kolander etal 'A'         | Jefferson          | TX    |                                     |               |
| 422453195500        | 30.01734          | -94.39853          | 3/15A                       | B-B'/8                         | Coalinga               | Carpenter, A.M.           | Jefferson          | TX    |                                     |               |
| 422450223800        | 29.939617         | -94.350588         | 3/16                        | B-B'/9                         | Chavanne, H.J. Trustee | Gilbert, W.C.             | Jefferson          | TX    |                                     |               |
| 422450226500        | 29.892118         | -94.295486         | 3/17                        |                                | Stanolind              | Marrs McLean              | Jefferson          | TX    | Х                                   |               |
| 422450265800        | 29.800021         | -94.319487         | 3/18                        |                                | McCarthy               | Plant Sivelair            | Jefferson          | TX    |                                     |               |
| 422450268900        | 29.777921         | -94.268686         | 3/19                        |                                | McCarthy O&G           | Gill                      | Jefferson          | TX    | Х                                   |               |
| 422450286600        | 29.713323         | -94.246685         | 3/20                        |                                | Austral Oil Expl       | WHP McFaddin              | Jefferson          | TX    |                                     |               |
| 426060005500        | 29.585427         | -94.264085         | 3/21                        |                                | Texas Crude Oil        | ST 83-8 SL 10209          | Offshore-Jefferson | TX    | Х                                   |               |
|                     | #N/A              | #N/A               | 3/                          |                                | Conoco                 | ST 31-L                   | Offshore-          | TX    |                                     |               |
| 427083031300        | 29.47505          | -94.2122           | 3/21A                       | A-A'/5                         | Kilroy of Texas        | ST 30-L                   | Offshore-Jefferson | TX    |                                     |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company              | Lease                        | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|----------------------|------------------------------|--------------------|-------|-------------------------------------|---------------|
| 427080005700        | 29.224838         | -94.116777         | 3/24                        |                                | Shell - Phillips     | Fed Block 161                | Offshore-Jefferson | TX    |                                     |               |
| 427084012800        | 28.981845         | -94.067874         | 3/26                        |                                | Exxon                | OCS-G-4737                   | Offshore-Jefferson | TX    |                                     |               |
| 424553048500        | 31.232783         | -95.110914         | 4/1?                        |                                | Range Pdn            | Baker, J.                    | Trinity            | TX    | X                                   |               |
| 424550002200        | 31.190784         | -95.060613         | 4/2                         |                                | N/A                  | N/A                          | Trinity            | TX    |                                     |               |
| 424550003200        | 31.065385         | -95.064512         | 4/3                         |                                | N/A                  | N/A                          | Trinity            | TX    |                                     |               |
| 423730003000        | 30.964087         | -95.018811         | 4/4                         |                                | Werdy, J.Z.          | Saner-Ragley Lbr Houston Sch | Polk               | TX    | Х                                   |               |
| 423733012000        | 30.846891         | -94.947912         | 4/5                         |                                | Macpet etal          | Southland Paper Co           | Polk               | TX    | Х                                   |               |
| 423733097500        | 30.657999         | -94.897411         | 4/6                         | D-D'/6                         | Prime Oprtg          | Stephens                     | Polk               | TX    | Х                                   |               |
| 423730035900        | 30.577903         | -94.832708         | 4/7                         |                                | Continental          | Carter, W.T.                 | Polk               | TX    | X                                   |               |
| 422910018900        | 30.428207         | -94.768905         | 4/8                         |                                | Texam O&G            | Garner, A.                   | Liberty            | TX    | X                                   |               |
| 422910022100        | 30.326809         | -94.765703         | 4/9                         | C-C'/6                         | Atlantic Refg        | Nona Mills                   | Liberty            | TX    |                                     |               |
| 422910032500        | 30.26171          | -94.678899         | 4/10                        |                                | Texas Co.            | Tortoris                     | Liberty            | TX    |                                     |               |
| 422910180200        | 30.149012         | -94.654098         | 4/11                        |                                | Mecom, J.W.          | White                        | Liberty            | TX    | Х                                   |               |
| 422910167000        | 30.063514         | -94.616996         | 4/12                        |                                | Mecom, J.W.          | Haas                         | Liberty            | TX    |                                     |               |
| 422910476500        | 29.920818         | -94.575794         | 4/13                        | B-B'/6                         | Harrison, D.J. Jr.   | Rich, J.M. etal              | Liberty            | TX    |                                     |               |
| 420713130200        | 29.833221         | -94.495291         | 4/14                        |                                | HNG Fossil Fuels     | Devilier, O.C.               | Chambers           | TX    | Х                                   |               |
| 420710217700        | 29.744923         | -94.46989          | 4/15                        |                                | Meredith & Co.       | Tyrrell Dubois               | Chambers           | TX    | Х                                   |               |
| 427080002200        | 29.499531         | -94.383388         | 4/16                        |                                | British American Pdn | SL 52155 Blk 27-L            | Offshore-Galveston | TX    |                                     |               |
| 427083033200        | 29.452232         | -94.325086         | 4/16A                       | A-A'/4                         | ANR Production       | SL 56-L                      | Offshore-Galveston | TX    |                                     |               |
| 424710019900        | 31.044084         | -95.44612          | 5/0                         |                                | Deupree, S.J.        | Texas Longleaf Lbr Co        | Walker             | TX    | Х                                   |               |
| 424710001400        | 30.925287         | -95.439319         | 5/1                         |                                | Union Pdcg           | Smither                      | Walker             | TX    | Х                                   |               |
| 424710009700        | 30.842089         | -95.355018         | 5/2                         |                                | Humble O&R           | Gibbs Bros &Co               | Walker             | TX    | Х                                   |               |
| 4-6                 | 30.864588         | -95.352918         | 5/2A                        |                                | Tidewater            | Newman, A.D. Un              | Walker             | TX    | Х                                   |               |
| 424070012700        | 30.715893         | -95.279318         | 5/3                         |                                | Stanolind            | Carey Ld &                   | San Jacinto        | TX    | X                                   |               |
| 424073003300        | 30.622197         | -95.247717         | 5/4                         |                                | Glen Rose            | Gary Hrs                     | San Jacinto        | TX    | Х                                   |               |
| 424073007800        | 30.546301         | -95.163716         | 5/4.5                       | D-D'/5                         | Houston Pet          | Childerss, D. un             | San Jacinto        | TX    | Х                                   |               |
| 424070015600        | 30.457705         | -95.175215         | 5/5                         |                                | Amerada              | Foster Lbr                   | San Jacinto        | TX    | Х                                   |               |
| 424070021400        | 30.393207         | -95.145013         | 5/6                         |                                | Amerada - Mid States | Central Coal & Coke          | San Jacinto        | TX    | Х                                   |               |
| 4-12                | 30.361108         | -95.112212         | 5/6.5                       |                                | Mitchell & Assoc     | Cherry, H.R.                 | Liberty            | TX    | Х                                   |               |
| 422910391400        | 29.973819         | -94.965604         | 5/?                         |                                | General Crude        | Davis                        | Liberty            | TX    |                                     |               |
| 422910008600        | 30.30651          | -95.05961          | 5/7                         |                                | Karsten (Shell)      | Grogan                       | Liberty            | TX    | X                                   |               |
| 4-13                | 30.281911         | -95.11541          | 5/7A                        |                                | Superior             | Hightower, T.J.              | Liberty            | TX    | X                                   |               |
| 422910501800        | 30.249512         | -95.042408         | 5/8                         | C-C'/5                         | Humble O&R           | Quinn, R.E.                  | Liberty            | TX    | X                                   |               |
| 422913252800        | 29.923718         | -94.455391         | 5/?                         | B-B'/7                         | Rising Star En       | Aldrich, R.C. &c             | Liberty            | TX    |                                     |               |
| 422910388000        | 30.080816         | -95.026806         | 5/9                         |                                | W.H. Hunt Tr Est     | Simmons                      | Liberty            | TX    | X                                   |               |
| 422910391400        | 29.973819         | -94.965604         | 5/10N                       |                                | Amerada              | Brown, R.C.                  | Liberty            | TX    |                                     |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                | Lease                 | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|------------------------|-----------------------|--------------------|-------|-------------------------------------|---------------|
| 422910438400        | 29.943119         | -94.893102         | 5/11                        |                                | General Crude          | Moore's Bluff         | Liberty            | TX    | Х                                   |               |
| 420710022600        | 29.862822         | -94.900203         | 5/12                        |                                | Sunray-MidContinent    | Barber                | Chambers           | TX    | Х                                   |               |
| 4-18                | 29.867121         | -94.868302         | 5/12N                       |                                | Halbouty               | Wilburn, E.           | Chambers           | TX    | Х                                   |               |
| 420713145800        | 29.813022         | -94.830601         | 5/13                        | B-B'/5                         | Texas Crude            | Weakley, C.L.         | Chambers           | TX    | Х                                   |               |
| 420710097200        | 29.756924         | -94.8218           | 5/14                        |                                | Humble O&R             | Cton Lake S GU 1      | Chambers           | TX    | Х                                   |               |
| 420710269600        | 29.685825         | -94.790099         | 5/15                        |                                | Continental            | ST 2-3A               | Offshore-          | TX    | Х                                   |               |
| 420710274000        | 29.641026         | -94.754697         | 5/16                        |                                | Humble O&R             | State 'Q'             | Offshore-          | TX    | Х                                   |               |
| 420710246600        | 29.597328         | -94.713596         | 5/17                        |                                | Humble O&R             | Mayes, M.E.           | Chambers           | TX    | Х                                   |               |
| 420710243200        | 29.566429         | -94.718696         | 5/18                        |                                | Humble O&R             | Mayes, M.E.           | Chambers           | TX    | Х                                   |               |
| 421670095600        | 29.464232         | -94.726495         | 5/19                        |                                | Std of Texas           |                       | Offshore-          | TX    | Х                                   |               |
| 421670095900        | 29.445733         | -94.675894         | 5/20                        |                                | Abercrombie            | Boyt, E.W.            | Galveston          | TX    |                                     |               |
| 427063011100        | 29.274738         | -94.657992         | 5/21                        |                                |                        |                       | Offshore-Galveston | TX    |                                     |               |
| 427063004200        | 29.249039         | -94.642192         | 5/21.5                      | A-A'/2                         | GMA Offshore           | ST 150-L              | Offshore-Galveston | TX    |                                     |               |
| 427084042900        | 28.752051         | -94.250678         | 5/26                        |                                | Pogo Pdcg              | G-15787 HI A-94       | Offshore-Galveston | TX    | Х                                   |               |
| 424713002200        | 30.760393         | -95.766626         | 6/1                         |                                | Moran                  | Gibbs Bros            | Walker             | TX    | Х                                   |               |
| 424710014800        | 30.6995           | -95.7391           | 6/2                         |                                | Markle, C.W. etal      | Davis, T.H.           | Walker             | TX    | Х                                   |               |
| 424710018000        | 30.646896         | -95.634623         | 6/3                         |                                | Marr, M.H. & Moran     | Ward, K.              | Walker             | TX    | Х                                   |               |
| 424710018900        | 30.564399         | -95.572922         | 6/4                         |                                | Moran                  | Central Coal & Coke   | Walker             | TX    | Х                                   |               |
| 423390086800        | 30.447704         | -95.51382          | 6/5                         |                                | Superior - Speed, C.C. | Sykes, J.B.           | Montgomery         | TX    | Х                                   |               |
| 423390090100        | 30.396606         | -95.50602          | 6/6                         | D-D'/3                         | Sunray - Atascosa Drlg | M. Sykes              | Montgomery         | TX    | Х                                   |               |
| 423390008600        | 30.363808         | -95.452718         | 6/7                         | D-D'/4                         | Atascosa Drlg          | Foster, T.S. Est.     | Montgomery         | TX    | Х                                   |               |
| 423390020200        | 30.287211         | -95.451618         | 6/8                         |                                | Humble O&R             | Grand Lake GU 2       | Montgomery         | TX    | Х                                   |               |
| 423393082000        | 30.228114         | -95.374715         | 6/9                         |                                | Exxon                  | Conroe Fld Un         | Montgomery         | TX    | Х                                   |               |
| 423390171800        | 30.147717         | -95.291713         | 6/10                        |                                | Humble O&R             | Wickizer, W.W.        | Montgomery         | TX    | Х                                   |               |
| 423393073700        | 30.13757          | -95.3385           | 6/10A                       |                                | Murexco Pet            | Bahr, C.              | Montgomery         | TX    |                                     |               |
| 422010760300        | 30.032119         | -95.22571          | 6/11                        | C-C'/4                         | Humble O&R             | Foster Lbr Co         | Harris             | TX    | Х                                   |               |
| 422010272200        | 29.954921         | -95.181809         | 6/12                        |                                | Wrightsman, C.B.       | Harris Co Land Impvmt | Harris             | TX    | Х                                   |               |
| 422013203800        | 29.89637          | -95.16442          | 6/12.5                      |                                | Sanchez-O'Brien Oil    | King                  | Harris             | TX    |                                     |               |
| 422010280100        | 29.812925         | -95.122709         | 6/13                        |                                | Republic Nat Gas       | Hornberger, J. etal   | Harris             | TX    |                                     |               |
| 422013261300        | 29.743928         | -95.15611          | 6/14                        |                                | Ballard Expl           | Houston Ship Chnl Un  | Harris             | TX    |                                     |               |
| 422010604400        | 29.632629         | -95.047307         | 6/15                        | B-B'/4                         | Humble O&R             | Humble West Fee       | Harris             | TX    | Х                                   |               |
| 420710309600        | 29.556929         | -94.968804         | 6/16                        |                                | Humble O&R             | Galveston Bay State R | Offshore-Galveston | TX    | Х                                   |               |
| 421670096600        | 29.434832         | -94.912101         | 6/17                        |                                | Apache                 | Dollar Bay Fig        | Galveston          | TX    | Х                                   |               |
| 421673009100        | 29.295837         | -94.820197         | 6/18                        |                                | Mitchell & Assoc       | Galveston Twst Un 4   | Galveston          | TX    | X                                   |               |
| 427064038000        | 29.126042         | -94.666792         | 6/19                        |                                | Seneca Res             | OCS-G-6094            | Offshore-Galveston | TX    | Х                                   |               |
| 427064044600        | 28.885648         | -94.564789         | 6/21                        |                                | APEX O&G               | OCS-G-26477           | Offshore-Galveston | TX    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                        | Lease                   | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|--------------------------------|-------------------------|--------------------|-------|-------------------------------------|---------------|
| 427084027900        | 28.80625          | -94.448685         | 6/22                        |                                | Union Pacific Res              | OCS-G-6189              | Offshore-Galveston | TX    | Х                                   |               |
| 421850006100        | 30.589399         | -96.040033         | 7/1                         |                                | Cooper                         | Freund                  | Grimes             | TX    | Х                                   |               |
| 421850003400        | 30.504402         | -95.994732         | 7/2                         |                                | Exeter Oil                     | Bradley, I.P.           | Grimes             | TX    | Х                                   |               |
| 421850015000        | 30.372007         | -95.91223          | 7/3                         |                                | Murdick, C.H.                  | Stoneham                | Grimes             | TX    | Х                                   |               |
| 421853032100        | 30.34795          | -95.95787          | 7/3A                        |                                | J-O'B Oprtg                    | Law, T.M.               | Grimes             | TX    |                                     |               |
| 421853000900        | 30.26691          | -95.856629         | 7/4                         |                                | Lone Star Pdcg                 | Goforth                 | Grimes             | TX    | Х                                   |               |
| 424733006600        | 30.215512         | -95.811328         | 7/5                         | D-D'/2                         | High Chapparel Oil             | Sabine Rylty            | Waller             | TX    | Х                                   |               |
| 423390101400        | 30.133016         | -95.751326         | 7/6                         |                                | Stanolind                      | Nichols, H.C.           | Montgomery         | TX    | Х                                   |               |
| 423393085200        | 30.109017         | -95.703924         | 7/7                         |                                | Ultramar O&G                   | Bayer, G.               | Montgomery         | TX    | Х                                   |               |
| 422010004800        | 30.082518         | -95.687924         | 7/8                         |                                | Humble O&R                     | Krug, T.                | Harris             | TX    | Х                                   |               |
| 422010010400        | 30.066219         | -95.678724         | 7/9                         |                                | Humble O&R                     | Theeck, H.              | Harris             | TX    | Х                                   |               |
| 422013140000        | 30.0266           | -95.64415          | 7/9.2                       |                                | Stone & Webster (Jackson Expl) | Klores GU               | Harris             | TX    |                                     |               |
| 422013167000        | 29.92215          | -95.577            | 7/9.7                       |                                | Outline Oil                    | Northwest Fwy Investors | Harris             | TX    |                                     |               |
| 422013162200        | 29.895225         | -95.508919         | 7/10                        | C-C'/3                         | Mahada En                      | Foley, B.               | Harris             | TX    | Х                                   |               |
| 422010345500        | 29.867925         | -95.489319         | 7/10.5                      |                                | Production Maintenance         | Rowsky unit             | Harris             | TX    | Х                                   |               |
| 422010790400        | 29.850626         | -95.53302          | 7/10.5A                     | C-C'/2                         | Pan American                   | Houston Un N-6W-10      | Harris             | TX    | Х                                   |               |
| 422010351000        | 29.786928         | -95.450218         | 7/11                        |                                | Sparta Oil                     | Suttles, J.H. etal      | Harris             | TX    | Х                                   |               |
| 422010505800        | 29.655431         | -95.398617         | 7/12                        |                                | Gulf                           | Taylor, E.R.            | Harris             | TX    | Х                                   |               |
| 422013001600        | 29.66793          | -95.246613         | 7/12N                       | B-B'/2                         | Pan American                   | DrlDist 25              | Harris             | TX    | Х                                   |               |
| 422010556800        | 29.626632         | -95.304215         | 7/13                        |                                | Smith, R.E.                    | Smith                   | Harris             | TX    | Х                                   |               |
| 422010611400        | 29.568033         | -95.242513         | 7/14                        | B-B'/3                         | Seaboard                       | Allison, R.H.           | Harris             | TX    |                                     |               |
| 421670003500        | 29.521834         | -95.216012         | 7/14.5                      |                                | Stanolind                      | Brown, C.               | Galveston          | TX    | Х                                   |               |
| 420390084700        | 29.454135         | -95.230312         | 7/15                        |                                | Placid Oil                     | Neubauer Hrs            | Brazoria           | TX    |                                     |               |
| 421670187600        | 29.404235         | -95.163009         | 7/16                        |                                | Humble O&R                     | Algoa Twst              | Galveston          | TX    | Х                                   |               |
| 421670145300        | 29.371335         | -95.111407         | 7/17                        |                                | Hunt, H.L.                     | Hervey, H.P. et al      | Galveston          | TX    | Х                                   |               |
| 421670144800        | 29.334736         | -95.082406         | 7/18                        |                                | Hunt, H. Tr.                   | Jensen, M. etal Un      | Galveston          | TX    | Х                                   |               |
| 421670133600        | 29.302337         | -95.066805         | 7/19                        |                                | Texas Eastern Tsmsn            | Craig                   | Galveston          | TX    | Х                                   |               |
| 421673003900        | 29.251638         | -95.048003         | 7/20                        |                                | Mobil Oil                      | Halls Bayou Ranch       | Galveston          | TX    | Х                                   |               |
| 421670191600        | 29.208139         | -94.9421           | 7/20.5                      |                                | Humble O&R                     | William Meyer,W.        | Galveston          | TX    | Х                                   |               |
| 427060008600        | 29.069443         | -94.9176           | 7/21                        | A-A'/1                         | Shell                          | ST 220-L S.W.           | Offshore-Galveston | TX    | Х                                   |               |
| 427060002700        | 28.982246         | -94.867098         | 7/22                        |                                | Humble O&R                     | Blk 253                 | Offshore-Galveston | TX    | Х                                   |               |
| 427060012400        | 28.852149         | -94.724694         | 7/23                        |                                | Shell                          | Blk 288 Un 96-14        | Offshore-Galveston | TX    | Х                                   |               |
| 427064009700        | 28.766251         | -94.641892         | 7/24                        |                                | Sohio                          | OCS G 5179              | Offshore-Galveston | TX    |                                     |               |
| 424773062500        | 30.3299           | -96.3944           | 8/1                         |                                | Houston, W.S. O&G              | CG & HD                 | Washington         | TX    |                                     |               |
| 424770023900        | 30.260212         | -96.400644         | 8/2                         |                                | Texas-Harvey Oil               | Dallas, F.W.            | Washington         | TX    |                                     |               |
| 424770027200        | 30.183115         | -96.25494          | 8/3                         |                                | Union Sulphur                  | Kubecza, J.             | Washington         | TX    |                                     |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                    | Lease                  | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|----------------------------|------------------------|--------------------|-------|-------------------------------------|---------------|
| 424770029400        | 30.097419         | -96.253741         | 8/4                         |                                | Magnolia Pet               | Giddings Est           | Washington         | TX    |                                     |               |
| 420153013800        | 30.0461           | -96.2014           | 8/4.5                       |                                | Prairie - Convest          | O'Reed Lange etal      | Austin             | TX    |                                     |               |
| 424730024300        | 29.9796           | -96.0928           | 8/6                         |                                | Humble O&R                 | Hardy, R. 'B'          | Waller             | TX    |                                     |               |
| 424730031800        | 29.905526         | -95.931732         | 8/7                         |                                | Halbouty, M.T.             | Harris, J.W. etal      | Waller             | TX    |                                     |               |
| 420390422400        | 29.23448          | -95.41405          | 8/14                        |                                | Humble O&R                 | Moore, H.              | Brazoria           | TX    |                                     |               |
| 427060002200        | 28.9094           | -95.1847           | 8/17                        |                                | Humble O&R                 | ST 278-L               | Offshore-Galveston | TX    |                                     |               |
| 420150001700        | 30.008422         | -96.449247         | 9/1                         |                                | Dakamont Expl              | Weise                  | Austin             | TX    |                                     |               |
| 420153053900        | 29.91718          | -96.40987          | 9/2                         |                                | Superior                   | Woods Pet GU 2         | Austin             | TX    |                                     |               |
| 420150066300        | 29.8287           | -96.2879           | 9/3                         |                                | Texas Co                   | Kollatschny, P.        | Austin             | TX    |                                     |               |
| 420150026200        | 29.7606           | -96.2016           | 9/4                         |                                | Magnum Pdcg (Shell)        | Hillboldt, D.C.        | Austin             | TX    |                                     |               |
| 420150068300        | 29.6384           | -96.1186           | 9/5                         |                                | Southern Nat Gas           | Uhyrek, F.             | Austin             | TX    |                                     |               |
| 421573175200        | 29.5326           | -96.0187           | 9/7                         |                                | Thompson (Phillips)        | Oldag                  | Fort Bend          | TX    |                                     |               |
| 421570167400        | 29.3212           | -95.8488           | 9/9                         |                                | Howell, H.H. & Cook        | Armstrong, G.W.        | Fort Bend          | TX    |                                     |               |
| 420390271500        | 29.2703           | -95.7585           | 9/10                        |                                | Progress Pet               | Gulf Fdn               | Brazoria           | TX    |                                     |               |
| 420390389800        | 29.0782           | -95.608            | 9/13                        |                                | Pan American               | Hobbs, I.              | Brazoria           | TX    |                                     |               |
| 420393035000        | 28.9813           | -95.5783           | 9/14                        |                                | Dow Chemical               | Bute, J.               | Brazoria           | TX    |                                     |               |
| 420393211000        | 28.97789          | -95.46545          | 9/15                        |                                | BHP Pet (Monsanto)         | Beretta, M.A.          | Brazoria           | TX    |                                     |               |
| 420390481100        | 28.89909          | -95.39908          | 9/16                        |                                | Humble O&R                 | Freeport Sulphur A/C-1 | Brazoria           | TX    |                                     |               |
| 427064036000        | 28.5853           | -95.1058           | 9/17                        |                                | Seagull En                 | Galveston 392          | Offshore-Galveston | TX    |                                     |               |
| 421493208800        | 30.0748           | -96.8488           | 10/1                        |                                | GSI                        | Scht-Rogers            | Fayette            | TX    |                                     |               |
| 424813403300        | 29.2858           | -96.1627           | 10/11                       |                                | Carrizo O&G                | McMillan               | Wharton            | TX    |                                     |               |
| 424810256200        | 29.15604          | -96.01046          | 10/13                       |                                | Flaitz & Mitchell (Humble) | Cockburn, H.C.         | Wharton            | TX    |                                     |               |
| 422310067000        | 0                 | 0                  | 10/15                       |                                | Brazos O&G                 | Findley Est            | Matagorda          | TX    |                                     |               |
| 427043007300        | 28.7159           | -95.5428           | 10/18                       |                                | Corpus Christi O&G         | ST 369-L               | Offshore-Matagorda | TX    |                                     |               |
| 427043000500        | 28.443            | -95.501            | 10/20                       |                                | Forest                     | Brazos 470             | Offshore-Matagorda | TX    |                                     |               |
| 420893145600        | 29.66568          | -96.74452          | 11/3                        |                                | Quamagra Ints              | Weimar GU              | Colorado           | TX    |                                     |               |
| 420893163900        | 29.6296           | -96.6908           | 11/4                        |                                | McRae-Fleming Ents         | Miller, A.L., etal     | Colorado           | TX    |                                     |               |
| 420893173400        | 29.54227          | -96.58537          | 11/5                        |                                | Property Pdcg              | Burkitt Fdn            | Colorado           | TX    |                                     |               |
| 420893215800        | 29.4341           | -96.5178           | 11/7                        |                                | Walter O&G                 | Lehrer 'A'             | Colorado           | TX    |                                     |               |
| 420890075900        | 29.4161           | -96.4716           | 11/8                        |                                | Hamill, C.B. (Shell)       | Schiurring, C.R.       | Colorado           | TX    |                                     |               |
| 424813369000        | 29.32463          | -96.39645          | 11/10                       |                                | Talon Dev                  | Naiser                 | Wharton            | TX    |                                     |               |
| 424810357500        | 29.1611           | -96.1883           | 11/13                       |                                | Caribbean Oil              | Kluck, A.              | Wharton            | TX    |                                     |               |
| 424810236800        | 0                 | 0                  | 11/13.3                     |                                | Wheelock & Collins         | Carville-Humphrey      | Wharton            | TX    |                                     |               |
| 6663901             | 0                 | 0                  | 11/14                       |                                | H.H. Johnson               | ww                     | 0                  | TX    |                                     |               |
| 423210274100        | 29.02391          | -96.10442          | 11/14.3                     |                                | Viking Drlg & Pace         | Camp, J.               | Matagorda          | TX    |                                     |               |
| 423210268900        | 28.8778           | -96.0289           | 11/16                       |                                | Continental                | Fondren, W.W., Jr.     | Matagorda          | TX    |                                     |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                              | Lease               | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|--------------------------------------|---------------------|--------------------|-------|-------------------------------------|---------------|
| 423210114700        | 28.8737           | -95.9648           | 11/17                       |                                | Michael, J.S.                        | O. Vaughn etal      | Matagorda          | TX    |                                     |               |
| 426040001200        | 28.6146           | -95.858            | 11/19                       |                                | Shell                                | ST 519-S            | Offshore-Matagorda | TX    |                                     |               |
| 427040000700        | 28.5545           | -95.8149           | 11/20                       |                                | Shell                                | ST 440-L NE(W)      | Offshore-Matagorda | TX    |                                     |               |
| 5-6                 | 30.901089         | -95.644723         |                             |                                | Humble O&R                           | Gibbs Bros          | Walker             | TX    | Х                                   |               |
| 4-7                 | 30.699994         | -95.44792          |                             |                                | Marr - Moran                         | Gibbs Bros          | Walker             | TX    | Х                                   |               |
| 424713023200        | 30.5461           | -95.357919         |                             |                                | Getty Oil                            | Kelland, T.W.       | Walker             | TX    | Х                                   |               |
| 6038102             | 30.4633           | -95.3606           |                             |                                | Transtate (Keeble)                   | Foster Est          | Montgomery         | TX    | Х                                   |               |
| 4-10                | 30.433905         | -95.371918         |                             |                                | Moran                                | Browder             | Montgomery         | TX    | Х                                   |               |
| 423390187200        | 30.316511         | -95.297015         |                             |                                | Texaco                               | Griffin, D.D.       | Montgomery         | TX    | Х                                   |               |
| 423390184100        | 30.192315         | -95.16951          |                             |                                | Humble O&R                           | Patton H.L.         | Montgomery         | TX    | Х                                   |               |
| 422013095800        | 30.067317         | -95.131408         |                             |                                | Hester, B.M.                         | Hirsch, M.          | Harris             | TX    | Х                                   |               |
| 422010106500        | 30.028418         | -95.089407         |                             |                                | Placid Oil                           | Smith, Mrs. D.F.    | Harris             | TX    | Х                                   |               |
| 422010265800        | 29.96442          | -95.080607         |                             |                                | Texas Co.                            | Peterson, T.        | Harris             | TX    | Х                                   |               |
| 6026801             | 30.5408           | -95.8078           |                             |                                | Robinson Oil                         | Walker, L.M.        | Montgomery         | TX    | Х                                   |               |
| 423390099800        | 30.461603         | -95.798227         |                             |                                | Thompson, W.J.                       | Olson, G.           | Montgomery         | TX    | Х                                   |               |
| 6043101             | 30.3647           | -95.725            |                             |                                | Garvey, O.C.                         | Martin              | Montgomery         | TX    | Х                                   |               |
| 423390188700        | 30.327809         | -95.621022         |                             |                                | Socony-Mobil Oil                     | Sealy-Smith Fdn     | Montgomery         | TX    | Х                                   |               |
| 6052601             | 30.175            | -95.5197           |                             |                                | Boyle, W.S.                          | First National Bank | Montgomery         | TX    | Х                                   |               |
| 422013218700        | 30.093418         | -95.518619         |                             |                                | Brown, G.R. Ptnrs                    | Hildebrandt, P.     | Harris             | TX    | Х                                   |               |
| 422010325200        | 29.944623         | -95.403416         |                             |                                | Humble O&R                           | Polemanakos, A.O.   | Harris             | TX    | Х                                   |               |
| 422010293600        | 29.781327         | -95.250013         |                             |                                | Stanolind O&G                        | Oates               | Harris             | TX    | Х                                   |               |
| 422013136800        | 29.597031         | -95.169711         |                             |                                | Cavalla En Expl                      | Eliington AFB       | Harris             | TX    | Х                                   |               |
| 420513095000        | #N/A              | #N/A               |                             |                                | Daleco Res                           | Moore, J.           | Burleson           | TX    | Х                                   |               |
| 7-2                 | #N/A              | #N/A               |                             |                                | Phillips Pet                         | Renchie             | Brazos             | TX    | Х                                   |               |
| 424553040100        | 31.031384         | -95.364218         |                             |                                | Wagner & Brown                       | Champion Paper      | Trinity            | TX    | Х                                   |               |
| 424553002300        | #N/A              | #N/A               |                             |                                | Hunt Oil                             | Hoyt Moore          | Trinity            | TX    | Х                                   |               |
| 421853002800        | 30.475903         | -95.882129         |                             |                                | Victory Pet                          | Bevans, W.A.        | Grimes             | TX    | Х                                   |               |
| 423390099800        | 30.461603         | -95.798227         |                             |                                | Thompson, W.J.                       | Olson, G.           | Montgomery         | TX    | Х                                   |               |
| 424713001600        | 30.565199         | -95.635223         |                             |                                | Lone Star Pdcg                       | Central Coal & Coke | Walker             | TX    | Х                                   |               |
| 424070029000        | 30.79899          | -95.191716         |                             |                                | Sparta Oil - Thomas Concrete<br>Pipe | Carey & Haley       | San Jacinto        | ТХ    | Х                                   |               |
| 6-7                 | 30.191014         | -95.87083          |                             |                                | Texas Co.                            | Rice Institute      | Waller             | TX    | Х                                   |               |
| 423393047800        | 30.27661          | -95.701924         |                             |                                | Southland Rylty                      | Dean, L.            | Montgomery         | TX    | X                                   |               |
| 423390188700        | 30.327809         | -95.621022         |                             |                                | Socony-Mobil Oil                     | Sealy-Smith Fdn     | Montgomery         | TX    | X                                   |               |
| 6036904             | 30.3914           | -95.5097           |                             |                                | Sunray - Atascosa                    | Sykes, M.           | Montgomery         | TX    | Х                                   |               |
| 6037803             | 30.4061           | -95.4447           |                             |                                | Wommack, M.K.                        | Hunt                | Montgomery         | TX    | Х                                   |               |
| 423390004500        | 30.463004         | -95.374018         |                             |                                | Phillips Pet                         | Fraser              | Montgomery         | TX    | X                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                | Lease                 | County      | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|------------------------|-----------------------|-------------|-------|-------------------------------------|---------------|
| 4-9                 | 30.519402         | -95.308618         |                             |                                | Barnes, J.C.           | Johnson               | San Jacinto | TX    | Х                                   |               |
| 423730003700        | 30.685895         | -95.017814         |                             |                                | HT&B Oil               | Brook, Jett           | Polk        | TX    | Х                                   |               |
| 422013218700        | 30.093418         | -95.518619         |                             |                                | Brown, G.R. Ptnrs      | Hildebrandt, P.       | Harris      | TX    | Х                                   |               |
| 6053810             | 30.1553           | -95.4567           |                             |                                | Coffey, C.W. etal      | Baldwin Bros          | Montgomery  | TX    | Х                                   |               |
| 423390160400        | 30.241214         | -95.281713         |                             |                                | Atlantic Refg          | So.Tx. Dev.           | Montgomery  | TX    | Х                                   |               |
| 6046604             | 30.3028           | -95.2731           |                             |                                | Hankamer, C.           | Forman                | Montgomery  | TX    | Х                                   |               |
| 6047404             | 30.2931           | -95.2142           |                             |                                | Gray, J.A.             | Foster Lbr Co         | Montgomery  | TX    | Х                                   |               |
| 6047604             | 30.3211           | -95.1642           |                             |                                | Amerada                | Foster Lbr Co         | Montgomery  | TX    | Х                                   |               |
| 424070024100        | 30.441405         | -95.051312         |                             |                                | Jordan Drlg            | Hoard, S.E.           | San Jacinto | TX    | Х                                   |               |
| 422010439500        | 29.74233          | -95.325025         |                             |                                | Magnolia Pet           | Allen, E.W., Hrs      | Harris      | TX    | Х                                   |               |
| 422010800701        | 29.809028         | -95.604922         |                             |                                | Pan American Pet       | Miles, L.L.           | Harris      | TX    | Х                                   |               |
| 6-12                | 29.856126         | -95.54122          |                             |                                | Pan American Pet       | Houston Unit N-6W-10  | Harris      | TX    | Х                                   |               |
| 422010334300        | 29.917124         | -95.450517         |                             |                                | Union Pdcg             | Allen, N.S.           | Harris      | TX    | Х                                   |               |
| 422010325200        | 29.944623         | -95.403416         |                             |                                | Humble O&R             | Polemanakos, A.O.     | Harris      | TX    | Х                                   |               |
| 422010297200        | 29.961222         | -95.359714         |                             |                                | Union Pdcg             | Deutzer               | Harris      | TX    | Х                                   |               |
| 422013095800        | 30.067317         | -95.131408         |                             |                                | Hester, B.M.           | Hirsch, M.            | Harris      | TX    | Х                                   |               |
| 422910243100        | 30.226012         | -94.964006         |                             |                                | Acorn Oil              | Berry, C.C.           | Liberty     | TX    | Х                                   |               |
| 422910016800        | 30.270112         | -95.10641          |                             |                                | Superior               | Hightower, T.J.       | Liberty     | TX    | Х                                   |               |
| 6036904             | 30.3914           | -95.5097           |                             |                                | Sunray - Atascosa Drlg | M. Sykes              | Montgomery  | TX    | Х                                   |               |
| 6043101             | 30.3647           | -95.725            |                             |                                | Garvey, O.C.           | Martin                | Montgomery  | TX    | Х                                   |               |
| 6043304             | 30.3594           | -95.6433           |                             |                                | Callery                | Weisinger             | Montgomery  | TX    | Х                                   |               |
| 6044101             | 30.3678           | -95.5883           |                             |                                | Wood, T.J.             | Fultz                 | Montgomery  | TX    | Х                                   |               |
| 6036904             | 30.3914           | -95.5097           |                             |                                | Sunray - Atascosa      | Sykes, M.             | Montgomery  | TX    | Х                                   |               |
| 6037803             | 30.4061           | -95.4447           |                             |                                | Wommack, M.K.          | Todd                  | Montgomery  | TX    | Х                                   |               |
| 6038102             | 30.4633           | -95.3606           |                             |                                | Transtate (Keeble)     | Foster Est            | Montgomery  | TX    | Х                                   |               |
| 6052704             | 30.1397           | -95.6156           |                             |                                | Christie-Mitchell      | Neidxxx               | Montgomery  | TX    | Х                                   |               |
| 6052601             | 30.175            | -95.5197           |                             |                                | Boyle, W.S.            | First National Bank   | Montgomery  | TX    | Х                                   |               |
| 6053105             | 30.2189           | -95.4794           |                             |                                | Winmill, B.S.          | Yost, F.M. etal       | Montgomery  | TX    | Х                                   |               |
| 6045904             | 30.2825           | -95.405            |                             |                                | Humble O&R             | So.Tex.Dev.Co.        | Montgomery  | TX    | Х                                   |               |
| 6046504             | 30.2925           | -95.3283           |                             |                                | Humble O&R             | Emory, M.             | Montgomery  | TX    | Х                                   |               |
| 6046604             | 30.3028           | -95.2731           |                             |                                | Hankamer, C.           | Forman                | Montgomery  | TX    | Х                                   |               |
| 6047404             | 30.2931           | -95.2142           |                             |                                | Gray, J.A.             | Foster Lbr Co         | Montgomery  | TX    | Х                                   |               |
| 6047604             | 30.3211           | -95.1642           |                             |                                | Amerada                | Foster Lbr Co         | Montgomery  | TX    | Х                                   |               |
| 6036304             | 30.475            | -95.5292           |                             |                                | Hanslip, C.W.          | Crawford              | Montgomery  | TX    | Х                                   |               |
| 6037803             | 30.4061           | -95.4447           |                             |                                | Wommack, M.K.          | Hunt                  | Montgomery  | TX    | Х                                   |               |
| 6045302             | 30.3736           | -95.3936           |                             |                                | Womack, M.K. etal      | Hutchings Sealy NB Tr | Montgomery  | TX    | X                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                             | Lease                              | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|-------------------------------------|------------------------------------|--------------------|-------|-------------------------------------|---------------|
| 6046504             | 30.2925           | -95.3283           |                             |                                | Humble O&R                          | Emory, M.                          | Montgomery         | TX    | Х                                   |               |
| 6054302             | 30.2353           | -95.2783           |                             |                                | Atlantic Refg                       | So.Tx. Dev.                        | Montgomery         | TX    | Х                                   |               |
| 6062301             | 30.1236           | -95.2689           |                             |                                | C.R. XXXX                           | C.G.H.Pm.                          | Montgomery         | TX    | X                                   |               |
| 6026801             | 30.5408           | -95.8078           |                             |                                | Robinson Oil                        | Walker, L.M.                       | Montgomery         | TX    | Х                                   |               |
| 6035203             | 30.4725           | -95.695            |                             |                                | Red Bank                            | Central Coal & Coke                | Montgomery         | TX    | Х                                   |               |
| 6036403             | 30.4508           | -95.6192           |                             |                                | Strum & Womack                      | Foster Est                         | Montgomery         | TX    | X                                   |               |
| 6044101             | 30.3678           | -95.5883           |                             |                                | Wood, T.J.                          | Fultz                              | Montgomery         | TX    | Х                                   |               |
| 6044507             | 30.3172           | -95.5622           |                             |                                | Fish G&O                            | Berkley & Hogg                     | Montgomery         | TX    | Х                                   |               |
| 6053105             | 30.2189           | -95.4794           |                             |                                | Winmill, B.S.                       | Yost, F.M. etal                    | Montgomery         | TX    | X                                   |               |
| 6053810             | 30.1553           | -95.4567           |                             |                                | Coffey, C.W. etal                   | Baldwin Bros                       | Montgomery         | TX    | Х                                   |               |
| 424713019200        | 30.5414           | -95.60509          |                             |                                | K & A, INC.                         | CENTRAL COAL & COKE<br>CORPORATION | Walker             | TX    | Х                                   |               |
| 422013079800        | 30.00976          | -95.24512          |                             |                                | IPACT                               | STERLING REFERN FEE                | Harris             | TX    | Х                                   |               |
| 424713020200        | 30.723893         | -95.47632          |                             |                                | SMALL, R.P. CORP.                   | TIPCO-GIBBS                        | Walker             | TX    | Х                                   |               |
| 422413030800        | 30.847301         | -94.027888         |                             |                                | KELLY-BROCK                         | RHODES, A. B. ET AL                | Jasper             | TX    | Х                                   |               |
| 422010360700        | 29.899024         | -95.502919         |                             |                                | OSBORN,W.B. OIL & GAS<br>OPERATIONS | GOODYGOONTZ "A"                    | Harris             | TX    | Х                                   |               |
| 423213095400        | -32.248237        | -110.021939        |                             |                                | HOUSTON OIL & MINERALS<br>CORP.     | RUNNELLS-PIERCE RANCH              | Offshore-          | TX    | Х                                   |               |
| 423213096100        | 28.56616          | -96.220829         |                             |                                | EXXON CORP.                         | OYSTER LAKE TEMPORARY<br>GAS UNIT  | Offshore-Matagorda | TX    | Х                                   |               |
| 421853024100        | 30.29843          | -95.94173          |                             |                                | SIDELINE ENERGY INC.                | WILLIAM GARDNER                    | Grimes             | TX    | Х                                   |               |
| 421573115200        | 29.465537         | -95.47002          |                             |                                | ARCO OIL & GAS CO.                  | FUQUA INDUSTRIES                   | Fort Bend          | TX    | Х                                   |               |
| 423733050500        | 30.513305         | -94.795107         |                             |                                | ADA OIL EXPLORATION CORP.           | RACKI                              | Polk               | TX    | Х                                   |               |
| 424713023600        | 30.72912          | -95.49477          |                             |                                | ELF AQUITAINE, INC.                 | GIBBS BROTHERS                     | Walker             | TX    | Х                                   |               |
| 424073045300        | 30.280206         | -95.201538         |                             |                                | HOUSTON PETROLEUM<br>COMPANY        | U.S.A.                             | San Jacinto        | TX    | Х                                   |               |
| 424073046800        | 30.55154          | -95.12888          |                             |                                | COASTAL OIL & GAS<br>CORPORATION    | FOSTER MINERALS                    | San Jacinto        | TX    | Х                                   |               |
| 424733037900        | 30.257853         | -95.854708         |                             |                                | HIGH CHAPPARAL OIL<br>COMPANY       | COWAN-ZOLLMAN-HIGH<br>CHAPPARAL    | Waller             | ΤХ    | Х                                   |               |
| 423393055300        | 30.50246          | -95.66979          |                             |                                | HNG FOSSIL FUELS<br>COMPANY         | CENTRAL COAL AND COKE              | Montgomery         | TX    | Х                                   |               |
| 422013150600        | 30.02471          | -95.90904          |                             |                                | LEONARD, J. A.                      | MATHIS, T. F. JR. ET AL            | Harris             | TX    | Х                                   |               |
| 421993181600        | 30.408108         | -94.296089         |                             |                                | CONOCO INC.                         | STERNENBERG-PETTY                  | Hardin             | TX    | X                                   |               |
| 423393056600        | 30.396607         | -95.404018         |                             |                                | TXO PRODUCTION CORP.                | SEALY                              | Montgomery         | TX    | Х                                   |               |
| 424713024500        | 30.67368          | -95.46794          |                             |                                | MCMORAN EXPLORATION<br>CO.          | GIBBS BROTHERS                     | Walker             | TX    | Х                                   |               |
| 421853034000        | 30.41492          | -96.01111          |                             |                                | OUTLINE OIL CORP.                   | REUL                               | Grimes             | TX    | X                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                             | Lease                           | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|-------------------------------------|---------------------------------|--------------------|-------|-------------------------------------|---------------|
| 424073048000        | 30.51637          | -95.23361          |                             |                                | OUTLINE OIL CORP.                   | ELDRIDGE                        | San Jacinto        | TX    | Х                                   |               |
| 420053017400        | 31.238486         | -94.833309         |                             |                                | SANTA FE MINERALS, INC.             | SANTA FE MINERALS               | Angelina           | TX    | Х                                   |               |
| 421853036900        | 30.54704          | -95.87937          |                             |                                | ARCO OIL & GAS CO.                  | ASHORN, CHARLIE                 | Grimes             | TX    | Х                                   |               |
