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1 Executive Summary

The University of Texas Bay and Estuary 3D (UTBEST3D) simulator solves the shallow water
equations using a discontinuous Galerkin (DG) finite element approach on unstructured meshes.
The method is based on the use of discontinuous, piecewise polynomial approximating functions for
each primary variable, defined over each element. The potential advantages of the DG method over
more standard approaches include the ability to model flows at multiple scales, including resolution
of long wave and advection-dominated flows, local (elementwise) mass conservation, and the ability
to easily adapt the mesh and polynomial order locally. The flexibility of the code allows for both
lower order and/or higher order polynomials to be used to approximate the solutions, by simply
setting a parameter in the input file. The method is also highly scalable on parallel machines.

The research undertaken during this project year was focused on two tasks.

The first task was to further develop the model, which included additional testing and debugging
of turbulence models which were incorporated during the last contract year, and the incorporation
and testing of wind stress terms into the code, towards the purpose of making the code fully
operational for modeling Texas coastal waters. A wetting and drying algorithm has also been
formulated for the model. The algorithm is currently being tested in a two-dimensional version of
the code [6]. When this testing is completed, we will incorporate the algorithm into UTBEST3D.

The second task was to perform comparison studies for benchmark problems against the EL-
CIRC and SELFE simulators, which are currently in use by staff at the TWDB. For this comparison,
we chose a well-known test case modeling tidal flow in a quarter annular harbor, where an M2 tide
is imposed on an open ocean boundary. This problem is featured as a benchmark on the ELCIRC
web site. The ELCIRC and SELFE models produce elevation and velocity output at each time
step in the simulation; therefore for ease of comparisons we compared the time history of eleva-
tion between these two models with output from UTBEST3D at specific points throughout the
domain. Grid convergence studies were also performed. Additional comparisons can and should be
performed in future studies. This test case is barotropic, therefore we did not compare results for
transported quantities such as salinity. Furthermore, ELCIRC and SELFE do not have options to
perform harmonic analysis, so we have not performed analysis of the harmonic constituents of the
solutions. In addition, ELCIRC and UTBEST3D are formulated to be mass conservative; however,
possible mass balance errors in SELFE should be examined in future studies.

The findings of the project can be summarized as follows. The code allows for eight different op-
tions for specifying vertical viscosity, including five different turbulent models. All turbulent models
have been tested and appear to be fully debugged. Wind stress has been incorporated into the
code, and preliminary results on Galveston Bay indicate that wind direction is an important effect
in modeling, e.g., salinity transport in the bay. Furthermore, comparisons between UTBEST3D,
ELCIRC and SELFE on tidal flow in the quarter annular harbor indicate that the codes produce
similar tidal responses. The grid convergence studies showed that UTBEST3D exhibited conver-
gence with respect to the grid for higher-order (linears and quadratics) approximations. SELFE
and UTBEST3D solutions showed good agreement as the grid is refined. However, the accuracy
of ELCIRC appears to be comparable to that of the lowest order approximation (constants) in
UTBEST3D. ELCIRC and SELFE are slightly more efficient with respect to CPU time, because
a larger time step can be used. How these results extend to more realistic scenarios will be the
subject of future studies.
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2 Model Description

2.1 Introduction

In this report, we discuss recent improvements and extensions made to the UTBEST3D (University
of Texas Bay and Estuary 3D) simulator, which has been developed at UT Austin by the investiga-
tors. These improvements include fully debugging and testing five different turbulence options in
the code for improved modeling of vertical viscosity, particularly for turbulent baroclinic flows, and
the incorporation of wind stress terms in the model. In addition, we report on recent comparisons
between UTBEST3D two well-known simulators, ELCIRC and SELFE, on a benchmark problem.

The UTBEST3D model has been under development since 2003. The original motivation for
this work was that, despite many recent advances in the development of large-scale simulators for
modeling circulation in oceanic to continental shelf, coastal and estuarine environments, the search
is still on for methods which are locally mass conservative, can handle very general types of elements,
and are stable and higher-order accurate under highly varying flow regimes. Algorithms such as the
DG method are of great interest within the ocean and coastal modeling communities. DG methods
are promising because of their flexibility with regard to geometrically complex elements, use of
shock-capturing numerical fluxes, adaptivity in polynomial order, ability to handle nonconforming
grids, and local conservation properties; see [10] for a historical overview of DG methods. Recent
studies in two dimensions [6] show that the DG method can easily handle wetting and drying.
Since the method is local to an element, wetting and drying heuristics are easily incorporated at
the element level.

In [2, 9], we investigated DG and related finite volume methods for the solution of the two-
dimensional shallow water equations. Viscosity (second-order derivative) terms are handled in this
method through the so-called local discontinuous Galerkin (LDG) framework [12], which employs a
mixed formulation. Application of the methodology to three-dimensional shallow water models was
described in [17, 3]. The 3D formulation is not a straightforward extension of the two-dimensional
algorithm. In particular, it uses a special form of the continuity equation for the free surface
elevation and requires postprocessing the elevation solution to smooth the computational domain.

Under funding from the TWDB from 2005-2007 and from other sources, we have taken UTBEST3D
from a purely research code to a more fully developed simulator, with the goal of making the code
operational with respect to all features important to modeling Texas coastal waters. These ex-
tensions include adding salinity and temperature transport in 2005, incorporating various one and
two-equation turbulence models in 2006, and incorporating wind stress terms in 2007. Additional
extensions, such as wetting and drying and parallel implementation, are underway.

The rest of this report is organized as follows. In Sections 2.2-2.4, we discuss the model equa-
tions, boundary conditions, and our assumptions about the time-varying computational domain.
In Section 2.5, we outline the DG method for a simple advection equation, with the purpose of
explaining the major ideas behind the approach. The full method applied to the 3D system is
described in an appendix to this report. In Sections 2.6–2.8, we discuss the species and turbulent
transport equations which are implemented in the model and the baroclinic option in the code. In
Section 3, we describe some of the numerical experiments carried out under the project. Finally,
we give conclusions and recommendations for future work.

2.2 Model and assumptions

For a,b ∈ IRd, c ∈ IRe, we denote by ac the tensor-product of a and c and by a ·b the dot-product
of a and b.
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Let Ω(t) ⊂ IR3 be the time-dependent domain. We assume the top boundary of the domain
∂Ωtop(t) is the only moving boundary. The bottom ∂Ωbot and lateral ∂ΩD(t) boundaries are assumed
to be fixed (though the height of the lateral boundaries can vary with time according to the
movements of the free surface). We also require the lateral boundaries to be strictly vertical (see
Figure 1). The last requirement is only needed to assure that the horizontal cross-section of the
domain Ω(t) (denoted by Ωxy) doesn’t change with time.

∂Ω

D

bot

X

Z

0 Ωxy

D

∂Ω

∂Ω
∂Ω

(t)

Ω

top(t)

(t)

(t)

Figure 1: Vertical cross-section of the computational domain Ω(t).

Keeping in line with the specific anisotropy of Ω(t) we construct a 3D finite element mesh by
extending a 2D triangular mesh of Ωxy in the vertical direction, thus producing a 3D mesh of
Ω(t) that consists of one or more layers of prismatic elements. In order to better reproduce the
bathymetry and the free surface elevation of the computational domain we do not require top and
bottom faces of prisms to be parallel to the xy-plane, although the lateral faces are required to be
strictly vertical.

For a point (x, y) ∈ Ωxy we denote by zb(x, y) the value of the z-coordinate at the bottom
of the domain and by ξs(t, x, y) at the top. A key feature of the 3D LDG model is the fact
that all primary variables, including the free surface elevation, are discretized using discontinuous
polynomial spaces. As a result, computed values of the free surface elevation may have jumps
across inter-element boundaries. If the finite element grids were to follow exactly the computed
free surface elevation field this would cause the elements in the surface layer to have mismatching
lateral faces (staircase boundary). We avoid this difficulty by employing a globally continuous free
surface approximation that is obtained from the computed values of the free surface elevation ξ
with the help of a smoothing algorithm (see Figure 2). Thus H is the computed height of the water
column, and Hs is the postprocessed height.

