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1 Executive Summary

The University of Texas Bay and Estuary 3D (UTBEST3D) simulator solves the shallow water
equations using a recently developed discontinuous Galerkin (DG) finite element approach. The
model uses a z-grid with general prismatic elements and has the capability to follow a sloped (piece-
wise linear) bottom bed. The method is based on the use of discontinuous, piecewise polynomial
approximating functions for each primary variable, defined over each element. The advantages of
the DG method include the ability to model flows at multiple scales, including resolution of long
wave and advection-dominated flows, local (elementwise) mass conservation, and the ability to
easily adapt the mesh and polynomial order locally. The primary focus of this project was the in-
corporation of various turbulence closure models into the code and the preliminary testing of these
models. Turbulence models which were implemented include two algebraic (zeroth order) models,
a one equation model, and various two equation models. Our preliminary findings indicate that
for a simple channel flow problem, model results were found to be in good agreement with results
presented in the literature for a similar test case. Results using different orders of approximating
spaces, from piecewise constant to piecewise quadratic, indicate that piecewise quadratic approxi-
mations of kinetic energy are superior at resolving the boundary layer at the sea bed. Tests for a
more difficult test problem in the Bight of Abaco demonstrate that most of the turbulence models
which were implemented give similar results, including algebraic, one equation and two equation
models.

2 Project Description

2.1 Introduction

In this report, we describe a discontinuous Galerkin (DG) based finite element model for the
three-dimensional shallow water equations, UTBEST3D (University of Texas Bay and Estuary
Simulator), which has been developed at UT Austin by the investigators.

Despite many recent advances in the development of large-scale simulators for modeling circu-
lation in oceanic to continental shelf, coastal and estuarine environments, the search is still on for
methods which are locally mass conservative, can handle very general types of elements, and are
stable and accurate under highly varying flow regimes. Recently developed algorithms such as the
DG method are of great interest within the surface water modeling community. DG methods are
promising because of their flexibility with regard to geometrically complex elements, use of shock-
capturing numerical fluxes, adaptivity in polynomial order, ability to handle nonconforming grids,
and local conservation properties; see [8] for a historical overview of DG methods. In [2, 7], we
investigated DG and related finite volume methods for the solution of the two-dimensional shallow
water equations. Viscosity (second-order derivative) terms are handled in this method through the
so-called local discontinuous Galerkin (LDG) framework [10], which employs a mixed formulation.
Application of the methodology to three-dimensional shallow water models was first described in
[15]. The 3D formulation is not a straightforward extension of the two-dimensional algorithm. In
particular, it uses a special form of the continuity equation for the free surface elevation and requires
postprocessing the elevation solution to smooth the computational domain. While the numerical
results given in [15] are promising, further work is needed to ascertain the accuracy, stability and
efficiency of this methodology, and to enhance the capabilities of the model to handle baroclinic
and turbulent flows. During this project year, we have included and tested algebraic, one and
two equation turbulence models in barotropic mode, and have begun testing these models under
baroclinic conditions.
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The rest of this report is organized as follows. In Sections 2.2-2.4, we discuss the model equa-
tions, boundary conditions, and our assumptions about the time-varying computational domain.
In Sections 2.5-2.7, we formulate the semi-discrete DG finite element method used to approximate
the flow equations. In Sections 2.8-2.13, details of the formulation are discussed, including the
implementation of the Riemann solvers used to compute the fluxes on each element face, and how
boundary conditions are implemented in the method. In Sections 2.14 and 2.15, we discuss the
species and turbulent transport equations which are implemented in the model and how these
equations are solved. In Section 2.16, the approximating spaces and time-stepping methods are
discussed. Finally, in Section 2.17, numerical results comparing the various turbulence models are
presented.

2.2 Model and assumptions

For a,b ∈ IRd, c ∈ IRe, we denote by ac the tensor-product of a and c and by a ·b the dot-product
of a and b.