| 424713025100        | 30.66139          | -95.42117          |                             |                                | WHEELER OPERATING<br>CORP.          | AMERADA-RILEY                   | Walker             | TX    | Х                                   |               |
| 421853038400        | 30.50802          | -95.89867          |                             |                                | ENERVEST OPERATING,<br>L.L.C.       | APOLONIA                        | Grimes             | TX    | Х                                   |               |
| 422013196200        | 30.06667          | -95.62823          |                             |                                | TORTUGA OPERATING<br>COMPANY        | LEWIS, SAM                      | Harris             | TX    | Х                                   |               |
| 423213148800        | 28.527008         | -96.269544         |                             |                                | CORPUS CHRISTI OIL & GAS<br>CO.     | STATE TRACT 210                 | Offshore-Matagorda | TX    | Х                                   |               |
| 421853039900        | 30.26982          | -95.92846          |                             |                                | MAGNOLIA ENERGY CO.                 | CAREY & COROLLA                 | Grimes             | TX    | Х                                   |               |
| 422013205200        | 29.901123         | -95.285812         |                             |                                | MARSHALL, A. B.                     | MARSHALL, A. B. FEE             | Harris             | TX    | Х                                   |               |
| 422013206200        | 29.88459          | -95.25546          |                             |                                | SONORA PETROLEUM CORP.              | FULBRIGHT UNIT                  | Harris             | TX    | Х                                   |               |
| 423393077700        | 30.24002          | -95.33677          |                             |                                | WAPITI OPERATING, LLC               | CONROE FIELD UNIT               | Montgomery         | TX    | Х                                   |               |
| 423393079400        | 30.139081         | -95.380093         |                             |                                | DENBURY ONSHORE, LLC                | CONROE FIELD UNIT               | Montgomery         | TX    | Х                                   |               |
| 422413048700        | 30.8978           | -94.142191         |                             |                                | D.J. OILFIELD SALVAGE<br>INC.       | CAMERON HEIRS                   | Jasper             | TX    | Х                                   |               |
| 424573042600        | 31.026194         | -94.454501         |                             |                                | PECOS PETROLEUM<br>COMPANY          | CLARA S. GRISWOLD UNIT          | Tyler              | TX    | Х                                   |               |
| 421853041900        | 30.545216         | -96.086441         |                             |                                | INTERREGIONAL<br>OPERATING SERVICES | JBW-TMPA                        | Grimes             | TX    | Х                                   |               |
| 421853042300        | 30.51393          | -95.18978          |                             |                                | COLUMBIA GAS<br>DEVELOPMENT CORP.   | UNION FEE                       | Grimes             | TX    | Х                                   |               |
| 423393084900        | 30.15391          | -95.14753          |                             |                                | RODEL OIL & GAS<br>COMPANY          | BURKETT                         | Montgomery         | TX    | Х                                   |               |
| 423733077700        | 31.127688         | -94.825409         |                             |                                | MCBEE COMPANY, THE                  | CHAMPION<br>INTERNATIONAL       | Polk               | TX    | Х                                   |               |
| 422013226500        | 29.9971           | -95.0853           |                             |                                | NORDSTRAND<br>ENGINEERING, INC.     | THARP, KATHLEEN                 | Harris             | TX    | Х                                   |               |
| 421570100400        | 29.739831         | -95.819129         |                             |                                | WESTERN GAS RESOURCES<br>STORAGE    | BURNEY - UNION                  | Fort Bend          | TX    | х                                   |               |
| 422413054500        | 30.585505         | -93.991983         |                             |                                | ARCO OIL & GAS CO.                  | ARCO FTD                        | Jasper             | TX    | Х                                   |               |
| 420393250100        | 29.504836         | -95.385117         |                             |                                | ARCO OIL & GAS COMPANY              | ALBAN FAMILY TRUST              | Brazoria           | TX    | Х                                   |               |
| 422013236800        | 29.94331          | -95.85063          |                             |                                | LONE WOLF OPERATING<br>COMPANY      | WARREN RANCH                    | Harris             | TX    | Х                                   |               |
| 422013237500        | 29.9675           | -95.68549          |                             |                                | CARNEGIE FINANCIAL<br>CORP.         | KITZMANN, J.A.                  | Harris             | TX    | Х                                   |               |
| 423733084000        | 30.869396         | -94.704507         |                             |                                | LAKE RONEL OIL COMPANY              | ARMADILLO-CARTER, W. T. & BROS. | Polk               | TX    | Х                                   |               |
| 421993275400        | 30.316009         | -94.589698         |                             |                                | CHEVRON U. S. A. INC.               | STONEHILL                       | Hardin             | TX    | Х                                   |               |
| 421573200700        | 29.459439         | -95.562622         |                             |                                | JETTA OPERATING<br>COMPANY, INC.    | MYERS, A. E.                    | Fort Bend          | TX    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                             | Lease                          | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|-------------------------------------|--------------------------------|--------------------|-------|-------------------------------------|---------------|
| 424033043600        | 31.192991         | -94.03259          |                             |                                | SONERRA RESOURCES<br>CORPORATION    | COUNTY LINE                    | Sabine             | TX    | Х                                   |               |
| 427083010100        | 29.365236         | -94.476089         |                             |                                | WHITING OIL AND GAS<br>CORPORATION  | STATE TRACT 98-L               | Offshore-Galveston | TX    | Х                                   |               |
| 420390171100        | 29.26324          | -95.348114         |                             |                                | KILMARNOCK OIL<br>COMPANY, INC.     | JAMISON, THOS.                 | Brazoria           | TX    | Х                                   |               |
| 424573012100        | 30.751802         | -94.422998         |                             |                                | SOUTHERN BAY<br>OPERATING, L.L.C.   | CRUSE, C.L.                    | Tyler              | TX    | Х                                   |               |
| 424570020000        | 30.560406         | -94.357193         |                             |                                | MILESTONE OPERATING,<br>INC.        | EAST TEXAS OIL CO. FEE -<br>G- | Tyler              | TX    | Х                                   |               |
| 424713001400        | 30.541636         | -95.606049         |                             |                                | MORAN CORPORATION,<br>THE           | CENTRAL COAL & COKE            | Walker             | TX    | Х                                   |               |
| 422910029400        | 30.366608         | -94.953708         |                             |                                | ENERGY RESERVES GROUP,<br>INC.      | EAST MCCOY GAS UNIT NO. 1      | Liberty            | TX    | Х                                   |               |
| 423393007200        | 30.293009         | -95.784627         |                             |                                | MCCARTHY, GLENN H.                  | GREGG, SAUNDERS, ET AL         | Montgomery         | TX    | Х                                   |               |
| 423390110900        | 30.223013         | -95.545619         |                             |                                | AXIS ENERGY<br>CORPORATION          | ARCENAUX, INA                  | Montgomery         | TX    | Х                                   |               |
| 422010394800        | 29.910524         | -95.662123         |                             |                                | EXXON CORP.                         | BISHOP, L.                     | Harris             | TX    | Х                                   |               |
| 420410006800        | 30.466404         | -96.216037         |                             |                                | PHILLIPS PET                        | D B SCHOEPS                    | Brazos             | TX    | Х                                   |               |
| 421570003000        | 29.76083          | -95.780227         |                             |                                | UNION PROD                          | ROESNER                        | Fort Bend          | TX    | Х                                   |               |
| 422410020500        | 30.426107         | -94.083982         |                             |                                | GULF OIL CORPKILGORE                | TEMPLE LUMBER CO., ET<br>AL    | Jasper             | TX    | Х                                   |               |
| 422910371100        | 30.010416         | -94.7825           |                             |                                | TEXAS                               | CLIFF TEVIS                    | Liberty            | TX    | Х                                   |               |
| 423733021600        | 30.820197         | -94.749508         |                             |                                | DEVON ENERGY<br>PRODUCTION CO, L.P. | PARRISH ET AL                  | Polk               | TX    | Х                                   |               |
| 423510042500        | 31.070093         | -93.670377         |                             |                                | PAN AMERICAN PET. CORP.             |                                | Newton             | TX    | Х                                   |               |
| 424573013000        | 30.949796         | -94.446            |                             |                                | HUNT OIL                            | TAPSCOTT                       | Tyler              | TX    | Х                                   |               |
| 422450054100        | 30.058614         | -94.196283         |                             |                                | HUMBLE OIL                          | TYRELL COMBEST RLTY            | Jefferson          | TX    | Х                                   |               |
| 422910033300        | 30.052214         | -94.489793         |                             |                                | HUMBLE OIL                          | PICKETT MARY E                 | Liberty            | TX    | Х                                   |               |
| 424073001800        | 30.433606         | -95.240116         |                             |                                | FAMCOR OIL, INC.                    | MAYS HEIRS                     | San Jacinto        | TX    | Х                                   |               |
| 424570005700        | 30.853            | -94.355297         |                             |                                | PAN AMERICAN<br>PETROLEUM CORP.     |                                | Tyler              | TX    | Х                                   |               |
| 424710011600        | 30.86409          | -95.616722         |                             |                                |                                     |                                | Walker             | TX    | Х                                   |               |
| 424713029500        | 30.537856         | -95.547261         |                             |                                | ICARUS OPERATING<br>CORPORATION     | SAM                            | Walker             | TX    | Х                                   |               |
| 423613079100        | 30.154511         | -93.977475         |                             |                                | SAMEDAN OIL<br>CORPORATION          | MIL-VID WILLIAMS UNIT          | Orange             | TX    | X                                   |               |
| 420390451800        | 29.075243         | -95.18951          |                             |                                | AMERADA HESS                        | SHANNON GEORGIA S              | Brazoria           | TX    | X                                   |               |
| 422910453700        | 29.907119         | -94.656996         |                             |                                | HUMBLE OIL                          | ROBERTSON-MCDONAL              | Liberty            | TX    | X                                   |               |
| 421670127600        | 29.479334         | -95.16351          |                             |                                | FIDELITY OIL & RAYALTY              | PUTE RANCH                     | Galveston          | TX    | Х                                   |               |
| 420710108300        | 29.883119         | -94.712797         |                             |                                | BRITISH AMERICAN OIL<br>COMPANY     | CLIVE SHERMAN                  | Chambers           | TX    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                            | Lease             | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|------------------------------------|-------------------|--------------------|-------|-------------------------------------|---------------|
| 422910028400        | 30.29991          | -94.880505         |                             |                                | GENERAL CRUDE OIL                  | DAVIS HILL        | Liberty            | TX    | Х                                   |               |
| 421573039600        | 29.613835         | -95.703826         |                             |                                |                                    |                   | Fort Bend          | TX    | Х                                   |               |
| 420390142000        | 29.365639         | -95.378416         |                             |                                | HUMBLE OIL                         | BELSLEY M E ETAL  | Brazoria           | TX    | Х                                   |               |
| 420710251300        | 29.675126         | -94.601894         |                             |                                | PLACID OIL                         | BERTHA N JACKSON  | Chambers           | TX    | Х                                   |               |
| 423610048000        | 30.080611         | -93.805569         |                             |                                | PAN AMERICAN<br>PETROLEUM CORP.    | BROWN ETAL H L    | Orange             | TX    | Х                                   |               |
| 421673025300        | 29.448534         | -95.129509         |                             |                                | WESLEY WEST                        |                   | Galveston          | TX    | Х                                   |               |
| 420150014600        | 30.017122         | -96.100237         |                             |                                |                                    |                   | Austin             | TX    | Х                                   |               |
| 422450150100        | 29.920114         | -93.974272         |                             |                                | CLEGG & HUNT                       | C DOORNBOS        | Jefferson          | TX    | Х                                   |               |
| 420710306200        | 29.655928         | -94.953004         |                             |                                | HUMBLE OIL                         | CEDAR POINT-STATE | Offshore-Harris    | TX    | Х                                   |               |
| 420710120900        | 29.801621         | -94.634395         |                             |                                | PETROLEUM DEV ASSOC                | STANDLEY FRED     | Chambers           | TX    | Х                                   |               |
| 422910210400        | 30.105214         | -94.729099         |                             |                                | HUNT OIL                           | A S J STEVENSON   | Liberty            | TX    | Х                                   |               |
| 421990061800        | 30.488807         | -94.425094         |                             |                                | SHELL OIL                          | KIRBY LUMBER CO   | Hardin             | TX    | Х                                   |               |
| 424713030400        | 30.671547         | -95.602145         |                             |                                | PRIME OPERATING<br>COMPANY         | GIBBS GAS UNIT    | Walker             | TX    | Х                                   |               |
| 424713030500        | 30.724125         | -95.439104         |                             |                                | FORTUNE NATURAL<br>RESOURCES CORP. | READER            | Walker             | TX    | Х                                   |               |
| 424573063000        | #N/A              | #N/A               |                             |                                | SOUTHERN BAY<br>OPERATING, L.L.C.  | BSMC GOODE        | Tyler              | TX    | Х                                   |               |
| 422450131800        | 30.010514         | -94.067478         |                             |                                | HUMBLE OIL & REF.<br>COMPANY       |                   | Jefferson          | TX    | Х                                   |               |
| 423730001000        | 30.996089         | -94.859209         |                             |                                |                                    |                   | Polk               | TX    | Х                                   |               |
| 427083038100        | 29.454931         | -94.247684         |                             |                                | SANTOS USA CORP.                   | S.T. 54-L         | Offshore-Jefferson | TX    | Х                                   |               |
| 422010789200        | 30.078919         | -95.88443          |                             |                                | ROYIS WARD                         |                   | Harris             | TX    | Х                                   |               |
| 422410030000        | 30.460506         | -93.959479         |                             |                                | NECHES EXPLORATION,<br>INC.        |                   | Jasper             | TX    | Х                                   |               |
| 423510016700        | 30.688202         | -93.665375         |                             |                                | HUMBLE OIL AND REFINING<br>COMPANY |                   | Newton             | TX    | Х                                   |               |
| 423733009100        | 30.687201         | -94.721807         |                             |                                | HASSIE HUNT TRUST                  |                   | Polk               | TX    | Х                                   |               |
| 422410025000        | 30.763503         | -94.074888         |                             |                                | AL BROWN                           |                   | Jasper             | TX    | Х                                   |               |
| 423510021300        | 30.470904         | -93.789474         |                             |                                | HUMBLE OIL & REFINING<br>COMPANY   |                   | Newton             | TX    | Х                                   |               |
| 423610032800        | 30.059612         | -93.935073         |                             |                                | SHELL OIL CO.                      |                   | Orange             | TX    | Х                                   |               |
| 423730042300        | 30.542305         | -94.683504         |                             |                                | CONTINENTAL OIL<br>COMPANY         |                   | Polk               | TX    | Х                                   |               |
| 423733015400        | 30.801591         | -95.053014         |                             |                                | PRAIRIE & CONVEST                  |                   | Polk               | TX    | Х                                   |               |
| 423390173100        | 30.032319         | -95.277012         |                             |                                |                                    |                   | Montgomery         | TX    | Х                                   |               |
| 2-17                | 29.941817         | -94.402789         |                             |                                |                                    | McCarthay 1 Bauer | Jefferson          | TX    | Х                                   |               |
| 2-5                 | 31.325786         | -94.640307         |                             |                                | J.R. Meeker et al                  | John Massingill 1 | Angelina           | TX    | X                                   |               |
| 2-14                | 30.234413         | -95.077409         |                             |                                |                                    |                   | 0                  | TX    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                                 | Lease                                                | County     | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|-----------------------------------------|------------------------------------------------------|------------|-------|-------------------------------------|---------------|
| 2-15                | 30.190113         | -94.953906         |                             |                                |                                         |                                                      | 0          | TX    | Х                                   |               |
| 2-17                | 30.031717         | -94.922203         |                             |                                |                                         |                                                      | 0          | TX    | Х                                   |               |
| 4-3                 | 31.146483         | -95.565124         |                             |                                | Reynolds Mining Corp.                   | J. T. Knox 1                                         | Houston    | TX    | Х                                   |               |
| 4-4                 | 31.022984         | -95.47962          |                             |                                | MAGNOLIA PETROLEUM C                    | Thompson Long Leaf LBR Co<br>A-1                     | Walker     | TX    | Х                                   |               |
| 4-8                 | 30.652496         | -95.371919         |                             |                                | PLACID OIL COMPANY                      | Gibbs Bros. 2                                        | Walker     | TX    | Х                                   |               |
| 5-8                 | 30.525801         | -95.654224         |                             |                                | PHILLIPS PETROLEUM C                    | Coke A 1                                             | Montgomery | TX    | Х                                   |               |
| 5-9                 | 30.440305         | -95.533021         |                             |                                | The Superior Oil & Carlton<br>Speed Jr. | James D. Sikes 1                                     | 0          | TX    | Х                                   |               |
| 6-10                | 29.898825         | -95.692624         |                             |                                | Standard Oil Company of Texas           | G. J. Mellinger 1 et al 4                            | Harris     | TX    | Х                                   |               |
| 6-11                | 29.904224         | -95.582221         |                             |                                | Pan American Petroleum<br>Corporation   | Dorothy D Brown 1                                    | Harris     | TX    | Х                                   |               |
| 6-17                | 29.303938         | -95.241911         |                             |                                | PHILLIPS PETROLEUM<br>Company           | Houston 2                                            | Brazoria   | TX    | Х                                   |               |
| 6-3                 | 30.607799         | -96.196837         |                             |                                | Humble Oil & Refining<br>Company        | R. P. Trant 1                                        | Brazos     | TX    | Х                                   |               |
| 6-4                 | 30.490303         | -96.148736         |                             |                                | The Texas Company                       | Orlando 1                                            | Brazos     | TX    | Х                                   |               |
| 6-8                 | 30.025321         | -95.698024         |                             |                                | Texaco, Inc.                            | M. N. Mergele 1                                      | Harris     | TX    | Х                                   |               |
| 6-9                 | 29.954123         | -95.696224         |                             |                                | Texaco, Inc.                            | J. J. Sweeney Estate 1                               | Harris     | TX    | Х                                   |               |
| 8-12                | 29.396944         | -95.943833         |                             |                                | Ft. Bend Oil Co.                        | D. Moore 1                                           | Fort Bend  | TX    | Х                                   |               |
| 8-16                | 29.102946         | -95.532322         |                             |                                | Mobil Oil Corporation                   | Retrieve State Farm Tract                            | Brazoria   | TX    | Х                                   |               |
| 8-8                 | 29.82623          | -96.155839         |                             |                                | Lueth & Robinshaw                       | O. C. Kurtz 1                                        | Austin     | TX    | Х                                   |               |
| 8-9                 | 29.747833         | -96.004434         |                             |                                | John H. England                         | Mound Company                                        | Waller     | TX    | Х                                   |               |
| 9-12                | 29.689036         | -96.241341         |                             |                                | Humble Oil and Refining<br>Company      | Charles Kaechele B1                                  | Austin     | TX    | Х                                   |               |
| 9-13                | 29.525142         | -96.159439         |                             |                                | Getty Oil Company                       | W. S. Leveridge 1                                    | Wharton    | TX    | Х                                   |               |
| G0030002D           | 31.287451         | -94.661148         |                             |                                | Lanford Drilling Company Inc.           | Fuller Springs Water<br>Improvement Dist. Well No. 4 | Angelina   | TX    | Х                                   |               |
| G0030019D           | 31.40666          | -94.762558         |                             |                                | Lanford Drilling Company Inc.           | Central 3                                            | Angelina   | TX    | Х                                   |               |
| G0030019E           | 31.430719         | -94.811039         |                             |                                | Central CWID                            |                                                      | 0          | TX    | Х                                   |               |
| G0030020A           | 31.26339          | -94.577766         |                             |                                | Layne - Texas Company                   | Four Way Water Supply Corp<br>Well 1                 | Angelina   | TX    | Х                                   |               |
| G0030020B           | 31.269699         | -94.578911         |                             |                                | Water Resources Inc.                    | Four Way Water Supply Corp<br>Well 2                 | Angelina   | TX    | Х                                   |               |
| G0030020D           | 31.275555         | -94.535004         |                             |                                | Key Drilling Co.                        | Lufkin Industries Water Well 1                       | Angelina   | TX    | X                                   |               |
| G0030020E           | 31.287291         | -94.630638         |                             |                                | Russell Drilling Inc.                   | Four Way Water Supply Corp<br>Well 5                 | Angelina   | TX    | Х                                   |               |
| G0030020F           | 31.345881         | -94.57917          |                             |                                | Russell Drilling Inc.                   | 6                                                    | Angelina   | TX    | Х                                   |               |
| G0030028A           | 0                 | 0                  |                             |                                |                                         |                                                      | 0          | TX    | X                                   |               |
| G0030080J           | 31.419445         | -94.655281         |                             |                                | Layne - Texas Company                   | Test Hole CW-28                                      | Angelina   | TX    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                        | Lease                                                    | County      | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|--------------------------------|----------------------------------------------------------|-------------|-------|-------------------------------------|---------------|
| G0030080K           | 31.430555         | -94.662224         |                             |                                | Layne - Texas Company          | Southland Paper Mills CW 33                              | Angelina    | TX    | Х                                   |               |
| G0030080N           | 31.434723         | -94.734169         |                             |                                | Layne - Texas Company          | Test Hole CW-32                                          | Angelina    | TX    | Х                                   |               |
| G0840063A           | 29.494673         | -94.942092         |                             |                                | Water Resources Inc.           | San Leon Test Well 1                                     | Galveston   | TX    | Х                                   |               |
| G0930003D           | 30.747953         | -96.058815         |                             |                                | Snook Drilling Company         | Carlos Water Supply Corp. 4D                             | Grimes      | TX    | Х                                   |               |
| G0930003E           | 30.755636         | -96.047546         |                             |                                | Snook Drilling Company         | Carlos Water Supply Corp. 5E                             | Gaines      | TX    | Х                                   |               |
| G0930020A           | 30.423081         | -95.937469         |                             |                                | Layne Western Katy Division    | Grimes Co. MUD 1                                         | Grimes      | TX    | Х                                   |               |
| G0930048C           | 30.336075         | -95.957739         |                             |                                | G&W Water Supply Corp.         | Weisinger T.H. 5                                         | Grimes      | TX    | Х                                   |               |
| G0930049A           | 0                 | 0                  |                             |                                |                                |                                                          | 0           | TX    | Х                                   |               |
| G0930049B           | 30.350729         | -95.926704         |                             |                                | Lanford Drilling Company       | Plantersville Water Supply<br>Corp. 2                    | Grimes      | TX    | Х                                   |               |
| G1000016C           | 30.152149         | -94.321877         |                             |                                | J&S Water Wells                | Hardin Co. WCID 1                                        | Hardin      | TX    | Х                                   |               |
| G1000055A           | 30.407209         | -94.617134         |                             |                                | Lanford Drilling Company, Inc. | West Hardin Water Supply<br>Corp, Thicket 1              | Hardin      | TX    | Х                                   |               |
| G1010003C           | 29.74674          | -94.981216         |                             |                                | Layne Texas Company            | Layne Texas Co 10                                        | Harris      | TX    | Х                                   |               |
| G1210003C           | 30.44549          | -93.969902         |                             |                                | Holly Water Wells              | Well 4                                                   | Jasper      | TX    | Х                                   |               |
| G1210016B           | 30.621144         | -93.906039         |                             |                                | Pender                         | Kirbyville 2                                             | Jasper      | TX    | Х                                   |               |
| G1210064A           | 30.822779         | -93.975281         |                             |                                | Upper Jasper W/S               | Well 3                                                   | Jasper      | TX    | Х                                   |               |
| G1460006B           | 0                 | 0                  |                             |                                |                                |                                                          | 0           | TX    | Х                                   |               |
| G1610086B           | 0                 | 0                  |                             |                                |                                |                                                          | 0           | TX    | Х                                   |               |
| G1700026A           | 30.379341         | -95.495193         |                             |                                |                                |                                                          | 0           | TX    | Х                                   |               |
| G1700039A           | 30.236706         | -95.446167         |                             |                                | Lazy River Imp Dis             | Well 1                                                   | Montgomery  | TX    | Х                                   |               |
| G1700197R           | 30.156017         | -95.454163         |                             |                                |                                |                                                          | 0           | TX    | Х                                   |               |
| G1700578A           | 30.335888         | -95.621147         |                             |                                |                                |                                                          | 0           | TX    | Х                                   |               |
| G1700742A           | 30.132549         | -95.377899         |                             |                                | Johnston Water Well            | Creek Side Village 1                                     | Montgomery  | TX    | Х                                   |               |
| G1700764A           | 30.376089         | -95.669456         |                             |                                |                                |                                                          | 0           | TX    | Х                                   |               |
| G2040005B           | 30.657419         | -95.126625         |                             |                                | Layne Western Company Inc.     | Cape Royal Utility District Well 2                       | San Jacinto | TX    | Х                                   |               |
| G2360040A           | 30.745556         | -95.68222          |                             |                                | Lanford Drilling Company, Inc. | Pine Prairie Water Supply<br>Corporation Well 2          | Walker      | TX    | Х                                   |               |
| G2360052B           | 30.698958         | -95.617764         |                             |                                | J.L. Myers Company             | Pine Prairie Water Supply<br>Corporation Highway 30 Well | Walker      | TX    | Х                                   |               |
| LBGGRIM06           | 30.352777         | -96.061944         |                             |                                | Layne Texas Company            | City of Navasota 1102 5484<br>Well 6                     | Grimes      | TX    | Х                                   |               |
| LBGGRIM11           | 30.362551         | -96.083524         |                             |                                | Layne Texas Company            | Layne Texas Company Well 11                              | Grimes      | TX    | Х                                   |               |
| LBGGRIM14           | 30.349119         | -96.059411         |                             |                                | City of Navasota               | Water Well 14                                            | Grimes      | TX    | Х                                   |               |
| LBGGRIM15           | 30.34149          | -96.05269          |                             |                                | Layne Texas Company            | City of Navasota Well 15                                 | Grimes      | TX    | Х                                   |               |
| LBGMONT01           | 30.38055          | -95.64555          |                             |                                | Weisinger Inc                  | Stanley Lakes MUD Well 4 Test<br>Well                    | Montgomery  | TX    | X                                   |               |
| LBGWALK11           | 30.714166         | -95.548055         |                             |                                | Layne Texas Company            | Layne Texas Company Well<br>11A                          | Walker      | TX    | X                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company               | Lease                                | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|-----------------------|--------------------------------------|--------------------|-------|-------------------------------------|---------------|
| LBGWALK12           | 30.706388         | -95.54111          |                             |                                | Texas Water Wells Inc | City of Huntsville Water Well<br>12  | Walker             | TX    | Х                                   |               |
| LBGWALK13           | 30.695833         | -95.529721         |                             |                                | Texas Water Wells Inc | City of Huntsville Water Well<br>13  | Walker             | TX    | Х                                   |               |
| LBGWALK14           | 30.700833         | -95.533888         |                             |                                | Texas Water Wells Inc | City of Huntsville Water Well<br>14  | Walker             | TX    | Х                                   |               |
| LBGWALK15           | 30.690277         | -95.53611          |                             |                                | Layne Texas Company   | City of Huntsville Water Well<br>15A | Walker             | TX    | Х                                   |               |
| LBGWALK16           | 30.701944         | -95.527499         |                             |                                | Layne Texas Company   | City of Huntsville Water Well<br>16A | Walker             | ТХ    | Х                                   |               |
| LBGWALK17           | 30.69111          | -95.544721         |                             |                                | Layne Texas Company   | City of Huntsville Water Well<br>17A | Walker             | TX    | Х                                   |               |
| LBGWALK18           | 30.686388         | -95.549721         |                             |                                | Layne Texas Company   | City of Huntsville Water Well<br>18A | Walker             | ТХ    | Х                                   |               |
| LBGWALK19           | 30.67861          | -95.550277         |                             |                                | Layne Texas Company   | City of Huntsville Water Well<br>19A | Walker             | ТХ    | Х                                   |               |
| 177004009300        | 29.656623         | -93.669624         | 0/22                        |                                | Chevron Oil           | OCS 1437                             | Offshore-Cameron   | LA    |                                     | Х             |
| 177004028600        | 29.597597         | -93.654756         | 0/23                        | A-A'/10                        | Chevron USA           | OCS-G-3259                           | Offshore-Cameron   | LA    |                                     | Х             |
| 427103000800        | 29.316264         | -93.856781         | 1/23                        |                                | Texaco                | OCS-G-1845                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427104001700        | 29.184273         | -93.849026         | 1/25                        |                                | Atlantic Richfield    | OCS-G-4741                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427104002200        | 29.168288         | -93.83093          | 1/25A                       |                                | Atlantic Richfield    | OCS-G-4741                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084004000        | 29.487348         | -94.015437         | 2/25                        | A-A'/7                         | Mesa Pet              | OCS-G-3114                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084007700        | 29.386965         | -94.009614         | 2/26                        |                                | Atlantic Richfield    | OCS-G-3745                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427083004500        | 29.348933         | -94.004773         | 2/27                        |                                | Texaco                | OCS-G-1819                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084016000        | 29.236674         | -93.985528         | 2/28                        |                                | Atlantic Richfield    | OCS-G-4731                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084030000        | 29.15714          | -93.956071         | 2/30                        |                                | Sun E&P               | OCS-G-6173                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084013800        | 29.418664         | -94.156993         | 3/22                        | A-A'/6                         | Atlantic Richfield    | OCS-G-6145                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084001400        | 29.343034         | -94.18968          | 3/23                        |                                | Cities Service        | OCS-G-2352                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084032300        | 29.109841         | -94.054974         | 3/25                        |                                | Oryx                  | OCS-G-9093                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084013000        | 29.306436         | -94.343985         | 4/17                        |                                | Atlantic Richfield    | OCS-C-4574                           | Offshore-Galveston | TX    |                                     | Х             |
| 427084015400        | 29.237838         | -94.234381         | 4/18                        |                                | Superior              | OCS-G-6161                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084008500        | 29.133641         | -94.195979         | 4/19                        |                                | Getty                 | OCS-G-3747                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427084012600        | 28.994248         | -94.173195         | 4/20                        |                                | Atlantic Richfield    | OCS-C-4735                           | Offshore-Jefferson | TX    |                                     | Х             |
| 427064003100        | 29.206367         | -94.594635         | 5/22                        | A-A'/3                         | Gulf                  | G-2667, Gal 181-L                    | Offshore-Galveston | TX    |                                     | Х             |
| 427084014500        | 29.129769         | -94.467073         | 5/23                        |                                | Atlantic Richfield    | G-6166, HI 194                       | Offshore-Galveston | TX    |                                     | Х             |
| 427084028900        | 28.993842         | -94.50886          | 5/24                        |                                | CNG Producing         | G-7292m HI 260                       | Offshore-Galveston | TX    |                                     | Х             |
| 427084062600        | 28.685053         | -94.31038          | 5/27                        |                                | BP E&P                | G-26519 HI A-119                     | Offshore-Galveston | TX    |                                     | Х             |
| 427064009000        | 28.975797         | -94.642709         | 6/20                        |                                | Mark Pdcg             | OCS-G-5004                           | Offshore-Galveston | TX    |                                     | Х             |
| 427040007100        | 28.5478           | -95.4866           | 10/19                       |                                | Sun                   | Brazos 433                           | Offshore-Matagorda | TX    |                                     | Х             |
| 427040007000        | 28.3688           | -95.3998           | 10/21                       |                                | Phillips              | Brazos 505                           | Offshore-Matagorda | TX    |                                     | Х             |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company              | Lease                             | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|----------------------|-----------------------------------|--------------------|-------|-------------------------------------|---------------|
| 177004063900        | 29.648757         | -93.346364         |                             |                                | Atlantic Richfield C | OCS-G-5274 Well #1                | Offshore-Cameron   | LA    |                                     | Х             |
| 177004123200        | 29.682415         | -93.43751          |                             |                                | Chevron USA Inc      | OCS-G 22500 002 ST00              | Offshore-Cameron   | LA    |                                     | Х             |
| 427060003400        | 28.645863         | -94.960261         |                             |                                | Mobil Oil            | Federal BL 385 OCS 0              | Offshore-Brazoria  | TX    |                                     | Х             |
| 427064037200        | 28.719124         | -95.263082         |                             |                                | Wacker Oil Company   | OCS-G-6105 No. 10                 | Offshore-Brazoria  | TX    |                                     | Х             |
| 427083002300        | 29.374632         | -93.974972         |                             |                                | Texaco Inc.          | A-2 Federal Block 71              | Offshore-Jefferson | TX    |                                     | Х             |
| 427083002500        | 29.374632         | -93.974972         |                             |                                | Texaco Inc.          | A-3 Federal Block 88              | Offshore-Jefferson | TX    |                                     | Х             |
| 427083002800        | 29.374632         | -93.974972         |                             |                                | Texaco Inc,          | A-4, OCS-G-1818, Fed              | Offshore-Jefferson | TX    |                                     | Х             |
| 427044002600        | 28.3638           | -95.3552           |                             |                                | Shell Oil Company    | State Tract 405-L (N              | Offshore-Matagorda | TX    |                                     | Х             |
| 177004039200        | 29.703419         | -93.236286         |                             |                                | McMoran Offshore Exp | CS G 3317 Well #1                 | Offshore-Cameron   | LA    |                                     | Х             |
| 427064006100        | 28.581634         | -95.156722         |                             |                                | AMINOIL U.S.A., Inc. | OCS-G-3742 Well #2                | Offshore-Brazoria  | TX    |                                     | Х             |
| 427064012200        | 28.768615         | -95.015093         |                             |                                | Arco Oil and Gas Com | OCS-G-7247 No. 1                  | Offshore-Brazoria  | TX    |                                     | Х             |
| 427084010400        | 29.328456         | -94.353828         |                             |                                | Atlantic Richfield C | OCS-G-4575 Well #1                | Offshore-Galveston | TX    |                                     | Х             |
| 427084015300        | 29.418686         | -94.156992         |                             |                                | Arco Oil and Gas     | OCS-G-6145 A-3                    | Offshore-Jefferson | TX    |                                     | Х             |
| 427083002200        | 29.374632         | -93.974972         |                             |                                | Texaco Inc.          | A-1 FB72, OCS-G-1815              | Offshore-Jefferson | TX    |                                     | Х             |
| 427084015000        | 29.319635         | -93.972372         |                             |                                | Atlantic Richfield C | OCS-C-6156 Well #1                | Offshore-Jefferson | TX    |                                     | Х             |
| 427084060800        | 29.16064          | -94.138477         |                             |                                | Spinnaker Exploratio | OCS-G-9086 Well No.               | Offshore-Jefferson | TX    |                                     | Х             |
| 170030029000        | 30.5163           | -93.020553         |                             |                                | TEXACO OIL           | Power Lumber LLC                  | Allen              | LA    | Х                                   |               |
| 170110008700        | 30.797397         | -93.396968         |                             |                                | SUTTON JOINT ACCOUNT | Stella Oftin 1                    | Beauregard         | LA    | Х                                   |               |
| 170110009500        | 30.761197         | -93.307065         |                             |                                | MOBIL OIL CORPORATIO | Magnolia Four C 1                 | Beauregard         | LA    | Х                                   |               |
| 170110013500        | 30.609898         | -93.101956         |                             |                                | MOBIL OIL CORPORATIO | Ragler LBR CC 1                   | Beauregard         | LA    | Х                                   |               |
| 170110039800        | 30.520999         | -93.479867         |                             |                                | MOBIL OIL CORPORATIO | Lutcher 1                         | Beauregard         | LA    | Х                                   |               |
| 170112089800        | 30.875892         | -93.014956         |                             |                                | UNION PACIFIC RESOUR | Crosby 19 1                       | Beauregard         | LA    | Х                                   |               |
| 170190000400        | 30.395003         | -93.646567         |                             |                                | SOUTHWEST GAS PRODUC | Lutcher Moore Lumber Co 3         | Beauregard         | LA    | Х                                   |               |
| 170190036900        | 30.393301         | -93.458662         |                             |                                | SHELL OIL COMPANY    |                                   | 0                  | LA    | Х                                   |               |
| 170190184300        | 30.107809         | -93.395956         |                             |                                | UNION SULPHUR COMPAN | A R West 1                        | Calcasieu          | LA    | Х                                   |               |
| 170190199700        | 30.117509         | -93.700065         |                             |                                | SUN OIL COMPANY      | H L Brown 1                       | Calcasieu          | LA    | Х                                   |               |
| 170192046300        | 30.134309         | -93.599361         |                             |                                | TRIBAL OIL & AUSTER  | Matilda Gray Stream No J-14       | Calcasieu          | LA    | X                                   |               |
| 170192095600        | 30.303005         | -93.105752         |                             |                                | AMOCO PRODUCTION COM | Betty A Hein et al No 1           | Calcasieu          | LA    | X                                   |               |
| 170230124200        | 29.999012         | -93.218854         |                             |                                | HUMBLE OIL & REFININ | Miami Corp L-1                    | Cameron            | LA    | Х                                   |               |
| 170230140000        | 29.864818         | -93.262253         |                             |                                | HUMBLE OIL & REFININ | Lake State Lease 1255 Well 1      | Cameron            | LA    | Х                                   |               |
| 170230178800        | 29.786023         | -93.441955         |                             |                                | AUSTRAL OIL COMPANY  | Ray B Peveto                      | Cameron            | LA    | Х                                   |               |
| 170230187300        | 29.830518         | -93.737262         |                             |                                | TEXACO OIL           | Cameron Meadows Land<br>Company 2 | Cameron            | LA    | Х                                   |               |
| 170232013100        | 30.017012         | -93.617862         |                             |                                | SHELL OIL COMPANY    | J B Watkins 134                   | Cameron            | LA    | Х                                   |               |
| 170792031700        | 31.239682         | -92.822051         |                             |                                | DOMESTIC OIL COMPANY | 1 Pardee                          | Rapides            | LA    | Х                                   |               |
| 171150004600        | 30.917693         | -93.274063         |                             |                                | SUNRAY DX OIL COMPAN | Fletcher EST 1                    | Vernon             | LA    | X                                   |               |
| 171152005500        | 31.172286         | -93.316867         |                             |                                | ROSSON & LAYMAN      | Frank Leach 2                     | Vernon             | LA    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company              | Lease                             | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|----------------------|-----------------------------------|--------------------|-------|-------------------------------------|---------------|
| 171152011400        | 31.029888         | -92.877652         |                             |                                | CHESAPEAKE OPERATING | Lawton 27A 1                      | Vernon             | LA    | Х                                   |               |
| 171152019800        | 30.883392         | -92.945954         |                             |                                | PILOT RESOURCES INCO |                                   | 0                  | LA    | Х                                   |               |
| 177000003900        | 29.646827         | -93.627359         |                             |                                | MAGNOLIA PETROLEUM C | A-1                               | Offshore-Cameron   | LA    | Х                                   |               |
| 177000004600        | 29.704522         | -93.75176          |                             |                                | MAGNOLIA PETROLEUM C | LA ST LSE 2922 Blk I7 Well<br>A-1 | Offshore-Cameron   | LA    | Х                                   |               |
| 177004056700        | 29.714524         | -93.254953         |                             |                                | Chevron U.S.A. Inc.  | OCS-G-3489 No 1                   | Offshore-Cameron   | LA    | Х                                   |               |
| 420390006400        | 29.528235         | -95.348516         |                             |                                | HUMBLE OIL & REFININ | Humble 1 de Lorenz                | Brazoria           | TX    | Х                                   |               |
| 420410006300        | 30.484104         | -96.145736         |                             |                                | TEXAS COMPANY        | LOUISE ORLANDO                    | Brazos             | TX    | Х                                   |               |
| 420410010200        | 30.345609         | -96.154637         |                             |                                | LEWIS J K            | G W Lott 1                        | 0                  | TX    | Х                                   |               |
| 420710288000        | 29.53153          | -94.835699         |                             |                                | HUMBLE OIL & REFININ | State A-72                        | Offshore-Harris    | TX    | Х                                   |               |
| 421570083600        | 29.562536         | -95.601923         |                             |                                | HUMBLE OIL & REFININ | 1 Stancliff                       | Fort Bend          | TX    | Х                                   |               |
| 421670114200        | 29.364934         | -94.961402         |                             |                                | MIDSTATES OIL COMPAN | Westerlage Unit 1                 | Galveston          | TX    | Х                                   |               |
| 421850002400        | 30.661097         | -95.92803          |                             |                                | WOODLEY PETROLEUM CO | Hattie F Wilson                   | Grimes             | TX    | Х                                   |               |
| 421990033500        | 30.393708         | -94.219287         |                             |                                | SINCLAIR             | Henry Binns 9                     | Hardin             | TX    | Х                                   |               |
| 421990075700        | 30.458707         | -94.6107           |                             |                                | SHELL OIL COMPANY    | Kirby Lmbr. Co 1                  | Hardin             | TX    | Х                                   |               |
| 422010353300        | 29.960123         | -95.515919         |                             |                                |                      |                                   | 0                  | TX    | Х                                   |               |
| 422010406800        | 29.756929         | -95.574522         |                             |                                | MORAN CORPORATION TH | Hayes 1                           | 0                  | TX    | Х                                   |               |
| 422010622300        | 29.725927         | -94.991906         |                             |                                | SPARTA OIL COMPANY T | M. H. Bielstein 1                 | Harris             | TX    | Х                                   |               |
| 422910030200        | 30.366408         | -94.740703         |                             |                                | ATLANTIC REFINING CO | Kirby A-1                         | Liberty            | TX    | Х                                   |               |
| 422910216900        | 30.213211         | -94.758001         |                             |                                | UNION PRODUCING COMP | Smith B-1                         | Liberty            | TX    | Х                                   |               |
| 422910242600        | 30.132314         | -94.886603         |                             |                                | SHELL OIL COMPANY    | S Macy 1                          | Liberty            | TX    | Х                                   |               |
| 422910484100        | 29.901218         | -94.495592         |                             |                                | HUMBLE OIL & REFININ | Boyt B-1                          | Liberty            | TX    | Х                                   |               |
| 423390099400        | 30.355207         | -95.661323         |                             |                                | LESTER EMANUEL       | Earl White                        | Montgomery         | TX    | Х                                   |               |
| 423390103900        | 30.213113         | -95.636922         |                             |                                | ACCO ROBERTS & MURPH | H Roberts                         | Montgomery         | TX    | Х                                   |               |
| 423390110200        | 30.140016         | -95.621122         |                             |                                | MITCHELL CHRISTIE    | Neidick 1                         | Montgomery         | TX    | Х                                   |               |
| 423390173700        | 30.109517         | -95.395115         |                             |                                | HUMBLE OIL & REFININ | Bender 2                          | Montgomery         | TX    | Х                                   |               |
| 424070002100        | 30.540903         | -94.92731          |                             |                                | SUNRAY OIL CORPORATI | H Leary                           | San Jacinto        | TX    | Х                                   |               |
| 424573063001        | 30.769102         | -94.310695         |                             |                                | RANGE PRODUCTION COM | BSMC Goode Unit 1                 | Tyler              | TX    | Х                                   |               |
| 424710004200        | 30.539801         | -95.47912          |                             |                                | BISHOP H C           | G W Beardsley Estate 1            | Walker             | TX    | Х                                   |               |
| 424730000300        | 30.117918         | -96.165438         |                             |                                | WILLIAMS H E         | T-1169 David Moore Survey         | Waller             | TX    | Х                                   |               |
| 424730004900        | 29.938325         | -95.975234         |                             |                                | PHEFFER & HOGUE      | Pfeffer & Hogue 1                 | Waller             | TX    | Х                                   |               |
| 427060008800        | 28.986745         | -95.108107         |                             |                                | SHELL OIL COMPANY    | ST TR 248L-SW-1                   | Offshore-Brazoria  | TX    | Х                                   |               |
| 427064019700        | 28.747752         | -94.902801         |                             |                                | Walter Oil & Gas Cor | OCS-G 4721 Well 3                 | Offshore-Brazoria  | TX    | Х                                   |               |
| 427064036300        | 29.014045         | -94.751494         |                             |                                | SPN Resources, LLC   | OCS-G 1772 B-3                    | Offshore-Galveston | TX    | Х                                   |               |
| 427080010000        | 29.108942         | -94.375784         |                             |                                | Skelly Oil Company   | OCS-G 1830 Block 205              | Offshore-Galveston | TX    | Х                                   |               |
| 427084012700        | 29.125141         | -94.074075         |                             |                                | Shell Offshore Inc.  | OCS-G 4576 18-2                   | Offshore-Jefferson | TX    | Х                                   |               |
| 427084038400        | 28.974645         | -94.243679         |                             |                                | Statoil Exploration  | OCS-G 13799 No 1                  | Offshore-Galveston | TX    | Х                                   |               |