It must be noted here that solely the computational mesh is modified by the smoothing algorithm
whereas the computed (discontinuous) approximations to all unknowns, including the free surface
elevation, are left unchanged. This approach preserves the local conservation property of the LDG
method and is essential for our algorithm’s stability.
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Figure 2: Illustration of mesh smoothing.

2.3 System of 3D shallow water equations

The momentum equations in conservative form (assuming constant density) are given by [27]

∂tuxy + ∇ · (uxyu − D∇uxy) + g∇xyξ − fck× uxy = F, (1)

where the wind stress, the atmospheric pressure gradient, and the tidal potential are combined
into a body force term F, ∇xy = (∂x, ∂y), ξ is the value of the z coordinate at the free surface,
u = (u, v,w) is the velocity vector, uxy = (u, v) is the vector of horizontal velocity components, fc
is the Coriolis coefficient, k = (0, 0, 1) is a unit vertical vector, g is acceleration due to gravity, and
D is the tensor of eddy viscosity coefficients defined as follows:

D =

(

Du 0
0 Dv

)

, (2)

with Du, Dv 3 × 3 symmetric positive-definite matrices, and D∇uxy =

(

Du∇u
Dv∇v

)

. In particular,

Du = Dv =







Ax 0 0
0 Ay 0
0 0 νt






,

where Ax, Ay are the horizontal and νt is the vertical eddy viscosity coefficient.
The continuity equation is

∇ · u = 0. (3)

2.4 Boundary conditions

The following boundary conditions are specified for the system:
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• At the bottom boundary ∂Ωbot, we have no normal flow

u(zb) · n = 0 (4)

and the quadratic slip condition for the horizontal velocity components

νt
∂u

∂z
(zb) = Cf

√

u2(zb) + v2(zb)u(zb), (5)

νt
∂v

∂z
(zb) = Cf

√

u2(zb) + v2(zb)v(zb), (6)

where n = (nx, ny, nz) is an exterior unit normal to the boundary.

• The free surface boundary conditions have the form

∂tξ + u(ξ) ∂xξ + v(ξ) ∂yξ − w(ξ) = 0, (7)

and

∇u(ξ) · n = ∇v(ξ) · n = 0 (8)

in the case of no wind. In the presence of wind forcing however, the last equation is replaced
by

νt
∂u

∂z
(ξ) = τs, (9)

where τs is the surface stress which can be specified directly or computed from the wind
velocity at 10m above the water surface, U10, by

τs =
ρa
ρ0
Cs|U10|U10 (10)

with Cs = 10−3(AW1 + AW2|U10|) for Ulow ≤ |U10| ≤ Uhigh and Cs held constant at
the extremal values outside of this interval. Similarly to [31] we set AW1 = 0.1, AW2 =
0.063, Ulow = 6 m/s, Uhigh = 50 m/s.

On the lateral boundaries, we consider several common types of boundary conditions:

• Land boundary: No normal flow

un = u · n = 0, (11)

and zero shear stress

∇uτ · n = 0, (12)

where τ and n denote a unit tangential and a unit exterior normal vectors to the boundary,
correspondingly.

• Open sea boundary: Zero normal derivative of the horizontal velocity components

∇u · n = ∇v · n = 0, (13)

and prescribed surface elevation ξos(x, y, t)

ξ = ξos(x, y, t). (14)
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• River boundary: Prescribed velocities

u = ur, (15)

and prescribed surface elevation

ξ = ξr. (16)

• Radiation boundary: Zero normal derivative of the horizontal velocity components

∇u · n = ∇v · n = 0. (17)

Analytically, the free surface elevation can be computed from (7). However, a computationally
more robust method [27] is obtained by integrating continuity equation (3) over the total height
of the water column. Taking into account boundary conditions (4) – (7) at the bottom and top
boundaries we arrive at a 2D equation for the free surface elevation commonly called the primitive
continuity equation (PCE),

∂tξ + ∂x

∫ ξ

zb

udz + ∂y

∫ ξ

zb

vdz = 0. (18)

2.5 An overview of the DG method

In this section, we describe the DG method for a simple advection equation in one space dimension.
A complete description of the particular DG method used to discretize the 3D model described
above is given in the appendix to this document.

Consider the one dimensional advection equation

ut + cux = 0, −∞ < x <∞, t > 0 (19)

where c is a constant. We assume an initial condition u(x, 0) = u0(x) is also specified. Partition
the real line into intervals Ij = [xj, xj+1] of length hj . Multiply (19) by a test function w and
integrate over Ij :

∫

Ij

[ut + cux]wdx = 0 (20)

and integrate the second term by parts:

∫

Ij

utwdx−
∫

Ij

cuwx + cuw|xj+1
xj = 0. (21)

Next we choose test and trial spaces for u and w consisting of polynomials of degree ≤ k defined
on each element Ij. Thus

u|Ij ≈ uh|Ij ≡
k
∑

j=0

uj(t)P
j(x)

where {P j(x), j = 0, . . . , k} represents some linearly independent set which spans all polynomials
of degree zero up to k defined on Ij. These could be chosen to be, for example, the monomials
{1, x, x2, . . . , xk}, the usual Lagrange polynomials of degree k, or the set of Legendre polynomials
of degree ≤ k. Thus, uh and w are both contained in the span of {P j}, and we further note that no
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inter-element continuity is required on uh or w. Therefore, there is an ambiguity in the boundary
terms in (21). We resolve this ambiguity through the concept of upwinding. Let

w+(xj) = lim
x→x+

j

w(x) (22)

w−(xj) = lim
x→x−

j

w(x) (23)

denote the right and left limits of w at the point xj. Define, the upwind value of uh by

u
up
h (xj) =

{

u−h (xj), if c > 0
u+
h (xj), if c < 0

(24)

Substituting into (21), we arrive at

∫

Ij

∂uh
∂t

wdx−
∫

Ij

cuhwx + c[u
up
h (xj+1)w

−(xj+1) − u
up
h (xj)w

+(xj)] = 0. (25)

Finally, we integrate (25) in time. This can be accomplished using standard, explicit Runge-Kutta
methods. Normally, one chooses a method of equal order to the spatial order of the scheme.
Therefore, if polynomials of degree k are used to approximate u, then a Runge-Kutta method of
order k is used to integrate (25) in time. The particular Runge-Kutta methods used in UTBEST3D
are discussed in the appendix.

The basic ideas of the DG method can now be extended to a system of conservation laws,

ut + f(u)x = 0. (26)

We take the vector product with a test function w and integrate by parts,

∫

Ij

ut · wdx−
∫

Ij

f(u) · wx + f(u) · w|xj+1
xj = 0. (27)

Approximating u by uh as above (each component is a discontinuous, piecewise polynomial), we
arrive at

∫

Ij

∂uh
∂t

· wdx−
∫

Ij

f(uh) · wx + f̂j+1 · w−(xj+1) − f̂j · w+(xj) = 0. (28)

The difference is in the evaluation of the flux function f at the interface xj, we have represented this

quantity as f̂j above. Here one utilizes more sophisticated ideas from the theory of conservation
laws which generalize the upwinding concept, namely local Riemann solvers. We simply note here
that f̂j is constructed from the left and right states at the interface,

f̂j = f̂(u−h (xj), u
+
h (xj)).