Let Ω(t) ⊂ IR3 be our time-dependent domain. We assume the top boundary of the domain
∂Ωtop(t) is the only moving boundary. The bottom ∂Ωbot and lateral ∂ΩD(t) boundaries are assumed
to be fixed (though the height of the lateral boundaries can vary with time according to the
movements of the free surface). We also require the lateral boundaries to be strictly vertical (see
Figure 1). The last requirement is only needed to assure that the horizontal cross-section of the
domain Ω(t) (denoted by Ωxy) doesn’t change with time.

∂Ω

D

bot

X

Z

0 Ωxy

D

∂Ω

∂Ω
∂Ω

(t)

Ω

top(t)

(t)

(t)

Figure 1: Vertical cross-section of the computational domain Ω(t).

Keeping in line with the specific anisotropy of Ω(t) we construct our 3D finite element mesh
by extending a 2D triangular mesh of Ωxy in the vertical direction, thus producing a 3D mesh of
Ω(t) that consists of one or more layers of prismatic elements. In order to better reproduce the
bathymetry and the free surface elevation of the computational domain we do not require top and
bottom faces of prisms to be parallel to the xy-plane, although the lateral faces are required to be
strictly vertical.

We introduce the following sets of element and face indices:
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• Ie - set of element indices for prismatic elements in Ω(t);

• Ie,xy - set of element indices for triangular elements in Ωxy;

• If - set of face indices for prism faces;

• Iint ⊂ If - set of interior face indices;

• Iext ⊂ If - set of exterior face indices;

• Ilat ⊂ Iint - set of interior lateral face indices;

• Ihoriz ⊂ Iint - set of interior horizontal face indices;

• ID ⊂ Iext - set of exterior lateral face indices;

• Itop ⊂ Iext - set of indices for exterior faces on the top boundary,

• Ibot ⊂ Iext - set of indices for exterior faces on the bottom boundary.

For a point (x, y) ∈ Ωxy we denote by zb(x, y) the value of the z-coordinate at the bottom
of the domain and by ξs(t, x, y) at the top. A key feature of our 3D LDG model is the fact
that all primary variables, including the free surface elevation, are discretized using discontinuous
polynomial spaces. As a result, computed values of the free surface elevation may have jumps
across inter-element boundaries. If our finite element grids were to follow exactly the computed
free surface elevation field this would cause the elements in the surface layer to have mismatching
lateral faces (staircase boundary). We avoid this difficulty by employing a globally continuous free
surface approximation that is obtained from the computed values of the free surface elevation ξ

with the help of a smoothing algorithm (see Figure 2). Thus H is the computed height of the water
column, and Hs is the the postprocessed height.

It must be noted here that solely the computational mesh is modified by the smoothing algorithm
whereas the computed (discontinuous) approximations to all unknowns, including the free surface
elevation, are left unchanged. This approach preserves the local conservation property of the LDG
method and is essential for our algorithm’s stability.

2.3 System of 3D shallow water equations

The momentum equations in conservative form (assuming constant density) are given by [24]

∂tuxy + ∇ · (uxyu − D∇uxy) + g∇xyξ − fck× uxy = F, (1)

where the wind stress, the atmospheric pressure gradient, and the tidal potential are combined
into a body force term F, ∇xy = (∂x, ∂y), ξ is the value of the z coordinate at the free surface,
u = (u, v,w) is the velocity vector, uxy = (u, v) is the vector of horizontal velocity components, fc
is the Coriolis coefficient, k = (0, 0, 1) is a unit vertical vector, g is acceleration due to gravity, and
D is the tensor of eddy viscosity coefficients defined as follows:

D =

(

Du 0
0 Dv

)

, (2)
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Figure 2: Illustration of mesh smoothing.

with Du, Dv 3 × 3 symmetric positive-definite matrices, and D∇uxy =

(

Du∇u
Dv∇v

)

