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Executive Summary

If the results from recent climate change studies are correct, climate change will impact long-term
trends in temperature and precipitation in Texas. Projected temperatures will continue to increase
through the 215% century. In contrast, precipitation will decrease. Finally, the incidence of extreme
events is projected to increase. Extreme events (such as extended droughts, heavy rainfall, and
heat waves) affect many aspects of human life. These changes will significantly impact Texas water
resources.

Geographically, Texas is a large state that spans several climatic zones. Availability of water
varies depending on the region of the state of interest. For example, western region climate is
characterized as arid and semi-arid. As a result, the water supply is limited. In contrast, eastern
region climate is generally characterized as sub-humid with abundant surface water, although the
region is subject to hurricanes and flooding. Differences in projections of future conditions, which
include population, supply, and demand estimates (for example), add to the uncertainty in water
availability. The potential for climate change adds to the overall uncertainty of future conditions.
Therefore, it important to evaluate the potential impacts of climate change and develop adaptive
measures to be incorporated in the water supply planning process.

The regional and state water supply planning process in Texas is administered by the Texas Water
Development Board (TWDB). The planning efforts are distributed across 16 regional planning
groups. A new State Water Plan is produced over the five year duration of each planning cycle.
Personnel associated with each region study water demands and water availability for both typical
and drought-of-record conditions. If a water need is identified, water management strategies are
proposed to address the need. The individual plans from each of the 16 regions are compiled by
the TWDB into the State Water Plan.

General Circulation Models (GCMs) are complex programs developed to track the movement of the
atmosphere, the distribution of water vapor, movement of energy and momentum, and interaction
between the atmosphere, land processes, ocean processes, and sea ice'. Because GCMs model the
gross processes that comprise climate, they are useful for examining the impact of forcings on the
climate trajectory in space and time. A forcing is a component that impacts the trajectory of
climate variables. Major forcings impacting the climate are natural forcings such as solar energy
output, volcanic variations, and man-made forcings due to greenhouse gas variations. Models that
use the natural forcings are able to closely match paleoclimate record of temperatures for the last
100 years. When greenhouse gas forcings are excluded, the models fail to simulate the warmings of
the 20th century, even though the simulations of the preceding centuries using only natural forcings
were successful. Therefore, one forcing of particular interest when simulating future climate is the
change in greenhouse gas (GHG) concentration as a function of time and human activity. GCMs
have ability to examine the impact of different greenhouse gas scenarios on projections of future

! Different models include different components. Some models include all of the components.



climate. Different possible projections for the future world are represented in the form of GCMs
driven by different GHG emission scenarios, ranging from high concentrations (worst case emission
scenario) to low concentrations (best case emission scenario). Several GCMs produced by various
modeling groups are available for specific applications. A combination of GCM and the GHG
emission scenario is selected from the available alternatives to obtain projected climate change
data.

GCMs operate on global scale (solution domain cells with dimensions of hundreds of kilometers)
and for time periods of centuries. GCM output is considered to be too coarse to be used for decision
making at the major river watershed (regional) scale. The global scale output is generally processed
through a regional-scale model and the output in the form of climate variables is downscaled
to a regional extent. The downscaled climate variables can be input to a hydrologic model to
generate variables necessary for a hydrologic analysis. The output from the hydrologic model is
then considered among the regional planning tools for the region. These steps comprise a common
approach for incorporating climate change uncertainty into the regional planning process.

The downscaled information currently available is not directly usable in the water availability model
(WAM) used by Texas water resources engineers. An interface between the projected climate vari-
ables and WAM is required. The downscaled GCM projections should be input to a hydrologic
model that can then provide the appropriate input to the WAM. The official water availability
model for Texas, the Water Rights Analysis Package? (WRAP) was used to run a test case sce-
nario for incorporating climate change impacted hydrologic information into the water availability
estimation. Output from a GCM (CCCMA) was used to adjust input to a watershed hydrology
model (Soil and Water Assessment Tool, SWAT). Net evaporation rates were also adjusted for the
future climate scenario by using data from the GCM. Naturalized flows and net evaporation were
obtained by running the SWAT using projected 2050 climate change scenario 1S92a. Thus flow and
evaporation values obtained from the watershed model, SWAT, are used to adjust WRAP inputs.
WRAP was then run with the historical and projected climate change data from the SWAT tool
to assess the uncertainty in the future water availability due to climate change. The results of the
study indicated that water supply capabilities change significantly under 2050 climate conditions.
(Wurbs and others, 2005).

Researchers and scientists in other states considered incorporation of climate change into their
planning processes. The California Department of Water Resources (DWR) recently included
climate change in the required standard for the Integrated Regional Water Management Planning?®
(IRWMP) process. The State of Colorado* is working with the Front Range Climate Change group
and other climate scientists to incorporate climate change into their long-term water planning.
Other states such as Washington®, Massachusetts®, and Pennsylvania have published guidance

“Information about WRAP is available from the website http://www.tceq.state.tx.us at the time of this writing.

3The California DWR, Guidance Document (2010) was available from http://www.water.ca.gov/climatechange/
docs/IRWM-ClimateChangeClearinghouse.pdf at the time of this writing.

4The Colorado Water Conservation Board guidelines on climate change are located at http://www.denverwater.
org/SupplyPlanning/DroughtInformation/ClimateChange/ at the time of this writing.

5The King County, Washington guidelines on climate change are located at http://cses.washington.edu/db/pdf/
snoveretalgbb574.pdf at the time of this writing.

5The Massachusetts climate change document is at http://1.usa.gov/qQipLk at the time of this writing.
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documents that advise local and regional governments on issues related to climate change.

A critical component of climate change planning in water resources is selection of an appropriate
GCM (or GCMs) for downscaling the climate change data. The GCM selected for a given region
should be tested for its performance and also for the need for any adjustment (during the process
of downscaling), if necessary, to be used for climate change analysis. The purpose of the project
described in this report is to provide TWDB personnel guidance through these issues. The specific
objectives of the project are to provided assistance in the selection of one or more GCMs that are
appropriate for use in State of Texas water resources planning and provide guidance on methods for
downscaling GCM projections of climate change to a scale appropriate for water planning purposes.

Although more than 30 GCMs are in use by climate researchers (and others), 12 GCMs were pre-
selected for the study reported herein. The pre-selection was based on model resolution and data
availability for a GCM performance analysis.

Because the solution grid used in general circulation modeling is large (especially in comparison to
the scale of watershed analysis), one metric for differentiating between GCMs is use of a large-scale
climate feature of import to the region of interest. This approach allows assessment of GCM ability
to model occurrence and trajectory of a critical climate feature. The polar jet stream that traverses
the continental United States from west to east has an impact on the regional climate of Texas.
Therefore, it was chosen to be the large-scale climate feature for assessing the GCM performance.
The ability of each of the 12 pre-selected GCMs was tested to assess reproduction of the occurrence
and trajectory of the polar jet stream over Texas geography. Of the 12 GCMs in the pre-selected
group, 4 were selected based on the GCM performance analysis: GFDL CM2.1, BCCR BCM 2.0,
CCSM 3.0 and CNRM-CM3. Output from these models can be used for regional downscaling
purposes in Texas.

In addition to testing GCM performance, the scope of work required commentary on the range
of GCM projections or convergence of selected models. The four models selected in the GCM
performance analysis were tested for convergence, which confirmed that output from the selected
GCMs can be used for ensemble testing. Also, an appreciation of the range of the models used for
downscaling provided valuable insights into projected future trends. It was observed that projected
long-term monthly estimates of average precipitation were relatively scattered, but the climate
models were in general agreement with respect to the trends in long-term monthly projections
of average temperature. When the future projections were compared with historic projections,
climate models GFDL CM2.1, BCCR BCM 2.0, and CNRM-CMS3 projected a decrease in future
precipitation, while CCSM 3.0 projected an increase. Therefore, climate models GFDL CM2.1,
BCCR BCM 2.0, and CNRM-CM3 converge towards similar projections of Texas climate and can
be used for ensemble analysis. The projections for CCSM 3.0 model differ from those of the other
GCMs. If all four models are included in an ensemble analysis, the ranges of projected weather
variables will be greater than those from the three more tightly grouped models.

The process of downscaling is described in this report. In general, statistical downscaling is used
for water resources planning projects. The statistical downscaling process involves comparison
of GCM output over a historical period with meteorologic observations that are aggregated over
an appropriately-sized grid to determine a set of transfer functions between the GCM output

iii



and regional meteorology. The transfer functions remove bias from GCM estimates of regional
meteorology. These transfer functions are used with the GCM projections of future climate to
developed downscaled estimates of future meteorology. The results can be used in hydrologic
models to assess the potential impact of climate change on water resources. For the purposes of
Texas water resources planning, the statistical downscaling approach is appropriate.
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1. INTRODUCTION

If the results from recent climate change studies are correct, climate change will impact long-term
trends in temperature and precipitation in Texas. Projected temperatures will continue to increase
through the 215 century. In contrast, precipitation will decrease. Finally, the incidence of extreme
events is projected to increase. Extreme events such as extended droughts, heavy rainfall, and
heat waves affect many aspects of human life. These changes will significantly impact Texas water
resources.

Geographically, Texas is a large state that spans several climatic zones. Availability of water
varies depending on the region of the state of interest. For example, western region climate is
characterized as arid and semi-arid. As a result, the water supply is limited. In contrast, eastern
region climate is generally characterized as sub-humid with abundant surface water, although the
region is subject to hurricanes and flooding. Differences in projections of future conditions, which
include population, supply, and demand estimates (for example), add to the uncertainty in water
availability. The potential for climate change adds to the overall uncertainty of future conditions.
Therefore, it important to evaluate the potential impacts of climate change and develop adaptive
measures to be incorporated in the water supply planning process.