An excellent discussion of Riemann solvers for the shallow water equations is given in the book by
R. LeVeque on conservation laws [22].
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2.6 Species transport

Species transport equations for salinity and temperature are included in the model. Transport is
described by advection-diffusion equations of the form

rt + ∇ · (ur) −∇ · (Kr∇r) = f, Ω(t) × (0, T ), (29)

where r = S for salinity or r = T for temperature, and Kr =







Ãx 0 0

0 Ãy 0
0 0 νr






is a specified

diffusion tensor. These equations must be supplemented with initial and boundary conditions. The
DG method is also applied to the solution of these equations. The details are given in the appendix.

2.7 Wetting and drying

A wetting and drying algorithm is currently being implemented and tested in a two-dimensional
version of the DG code, in collaboration with Shintaro Bunya, Ethan Kubatko and Joannes Wes-
terink [6]. While we had hoped to implement this algorithm in UTBEST3D during this contract
year, we are still testing the methodology on field applications and comparing to measured data
and analytical solutions. As this work is still ongoing and not finalized, we have not yet tested the
wetting and drying algorithm in UTBEST3D.

2.8 Baroclinic model

Introduction of the transport equations for temperature and salinity allows us to expand our model
to include baroclinic effects. In order to preserve stability of our scheme – which heavily depends
on correct treatment of the coupling between pressure and momentum – and to provide the ability
to carry out barotropic as well as baroclinic simulations with the minimum code modification we
implemented the baroclinic forcing effects in the momentum equation as a correction to the standard
pressure term used in the momentum equations in the barotropic case. This correction accounts
for the difference between the actual and the reference densities.

In the baroclinic case the momentum equations are given by

∂tuxy + ∇·(uxyu − D∇uxy) + g∇xyξ +
g

ρ0
∇xy

∫ ξ

z
(ρ(T, S, ξ−z̃)−ρ0)dz̃ − fck×uxy = F, (30)

where ρ0 is the reference density, and ρ(T, S, p) is the density computed from the equation of state.
The equation of state used in UTBEST3D is due to Klinger [21] and is given by

ρ(T, S, p) = C(p) β(p)S − α(T, p)T − γ(T, p)(35 − S)T, (31)

where

C = 999.83 + 5.053p − 0.048p2, (32)

β = 0.808 − 0.0085p, (33)

α = 0.0708(1 + 0.351p + 0.068(1 − 0.0683p)T ), (34)

γ = 0.003(1 − 0.059p − 0.012(1 − 0.064p)T ). (35)

p is the height of the water column above the point expressed in kilometers, T is the temperature
in degrees Celsius, and S is the salinity in psu.

The discretization of the baroclinic forcing term in the momentum equations is described in the
appendix.
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2.9 Turbulence

The issue of realistic modeling of the turbulent eddy viscosity and diffusivity terms is an active
research topic. The vertical eddy viscosity coefficient is a particularly important parameter if one
aims to achieve good vertical resolution of the computational domain.

UTBEST3D provides vertical eddy viscosity models of various levels of computational and
conceptual complexity. In order of increasing complexity those include a constant eddy viscosity
coefficient, an algebraic (zeroth order) model, as well as one and two equation models.

• The simplest model amounts to explicitly specifying diagonal entries to the tensors of eddy
viscosity/diffusivity coefficients for all variables in (1) and (67).

• Two algebraic models implemented in UTBEST3D are due to Davies [16] and give good
results at a reasonable computational cost in cases where accurate vertical resolution of flow
is not important.

In the first algebraic model the eddy viscosity and diffusivity coefficients are set equal to

Ct
(ū2+v̄2)
ωa

, where ū and v̄ are depth averaged horizontal velocity components, Ct = 2 × 10−5

is a dimensionless coefficient, and ωa a typical long wave frequency set to 10−4s−1.

Model two is very similar to model one, except that the eddy viscosity is assumed to be
proportional to H

√
ū2 + v̄2.

• The first order vertical eddy viscosity closure model solves a transport equation for the tur-
bulent kinetic energy in addition to the mass, momentum, and species transport equations.

kt + ∇ · (uk) − ∂

∂z
(νk

∂

∂z
k) = νt

(

(

∂u

∂z

)2

+

(

∂v

∂x

)2
)

+ νr
g

ρ0

∂ρ

∂z
− ǫ, (36)

where νk is the vertical diffusivity coefficient for k and ǫ = (C0
µ)

3k
3
2 l−1 is the dissipation rate

of the turbulent kinetic energy. The turbulent mixing length l is computed algebraically in
this model and is set equal to l(z) = κ (z−zb)

√
ξ − z Fl(Ri) (see Delft3D-Flow manual [18]).

C0
µ =

√
0.3 is a calibration constant, κ = 0.4 is the von Karman constant, and Fl(Ri) is the

damping function accounting for stratification effects. Fl depends on the gradient Richardson
number

Ri =
− g
ρ0

∂ρ
∂z

(

∂u
∂z

)2
+
(

∂v
∂x

)2 (37)

and is of the form:

Fl(Ri) =

{

e−2.3Ri, Ri ≥ 0,
(1 − 14Ri)0.25, Ri < 0.

(38)

Once k is computed one can obtain the vertical eddy viscosity and diffusivity coefficients by
taking νt = C0

µk
1
2 l and νr = νk = νt

0.7 correspondingly. Neumann type boundary conditions

for k are used at the free surface and the sea bed νk
∂k
∂n

= 0.

The discretization of (36) is very similar to those of species transport equations (29) and is
not shown here. The only essential consideration when computing the transport equation for
the turbulent kinetic energy is the velocity shear term on the right hand side of (36). Because
we lack velocity information at the free surface and the sea bed the auxiliary flux variables
computed as in (56) tend to underestimate ∂u

∂z
, particularly for lower order DG spaces. This
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leads to the turbulent kinetic energy going negative in areas with slow flow. To address this
issue we compute velocity shear terms in elements adjacent to the bottom boundary (as well
as in those near the top boundary if the wind forcing is present) utilizing the law of the wall:

∂u

∂z
=

u

(z − zb) ln z−zb

z0

, (39)

where z0 is the bottom roughness coefficient. In the presence of wind forcing we use in the
top layer:

∂u

∂z
=

√
τs

κ(ξ − z)
. (40)

• The second order closure model implemented in UTBEST3D is based on the generic tur-
bulence length scale model proposed by Warner et al [28]. The main advantage of this
formulation is the ability to switch between several two equation models, including k − ǫ
and Mellor-Yamada, by changing a few constant parameters. In addition to the transport
equation for k, this model includes a second transport equation for derived quantity ψ

ψt+∇·(uψ)− ∂

∂z
(νψ

∂

∂z
ψ) =

ψ

k

(

C1νt

(

(

∂u

∂z

)2

+

(

∂v

∂x

)2
)

+ C3νr
g

ρ0

∂ρ

∂z
− C2ǫFwall

)

, (41)

where ψ = (C0
µ)
pkmln and C3 is equal to C−

3 for stably stratified flow and C+
3 otherwise.

Depending on the choice of p, m, and n we obtain different closure schemes. The turbulent
mixing length is computed using k and ψ. The eddy viscosity and diffusivity coefficients are
obtained from νt =

√
2Smk

1
2 l and νr =

√
2Shk

1
2 l, where Sm and Sh are stability functions

given by:

Sh =
0.4939

1 − 30.19Gh
, Sm =

0.392 + 17.07ShGh
1 − 6.127Gh

, (42)

where Gh = Ghu
− (Ghu−Ghc)2

Ghu+Gh0−2Ghc
and Ghu

= min(Gh0,max(−0.28, g
ρ0

∂ρ
∂z

l2

2k )) with Gh0 =

0.0233, Ghc
= 0.02.