. In particular,

Du = Dv =







Ax 0 0
0 Ay 0
0 0 νt






,

where Ax, Ay are the horizontal and νt is the vertical eddy viscosity coefficient.
The continuity equation is

∇ · u = 0. (3)

2.4 Boundary conditions

The following boundary conditions are specified for the system:

• At the bottom boundary ∂Ωbot, we have no normal flow

u(zb) · n = 0 (4)

and the quadratic slip condition for the horizontal velocity components

νt
∂u

∂n
(zb) = Cf

√

u2(zb) + v2(zb)u(zb), (5)

νt
∂v

∂n
(zb) = Cf

√

u2(zb) + v2(zb)v(zb), (6)

where n = (nx, ny, nz) is an exterior unit normal to the boundary.

• The free surface boundary conditions have the form

∂tξ + u(ξ) ∂xξ + v(ξ) ∂yξ − w(ξ) = 0, (7)

∇u(ξ) · n = ∇v(ξ) · n = 0. (8)
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On the lateral boundaries, we consider several common types of boundary conditions:

• Land boundary: No normal flow
un = u · n = 0, (9)

and zero shear stress
∇uτ · n = 0, (10)

where τ and n denote a unit tangential and a unit exterior normal vectors to the boundary,
correspondingly.

• Open sea boundary: Zero normal derivative of the horizontal velocity components

∇u · n = ∇v · n = 0, (11)

and prescribed surface elevation ξos(x, y, t)

ξ = ξos(x, y, t). (12)

• River boundary: Prescribed velocities

u = ur, (13)

and prescribed surface elevation
ξ = ξr. (14)

• Radiation boundary: Zero normal derivative of the horizontal velocity components

∇u · n = ∇v · n = 0. (15)

Analytically, the free surface elevation can be computed from (7). However, a computationally
more robust method [24] is obtained by integrating continuity equation (3) over the total height
of the water column. Taking into account boundary conditions (4) – (7) at the bottom and top
boundaries we arrive at a 2D equation for the free surface elevation commonly called the primitive
continuity equation (PCE),

∂tξ + ∂x

∫ ξ

zb

udz + ∂y

∫ ξ

zb

vdz = 0. (16)

2.5 LDG discretization

Let us denote h = ξ − zb. Then we can rewrite the mass and momentum conservation equations
(16), (1) in the following compact form:

∂th + ∇xy ·Ch(c) = 0, (17)

∂tuxy + ∇ · (Cu(c) − D∇uxy) = M(c), (18)

where c = (h, u, v, w) is the vector of state variables,

Ch(c) =

(

∫ ξ
zb
u dz

∫ ξ
zb
v dz

)

, Cu(c) =

(

Cu(c)
Cv(c)

)

=

(

u2 + gh uv uw

uv v2 + gh vw

)

,

M(c) =

(

Fx − g∂xzb + fcv

Fy − g∂yzb − fcu

)

.
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2.6 Weak formulation

First, let us introduce an auxiliary variable Q and rewrite the second-order momentum equations
(18) in mixed form

∂tuxy + ∇ · (Cu(c) +
√
DQ) = M(c), (19)

Q = −
√
D∇uxy. (20)

Let T∆x be a partition of the domain Ω(t) ⊂ Rd, d = 3 into prisms with strictly vertical lateral
(side) faces, and let Ωe(t) ∈ T∆x. To obtain a weak form of the momentum equations we multiply
(19), (20) by arbitrary smooth test functions φ and Ψ , integrate them on each element Ωe(t) ∈ T∆x,
and integrate by parts obtaining

(∂tuxy,φ)Ωe(t) +
〈

(Cu(c) +
√
DQ) · ne,φ

〉

∂Ωe(t)

−
(

(Cu(c) +
√
DQ) · ∇,φ

)

Ωe(t)
= (M(c),φ)Ωe(t)

,

(Q,Ψ)Ωe(t) = −
〈

uxy (
√
D ne),Ψ

〉

∂Ωe(t)
+
(

uxy (
√
D ∇),Ψ

)