| API number<br>or ID | NAD27<br>latitude | NAD27<br>longitude | Dip<br>section/<br>position | Strike<br>section/<br>position | Company                     | Lease              | County             | State | Lithology<br>and water<br>qual data | Paleo<br>Data |
|---------------------|-------------------|--------------------|-----------------------------|--------------------------------|-----------------------------|--------------------|--------------------|-------|-------------------------------------|---------------|
| 427084043600        | 29.323036         | -94.337985         |                             |                                | IP Petroleum Company        | OCS-SG 15776 2     | Offshore-Galveston | TX    | Х                                   |               |
| 427084052300        | 29.29279          | -94.01169          |                             |                                | Merit Energy Company        | OCS-G 18938 3      | Offshore-Jefferson | TX    | Х                                   |               |
| 427104007600        | 29.441732         | -93.789965         |                             |                                | Mobil Producing Texa        | OCS-G 5180 2       | Offshore-Cameron   | TX    | Х                                   |               |
| 3-14                | 29.736623         | -94.656095         |                             |                                | Pan Am                      | C.A. Kleke         | Chambers           | TX    | Х                                   |               |
| 4-14                | 30.234413         | -95.077409         |                             |                                | Mobile                      | B.E. Quinn         | Liberty            | TX    | Х                                   |               |
| 4-15                | 30.190113         | -94.953906         |                             |                                | Shell Oil Company           | KIRBY LUMBER CO    | Liberty            | TX    | Х                                   |               |
| 4-17                | 30.031717         | -94.922203         |                             |                                | Amerada                     | RC Brown #1        | Liberty            | TX    | Х                                   |               |
| G0300080N           | 31.434883         | -94.734409         |                             |                                |                             |                    | Angelina           | TX    | Х                                   |               |
| Q-323               | 0                 | 0                  |                             |                                | Moore and Womack            | Wysinger # 1       | Montgomery         | TX    | Х                                   |               |
| 6035902             | 0                 | 0                  |                             |                                | Strake                      | Peel TJ #1         | Montgomery         | TX    | Х                                   |               |
| Q-41                | 0                 | 0                  |                             |                                | Gabriel and Womack          | Foster Estate #1   | Montgomery         | TX    | Х                                   |               |
| 420150023000        | 30.0098           | -96.1293           | 8/5                         | D-D'/1                         | Humble O&R                  | Sherrod, L.R.      | Austin             | TX    | Х                                   |               |
| 421570000100        | 29.7538           | -95.8705           | 8/8                         |                                | Humble O&R                  | Albright, F.C.     | Fort Bend          | TX    | Х                                   |               |
| 421570102600        | 29.6699           | -95.8494           | 8/9                         | C-C'/1                         | Mobil (Magnolia - Seaboard) | McKennon, E.       | Fort Bend          | TX    | Х                                   |               |
| 421573198300        | 29.5983           | -95.8187           | 8/10                        |                                | Petroleum Resource Mgmt     | Foster Farms       | Fort Bend          | TX    | Х                                   |               |
| 421570089400        | 29.5853           | -95.6728           | 8/11                        |                                | Cockburn, H.C.              | Clayton Fdn        | Fort Bend          | TX    | Х                                   |               |
| 421570245900        | 29.4568           | -95.6113           | 8/12                        | B-B'/1                         | Humble O&R                  | Lockwood & Sharp   | Fort Bend          | TX    | Х                                   |               |
| 420390145200        | 29.3163           | -95.4703           | 8/13                        |                                | Group Oil                   | Grey, J.A2nd NB    | Brazoria           | TX    | Х                                   |               |
| 420390427700        | 29.1295           | -95.3051           | 8/15                        |                                | Texaco                      | General Amer Life  | Brazoria           | TX    | Х                                   |               |
| 420390429100        | 29.0239           | -95.2919           | 8/16                        |                                | Brazos O&G                  | Fletcher Tr        | Brazoria           | TX    | Х                                   |               |
| 420153073800        | 29.6167           | -96.0497           | 9/6                         |                                | Phillips                    | Sommers            | Austin             | TX    | Х                                   |               |
| 421573180500        | 29.46309          | -95.9521           | 9/8                         |                                | Greenhill Pet               | Patterson, A.E. II | Fort Bend          | TX    | Х                                   |               |
| 420390286500        | 29.1862           | -95.7075           | 9/11                        |                                | Pan American (Stanolind)    | Robertson, W.T.    | Brazoria           | TX    | Х                                   |               |
| 421493132900        | 29.9842           | -96.6822           | 10/2                        |                                | Daleco Res                  | Halamicek          | Fayette            | TX    | Х                                   |               |
| 420893153100        | 29.8066           | -96.5792           | 10/3                        |                                | Superior Pdn                | Werland, A.        | Colorado           | TX    | Х                                   |               |
| 420890005700        | 29.7798           | -96.5494           | 10/4                        |                                | Quintana Pet                | Cullen etal        | Colorado           | TX    | Х                                   |               |
| 420890009000        | 29.7736           | -96.4365           | 10/5                        |                                | Paul, W.U.                  | Reinhardt, H.      | Colorado           | TX    | Х                                   |               |
| 420893124600        | 29.6453           | -96.3891           | 10/6                        |                                | Ponexco                     | Dixon, L. etal     | Colorado           | TX    | Х                                   |               |
| 424810121800        | 29.4747           | -96.2802           | 10/8                        |                                | General Crude               | Northington        | Wharton            | TX    | Х                                   |               |
| 424810120500        | 29.4738           | -96.1920           | 10/9                        |                                | BBM Drlg                    | Wintermann, D.     | Wharton            | TX    | Х                                   |               |
| 424813344200        | 29.3679           | -96.1512           | 10/10                       |                                | Greenhill                   | Sorrel, M.         | Wharton            | TX    | Х                                   |               |
| 424813294400        | 29.2353           | -96.0156           | 10/12                       |                                | Ashland Expl                | Fields, R.L.       | Wharton            | TX    | Х                                   |               |
| 423210083600        | 28.9496           | -95.7766           | 10/16                       |                                | British-American Oil        | M.B. Guess         | Matagorda          | TX    | Х                                   |               |
| 423210082400        | 28.8138           | -95.6907           | 10/17                       |                                | Gulf                        | O.E. Phillips      | Matagorda          | TX    | Х                                   |               |