To improve stability properties of the two-equation model we employ Neumann boundary
conditions for ψ at the free surface νψ

∂ψ
∂z

= −nνψ(C0
µ)
pkmκln−1

s and at the sea bed νψ
∂ψ
∂z

=

nνψ(C0
µ)
pkmκln−1

b , where the turbulent mixing length is derived from the law of the wall:

ls = l|ξs
= z1e

κ|u|
τs and lb = l|zb

= z0
κ√
Cf

with Cf being as in (6) and z1 the surface roughness

coefficient.

Values of the parameters for four popular two equation models are shown in Table 1. Dis-
cretization of (41) is also done similarly to (29).

3 Numerical results

3.1 Wind stress

Surface stresses due to wind, as given in (10) above, have been added to the model and tested.
The test case below models a release of a high concentration of saline in the area of the West Bay
off of Galveston Island. The domain and finite element mesh are shown in Figure 3. The mesh
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Mellor-Yamada [23] k − ǫ [8] k − ω [30] generic [25]

p 0 3 -1 2
m 1 1.5 0.5 2
n 1 -1 -1 2/3
νk

νt

2.44 νt
νt

2
νt

0.8
νψ

νt

2.44
νt

1.3
νt

2
νt

1.07
C1 0.9 1.44 0.555 1
C2 0.5 1.92 0.833 1.22
C+

3 1 1 1 1
C−

3 2.53 -0.52 -0.58 0.1
kmin 7.6e-6 7.6e-6 7.6e-6 7.6e-6
ψmin 1e-8 1e-8 1e-8 1e-8

Fwall 1 + 1.33
(

l
z−zb

)2
+ 0.25

(

l
ξs−z

)2
1 1 1

Table 1: Generic turbulence closure model parameters.

consists of 3397 surface elements with up to 4 vertical layers, as seen in Figure 3. The following
tidal forcing with time(t) in hours was imposed at the open sea boundary:

ξ̂(t) = 0.075 cos( t
25.82 + 3.40)

+ 0.095 cos( t
23.94 + 3.60)

+ 0.100 cos( t
12.66 + 5.93)

+ 0.395 cos( t
12.42 + 0.00)

+ 0.060 cos( t
12.00 + 0.75) (meters).

(43)

The tide was ramped up over a 2 day period, and the time step used in the simulation was 2
seconds, although additional experiments determined that a larger time step of 4 seconds gave
similar results.

The background salinity in the model was assumed to be 35 ppt, with background temperature
of 20 c. Additional salinity (for example, from a desalination plant) is introduced into the model
by imposing a continuous inflow of salinity of SI = 70 ppt near the location 29.2◦ N, 95.0◦ W. This
is specified as an inflow boundary condition in the model; that is, in the saline transport equation,
we impose an inflow flux condition

Su · n = SIu · n, (44)

when u · n < 0, where n is the outward normal to the boundary at this location. The result is a
plume of salinity which is transported through the domain. The simulations below examine the
effect of wind on the extent and direction of this plume.

The first test case examines the movement of the salinity plume in the event of no or neglible
wind stress. In Figure 4, we plot the salinity concentration at 6, 8, 9, 10, 11 and 12 days. In these
figures we are zooming in on the region of the plume, which is in the lower West Bay, and we are
plotting an areal view of the solution. Under these conditions, the plume is observed to migrate to
the north-northeast over the twelve day period. In this case, the flow is driven by tides.

The second test case examines the movement of the salinity plume in the event of a constant
wind vector of (0,-10) m/s; that is, wind blowing out of the north. In Figure 5, we plot the salinity
concentration at 6, 8, 9, 10, 11 and 12 days. In this case, we obtain a very different salinity profile.
In fact, the saline plume has been highly dispersed, so that concentrations are near background
concentrations over most of the region, except for a small area near the source and along the
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Figure 3: Wind stress test case: Galveston Bay Mesh.

coastline south of the source region. In this case, the wind stress forcing apparently seems to
counteract the predominant direction of flow due to tidal forcing, causing significant variation in
the velocity field and dispersion of the plume.

The third test case examines the movement of the salinity plume in the event of a constant
wind vector of (0,10) m/s; that is, wind blowing out of the south. In Figure 6, we plot the salinity
concentration at 6, 8, 9, 10, 11 and 12 days. In this case, the wind stress seems to act in concert
with the flow due to tides, resulting in a well-defined plume of salinity which extends from the West
Bay to the entrance of Galveston Bay at the end of 12 days.

3.2 The quarter annular harbor problem and comparisons with ELCIRC and

SELFE

The ELCIRC and SELFE models [31, 5], developed at the Oregon Health & Science University
by Baptista et al, are unstructured grid models for 3D baroclinic circulation. ELCIRC uses an
extension of well-known staggered-grid finite difference methods to unstructured grids. The method
is low-order, but volume conserving. It has been widely used for modeling the Columbia River, and
has been applied to other coastal environments.

One of the benchmark cases available on the ELCIRC web site, which has also been used
in testing UTBEST3D, is tidal flow in a quarter annular harbor. An areal plot of the domain,
discretized with a coarse triangular mesh consisting of 96 elements and 63 nodes, with one layer
in the vertical direction, is shown in Figure 7. The boundary of the domain consists of three land
boundares along the inner radius, horizontal (y = 0) and vertical (x = 0) boundaries, and an open
ocean boundary along the outer radius. The units here are in meters. Along the outer boundary,
elevation is specified using a standard M2 tide with magnitude .3048 m. The runs are cold started,
and the tide is ramped up over a 2 day time period. The total simulation time is 5 days. The
bathymetry is assumed to be a constant 10 m. A no-slip boundary condition is assumed at the
bottom of the domain and no horizontal or vertical eddy viscosity is specified.

Six locations within the domain were chosen where elevations and velocities were interpolated
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from model output at specific times during each run. These locations are labeled 1-6 in Figure
7. For this test case, we run a full nonlinear model (no nonlinear terms are “turned-off” in the
simulation). Therefore, in order to study the behavior of the models, we performed grid refinement
studies and examined the convergence of the solutions under grid refinement. Thus, in addition
to the grid shown in Figure 7, simulations were also performed on two refined grids, obtained by
refining the coarse grid using edge bisection (vertical edges only–there is no refinement in z). These
grids are shown in Figure 8 and are labeled “medium” and “fine” grids in the discussion below.

First, we plot elevation solutions between 2 and 5 days obtained by UTBEST3D for piecewise
constant approximations on the coarse grid, and the medium and fine grids, at locations 1, 2, 3
and 5, in Figure 9. The solutions obtained at locations 4 and 6 were virtually identical to those at
locations 1 and 2, which they should be by symmetry, therefore we don’t show these solutions in
the plots below. Here we used a small time step of 2 seconds to fully resolve the solution in time.
The maximum (in time) relative difference between the coarse and medium grid solutions and the
medium and fine grid solutions was measured at each location. Define

Ecm =
max((medium solution) − (coarse solution))

max(medium solution)

Emf =
max((fine solution) − (medium solution))

max(fine solution)
.

The errors obtained at each location for this case as are follows:

Location 1 : Ecm = 12.87%, Emf = 8.72%

Location 2 : Ecm = 11.17%, Emf = 6.74%

Location 3 : Ecm = 16.04%, Emf = 8.64%

Location 5 : Ecm = 19.68%, Emf = 6.74%

We note that the error at each location is reduced by nearly a factor of two as the grid is refined
by a factor of two, which is consistent with first order approximations.

Next, we show similar results for piecewise linear approximations in Figure 10. Here there
are very small differences between solutions on the different grids, indicating that the solution is
essentially resolved even on the coarsest grid. The relative errors at each location are given as
follows:

Location 1 : Ecm = 2.61%, Emf = .64%

Location 2 : Ecm = 1.22%, Emf = .39%

Location 3 : Ecm = 2.12%, Emf = .65%

Location 5 : Ecm = 1.52%, Emf = .39%

Note that the errors are reduced by close to a factor of four as the grid is refined by a factor of two,
indicating second order convergence. We also tested piecewise quadratic solutions. In Figure 11,
we compare constant, linear and quadratic solutions obtained on the coarse grid for each location.
As seen in the figure, there is substantial difference between the constant and linear solutions. At
location 1, this difference is about 32%. However, there is less than 1% difference between the linear
and quadratic solutions, which provides further indication that these solutions are converged.