Ωe(t)
,

where ne is a unit exterior normal to ∂Ωe(t). This weak formulation is well defined for uxy(t, x, y, z) ∈
H1(0, T ; V d−1); φ(x, y, z) ∈ V d−1; Q(t, x, y, z) ∈ V d−1×d, ∀t ∈ [0, T ]; and Ψ(x, y, z) ∈ V d−1×d,
where

V = L2(Ω(t)) ∩ {u : u|Ωe(t)
∈ H1(Ωe(t)), ∀Ωe(t) ∈ T∆x}. (21)

Fixing the direction of the unit normal n on the interior faces we can sum over all elements
Ωe(t) ∈ T∆x and obtain a weak form of the momentum equations

∑

e∈Ie

(∂tuxy,φ)Ωe(t)
+

∑

i∈Iint

〈

(Cu(c) +
√
DQ) · n, [φ]

〉

γi(t)

+
∑

i∈Iext

〈

(Cu(c) +
√
DQ) · n,φ

〉

γi(t)
−
∑

e∈Ie

(

(Cu(c) +
√
DQ) · ∇,φ

)

Ωe(t)

=
∑

e∈Ie

(M(c),φ)Ωe(t)
, (22)

∑

e∈Ie

(Q,Ψ)Ωe(t) = −
∑

i∈Iint

〈

uxy (
√
D n), [Ψ ]

〉

γi(t)

−
∑

i∈Iext

〈

uxy (
√
D n),Ψ

〉

γi(t)
+

∑

e∈Ie

(

uxy (
√
D ∇),Ψ

)

Ωe(t)
. (23)

Discretization of the primitive continuity equation is done in a similar way. Let us denote by
Π the orthogonal projection operator from the xyz-space onto the xy-plane (Π(x, y, z) = (x, y)),
and let Ωe,xy = ΠΩe(t). Since the free surface is the only moving boundary of Ω(t), Ωe,xy are not
time-dependent. We multiply (17) by an arbitrary smooth test function δ = δ(x, y), integrate it
over Ωe,xy, and integrate by parts. Then the mass balance in the water column corresponding to
Ωe,xy can be expressed as

(∂th, δ)Ωe,xy
+ 〈Ch(c) · n, δ〉∂Ωe,xy

− (Ch(c) · ∇xy, δ)Ωe,xy
= 0.

Recalling that Ch =
(

∫ ξ
zb
udz,

∫ ξ
zb
vdz

)

we can rewrite the equation above in a special 2D/3D form

(∂th, δ)Ωe,xy
+

∑

ΠΩe(t)=Ωe,xy

〈uxy · nxy, δ〉∂Ωe,lat(t)
−

∑

ΠΩe(t)=Ωe,xy

(uxy · ∇xy, δ)Ωe(t) = 0,
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where nxy = (nx, ny), ∂Ωe,lat(t) denotes the lateral boundary faces of prism Ωe(t), and the summa-
tion is over the set of 3D elements in the water column corresponding to Ωe,xy. Note that the expres-

sion above is well defined for any δ(x, y) ∈ H def
= L2(Ωxy)∩{h : h|ΠΩe(t)

∈ H1(ΠΩe(t)),∀Ωe(t) ∈ T∆x}
and h(t, x, y) ∈ H1(0, T ;H). Summing over all elements Ωe(t) ∈ T∆x we obtain a weak form of the
PCE

∑

e∈Ie,xy

(∂th, δ)Ωe,xy
+

∑

i∈Ilat

〈uxy · nxy, [δ]〉γi(t)

+
∑

i∈ID

〈uxy · nxy, δ〉γi(t)
−

∑

e∈Ie

(uxy · ∇xy, δ)Ωe(t) = 0. (24)

To discretize the continuity equation we multiply (3) by an arbitrary smooth test function σ,
integrate it over Ωe(t), and integrate by parts obtaining

〈u · n, σ〉∂Ωe(t)
− (u · ∇, σ)Ωe(t) = 0.