### **APPENDIX B**

# Listing of Geophysical Logs Stratigraphic Contacts

This page is intentionally left blank.

## Appendix BListing of Geophysical Logs Stratigraphic Contacts

|              | D          | bip            | Sti        | rike           |     |          |        |        | Stratigrap      | ohic Contac     | ets (ft, msl)    |                   |                  |          |
|--------------|------------|----------------|------------|----------------|-----|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| UWI/API      | Sec<br>Pos | tion/<br>ition | Sec<br>Pos | tion/<br>ition | KB  | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
| 171152004000 | -1         | 1              |            |                | 202 | -        | _      | -      | -               | -               | -                | -                 | _                | _        |
| 171150002000 | -1         | 2              |            |                | 350 | -        | -      | -      | -               | -               | -                | -                 | -                | -856     |
| 171150002100 | -1         | 2A             |            |                | 351 | -        | -      | -      | -               | -               | -                | -                 | -                | -788     |
| 171150002200 | -1         | 3              | D          | 16             | 243 | -        | -      | -      | -               | -               | -                | -                 | -1628            | -2078    |
| 171158800300 | -1         | 4              | D          | 15             | 266 | -        | -      | -63    | -               | -490            | -906             | -1332             | -1876            | -2346    |
| 171152017900 | -1         | 5              | D          | 14             | 232 | -        | -      | -118   | -               | -486            | -988             | -1303             | -1878            | -2403    |
| 171152013500 | -1         | 6              | D          | 13             | 215 | -        | -      | -252   | -               | -686            | -1062            | -1503             | -2118            | -2603    |
| 170112090100 | -1         | 7              |            |                | 209 | -        | -      | -278   | -343            | -828            | -1216            | -1508             | -2258            | -2828    |
| 170112059000 | -1         | 8              |            |                | 185 | -        | -      | -      | -858            | -1438           | -1748            | -2178             | -2848            | -3620    |
| 170110016900 | -1         | 9              | С          | 16             | 111 | -        | -133   | -496   | -1588           | -2173           | -2603            | -2943             | -3724            | -4378    |
| 170112053200 | -1         | 9A             | С          | 14             | 128 | -        | -166   | -618   | -1498           | -2018           | -2449            | -2758             | -3580            | -4188    |
| 170110029800 | -1         | 10             | С          | 15             | 96  | -        | -268   | -678   | -1928           | -2438           | -2899            | -3218             | -4108            | -4753    |
| 170110090600 | -1         | 11             |            |                | 47  | -        | -308   | -848   | -2068           | -2650           | -3078            | -3428             | -4308            | -5010    |
| 170192183600 | -1         | 12             |            |                | 55  | -        | -498   | -976   | -2398           | -3020           | -3505            | -3908             | -4812            | -5525    |
| 170190045900 | -1         | 12A            |            |                | 56  | -18      | -616   | -998   | -2153           | -2768           | -3265            | -3668             | -4601            | -5378    |
| 170190116300 | -1         | 13             |            |                | 64  | -98      | -658   | -1108  | -2618           | -3308           | -3868            | -4396             | -5301            | -6193    |
| 170190145800 | -1         | 14             |            |                | 27  | -158     | -668   | -1238  | -1958           | -2668           | -3223            | -3867             | -4868            | -5824    |
| 170192162100 | -1         | 14A            |            |                | 31  | -158     | -724   | -1248  | -2205           | -2898           | -3509            | -4094             | -5100            | -6238    |
| 170190167400 | -1         | 15             |            |                | 24  | -224     | -828   | -1350  | -2748           | -3698           | -4323            | -4918             | -6128            | -7378    |
| 170192020200 | -1         | 15A            | В          | 17             | 17  | -258     | -908   | -1418  | -3218           | -4168           | -4809            | -5528             | -6808            | -7963    |
| 170190184900 | -1         | 16             | В          | 16             | 16  | -273     | -983   | -1558  | -3286           | -4053           | -4658            | -5463             | -6810            | -7778    |
| 170230020800 | -1         | 17             |            |                | 18  | -348     | -1093  | -1603  | -3403           | -4660           | -5123            | -6058             | -8038            | -8624    |
| 170230050900 | -1         | 18             |            |                | 20  | -203     | -888   | -1418  | -2438           | -3211           | -3616            | -4266             |                  | -4493    |
| 170230159900 | -1         | 19             |            |                | 22  | -206     | -820   | -1411  | -2108           | -2528           | -2788            | -                 | -                | -        |
| 170232228000 | -1         | 20             |            |                | 24  | -378     | -1121  | -1528  | -3398           | -4668           | -5249            | -6259             | -8304            | -        |

See Table 5-2 for a definition of the column headers.

|              | D          | )ip            | Sti        | rike           |     |          |        |        | Stratigrap      | hic Contac      | ets (ft, msl)    |                   |                  |          |
|--------------|------------|----------------|------------|----------------|-----|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| UWI/API      | Sec<br>Pos | tion/<br>ition | Sec<br>Pos | tion/<br>ition | KB  | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
| 170230156200 | -1         | 21             |            |                | 20  | -498     | -1210  | -1828  | -3664           | -4930           | -5510            | -6690             | -8863            | -        |
| 170230177200 | -1         | 22             |            |                | 19  | -513     | -1314  | -1713  | -3773           | -5108           | -5788            | -6908             | -9018            | -        |
| 170232122500 | -1         | 23             |            |                | 27  | -638     | -1378  | -2003  | -4153           | -5358           | -6085            | -7223             | -9498            | -        |
| 177004121502 | -1         | 24             | Α          | 12             | 110 | -913     | -1873  | -2938  | -5748           | -6988           | -7697            | -8813             | -10968           | -        |
| 177004084000 | -1         | 25             |            |                | 98  | -1028    | -1990  | -3033  | -6053           | -7528           | -8248            | -9838             | -                | -        |
| 177014015000 | -1         | 26             |            |                | 75  | -1548    | -2726  | -4134  | -               | -               | -                | -                 | -                | -        |
| 177014031202 | -1         | 27             |            |                | 119 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 177014036000 | -1         | 28             |            |                | 82  | -2288    | -4413  | -7068  | -               | -               | -                | -                 | -                | -        |
| 177014018600 | -1         | 29             |            |                | 68  | -2568    | -      | -      | -               | -               | -                | -                 | -                | -        |
| 170850422200 | 0          | 1              |            |                | 310 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 171150002700 | 0          | 2              |            |                | 195 | -        | -      | -      | -               | -               | -                | -                 | -                | -184     |
| 171152000400 | 0          | 3              |            |                | 179 | -        | -      | -      | -               | -               | -                | -155              | -578             | -930     |
| 171158800000 | 0          | 4              | D          | 11             | 175 | -        | -      | -28    | -381            | -778            | -978             | -1253             | -1748            | -2168    |
| 171152012000 | 0          | 4A             | D          | 12             | 220 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 170112061600 | 0          | 5              | D          | 10             | 126 | -        | -      | -228   | -728            | -1139           | -1330            | -1640             | -2108            | -2523    |
| 170112080000 | 0          | 6              |            |                | 169 | -        | -23    | -445   | -978            | -1428           | -1688            | -1978             | -2503            | -2910    |
| 170112040700 | 0          | 7              |            |                | 158 | -        | -208   | -588   | -1078           | -1603           | -1876            | -2323             | -2873            | -3338    |
| 170110064200 | 0          | 8              |            |                | 152 | -        | -229   | -643   | -1108           | -1633           | -1949            | -2408             | -2968            | -3458    |
| 170110075500 | 0          | 9              | С          | 13             | 126 | -        | -278   | -708   | -1306           | -1904           | -2256            | -2668             | -3408            | -3936    |
| 170112105800 | 0          | 10             |            |                | 86  | -        | -348   | -800   | -1512           | -1946           | -2423            | -2798             | -3710            | -4228    |
| 170190001800 | 0          | 11             |            |                | 58  | -        | -      | -890   | -1791           | -2388           | -2818            | -3248             | -4030            | -4583    |
| 170190025500 | 0          | 12             |            |                | 41  | -48      | -518   | -878   | -1973           | -2628           | -3138            | -3678             | -4658            | -5496    |
| 170190258300 | 0          | 12A            |            |                | 20  | -        | -568   | -933   | -1444           | -2018           | -2573            | -3366             | -                | -        |
| 170190197200 | 0          | 13             |            |                | 31  | -278     | -848   | -1388  | -3249           | -3880           | -4316            | -4899             | -5908            | -6731    |
| 170190207200 | 0          | 13A            |            |                | 28  | -138     | -688   | -988   | -2518           | -3176           | -3572            | -4203             | -4880            | -5648    |
| 170190206500 | 0          | 14             | В          | 14             | 8   | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 170190189600 | 0          | 14A            | В          | 15             | 20  | -        | -      | -      | -2814           | -3554           | -4018            | -4612             | -5788            | -6748    |
| 170232012700 | 0          | 15             | В          | 13             | 20  | -248     | -758   | -1328  | -2828           | -3758           | -4062            | -4588             | -5420            | -        |

### Final Report – Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer

|              | D          | )ip            | Sti        | ike            |     |          |        |        | Stratigrap      | hic Contac      | ts (ft, msl)     |                   |                  |          |
|--------------|------------|----------------|------------|----------------|-----|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| UWI/API      | Sec<br>Pos | tion/<br>ition | Sec<br>Pos | tion/<br>ition | КВ  | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
| 170230011100 | 0          | 16             |            |                | 20  | -308     | -968   | -1373  | -3603           | -4470           | -5008            | -5600             | -6728            | -7718    |
| 170230187700 | 0          | 17             |            |                | 30  | -128     | -738   | -1276  | -2206           | -2830           | -3446            | -4278             | -5898            | -        |
| 170230196800 | 0          | 18             |            |                | 18  | -128     | -668   | -1228  | -1793           | -2458           | -2978            | -3473             | -4509            | -        |
| 170230204500 | 0          | 19             |            |                | 18  | -348     | -1018  | -1900  | -4350           | -5138           | -5752            | -6590             | -8016            | -        |
| 177002020800 | 0          | 20             |            |                | 59  | -408     | -1048  | -1965  | -4284           | -5109           | -5696            | -6555             | -8153            | -12953   |
| 177004106800 | 0          | 21             |            |                | 57  | -428     | -1148  | -2001  | -4408           | -5318           | -5991            | -6983             | -8659            | -14398   |
| 177004009300 | 0          | 22             |            |                | 47  | -408     | -1188  | -2148  | -4368           | -5413           | -6124            | -7208             | -8998            | -14628   |
| 177004028600 | 0          | 23             | А          | 10             | 72  | -        | -1288  | -2404  | -4576           | -5738           | -6546            | -7723             | -9788            | -        |
| 177000005500 | 0          | 24             | А          | 11             | 73  | -888     | -1673  | -2725  | -5328           | -6563           | -7248            | -8745             | -                | -        |
| 177014031600 | 0          | 25             |            |                | 103 | -1393    | -2238  | -3763  | -7798           | -10298          | -                | -                 | -                | -        |
| 177014015000 | 0          | 26A            |            |                | 68  | -1488    | -2651  | -4228  | -               | -               | -                | -                 | -                | -        |
| 177014018600 | 0          | 27             |            |                | 75  | -2038    | -3148  | -4858  | -               | -               | -                | -                 | -                | -        |
| 424033027800 | 1          | 1              |            |                | 270 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 424033019600 | 1          | 2              |            |                | 279 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 424033034300 | 1          | 3              |            |                | 306 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 423513052100 | 1          | 3A             |            |                | 294 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 423513052600 | 1          | 3B             |            |                | 308 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 423510004800 | 1          | 4              |            |                | 318 | -        | -      | -      | -               | -               | -                | -                 | -212             | -543     |
| 423513072600 | 1          | 5              | D          | 9              | 247 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 423510047800 | 1          | 6              |            |                | 136 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 423513003300 | 1          | 6A             |            |                | 117 | -        | -      | -      | -               | -971            | -1348            | -1623             | -2135            | -2518    |
| 422410009100 | 1          | 7              |            |                | 118 | -        | -68    | -558   | -               | -1153           | -1488            | -1803             | -2374            | -2848    |
| 423510009600 | 1          | 8              |            |                | 108 | -        | -      | -      | -               | -1408           | -1738            | -2216             | -2828            | -3343    |
| 423510022600 | 1          | 9              | С          | 12             | 67  | -        | -418   | -748   | -1013           | -1810           | -2163            | -2648             | -3273            | -3813    |
| 423513038100 | 1          | 10             |            |                | 69  | -        | -608   | -948   | -1221           | -2011           | -2412            | -2941             | -3628            | -4158    |
| 423510028900 | 1          | 11             |            |                | 54  | -58      | -638   | -1070  | -2086           | -2928           | -3388            | -4188             | -5328            | -5926    |
| 423613081000 | 1          | 12             |            |                | 45  | -58      | -688   | -1065  | -2208           | -2923           | -3464            | -4223             | -5308            | -5938    |
| 423610047400 | 1          | 13             |            |                | 29  | -163     | -718   | -1154  | -2233           | -3058           | -3618            | -4470             | -5623            | -6368    |

| Dip<br>Section/ |            |                | Sti        | ike            |     |          |        |        | Stratigrap      | hic Contac      | ets (ft, msl)    |                   |                  |          |
|-----------------|------------|----------------|------------|----------------|-----|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| UWI/API         | Sec<br>Pos | tion/<br>ition | Sec<br>Pos | tion/<br>ition | КВ  | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
| 423610055500    | 1          | 14             | В          | 11             | 23  | -148     | -733   | -1083  | -1675           | -2519           | -3043            | -3718             | -4828            | -5448    |
| 423610049000    | 1          | 15             | В          | 12             | 25  | -238     | -788   | -1138  | -1860           | -2732           | -3200            | -3826             | -4938            | -5398    |
| 423610131800    | 1          | 16             |            |                | 23  | -438     | -1068  | -1412  | -3061           | -3938           | -4490            | -5468             | -7008            | -7573    |
| 170230205500    | 1          | 17             |            |                | 18  | -458     | -1138  | -1763  | -3399           | -4400           | -4948            | -5908             | -7458            | -8278    |
| 170230207900    | 1          | 18             |            |                | 18  | -358     | -1048  | -1568  | -3376           | -4483           | -5086            | -5943             | -7698            | -8335    |
| 422453035800    | 1          | 19             |            |                | 18  | -        | -      | -      | -3548           | -4453           | -5246            | -6258             | -8223            | -        |
| 422450334300    | 1          | 20             |            |                | 16  | -        | -1208  | -1953  | -3818           | -4738           | -5528            | -6508             | -8218            | -        |
| 427153001100    | 1          | 21             | А          | 9              | 96  | -558     | -1350  | -2473  | -4848           | -5844           | -6578            | -7618             | -8888            | -        |
| 427084057200    | 1          | 22             | А          | 8              | 90  | -633     | -1568  | -2438  | -5300           | -6320           | -7103            | -8208             | -9718            | -        |
| 427103000800    | 1          | 23             |            |                | 85  | -        | -      | -2684  | -6418           | -8028           | -9108            | -10263            | -                | -        |
| 427104013100    | 1          | 24             |            |                | 96  | -1052    | -2039  | -3060  | -7298           | -8978           | -                | -                 | -                | -        |
| 427104001700    | 1          | 25             |            |                | 106 | -1168    | -2186  | -3394  | -8944           | -               | -14423           | -                 | -                | -        |
| 427104002200    | 1          | 25A            |            |                | 100 | -1186    | -2238  | -3458  | -8406           | -               | -                | -                 | -                | -        |
| 427104005600    | 1          | 26             |            |                | 100 | -1318    | -2458  | -4248  | -               | -               | -                | -                 | -                | -        |
| 420050019200    | 2          | 1              |            |                | 141 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| G0030024A       | 2          | 2              |            |                | 202 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 420053011900    | 2          | 2A             |            |                | 219 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 422410025300    | 2          | 3              |            |                | 203 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 424573011900    | 2          | 4              |            |                | 225 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 424570004100    | 2          | 5              |            |                | 166 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 424570004300    | 2          | 6              | D          | 8              | 218 | -        | -      | -      | -               | -               | -                | -                 | -496             | -800     |
| 424570025600    | 2          | 7              |            |                | 192 | -        | -      | -      | -               | -               | -                | -                 | -915             | -1190    |
| 424570024500    | 2          | 8              |            |                | 454 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 424570025400    | 2          | 9              |            |                | 177 | -        | -198   | -528   | -               | -               | -                | -528              | -1056            | -1409    |
| 424570037700    | 2          | 10             |            |                | 97  | -        | -158   | -478   | -               | -               | -713             | -988              | -1613            | -2010    |
| 421990011600    | 2          | 11             |            |                | 60  | -        | -206   | -660   | -               | -703            | -1044            | -1308             | -2108            | -2626    |
| 1-9             | 2          | 12             | С          | 11             | 50  | -        | -223   | -818   | -               | -1313           | -1733            | -1973             | -2833            | -3338    |
| 421993181100    | 2          | 13             | С          | 10             | 58  | -        | -283   | -953   | -               | -1333           | -1775            | -2168             | -2978            | -3486    |

| Dip          |            | )ip            | Strike               |    |     | Stratigraphic Contacts (ft, msl) |        |        |                 |                 |                  |                   |                  |          |  |
|--------------|------------|----------------|----------------------|----|-----|----------------------------------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|--|
| UWI/API      | Sec<br>Pos | tion/<br>ition | Section/<br>Position |    | KB  | Beaumont                         | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |  |
| 421990035600 | 2          | 14             |                      |    | 42  | -                                | -290   | -998   | -               | -1518           | -1978            | -2498             | -3328            | -3823    |  |
| 423610000400 | 2          | 15             |                      |    | 43  | -9                               | -488   | -1038  | -1788           | -2528           | -3003            | -3530             | -4366            | -4856    |  |
| 422450016900 | 2          | 16             |                      |    | 48  | -128                             | -620   | -1128  | -2186           | -2938           | -3428            | -3923             | -4813            | -5323    |  |
| 422453257200 | 2          | 17             | В                    | 10 | 21  | -193                             | -708   | -1378  | -2618           | -3414           | -3980            | -4398             | -5259            | -6102    |  |
| 422450165400 | 2          | 18             |                      |    | 23  | -310                             | -908   | -1518  | -2736           | -3610           | -4183            | -4618             | -5688            | -6490    |  |
| 422450163700 | 2          | 19             |                      |    | 28  | -358                             | -1113  | -1646  | -2926           | -3818           | -4428            | -4855             | -5950            | -6888    |  |
| 422450211000 | 2          | 20             |                      |    | 23  | -                                | -      | -      | -3178           | -4131           | -4808            | -5113             | -6428            | -7454    |  |
| 422453014300 | 2          | 21             |                      |    | 20  | -493                             | -1208  | -1968  | -3348           | -4499           | -4918            | -5308             | -6513            | -7323    |  |
| 422450299600 | 2          | 22             |                      |    | 20  | -592                             | -1198  | -1734  | -2405           | -3256           | -3953            | -4488             | -5890            | -6588    |  |
| 426060001000 | 2          | 23             |                      |    | 33  | -653                             | -1328  | -1748  | -3056           | -3888           | -4626            | -5358             | -6640            | -7488    |  |
| 427080001000 | 2          | 24             |                      |    | 52  | -843                             | -1488  | -1938  | -3590           | -4568           | -5598            | -6428             | -7728            | -        |  |
| 427084004000 | 2          | 25             | А                    | 7  | 78  | -988                             | -1780  | -2174  | -4078           | -5268           | -6216            | -7188             | -                | -        |  |
| 427084007700 | 2          | 26             |                      |    | 96  | -1054                            | -1596  | -2158  | -4971           | -5963           | -7004            | -8099             | -10231           | -        |  |
| 427083004500 | 2          | 27             |                      |    | 47  | -                                | -      | -2420  | -5406           | -6359           | -7448            | -8190             | -                | -        |  |
| 427084016000 | 2          | 28             |                      |    | 103 | -1628                            | -2143  | -3268  | -6836           | -8710           | -9703            | -11153            | -14063           | -        |  |
| 427084046800 | 2          | 29             |                      |    | 95  | -1598                            | -2188  | -3520  | -               | -               | -                | -                 | -                | -        |  |
| 427084030000 | 2          | 30             |                      |    | 100 | -                                | -      | -      | -7833           | -12178          | -                | -                 | -                | -        |  |
| 2-6          | 3          | 1              |                      |    | 260 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 420053017100 | 3          | 2              |                      |    | 230 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 423733048400 | 3          | 3              |                      |    | 182 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 423730000300 | 3          | 4              |                      |    | 191 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 423730000600 | 3          | 4A             |                      |    | 261 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 424573010100 | 3          | 5              |                      |    | 378 | -                                | -      | -      | -               | -               | -                | -                 | -148             | -128     |  |
| 2-10         | 3          | 6              |                      |    | 368 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 424570047700 | 3          | 7              | D                    | 7  | 291 | -                                | -      | 47     | -               | -               | -13              | -311              | -764             | -1138    |  |
| 2-12         | 3          | 8              |                      |    | 156 | -                                |        | -303   |                 | -683            | -880             | -1138             | -1594            | -1878    |  |
| 424570006300 | 3          | 9              |                      |    | 146 |                                  |        | -213   |                 | -595            | -800             | -1098             | -1508            | -1780    |  |
| 421993311900 | 3          | 10             | С                    | 7  | 145 | -                                | -      | -323   |                 |                 |                  |                   | -2643            | -3178    |  |

| Dip          |            | )ip            | Strike               |   |     | Stratigraphic Contacts (ft, msl) |        |        |                 |                 |                  |                   |                  |          |  |
|--------------|------------|----------------|----------------------|---|-----|----------------------------------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|--|
| UWI/API      | Sec<br>Pos | tion/<br>ition | Section/<br>Position |   | КВ  | Beaumont                         | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |  |
| G1000055B    | 3          | 11             | С                    | 8 | 100 | -                                | 107    | -434   | -1057           | -               | -                | -                 | -                | -        |  |
| 421990063400 | 3          | 11A            | С                    | 9 | 110 | -                                | -      | -473   | -1063           | -1528           | -1833            | -2228             | -2748            | -3258    |  |
| 421990067400 | 3          | 12             |                      |   | 86  | -                                | -      | -658   | -1373           | -1970           | -2246            | -2718             | -3282            | -3873    |  |
| 421990214800 | 3          | 13             |                      |   | 55  | -                                | -218   | -878   | -1354           | -2036           | -2374            | -2899             | -3494            | -4275    |  |
| 422453156200 | 3          | 14             |                      |   | 57  | 82                               | -443   | -1083  | -1618           | -2308           | -2668            | -3228             | -3941            | -4748    |  |
| 422450012300 | 3          | 15             |                      |   | 56  | 57                               | -498   | -1199  | -1676           | -               | -                | -                 | -                | -        |  |
| 422453195500 | 3          | 15A            | В                    | 8 | 51  | -                                | -733   | -1315  | -1837           | -2782           | -3056            | -3606             | -4611            | -5393    |  |
| 422450223800 | 3          | 16             | В                    | 9 | 39  | -53                              | -803   | -1410  | -2189           | -3030           | -3658            | -4478             | -5506            | -7108    |  |
| 422450226500 | 3          | 17             |                      |   | 32  | -228                             | -1012  | -1588  | -2608           | -3516           | -4388            | -5313             | -7038            | -8718    |  |
| 422450265800 | 3          | 18             |                      |   | 25  | -178                             | -768   | -1128  | -2654           | -3833           | -4603            | -5368             | -6678            | -8038    |  |
| 422450268900 | 3          | 19             |                      |   | 25  | -248                             | -988   | -1614  | -2628           | -3734           | -4380            | -5153             | -6123            | -7353    |  |
| 422450286600 | 3          | 20             |                      |   | 22  | -280                             | -1203  | -1678  | -3083           | -4219           | -4763            | -5418             | -6258            | -8083    |  |
| 426060005500 | 3          | 21             |                      |   | 54  | -378                             | -1300  | -1968  | -3198           | -4603           | -5058            | -5718             | -6438            | -        |  |
| 427083031300 | 3          | 21A            | А                    | 5 | 98  | -                                | -      | -2228  | -4228           | -5453           | -6430            | -7328             | -9081            | -        |  |
| 427084013800 | 3          | 22             | А                    | 6 | 101 | -868                             | -1753  | -2468  | -4388           | -5373           | -6158            | -                 | -8853            | -        |  |
| 427084001400 | 3          | 23             |                      |   | 86  | -828                             | -1628  | -2488  | -5078           | -               | -7244            | -                 | -10678           | -        |  |
| 427080005700 | 3          | 24             |                      |   | 82  | -                                | -      | -      | -5846           | -               | -7813            | -                 | -11851           | -        |  |
| 427084032300 | 3          | 25             |                      |   | 95  | -                                | -      | -      | -9263           | -12058          | -                | -                 | -                | -        |  |
| 427084012800 | 3          | 26             |                      |   | 101 | -1218                            | -2278  | -3373  | -11948          | -               | -                | -                 | -                | -        |  |
| 424553048500 | 4          | 1?             |                      |   | 352 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 424550002200 | 4          | 2              |                      |   | 378 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 424550003200 | 4          | 3              |                      |   | 253 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 423730003000 | 4          | 4              |                      |   | 277 | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 423733012000 | 4          | 5              |                      |   | 234 | -                                | -      | -      | -               | -               | -                | -                 | -                | -218     |  |
| 423733097500 | 4          | 6              | D                    | 6 | 313 | -                                | -      | -8     | -               | -               | -                | -                 | -946             | -1408    |  |
| 423730035900 | 4          | 7              |                      |   | 223 | -                                | -      | -228   | -               | -               | -398             | -728              | -1228            | -1718    |  |
| 422910018900 | 4          | 8              |                      |   | 105 | -                                | -      | -623   | -               | -               | -868             | -1318             | -1838            | -2395    |  |
| 422910022100 | 4          | 9              | С                    | 6 | 68  | 102                              | -368   | -658   | -               | -               | -828             | -1398             | -1978            | -2594    |  |

| Dip          |            | )ip                              | Strike |    |          | Stratigraphic Contacts (ft, msl) |        |                 |                 |                  |                   |                  |          |       |
|--------------|------------|----------------------------------|--------|----|----------|----------------------------------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|-------|
| UWI/API      | Sec<br>Pos | Section/Section/PositionPosition |        | KB | Beaumont | Lissie                           | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |       |
| 422910032500 | 4          | 10                               |        |    | 102      | -16                              | -628   | -993            | -               | -1268            | -1742             | -2358            | -3328    | -4248 |
| 422910180200 | 4          | 11                               |        |    | 87       | -168                             | -768   | -1178           | -1488           | -2091            | -2618             | -3251            | -4178    | -4887 |
| 422910167000 | 4          | 12                               |        |    | 76       | -68                              | -698   | -1068           | -               | -1618            | -2130             | -2790            | -3738    | -4420 |
| 422910476500 | 4          | 13                               | В      | 6  | 56       | -188                             | -843   | -1235           | -1766           | -2385            | -3065             | -3683            | -4705    | -5551 |
| 420713130200 | 4          | 14                               |        |    | 49       | -                                | -      | -               | -2048           | -2680            | -3399             | -4175            | -5415    | -6383 |
| 420710217700 | 4          | 15                               |        |    | 32       | -423                             | -1063  | -1478           | -2528           | -3318            | -4170             | -4880            | -5988    | -7028 |
| 427080002200 | 4          | 16                               |        |    | 40       | -548                             | -1194  | -1555           | -3658           | -4430            | -5359             | -6073            | -7243    | -8878 |
| 427083033200 | 4          | 16A                              | А      | 4  | 89       | -                                | -      | -               | -3754           | -5618            | -5442             | -6108            | -7574    | -     |
| 427084013000 | 4          | 17                               |        |    | 106      | -758                             | -1503  | -1900           | -4028           | -4978            | -5554             | -6048            | -7640    | -     |
| 427084015400 | 4          | 18                               |        |    | 104      | -663                             | -1795  | -2725           | -6140           | -8678            | -9943             | -11198           | -15258   | -     |
| 427084008500 | 4          | 19                               |        |    | 100      | -1238                            | -2668  | -4078           | -7368           | -9825            | -11343            | -                | -        | -     |
| 427084012600 | 4          | 20                               |        |    | 101      | -1538                            | -2913  | -3968           | -8558           | -11368           | -12403            | -                | -        | -     |
| 424710019900 | 5          | 0                                |        |    | 298      | -                                | -      | -               | -               | -                | -                 | -                | -        | -     |
| 424710001400 | 5          | 1                                |        |    | 153      | -                                | -      | -               | -               | -                | -                 | -                | -        | -     |
| 424710009700 | 5          | 2                                |        |    | 218      | -                                | -      | -               | -               | -                | -                 | -                | -        | -     |
| 4-6          | 5          | 2A                               |        |    | 148      | -                                | -      | -               | -               | -                | -                 | -                | -        | -     |
| 424070012700 | 5          | 3                                |        |    | 349      | -                                | -      | -               | -               | -                | -                 | -                | -        | -     |
| 424073003300 | 5          | 4                                |        |    | 315      | -                                | -      | -               | -               | -                | -                 | 12               | -548     | -998  |
| 424073007800 | 5          | 4.5                              | D      | 5  | 240      | -                                | -      | -               | -               | -                | -                 | -478             | -1018    | -1438 |
| 424070015600 | 5          | 5                                |        |    | 199      | -                                | -      | -163            | -               | -                | -358              | -804             | -1218    | -1718 |
| 424070021400 | 5          | 6                                |        |    | 194      | -                                | -      | -208            | -               | -                | -483              | -878             | -1438    | -2003 |
| 4-12         | 5          | 6.5                              |        |    | 154      | -                                | -      | -               | -               | -                | -                 | -                | -        | -     |
| 422910391400 | 5          | ?                                |        |    | 78       | -                                | -      | -               | -               | -                | -                 | -                | -        | -     |
| 422910008600 | 5          | 7                                |        |    | 150      | -                                | -8     | -348            | -               | -566             | -983              | -1363            | -1943    | -2568 |
| 4-13         | 5          | 7A                               |        |    | 120      | -                                | -      | -               | -               | -                | -                 | -                | -1948    | -2644 |
| 422910501800 | 5          | 8                                | С      | 5  | 144      | -                                | -8     | -328            | -               | -668             | -1034             | -1442            | -2058    | -2728 |
| 422913252800 | 5          | ?                                | В      | 7  | 69       | -                                | -      | _               | _               | -                | -                 | -                | -        | -     |
| 422910388000 | 5          | 9                                |        |    | 90       | 75                               | -646   | -1298           | -               | -1889            | -2376             | -3143            | -4038    | -4926 |