While the size of the time step was very small in these runs, we found that increasing the
time step did not substantially degrade the quality of the solutions. In Figure 12, we compare
piecewise constant solutions on the coarse grid at location 1 for ∆t = 2 and ∆t = 450 seconds,

16



and piecewise linear solutions for ∆t = 2 and ∆t = 225 seconds. Several numerical tests were
performed to find the maximum allowable time step in each case. It is expected that the CFL
(Courant-Friedrichs-Levy) time-step constraint is more severe with increasing polynomial order.
As observed in the figure, there are some differences in the solutions for the piecewise constant
case, around 12% relative difference. For the piecewise linear case, the difference is less than 1%,
again indicating that even with a much larger time step the linear solution is essentially resolved.

In the next sequence of figures, we present comparisons between solutions generated using
UTBEST3D, ELCIRC and SELFE. In Figure 13, we compare solutions generated by the two codes
at locations 1, 2, 3 and 5 on the coarse grid. Here we are using piecewise linear approximations in
UTBEST3D. The time step for ELCIRC and SELFE was large, 1047 seconds, this was preset in the
input file obtained from the ELCIRC web site. The UTBEST3D solutions are plotted between days
2 and 5, while the ELCIRC and SELFE solutions start at time zero. Qualitatively, the solutions
are very similar in phase, but exhibit differences in amplitudes. At location 1 for example, the
maximum error between UTBEST and SELFE is about .1 meters or 12.5% relative difference, and
the maximum error between UTBEST and ELCIRC is about .13 meters or 16% relative difference.
SELFE and ELCIRC exhibit a maximum difference of about .1 meters in the ramp-up period, but
around .05 meters afterward.

We also performed comparisons on the medium and fine grids. These results are given in Figures
14 and 15. For these two grids, we see much better agreement between UTBEST3D and SELFE
than either code with ELCIRC. In fact, on the fine grid, at location 1 the maximum difference
between UTBEST3D and SELFE is about .03 meters, or about 4% relative difference, whereas the
differences between both UTBEST3D and SELFE with ELCIRC are near .2 meters, or almost 25%
relative difference.

Recall from Figure 10 that the UTBEST3D linear solution shows relatively small differences
between coarse, medium and fine grids at all locations. Therefore, the differences between the
coarse and fine grid solutions must lie in the ELCIRC solution. To examine this further, we show
in Figure 16 the ELCIRC solutions generated on the coarse and fine grids at location 1. As seen
in the figure, there is a significant difference between these two solutions, especially during the
ramp-up phase. Furthermore, in Figure 17, we compare the ELCIRC solution at location 1 to
the piecewise constant solution in UTBEST3D, both generated on the coarse grid. As seen in the
figure, these solutions compare quite well, with a maximum relative difference of less than 10%,
which is further confirmation that ELCIRC uses a low-order method.

We conclude this section with a comparison of CPU times for various runs. These runs were
performed on a Linux workstation, with a dual-core AMD 1 GHz Opteron processor, and cache
size of 1024 KB. The results are presented in Table 2. The ELCIRC run on the coarse grid took
around 2 seconds, comparable to the UTBEST3D run for piecewise constants with the maximum
allowable stable time step. As seen in Figure 17, the solutions were similar for these cases. The
higher-order solutions in UTBEST3D, using linear and quadratic solutions, required 8 seconds and
118 seconds to run on the coarse grid, using the largest stable time step. The higher-order solutions
have more degrees of freedom per element, and also require more accurate numerical integrations
and more accurate time-stepping procedures. Refining the grid in UTBEST3D requires refining the
CFL time step. As observed for the piecewise constant case, the medium grid run with the largest
allowable time step took 5 seconds. For the fine grid, the maximum time step was reduced by a
factor of 4 over the medium grid, and the run took 13 times longer, or roughly 65 seconds. We
might have expected closer to a factor of 16, since the fine grid has 4 times the number of elements
as the medium grid, and the time step was also cut by a factor of 4.
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Code Polynomial degree Grid Time step (sec) CPU (sec)

ELCIRC – Coarse 1047 2
ELCIRC – Medium 1047 7
ELCIRC – Fine 1047 28
SELFE – Coarse 1047 4
SELFE – Medium 1047 8
SELFE – Fine 1047 26

UTBEST3D 0 Coarse 450 1
UTBEST3D 0 Medium 225 5
UTBEST3D 0 Fine 66.25 64
UTBEST3D 1 Coarse 225 8
UTBEST3D 1 Medium 112.5 79
UTBEST3D 1 Fine 33.125 1100
UTBEST3D 2 Coarse 112.5 118

Table 2: CPU times for various runs.

4 Conclusions and recommendations

The UTBEST3D model is close to being an operational model for the Texas coast. Over the past
year, we have hardened the turbulence models in the code and implemented and tested the addition
of wind stress. Over the next contract year, we will test the code with input provided by the TWDB
for Corpus Christi Bay, which should provide a rigorous application for the model where we can
also compare with data. Additional model comparisons between UTBEST3D and SELFE will also
be investigated.
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6 Appendix: The LDG discretization, approximating spaces and

time-stepping

We introduce the following sets of element and face indices:

• Ie - set of element indices for prismatic elements in Ω(t);

• Ie,xy - set of element indices for triangular elements in Ωxy;

• If - set of face indices for prism faces;

• Iint ⊂ If - set of interior face indices;

• Iext ⊂ If - set of exterior face indices;

• Ilat ⊂ Iint - set of interior lateral face indices;

• Ihoriz ⊂ Iint - set of interior horizontal face indices;

• ID ⊂ Iext - set of exterior lateral face indices;

• Itop ⊂ Iext - set of indices for exterior faces on the top boundary,

• Ibot ⊂ Iext - set of indices for exterior faces on the bottom boundary.

Let us denote h = ξ−zb. Then we can rewrite the mass and momentum conservation equations
(18), (1) in the following compact form:

∂th + ∇xy ·Ch(c) = 0, (45)

∂tuxy + ∇ · (Cu(c) − D∇uxy) = M(c), (46)
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where c = (h, u, v, w) is the vector of state variables,

Ch(c) =

(

∫ ξ
zb
u dz

∫ ξ
zb
v dz

)

, Cu(c) =

(

Cu(c)
Cv(c)

)

=

(

u2 + gh uv uw
uv v2 + gh vw

)

,

M(c) =

(

Fx − g∂xzb + fcv
Fy − g∂yzb − fcu

)

.