The regional and state water supply planning process in Texas is administered by the Texas Water
Development Board (TWDB). The planning efforts are distributed across 16 regional planning
groups. A new State Water Plan is produced over the five-year duration of each planning cycle.
Personnel associated with each region study water demands and water availability for both typical
and drought-of-record conditions. If a water need is identified, water management strategies are
proposed to address the need. The individual plans from each of the 16 regions are compiled by
the TWDB into the State Water Plan.

General Circulation Models (GCMs) are complex programs developed to track the movement of
of the atmosphere, the distribution of water vapor, movement of energy and momentum, and
interaction between the atmosphere, land processes, ocean processes, and sea ice. Different models
include different components. Some models include all of the components. Because GCMs model
the gross processes that comprise climate, they are useful for examining the impact of forcings on
the climate trajectory in space and time. A forcing is a component that impacts the trajectory
of climate variables. One forcing of particular interest is the change in greenhouse gas (GHG)
concentration as a function of time and human activity. GCMs have ability to examine the impact of
different greenhouse gas scenarios on projections of future climate. Different possible projections for
the future world are represented in the form of GCMs driven by different GHG emission scenarios,
ranging from high concentrations (worst case emission scenario) to low concentrations (best case



emission scenario). Several GCMs produced by various modeling groups are available for specific
applications. A combination of a GCM and a GHG emission scenario is selected from the available
alternatives to obtain projected climate change data.

GCMs operate on global scale (solution domain cells with dimensions of hundreds of kilometers)
and for time periods of centuries. GCM output is considered to be too coarse to be used for decision
making at the major river watershed (regional) scale. The global-scale output is generally processed
through a regional-scale model, and the output in the form of climate variables is downscaled
to a regional extent. The downscaled climate variables can be input to a hydrologic model to
generate variables necessary for a hydrologic analysis. The output from the hydrologic model is
then considered among the regional planning tools for the region. These steps comprise a common
approach for incorporating climate change uncertainty into the regional planning process.

The downscaled information currently available is not directly usable in the water availability model
(WAM) used by Texas water resources engineers. An interface between the projected climate vari-
ables and WAM is required. The downscaled GCM projections should be input to a hydrologic
model that can then provide the appropriate input to the WAM. The official water availability
model for Texas, the Water Rights Analysis Package! (WRAP) was used to run a test case sce-
nario for incorporating climate change impacted hydrologic information into the water availability
estimation. Output from a GCM (CCCMA) was used to adjust input to a watershed hydrology
model (Soil and Water Assessment Tool, SWAT). Net evaporation rates were also adjusted for the
future climate scenario by using data from the GCM. Naturalized flows and net evaporation were
obtained by running the SWAT using projected 2050 climate change scenario IS92a. Thus flow and
evaporation values obtained from the watershed model, SWAT, were used to adjust WRAP inputs.
WRAP was then run with the historical and projected climate change data from the SWAT tool
to assess the uncertainty in the future water availability due to climate change. The results of the
study indicated that water supply capabilities change significantly under 2050 climate conditions.
(Wurbs and others, 2005).

Researchers and scientists in other states considered incorporation of climate change into their
planning processes. The California Department of Water Resources (DWR) recently included
climate change in the required standard for the Integrated Regional Water Management Planning?
(IRWMP) process. The State of Colorado?® is working with the Front Range Climate Change group
and other climate scientists to incorporate climate change into their long-term water planning.
Other states such as Washington?, Massachusetts®, and Pennsylvania have published guidance
documents that advise local and regional governments on issues related to climate change.

A critical component of climate change planning in water resources is selection of an appropriate

nformation about WRAP is available from the website http://www.tceq.state.tx.us at the time of this writing.

2The California DWR, Guidance Document, (2010) was available from http://www.water.ca.gov/climatechange/
docs/IRWM-ClimateChangeClearinghouse.pdf at the time of this writing.

3The Colorado Water Conservation Board guidelines on climate change are located at http://www.denverwater.
org/SupplyPlanning/DroughtInformation/ClimateChange/ at the time of this writing.

4The King County, Washington guidelines on climate change are located at http://cses.washington.edu/db/pdf/
snoveretalgbb74.pdf at the time of this writing.

5The Massachusetts climate change document is at http://1.usa.gov/qQipLk at the time of this writing.



GCM (or GCMs) for downscaling the climate change data. The GCM selected for a given region
should be tested for its performance and also for the need for any adjustment (during the process
of downscaling), if necessary, to be used for climate change analysis. The purpose of the project
described in this report was to provide TWDB personnel guidance through these issues. The
specific objectives of the project were to: [1] Provide assistance in the selection of one or more
GCMs that are appropriate for use in State of Texas water resources planning and [2] provide
guidance on methods for downscaling GCM projections of climate change to a scale appropriate
for water planning purposes. From the request for proposals,

There are at least 17 publicly available General Circulation Models (GCMs) available for
water resources studies. The models may perform well when considered on a global scale,
but when analyzed at the watershed scale may not adequately represent the observed
climate in that region. Statistical downscaling is a process whereby local meteorological
observations are used to improve the spatial resolution of GCM outputs. The process
usually involves adjusting the GCM output such that the statistics of the modeled data
match observations for the overlapping period of record. A further advantage to the
statistical downscaling process is that you end up with a dataset appropriate for water
resources studies on the watershed or aquifer scale.

Water planners need to know which GCMs perform best in Texas. They also need an
assessment of the uncertainty in the GCM climate projections for this state. The first
question could be answered by determining how much each GCM needs to be adjusted
in the downscaling process described above. Obviously, the ones that need the least
adjustment are already performing well in this part of the world and would probably
provide more reliable climate predictions. The second question can be answered by
looking at the range in the projections of the GCMs for Texas — a large range indicating
that there remains significant uncertainty in future climate, a narrow range meaning
that the climate models are generally in agreement on a future trend.

The researcher chosen should also provide a description of the downscaling techniques
available and a recommendation on the appropriateness of statistically downscaled
GCMs versus dynamically downscaled GCMs for hydrological studies in Texas.

A total of 12 GCMs were pre-selected based on their superior model resolutions and data availability
for a GCM performance analysis. These 12 GCMs were tested for their abilities to reproduce the
fluctuations of a large-scale climate feature that impacts the climate of Texas. A large-scale climate
feature was chosen at a scale similar the GCMs’ output in order to be a good indicator of the GCM
performance. A final set of GCMs was selected based on the GCM performance analysis.

As stated in the objectives, in addition to testing GCM performance, the research team was required
to provide a commentary on the range of GCM projections, or convergence, of the models selected.
The models selected in the GCM performance analysis were further tested for GCM convergence.
An understanding of the GCM convergence can be used to select among the GCMs for ensemble
testing, in which multiple appropriate GCMs are downscaled to the same regional projections.
Also, an appreciation of the ranges of the models’ projections in downscaling will provide valuable
insights into the future trends projected by the climate models.



In addition to the comparison of GCMs, the report also contains a comparative review of different
downscaling methods. Discussion of the advantages and disadvantages of statistical downscaling
and dynamic downscaling, along with some specific examples, are also included.

Pertinent background information on climate change analysis and the project are discussed in
Chapter 2. Literature citations and discussion used in the development of project findings are
included as appropriate. Development of downscaling technologies is discussed in Chapter 3. The
details of the foundational work necessary for GCM selection are presented in Chapter 4. The
methodology used to perform GCM analyses and the results obtained from those analyses are
presented in Chapter 5. Finally, the conclusions and recommendations from this study are presented
in Chapter 6.
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We acknowledge the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and
the WCRP’s Working Group on Coupled Modeling (WGCM) for their roles in making available
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of Science, U.S. Department of Energy. We also acknowledge the High Performance Computing
Center (HPCC) at Texas Tech University, Lubbock, Texas for providing support with data storage
and computing needs of the project. Finally, we acknowledge Dr. Katharine Hayhoe, Associate
Professor, Texas Tech University, Lubbock, Texas for providing guidance on several queries related
to the science of climate change.



2. BACKGROUND AND SCOPE

The link between carbon dioxide and climate change was first predicted by Swedish chemist Svante
Arrhenius in 1896 (Arrhenius, 1896). The science of climate change has evolved since its inception
and has grown to be an important research topic for the 21st century. It has been reported
that several resources important for human existence are impacted by changes in the climate.
Understanding the potential impact of climate change on water resources is an integral part of a
sound water supply planning process. Appreciating the effects of climate change helps decision
makers prioritize the mitigation/adaptation techniques to assure adequate water supplies in a time
of uncertainty. This section presents a description of the mechanism of climate change and a brief
summary of the processes that impact climate change. Also discussed are the details of the global
and regional scales of climate change studies and their respective importance. Finally, the scope of
the current study is discussed along with the proposed methodology for addressing the questions
posed in the scope of work.

2.1. Science of Climate Change

Climate change is expressed as long-term shifts in the statistics of weather variables such as tem-
perature, precipitation, relative humidity, and others. There are short-term weather extremes,
distinct from the long-term fluctuations associated with climate change, that result from imme-
diate response to climate mechanisms. Climate change is an integral part of the Earth’s natural
variability, which is caused by interactions among oceans, atmosphere, and land with variability
in the solar radiation reaching the earth. In addition to the natural variability, certain naturally
occurring gases, such as carbon dioxide (COz) and water vapor, trap heat in the atmosphere in a
process called the greenhouse effect and can contribute to climate change. The scientific community
debated the causes of climate change in last few decades. However, more recently, there has been
strong consensus within the scientific community that human-induced causes are contributing to
climate change. The Fourth Assessment Report of the Intergovernmental Panel on Climate Change
(IPCC) concluded, “...most of the observed increase in the globally averaged temperature since
the mid-20th century is very likely due to the observed increase in anthropogenic GHG gas con-
centrations” (IPCC, 2007). Different mechanisms that impact climate change are described in the
sections below.