### Final Report – Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer

| Dip          |            | Dip            | Strike               |   |       | Stratigraphic Contacts (ft, msl) |        |        |                 |                 |                  |                   |                  |          |  |
|--------------|------------|----------------|----------------------|---|-------|----------------------------------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|--|
| UWI/API      | Sec<br>Pos | tion/<br>ition | Section/<br>Position |   | KB    | Beaumont                         | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |  |
| 422910391400 | 5          | 10N            |                      |   | 93    | -                                | -      | -      | -               | -1588           | -2028            | -2573             | -3368            | -4131    |  |
| 422910438400 | 5          | 11             |                      |   | 90    | -96                              | -488   | -868   | -               | -               | -1463            | -2320             | -3463            | -4412    |  |
| 420710022600 | 5          | 12             |                      |   | 53    | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 4-18         | 5          | 12N            |                      |   | 55    | -                                | -      | -      | -1733           | -2348           | -2788            | -3508             | -4448            | -5324    |  |
| 420713145800 | 5          | 13             | В                    | 5 | 54    | -78                              | -703   | -1018  | -1738           | -               | -2998            | -3606             | -4573            | -5498    |  |
| 420710097200 | 5          | 14             |                      |   | 39    | -128                             | -718   | -1203  | -1863           | -2553           | -3223            | -3913             | -4948            | -5666    |  |
| 420710269600 | 5          | 15             |                      |   | 19    | -233                             | -783   | -1298  | -2278           | -2990           | -3835            | -4463             | -5358            | -6233    |  |
| 420710274000 | 5          | 16             |                      |   | 20    | -248                             | -848   | -1348  | -2239           | -2939           | -3803            | -4608             | -5478            | -6391    |  |
| 420710246600 | 5          | 17             |                      |   | 16    | -283                             | -893   | -1348  | -2382           | -3138           | -3990            | -4701             | -5588            | -6653    |  |
| 420710243200 | 5          | 18             |                      |   | 25    | -328                             | -938   | -1373  | -2453           | -3241           | -4258            | -4964             | -5811            | -7058    |  |
| 421670095600 | 5          | 19             |                      |   | 19    | -378                             | -968   | -1613  | -2523           | -3278           | -4393            | -5153             | -5803            | -7268    |  |
| 421670095900 | 5          | 20             |                      |   | 18    | -393                             | -1048  | -1668  | -2568           | -3360           | -4478            | -5491             | -6368            | -6588    |  |
| 427063011100 | 5          | 21             |                      |   | 80    | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 427063004200 | 5          | 22             | А                    | 2 | 75    | -578                             | -1168  | -1938  | -3788           | -4588           | -5608            | -6983             | -7998            | -        |  |
| 427064003100 | 5          | 22             | А                    | 3 | 90    | -                                | -1198  | -1828  | -4033           | -5415           | -6411            | -7968             | -9558            | -        |  |
| 427084014500 | 5          | 23             |                      |   | 100   | -888                             | -1608  | -2388  | -5463           | -7218           | -9328            | -                 | -                | -        |  |
| 427084028900 | 5          | 24             |                      |   | 101   | -1578                            | -2688  | -      | -               | -               | -                | -                 | -                | -        |  |
| 427084042900 | 5          | 26             |                      |   | 95    | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 427084062600 | 5          | 27             |                      |   | 148   | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 424713002200 | 6          | 1              |                      |   | 407   | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 424710014800 | 6          | 2              |                      |   | 272   | -                                | -      | -      | -               | -               | -                | -                 | -                | -        |  |
| 424710018000 | 6          | 3              |                      |   | 363   | -                                | -      | -      | -               | -               | -                | -                 | -                | 12       |  |
| 424710018900 | 6          | 4              |                      |   | 308   | -                                | -      | -      | -               | -               | -                | 42                | -233             | -558     |  |
| 423390086800 | 6          | 5              |                      |   | 316.2 | -                                | -      | -      | -               | -               | -158             | -438              | -763             | -1203    |  |
| 423390090100 | 6          | 6              | D                    | 3 | 343   | -                                | -      | -      | _               | _               | -375             | -904              | -1228            | -1653    |  |
| 423390008600 | 6          | 7              | D                    | 4 | 249   | -                                | -      | -      | -               | -               | -740             | -1108             | -1438            | -1858    |  |
| 423390020200 | 6          | 8              |                      |   | 184   | -                                | -      | -78    | -               | -               | -513             | -1008             | -1428            | -1893    |  |
| 423393082000 | 6          | 9              |                      |   | 172   | -                                | -      | -188   | -               | -               | -                | -                 | -1403            | -1678    |  |

### Final Report – Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aquifer

| I            |            | Dip            | p Strike     |                      |     |          |        |        |                 |                 |                  |                   |                  |          |
|--------------|------------|----------------|--------------|----------------------|-----|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| UWI/API      | Sec<br>Pos | tion/<br>ition | Sect<br>Posi | Section/<br>Position |     | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
| 423390171800 | 6          | 10             |              |                      | 127 | -        | -43    | -353   | -               | -633            | -988             | -1714             | -2218            | -2868    |
| 423393073700 | 6          | 10A            |              |                      | 97  | -        | -      | -      | -               | -               | -                | -                 | -                | -2738    |
| 422010760300 | 6          | 11             | C            | 4                    | 98  | -        | -348   | -773   | -845            | -1338           | -1699            | -2183             | -2738            | -3281    |
| 422010272200 | 6          | 12             |              |                      | 70  | 22       | -438   | -913   | -1120           | -1553           | -1928            | -2443             | -3028            | -3648    |
| 422013203800 | 6          | 13             |              |                      | 65  | -        | -      | -      | -               | -               | -                | -                 | -3223            | -3833    |
| 422010280100 | 6          | 13             |              |                      | 58  | -48      | -      | -      | -               | -               | -                | -                 | -3863            | -4533    |
| 422013261300 | 6          | 14             |              |                      | 42  | -113     | -678   | -1298  | -1580           | -2070           | -2508            | -3223             | -3958            | -4633    |
| 422010604400 | 6          | 15             | В            | 4                    | 34  | -188     | -796   | -1338  | -1633           | -2478           | -2978            | -3808             | -4648            | -5413    |
| 420710309600 | 6          | 16             |              |                      | 21  | -218     | -668   | -1478  | -2278           | -3231           | -3928            | -4783             | -5648            | -6518    |
| 421670096600 | 6          | 17             |              |                      | 22  | -268     | -818   | -1661  | -2470           | -3603           | -4603            | -5308             | -6220            | -7098    |
| 421673009100 | 6          | 18             |              |                      | 17  | -603     | -1165  | -2130  | -4578           | -5823           | -6968            | -8348             | -9363            | -        |
| 427064038000 | 6          | 19             |              |                      | 82  | -548     | -1038  | -1720  | -               | -               | -6200            | -                 | -8098            | -        |
| 427064009000 | 6          | 20             |              |                      | 67  | -868     | -1598  | -2398  | -6778           | -8878           | -                | -                 | -                | -        |
| 427064044600 | 6          | 21             |              |                      | 97  | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 427084027900 | 6          | 22             |              |                      | 81  | -1598    | -2683  | -      | -               | -               | -                | -                 | -                | -        |
| 427084062600 | 6          | 23             |              |                      | 147 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 421850006100 | 7          | 1              |              |                      | 267 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 421850003400 | 7          | 2              |              |                      | 300 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 421850015000 | 7          | 3              |              |                      | 350 | -        | -      | -      | -               | -               | -                | -98               | -233             | -648     |
| 421853032100 | 7          | 3A             |              |                      | 361 | -        | -      | -      | -               | -               | -                | -                 | -288             | -696     |
| 421853000900 | 7          | 4              |              |                      | 341 | -        | -      | 77     | -               | -               | -338             | -684              | -983             | -1348    |
| 424733006600 | 7          | 5              | D            | 2                    | 292 | -        | -      | -      | -               | -148            | -590             | -1015             | -1343            | -1753    |
| 423390101400 | 7          | 6              |              |                      | 240 | -        | -      | -188   | -               | -539            | -922             | -1340             | -1698            | -2168    |
| 423393085200 | 7          | 7              |              |                      | 210 | -        | -      | -198   | -               | -513            | -913             | -1328             | -1676            | -2190    |
| 422010004800 | 7          | 8              |              |                      | 231 | -        | _      | -208   | _               | -418            | -920             | -1298             | -1608            | -2188    |
| 422010010400 | 7          | 9              |              |                      | 220 |          | -      | -218   |                 | -471            | -947             | -1368             | -1678            | -2244    |
| 422013140000 | 7          | 9.2            |              |                      | 175 |          |        |        |                 |                 |                  |                   |                  |          |
| 422013167000 | 7          | 9.7            |              |                      | 137 | -        | -      | -      | -               | -1178           | -1628            | -2048             | -2533            | -3038    |
| Dip<br>UWI/API Section/ |            | Sti            | ike        |                |     |          |        | Stratigrap | hic Contac      | ets (ft, msl)   |                  |                   |                  |          |
|-------------------------|------------|----------------|------------|----------------|-----|----------|--------|------------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| UWI/API                 | Sec<br>Pos | tion/<br>ition | Sec<br>Pos | tion/<br>ition | KB  | Beaumont | Lissie | Willis     | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
| 422013162200            | 7          | 10             | С          | 3              | 123 | -        | -128   | -693       | -               | -1086           | -1595            | -2018             | -2523            | -3078    |
| 422010345500            | 7          | 11             |            |                | 104 | 22       | -175   | -650       | -760            | -1386           | -1804            | -2153             | -2678            | -3270    |
| 422010790400            | 7          | 10.5A          | С          | 2              | 120 | 97       | -138   | -651       | -               | -1243           | -1715            | -2046             | -2658            | -3293    |
| 422010351000            | 7          | 11             |            |                | 88  | 97       | -124   | -698       | -               | -1201           | -1698            | -2138             | -2748            | -3580    |
| 422010505800            | 7          | 12             |            |                | 80  | -38      | -168   | -938       | -               | -1388           | -1958            | -2368             | -3173            | -        |
| 422013001600            | 7          | 12N            | В          | 2              | 48  | -        | -      | -1173      | -               | -1926           | -2403            | -2968             | -3458            | -3953    |
| 422010556800            | 7          | 13             |            |                | 63  | -75      | -404   | -1064      | -1283           | -1903           | -2408            | -2888             | -3623            | -4278    |
| 422010611400            | 7          | 14             | В          | 3              | 61  | -140     | -438   | -1070      | -1376           | -2196           | -2688            | -3508             | -4293            | -5133    |
| 421670003500            | 7          | 15             |            |                | 45  | -188     | -488   | -1126      | -1688           | -2593           | -3048            | -3771             | -4508            | -5275    |
| 420390084700            | 7          | 15             |            |                | 52  | -273     | -600   | -1268      | -1698           | -2660           | -3248            | -4018             | -4668            | -5540    |
| 421670187600            | 7          | 16             |            |                | 61  | -418     | -750   | -1438      | -2076           | -3199           | -3898            | -4808             | -5518            | -6618    |
| 421670145300            | 7          | 17             |            |                | 50  | -        | -      | -          | -2230           | -3368           | -4109            | -4993             | -5813            | -7015    |
| 421670144800            | 7          | 18             |            |                | 43  | -413     | -860   | -1488      | -2293           | -3430           | -4204            | -5053             | -5888            | -7098    |
| 421670133600            | 7          | 19             |            |                | 42  | -418     | -904   | -1536      | -2371           | -3478           | -4148            | -5018             | -5878            | -7188    |
| 421673003900            | 7          | 20             |            |                | 26  | -498     | -908   | -1608      | -2478           | -3733           | -4408            | -5298             | -6338            | -7633    |
| 421670191600            | 7          | 21             |            |                | 26  | -630     | -1078  | -1668      | -2881           | -4308           | -5038            | -5998             | -7153            | -8733    |
| 427060008600            | 7          | 21             | Α          | 1              | 52  | -528     | -985   | -1558      | -3272           | -4943           | -5863            | -7158             | -                | -        |
| 427060002700            | 7          | 22             |            |                | 68  | -688     | -1120  | -1858      | -4418           | -6606           | -7508            | -8678             | -11006           | -        |
| 427060012400            | 7          | 23             |            |                | 85  | -        | -      | -2678      | -6988           | -               | -                | -                 | -                | -        |
| 427064009700            | 7          | 24             |            |                | 90  | -        | -2328  | -          | -               | -               | -                | -                 | -                | -        |
| 424773062500            | 8          | 1              |            |                | 276 | -        | -      | -          | -               | -               | -                | -                 | -                | -        |
| 424770023900            | 8          | 2              |            |                | 362 | -        | -      | -          | -               | -               | -                | -                 | -                | 52       |
| 424770027200            | 8          | 3              |            |                | 195 | -        | -      | -          | -               | -               | -                | -                 | -                | -        |
| 424770029400            | 8          | 4              |            |                | 214 | -        | -      | -          | -               | -148            | -348             | -633              | -863             | -1243    |
| 420153013800            | 8          | 4.5            |            |                | 267 | -        | -      | 62         | -53             | -298            | -500             | -801              | -1073            | -1433    |
| 420150023000            | 8          | 5              | D          | 1              | 160 | -        | -      | 22         | -238            | -378            | -591             | -808              | -1118            | -1493    |
| 424730024300            | 8          | 6              |            |                | 152 | -        | -      | -78        | -478            | -778            | -878             | -1058             | -1398            | -1753    |
| 424730031800            | 8          | 7              |            |                | 211 | -        | -28    | -268       | -643            | -1003           | -1478            | -1918             | -2428            | -3138    |

| Dip<br>UW/I/A PI Section/ |            |                | Sti        | rike           |     |          |        |        | Stratigrap      | ohic Contac     | ets (ft, msl)    |                   |                  |          |
|---------------------------|------------|----------------|------------|----------------|-----|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| UWI/API                   | Sec<br>Pos | tion/<br>ition | Sec<br>Pos | tion/<br>ition | KB  | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
| 421570000100              | 8          | 8              |            |                | 158 | -        | -146   | -378   | -738            | -1043           | -1468            | -1908             | -2383            | -2898    |
| 421570102600              | 8          | 9              | С          | 1              | 123 | -        | -286   | -583   | -818            | -1258           | -1813            | -2248             | -2788            | -3340    |
| 421573198300              | 8          | 10             |            |                | 102 | 124      | -305   | -593   | -838            | -1323           | -1788            | -2328             | -3038            | -3529    |
| 421570089400              | 8          | 11             |            |                | 89  | 22       | -388   | -665   | -1143           | -1800           | -2368            | -2848             | -3773            | -4277    |
| 421570245900              | 8          | 12             | В          | 1              | 75  | -88      | -573   | -843   | -1478           | -2093           | -2618            | -3093             | -3953            | -4683    |
| 420390145200              | 8          | 13             |            |                | 54  | -216     | -720   | -1018  | -2048           | -2675           | -3328            | -3928             | -4868            | -6008    |
| 420390422400              | 8          | 14             |            |                | 45  | -258     | -793   | -1118  | -2103           | -2823           | -3488            | -4128             | -5188            | -6978    |
| 420390427700              | 8          | 15             |            |                | 22  | -381     | -978   | -1288  | -2658           | -3338           | -4205            | -4778             | -5828            | -7748    |
| 420390429100              | 8          | 16             |            |                | 14  | -458     | -983   | -1318  | -2783           | -3593           | -4543            | -5358             | -                | -        |
| 427060002200              | 8          | 17             |            |                | 25  | -653     | -1193  | -1548  | -3538           | -4783           | -6018            | -7378             | -8798            | -        |
| 420150001700              | 9          | 1              |            |                | 335 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 420153053900              | 9          | 2              |            |                | 314 | -        | -      | -      | -               | -               | -                | -                 | -                | -        |
| 420150066300              | 9          | 3              |            |                | 263 | -        | -      | -38    | -               | -458            | -668             | -978              | -1358            | -1798    |
| 420150026200              | 9          | 4              |            |                | 212 | -        | -      | -108   | -23             | -628            | -893             | -1193             | -1650            | -2120    |
| 420150068300              | 9          | 5              |            |                | 152 | -        | -      | -298   | -538            | -1128           | -1518            | -1843             | -2408            | -2928    |
| 420153073800              | 9          | 6              |            |                | 129 | -        | -68    | -428   | -678            | -1348           | -1818            | -2100             | -2698            | -3211    |
| 421573175200              | 9          | 7              |            |                | 141 | -        | -198   | -428   | -798            | -1428           | -1908            | -2208             | -2758            | -3501    |
| 421573180500              | 9          | 8              |            |                | 124 | -        | -188   | -550   | -878            | -1518           | -2028            | -2388             | -3000            | -3776    |
| 421570167400              | 9          | 9              |            |                | 84  | -98      | -458   | -798   | -1423           | -2148           | -2820            | -3298             | -3948            | -4748    |
| 420390271500              | 9          | 10             |            |                | 61  | -188     | -403   | -738   | -1168           | -1868           | -2328            | -3018             | -4168            | -5053    |
| 420390286500              | 9          | 11             |            |                | 57  | -328     | -633   | -1183  | -1653           | -2518           | -3158            | -                 | -                | -        |
| 420390389800              | 9          | 13             |            |                | 48  | -528     | -888   | -1358  | -1778           | -2638           | -3463            | -4168             | -5098            | -6588    |
| 420393035000              | 9          | 14             |            |                | 33  | -668     | -1128  | -1638  | -2248           | -3088           | -3898            | -4428             | -5558            | -7318    |
| 420393211000              | 9          | 15             |            |                | 43  | -        | -      | -      | -2813           | -3708           | -4500            | -4988             | -6583            | -        |
| 420390481100              | 9          | 16             |            |                | 23  | -598     | -1123  | -1418  | -2933           | -3898           | -4708            | -5848             | -8148            | -        |
| 427064036000              | 9          | 17             |            |                | 98  | -        |        | -3768  | -5528           | -6748           | -                | -                 |                  |          |
| 421493208800              | 10         | 1              |            |                | 388 | -        |        | _      |                 |                 | -                | -                 |                  |          |
| 421493132900              | 10         | 2              |            |                | 417 | -        | -      | -      | -               | -               | -                | -                 | -63              | -368     |

|              | UWI/API Dij |                |              | ike            |     |          |        |        | Stratigrap      | hic Contac      | ts (ft, msl)     |                   |                  |          |
|--------------|-------------|----------------|--------------|----------------|-----|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| UWI/API      | Sec<br>Pos  | tion/<br>ition | Sect<br>Posi | tion/<br>ition | KB  | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
| 420893153100 | 10          | 3              |              |                | 293 | -        | -      | -      | -93             | -376            | -453             | -618              | -828             | -1128    |
| 420890005700 | 10          | 4              |              |                | 250 | -        | -      | -      | -193            | -528            | -596             | -728              | -958             | -1245    |
| 420890009000 | 10          | 5              |              |                | 331 | -        | -      | -113   | -548            | -807            | -933             | -1118             | -1348            | -1745    |
| 420893124600 | 10          | 6              |              |                | 232 | -        | 74     | -123   | -453            | -872            | -1140            | -1378             | -1718            | -2264    |
| 424810121800 | 10          | 8              |              |                | 176 | -        | -21    | -304   | -755            | -1228           | -1638            | -1866             | -2351            | -2980    |
| 424810120500 | 10          | 9              |              |                | 155 | -        | -48    | -305   | -926            | -1408           | -1645            | -1968             | -2488            | -        |
| 424813344200 | 10          | 10             |              |                | 136 | -        | -98    | -453   | -933            | -1488           | -1858            | -2248             | -2673            | -3390    |
| 424813403300 | 10          | 11             |              |                | 125 | -        | -120   | -386   | -1308           | -1838           | -2208            | -2585             | -3048            | -3768    |
| 424813294400 | 10          | 12             |              |                | 121 | -31      | -303   | -596   | -1550           | -2348           | -2721            | -3468             | -4270            | -5021    |
| 424810256200 | 10          | 13             |              |                | 92  | -90      | -353   | -638   | -1228           | -1888           | -2338            | -3028             | -3878            | -4683    |
| 423210034100 | 10          | 14             |              |                | 70  | -        | -      | -      | -1524           | -2138           | -2878            | -3518             | -4668            | -5783    |
| 422310067000 | 10          | 15             |              |                | 56  | -315     | -798   | -1110  | -1643           | -2308           | -3468            | -4213             | -5548            | -6628    |
| 423210083600 | 10          | 16             |              |                | 45  | -388     | -923   | -1218  | -1678           | -2318           | -3825            | -4498             | -5823            | -7598    |
| 423210082400 | 10          | 17             |              |                | 27  | -458     | -1038  | -1158  | -2428           | -3103           | -4431            | -5018             | -6808            | -        |
| 427043007300 | 10          | 18             |              |                | 71  | -628     | -1288  | -1376  | -2853           | -3633           | -5375            | -6736             | -                | -        |
| 427040007100 | 10          | 19             |              |                | 74  | -768     | -1448  | -1508  | -4213           | -5268           | -7528            | -                 | -                | -        |
| 427043000500 | 10          | 20             |              |                | 84  | -        | -      | -1653  | -4258           | -5848           | -                | -                 | -                | -        |
| 427040007000 | 10          | 21             |              |                | 77  | -        | -1958  | -1958  | -               | -               | -                | -                 | -                | -        |

## **APPENDIX C**

# Estimated Total Sand Thickness at Each Geophysical Log Location

This page is intentionally left blank.

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 424810138700          | 6035547      | 18997873      |          | 129    | 196    | 175             | 220             | 165              |                   |                  |          |
| 424810140100          | 6025918      | 18957772      |          |        |        | 187             | 125             | 151              | 155               | 195              | 335      |
| 424810114000          | 6135892      | 19014986      |          |        |        | 294             | 203             | 40               |                   |                  |          |
| 424810067100          | 6229756      | 18982945      | 20       | 205    | 0      | 265             | 170             | 205              | 175               | 190              | 105      |
| EBD_5                 | 6200122      | 18995993      |          |        | 20     | 270             | 120             | 59               |                   |                  |          |
| EBD_6                 | 6192590      | 19043826      |          |        | 0      | 85              | 190             | 0                |                   |                  |          |
| EBD_7                 | 6053655      | 19069378      |          |        | 60     | 40              | 30              | 90               | 96                |                  |          |
| 420890035400          | 5999163      | 19131456      |          |        |        |                 |                 | 155              | 33                | 77               | 100      |
| EBD_12                | 6061928      | 19050395      |          |        | 3      | 118             | 84              | 130              |                   |                  |          |
| 420890044800          | 6003638      | 19084883      |          |        |        |                 | 68              | 150              | 78                |                  |          |
| 420890001500          | 6022609      | 19186912      |          |        |        |                 |                 | 91               |                   |                  |          |
| 420890044000          | 6000214      | 19087263      |          |        |        |                 | 61              | 155              | 80                |                  |          |
| 420890005700          | 6013839      | 19166222      |          |        |        |                 |                 | 181              | 88                |                  |          |
| EBD_17                | 6090905      | 19191390      |          |        |        |                 | 0               | 185              | 90                |                  |          |
| EBD_18                | 6057533      | 19223214      |          |        |        |                 |                 |                  | 116               |                  |          |
| EBD_19                | 6128111      | 19238651      |          |        |        |                 |                 |                  | 235               | 202              | 8        |
| 420150062400          | 6073749      | 19238385      |          |        |        |                 |                 |                  | 230               | 142              | 44       |
| EBD_225               | 6151561      | 19120146      |          |        | 280    | 238             | 132             | 185              | 130               | 310              | 25       |
| 420150023000          | 6143877      | 19254370      |          |        | 105    |                 | 58              | 169              | 198               | 215              | 110      |
| EBD_24                | 6096029      | 19187933      |          |        |        |                 | 26              | 240              | 75                | 195              |          |
| EBD_25                | 6047703      | 19256823      |          |        |        |                 |                 |                  |                   | 115              | 275      |
| EBD_26                | 6050847      | 19208397      |          |        |        |                 |                 | 163              |                   |                  |          |
| EBD_44                | 6070047      | 18874065      |          | 74     | 11     | 190             | 60              |                  |                   |                  |          |
| 423210254700          | 6240661      | 18798392      | 220      | 130    | 95     | 385             | 289             | 305              | 561               | 230              |          |
| 423210098800          | 6191378      | 18885869      | 119      | 155    | 185    | 195             | 60              | 175              |                   |                  |          |
| 423210253900          | 6228962      | 18792716      |          | 123    | 117    | 290             | 397             |                  |                   |                  |          |
| EBD_75                | 6155852      | 18849776      |          | 86     | 136    | 200             | 85              |                  |                   |                  |          |
| EBD_76                | 6192898      | 18799336      |          | 130    | 85     | 210             | 85              |                  |                   |                  |          |
| 423210107500          | 6269562      | 18843776      | 255      | 125    | 0      | 238             | 242             | 55               | 119               | 651              |          |
| 423210130600          | 6147221      | 18879363      | 83       | 207    | 0      | 55              | 25              | 145              |                   |                  |          |
| EBD_81                | 6146544      | 18890828      |          | 157    | 105    | 160             | 135             | 124              | 40                | 0                | 175      |
| 423010250700          | 6178707      | 18755395      | 185      | 195    | 29     | 166             | 239             |                  |                   |                  |          |
| 423210067000          | 6265951      | 18914119      | 140      | 100    | 0      | 85              | 220             |                  |                   |                  |          |
| EBD_86                | 6204097      | 18930261      | 141      | 115    | 0      | 185             | 45              | 75               |                   |                  |          |
| EBD_87                | 6253457      | 18807755      |          | 260    | 310    | 555             | 276             |                  |                   |                  |          |
| 423210083800          | 6264301      | 18884252      | 230      | 100    | 0      | 160             | 150             | 131              | 479               | 190              |          |
| 423210251400          | 6190532      | 18757551      | 131      | 79     | 30     | 240             |                 |                  |                   |                  |          |