Summing over all elements Ωe(t) ∈ T∆x we get a weak form of the continuity equation

∑

i∈Iint

〈u · n, [σ]〉γi(t)
+

∑

i∈Iext

〈u · n, σ〉γi(t)
−

∑

e∈Ie

(u · ∇, σ)Ωe(t)
= 0. (25)

2.7 Semi-discrete formulation

Next, we seek to approximate

(h(t, ·),uxy(t, ·), w(t, ·),Q(t, ·)),

a solution to problem (22) – (25), with a function

(H(t, ·),Uxy(t, ·),W (t, ·),Q(t, ·)) ∈ H∆ × U∆ ×W∆ × Z∆,

where H∆ ⊂ H, U∆ ⊂ V d−1, W∆ ⊂ V , and Z∆ ⊂ V d−1×d are some finite-dimensional subspaces.
For this purpose, we can use the weak formulation with one important modification. Since the
approximation spaces utilized in the DG methods do not guarantee continuity across the inter-
element boundaries, all integrands in the integrals over interior faces have to be replaced by suitably
chosen numerical fluxes that preserve consistency and stability of the method. A semi-discrete finite
element solution (H(t, ·),Uxy(t, ·),W (t, ·),Q(t, ·)) is obtained by requiring that for any t ∈ [0, T ],
for all Ωe(t) ∈ T∆x, and for all (δ,φ,Ψ , ω) ∈ H∆ × U∆ ×W∆ × Z∆ the following holds:

∑

e∈Ie,xy

(∂tH, δ)Ωe,xy
+

∑

i∈Ilat

〈

Ĉh,n(C−,C+)

Hs
, [δ]

〉

γi(t)

+
∑

i∈ID

〈

Ĉh,n(C−,C+)

Hs
, δ

〉

γi(t)

−
∑

e∈Ie

(

UxyH

Hs
· ∇xy, δ

)

Ωe(t)
= 0, (26)

∑

e∈Ie

(∂tUxy,φ)Ωe(t) +
∑

i∈Iint

〈

Ĉu,n(C−,C+) +
√
DQ̂ · n, [φ]

〉

γi(t)

+
∑

i∈Iext

〈

Cu,n(C−,C+) +
√
DQ · n,φ

〉

γi(t)
−
∑

e∈Ie

(

(Cu(C) +
√
DQ) · ∇,φ

)

Ωe(t)

=
∑

e∈Ie

(M(C),φ)Ωe(t)
, (27)
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∑

e∈Ie

(Q,Ψ)Ωe(t) = −
∑

i∈Iint

〈

Ûxy (
√
D n), [Ψ ]

〉

γi(t)

−
∑

i∈Iext

〈

Uxy (
√
D n),Ψ

〉

γi(t)
+

∑

e∈Ie

(

Uxy (
√
D ∇),Ψ

)

Ωe(t)
, (28)

∑

i∈Iint

〈

Û · n, [σ]
〉

γi(t)
+
∑

i∈Iext

〈

Û · n, σ
〉

γi(t)
−
∑

e∈Ie

(U · ∇, σ)Ωe(t)
= 0, (29)

where (Ĉh,n(C−,C+), Ĉu,n(C−,C+)) is an approximation to the nonlinear boundary flux (UxyH ·
nxy, Cu · n) that depends on the values of the state variables C−,C+ on both sides of the discon-
tinuity. The stability of the method depends to a large degree on this approximation satisfying
certain entropy conditions. We will address this issue in some detail in Section 2.8. The restrictions
on the linear boundary fluxes Ûxy, Q̂ are much less severe. They can be set equal to arithmetic
averages of the values of the corresponding variables on both sides of the discontinuity or some
other consistent numerical flux.