2.1.1. Greenhouse Effect

The Earth’s weather and climate are the result of the redistribution of heat. The energy delivered
by the sun heats the earth, and the earth radiates the heat back into the atmosphere. This
reflected radiation is redistributed by the ocean and the atmosphere, and the excess is radiated
back into space as longer-wavelength infrared radiation. Clouds and atmospheric gases, primarily
water vapor and CQOq, absorb the infrared radiation and re-emit it at much lower temperatures.
This process traps part of the Earth’s reflected radiation within the Earth’s atmosphere, resulting
in warm temperatures required for the existence of life-forms at the surface. The process by
which atmospheric gases trap the re-radiated energy is similar to the effect of the glass roof on a
greenhouse. Therefore, this process is called the greenhouse effect, and the gases are called GHGs.
The average annual surface temperature of the Earth is approximately 60°F. This temperature is
maintained because of GHGs. The greenhouse effect is essential for the existence of human life.
The only disadvantage is that the greenhouse effect works adversely if the concentrations of the
GHGs are higher or lower than the optimal levels'. According to the National Academy of Sciences
(2008), the increase in the concentrations of the GHGs, due to both natural and anthropogenic
sources, caused a 1°F increase in the Earth’s surface annual mean temperature in the past century,
and surface temperatures in the past two decades have risen at a rate substantially greater than
1°F per century (3-4°F). Hence, an appropriate representation of the complex physical processes
that contribute to change in climate must include the impact of GHG emissions.

2.2. IPCC

The Intergovernmental Panel on Climate Change? (IPCC) is an international scientific body that
was jointly established in 1988 by the World Meteorological Organization (WMO) and the United
Nations Environment Programme (UNEP). The primary goals of the IPCC are:

1. To assess scientific information related to climate change,
2. To evaluate the environmental and socio-economic consequences of climate change, and
3. To formulate realistic response strategies.

Since its establishment, the researchers associated with the IPCC produced a series of Assessment
Reports (Houghton et al., 1990; Houghton, 1995; IPCC, 2001, 2007) that included a compilation of
climate projections developed by independent climate modeling groups. The IPCC is the principal
scientific unit curating and developing projections of climate change and its impacts on different
sectors of human life, thereby providing access to climate change information produced by different
research groups. The IPCC reports played a major role in assisting governments to adopt and
implement policies in response to climate change. The reports are standard references, widely used
by policymakers, scientists, and researchers.

!National Academy of Science, http://www.nasonline.org, 2008.
2The main web page for the IPCC is located at http://www.ipcc.ch/ at the time of this writing.



2.3. Greenhouse Emission Scenarios

Based on the CO2 projections described in IPCC SRES report, on an average, CO2 levels are
generally assumed to peak at 475 ppm by the middle of this century and stabilize at 400 ppm by
the end of the century (IPCC, 2007). There is not one precise number because the sensitivity of
the climate system to the greenhouse gases is quantified differently for each emission scenario and
cannot be estimated exactly. (IPCC, 2007). Because GHGs have an impact on the temperature
levels, a maximum permissible COs level of 400 ppm is generally required to maintain tempera-
ture level increases less than 2°F. The basic premise of climate modeling is that the physical and
chemical processes that affect climate can be adequately described by GCMs. GCMs provide a
means to quantitatively capture and represent the effects that GHGs have in influencing climate.
Therefore, quantification of the increases in GHG emissions is necessary for sound climate change
projections. However, uncertainty in quantifying future GHG emissions is based on variations in
future population growth, economic growth, and technological changes.

Projected future increases in COgz levels are expressed relative to 1990 standard levels (IPCC,
2007). For the last four decades, climate modelers used climate models to compare projections
for two scenarios, a present represented by current COg levels (1xCOg2) and a future scenario
represented in terms of multiples of CO; rates for the present scenario (2xCQO3). The limited
processing power of computers and incomplete understanding of climate dynamics necessitated
this coarse representation. In 1992, IPCC released emission scenarios to drive global circulation
models and to develop climate change scenarios. They developed six scenarios designated S92 a-f
for the Business-As-Usual (BAU) case. BAU meant that the GHG emissions were represented by
existing trends without any adjustments. The IS92 a-f scenarios were the first set of global emission
scenarios to provide estimates for all GHGs (such as COg, SOq2, water vapor, CHy; IPCC, 2007).

In 1996, IPCC representatives conducted a plenary session in Mexico City to develop a new set
of emission scenarios. The report describing the methodology and the formulation of these new
scenarios is the Special Report on Emission Scenarios (SRES, Nakicenovic and Swart, 2000). The
new set of emissions scenarios was intended for future IPCC assessments and for other scientific
and policymaking communities that develop mitigation/adaptation measures and policies. The
new scenarios also contain information to better assess climate-change impacts and vulnerabili-
ties, adaptation strategies, and policies. They represent the level of economic activity, rates of
technological advancements, and demographic developments in different world regions.

The A1 emission scenario depicts a future world of low population growth, rapid economic growth,
and rapid introduction of new and more efficient technologies. The scenarios represent a global
population that peaks in the mid-215% century. This scenario projects a more interactive society
with social and cultural convergence among regions and substantial reduction in per capita income
gap between the developed and the developing countries. The A1 scenario is further divided into
three groups based on the direction of the technological change:

o A1F1 represents fossil-fuel-intensive energy consumption,

e A1T represents use of non-fossil energy resources, and



e A1B represents a balance of energy sources.

The A2 emission scenario was developed to represent a heterogeneous world. This storyline projects
more self-reliance, preservation of local identities, and high population growth. In this scenario, eco-
nomic development is primarily regionally oriented. Per-capita economic growth and technological
changes are more fragmented and slower than in other emission scenarios.

The B1 emission scenario was developed under the assumption of a convergent world with low
population growth and an environmentally friendly future. Similar to the population growth in
the Al scenario, the global population was assumed to peak near the mid-21st century and de-
clines thereafter. In this scenario, there is a rapid change in economic structure with a shift to
a service- and information-based economy, reduction in material intensity, and introduction of ro-
bust, resource-efficient technologies. Importance is given to global solutions for economic, social,
and environmental sustainability. The scenario concentrates on improved equity without additional
climate initiatives.

The B2 emission scenario was developed to describe a world in which local solutions are provided
to economic, social, and environmental sustainability. In it, a world with moderate population
growth, moderate levels of economic development, and diversified technological change is depicted,
which is in contrast to the B1 and Al scenarios. The focus is on the regional and local levels.

GHG emissions over time associated with the emission scenarios described above are displayed
on Figure 2.1. Additional information on the emission scenarios is contained in the IPCC 4th
Assessment Report (Rogner et al., 2007).

2.4. Why Should We Study Climate Change?

According to the National Academy of Sciences®, increases in GHG concentrations caused a 1°F

increase in the surface mean temperature during the past century. Surface temperatures in the
past two decades, 1991 to 2010, rose at a rate substantially greater than the 20th century average
rate. With the increase in GHG concentrations, scientists predict that the mean global surface
temperature could increase by 2-10°F during the 21st century. Simultaneously, northern hemisphere
snow cover and Arctic Ocean floating ice decreases. Sea level increased 4-8 inches during the past
century. Furthermore, world-wide precipitation increased about one percent with a significant
increase in extreme rainfall events. The 10 warmest years of the 20th century occurred during the
last 15 years of the century. Other impacts observed during the last century were melting of the
Greenland ice caps between 1992-2002, loss of glaciers in Austria, rise in sea level in the Maldives
region and islands around it, and stress in the South American coral population attributed to
climate-change-induced El Nino events.

Although climate change is a global phenomenon, the impacts of such changes are more apparent
at regional and local scales. Impacts could be in the form of higher or lower temperatures, longer or
shorter growing seasons, and higher or lower frequency of droughts and hurricanes (IPCC, 2001).

3See http://www.nasonline.org, 2010.



n
8

[ 4
[ post-SRES range (80%) / post-SRES (max)
/

180 =—— B1
— AT /
| —— B2 /
190r __ atB y,
— A2 /

3

e ATF

3

Global GHG emissions (Gt CO»-eq/ yr)
8

80
60
40
P T
p— — ) — ~ —

20 | post-SRES (min) e e

0 L 1 1 1 1 L 1 L 1

2000 2020 2040 2060 2080 2100

Year

Figure 2.1: SRES emission scenarios. (Source: IPCC, 2007, Figure 3.1)

It is important for impact modelers to analyze changes in the regional environment caused by
global climate change and propose policies to accommodate those changes. With respect to water
resources, scientists project decreasing precipitation and soil moisture and increases in temperature
and evaporation (IPCC, 2001). Such impacts affect different portions of the hydrologic budget for
a specific region. Global warming and its effects on a region’s water resources are important and
much-studied subjects.

Climate modeling and impact studies are important to the State of Texas because of its large size.
Texas is larger than most states and spans climates from arid/semi-arid regions in the west, to
a sub-humid climate in the east, to the hot, humid coastal regions along the Gulf Coast. The
Texas Gulf Coast is at greater risk from sea-level rise compared to other North American coastal
areas because of relatively flat topography and land subsidence (Norwine et al., 1995). Semi-arid
conditions and high potential evapotranspiration rates in western Texas might impose stress on the
state’s water resources should climate change result in warmer, drier conditions. Because of the
size and the variety of Texas climate mechanisms, policy makers need assessment of the potential
impact of climate change for policy development, especially when considering new construction
projects.