Appendix C Estimated Total Sand Thickness at Each Geophysical Log Location

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 422850002900          | 5937646      | 19070286      |          |        |        |                 |                 | 133              | 67                | 60               | 60       |
| 422850003000          | 5958331      | 19062729      |          |        |        |                 | 31              | 190              |                   |                  |          |
| 422850019100          | 5927649      | 19056557      |          |        |        |                 |                 | 87               |                   |                  |          |
| 422850032600          | 5975280      | 19018207      |          |        |        | 70              | 45              | 105              | 97                | 85               | 140      |
| 420890009000          | 6049648      | 19165097      |          |        | 195    |                 | 115             | 250              | 75                | 0                | 325      |
| EBD_104               | 6056075      | 19023200      |          | 113    | 115    | 157             | 140             | 115              | 139               | 40               |          |
| EBD_105               | 6055086      | 19062786      |          | 81     | 118    | 75              | 109             | 129              | 118               | 69               | 195      |
| 420890034500          | 6022033      | 19141083      |          |        |        |                 | 78              | 133              | 85                | 20               | 80       |
| 420893059400          | 6089433      | 19134546      |          |        |        |                 | 100             | 190              | 0                 | 31               | 30       |
| 420893057000          | 6041813      | 19103284      |          |        | 120    | 16              | 142             | 137              | 115               |                  |          |
| 420890097000          | 6072598      | 19106978      |          |        | 198    | 62              | 185             | 75               |                   |                  |          |
| 420893102900          | 6076947      | 19086154      |          |        | 158    | 117             | 270             | 250              | 55                | 0                | 50       |
| 420893122100          | 5975303      | 19090595      |          |        |        |                 | 45              | 120              | 90                | 70               |          |
| EBD_116               | 6042997      | 19067670      |          |        | 118    | 60              | 118             | 137              | 138               |                  |          |
| 420893137600          | 6106355      | 19114492      |          |        | 133    | 94              | 83              | 149              | 106               |                  |          |
| 420893107600          | 6122197      | 19118420      |          | 113    | 134    | 116             | 217             | 228              |                   |                  |          |
| 420890008800          | 6064495      | 19176688      |          |        |        |                 | 120             | 180              |                   |                  |          |
| 420890072400          | 6080152      | 19064741      |          |        | 244    | 171             | 196             | 100              | 139               |                  |          |
| 424810002000          | 6111819      | 19083227      |          | 140    | 204    | 167             | 255             | 70               | 50                | 40               | 100      |
| 424810121800          | 6102782      | 19057901      |          |        | 171    | 53              | 228             | 29               | 70                |                  |          |
| 424810094300          | 6148386      | 19046336      |          |        | 221    | 208             | 295             | 153              | 232               | 125              | 389      |
| 424813344200          | 6145093      | 19020425      |          | 188    | 236    | 347             | 194             | 130              | 86                | 125              | 300      |
| 424813326000          | 6120115      | 19016247      |          | 125    | 195    | 225             | 145             |                  |                   |                  |          |
| 424813376900          | 6094382      | 19011199      |          | 149    | 205    | 165             | 131             | 84               |                   |                  |          |
| 424813336100          | 6079109      | 18991918      |          | 193    | 77     | 350             | 146             | 136              | 98                | 50               | 220      |
| 424810147800          | 6068314      | 18956092      |          | 145    | 153    | 281             | 187             | 75               | 150               |                  |          |
| 424813147700          | 6100928      | 18951830      |          | 137    | 63     | 180             | 185             |                  |                   |                  |          |
| EBD_131               | 6135287      | 18939030      |          | 144    | 190    | 541             |                 |                  |                   |                  |          |
| 424810280200          | 6167272      | 18936731      |          | 115    | 190    | 562             | 236             |                  |                   |                  |          |
| 424813252100          | 6215588      | 18988959      | 181      | 195    | 264    | 340             |                 |                  |                   |                  |          |
| 423210011600          | 6184689      | 18917157      | 142      | 216    | 178    | 569             | 110             | 157              | 48                | 60               |          |
| 423210061200          | 6244259      | 18948676      | 257      | 77     | 146    | 565             | 140             | 112              |                   |                  |          |
| 423210196700          | 6151230      | 18798446      | 166      | 224    | 209    | 616             | 273             |                  |                   |                  |          |
| 423210204300          | 6158877      | 18823819      | 104      | 151    | 145    | 460             | 185             | 234              | 0                 | 110              |          |
| 423210211900          | 6178236      | 18838273      | 197      | 227    | 143    | 641             | 249             |                  |                   |                  |          |
| 423213115900          | 6182739      | 18865643      | 52       | 193    | 66     | 344             | 330             | 20               | 90                | 33               | 259      |
| 423210102600          | 6214550      | 18883181      | 140      | 90     | 108    | 417             | 210             | 140              | 135               | 0                | 205      |
| 423210262100          | 6233281      | 18860934      | 207      | 208    | 140    | 360             | 205             |                  |                   |                  |          |
| 423210067100          | 6251340      | 18912232      | 298      | 308    | 164    | 429             | 301             |                  |                   |                  |          |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 423213082100          | 6297027      | 18874213      | 317      | 225    | 260    | 563             |                 |                  |                   |                  |          |
| 423210217100          | 6101058      | 18864866      | 134      | 214    | 103    | 432             | 457             |                  |                   |                  |          |
| 423210229500          | 6110938      | 18821009      | 124      | 179    | 130    | 282             | 155             |                  |                   |                  |          |
| 423210013200          | 6192878      | 18902144      | 110      | 131    | 154    | 680             | 125             | 40               |                   |                  |          |
| 423210083600          | 6269996      | 18872635      | 270      | 214    | 61     | 595             | 116             |                  |                   |                  |          |
| 423210082800          | 6306492      | 18840234      | 185      | 263    | 188    | 550             | 176             | 354              | 600               | 0                |          |
| 420890075500          | 6040184      | 19035415      |          | 139    | 162    | 145             | 144             | 140              | 80                |                  |          |
| 420893059200          | 6029435      | 19082663      |          |        | 155    | 20              | 160             | 100              | 180               | 69               |          |
| 420893022900          | 6068958      | 19156790      |          |        | 221    |                 | 132             | 170              | 50                |                  |          |
| EBD_159               | 5957261      | 19082322      |          |        | 23     |                 |                 | 160              |                   |                  |          |
| 420893153100          | 6004105      | 19175688      |          |        |        |                 |                 | 178              | 117               | 0                | 50       |
| EBD_161               | 6025240      | 18994211      |          |        | 146    | 170             | 261             | 111              | 65                |                  |          |
| 420893124600          | 6066177      | 19118867      |          |        | 178    | 63              | 152             | 202              | 145               | 173              | 105      |
| 420893160400          | 6002847      | 18989784      |          |        |        | 135             | 209             | 133              |                   |                  |          |
| 420890067400          | 6019512      | 19012185      |          |        |        | 96              | 230             | 115              | 90                |                  |          |
| 420890048400          | 5974620      | 19059675      |          |        |        |                 | 155             | 202              |                   |                  |          |
| 420890043600          | 6004449      | 19097783      |          |        |        |                 | 40              | 235              | 85                | 80               |          |
| 424810067200          | 6232571      | 18983071      | 135      | 214    | 248    | 296             | 167             | 245              | 75                | 135              | 160      |
| 424810128800          | 6111701      | 18980214      |          | 159    | 239    | 444             | 243             | 151              |                   |                  |          |
| 424813307900          | 6108106      | 19010674      |          | 185    | 209    | 325             | 278             | 190              | 80                |                  |          |
| 424813010500          | 6151231      | 19074697      |          | 102    | 203    | 161             | 222             | 73               | 25                | 20               | 290      |
| EBD_171               | 6061751      | 18979796      |          | 69     | 106    | 235             | 80              | 105              |                   |                  |          |
| 424813294400          | 6189931      | 18973689      |          | 164    | 202    | 566             | 210             | 270              | 115               | 144              | 381      |
| 424813058100          | 6025630      | 18987848      |          |        | 200    | 200             | 67              | 128              |                   |                  |          |
| 424810098900          | 6168613      | 19046742      |          | 157    | 243    | 293             | 418             | 154              |                   |                  |          |
| 424810354400          | 6078085      | 18895342      |          | 207    | 167    | 408             | 170             |                  |                   |                  |          |
| 424810140900          | 6026778      | 18940103      |          |        | 191    | 287             | 185             | 145              |                   |                  |          |
| 424810355000          | 6046916      | 18957081      |          |        | 128    | 211             | 199             | 115              |                   |                  |          |
| 424813162200          | 6179990      | 19068456      |          | 218    | 242    | 107             | 95              | 105              |                   |                  |          |
| EBD_179               | 6049076      | 18934575      |          |        | 105    | 271             | 185             |                  |                   |                  |          |
| 424813336500          | 6189263      | 18968935      | 30       | 184    | 159    | 556             | 219             |                  |                   |                  |          |
| EBD_181               | 6149334      | 19036390      |          | 104    | 148    | 148             | 240             | 175              | 95                |                  |          |
| EBD_182               | 6074555      | 18908110      |          | 110    | 115    | 180             | 140             | 55               | 65                | 42               |          |
| 424813127300          | 6136168      | 18966466      | 0        | 73     | 131    | 382             | 260             | 115              |                   |                  |          |
| EBD_184               | 6119399      | 19099603      |          | 13     | 188    | 71              | 82              | 120              | 96                |                  |          |
| 423210257700          | 6266273      | 18777941      | 105      | 60     | 45     | 395             |                 |                  |                   |                  |          |
| 423210214800          | 6188071      | 18823512      | 226      | 250    | 164    | 571             | 261             | 229              | 45                | 212              |          |
| 423210077400          | 6312524      | 18857548      | 245      | 130    | 98     | 442             |                 |                  |                   |                  |          |
| 423210257800          | 6277044      | 18791497      | 100      | 245    | 179    | 511             | 65              | 484              | 321               |                  |          |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 423210112000          | 6230278      | 18841983      | 216      | 339    | 263    | 397             | 225             |                  |                   |                  |          |
| 423213017100          | 6253662      | 18804959      | 80       | 180    | 330    | 485             |                 |                  |                   |                  |          |
| 423210082400          | 6299307      | 18824202      | 310      | 235    | 120    | 410             |                 |                  |                   |                  |          |
| 423210262600          | 6147983      | 18856948      |          | 222    | 127    | 460             | 280             | 176              | 4                 | 115              |          |
| 423210214700          | 6177638      | 18828994      | 211      | 239    | 130    | 545             | 65              |                  |                   |                  |          |
| 423210171200          | 6118886      | 18882327      | 103      | 184    | 128    | 500             | 280             | 93               | 0                 | 0                |          |
| 423210030800          | 6235611      | 18942219      | 233      | 283    | 252    | 622             | 273             | 85               |                   |                  |          |
| 423210257600          | 6263408      | 18777305      | 160      | 106    | 190    | 280             |                 |                  |                   |                  |          |
| 423210111400          | 6225170      | 18843419      | 248      | 238    | 224    | 575             | 310             |                  |                   |                  |          |
| EBD_202               | 6108467      | 19010651      |          | 0      | 87     | 225             | 203             | 145              | 160               |                  |          |
| EBD_204               | 6185295      | 18755000      |          | 101    | 60     | 330             | 345             | 470              | 462               | 588              |          |
| EBD_205               | 6281591      | 19027769      |          | 141    |        |                 |                 |                  |                   |                  |          |
| 421570137400          | 6189383      | 19046016      |          |        |        | 381             | 259             | 135              | 115               | 40               |          |
| 421570102600          | 6236891      | 19133823      |          | 226    | 273    | 190             | 225             | 30               | 246               |                  |          |
| 421570000100          | 6229066      | 19164117      |          | 252    | 214    | 274             | 81              | 199              | 135               | 230              |          |
| 421570245900          | 6315402      | 19059169      |          | 498    | 293    | 420             | 325             | 99               | 85                | 30               | 280      |
| 421570094000          | 6279327      | 19145816      |          | 384    | 235    | 171             | 234             | 106              | 85                | 66               |          |
| 421570135000          | 6193749      | 19152656      |          | 112    | 172    | 185             | 110             | 177              | 218               |                  |          |
| EBD_212               | 6195036      | 19096741      | 67       | 232    | 238    | 275             | 317             | 65               | 137               |                  |          |
| 421573038600          | 6282950      | 19117531      |          | 287    | 324    | 207             | 351             | 141              |                   |                  |          |
| 421570134900          | 6193081      | 19149909      |          |        |        | 165             | 100             | 157              | 263               |                  |          |
| 421570099600          | 6250102      | 19162276      |          | 284    | 124    | 177             | 55              | 160              | 0                 |                  |          |
| 421570188700          | 6272422      | 19064320      |          | 313    | 185    | 197             | 85              | 80               | 223               |                  |          |
| EBD_217               | 6303491      | 19073050      |          | 169    | 215    | 227             | 308             | 210              |                   |                  |          |
| 420390406900          | 6292992      | 18896903      | 266      | 206    | 239    | 488             | 217             | 483              | 152               | 650              |          |
| 420390191000          | 6341751      | 18987784      |          | 214    | 324    | 582             | 185             | 170              | 40                | 235              |          |
| 420390448100          | 6464519      | 18984140      | 145      | 330    | 40     | 305             | 455             |                  |                   |                  |          |
| 420390427700          | 6417671      | 18944064      | 240      | 348    | 120    | 640             | 305             |                  |                   |                  |          |
| 420390387800          | 6323921      | 18936857      | 179      | 240    | 247    | 328             |                 |                  |                   |                  |          |
| EBD_225               | 6279915      | 18904543      | 140      | 210    | 191    | 479             | 250             |                  |                   |                  |          |
| 420390103200          | 6451019      | 19001078      | 105      | 280    | 383    | 457             | 270             | 334              | 266               | 484              | 496      |
| 420390090300          | 6441119      | 19022759      | 43       | 155    | 190    | 435             | 250             |                  |                   |                  |          |
| 420390387800          | 6323921      | 18936857      | 120      | 50     | 90     | 322             | 318             |                  |                   |                  |          |
| 420390096500          | 6435791      | 19017796      | 217      | 100    | 288    | 444             | 466             |                  |                   |                  |          |
| EBD_230               | 6272385      | 18990290      | 190      | 120    | 239    | 406             | 120             | 230              | 185               | 530              |          |
| EBD_231               | 6461942      | 18867280      |          | 363    | 140    | 540             |                 |                  |                   |                  |          |
| EBD_232               | 6309095      | 18942604      | 145      |        |        |                 |                 |                  |                   |                  |          |
| 420390001500          | 6393949      | 19093435      |          | 501    | 223    | 359             | 227             | 193              | 42                | 0                | 20       |
| 420390098400          | 6434456      | 19013797      |          | 109    | 265    | 490             | 506             |                  |                   |                  |          |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 420390392700          | 6286757      | 18924965      |          | 220    | 227    | 453             | 203             | 252              | 65                | 40               |          |
| 420390446700          | 6370308      | 18934177      | 336      | 279    | 200    | 808             | 122             | 140              | 0                 | 295              | 875      |
| EBD_237               | 6393456      | 18884323      | 220      | 325    | 286    | 679             | 425             | 228              | 966               |                  |          |
| 421570089400          | 6294046      | 19105171      | 27       | 310    | 322    | 281             | 320             | 162              | 219               | 210              | 249      |
| 424810189100          | 6097247      | 18925473      | 110      | 75     | 140    | 480             | 180             | 193              |                   |                  |          |
| 424810188500          | 6103214      | 18925496      | 110      | 100    | 101    | 318             | 211             | 90               |                   |                  |          |
| 424810138700          | 6035629      | 18997786      |          |        | 196    | 175             | 200             | 90               | 130               |                  |          |
| EBD_244               | 6072374      | 18903525      |          |        | 180    | 439             | 179             | 155              |                   |                  |          |
| 424810120500          | 6130797      | 19058526      |          |        | 256    | 155             | 346             | 136              | 133               |                  |          |
| EBD_246               | 6112175      | 19035449      |          |        | 218    | 250             | 253             | 185              | 135               | 384              | 100      |
| EBD_247               | 6144736      | 18944436      |          | 86     | 221    | 428             | 249             | 176              |                   |                  |          |
| EBD_248               | 6276521      | 18854390      | 233      | 225    | 230    | 447             | 128             |                  |                   |                  |          |
| 423210033700          | 6225629      | 18917704      |          |        |        | 206             | 25              | 172              | 160               |                  |          |
| 423210168300          | 6157303      | 18866550      | 85       | 65     | 86     | 464             | 120             | 70               |                   |                  |          |
| EBD_251               | 6195757      | 18877908      | 129      | 176    |        |                 |                 |                  |                   |                  |          |
| EBD_252               | 6150730      | 18893582      | 30       | 161    |        |                 |                 |                  |                   |                  |          |
| EBD_253               | 6338665      | 18885975      | 216      |        |        |                 |                 |                  |                   |                  |          |
| 420390286500          | 6288679      | 18959489      | 125      | 155    | 155    | 615             | 130             |                  |                   |                  |          |
| EBD_255               | 6366107      | 18892648      | 212      | 118    | 101    | 246             | 284             | 65               |                   |                  |          |
| 420153073800          | 6174120      | 19112131      |          | 130    | 223    | 192             | 75              | 20               | 100               |                  |          |
| 420393256500          | 6404696      | 18919506      | 190      |        |        |                 |                 |                  |                   |                  |          |
| EBD_260               | 6429280      | 19082415      |          |        |        |                 |                 | 113              | 72                | 140              | 151      |
| 420393189100          | 6346955      | 18863970      | 140      |        |        |                 |                 |                  |                   |                  |          |
| EBD_263               | 6368079      | 19047839      | 70       | 175    | 305    |                 |                 |                  |                   |                  |          |
| 420390426300          | 6407996      | 18984584      | 135      | 120    | 155    | 320             | 334             |                  |                   |                  |          |
| 420393229400          | 6416088      | 18935653      | 289      | 290    | 142    | 733             | 240             | 175              | 45                |                  |          |
| 420893112000          | 6014502      | 19044835      |          |        |        |                 | 125             | 160              | 130               |                  |          |
| 420893161100          | 5939001      | 19130198      |          |        |        |                 |                 |                  | 60                | 116              | 49       |
| EBD_269               | 5988239      | 19082798      |          |        | 110    |                 | 119             | 165              | 50                |                  |          |
| 420893193200          | 5953273      | 19082449      |          |        |        |                 |                 | 134              |                   |                  |          |
| 420893198100          | 6068393      | 19027571      |          |        | 72     | 273             | 110             | 130              |                   |                  |          |
| EBD_274               | 6008063      | 19158368      |          |        | 66     |                 |                 | 186              |                   |                  |          |
| 421573200200          | 6330100      | 19057069      |          |        |        | 260             |                 |                  |                   |                  |          |
| 421573116500          | 6288958      | 19078577      |          | 284    | 237    | 269             | 328             | 107              |                   |                  |          |
| EBD_278               | 6359625      | 19102949      |          | 230    | 268    | 52              | 331             | 164              | 10                | 220              | 130      |
| 421573173200          | 6200028      | 19093983      |          | 72     | 0      | 0               | 0               | 0                | 0                 | 20               | 170      |
| 421573169500          | 6196609      | 19116839      |          | 205    | 313    | 232             | 158             | 185              | 235               | 0                |          |
| 421573181500          | 6238903      | 18996338      |          | 197    | 240    | 529             | 64              | 166              |                   |                  |          |
| 421573180500          | 6207094      | 19057332      |          | 179    | 227    | 353             | 233             | 212              | 180               |                  |          |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| EBD_283               | 6274356      | 19024285      |          | 130    | 255    | 565             | 170             | 175              |                   |                  |          |
| 422853177700          | 5923737      | 19084585      |          |        |        |                 |                 |                  | 130               |                  |          |
| 422853195700          | 5907566      | 19105247      |          |        |        |                 |                 |                  | 70                |                  |          |
| EBD_290               | 6153423      | 19323612      |          |        |        |                 |                 |                  | 75                | 365              |          |
| 424733043200          | 6177972      | 19317170      |          |        |        |                 |                 |                  | 140               | 244              | 211      |
| EBD_292               | 6184616      | 19171764      |          |        | 114    | 110             | 46              | 179              | 240               | 192              | 138      |
| 424813307900          | 6108186      | 19010587      |          | 163    | 177    | 312             | 268             | 190              | 117               |                  |          |
| 424813327400          | 6100732      | 19005183      |          | 153    | 219    | 309             | 212             | 45               |                   |                  |          |
| 424813211700          | 6227114      | 18999540      | 131      | 175    | 85     | 185             |                 |                  |                   |                  |          |
| 424813352200          | 6214022      | 19003346      | 157      | 201    |        |                 |                 |                  |                   |                  |          |
| EBD_298               | 6318618      | 18968396      |          | 228    | 295    | 429             | 160             | 175              |                   |                  |          |
| EBD_299               | 6308343      | 18901208      | 310      | 180    | 185    | 557             | 299             |                  |                   |                  |          |
| EBD_300               | 6349299      | 18931569      |          | 237    | 138    | 448             |                 |                  |                   |                  |          |
| 421570113700          | 6192548      | 19094449      | 70       | 226    | 235    | 272             | 271             | 65               | 117               |                  |          |
| EBD_302               | 6236256      | 19132172      |          | 294    | 218    | 160             | 232             | 65               | 153               |                  |          |
| EBD_303               | 6262293      | 19039402      |          | 123    | 310    | 424             |                 |                  |                   |                  |          |
| EBD_304               | 6252548      | 19095403      |          | 324    | 187    | 150             | 197             |                  |                   |                  |          |
| EBD_305               | 6315523      | 19046382      | 58       | 354    | 218    | 279             | 150             |                  |                   |                  |          |
| EBD_306               | 6274778      | 19010070      | 143      | 172    | 271    | 325             | 165             |                  |                   |                  |          |
| EBD_307               | 6215320      | 19070822      | 40       | 218    | 59     | 113             |                 |                  |                   |                  |          |
| EBD_308               | 6303389      | 19074491      |          | 207    | 193    | 285             | 295             | 185              |                   |                  |          |
| EBD_309               | 6190673      | 18822650      | 176      | 245    | 164    | 476             | 190             | 250              | 40                | 197              |          |
| 423210260000          | 6293447      | 18833299      | 255      | 284    | 140    | 546             |                 |                  |                   |                  |          |
| 423210083600          | 6269485      | 18872399      | 310      | 214    | 88     | 638             | 151             |                  |                   |                  |          |
| EBD_313               | 5977545      | 19059836      |          |        | 133    |                 | 76              |                  |                   |                  |          |
| EBD_314               | 6076088      | 19133270      |          | 50     | 80     | 30              | 170             | 55               |                   |                  |          |
| EBD_315               | 6004101      | 19049339      |          |        | 175    | 20              | 204             | 84               | 149               |                  |          |
| EBD_316               | 6101940      | 19105517      |          |        | 159    | 89              | 228             | 125              | 135               | 60               | 85       |
| EBD_317               | 6111003      | 19092066      |          |        | 196    | 139             | 223             | 110              |                   |                  |          |
| EBD_318               | 6120761      | 19266850      |          |        |        |                 |                 | 90               | 130               | 135              |          |
| EBD_319               | 6157586      | 19244142      |          |        |        | 3               | 99              | 185              | 200               | 142              |          |
| EBD_320               | 6162314      | 19185674      |          |        |        | 30              | 0               | 130              | 174               |                  |          |
| 421573198300          | 6247603      | 19108125      |          | 194    | 246    | 120             | 150             | 95               | 75                | 75               |          |
| 420390145200          | 6362263      | 19009842      | 233      | 277    | 333    | 366             | 275             | 310              |                   |                  |          |
| EBD_323               | 6360775      | 18976334      |          |        |        | 357             | 343             | 340              | 120               |                  |          |
| 420390429100          | 6423511      | 18905824      | 255      | 255    | 179    | 601             | 335             | 380              |                   |                  |          |
| EBD_325               | 6175801      | 19177208      |          |        | 160    | 45              | 20              | 245              | 234               |                  |          |
| 421670105400          | 6475045      | 19001591      | 157      | 291    | 214    | 375             | 360             | 290              |                   |                  |          |
| EBD_329               | 6338123      | 18924765      | 175      | 295    | 338    | 577             | 165             |                  |                   |                  |          |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| EBD_330               | 6321900      | 18921416      | 130      | 260    | 239    | 431             | 180             |                  |                   |                  |          |
| EBD_332               | 6209155      | 18841392      | 119      | 270    | 181    | 582             | 158             |                  |                   |                  |          |
| EBD_334               | 6241789      | 19006834      |          | 155    | 206    | 534             | 167             | 308              |                   |                  |          |
| EBD_346               | 6151903      | 19163141      |          |        |        |                 | 55              | 145              | 45                |                  |          |
| EBD_347               | 6229839      | 19200035      |          |        |        |                 |                 | 161              | 168               | 271              |          |
| EBD_354               | 6196274      | 19231333      |          |        | 20     | 85              | 0               | 121              | 214               |                  |          |
| EBD_355               | 6344977      | 19073228      |          | 302    | 243    | 235             | 190             | 105              | 0                 | 70               |          |
| EBD_357               | 6360494      | 18831855      | 83       | 122    | 0      | 655             | 275             | 0                | 0                 |                  |          |
| EBD_358               | 6099044      | 18896535      |          | 254    | 231    | 472             | 167             | 115              | 0                 | 35               | 210      |
| 424810138700          | 6050833      | 18985898      |          |        |        |                 |                 |                  |                   | 120              |          |
| 421493204900          | 5931159      | 19170265      |          |        |        |                 |                 |                  |                   | 70               | 35       |
| 421493262000          | 5902102      | 19112993      |          |        |        |                 |                 |                  |                   | 54               |          |
| 420390006400          | 6397739      | 19088576      |          | 290    | 195    | 64              | 101             | 110              | 15                |                  |          |
| 420393250100          | 6386483      | 19079573      |          | 200    | 270    | 332             | 298             | 130              | 45                |                  |          |
| 427060008800          | 6482716      | 18894852      |          | 0      | 70     | 216             | 397             | 117              | 300               |                  |          |
| 420710246600          | 6597932      | 19122763      | 195      | 100    | 0      | 310             | 265             | 165              | 200               | 400              | 465      |
| 420710243200          | 6596852      | 19111443      | 65       | 225    | 0      | 290             | 290             | 495              | 228               | 522              | 470      |
| 420710274000          | 6584152      | 19138044      | 70       | 129    | 141    | 0               | 215             | 390              | 243               | 367              | 110      |
| 420710309600          | 6517714      | 19104289      | 85       | 56     | 283    | 75              | 55              | 170              | 106               | 214              | 270      |
| 420710097200          | 6560919      | 19179218      |          | 240    | 352    | 353             | 125             | 135              | 120               | 215              |          |
| 420710022600          | 6534334      | 19216606      | 119      | 238    | 202    | 116             | 0               | 0                | 75                |                  |          |
| 420710269600          | 6572169      | 19153816      |          | 194    | 145    | 255             | 175             | 232              | 82                | 81               | 520      |
| 420713130200          | 6662843      | 19211970      |          |        |        |                 | 160             | 140              | 335               | 280              | 415      |
| 420710217700          | 6672479      | 19180242      | 150      | 160    | 215    | 460             | 205             | 335              | 260               | 545              | 420      |
| 420710108300          | 6593213      | 19226774      | 128      | 207    | 0      | 0               | 45              | 132              | 253               |                  |          |
| 420713145800          | 6557180      | 19199503      | 45       | 329    | 26     | 455             | 170             | 105              | 195               | 250              | 270      |
| 421573115200          | 6360127      | 19064157      |          | 211    | 266    | 252             | 53              | 225              | 70                |                  |          |
| 421570100400          | 6245520      | 19159642      |          | 301    | 184    | 200             | 165             | 125              | 60                | 90               | 30       |
| 421573200700          | 6330819      | 19060746      |          |        |        |                 |                 | 0                | 145               |                  |          |
| 421570003000          | 6257544      | 19167754      |          | 329    | 227    | 176             | 79              | 154              | 75                | 145              | 140      |
| 421573039600          | 6283805      | 19115175      |          | 139    | 330    | 181             | 190             | 124              | 156               | 137              |          |
| 421570083600          | 6316849      | 19097772      | 95       | 234    | 221    | 92              | 316             | 107              | 75                | 150              |          |
| 421670095600          | 6596153      | 19074141      | 65       | 175    | 0      | 297             | 213             | 250              | 295               | 213              | 392      |
| 421670144800          | 6485285      | 19021817      | 153      | 398    | 2      | 113             | 317             | 220              | 190               | 495              | 440      |
| 421670003500          | 6439874      | 19088039      | 71       | 342    | 120    | 0               | 35              | 130              | 110               |                  |          |
| 421670127600          | 6457206      | 19073297      | 149      | 262    | 273    | 0               | 195             | 231              | 169               |                  |          |
| 421670096600          | 6537738      | 19060684      | 347      | 470    | 165    | 50              | 255             | 315              | 130               | 430              | 60       |
| 421670114200          | 6523244      | 19034535      | 234      | 306    | 85     | 263             | 583             | 255              | 353               | 426              | 130      |
| 421673009100          | 6569284      | 19011469      | 335      | 177    | 139    | 544             | 190             | 160              | 180               | 245              | 620      |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 421670145300          | 6475479      | 19034725      |          |        |        |                 | 255             | 525              | 190               | 425              | 275      |
| 421670191600          | 6531985      | 18977770      | 413      | 192    | 135    | 470             | 360             | 75               | 380               | 355              | 25       |
| 421673003900          | 6497573      | 18992070      | 273      | 253    | 170    | 300             | 440             | 355              | 360               | 475              | 160      |
| 421670187600          | 6458560      | 19045976      | 105      | 163    | 7      | 178             | 417             | 320              | 110               | 105              |          |
| 421673025300          | 6468490      | 19062563      | 231      | 280    | 175    | 55              | 255             | 328              | 131               | 190              |          |
| 421670133600          | 6490770      | 19010249      | 31       | 388    | 67     | 113             | 351             | 121              | 265               | 480              | 82       |
| 427064036300          | 6595991      | 18909996      |          | 0      | 230    | 505             | 525             | 0                | 85                |                  |          |
| 427064019700          | 6552209      | 18810889      |          | 300    | 305    |                 |                 |                  |                   |                  |          |
| 427060002700          | 6559667      | 18896699      | 214      | 196    | 183    | 530             | 915             | 115              | 115               |                  |          |
| 427083010100          | 6677418      | 19042007      | 116      | 70     | 0      | 457             | 208             | 160              | 170               | 509              | 176      |
| 427064038000          | 6621033      | 18952023      |          | 129    | 61     | 225             | 250             | 0                | 315               | 71               | 819      |
| 427060008600          | 6542100      | 18927673      |          | 180    | 135    | 190             | 665             | 70               | 370               |                  |          |
| 427060012400          | 6607345      | 18851523      |          |        | 310    | 880             | 255             | 0                | 45                |                  |          |
| 421853000900          | 6226459      | 19351112      |          |        |        |                 |                 | 110              | 245               | 110              | 45       |
| 421850015000          | 6207538      | 19388735      |          |        |        |                 |                 |                  |                   | 65               | 136      |
| 421850003400          | 6179843      | 19436005      |          |        |        |                 |                 |                  |                   |                  | 45       |
| 421993181100          | 6759574      | 19418957      |          | 290    | 562    | 25              | 224             | 270              | 280               | 265              | 125      |
| 421993181600          | 6715021      | 19424367      |          | 215    | 315    | 25              | 238             | 140              | 90                | 180              | 191      |
| 421990033500          | 6739426      | 19420379      |          | 296    | 389    | 20              | 185             | 151              | 144               | 344              | 171      |
| 421990214800          | 6689564      | 19336220      |          | 190    | 285    | 75              | 310             | 15               | 280               | 245              |          |
| 421990063400          | 6687658      | 19418344      |          | 189    | 176    | 285             | 238             | 167              | 63                | 117              | 216      |
| 421990067400          | 6677823      | 19383023      |          |        |        | 380             | 266             | 165              | 211               | 253              |          |
| 421990075700          | 6615265      | 19437827      |          | 143    | 142    |                 | 30              | 55               | 260               | 105              | 55       |
| 421990011600          | 6763202      | 19463454      |          | 218    | 312    |                 |                 | 35               | 295               | 450              | 285      |
| 421990061800          | 6673005      | 19451673      |          |        | 181    |                 | 190             | 173              | 142               | 270              | 90       |
| 421990035600          | 6746770      | 19392117      |          | 302    | 444    | 11              | 310             | 205              | 305               | 540              | 340      |
| 422013205200          | 6411847      | 19225140      |          |        | 278    | 37              | 135             | 56               | 185               | 115              | 15       |
| 422013095800          | 6457974      | 19287751      |          |        | 320    | 77              | 191             | 114              | 355               | 200              | 255      |
| 422013001600          | 6427881      | 19140791      | 95       | 275    | 145    | 35              | 265             | 180              | 135               | 70               | 55       |
| 422010789200          | 6220253      | 19282328      |          |        |        | 17              | 18              | 155              | 296               | 149              | 102      |
| 422010293600          | 6425032      | 19182019      |          | 107    | 95     | 28              | 269             | 33               | 155               | 85               |          |
| 422010604400          | 6491587      | 19130714      | 170      | 350    | 225    | 85              | 180             | 150              | 380               |                  |          |
| 422010406800          | 6322709      | 19168878      |          | 408    | 196    | 135             | 228             | 188              | 75                | 205              | 260      |
| 422010394800          | 6292789      | 19223697      |          | 160    | 240    | 110             | 195             | 70               | 135               | 95               | 40       |
| 422010790400          | 6334467      | 19203515      |          | 410    | 216    | 128             | 385             | 1                | 125               | 195              | 30       |
| 422010325200          | 6374025      | 19239412      |          | 387    | 446    | 12              | 110             | 135              | 260               | 200              | 248      |
| 422013136800          | 6453367      | 19116043      | 113      | 127    | 70     | 120             | 160             | 35               |                   |                  |          |
| 422010800701          | 6312333      | 19187461      |          | 494    | 141    | 125             | 423             | 36               | 231               | 125              | 190      |
| 422010439500          | 6291106      | 19162306      |          |        | 90     | 180             | 325             | 170              | 155               | 230              | 160      |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 422010505800          | 6379919      | 19134206      |          | 258    | 167    | 30              | 170             | 70               | 40                | 150              | 100      |
| 422010760300          | 6428781      | 19273641      |          | 90     | 245    | 35              | 165             | 85               | 285               | 135              | 125      |
| 422010351000          | 6361602      | 19181395      |          | 346    | 160    | 151             | 80              | 260              | 105               | 245              | 285      |
| 422010622300          | 6507604      | 19165458      | 145      | 330    | 249    | 271             | 195             | 70               | 165               |                  |          |
| 422010556800          | 6410273      | 19124981      | 120      | 455    | 152    | 71              | 336             | 211              | 125               | 250              | 165      |
| 422010004800          | 6282194      | 19286000      |          | 92     | 143    | 0               | 84              | 321              | 110               | 85               | 195      |
| 422010334300          | 6359558      | 19228786      |          | 90     | 200    | 0               | 45              | 50               | 15                | 90               | 250      |
| 422010345500          | 6348028      | 19210373      |          | 320    | 208    | 77              | 278             | 84               | 85                | 209              | 179      |
| 422010272200          | 6443858      | 19246140      |          | 382    | 352    | 85              | 148             | 130              | 175               | 140              | 191      |
| 427084012700          | 6809788      | 18961303      |          |        |        |                 | 30              | 0                | 0                 |                  |          |
| 427084027900          | 6696328      | 18839148      |          | 400    | 188    |                 |                 |                  |                   |                  |          |
| 427084042900          | 6760611      | 18822676      | 529      | 485    | 220    |                 |                 |                  |                   |                  |          |
| 427084043600          | 6722072      | 19028876      | 60       | 0      | 0      | 229             | 304             | 132              | 150               | 740              | 140      |
| 427084057200          | 6867127      | 19078588      |          | 260    | 340    | 555             | 409             | 26               | 450               | 400              |          |
| 427080010000          | 6714021      | 18950395      | 103      | 10     |        |                 |                 |                  |                   |                  |          |
| 422413054500          | 6807057      | 19493985      |          | 155    | 80     |                 |                 |                  | 444               | 516              | 105      |
| 422410025000          | 6777588      | 19557366      |          |        |        |                 |                 |                  |                   |                  | 261      |
| 422410020500          | 6781312      | 19434419      |          | 295    | 464    | 21              | 20              | 194              | 292               | 429              | 225      |
| 422413030800          | 6790652      | 19588656      |          |        |        |                 |                 |                  |                   |                  | 420      |
| 422410030000          | 6819735      | 19449051      |          |        |        |                 | 227             | 346              | 422               | 275              | 85       |
| 422453035800          | 6860134      | 19181335      |          |        |        |                 | 245             | 140              | 835               | 835              |          |
| 422450150100          | 6825806      | 19252168      |          |        | 195    | 405             | 270             | 271              | 494               | 755              | 260      |
| 422450054100          | 6753055      | 19298814      | 60       | 90     | 55     | 259             | 266             | 345              | 345               |                  |          |
| 422450131800          | 6794610      | 19283468      | 110      | 270    | 0      | 245             | 295             | 25               | 166               | 669              | 455      |
| 422450226500          | 6724897      | 19236601      | 171      | 259    | 190    | 300             | 330             | 200              | 384               |                  |          |
| 422450016900          | 6769404      | 19321496      | 149      | 196    | 180    | 287             | 193             | 260              | 268               |                  |          |
| 422450163700          | 6784852      | 19246933      | 80       | 527    | 143    | 235             | 250             | 265              | 190               | 520              | 160      |
| 422450299600          | 6794675      | 19172227      | 175      | 445    | 180    | 675             | 365             | 573              | 177               | 541              |          |
| 422453014300          | 6782065      | 19204644      | 125      | 267    | 248    | 630             | 490             | 261              | 174               | 637              | 443      |
| 422453156200          | 6696143      | 19311817      |          | 275    | 255    | 185             | 184             | 146              | 280               |                  |          |
| 422450268900          | 6735517      | 19195489      | 95       | 292    | 273    | 95              | 430             | 210              | 350               | 305              | 280      |
| 427104005600          | 6878346      | 18930326      |          | 75     | 120    |                 |                 |                  |                   |                  |          |
| 427080001000          | 6823316      | 19122295      | 120      | 254    | 298    | 563             | 325             | 305              | 409               | 601              | 275      |
| 427083038100          | 6748272      | 19078332      |          |        |        |                 | 323             | 220              | 170               | 10               | 300      |
| 426060005500          | 6740605      | 19125533      |          | 45     | 291    | 404             | 315             | 165              | 200               | 190              |          |
| 427084052300          | 6826349      | 19023338      | 85       | 0      | 0      | 130             | 205             | 35               | 0                 |                  |          |
| 422910484100          | 6661516      | 19236709      | 105      | 145    | 205    | 75              | 65              | 65               | 375               | 455              |          |
| 422910438400          | 6535229      | 19245935      |          | 320    | 285    | 270             | 120             | 150              | 230               | 134              | 316      |
| 422910371100          | 6569002      | 19272058      |          | 335    | 277    | 253             | 205             | 99               | 141               | 315              |          |