Remark 1: The continuity equation is, unlike the mass and momentum conservation equations,
not time-dependent, its main role being computation of the vertical velocity component W to
maintain a divergence-free velocity field. Regarding (29) and the kinematic boundary condition at
the bottom (4) as an initial value problem for W , we can compute W element-by-element in each
water column starting at the bottom and using the solution from the element below as an initial
condition.

The choice of the boundary flux Û in (29) also merits a special mention. On the interior lateral

faces it should be set equal to
Ĉh,n(C

−
,C+)

Hs
, exactly as it is in the discrete form of the primitive

continuity equation (26), in order to preserve the local mass conservation properties of our numerical
scheme. On the interior horizontal faces Û can be approximated by the average or upwind values
of the corresponding variable.

2.8 Riemann solvers for the 3D problem

In this section, we will show how to utilize the boundary flux formulation shown in (26) in a
Riemann solver. Since we managed to transform all boundary integrals into a 3D form, we end up
with a well-posed Riemann problem that can be solved to produce a numerical boundary flux on
the lateral faces satisfying the entropy condition (for a discussion of different entropy conditions
see, e.g., [19]).

Let P be a point on Γ, where Γ is an interior lateral boundary face in the 3D mesh (see
Figure 2). Let n = (nx, ny, nz) be a unit normal to Γ at P. Note that nz is equal to 0 since
all lateral faces are strictly vertical. We denote by c = (h, u, v) the vector of state variables.
Note that we don’t include the vertical velocity component in c because w only enters the normal
boundary flux when multiplied by nz. Then we define the left and right states cL, cR at P as
cL = limε→0− c(P + εn), cR = limε→0+ c(P + εn). Our task is to compute an entropy solution
Ĉn(cL, cR) to the Riemann problem for the nonlinear boundary flux Cn = (Ch · n,Cu · n,Cv · n)
at P (see (26), (27)).

2.9 Riemann solver of Roe

In this solver, an approximation to the normal boundary flux is given by

Ĉn(cL, cR) = Cn(cL) +
3
∑

i=1

αiλ̂
−
i r̂i, (30)
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where λ̂i are the eigenvalues and r̂i the corresponding eigenvectors of matrix R̂n(cL, cR) defined
below, x− = min{0, x}, and αi are calculated from

3
∑

i=1

αir̂i = cR − cL. (31)

The matrix R̂n(cL, cR) has to satisfy the following three conditions [21]:

(i) R̂n(cL, cR)(cR − cL) = Cn(cR) − Cn(cL);

(ii) R̂n(cL, cR) is diagonalizable with real eigenvalues;

(iii) R̂n(cL, cR) → C ′
n(c) smoothly as cL, cR → c, where

C ′
n(c) =







unx + vny hnx hny
gnx 2unx + vny uny
gny vnx unx + 2vny






. (32)

We claim that setting R̂n(cL, cR) equal to C ′
n(c), where c = 1

2(cL + cR), satisfies conditions on

R̂n. Indeed, we obtain the following eigenvalues and eigenvectors for C ′
n(c):

λ1(c) = 3
2un − 1

2a, r1(c) =







h

u− nx

2 (un + a)
v − ny

2 (un + a)






;

λ2(c) = 3
2un, r2(c) =







0
−ny
nx






; (33)

λ3(c) = 3
2un + 1

2a, r3(c) =







h

u− nx

2 (un − a)
v − ny

2 (un − a)






;

where un = unx + vny and a =
√

u2
n + 4gh. Therefore, condition (ii) is satisfied. Clearly, C ′

n(c) →
C ′

n(c) smoothly as cL, cR → c. Finally, the first condition can be verified by simply substituting
the appropriate values in (i).

2.10 Entropy fix for Roe’s solver

The Roe’s solver described in the previous section is quite adequate for most problems involving
shocks, but it might experience difficulties with certain types of rarefaction waves (sonic rarefac-
tions). There are several ways to modify Roe’s algorithm that can fix this problem. Here, we give
an approach presented in [18].