2.5. How Do We Study Climate Change?

GCMs are used to study climate change at a global scale. These models are complex, deal with
numerous intricate climate mechanisms, and require astronomically-large numbers of calculations to
produce results. GCMs provide a broad perspective of the climate change occurring at continental
scales. GCMs do not generate results at regional scales because the grid size used in GCMs is large
(2-8° latitude by 3-10° longitude). GCMs tend to simplify most of the sub-grid scale phenomena
(those processes occurring for areas comparable to regional scale) to maintain consistency in model
structure (IPCC, 2001). These complex models produce global long-term projections for climate
variables, such as precipitation, temperature, and sea-level atmospheric pressure, at monthly and
daily time steps for periods encompassing several centuries into the past and the future.

2.6. Importance of Regionalization

The spatial scale (size of the solution grid) of a GCM is relatively coarse. Therefore, GCM output
is not appropriate for regional or smaller scales. For many impact studies, resolution of climate
change requires information at a regional scale, which is substantially finer (smaller) than the large
scales represented by GCMs. For example, an entire watershed for a sizable river can be contained
in one grid cell of a GCM. Therefore, methods for regionalizing or downscaling GCM results are
needed.

To formulate policies to regulate the emission of GHGs, it is important that the long-term effects
of the increase in the GHG concentrations are adequately represented in the models used to aid
in policy development. It is important to account for GHG emissions as represented by the SRES
while regionalizing the GCM information. As a result, several approaches for downscaling GCM
data to a regional scale were developed. The sections below contain a brief description of different
quantitative and qualitative approaches for downscaling the GCM results. Detailed discussion of
these downscaled techniques in summarized in Chapter 3.

2.6.1. Statistical Downscaling

In statistical downscaling, a statistical model that relates large-scale climate variables (or pre-
dictors) to regional and local variables (or predictands) is developed, and the local and regional
variables are estimated. Local and regional climate statistical parameters are estimated using
the predictors from a GCM output as input parameters for the statistical model. The advan-
tage of statistical downscaling techniques is that they are computationally inexpensive. Statistical
downscaling methods can easily be applied to output from different GCM experiments. Another
advantage of the statistical methods is the possibility of tailoring the model to observed regional
or local weather data (IPCC, 2001).

The basic assumption prevalent in the downscaling methods is that the statistical relations devel-
oped for current climate conditions will hold under the changed future forcing conditions, and this
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assumption unfortunately is not verifiable. There is no universal systematic procedure for checking
the uncertainty of the statistical models. Therefore, verification of statistical models should be
carried out on a case-by-case basis based on the historical data available (IPCC, 2001).

2.6.2. Dynamic Downscaling

Another technique of regionalization is dynamical downscaling or generation of a regional climate
model (RCM). The procedure used for developing a RCM is similar to that used for a GCM except
that the grid size is small compared to that of a GCM. The advent of fast computers resulted in
easier implementation of RCMs for climate modeling. RCMs with comparatively small solution
domains (when compared with GCMs) can yield significant modification of large-scale circulations,
often leading to improved simulations. Improper representation of physical relations in the form of
incorrect assumptions is a problematic issue with GCMs. These errors caused by parameterization
could be eliminated to a large extent using the RCM. The boundary conditions and initial input
values for a regional climate model are obtained from a GCM, and the internal physical consistency
of the model is maintained (IPCC, 2001).

2.6.3. Qualitative Approach

For those regions with limited technical resources and data availability issues, a preliminary as-
sessment of the impact of climate change on the sectors can be developed using a relative change
or qualitative approach. The California DWR 4 summarizes the relative change approach as ad-
dition or subtraction of a defined quantity or percentage from the expected level of a variable of
interest to estimate the impact of climate change. The approach produces a preliminary estimation
of the expected magnitude and direction of expected change. Another qualitative approach relies
on impact assessment from past studies and surveys of local experts. This approach can be used
to indicate the general direction and order of magnitude of the expected changes due to climate
change, developed based on qualitative information.

2.7. Defining the Climate of Texas

The climate of Texas is controlled by the radiation balance and the flow of weather into Texas from
the neighboring regions. The continental and regional-scale of interest examined herein were:

e Pacific tropical storms (jet stream),
e Atmospheric moisture from the Gulf of Mexico in the east, and

e Other large-scale climate features such as the proximity to Chihuahuan Desert, Pacific/North
American teleconnection pattern (PNA) and the Pacific Decadal Oscillation (PDO).

“See http://www.water.ca.gov., 2010.
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2.7.1. Pacific Tropical Storms

El Nino is a disruption in the ocean atmosphere system that causes important weather systems
around the globe (Philander, 1990)°. Under normal conditions, relatively high atmospheric pressure
on the eastern Pacific Ocean compared to the western Pacific Ocean results in the trade winds
blowing towards the west across the tropical Pacific Ocean. These winds result in the build-up of
warmer surface water in the west. Upwelling replaces the warm surface water caused by the winds
with cold water from the depths of ocean. The trade winds push the water further towards the
west causing an increase in the altitude of water in the western Pacific compared to the eastern
region. The surface waters in the west undergo evaporation that rises and then condenses to form
clouds. These clouds result in wet weather in the western Pacific. While the air rises in the west,
the moist air from the east rushes in to fill in the empty space left by the warm air, causing rain
in the west. This cycle strengthens the trade winds, and the process begins again. During some
point of this cycle, the air pressure gradient declines because of the Southern Oscillation. The
southeast trade winds weaken and allow the warmer surface water that was moving westward to
drift eastward along the equator and then southward towards the Peruvian coast. This abnormal
scenario is called the El Nino. El Nino occurs with a frequency of three to five years. During
an intense period of El Nino, the southeast trade winds shift direction and change into equatorial
westerlies. This phenomenon is known as El Nifio Southern Oscillation (ENSO). La Nina means
just the opposite of El Nino. La Nina refers to a stage with exceptionally strong winds and low
sea surface temperatures in the central and eastern tropical Pacific. The effect of El Nino events
and climatic variations in the equatorial Pacific region is extremely strong and is well documented
in the literature. The effect of El Nifio events on other regions on the globe is an example of
teleconnection, when weather anomalies at one region could be related to climatic variations at a
remote location.

Extreme events such as hurricanes and droughts are a part of the natural climatic variability of
Texas. These variabilities exist even in absence of global climate change. The external influences
such as the ENSO cycle in the Pacific Ocean also have an impact on the drought/flood cycle of
Texas. A La Nina event results in a decrease in the precipitation levels of the region. The impact
of these events on Texas can be emphasized by the fact that a drought (1988) in Houston (when
rainfall was half of its annual average) coincided with an occurrence of La Nifa. In more recent
memory, the widespread drought of 2011 was also associated with a La Nina event.

2.7.2. Gulf of Mexico

Another large-scale climate feature impacting seasonal climate of Texas is the moist air blowing
inland from the Gulf of Mexico. The proximity to the coast primarily influences the seasonal climate
of Texas. The Gulf acts as a moisture source for the region and modulates the seasonal and daily
cycles. The atmospheric systems that define the seasonal and diurnal variations in temperature
and precipitation vary by their seasonal positions in Texas. Sea surface temperatures and surface
winds associated with the Gulf of Mexico moderate temperature extremes. During the spring

5 Also, information about the Souther Oscillation is available from http://www.noaa.gov.
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and fall seasons, the influence is attributable to passage of the frontal systems generally moving
from the west to the east. The fronts are positioned in the northeasterly direction. The moist
air is carried northward from the Gulf with the advancing front wedging under warmer moist air.
This movement results in frontal precipitation that may lead to severe weather. In winter, the
fluctuations are mostly caused by the cold, dry, Canadian air blowing from the north.

2.7.3. Other Large-Scale Climate Features

The proximity of Texas to the Chihuahuan Desert results in periods of prolonged below-average
rainfall. The Chihuahuan Desert air mass contracts and expands with respect to the migration and
strength of the large-scale subtropical ridge of high pressure that envelopes the earth around the
equatorial region. The strength and existence of the ridge depends on the occurrence of El Nino
and volcanic eruption. Texas experiences drought with intermittent frequency. The High Plains
is the most vulnerable region because of proximity to the Chihuahuan Desert. Especially during
the winter, the intrusions of dry polar air are frequent, and the return flow of the moist Gulf air
above the shallow polar air mass does not extend far enough into the region to produce appreciable
rainfall. The regions affected by the drought are determined by the location of the subtropical ridge
over the southern United States.

Other teleconnection patterns such as the PNA and the PDO exist in this region, but no strong
link to climate in Texas has been observed. After a thorough literature review, we confirmed that
the other large-scale climate features did not have a pronounced impact on the climate of Texas.

2.8. Scope of the Study

The purpose of this study is to provide guidance to water resource planners on the issues listed
below.

1. The GCM models may perform well when considered on a global scale, but when analyzed
at the watershed scale may not adequately represent the observed climate in that region.
Hence, there is a need to downscale the information produced by GCMs. However, because
the downscaling or regionalization process is heavily reliant on the GCM information, it is
necessary to select the most appropriate GCMs for the regional scale studies. Therefore,
water planners need to know which GCMs perform best for different regions in Texas. Also
necessary is assessment of the uncertainty in the GCM climate projections for this state.

2. As outlined in Section 2.6, there are several methods in which GCM information can be down-
scaled to a regional scale. One of the goals of this study is to present a qualitative description
of various downscaling techniques and provide a recommendation on the appropriateness of
statistically downscaled GCMs versus dynamically downscaled GCMs for hydrologic studies
in Texas.
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2.9. Approach for the Study

While there are several GCMs available, the primary goal of this study was to select appropriate
climate models that best represent the global-scale climate of Texas. GCMs that efficiently represent
the climate forcings of regions in Texas were selected based on a careful comparison of the output
from 25 GCMs for selected GHG emission scenarios. The selection was based on a two-step process
testing the GCM performance and GCM convergence. Details of the GCM testing process are
discussed in Chapter 5. In testing the GCM performance, the abilities of the GCMs to reproduce
the trends of a continental- scale climate feature were compared, and the GCMs that performed
better were pre-selected. The large-scale climate feature that most impacts the regional climate of
Texas was found to be the polar jet stream. Testing the ability of GCMs to properly represent the
latitudinal location of the center of the polar jet stream for any given historical month helped in
the pre-selection of the GCMs. The test of GCM performance determined how much each GCM
required to be adjusted to match with the real-time features in the downscaling process. Obviously,
the ones that needed the least adjustment were already performing well in this part of the world
and would probably provide more reliable climate predictions.