| Final Report - Updating the Hydrogeologic Framework for the Northern Portion of the Gulf Coast Aqui |
|-----------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------|

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 422910243100          | 6508147      | 19347883      |          |        |        | 0               | 30              | 159              | 126               | 70               | 135      |
| 422910210400          | 6584210      | 19307361      | 40       | 240    | 41     | 151             | 158             | 205              | 170               | 80               |          |
| 422910242600          | 6534097      | 19314894      |          | 263    | 274    | 17              | 107             | 126              | 106               | 203              | 184      |
| 422910216900          | 6573235      | 19346238      |          | 399    | 209    | 22              | 152             | 108              | 185               | 380              |          |
| 422910033300          | 6660610      | 19291750      |          | 170    | 205    | 185             | 115             | 150              | 135               |                  |          |
| 422910029400          | 6509054      | 19399214      |          |        | 120    |                 |                 | 180              | 130               | 155              | 170      |
| 422910018900          | 6566099      | 19424338      |          |        |        |                 |                 | 8                | 196               | 159              | 157      |
| 422910028400          | 6533195      | 19375991      |          |        |        |                 |                 | 101              | 150               | 190              | 250      |
| 422910453700          | 6610423      | 19236356      | 120      | 205    | 30     | 150             | 260             | 65               | 165               |                  |          |
| 422910180200          | 6607083      | 19324437      |          | 385    | 236    | 119             | 95              | 110              | 310               |                  |          |
| 422910388000          | 6490748      | 19294133      |          | 330    | 377    | 25              | 18              | 110              | 110               | 120              | 190      |
| 422910008600          | 6476732      | 19375831      |          |        | 208    | 17              | 55              | 113              | 182               | 135              | 277      |
| 422910030200          | 6576030      | 19402262      |          | 150    | 255    |                 |                 | 37               | 330               | 273              | 246      |
| 423390187200          | 6401877      | 19376216      |          |        | 72     | 13              | 184             | 111              | 325               | 201              | 99       |
| 423390184100          | 6443968      | 19332729      |          | 343    | 162    | 35              | 0               | 255              | 235               | 145              | 110      |
| 423390173700          | 6374148      | 19299552      |          | 90     | 160    | 15              | 50              | 115              | 270               | 75               | 0        |
| 423390099800          | 6242155      | 19422707      |          |        |        |                 |                 |                  | 181               | 118              | 25       |
| 423390110200          | 6302438      | 19307763      |          |        |        |                 | 145             | 219              | 191               | 30               | 175      |
| 423390110900          | 6325024      | 19338933      |          |        |        | 4               | 202             | 225              | 227               | 64               | 208      |
| 423390008600          | 6352177      | 19391390      |          |        |        |                 |                 | 269              | 134               | 53               | 149      |
| 423390171800          | 6406161      | 19314832      |          | 45     | 30     | 10              | 0               | 140              | 165               | 40               | 100      |
| 423390004500          | 6375417      | 19428536      |          |        | 20     |                 |                 | 20               | 115               | 215              | 120      |
| 423393047800          | 6275032      | 19356503      |          |        |        |                 | 40              | 195              | 130               | 25               | 35       |
| 423393082000          | 6378775      | 19343000      |          |        |        |                 |                 |                  |                   | 0                | 40       |
| 423390188700          | 6299763      | 19376145      |          |        |        |                 | 40              | 185              | 155               | 70               | 36       |
| 423510016700          | 6907323      | 19537070      |          |        | 174    | 0               | 309             | 186              | 235               | 100              | 45       |
| 423510042500          | 6897800      | 19675953      |          |        |        |                 |                 |                  |                   |                  | 295      |
| 423510021300          | 6872898      | 19455792      |          | 175    | 65     | 90              | 188             | 269              | 278               | 360              |          |
| 423510009600          | 6856912      | 19486070      |          |        |        |                 |                 | 254              | 222               | 228              | 0        |
| 423510004800          | 6852830      | 19632356      |          |        |        |                 |                 |                  |                   | 282              | 305      |
| 423510028900          | 6859974      | 19391595      |          | 338    | 136    | 349             | 381             | 292              |                   |                  |          |
| 423613079100          | 6820149      | 19337396      |          | 487    | 100    | 315             | 125             | 250              |                   |                  |          |
| 423610048000          | 6875801      | 19313501      | 85       | 284    | 11     | 267             | 443             | 195              | 555               | 691              | 179      |
| 423613081000          | 6857207      | 19349397      |          |        |        |                 |                 |                  | 366               |                  |          |
| 423610032800          | 6835399      | 19303597      | 88       | 400    | 180    | 439             | 398             | 356              | 362               |                  |          |
| 423730003700          | 6483661      | 19514550      |          |        |        |                 |                 |                  |                   |                  | 80       |
| 423730042300          | 6590935      | 19467153      |          |        | 200    |                 |                 |                  | 335               | 160              | 115      |
| 423730035900          | 6543506      | 19477894      |          |        | 188    |                 |                 |                  | 35                | 281              | 151      |
| 423733012000          | 6502889      | 19574164      |          |        |        |                 |                 |                  |                   |                  | 113      |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 423733097500          | 6521861      | 19506113      |          |        |        |                 |                 |                  |                   |                  | 72       |
| 423733050500          | 6556408      | 19454929      |          |        | 216    |                 |                 | 13               | 247               | 169              | 228      |
| 423733009100          | 6576397      | 19519328      |          |        |        |                 |                 |                  | 90                | 196              | 169      |
| 424070002100          | 6514444      | 19463049      |          |        |        |                 |                 |                  | 289               | 131              | 65       |
| 424070024100          | 6477146      | 19425059      |          |        | 82     |                 | 65              | 60               | 87                | 53               | 165      |
| 424073001800          | 6417944      | 19419616      |          |        | 140    |                 |                 | 0                | 366               | 247              | 107      |
| 424070015600          | 6437956      | 19429274      |          |        | 153    |                 |                 |                  | 253               | 114              | 255      |
| 424073003300          | 6412605      | 19488184      |          |        | 0      |                 |                 |                  | 59                | 196              | 147      |
| 424570037700          | 6727681      | 19478960      |          | 150    | 135    |                 |                 |                  | 65                | 405              | 156      |
| 424570006300          | 6642012      | 19476871      |          |        | 297    |                 | 179             | 116              | 262               | 138              | 125      |
| 424570047700          | 6625226      | 19526619      |          |        |        |                 |                 |                  | 258               | 221              | 165      |
| 424570024500          | 6722243      | 19524297      |          |        | 139    |                 |                 |                  |                   | 415              | 0        |
| 424573012100          | 6668835      | 19547439      |          |        |        |                 |                 |                  |                   | 339              | 105      |
| 424710018000          | 6290898      | 19492178      |          |        |        |                 |                 |                  |                   |                  | 42       |
| 424710018900          | 6311449      | 19462903      |          |        |        |                 |                 |                  |                   | 175              | 120      |
| 424713020200          | 6339392      | 19522213      |          |        |        |                 |                 |                  |                   | 78               | 25       |
| 170112090100          | 7078464      | 19612229      |          |        | 202    | 7               | 203             | 130              | 40                | 265              | 225      |
| 170110064200          | 6948259      | 19511436      |          | 170    | 15     | 145             | 180             | 105              | 170               | 250              | 125      |
| 170110013500          | 7085528      | 19519145      |          |        | 30     | 343             | 153             | 61               | 148               | 350              | 285      |
| 170110039800          | 6969007      | 19479613      |          | 349    | 243    | 260             | 155             | 230              | 180               | 353              |          |
| 170110008700          | 6989005      | 19581718      |          |        | 406    | 140             | 170             | 276              | 239               | 190              | 250      |
| 170110009500          | 7017922      | 19570238      |          |        |        | 140             | 125             | 160              | 195               | 0                | 179      |
| 170112089800          | 7106674      | 19617615      |          |        | 152    | 51              | 68              | 44               | 115               | 220              | 97       |
| 170112061600          | 6949631      | 19603888      |          |        |        | 269             | 316             | 56               | 71                | 55               | 70       |
| 170112053200          | 7033590      | 19503747      |          | 235    | 255    | 180             | 0               | 215              | 90                | 315              | 235      |
| 170190189600          | 6958485      | 19322976      |          |        |        | 350             | 144             | 211              | 352               | 628              | 545      |
| 170190145800          | 7029815      | 19371241      | 195      | 350    | 212    | 3               | 290             | 51               | 150               | 534              | 470      |
| 170190184300          | 7004309      | 19330866      | 55       | 465    | 100    | 535             | 295             | 215              | 480               | 811              | 544      |
| 170190000400          | 6919344      | 19430724      |          | 318    | 301    | 356             | 65              | 200              | 270               | 535              |          |
| 170190036900          | 6978408      | 19433548      |          | 402    | 183    | 150             | 20              | 128              | 182               | 330              | 114      |
| 170192020200          | 7027987      | 19336158      | 221      | 577    | 67     | 568             | 331             | 239              | 322               | 764              | 560      |
| 170192183600          | 7041500      | 19431862      |          |        |        |                 |                 | 190              | 94                | 266              | 244      |
| 170192046300          | 6939665      | 19336737      | 175      | 345    | 80     | 497             | 203             |                  |                   |                  |          |
| 170190199700          | 6908291      | 19328803      |          | 349    | 71     | 45              | 492             | 199              | 294               | 416              | 578      |
| 170230187300          | 6902485      | 19223735      | 141      | 242    | 228    | 495             | 365             | 140              | 535               | 950              | 350      |
| 170230140000          | 7051816      | 19245034      | 170      | 399    | 317    | 434             | 310             | 122              | 748               | 380              |          |
| 170230124200          | 7062529      | 19294675      | 70       | 480    | 135    | 362             | 113             | 60               | 455               | 1105             | 185      |
| 170232012700          | 6932839      | 19301632      | 171      | 462    | 87     | 180             | 30              | 40               | 132               | 528              | 648      |
| 170230159900          | 7009076      | 19286035      | 134      | 285    | 40     | 635             | 265             | 25               |                   |                  |          |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 170230050900          | 7018183      | 19292531      | 160      | 494    | 106    | 305             | 320             | 211              | 59                |                  |          |
| 170232228000          | 7001711      | 19273624      | 265      | 455    | 41     | 519             | 393             | 347              | 538               | 1164             | 148      |
| 170230156200          | 6996388      | 19252868      | 518      | 244    | 28     | 227             | 215             | 235              | 475               | 935              | 135      |
| 177000003900          | 6941066      | 19158910      | 77       | 425    | 585    | 845             | 650             | 142              | 528               | 540              |          |
| 170230178800          | 6996760      | 19212964      | 250      | 394    | 258    | 528             | 565             | 400              | 705               | 560              | 270      |
| 170230205500          | 6870643      | 19234206      | 187      | 397    | 150    | 452             | 393             | 379              | 612               | 737              | 267      |
| 170230204500          | 6947091      | 19204651      | 274      | 340    | 280    | 685             | 120             | 240              | 515               | 856              | 420      |
| 170230196800          | 6937304      | 19225835      | 40       | 390    | 284    | 1001            | 417             | 203              | 15                | 0                |          |
| 170232013100          | 6936300      | 19293730      | 82       | 290    | 319    | 454             | 480             | 325              | 405               |                  |          |
| 170230020800          | 7016818      | 19302085      |          | 420    | 268    | 472             | 135             | 144              | 403               | 1313             |          |
| 177000004600          | 6900494      | 19177646      | 185      | 282    | 343    | 364             | 181             | 246              | 245               | 701              |          |
| 177014036000          | 7013761      | 18953823      |          | 1180   | 517    | 133             | 15              |                  |                   |                  |          |
| 177014018600          | 6937571      | 18944531      |          | 432    | 502    |                 |                 |                  |                   |                  |          |
| 427104007600          | 6893773      | 19081388      |          | 224    | 546    |                 |                 |                  |                   |                  |          |
| 171150004600          | 7024783      | 19627802      |          |        | 153    |                 |                 | 102              | 235               | 340              | 205      |
| 171150002200          | 7107131      | 19673816      |          |        |        |                 |                 |                  |                   |                  | 225      |
| 171158800300          | 7080268      | 19649629      |          |        | 190    |                 | 239             | 151              | 265               | 130              | 170      |
| 171150002700          | 6951518      | 19723106      |          |        |        |                 |                 |                  |                   |                  | 163      |
| 171158800000          | 6961729      | 19633810      |          |        | 90     | 101             | 341             | 180              | 156               | 361              | 133      |
| 171152000400          | 6950285      | 19692507      |          |        |        |                 |                 |                  | 170               | 270              | 155      |
| 8-8                   | 6137820      | 19187234      |          |        |        |                 |                 | 270              | 200               | 109              | 128      |
| 420150014600          | 6152959      | 19257358      |          |        |        | 19              | 58              | 138              | 136               | 72               | 23       |
| 9-12                  | 6112469      | 19136351      |          |        | 132    | 51              | 115             | 129              | 35                | 57               | 68       |
| 420390142000          | 6390726      | 19029005      | 115      | 90     | 60     | 231             | 174             | 155              | 160               |                  |          |
| 420390171100          | 6401922      | 18992147      |          | 100    | 75     | 140             | 460             | 180              | 202               |                  |          |
| 420390451800          | 6455349      | 18925907      | 180      | 0      | 95     | 325             | 390             | 110              | 561               | 44               |          |
| 8-16                  | 6345678      | 18931404      | 250      | 50     | 120    | 290             | 80              | 170              | 188               | 422              |          |
| 6-17                  | 6435069      | 19008393      |          | 120    | 227    | 128             | 335             | 70               | 45                | 470              |          |
| 420410010200          | 6131626      | 19376386      |          |        |        |                 |                 |                  |                   |                  | 15       |
| 420710120900          | 6619426      | 19198310      | 84       | 81     | 40     | 409             | 181             | 140              | 310               | 340              | 180      |
| 420710251300          | 6631951      | 19152781      | 44       | 271    | 30     | 250             | 130             | 345              | 210               | 315              | 450      |
| 420710288000          | 6560351      | 19096993      |          | 150    | 63     | 460             | 125             | 347              | 120               | 385              | 245      |
| 420710306200          | 6521080      | 19140544      |          | 135    | 25     | 65              | 120             | 195              | 330               | 242              |          |
| 8-12                  | 6210615      | 19033351      |          |        |        | 300             | 90              | 30               | 30                | 205              |          |
| 2-17                  | 6690084      | 19252954      |          |        | 0      | 115             | 295             | 160              | 280               | 419              | 276      |
| 5-8                   | 6286484      | 19447835      |          |        |        |                 |                 |                  |                   | 95               | 60       |
| 5-9                   | 6325797      | 19418216      |          |        |        |                 |                 | 34               | 161               | 75               | 191      |
| 424573010100          | 6626183      | 19586222      |          |        |        |                 |                 |                  |                   | 155              | 3        |
| 424570020000          | 6692993      | 19478815      |          |        | 255    |                 |                 |                  | 174               | 281              | 67       |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 424710004200          | 6341255      | 19455136      |          |        |        |                 |                 |                  |                   | 210              | 100      |
| 4-7                   | 6348648      | 19513874      |          |        |        |                 |                 |                  |                   | 114              | 15       |
| 4-8                   | 6373190      | 19497566      |          |        |        |                 |                 |                  |                   | 110              | 20       |
| 424730000300          | 6131102      | 19293345      |          |        |        |                 |                 |                  |                   | 278              | 100      |
| 424730004900          | 6193467      | 19230080      |          |        | 216    | 99              | 7               | 114              | 121               | 335              | 125      |
| 8-9                   | 6186746      | 19160387      |          | 76     | 179    | 150             | 7               | 248              | 120               | 130              | 90       |
| 9-13                  | 6140487      | 19077574      |          |        | 225    | 78              | 252             | 75               | 25                | 20               | 160      |
| G0840063A             | 6527220      | 19082022      | 130      |        |        |                 |                 |                  |                   |                  |          |
| G0930048C             | 6193703      | 19375123      |          |        |        |                 |                 |                  | 95                | 136              | 136      |
| G0930049B             | 6203271      | 19380818      |          |        |        |                 |                 |                  | 95                | 75               |          |
| G0930020A             | 6198917      | 19407043      |          |        |        |                 |                 |                  |                   |                  | 115      |
| G1000055B             | 6667258      | 19417599      |          | 154    | 81     | 0               |                 |                  |                   |                  |          |
| G1000055A             | 6614156      | 19418983      |          | 250    | 126    |                 | 71              | 59               |                   |                  |          |
| G1000016C             | 6711702      | 19330796      | 40       | 158    |        |                 |                 |                  |                   |                  |          |
| G1010003C             | 6510644      | 19173186      | 125      |        |        |                 |                 |                  |                   |                  |          |
| G1210016B             | 6833291      | 19508429      |          | 260    | 155    |                 |                 |                  |                   |                  |          |
| G1210064A             | 6807589      | 19580624      |          |        |        |                 |                 |                  |                   | 501              |          |
| G1210003C             | 6816760      | 19443408      |          | 410    |        |                 |                 |                  |                   |                  |          |
| G1700026A             | 6338588      | 19396499      |          |        | 60     |                 |                 | 185              | 186               |                  |          |
| G1700578A             | 6299607      | 19379085      |          |        | 75     |                 | 0               | 22               |                   |                  |          |
| G1700039A             | 6356143      | 19345195      |          |        | 85     | 0               | 80              |                  |                   |                  |          |
| G1700742A             | 6379226      | 19308164      |          | 108    | 115    |                 |                 |                  |                   |                  |          |
| G1700764A             | 6283835      | 19393126      |          |        |        |                 |                 |                  | 315               |                  |          |
| G1700197R             | 6354832      | 19315712      |          |        | 247    | 17              | 90              |                  |                   |                  |          |
| G2040005B             | 6450017      | 19502661      |          |        | 25     |                 |                 |                  | 13                | 126              |          |
| G2360052B             | 6295433      | 19511347      |          |        |        |                 |                 |                  |                   |                  | 24       |
| 6036904               | 6333848      | 19400705      |          |        |        |                 |                 | 257              | 180               | 25               | 85       |
| 6043304               | 6292300      | 19387372      |          |        |        |                 |                 | 227              | 317               | 9                | 0        |
| 6037803               | 6354065      | 19406893      |          |        |        |                 |                 |                  | 200               | 180              | 70       |
| 6043101               | 6266528      | 19388300      |          |        |        |                 |                 |                  | 0                 | 0                | 15       |
| 6038102               | 6379628      | 19428820      |          |        |        |                 |                 |                  |                   |                  | 0        |
| 6044101               | 6309478      | 19391117      |          |        |        |                 |                 |                  |                   | 45               | 75       |
| 6047604               | 6443591      | 19379689      |          |        | 44     | 76              | 220             | 80               | 110               | 40               | 0        |
| 6047404               | 6428302      | 19368810      |          |        |        | 90              | 125             | 204              | 21                | 0                | 0        |
| 6046604               | 6409614      | 19371545      |          |        |        |                 | 130             | 176              | 161               | 83               | 72       |
| 6046504               | 6392402      | 19367057      |          | 160    | 0      | 0               | 85              | 194              | 276               | 0                | 40       |
| 6045904               | 6368414      | 19362404      |          | 64     | 26     |                 | 61              | 94               | 25                | 60               | 170      |
| 6052601               | 6333896      | 19321781      |          |        |        | 15              | 121             | 225              | 101               | 83               | 161      |
| 6052704               | 6304184      | 19307717      |          |        |        |                 | 175             | 215              | 160               | 35               | 75       |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 6053105               | 6345942      | 19338282      |          |        |        |                 |                 | 125              | 291               | 56               | 85       |
| 6062301               | 6413727      | 19306359      |          |        | 112    | 13              | 270             | 178              | 132               | 24               | 26       |
| 6054302               | 6409027      | 19346899      |          |        | 46     | 40              | 87              | 147              | 171               | 25               | 120      |
| 6045302               | 6370621      | 19395724      |          |        |        |                 |                 |                  | 191               | 77               | 155      |
| 6036304               | 6326487      | 19430899      |          |        |        |                 |                 |                  |                   | 115              | 95       |
| 6044507               | 6318425      | 19373019      |          |        |        |                 |                 |                  | 106               | 115              | 60       |
| 6053810               | 6354043      | 19315418      |          |        |        | 21              | 142             | 260              | 157               | 136              | 133      |
| 6036403               | 6298562      | 19420955      |          |        |        |                 |                 |                  |                   |                  | 135      |
| 6035203               | 6274436      | 19427923      |          |        |        |                 |                 |                  | 170               | 110              | 35       |
| 6026801               | 6238054      | 19451436      |          |        |        |                 |                 |                  |                   |                  | 116      |
| 421853002800          | 6215597      | 19426924      |          |        |        |                 |                 |                  |                   |                  | 75       |
| 422013218700          | 6335440      | 19292091      |          | 222    | 223    | 0               | 60              | 105              | 205               | 25               | 30       |
| 422013162200          | 6341428      | 19220060      |          | 258    | 277    | 9               | 188             | 133              | 155               | 220              | 175      |
| 422010360700          | 6343269      | 19221520      |          | 175    | 125    | 15              | 85              | 85               | 0                 | 145              | 45       |
| 422010353300          | 6338258      | 19243596      |          | 285    | 260    | 0               | 160             | 60               | 195               | 50               | 190      |
| 422010297200          | 6387575      | 19246031      |          | 185    | 246    | 32              | 107             | 85               | 150               | 40               | 45       |
| 422010265800          | 6475665      | 19251004      |          | 207    | 278    | 111             | 19              | 155              | 52                | 153              | 110      |
| 422010106500          | 6471852      | 19274177      |          | 343    | 246    | 54              | 0               | 105              | 120               | 50               | 70       |
| 422910501800          | 6483075      | 19355323      |          |        | 205    | 10              | 46              | 94               | 90                | 100              | 70       |
| 422910016800          | 6462593      | 19361925      |          | 154    | 116    | 0               | 55              | 85               | 140               | 95               | 35       |
| 4-13                  | 6459571      | 19366096      |          |        |        |                 |                 |                  |                   | 17               | 200      |
| 4-14                  | 6472300      | 19349334      |          |        | 170    | 0               | 75              | 96               | 148               | 151              | 85       |
| 4-15                  | 6511924      | 19334960      |          |        |        |                 |                 |                  |                   |                  | 40       |
| 423390090100          | 6334928      | 19402648      |          |        |        |                 |                 | 254              | 232               | 80               | 80       |
| 423390086800          | 6331721      | 19421155      |          |        |        |                 |                 | 52               | 144               | 149              | 65       |
| 423393007200          | 6248768      | 19361473      |          |        | 110    |                 |                 | 75               | 205               | 50               | 70       |
| 423390173100          | 6412588      | 19273018      |          | 305    | 219    | 66              | 135             | 40               | 250               | 15               | 185      |
| 423390160400          | 6407861      | 19349006      |          |        | 25     | 20              | 66              | 133              | 89                | 17               | 100      |
| 423390101400          | 6261488      | 19303614      |          |        | 177    | 8               | 205             | 234              | 169               | 157              | 10       |
| 423390103900          | 6296407      | 19334182      |          |        |        |                 | 48              | 287              | 206               | 129              | 85       |
| 423390099400          | 6286691      | 19385622      |          |        |        |                 |                 |                  |                   | 162              | 50       |
| 423390020200          | 6353670      | 19363513      |          |        |        |                 | 0               | 165              | 210               | 175              | 100      |
| 424070021400          | 6448475      | 19406206      |          |        | 65     |                 |                 | 150              | 50                | 75               | 110      |
| 4-9                   | 6395093      | 19449937      |          |        |        |                 |                 |                  |                   |                  | 80       |
| 424713023200          | 6379205      | 19459006      |          |        |        |                 |                 |                  | 80                | 85               | 105      |
| LBGMONT01             | 6291289      | 19395046      |          |        |        |                 |                 |                  | 200               | 35               | 65       |
| LBGWALK11             | 6317058      | 19517758      |          |        |        |                 |                 |                  |                   | 60               | 0        |
| LBGWALK12             | 6319349      | 19515013      |          |        |        |                 |                 |                  |                   | 50               | 81       |
| LBGWALK13             | 6323073      | 19511313      |          |        |        |                 |                 |                  |                   | 25               | 25       |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| LBGWALK14             | 6321694      | 19513082      |          |        |        |                 |                 |                  |                   |                  | 15       |
| LBGWALK15             | 6321152      | 19509209      |          |        |        |                 |                 |                  |                   |                  | 0        |
| LBGWALK16             | 6323680      | 19513567      |          |        |        |                 |                 |                  |                   | 25               | 15       |
| LBGWALK17             | 6318441      | 19509404      |          |        |        |                 |                 |                  |                   |                  | 0        |
| LBGWALK18             | 6316943      | 19507621      |          |        |        |                 |                 |                  |                   | 30               | 45       |
| LBGWALK19             | 6316883      | 19504781      |          |        |        |                 |                 |                  |                   | 60               | 0        |
| LBGGRIM06             | 6160698      | 19380023      |          |        |        |                 |                 |                  |                   | 55               | 30       |
| LBGGRIM11             | 6153783      | 19383342      |          |        |        |                 |                 |                  |                   | 0                | 80       |
| LBGGRIM15             | 6163756      | 19376016      |          |        |        |                 |                 |                  |                   | 45               |          |
| 424073007800          | 6440158      | 19461691      |          |        |        |                 |                 |                  |                   | 173              | 100      |
| 424713001600          | 6291884      | 19462417      |          |        |        |                 |                 |                  |                   | 66               | 86       |
| 424733006600          | 6241432      | 19332932      |          |        |        |                 |                 | 224              | 131               | 65               | 55       |
| 6-12                  | 6331793      | 19205413      |          | 350    | 190    | 67              | 373             | 0                | 175               | 85               | 0        |
| 6-11                  | 6318130      | 19222403      |          | 260    | 252    | 103             | 300             | 105              | 153               | 187              | 230      |
| 6-10                  | 6283316      | 19219061      |          |        | 207    | 160             | 233             | 75               | 188               | 62               | 125      |
| 424713019200          | 6301685      | 19454125      |          |        |        |                 |                 |                  |                   |                  | 250      |
| 424713025100          | 6357613      | 19500162      |          |        |        |                 |                 |                  |                   | 125              | 45       |
| 421853039900          | 6203803      | 19351332      |          |        |        |                 |                 |                  |                   | 186              | 91       |
| 424073048000          | 6418690      | 19449840      |          |        |        |                 |                 |                  |                   | 198              | 182      |
| 421853024100          | 6199243      | 19361597      |          |        |        |                 |                 |                  | 175               | 100              | 134      |
| 424713024500          | 6342767      | 19504034      |          |        |        |                 |                 |                  |                   | 150              | 17       |
| 424713023600          | 6333534      | 19523880      |          |        |        |                 |                 |                  |                   | 104              | 41       |
| 424713029500          | 6319892      | 19453560      |          |        |        |                 |                 |                  |                   | 110              | 59       |
| 424713001400          | 6301381      | 19454199      |          |        |        |                 |                 |                  |                   | 51               | 37       |
| 422013079800          | 6423005      | 19265237      |          | 139    |        |                 |                 |                  |                   |                  |          |
| 422013236800          | 6232768      | 19233349      |          |        |        | 105             | 0               | 65               | 150               | 50               | 40       |
| 424733037900          | 6227188      | 19347836      |          |        |        |                 |                 |                  | 240               | 127              | 198      |
| 424073045300          | 6432490      | 19364288      |          |        | 48     | 56              | 6               | 130              | 90                | 40               | 63       |
| 422013206200          | 6421696      | 19219532      |          |        | 328    | 98              | 126             | 83               | 255               | 175              |          |
| 423393077700          | 6390542      | 19347836      |          |        |        |                 |                 |                  |                   | 25               | 175      |
| 422013237500          | 6284595      | 19244152      |          |        | 156    | 18              | 191             | 190              | 148               | 92               | 115      |
| 423393079400          | 6378435      | 19310513      |          |        |        |                 |                 |                  |                   | 60               | 90       |
| 422013150600          | 6213218      | 19262301      |          |        |        |                 | 45              | 117              | 109               | 186              | 0        |
| 424073046800          | 6451008      | 19464078      |          |        |        |                 |                 |                  |                   | 209              | 50       |
| 422013196200          | 6301253      | 19280969      |          | 124    | 151    | 2               | 144             | 206              | 50                | 40               | 0        |
| 423393084900          | 6451506      | 19319051      |          |        |        |                 | 40              | 169              | 181               | 40               | 197      |
| 421853042300          | 6432490      | 19449547      |          |        | 85     |                 |                 |                  | 70                | 25               | 130      |
| 422013226500          | 6473654      | 19262834      | 80       | 425    | 315    | 67              | 73              | 95               | 294               | 131              | 190      |
| 424070012700          | 6401238      | 19521879      |          |        |        |                 |                 |                  |                   | 105              | 0        |