6.1 Weak formulation

First, let us introduce an auxiliary variable Q and rewrite the second-order momentum equations
(46) in mixed form

∂tuxy + ∇ · (Cu(c) +
√
DQ) = M(c), (47)

Q = −
√
D∇uxy. (48)

Let T∆x be a partition of the domain Ω(t) ⊂ Rd, d = 3 into prisms with strictly vertical lateral
(side) faces, and let Ωe(t) ∈ T∆x. To obtain a weak form of the momentum equations we multiply
(47), (48) by arbitrary smooth test functions φ and Ψ , integrate them on each element Ωe(t) ∈ T∆x,
and integrate by parts obtaining

(∂tuxy,φ)Ωe(t) +
〈

(Cu(c) +
√
DQ) · ne,φ

〉

∂Ωe(t)

−
(

(Cu(c) +
√
DQ) · ∇,φ

)

Ωe(t)
= (M(c),φ)Ωe(t)

,

(Q,Ψ)Ωe(t) = −
〈

uxy (
√
D ne),Ψ

〉

∂Ωe(t)
+
(

uxy (
√
D ∇),Ψ

)

Ωe(t)
,

where ne is a unit exterior normal to ∂Ωe(t). This weak formulation is well defined for uxy(t, x, y, z) ∈
H1(0, T ; V d−1); φ(x, y, z) ∈ V d−1; Q(t, x, y, z) ∈ V d−1×d, ∀t ∈ [0, T ]; and Ψ(x, y, z) ∈ V d−1×d,
where

V = L2(Ω(t)) ∩ {u : u|Ωe(t)
∈ H1(Ωe(t)), ∀Ωe(t) ∈ T∆x}. (49)

Fixing the direction of the unit normal n on the interior faces we can sum over all elements
Ωe(t) ∈ T∆x and obtain a weak form of the momentum equations

∑

e∈Ie

(∂tuxy,φ)Ωe(t)
+

∑

i∈Iint

〈

(Cu(c) +
√
DQ) · n, [φ]

〉

γi(t)

+
∑

i∈Iext

〈

(Cu(c) +
√
DQ) · n,φ

〉

γi(t)
−
∑

e∈Ie

(

(Cu(c) +
√
DQ) · ∇,φ

)

Ωe(t)

=
∑

e∈Ie

(M(c),φ)Ωe(t)
, (50)

∑

e∈Ie

(Q,Ψ)Ωe(t) = −
∑

i∈Iint

〈

uxy (
√
D n), [Ψ ]

〉

γi(t)

−
∑

i∈Iext

〈

uxy (
√
D n),Ψ

〉

γi(t)
+

∑

e∈Ie

(

uxy (
√
D ∇),Ψ

)

Ωe(t)
. (51)

Discretization of the primitive continuity equation is done in a similar way. Let us denote by
Π the orthogonal projection operator from the xyz-space onto the xy-plane (Π(x, y, z) = (x, y)),
and let Ωe,xy = ΠΩe(t). Since the free surface is the only moving boundary of Ω(t), Ωe,xy are not
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time-dependent. We multiply (45) by an arbitrary smooth test function δ = δ(x, y), integrate it
over Ωe,xy, and integrate by parts. Then the mass balance in the water column corresponding to
Ωe,xy can be expressed as

(∂th, δ)Ωe,xy
+ 〈Ch(c) · n, δ〉∂Ωe,xy

− (Ch(c) · ∇xy, δ)Ωe,xy
= 0.

Recalling that Ch =
(

∫ ξ
zb
udz,

∫ ξ
zb
vdz

)

we can rewrite the equation above in a special 2D/3D form

(∂th, δ)Ωe,xy
+

∑

ΠΩe(t)=Ωe,xy

〈uxy · nxy, δ〉∂Ωe,lat(t)
−

∑

ΠΩe(t)=Ωe,xy

(uxy · ∇xy, δ)Ωe(t) = 0,

where nxy = (nx, ny), ∂Ωe,lat(t) denotes the lateral boundary faces of prism Ωe(t), and the summa-
tion is over the set of 3D elements in the water column corresponding to Ωe,xy. Note that the expres-

sion above is well defined for any δ(x, y) ∈ H def
= L2(Ωxy)∩{h : h|ΠΩe(t)

∈ H1(ΠΩe(t)),∀Ωe(t) ∈ T∆x}
and h(t, x, y) ∈ H1(0, T ;H). Summing over all elements Ωe(t) ∈ T∆x we obtain a weak form of the
PCE

∑

e∈Ie,xy

(∂th, δ)Ωe,xy
+

∑

i∈Ilat

〈uxy · nxy, [δ]〉γi(t)

+
∑

i∈ID

〈uxy · nxy, δ〉γi(t)
−

∑

e∈Ie

(uxy · ∇xy, δ)Ωe(t) = 0. (52)

To discretize the continuity equation we multiply (3) by an arbitrary smooth test function σ,
integrate it over Ωe(t), and integrate by parts obtaining

〈u · n, σ〉∂Ωe(t)
− (u · ∇, σ)Ωe(t) = 0.

Summing over all elements Ωe(t) ∈ T∆x we get a weak form of the continuity equation

∑

i∈Iint

〈u · n, [σ]〉γi(t)
+

∑

i∈Iext

〈u · n, σ〉γi(t)
−

∑

e∈Ie

(u · ∇, σ)Ωe(t)
= 0. (53)

6.2 Semi-discrete formulation

Next, we seek to approximate

(h(t, ·),uxy(t, ·), w(t, ·),Q(t, ·)),

a solution to problem (50) – (53), with a function

(H(t, ·),Uxy(t, ·),W (t, ·),Q(t, ·)) ∈ H∆ × U∆ ×W∆ × Z∆,

where H∆ ⊂ H, U∆ ⊂ V d−1, W∆ ⊂ V , and Z∆ ⊂ V d−1×d are some finite-dimensional subspaces.
For this purpose, we can use the weak formulation with one important modification. Since the
approximation spaces utilized in the DG methods do not guarantee continuity across the inter-
element boundaries, all integrands in the integrals over interior faces have to be replaced by suitably
chosen numerical fluxes that preserve consistency and stability of the method. A semi-discrete finite
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element solution (H(t, ·),Uxy(t, ·),W (t, ·),Q(t, ·)) is obtained by requiring that for any t ∈ [0, T ],
for all Ωe(t) ∈ T∆x, and for all (δ,φ,Ψ , ω) ∈ H∆ × U∆ ×W∆ × Z∆ the following holds:

∑

e∈Ie,xy

(∂tH, δ)Ωe,xy
+

∑

i∈Ilat

〈

Ĉh,n(C−,C+)

Hs
, [δ]

〉

γi(t)

+
∑

i∈ID

〈

Ĉh,n(C−,C+)

Hs
, δ

〉

γi(t)

−
∑

e∈Ie

(

UxyH

Hs
· ∇xy, δ

)

Ωe(t)
= 0, (54)

∑

e∈Ie

(∂tUxy,φ)Ωe(t) +
∑

i∈Iint

〈

Ĉu,n(C−,C+) +
√
DQ̂ · n, [φ]

〉

γi(t)

+
∑

i∈Iext

〈

Cu,n(C−,C+) +
√
DQ · n,φ

〉

γi(t)
−
∑

e∈Ie

(

(Cu(C) +
√
DQ) · ∇,φ

)

Ωe(t)

=
∑

e∈Ie

(M(C),φ)Ωe(t)
, (55)

∑

e∈Ie

(Q,Ψ)Ωe(t) = −
∑

i∈Iint

〈

Ûxy (
√
D n), [Ψ ]

〉

γi(t)

−
∑

i∈Iext

〈

Uxy (
√
D n),Ψ

〉

γi(t)
+

∑

e∈Ie

(

Uxy (
√
D ∇),Ψ

)

Ωe(t)
, (56)

∑

i∈Iint

〈

Û · n, [σ]
〉

γi(t)
+
∑

i∈Iext

〈

Û · n, σ
〉

γi(t)
−
∑

e∈Ie

(U · ∇, σ)Ωe(t)
= 0, (57)

where (Ĉh,n(C−,C+), Ĉu,n(C−,C+)) is an approximation to the nonlinear boundary flux (UxyH ·
nxy, Cu · n) that depends on the values of the state variables C−,C+ on both sides of the discon-
tinuity. The stability of the method depends to a large degree on this approximation satisfying
certain entropy conditions. We will address this issue in some detail in Section 6.3. The restrictions
on the linear boundary fluxes Ûxy, Q̂ are much less severe. They can be set equal to arithmetic
averages of the values of the corresponding variables on both sides of the discontinuity or some
other consistent numerical flux.