The pre-selected GCMs were further analyzed for GCM convergence. A GCM output usually in-
cludes future projections of mean climate variables, such as precipitation, temperature, and relative
humidity. The convergence of all models can be used to determine the range in the projections
of the GCMs for Texas. The convergence test is focused on determining whether all models were
converging towards a similar result or varied over a large range of values— a large range indicating
that there remains significant uncertainty in future climate projections, a narrow range meaning
that the climate models are generally in agreement on a future trend. Therefore, the projection
capabilities of GCMs for these climate variables were compared, to test the convergence of different
climate models and those models that converged better were identified.

Finally, a qualitative comparison of the literature available on different downscaling techniques
was developed to address the second goal of the study. Details of the downscaling techniques are
presented in Chapter 3.
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3. DOWNSCALING TECHNIQUES

Downscaling is the process of extracting information about projected climate change from GCM
output and rescaling that information from the large computational cells of the GCM to smaller
scales such that the results can be used for regional and watershed studies. The majority of
literature review work was directed toward understanding current technology associated with the
downscaling GCM. That information is the topic of this chapter of the report.

3.1. Dynamic Downscaling

Dynamic downscaling generally refers to using a regional climate model embedded within (or at least
using results from) a larger-scale GCM. Regional climate models are numerical models constructed
to reproduce meteorologic/climatologic variables at scales from a few tens of kilometers to a few
thousands of kilometers (Wilby et al., 2004). They are more detailed in their representation of the
physical processes associated with climate and generally offer improved representation of climate
physics. Therefore, because of their complexity and the computational expense of operating them,
they can be applied to solution domains with lateral dimensions of only a few hundred kilometers.

Although regional climate models have other applications, from a downscaling perspective they are
useful because some of them can be embedded within one ore more computational cells of a GCM.
That is, the computations executed in the course of operating a GCM can be used as the boundary
and initial conditions for a more detailed regional climate model. The potential impact of climate
forcings can be studied using the results from the regional climate model that is “nested” within
the solution domain of the much coarser (larger) solution domain of the GCM (Giorgi et al., 1998).
Mearns et al. (2003) offers a review and suggestions for application of regional climate modeling
for downscaling.

3.2. Statistical Downscaling

Statistical downscaling is used to describe the process of extracting information from GCM output
for a “historical” GCM run, comparing those results to observationally-derived data, and then using
a climate-change run of the GCM to “adjust” the variables of interest for subsequent projections.
Because GCM output is developed on a grossly different scale than observational measurements,
bridging that gap is often done by rescaling observational data on a grid and working with the

15



gridded observational data. The process is described by several authors and is elaborated in the
following section of this report.

One of the earliest projects to address the potential impacts of climate change was that of Ayers
and Leavesley (1989) and Ayers et al. (1994). A GCM was used to predict potential changes to
precipitation and temperature based on the changes from a base run (1xCO2) and a climate-change
run (2xCOg). The main approach used a “climate-factor” adjustment for downscaling.

Bogardi et al. (1993) described development of a stochastic spatiotemporal model developed to
estimate the impact of climate change on local and regional precipitation for eastern Nebraska in
the United States. Epstein and Ramirez (1993) developed a spatial disaggregation model for the
upper Rio Grande basin in Colorado. The model preserved spatial covariance structures for the
temperature and precipitation regimes, and allowed simulation of daily temperature and precipita-
tion using direction provided by the GCM output. Bates et al. (1998) described a hidden Markov
model for application to the downscaling problem in southwest Australia.

Widmann et al. (2003) compared three methods for statistical downscaling of GCM output. Their
database was 522 stations from which daily data were projected onto a 50 kmx50 km grid. The
grid-cell estimates were developed to be consistent with the Parameter-Elevation Regressions on
Independent Slopes (PRISM) precipitation climatologies developed by Daly et al. (1994). Widmann
et al. developed and applied 1) a spatially-varying, but temporally-invariant scaling factor, 2)
singular value decomposition of local and reanalyzed precipitation, and 3) a nonlocal dynamic
correction to the local scaling factor to their dataset. The first method captured about 30 percent of
the variance of observed monthly precipitation. The second method explained more than 60 percent
of the variance. Finally, the local scaling method performed well, but with less skill than the second
method in the rain shadow of the Cascade Mountains.

Salathé (2005) suggested a relatively simple method for statistical downscaling. They subdivided
the year into quarters (December-January-February, etc.) for their downscaling approach. For
precipitation, they applied a multiplicative factor to precipitation based on correlation between
monthly observed precipitation and monthly reanalysis results from the GCM of interest. Monthly
temperature for the grid was assumed to be the average of daily maximum and minimum surface
temperatures. A correction factor was determined by computing the additive difference between
grid temperature and results from the GCM reanalysis output. Daily variability of surface temper-
ature was preserved using an observed sequence of daily temperatures constrained to the monthly
mean, which is similar to the approach used by Wood et al. (2002).

Hayhoe et al. (2008) described climate change predictions for the Northeastern U.S. developed using
statistical downscaling and regional climate modeling (dynamic downscaling). Hayhoe et al. used
the method of Wood et al. (2002). In the Wood et al. method, the density functions for modeled
monthly precipitation and temperature for the calibration period were mapped onto gridded his-
torical data (from observations) to preserve the mean and variance of the underlying observational
time series. Daily humidity values were developed using the method described by Thornton et al.
(2000).

Hayhoe et al. (2009) described climate change predictions for the U.S. Midwest derived by statis-
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tically downscaling GCM output. The process was described as using a historic period of observed
variables of interest to establish relations between ground-observed variables and GCM-predicted
variables. The relation was averaged over at least two decades to reduce year-over-year varia-
tion. A second historical period was used to validate the derived relations. The assumption was
that relations between large-scale GCM processes and small-scale local processes remains constant
under climate-change scenarios. Vrac and Naveau (2006) reported that for 37 midwestern states
the relations broke down only for the most extreme precipitation events — those exceeding the
99th percentile of the frequency distribution!. Furthermore, Hayhoe et al. (2008) reported that
statistical methods might outperform regional climate models for geographic areas of variable to-
pography, such as mountainous or coastal areas. As a result, Hayhoe et al. (2009) chose to use two
statistical downscaling schemes. The first approach was similar to that developed by Maurer et al.
(2002). That is, an empirical statistical approach was used that maps the density functions for
modeled monthly and daily precipitation and temperature for the climatologic period (1961-1990)
onto the 1/8 degree gridded observed data. This approach preserved the mean and variance of the
observations. Furthermore, bias correction and disaggregation were developed using the methods of
Wood et al. (2002), which compared favorably with regional climate model simulations. The second
approach used by Hayhoe et al. (2009) was an asynchronous regression approach to rescale daily
GCM temperature output by individual quantile. GCM-simulated time series were conditioned
such that the distributions of simulated daily values approximate distributions of temperature at
local weather stations. The regression equations so derived were used with future GCM simulations
to rescale GCM simulations under climate-change conditions.

Hayhoe et al. (2010) described the statistical downscaling approach used for climate change assess-
ment in the Great Lakes region of the U.S. They stated the following.

Statistical downscaling relies on historical instrumental data for calibration at the local
scale. A statistical relationship is first established between GCM output for a past
“training period,” and observed climate variables of interest (here, daily maximum
and minimum temperature and precipitation). This relationship is averaged over a
climatological period of two decades or more to remove year-to-year fluctuations. The
historical relationship between AOGCM output and monthly or daily climate variables
at the regional scale is then tested using a second historical “evaluation period” to
confirm the relationship is robust. Finally, the historical relationship between AOGCM
output and monthly or daily climate variables at the regional scale is used to downscale
both historical and future AOGCM simulations to that same regional scale.

The primary assumption for the Hayhoe et al. (2010) statistical downscaling approach was that the
relations between large- and small-scale processes were invariant with respect to time, which was a
weakness of the approach. Hayhoe et al. (2010) used two statistical downscaling approaches. The
first was an empirical technique that mapped the probability density functions for modeled monthly
and daily precipitation and temperature for the climatological period (1961-1990; Maurer et al.,
2002) onto those of gridded historical observed data, so the mean and variability of both monthly

'However, it should be noted that for many hydrologic analyses these are the values of interest.
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and daily observations are reproduced by the climate model outputs. The bias correction and spatial
disaggregation technique was originally developed for adjusting AOGCM output for long-range
stream flow forecasting (Wood et al., 2002; VanRheenen et al., 2004), later adapted for use in studies
examining the hydrologic impacts of climate change. The method compared favorably to regional
climate model simulations (Wood et al., 2004). The second approach downscaled to individual
weather stations using an asynchronous quantile regression method that can determine relation-
ships between two quantities not measured simultaneously, such as an observed and a model-
simulated time series. The method assumed that, although the two time series were independent,
they described the same variable, at approximately the same location, and therefore must have
similar probability density functions (PDFs). The two independent time- varying variables X (¢)
and Y (f) were regressed using only their statistical distributions F'(z) and G(y). The method
determined the function Y = u(X) by matching the quantiles of x and y of the distributions of X
and Y for each probability level (O’Brien et al., 2001). Using 2 m daily model-simulated maximum
and minimum air temperature and precipitation from the AOGCM as the predictor and daily
observed maximum and minimum temperatures and precipitation as the predict and, the resulting
regression model could then force the PDFs of the simulated fields to match those of the observed
data.