| Well ID/API<br>Number | Easting (ft) | Northing (ft) | Beaumont | Lissie | Willis | Upper<br>Goliad | Lower<br>Goliad | Upper<br>Lagarto | Middle<br>Lagarto | Lower<br>Lagarto | Oakville |
|-----------------------|--------------|---------------|----------|--------|--------|-----------------|-----------------|------------------|-------------------|------------------|----------|
| 423393085200          | 6276772      | 19295452      |          |        | 140    | 5               | 138             | 187              | 73                | 44               | 158      |
| 422010010400          | 6285328      | 19280179      |          |        | 160    | 0               | 105             | 205              | 130               | 125              | 50       |
| 4-17                  | 6524557      | 19277760      |          |        |        |                 |                 | 108              | 225               | 239              | 353      |
| 4-18                  | 6544344      | 19218637      |          |        |        | 155             | 60              | 130              | 140               | 115              | 307      |

## **APPENDIX D**

# **TWDB** Comments on Draft Hydrostratigraphic Report and Responses

This page intentionally left blank.

# D. TWDB Comments on Draft Report and Responses to Comments

This section lists the comments provided by the TWDB on the draft report and INTERA responses to the comments. The comments were received on May 4, 2012 from the contract manager Cindy Ridgeway.

### **D.1** Report Comment

- **Comment 1.** Page viii, Figure 6-10: please change "Upper" Lagarto to "Lower" Lagarto for consistency with data used to develop the referenced figure.
- **Response 1.** The suggested changed has been made.
- **Comment 2.** Page xi, bottom paragraph: please insert "geophysical logs" after "650" or please clarify what was examined. If the intent is to reference geophysical logs, please note that number changes to 660 elsewhere in the report; for example, page 4-6 and page xi, paragraph 4, sentence 1. Please adjust values so they are consistent throughout the report and/or match the data provided in the geodatabase.
- **Response 2.** Report has been changed so that 666 geophysical logs" instead of "approximately 650" or "660". The 666 value is consistent throughout the rest of the modified report and is the number of logs listed in Appendix A.
- **Comment 3.** Page 1-3, paragraph 2: Please clarify second sentence. It is unclear if the wrong dip sections were referenced and therefore if the intent was to describe preference for Mr. Knox's picks were used for dip section 9 and preference was given for Dr. Ewing's picks for dip section 8.
- **Response 3.** To clarify the second sentence, the sentence was replaced with the two following sentences: "For dip section 9, Mr. Knox's. picks were given preference over Dr. Ewing's picks. For dip section 8, Mr. Ewing's picks were given preference over Mr. Knox's picks."
- **Comment 4.** Page 1-3, Section 1.2, paragraph 1: please explain why only 500 geophysical logs were used for the lithologic analyses instead of the 650-660 used for the stratigraphic correlations and on page 1-4, last paragraph, please explain why only 632 logs were used for developing the sand maps.
- **Response 4.** The report has been modified state that result from approximately 800 log analyses were used as part of this study (these locations shown in Figure 4-4). Of the 800 log analysis, 666 new analyses were generated as part of this study. This study used lithologic picks from approximately 600 logs to generate the sand maps. Not all of the logs were used to generate the sand maps because some of the "stratigraphic" logs and "paleomarker logs" were not analyzed for lithology. In general, the "stratigraphic logs" are located along our dip and strike lines, the "lithologic" logs were more spatially scattered, and the paleomarker logs are near the coast.
- **Comment 5.** Page 2-2, line 1; page 3-21; and Figures 3-8 and 3-9: cited Weiss (1992) however this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 5.** We have added Weiss (1992) to the reference section.

- **Comment 6.** Page 2-5, paragraph 2, line 5; page 2-23, Figure 2-6; page 3-14, paragraph 2, line 3; and page 3-22, Figure 3-10 (in figure caption): please specify "a" or "b", or both, after the citation of "McGowen and others (1976)" for consistency with the reference section.
- **Response 6.** We have modified the citation to McGowen and others (1976) to McGowen and others (1976a,b).
- **Comment 7.** Page 2-7, last line: please update "Figure 1" with the appropriate figure in the report—possibly with Figure 2-8.
- **Response 7.** Figure 1 has been renumbered to Figure 2-8.
- **Comment 8.** Pages 2-10 to 2-11, Table 2-2: please update header from "Map Number (See Figure 3-8)" to "Map Number (See Figure 2-8)" and please add comma to the numbers greater than 999 in the table.
- **Response 8.** The suggested change has been made.
- **Comment 9.** Page 2-18, line 8: please update reference to "(3-21)" to "(Figure 2-21)".
- **Response 9.** The suggested change has been made.
- **Comment 10.** Page 2-19, line 6: cited Tedford and Hunter (1984) and Baskin and Hulbert (2008); however, these references were not provided in the reference section. Please either adjust the citations or update the reference section accordingly.
- **Response 10.** The two missing references have been added to the bibliography.
- **Comment 11.** Page 2-24, Figure 2-7: please label counties on map to assist with identifying where in the Houston area subsidence and active surface faults exist.
- **Response 11.** The counties in Figure 2-7 have been labeled.
- **Comment 12.** Page 2-25, Figure 2-8: please adjust reference "Line of cross section (Figure 3)" to "Line of cross section (Figure 2-10)".
- **Response 12.** The suggested change has been made.
- Comment 13. Page 3-1, line 2: please update reference to Table 3-1 to Table 2-1.
- **Response 13.** The suggested change has been made.
- **Comment 14.** Page 3-2, paragraph 2, line 5: cited Jones and others (1956); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 14.** The missing reference has been added to the bibliography. The correct reference is Jones (1956) and not Jones and others (1956).
- **Comment 15.** Page 3-3, paragraph 1, line 4: cited Grubb (1984, 1987), Ryder (1988), Weiss (1992), Hosman (1996), Williamson and Grubb (2001); however, these references were not provided in the reference section. Please either adjust the citations or update the reference section accordingly.
- **Response 15.** The bibliography was updated to include these citations.
- **Comment 16.** Page 3-3, paragraph 2, line 8 and 12: cited Jorgensen (1975); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 16.** The bibliography was updated to include this citation.

- **Comment 17.** Page 3-3, paragraph 2, line 15: cited Chowdhury and Mace (2003); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 17.** The bibliography was updated to include this citation.
- **Comment 18.** Page 3-6, line 3: please update reference to Table 4-2 to Table 3-2.
- **Response 18.** The suggested change has been made.
- **Comment 19.** Page 3-8, paragraph 1, line 3: cited Baskin and Hulbert (2008); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 19.** The bibliography was updated to include this citation.
- **Comment 20.** Pages 3-8 to 3-11, Section 3.3: please re-visit all references to tables in this section. Tables 3-3 and 3-4 are provided and not referenced.
- **Response 20.** We identify seven correct references to tables and figures on pages 3-8 through 3-11 and have corrected references.
- **Comment 21.** Page 3-12, Section 3.4, line 14: please update reference to Figure 2-7–possibly with Figure 2-23.
- **Response 21.** The reference to Figure 2-7 has been changed to reference 2-23.
- **Comment 22.** Page 3-13, paragraph 1, line 8: cited Morton and others (1991); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 22.** The reference has been included in the revised bibliography.
- **Comment 23.** Page 3-14, line 1: cited Maury (1920, 1922); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 23.** The references have been included in the revised bibliography.
- **Comment 24.** Page 3-14, line 1: cited Plummer (1933); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 24.** The reference has been included in the revised bibliography.
- **Comment 25.** Page 3-14, paragraph 1, line 6: cited Price (1958); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 25.** The reference has been included in the revised bibliography.
- **Comment 26.** Page 3-14, paragraph 1, line 11: references Figure 2-10, please clarify the connection to this figure, please remove the reference, or please update with an appropriate figure.
- **Response 26.** The reference to Figure 2-10 has been removed.
- **Comment 27.** Page 3-14, paragraph 1, line 14: cited Morton et al. (1991); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 27.** We have added the reference to the bibliography.

- **Comment 28.** Page 3-14, paragraph 2, line 5 and Page 3-15, last line: cited Autin and others (1991); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 28.** We have added the reference to the bibliography.
- **Comment 29.** Page 4-6, Section 4.2.2, paragraph 1, sentence 1: please replace "Figure 5-4" with "Figure 4-4".
- **Response 29.** The suggest modification was made.
- **Comment 30.** Pages 4-7 and 4-8, section 4-3: cites the following references: Estepp (2004), Morton and Jirik (1989), Jones and Freed (1996), Coleman (1990), Shafer (1960), Preston (1963), Harris (1965), Thompson (1966), Peckham (1965), Anders (1957), Myers and Dale (1961), Baker and Dale (1961), and Paleo-Data, Inc. (2009); however, these references were not provided in the reference section. Please either adjust the citations or update the reference section accordingly.
- **Response 30.** We have removed two of the references from the report and added the remaining references to the bibliography.
- **Comment 31.** Page 4-8, Section 4.4, last sentence: please include address of website for the Bureau of Ocean Energy Management, Regulation, and Enforcement.
- **Response 31.** The URL for the Bureau of Ocean Energy Management, Regulation, and Enforcement was added to the report.
- **Comment 32.** Page 4-11, Figure 4-4, caption: please reword to "...of the northern portion of the Gulf Coast Aquifer System" and remove "...from the Brazos to the Rio Grande".
- **Response 32.** The suggested rewording of the caption was made.
- **Comment 33.** Page 5-1, Section 5.1, 4th sentence: please update reference to Figure 2-5 to a figure in the report that shows an example of a depositional environment that includes a fluvial system connected to a delta with flanking bay-lagoon systems.
- **Response 33.** The reference to Figure 2-5 has been corrected to Figure 2-21
- **Comment 34.** Section 5.2: Exhibit B, page 5 of the Scope of Work indicated PETRA software would be used for stratigraphic correlations. Please update the report, as applicable, on how the software was used and to what extent.
- **Response 34.** A paragraph has been added to Section 5.2 to explain the use of PETRA for stratigraphic correlations.
- Comment 35. Page 6-2: Section 6.2, paragraph 1: please insert River after Brazos.
- **Response 35.** The suggested change has been made.
- Comment 36. Page 6-4, paragraph 1, line 4: please replace "Anahua" with "Anahuac".
- Response 36. The suggested change has been made.
- **Comment 37.** Page 6-4, Section 6.2: some paleomarkers are identified on Figure 6-1; however, these do not track well with the paleomarkers listed in the text. Please update text and/or figure so there is agreement between figure and text.
- **Response 37.** The text and Figure 6-1 has been modified so that they are in agreement.
- Comment 38. Page 6-5, paragraph 1, line 4: please insert "Formation" after "Oakville".
- **Response 38.** The suggested change has been made.

- **Comment 39.** Figure 6-9: please clarify the basis for interpreting the irregular contacts (finely undulating, especially with depth) between the well control.
- **Response 39.** The surfaces shown in Figures 6-3 through Figure 6-9 are based on sampling the same rasters for each geologic unit. Figure 6-9 shows surfaces cut along strike whereas the other cross-sections are cut along dip. The surfaces are generally smooth along the dips because sampling occurs in a direction aligned with the direction of decreasing elevations in the geologic surface. The surfaces are more irregular along strike because the sampling occurs in a direction that is at a skewed angle to the decreasing trend. This non alignment causes the "stair-step" change or irregular surfaces observed in Figure 6-9. The irregular surfaces observed in Figure 6-9 will diminished with decreases in the rater resolution, which is 4000 feet. The report has been modified to indicate that the irregular contacts are not a result of well control but a function of the sampling process.
- **Comment 40.** Page 6-18: please adjust figure 6-10 and/or the geodatabase. Data from the geodatabase suggests Figure 6-10 should be labeled as the Lower Lagarto not the Upper Lagarto.
- **Response 40.** The caption for Figure 6-10 has been changed to refer to Lower Lagarto and not Upper Lagarto.
- Comment 41. Table 7-1: please spell out LCRA-SAWS Water Project in the caption.
- **Response 41.** The suggested change has been made.
- **Comment 42.** Pages 7-4 and 7-5, Table 7-2: please explain either in footnotes or expand in the text (or both) the flow characteristics. Understanding that the scale is relative; however, the Kh/Kv ratios do not appear to make sense in the table. In addition, please explain the rationale behind assigning the Kh and Kv values to the particular units.
- **Response 42.** The report has been modified provide additional explanation for the values assigned to Kh, Kv, and Kv/Kh. The table provides Kv/Kh values that vary between 1 and 0.1. This means that Kv will range between Kh and 0.01\*Kh for the different facies. There are different values for Kv/Kh for the sands and clays because of the different sorting, packing, and layering that occurs between sand and clays beds. Relative rankings of Kh and Kv values were provided to provide a general framework estimating the relative differences in K provided by the facies maps.
- **Comment 43.** Table 7-2 (and figures in Section 8): please clarify if Bayfill (BF) is the same as Bayfill/Lagoon and update text for consistency, as applicable.
- **Response 43.** Bayfill and Bayfill/Lagoon are the same. Table 7-2 has been modified.
- Comment 44. Page 7-8, Figure 7-3: please correct spelling of fluvial for fluvial facies (F).
- **Response 44.** The suggested change has been made.
- **Comment 45.** Page 8-2, paragraph 1, line 2: cited Young and others (2009); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 45.** The missing reference has been added.
- Comment 46. Page 8-2, Section 8.1.1, line 6: please update figure for Willis unit from 8-5 to 8-6.
- **Response 46.** The suggested change has been made.
- **Comment 47.** Section 8 figures of sand percentages and total sand thicknesses do not agree in the overlap area with Young and others (2010). Please clarify how to proceed and which study to use.

- **Response 47.** Section 8.1 has been amended to acknowledge that the sand map may not agree with those in Young and others (2010) in the overlapping area. This occurs for three reasons. One reason is that the contouring in the overlapping area is influenced by new information gather slightly outside of the overlapping area that was not available for contouring by Young and others (2010). A second reason is that addition sand information in the overlapping area is included in this study. A third reason is that there are some adjustments to the top and bottom boundaries of the geology units north of dipsection 10, which affects the intervals over which sand thicknesses and sand percentages are tallied. Because sand thickness contours & percentages in this report are based on more information than the corresponding figures in Young and others (2010), the information provide by this report supersedes information presented by Young and others (2010).
- **Comment 48.** Page 8-19, Figure 8-13b: overlap with Young and others (2010) does not agree in overlap (northern Wharton County) with Figure 9-13b of the southern hydrostratigraphy study. Please adjust or clarify.
- **Response 48.** We agree with the findings in comment 48. Please see response to comment 47.
- **Comment 49.** Page 8-23: Figure 8-17: Figure 8-17 does not match s\_t\_jp\_cp in geodatabase, please adjust figure accordingly. A review of the geodatabase suggests Figure 8-17 (a) is the contour of Chicot Aquifer base elevation and Figure 8-17 (b) is the Willis geological unit thickness, neither of which relate to the caption which indicates the map(s) should reflect the Jasper Aquifer showing total sand thickness.
- **Response 49.** Figure 8-17 has been modified to show the a single figure that is the sand thickness of the Jasper aquifer. The draft report did not show information associated with the Jasper aquifer.
- **Comment 50.** Section 9 (figures): Exhibit B, page 6, Task 4 of the Scope of Work states that water quality maps will include the 3-group classification of water quality (fresh, slightly saline, moderately saline). Please update the section to include these maps as well as the ones with the percent of freshwater in each of the four-aquifer units already provided or clarify in more detail why percent may be more feasible due to the geometry of saltwater divide in the subsurface.
- **Response 50.** The additional water quality maps have been provided for slightly saline and moderately saline for the Chicot Aquifer, Evangeline Aquifer, Jasper Aquifer, and the Burkeville confining unit.
- **Comment 51.** Page 9-1, paragraph 2, lines 4 and 8: cites LBG-Guyton and NRS Consulting (2003); however, this reference was not provided in the reference section. Please either adjust the citation or update the reference section accordingly.
- **Response 51.** The missing reference has been added to the bibliography.
- **Comment 52.** Figure 9-6: figure illustrates wells for all aquifers and indicates which are fresh versus saline; however, the reader cannot tell the distribution of wells and water quality in the different aquifer units. Please resubmit figures showing the distribution of water quality-wells per each aquifer unit.
- **Response 52** Figure 9-6 has been parsed out into four separate figures.
- **Comment 53.** Pages B-7 and B-8: please clarify the meaning of the two rows of data highlighted in yellow.

**Response 53.** There is no significance of the yellow lines. These lines were accidently carried over from the Excel spreadsheet and have been removed from the report.

#### **D.2** Geodatabase Comments

- **Comment 1.** Northern dip and strike sections are missing from geodatabase. Please update geodatabase with data for these cross-sections including the appropriate metadata.
- **Response 1.** We have updated the geodatabase to include the cross-sections from the Southern Gulf Coast Study (Young and others, 2010)
- **Comment 2.** Geological Unit Top Elevation rasters are missing from geodatabase. Please update geodatabase with data for these rasters including the appropriate metadata.
- **Response 2.** We have updated the geodatabase to include the top elevation rasters for the geologic units.
- **Comment 3.** Please verify rasters and cross-sections do not extend above land surface and adjust as needed. Analyses with DEM data indicates several instances where this may occur but may be an artifact of scale.
- **Response 3.** We have verified that the rasters do not extend about land surfaces.
- **Comment 4**. Please provide metadata in a manner similar to the metadata provided with the project for the update for the framework the southern and central portion of the Gulf Coast Aquifer System (contract 0804830795).
- **Response 4.** We have changes the metadata so that it is consistent with the southern Gulf Coast Geologic Study (Young and others, 2010)
- **Comment 5** Please re-visit and update the top of Jasper Aquifer and/or the base of the Burkeville confining unit (Figure 1 below) as these surfaces overlap.
- **Response 5.** We have modified the top of the Jasper Aquifer so that it does not overlap with the bottom of the Burkeville confining unit.

#### **D.3** Suggestions for Report

- **Comment 1.** Please address consistencies in the capitalizations, for example, Lower Lagarto versus lower Lagarto or Burkeville confining unit versus Burkeville Confining Unit throughout the report.
- **Response 1.** The report has been modified to make the capitalization consistent among the geologic units.
- **Comment 2.** Please address inconsistencies in referencing up-dip, mid-dip, down-dip and updip, middip, downdip, throughout the report.
- **Response 2.** Report has been modified to use updip, middip, and downdip.
- Comment 3. Please capitalize "aquifer" when used directly after "Gulf Coast"..
- **Response 3.** The suggested change has been made.
- **Comment 4.** Page xii, paragraph 2, line 1: please replace "develop" with "developed".
- **Response 4.** The suggested change has been made.
- **Comment 5.** Page xii, paragraph 4, last sentence: please include a space in "the Chicot", change "Aquifer" to "aquifers", and end the sentence with a period.

- **Response 5.** The suggested change has been made.
- **Comment 6.** Page 1-1, paragraph 2, sentence 2: please change "use" to "used" and change "South" to "south".
- **Response 6.** The suggested changes have been made.
- **Comment 7.** Page 1-3, paragraph 2, line 6: please delete space between "(" and "Young".
- **Response 7.** The suggested change has been made.
- **Comment 8.** Page 1-3, paragraph 3: please use past tense for references to "work" for example,"...two geologists worked toward..." and "Mr. Knox worked northward...".
- **Response 8.** The suggested changes have been made.
- **Comment 9.** Page 2-2, paragraph 2, sentence 2: please remove River after Rio Grande.
- **Response 9.** The suggested change has been made.
- Comment 10. Page 2-9, paragraph 2, line 9: please insert comma after "1970".
- **Response 10.** The suggested change has been made.
- **Comment 11.** Page 3-1, paragraph 1, line 14 and elsewhere in the report: suggest replacing all references to Ashworth and Hopkins (1995) with the most recent version of the report–TWDB Report 380 (George and others, 2011).
- **Response 11.** The suggested change has been made.
- **Comment 12.** Page 3-5, Table 3-1: please add commas to thousand placeholder for values listed in "Width" column for consistency throughout the report.
- **Response 12.** The suggested change has been made.
- **Comment 13.** Page 3-20: please number this page.
- **Response 13.** The suggested change has been made.
- **Comment 14.** Page 3-20, Figure 3-7: please replace "other" with "others" in figure caption.
- **Response 14.** The suggested change has been made.
- **Comment 15.** Page 4-1, Section 4.1, paragraph 3, sentence 2: please remove "I" or clarify what this designates.
- **Response 15.** The suggested change has been made.
- Comment 16. Page 4-1, Section 4.1, paragraph 3, sentence 3: please remove "a" before "...100 ft..."
- **Response 16.** The suggested change has been made.
- Comment 17. Table 4-2: please adjust the font for 660 for consistency with font used in the caption.
- **Response 17.** The suggested change has been made. The number 660 has been changed to 666 (to be consistent with Appendix A)
- **Comment 18.** Page 5-5, Section 5.2, paragraph 3: please use lower case "p" for Previous.
- **Response 18.** The suggested change has been made.
- **Comment 19.** Page 6-1: Section 6.1, paragraph 4, second sentence: please add a period to the end of the sentence and please consider editing the sentence for clarification.
- **Response 19.** The suggested change has been made.

- **Comment 20.** Page 6-2: Section 6.2, paragraph 2: please consider combining sentences 2 and 3.
- **Response 20.** The two sentences were not combined.
- Comment 21. Page 6-2, paragraph 3, line 6: please change "8000" to "8,000".
- **Response 21.** The suggested change has been made.
- **Comment 22.** Page 6-3: last paragraph, first sentence; please change dip sections 6 to dip section 6.
- **Response 22.** The suggested change has been made.
- **Comment 23.** Page 6-3: third paragraph: please insert "are" between surfaces and several and possibly remove "from the salt dome". For example, "Near the salt domes the stratigraphic surfaces **are** several hundreds of feet higher than the corresponding surfaces several miles away from the salt dome."
- **Response 23.** The suggested change has been made.
- Comment 24. Page 6-4: please change Mr. Knox picks to Mr. Knox's picks (third line).
- **Response 24.** The suggested change has been made.
- Comment 25. Page 6-4 first paragraph: please change Dr. Ewing to Dr. Ewing's (2 times).
- **Response 25.** The suggested change has been made.
- **Comment 26.** Page 6-5, paragraph 1, line 7: suggest inserting "decreasing" before "age" for clarification.
- **Response 26.** The suggested change has been made.
- Comment 27. 6-6, paragraph 1, line 3: please replace "northern" with "north".
- **Response 27.** The suggested change has been made.
- Comment 28. Page 6-7, paragraph 2, line 6: please replace "exits" with "exist".
- **Response 28.** The suggested change has been made.
- Comment 29. Page 6-7, paragraph 2, line 7: please replace "Chamber" with "Chambers".
- **Response 29.** The suggested change has been made.
- **Comment 30.** Page 7-2, Section 7.2, last paragraph: the sentence reads as if Galloway's work (2000) was performed after the work done by Young (2006). Please remove "previously" and replace with "have also been used".
- **Response 30.** The suggested change has been made.
- Comment 31. Page 7-3 bullet 3: please edit "clays, silts, and, rarely, sands"
- **Response 31.** No changes made to text.
- **Comment 32.** Page 8-1: Section 8.1, second paragraph, last sentence: please change "provide" to "provides".
- **Response 32.** The suggested change has been made.
- Comment 33. Page 8-3: Section 8.1.2: please change Fort-Bend to Fort Bend.
- **Response 33.** The suggested change has been made.
- Comment 34. Page 9-2, Section 9.1.2, paragraph 3: please update the spelling of Fahrenheit.
- **Response 34.** The suggested change has been made.

- **Comment 35.** Page 9-3, paragraph 2, line 8: please update string of specific conductivities to, "...of 14,000; 4,000; 1,400; 650; and 325 ..."
- Response 35. No change was made to the text.
- **Comment 36.** Page 9-3: Table 9-2: please change 1400 to 1,400 for consistence with rest of table.
- **Response 36.** The suggested change has been made.
- **Comment 37.** Pages 9-6 and 9-7: please change all 1000 ppm to 1,000 ppm for consistence in numbering.
- **Response 37.** The suggested change has been made.
- **Comment 38.** Page 9-6: Section 9.3.2 sentence 2: please remove "the" after the comma. For example, "Except for Chambers and Jefferson Counties, the every county has more wells with TDS concentrations below 1,000 ppm than above 1,000 ppm."
- **Response 38.** The suggested change has been made.
- Comment 39. Page 9-7, next-to-last line: please replace "brined" with "brine".
- **Response 39.** The suggested change has been made.
- **Comment 40.** The following publications appear in the list of references but they are not cited in the body of the report. Please either remove the references or update the text with the appropriate citation(s) : Page 10-1: Arroyo (2004);Page 10-2: Baker (1961); Baker, Dale, and Baum (1965); and Beckman and Williamson (1990);Page 10-5: Core Laboratories (1972) -- both entries; Page 10-9: Halbouty (1979);Page 10-12: Lundelius (1972);Page 10-13: Myers and Dale (1966);Page 10-14: Rawson et al. (1967);Page 10-16: Shafer (1970);Page 10-17: Texas Water Commission (1989);Page 10-19: Young et al. (2006a).
- **Response 40.** The following publications were omitted from the bibliography: Arroyo (2004);: Baker (1961); Core Laboratories (1972) -- both entries; Rawson et al. (1967);Texas Water Commission (1989);Page 10-19: Young et al. (2006a). Citations were added to the report for the publications not omitted.

#### **D.4** Suggestions for Geodatabase

- **Comment 1.** Analyses of the alignment of the base of the Jasper to the TWDB footprint for the Gulf Coast Aquifer show a slight deviation in Brazos County (Figure 2 below). Please clarify or clip this from the dataset.
- **Response 1.** The dataset has been clipped.