Remark 1: The continuity equation is, unlike the mass and momentum conservation equations,
not time-dependent, its main role being computation of the vertical velocity component W to
maintain a divergence-free velocity field. Regarding (57) and the kinematic boundary condition at
the bottom (4) as an initial value problem for W , we can compute W element-by-element in each
water column starting at the bottom and using the solution from the element below as an initial
condition.

The choice of the boundary flux Û in (57) also merits a special mention. On the interior lateral

faces it should be set equal to
Ĉh,n(C−,C+)

Hs
, exactly as it is in the discrete form of the primitive

continuity equation (54), in order to preserve the local mass conservation properties of our numerical
scheme. On the interior horizontal faces Û can be approximated by the average or upwind values
of the corresponding variable.

6.3 Riemann solvers for the 3D problem

In this section, we will show how to utilize the boundary flux formulation shown in (54) in a
Riemann solver. Since we managed to transform all boundary integrals into a 3D form, we end up
with a well-posed Riemann problem that can be solved to produce a numerical boundary flux on
the lateral faces satisfying the entropy condition (for a discussion of different entropy conditions
see, e.g., [22]).
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Let P be a point on Γ, where Γ is an interior lateral boundary face in the 3D mesh (see
Figure 2). Let n = (nx, ny, nz) be a unit normal to Γ at P. Note that nz is equal to 0 since
all lateral faces are strictly vertical. We denote by c = (h, u, v) the vector of state variables.
Note that we don’t include the vertical velocity component in c because w only enters the normal
boundary flux when multiplied by nz. Then we define the left and right states cL, cR at P as
cL = limε→0− c(P + εn), cR = limε→0+ c(P + εn). Our task is to compute an entropy solution
Ĉn(cL, cR) to the Riemann problem for the nonlinear boundary flux Cn = (Ch · n,Cu · n,Cv · n)
at P (see (54), (55)).

6.4 Riemann solver of Roe

In this solver, an approximation to the normal boundary flux is given by

Ĉn(cL, cR) = Cn(cL) +
3
∑

i=1

αiλ̂
−
i r̂i, (58)

where λ̂i are the eigenvalues and r̂i the corresponding eigenvectors of matrix R̂n(cL, cR) defined
below, x− = min{0, x}, and αi are calculated from

3
∑

i=1

αir̂i = cR − cL. (59)

The matrix R̂n(cL, cR) has to satisfy the following three conditions [24]:

(i) R̂n(cL, cR)(cR − cL) = Cn(cR) − Cn(cL);

(ii) R̂n(cL, cR) is diagonalizable with real eigenvalues;

(iii) R̂n(cL, cR) → C ′
n(c) smoothly as cL, cR → c, where

C ′
n(c) =







unx + vny hnx hny
gnx 2unx + vny uny
gny vnx unx + 2vny






. (60)

We claim that setting R̂n(cL, cR) equal to C ′
n(c), where c = 1

2(cL + cR), satisfies conditions on

R̂n. Indeed, we obtain the following eigenvalues and eigenvectors for C ′
n(c):

λ1(c) = 3
2un − 1

2a, r1(c) =







h
u− nx

2 (un + a)
v − ny

2 (un + a)






;

λ2(c) = 3
2un, r2(c) =







0
−ny
nx






; (61)

λ3(c) = 3
2un + 1

2a, r3(c) =







h
u− nx

2 (un − a)
v − ny

2 (un − a)






;

where un = unx + vny and a =
√

u2
n + 4gh. Therefore, condition (ii) is satisfied. Clearly, C ′

n(c) →
C ′

n(c) smoothly as cL, cR → c. Finally, the first condition can be verified by simply substituting
the appropriate values in (i).

24



6.5 Entropy fix for Roe’s solver

The Roe’s solver described in the previous section is quite adequate for most problems involving
shocks, but it might experience difficulties with certain types of rarefaction waves (sonic rarefac-
tions). There are several ways to modify Roe’s algorithm that can fix this problem. Here, we give
an approach presented in [20].

Let λp be the pth eigenvalue in (61). Then we define

cp,L = cL +
p−1
∑

i=1

αir̂i, cp,R = cL +
p
∑

i=1

αir̂i, (62)

and, similarly to (58), the normal boundary flux is computed as

Ĉn(cL, cR) = Cn(cL) +
3
∑

i=1

αiλ̃ir̂i, (63)

where

λ̃i = λ−i (cp,L)
λ+
i (cp,R) − λi(c)

λ+
i (cp,R) − λ−i (cp,L)

, (64)

with x− = min{0, x} and x+ = max{0, x}.

6.6 Lax-Friedrichs solver

The simplest Riemann solver supported in our 3D simulator is the Lax-Friedrichs scheme. In this
method, the normal boundary flux is approximated by

Ĉn(cL, cR) =
1

2
(Cn(cL) + Cn(cR)) +

1

2
|λ̂max|(cL − cR), (65)

where λ̂max is the largest (in absolute value) eigenvalue of C ′
n(c) (see (61)).

6.7 HLL solver

In the HLL Riemann solver, proposed by Harten, Lax, and van Leer [19], an approximation to the
nonlinear boundary flux is computed as

Ĉn(cL, cR) =











Cn(cL) if sL ≥ 0,
sRCn(cL) − sLCn(cR) + sLsR(cR−cL)

sR−sL
if sL ≤ 0 ≤ sR,

Cn(cR) if sR ≤ 0,

(66)

where we choose (see [26]) sL = min{un,L − aL, u
∗
n − a∗}, sR = max{un,R + aR, u

∗
n + a∗} with

un = unx + vny, a =
√
gh, and

u∗ =
1

2
(un,L + un,R) + aL − aR, a∗ =

1

2
(aL + aR) +

1

4
(un,L − un,R).
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6.8 Treatment of boundary conditions

In this section, we will discuss specific implementation issues concerning the boundary conditions
at the top and bottom domain boundaries (4), (6), (8) and the lateral boundary.

• Bottom: On the bottom boundary, we compute the value of Q from (6) and the value of W
from (4), the latter using the computed value of Uxy at the sea bed.

• Free surface: At the free surface boundary, we set Q equal to 0 and take the velocity values
from the interior.

The boundary conditions on the lateral boundaries are handled as follows.

• Land boundary: On the land boundary, we use zero boundary conditions for Q and set Ûxy =
Uxy−(Uxy ·n)Uxy , where Uxy is the value of the LDG solution from the interior of the domain.
In the Riemann solver, we define the reflected velocity vector UR

xy = Uxy − 2(Uxy · n)Uxy

and solve a Riemann problem for the boundary flux Ĉn((H,Uxy), (H,U
R
xy)).

• Open sea boundary: On the open sea boundary, we take zero boundary conditions for Q and
set Ûxy = Uxy. In the Riemann solver, we compute the boundary flux Ĉn((H,Uxy), (ξos −
zb,Uxy))

• River boundary: Here, we set û = ur, and in the Riemann solver compute the boundary flux
Ĉn((H,Uxy), (ξr − zb,ur)) The values of Q are taken from the interior.

• Radiation boundary: We set Q equal to 0 and take values from the interior for all other
variables.

6.9 Species transport

The DG method is also applied to the solution of the species transport equations (29). The
handling of the diffusion terms is similar to what is described above for uxy, therefore to simplify
the discussion we assume Kr = 0.

Denote by R a discontinuous approximation to the species concentration r. Multiplying (29)
by a discontinuous test function κ, integrating by parts, and approximating u by U, we obtain the
semi-discrete method

∑

e∈Ie

(∂tR,κ)Ωe(t)
+

∑

i∈Iint

〈

Rup Û · n, [κ]
〉

γi(t)

+
∑

i∈Iext

〈

Rup Û · n, κ
〉

γi(t)
−
∑

e∈Ie

(R U · ∇, κ)Ωe(t)
= 0. (67)

Here Û is computed using the same method as in (57), andRup is the upwind value of R, determined
by the sign of Û · n.