Wang et al. (2011) discussed results from a comparison of statistical downscaling and dynamic
downscaling as applied in California to assess potential impacts of climate change for water resources
projects. The Wang et al. (2011) comparison appeared to be based on an unpublished manuscript or
white paper? in which the PRISM system for developing relatively high resolution gridded datasets
was used to produce downscaled results from GCMs.

3.3. Weather Generators

A weather generator is a stochastic model developed using known or assumed probability distri-
butions to describe weather variables that are connected in space and time to preserve spatial
and serial correlation. Therefore, weather generators are a form of statistical downscaling, but are
generally used to produce suites of potential time series. They are complicated tools that require
substantial investment to develop and operate. Weather generators are used with GCM output
by making adjustments to some of the parameters that describe the variables of interest. The
process is to develop the statistics of meteorologic variables of interest from the climate model
operated under historical conditions, then develop similar statistics from climate model outputs
when operated under climate-change conditions. The differences in statistics are used to adjust
commensurate statistics derived from observed meteorology. The weather generator is then used
to sample the distributions (preserving the spatiotemporal dependence) stochastically to produce
suites of meteorologic instances for driving hydrologic models.

Dubrovsky (1997) developed a weather generator based on a Markov-modeling approach. A climate-
pattern analysis was also used.

2Cited as Wang, Yin, Suits, and Chung (Wang et al.) and provided by Wang as a personal communication (August
2011).

18



Semenov and Barrow (1997) described application of a weather generator (stochastic model) for
development of climate change scenarios®. Semenov and Barrow used the UKHI and UKTR GCM
experiments from the UK Meteorological Office GCM to develop suites of simulated weather for
assessment of potential climate change impacts on agriculture. They concluded that use of 30 years
of simulation from the downscaled GCM experiments produced very different assessments of the
sustainability of wheat cultivation in the area near Seville, Spain.

Semenov et al. (1998) conducted a comparison of the WGEN (Richardson and Wright, 1984) and
LARS-WG stochastic weather generators at 18 sites located in the USA, Europe, and Asia. They
reported that the LARS-WG weather generator tended to match observed data better than WGEN
because the distributions used in LARS-WG were more complex (semi-empirical) than those used in
WGEN (simple theoretical). Neither weather generator was able to reproduce the annual variability
in monthly means of climate variables. In addition, the distributions of frost and hot periods were
not reproduced. Furthermore, the daily variance of climate variables was also not reproduced.
Semenov et al. observed that validation of the models is critical to establishing confidence in the
model output and for obtaining good results.

Khalili et al. (2007) described a weather generator approach based on a spatial moving average to
describe inter-site correlation. They applied the method to the Peribonca River basin in Quebec.
Such a model would be used by adjusting the parameters of the stochastic model to correspond
with the expected changes from a GCM. Khalili et al. (2009) extended the work of Khalili et al.
(2007) to include other meteorologic variables, including daily maximum/minimum temperatures
and solar radiation data. The WGEN (Richardson and Wright, 1984) weather generator was used
without modification. Meteorologic variables were reproduced using spatially-correlated random
variables. The resulting meteorologic time series preserved the spatial correlation structure for both
daily and monthly time steps.

3.4. Hydrologic Applications

Hughes et al. (1987) presented an analysis of the use of GCM output for prediction of impacts on
hydrologic extremes using a weather pattern classification approach that was coupled to a stochastic
model (weather generator). An example of output from their approach is displayed on Figure 3.1.

An early study on the detectability of a climate-change signal on the runoff from a river based was
examined by Hains and Henry (1989). The examined runoff from the Chattahoochee River basin in
northeastern Georgia. They concluded that (at that time) hydrologic models lacked the structure
to interact directly with output from GCMs and the necessary capability to use gridded data (such
as NEXRAD precipitation fields).

Chang et al. (1992) presented a review of research on climate change impacts on water resources.
They identified three research needs to be addressed by climate change research:

3The stochastic weather generator, LARS-WG (Semenov and Barrow, 2002), was available at http://www.
rothamsted.bbsrc.ac.uk/mas-models/larswg.php at the time of this writing.
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Figure 3.1: Daily flood-flow frequency curve for the Satsop River from Hughes and others (1987).

1. Need for water managers to clearly describe hydrologic statistics and characteristics needed
from climate change researchers for application in developing estimates of climate change on
water resources systems,

2. Need to estimate impacts of climate change on water resources systems, and

3. Need to evaluate water management and planning methods to determine if uncertainty in
fundamental assumptions (primarily stationarity) implies revisions to these technologies are
required.

At the time of the Chang et al. (1992) review, no detailed lists of climatic and hydrologic data
requirements were identified. Little work was revealed dealing with the sensitivity of water resource
systems nor were extensive sensitivity analyses of climate change scenarios determined.

Chiew et al. (1995) used a daily time-step hydrologic model to examine the impact of projected
climate change on runoff and soil moisture for 28 Australian catchments. Chiew et al. applied
an arbitrary set of changes to temperature and precipitation to effect a sensitivity analysis. They
followed this set of experiments with results from five different GCMs* (CSIRO9, BMRC, UMOH,
GFDLH, and CCC models). The approach of Chiew et al. (1995) appears to be an application
of the climate factor downscaling approach. They used a combination of arbitrary changes to
temperature and precipitation in a pseudo-change or sensitivity analysis approach, then followed
that with adjustments based on temperature and precipitation differences predicted by the suite of
GCMs used in their study. The absolute results are unimportant to the TWDB research project;
however, the approach is important as it illustrates an application of the climate factor method.

Chiew et al. (1996) examined application of catchment-scale rainfall-runoff models for use with
GCMs. They concluded that the simple parameterization models could be directly used in GCMs
for relatively wet (subtropical) watersheds, but did not work well for watersheds with ephemeral
flows.

4Forcing scenarios in use at the time of the Chiew et al. paper were limited to 1xCOs and 2xCOa.
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Copeland et al. (1996) used the Colorado State University Regional Atmospheric Modeling System
to examine the impact of natural versus current vegetation on the weather and climate for July 1989.
This study demonstrated an interesting alternative approach to the typical application of numerical
models for climate-change assessments. Copeland et al. reported that these changes resulted in
substantial changes in both the positive and negative directions on temperature, humidity, wind
speed, and precipitation — solely from changes in vegetation cover.

Wood et al. (2002) conducted a long-term study of hydrologic forecasting for a portion of the
eastern United States. They used monthly ensemble climate model forecasts from the GSM?
code. The GSM model output was bias-corrected and downscaled to 1/8° horizontal resolution
and disaggregated for a daily time step. The bias-correction step was effected using GSM model
climatology as a sample, determining the empirical frequency distribution of model outputs, then
using derived percentiles from model output to determine quantiles based on observed frequency
distributions of model outputs. The Wood et al. development of bias-correction on gridded GCM
output and meteorologic data is the approach used by many (if not most) researchers and end-users
of GCM output to downscale. Wood et al. (2002) used the Variable Infiltration Capacity model
(VIC, Liang et al., 1994) to represent the hydrology of interest, as they explained in the following
quotation.

The premise of the bias correction step is that despite biases in GSM-simulated climate,
the GSM forecasts may have a useful signal if interpreted relative to the GSM clima-
tology rather than the observed climatology. The GSM climatology is defined by the
monthly distributions (for months 1-6 in the forecast period, separately) of simulated
GSM Pyt and Tayg taken from the GSM hindcast simulations (i.e., the 210 simulated
values for each of the 6 forecast period months, for each variable). The monthly ob-
served climatology spans the same time period as the GSM output (1979-1999) and was
created from Co-op station daily observations averaged to a monthly timestep and to
the GSM grid resolution; hence the observed monthly distributions for Pyoq and Tavg
are defined by only 21 values per variable. Bias correction is achieved by replacing GSM
forecast values for Tayg and Pyt with values having the same percentiles (nonexcee-
dence probabilities) with respect to the observed climatology that the original GSM
values had with respect to the GSM climatology, for a given month. The forecasts are
subsequently expressed as anomalies (temperature shift and precipitation percentage)
with respect to the observed monthly means for the 21-year climatology period. Bias
correction is performed at the GSM scale, and each GSM cell (23 cells spanned the
study region) is treated individually, defining its own set of monthly distributions.

For example, bias correcting a monthly Tayg forecast for January-June requires the
following steps: (1) The January GSM Tayg is assigned a nonexceedence probability
(or percentile) within the 210-value GSM climatology distribution for January Tavg. (2)
A January Tayg having the same nonexceedence probability in the observed climatology
is then calculated. (3) Steps 1 and 2 are repeated for Tayg in months February—June,
and the entire process is repeated for each of the ensemble forecast members. (4) Finally,

®National Centers for Environmental Protection/Climate Prediction Center Global Spectral Model.
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the bias-corrected forecasts are expressed as additive (for Tayg) and multiplicative (for
Py ot) anomalies.

In the precipitation and temperature bias correction scheme, when either the GSM
output or the associated percentile falls above or below the range of empirical Weibull
percentiles (equal to 0 N}H) and N]il, where N is the number of members from which
the probability distribution is estimated), theoretical probability distributions are fit
to the data to extend the empirical distributions. This becomes necessary because the
historical climatology is defined by the 21 years of historical observations, whereas the
model ensembles consist of a larger 210-member dataset. For low precipitation, an
Extreme Value Type III (Weibull) function was used, with a minimum lower bound
of zero; whereas for extreme high precipitation an Extreme Value Type I (Gumbel)
distribution was employed. For temperature, a normal distribution was used for both
minimum and maximum.

Following bias correction, the monthly GSM scale forecast anomalies are translated to
the spatial and temporal scale of Variable Infiltration Capacity (VIC) model inputs.
The Tayg and Pyt anomalies are spatially interpolated to the 1/8° VIC cell centers
and applied to the monthly observed 1979-1999 1/8° cell means, to create monthly
forecast sequences at the VIC model scale, in the following manner:

TyviCtest(Ms€) = Ty1Cmean (M) + TANOMfcst (M €)
Py1ctest (M €)= PyICmean (M) + PANOMfcest (7 €)

Here Ty/1cfest (s €) is the forecast monthly Tayg for a given VIC cell in month m
(m = 1...6) of a forecast ensemble member e (¢ = 1...20). TN/ Comean(™) is the
observed 1979-1999 mean Tayg for month m, and ThANOMfest (7€) is the additive
Tavg forecast anomaly for month m and ensemble member e. Likewise, Pycifest (71 €)
is the forecast monthly Pi,¢ for a given VIC cell in month m of a forecast ensemble
member e, Pyiomean () is the observed 1979-1999 mean Pyt for month m, and
PANOMfest (s €) is the multiplicative Py forecast anomaly for month m and ensem-
ble member e. The addition of temperature anomalies will hereafter be referred to as
shifting, and the multiplication by precipitation anomalies will be referred to as scaling.

The final step in preparing the forecasts for input to the VIC model is to replace the
monthly mean sequences by daily sequences. For each month (e.g., January) in each
forecast ensemble, one year from the climatology period is randomly selected (e.g.,
1988). For each VIC cell, the observed daily values of precipitation for the selected year
and month (e.g., 1988, January) are scaled so that the monthly total precipitation is
equal to the forecast Pt for the ensemble member and month. The resulting values of
daily precipitation become the daily sequence for that month of the particular forecast
ensemble member. Daily T};;; and Tmax from the same selected year (e.g., 1988)
are shifted equally so that their average, (T,i;, + Tmax)/2, reproduces the monthly
forecast Tavg for the ensemble member and month, and the resulting values of T});,
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and Tmax become the daily sequence for that month of the particular forecast ensemble
member. Daily wind speed is taken without adjustment from the VIC daily values for
the selected year and month, forming the fourth daily forcing used by the VIC model.
The same year is used to select the daily data for a given month of an ensemble forecast
member in every cell of a study area (the Ohio River basin and east coast). Using
the same year-month combination for resampling over the large-scale hydrologic units
helps to preserve a degree of spatial synchronization in the weather components driving
hydrologic response. The random sampling of a climatology year for selection of daily
sequences is repeated for each month in each forecast ensemble member.

We performed a test of this method using observed total monthly precipitation and aver-
age temperature time series for 1979-1999, aggregated to the GSM scale, as raw forcings
over the Ohio River drainage area. These large- scale forcings were processed (using
the interpolation and temporal disaggregation steps) into daily VIC scale forcings, with
which we simulated streamflow. Figure 3.2 shows that the method is able to repro-
duce the mean and variance of the basin streamflow climatology without introducing
substantial method-related bias.

Andréasson et al. (2004) used two GCMs and two RCMs to study the impact of proposed climate-
change scenarios on six watersheds in Sweden. Andréasson et al. used what they termed the delta
change approach. The delta change approach determines changes in relevant climate variables be-
tween the control and scenario climate simulations and these changes are applied to the hydrologic
simulations. Andréasson et al. observed considerable range in the results of the hydrologic im-
pacts produced during their study. They attributed these differences to a number of components,
including: geographical location of test basins, emissions scenarios, GCMs, RCMs, time periods
used for base climate determination, and how the hydrologic models were connected to the RCM
results. Their principal observations were: decreased spring flood peaks, decreased summer runoff
in southern Sweden, predominantly decreased annual runoff in southeastern Sweden, decreased fre-
quency of high flow events during spring, increased autumn and winter runoff, increased annual
runoff volumes in northern Sweden, and increased frequency of high flow events in autumn.

Adam and Lettenmaier (2007) used the VIC model (Liang et al., 1994; Nijssen et al., 1997, VIC,)
to simulate spatially-distributed total runoff (quick- and slow-response runoff) and snowmelt over
global land areas using a 0.5° resolution for an historical and a future time period. Climate-change
forcing was achieved by adjusting historical, observation-based precipitation and temperature based
on average-change factors from 15 GCMs.

Cunderlik and Simonovic (2007) examined the potential impact of climate change on flood risk using
an inverse approach. A hydrologic model was used to transform hydrologic risk and vulnerability
to corresponding meteorologic conditions. The frequency of critical meteorologic conditions was
examined using a weather generator, which was linked to the GCM of interest. The application
was for Ontario, Canada.

Kang and Ramirez (2007) coupled downscaled output from a GCM with a deterministic hydrologic
model to assess the response of streamflow to long-term rainfall variability under a climate-changed

23



Downscaling Verification
| | | | | | | | | | | |

20000 distributions | Ohio River at Metropolis, IL |
1979-1999
15000 - B
0
£ 10000 I i
" i 0 nn by
O T T T T T T T T T T T T
| | | | | | | | | | | |
12000  statistics =
= =
10000 - O O oL L
o8 mean
8000 - - B
> o® .
£ 6000 - L
std. dev. Um . ml
4000 - ST " oy o OW i
2000 { om U® o® o om |
® O pm pg O®

O T T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

O streamflow climatology simulated with obs. VIC-scale forcings
B climatology simulated with downscaled obs. GSM-scale forcings

Figure 3.2: Climatology period (1979-1999) streamflow distribution simulated from daily VIC
1/8° observations compared with parallel simulation from monthly GSM-scale (2.8125°) spatially-
averaged observations after downscaling and disaggregation procedure. (This figure is Figure 5
reproduced from Wood et al. (2002).)

scenario. They used the CGCM2° and the IPCC B2 scenario to determine the changed climate.
Downscaling was effected using a spatiotemporal stochastic random cascade model (weather gen-
erator) to account for spatial intermittency and spatial self-similarity. The tools were applied to
the South Platte River basin. Results from the study were that the distribution of peak flowrate is
more sensitive to spatial variability than total runoff volume, that impact on total runoff and peak
flowrate can exceed greatly the magnitude of the rainfall variation, and that the magnitude of the
impact depends strongly on the magnitude of associated changes in evapotranspiration.

Abdulla and Al-Omari (2008) examined the long-term hydrologic response of a semi-arid water-
shed to potential climate change. The climate change scenarios superimposed on the Zarqa River
(Jordan) were derived from a combination of General Circulation Models (GCMs) and assumed

6Canadian Centre for Climate Modeling Version 2.
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changes in climate. The Hadley and MPI GCMs were used for two scenarios. An additional ten
scenarios were constructed by assuming +2C and 4+4C temperature rise and assuming 0%, +10%,
+20%, -10%, and -20% changes in precipitation. The Surface-Infiltration-Baseflow model of the
watershed system was used to examine potential changes in watershed response. Under the climate
change scenarios studied, monthly watershed runoff decreased.

CH2M Hill (2008) conducted a climate-change impact study to determine potential impacts on
the LCRA-SAWS Water Project. They analyzed results from 112 GCM simulations of the Lower
Colorado River basin, settling on eight climate-change scenarios based on results from two GCMs.
The two GCMs were the GFDL-CM2.1 and CCSM3, developed by personnel at the Geophysi-
cal Fluid Dynamics Laboratory (USDC, NOAA) and National Center for Atmospheric Research,
respectively. The climate-change scenarios were the A2 (moderately high) and B1 (moderately
low) emission scenarios. Downscaling results were obtained from the Lawrence Livermore National
Laboratory Coupled Model Intercomparison Project (Phase 3).

Choi (2008) applied the A2 and B2 IPCC scenarios to the Kishwaukee River basin coupled with
a dynamic urban growth model” to obtain a suite of eight combined climate-land-use scenarios.
Output from the HadCM3 GCM was used. Choi concluded that impacts were primarily related to
surface runoff, which was a relatively small portion of total runoff. Impacts were observed in the
summer and low-flow seasons and implied that water-sensitive crops might be seriously impacted.

Adam et al. (2009) examined potential changes to snowmelt hydrology based the approach devel-
oped for regional studies in the western United States. Projected changes to snowpack and the
timing of snowmelt-derived runoff were greatest near the boundaries of areas that currently experi-
ence substantial snowfall. Such changes reflected, at least quantitatively, the character of observed
changes in the western United States.

3.5. Available Downscaled Datasets

A large group of governmental and research agencies pooled resources to produce a set of statistically-
downscaled climate projects. These agencies include the U.S. Department of the Interior’s Bureau of
Reclamation (Research and Development Office), Lawrence Livermore National Laboratory, Bureau
of Reclamation’s Technical Service Center, Santa Clara University Civil Engineering Department,
Climate Central, Scripps Institution of Oceanography, and U.S. Geological Survey. The effort
was supported by the U.S. Department of Energy’s National Energy Technology Laboratory, the
U.S. Army Corps of Engineers Institute for Water Resources, the U.S. Geological Survey’s Climate
and Land Use Science Applications and Decision Support Program and National Research Program,
and Scripps Institution of Oceanography’s NOAA-funded California-Nevada Applications Program
(a Regional Integrated Science and Assessment project) and California Energy Commission-funded
California Climate Change Center. The collected datasets are housed in one publicly-available
archive®.

"Land use Evaluation and impact Assessment (LEAM) model.
8The website is located at http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html at
the time of this writing.
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Downscaling of GCM output was conducted using the method developed by Wood et al. (2004).
Bias? was removed from the GCM output before downscaling. The downscaling process was then
executed to produce each dataset. Statistical downscaling requires three datasets: 1) gridded data
based on ground station observations (generally for the 20" century) with a spatial resolution of
1/8°,2) GCM output for a historical period (generally comprising at least a portion of the gridded
observation-based dataset), and 3) GCM output for the future period. The basic protocol for
developing the daily downscaled datasets (BCSD) is as follows.