6.10 Baroclinic model

The discretization of the baroclinic forcing term in the momentum equations (30) is carried out in
two steps. First, we compute an L2-projection of the density field obtained with the help of the
equation of state into the discontinuous approximation space chosen for the density variable. In
the second step, this density field is integrated exactly in the z-direction starting at the surface and
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going to the bottom providing thus the density forcing term in momentum equations (30). In the
baroclinic case, the discretized momentum equations are given by

∑

e∈Ie

(∂tUxy,φ)Ωe(t) +
∑

i∈Iint

〈

Ĉu,n(C−,C+) +

(

g

ρ0

∫ ξs

z
(ρ̄(T, S, ξ − z̃) − ρ0)dz̃

)

n +
√
DQ̂ · n, [φ]

〉

γi(t)

+
∑

i∈Iext

〈

Cu,n(C−,C+) +

(

g

ρ0

∫ ξs

z
(ρ(T, S, ξ − z̃) − ρ0)dz̃

)

n +
√
DQ · n,φ

〉

γi(t)

(68)

−
∑

e∈Ie

(

(Cu(C) +
g

ρ0

∫ ξs

z
(ρ(T, S, ξ − z̃) − ρ0)dz̃ +

√
DQ) · ∇,φ

)

Ωe(t)

=
∑

e∈Ie

(M(C),φ)Ωe(t) ,

where ξs is the value of the z-coordinate at the free surface mesh (comp. to Figure 2).

6.11 Approximating spaces and time-stepping

The approximations H ∈ H∆, Uxy ∈ U∆, W ∈ W∆ and Q ∈ Z∆ are constructed from basis
functions consisting of complete polynomials in (x, y, z) defined on each element. Currently imple-
mented are piecewise constant, linear and quadratic polynomial spaces. Each of those spaces can be
used to approximate any of the primary unknowns in UTBEST3D independently of approximation
spaces utilized by other unknowns. Thus, one may approximate H by piecewise constants, U by
linears, and T by piecewise quadratics etc.

After spatial discretization, one arrives at a system of ODEs

y′(t) = Lh(y(t), t), (69)

where y represents all degrees of freedom associated with the time-dependent state variables, and
Lh stands for the LDG space discretization operator. The time-stepping method we use is based
on an explicit TVD Runge-Kutta method given below, with the order of the method matching
the highest order of the spatial discretization. For example, if the highest order is linear, then we
integrate in time using a second-order Runge-Kutta method. At each stage of the Runge-Kutta
method, the solution process consists of four steps:

1. Solve (57) for the vertical velocity component from the previous time stage. In order to
preserve the local mass conservation properties of our LDG scheme we must compute W with
the same boundary flux as in the discrete version of the primitive continuity equation (54).
Thus, this step requires solution of the Riemann problem on interior lateral faces, the results
of which can be then stored for use in 3.

2. Compute the values of auxiliary variable Q using (56). Since Q is discontinuous, the compu-
tation of Q is completely local to an element, and only involves the solution of element-wise
systems of equations.

3. Compute species (and turbulent closure scheme unknowns) transport.

4. Compute C from (54), (55) using solutions to the Riemann problem on interior lateral faces
obtained in step 1. The linear term Q̂ can be taken equal to the average of values of Q on
both sides of the discontinuity.

5. Update (when desired) the position of the free surface and perform surface mesh smoothing.
Update the geometry of prisms and faces in the surface layer.
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6.11.1 The TVD Runge-Kutta time-stepping method

To solve the system of ODEs (69), the traditional Runge-Kutta methods offer a wide variety of
explicit and implicit schemes of various order (see, e.g., [7]). For most problems with smooth
solutions, these methods can be utilized in the time-stepping routine without any reservations.
However, for problems with discontinuities or very steep gradients, numerical solutions obtained
using traditional Runge-Kutta schemes may suffer from spurious oscillations. This was the principal
motivation behind the total variation diminishing (TVD) Runge-Kutta methods introduced by
Cockburn and Shu in [11] – [15]. These schemes – denoted RKΛΠP – can capture discontinuities
without or with essentially dampened oscillations.

The main idea of a RKΛΠP method is, first, to reformulate the explicit Runge-Kutta scheme
in some suitable form and then to perform, where needed, a limiting procedure on the degrees of
freedom corresponding to the higher-order (linear, quadratic, etc) basis functions.

The explicit Runge-Kutta scheme used in RKΛΠP methods can be written as follows:

y(0) = yn−1,

y(i) =
i−1
∑

l=0

[

αil y
(l) + βil ∆tLh(y

(l), tn−1 + δl∆t)
]

, i = 1, . . . , s,

yn = y(s), (70)

where s is the number of stages.

• The first order scheme is simply the forward Euler method.

• In the second order scheme (s=2) the coefficients are:

α10 = β10 = 1, α20 = α21 = β21 =
1

2
, β20 = 0,

δ0 = 0, δ1 = 1. (71)

• The coefficients for the third order scheme (s=3) are as follows:

α10 = β10 = 1, α20 =
3

4
, α21 = β21 =

1

4
, β20 = 0,

α30 =
1

3
, β30 = α31 = β31 = 0, α32 = β32 =

2

3
,

δ0 = 0, δ1 = 1, δ2 =
1

2
. (72)

The second component of the RKΛΠP methods is the local projection operator ΛΠ whose
purpose is to control the magnitude of the higher-order degrees of freedom. Examples of ΛΠ
operators for 1D are given in [13] and for standard 2D element shapes in [14]. With the local
projection operator, the RKΛΠP method is defined as

y(0) = yn−1,

y(i) = ΛΠ

(

i−1
∑

l=0

[

αil y
(l) + βil ∆tLh(y

(l), tn−1 + δl∆t)
]

)

, i = 1, . . . , s,

yn = y(s). (73)

28



For a suitable choice of the ΛΠ operator and for ∆t satisfying the CFL condition, the scheme
above can be shown to be TVD in the 1D [13] and 2D [14] cases. We note that in our implemen-
tation, we avoid the use of the local projection operator where possible, since our experience with
various limiters shows that they generally interfere with the wave structure, thus we take ΛΠ = I.
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Figure 4: Areal view of salinity concentration for the case with no wind stress. Units are ppt.
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Figure 5: Areal view of salinity concentration for the case with constant wind blowing from the
north at 10 m/s. Units are ppt.
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Figure 6: Areal view of salinity concentration for the case with constant wind blowing from the
south at 10 m/s. Units are ppt.
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Figure 7: Areal view of quarter annular domain with coarse triangulation. Units are in meters.
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Figure 8: Once and twice refined meshes for the quarter annular harbor
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Figure 9: Comparison of UTBEST3D solutions for piecewise constants on coarse grid, medium grid
and fine grid.
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Figure 10: Comparison of UTBEST3D solutions for piecewise linears on coarse grid, medium grid
and fine grid.
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Figure 11: Comparison of UTBEST3D solutions for piecewise constant, linear and quadratic solu-
tions on the coarse grid.
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Figure 12: Comparison of small vs. large time steps for piecewise constants and piecewise linear
solutions at location 1.
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Figure 13: Comparison of UTBEST3D solutions for piecewise linears with ELCIRC and SELFE
on coarse grid
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Figure 14: Comparison of UTBEST3D solution for piecewise linears with ELCIRC and SELFE on
medium grid.
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Figure 15: Comparison of UTBEST3D solution for piecewise linears with ELCIRC and SELFE on
fine grid.
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Figure 16: Comparison of ELCIRC solutions at location 1 on coarse and fine grids.
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Figure 17: Comparison of ELCIRC and UTBEST3D piecewise constant solutions at location 1 on
the coarse grid.
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