1. Bias Correction

(a)

For each variable in the GCM dataset to be analyzed, aggregate the observed gridded
data from 1/8° to a spatial resolution of 2°.

Extract a pair of observational and GCM historical period datasets with the same period
of record (both at the 2° resolution).

For each month (January—December) and for each grid cell, construct cumulative distri-
bution functions of GCM- and observational-based variables.

Rank the GCM and observational values from greatest to least (or vice versa — sorting

is irrelevant) and compute the empirical probability (P = ﬁ)

Critical Concept — For the future period, determine an adjusted probability using
the same value from the historical period GCM output. Select the observed value for
that probability. Then assign the future period probability to the observed value.

The result is the bias-corrected estimate for the future period. When combined with
bias-corrected GCM output for the historical period, the result is a dataset that is
statistically consistent with the gridded observed dataset for the historical period, but
retains the GCM-predicted changes to statistical parameters from the historical to the
future periods.

2. Spatial Downscaling

(a)

()

Determine a spatial climatology pattern to be used to disaggregate the bias-corrected
GCM output. The spatial scale of the bias-corrected GCM output will be 2° (if the
algorithm presented above is followed) and the objective is to disaggregate to 1/8°. The
mean monthly spatial pattern (for each month) for each variable could be used.

A factor value is computed for each cell and for each month in the simulation period. For
precipitation, it is the ratio of the bias-corrected GCM depth to the observational value
and for temperature it is the difference between the bias-corrected GCM temperature
and the observational temperature.

Apply a spatial interpolation function to map the computed factors from the 2° cells
onto the 1/8° cells. The approach used as an example on the archive collaborators'®
website is the SYMAP algorithm by Shepherd (1984).

9Bias in this context refers to the difference between historical-period GCM output and historical-period gridded
meteorological observations.
10The archive collaborators are the Climate Central (CC) Lawrence Livermore National Laboratory (LLNL), Bureau
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(d) Apply the factor for each 1/8° cell to the precipitation or temperature to compute the
bias-corrected, spatially-downscaled value for each cell and each time step.

Results from application of this algorithm for a large number of GCMs and a wide range of emis-
sion scenarios are presented by the archive collaborators on a publicly-available website'!. The
downscaled datasets are available for monthly (BCSD) and daily (BCSA) time steps. Temporal
resolution finer than one day will probably require custom development of the downscaled dataset
and depends on the resolution of the underlying GCM.

3.6. Jet Latitude Index Analysis

Bradbury et al. (2002) conducted a study on the New England (NE) region to understand the
primary climate mechanisms controlling the intra-seasonal and multi-annual winter season climate
change in New England. Although these researchers concluded that significant teleconnections
existed between the NE climate and the North American Oscillation (NAO) and PNA indices, the
mechanism behind these links is unclear because of the proximity of NE to the centers of actions
for NAO and PNA. In an attempt to characterize the NE regional atmospheric low so as to better
understand the dominant mechanisms driving the winter climate clearly, Bradbury et al. (2002)
developed the Jet Latitude index (JLI). JLI is an important index used to relate upper air patterns
and regional climate. The JLI was developed by Bradbury et al. (2002a) to understand the seasonal
variation of the latitudinal location of the polar front. Improved modeling of northeastern winter
climate variability resulted from use of correlation between JLI indices and upper air patterns.
The principles used to generate the JLI indices and their gridded data could be applied to analyze
similar synoptic scale climates in other regions of the United States. Bradbury et al. (2002a) stated
that although few regional climate studies adopted such techniques, additional studies focused on
this geographical region would result in better understanding of the relationship between upper air
climate patterns and regional surface climate variability. The authors also stated that the simple
and generic format of these indices make them useful for efficiently analyzing the ability of GCMs
to represent the upper air climate patterns.

JLI was developed initially for the NE region. JLI represents the monthly mean position of the
polar front jet based on 200 mb zonal winds. The location of the polar front is determined from
the latitude of maximum zonal winds in the 20°N to 60°N range. The JLI is equal to the average
latitude of maximum zonal winds in between longitudes ranging from 65°W to 80°W. JLI was not
assigned to all the months because the singular regional jet was not clearly identifiable in the index
domain for some months. The isolation of the months with more than one apparent jet was carried
out by rejecting data points for the months where the maximum zonal wind velocity observed at
any longitude (from 65°W to 80°W) was identified at the vertical domain boundary. For any given

of Reclamation, Santa Clara University (SCU), Scripps Institution of Oceanography (SIO), U.S. Army Corps of En-
gineers (USACE), and U.S. Geological Survey (USGS). The website is http://gdo-dcp.ucllnl.org/downscaled_
cmip3_projections/dcpInterface.html at the time of this writing.

" The website was http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html at the time
of this writing.
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month, the index value was not assigned if the observed maximum zonal wind velocity at one
longitude was greater than 12° north or south from the maximum zonal wind velocity observed at
any other longitude. These automated screening procedures were proven to be effective at removing
most months lacking a clearly distinct jet or having more than one predominant jet within the index
domain. Months with unclear or indistinct jets or months with more than one jet within the index
domain were eliminated efficiently using automated screening procedures.

A JLI similar to the one generated for the NE was developed by Bradbury and others (2002) for
the study sites in Texas. The comparison study was carried out for 12 GCMs and their datasets
and the realtime observations. GCM data were input into the JLI model developed by Bradbury

and others (2002), and the output was analyzed to determine the jet stream representation of each
GCM.
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4. FOUNDATIONAL WORK FOR GCM SELECTION

A number of tasks were required to gather the background information necessary for the GCM
selection analysis. The details of different tasks and their relevance to the GCM selection process are
described in this chapter. The foundational details necessary for GCM selection included the details
of the study area(s), the details of the GCMs used in the study, the meteorological information
used for calibrating the model, and the GHG emission scenario used for the study. Additional
comments on foundational work necessary for GCM selection are provided in subsequent sections
of this chapter.

4.1. Selection of Study Areas

The purpose of this section is to describe the process of selecting the study areas to represent
different geographic regions in Texas and to present the details of the chosen study areas. The
work associated with this task addressed the following questions.

1. What are the different factors that influence the selection process for the study areas for this
project?

2. Where should the study areas be located so that they optimally represent variability across
the state of Texas?

There are several factors that can impact the selection of study areas for this project. Most of the
factors are specific to the region and the study purpose. Listed below are the factors that impacted
selection of the different geographic regions and subsequent study areas.

Regions with different precipitation zones (high/low rainfall)
Regions with different evaporation zones (arid/semi-arid/humid)
Regions with different population zones (urban/rural)

Regions with water-rights permitting issues

Regions with different topography

Regions with good availability of meteorological data

SRR

TWDB staff and the project team discussed and initially agreed on four study areas to represent
State of Texas climate regimes. These four study areas were selected such that they were distinct
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from one another in terms of the factors listed above and represented the four extreme geograph-
ical regions of Texas (north, south, east, and west). After preliminary analyses of the available
meteorological records for the state, the project team learned that five regions were necessary to
characterize the major variability across the state. Because the GCM selection process dealt with
GCM output that was generated for model grid cells at latitudinal /longitudinal scales, the bound-
aries of the study areas were defined by latitude/longitude combinations instead of county lines
or watershed boundaries and river basins. The study areas used for this project are depicted on
Figure 4.1. The nomenclature used in the study to refer to the study areas is listed in Table 4.1.

Table 4.1: Details of the study areas used for GCM selection analysis.

Study Geographical Latitude Longitude

Area Region (°N) (°W)
1 East 28-31 93-100
2 South 24-28 97-100
3 Northwest 32-37 100-104
4 Northeast 31-34 93-100
5 Far West 29-32 100-107

4.2. Selection of GCMs

After selecting the study areas, the next task was to collect information from the GCMs to be
considered. Research groups operating coupled ocean-atmosphere GCM simulations are required to
archive model output by the Program for Climate Model Diagnosis and Intercomparison (PCMDI).
There are 25 climate modeling groups. Output from their GCM simulations were included in
the PCMDI dataset and the World Climate Research Programme’s (WCRPs) Coupled Model
Intercomparison Project Phase 3 (CMIP3) multi-model dataset. Output from these models are
available for distribution to working groups and researchers worldwide. GCM output used in
this study were simulated as part of the preparation of the IPCC fourth assessment report. A fifth
assessment report is currently underway, but the results of GCM simulations for the fifth assessment
report were not available in time to be used for this project. Pertinent details for GCMs considered
for this study are listed in Table 4.2. Of these 25 models, the first 12 (Numbers 1-12) were selected
for further review on the basis of relative ease and extent of data availability in combination
with appropriate model resolution. The remainder (Numbers 13-25) were eliminated from further
consideration.
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4.3. Selection of Climate Change Uncertainty Scenarios

Section 2.3 contains detailed descriptions of the different climate change uncertainty scenarios
available for climate change analysis. TWDB personnel directed the project team to use the
SRES A1B GHG emission scenario for the GCM selection analysis. The A1B scenario is a moderate
emission scenario when compared to the other scenarios. The A1B scenario represents a future with
rapid economic growth and rapid transition to more efficient technologies. The scenario represents
a global population that peaks in mid-century. The A1B scenario includes a technological change
that is achieved by a balance of energy sources. The A1B scenario was selected because it provides
a balanced (mid-high/mid-low) representation of a future impacted by climate change.

4.4. Meteorologic Data Used for GCM Selection Analysis

Meteorologic records for precipitation and temperature variables were used for comparison and
calibration purposes. Records were obtained from the National Climatic Data Center (NCDC)
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