Let λp be the pth eigenvalue in (33). Then we define

cp,L = cL +
p−1
∑

i=1

αir̂i, cp,R = cL +
p
∑

i=1

αir̂i, (34)

and, similarly to (30), the normal boundary flux is computed as

Ĉn(cL, cR) = Cn(cL) +
3
∑

i=1

αiλ̃ir̂i, (35)
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where

λ̃i = λ−i (cp,L)
λ+
i (cp,R) − λi(c)

λ+
i (cp,R) − λ−i (cp,L)

, (36)

with x− = min{0, x} and x+ = max{0, x}.

2.11 Lax-Friedrichs solver

The simplest Riemann solver supported in our 3D simulator is the Lax-Friedrichs scheme. In this
method, the normal boundary flux is approximated by

Ĉn(cL, cR) =
1

2
(Cn(cL) + Cn(cR)) +

1

2
|λ̂max|(cL − cR), (37)

where λ̂max is the largest (in absolute value) eigenvalue of C ′
n(c) (see (33)).

2.12 HLL solver

In the HLL Riemann solver, proposed by Harten, Lax, and van Leer [17], an approximation to the
nonlinear boundary flux is computed as

Ĉn(cL, cR) =











Cn(cL) if sL ≥ 0,
sRCn(cL) − sLCn(cR) + sLsR(cR−cL)

sR−sL
if sL ≤ 0 ≤ sR,

Cn(cR) if sR ≤ 0,

(38)

where we choose (see [23]) sL = min{un,L − aL, u
∗
n − a∗}, sR = max{un,R + aR, u

∗
n + a∗} with

un = unx + vny, a =
√
gh, and

u∗ =
1

2
(un,L + un,R) + aL − aR, a∗ =

1

2
(aL + aR) +

1

4
(un,L − un,R).

2.13 Treatment of boundary conditions

In this section, we will discuss specific implementation issues concerning the boundary conditions
at the top and bottom domain boundaries (4), (6), (8) and the lateral boundary.

• Bottom: On the bottom boundary, we compute the value of Q from (6) and the value of W
from (4), the latter using the computed value of Uxy at the sea bed.

• Free surface: At the free surface boundary, we set Q equal to 0 and take the velocity values
from the interior.

The boundary conditions on the lateral boundaries are handled as follows.

• Land boundary: On the land boundary, we use zero boundary conditions for Q and set Ûxy =
Uxy−(Uxy ·n)Uxy , where Uxy is the value of the LDG solution from the interior of the domain.
In the Riemann solver, we define the reflected velocity vector UR

xy = Uxy − 2(Uxy · n)Uxy

and solve a Riemann problem for the boundary flux Ĉn((H,Uxy), (H,U
R
xy)).

• Open sea boundary: On the open sea boundary, we take zero boundary conditions for Q and
set Ûxy = Uxy. In the Riemann solver, we compute the boundary flux Ĉn((H,Uxy), (ξos −
zb,Uxy))

12



• River boundary: Here, we set û = ur, and in the Riemann solver compute the boundary flux
Ĉn((H,Uxy), (ξr − zb,ur)) The values of Q are taken from the interior.

• Radiation boundary: We set Q equal to 0 and take values from the interior for all other
variables.

2.14 Species transport

Species transport equations for salinity and temperature are included in the model. Transport is
described by advection-diffusion equations of the form

rt + ∇ · (ur) −∇ · (Kr∇r) = f, Ω(t) × (0, T ),

where r = S for salinity or r = T for temperature, and Kr =







Ãx 0 0

0 Ãy 0
0 0 νr






is a specified

diffusion tensor. These equations must be supplemented with initial and boundary conditions. The
LDG method is also applied to the solution of these equations. The handling of the diffusion terms
is similar to what is described above for uxy, therefore to simplify the discussion we assume Kr = 0.

Denote by R a discontinuous approximation to the species concentration r. Multiplying (39)
by a discontinuous test function κ, integrating by parts, and approximating u by U, we obtain the
semi-discrete method

∑

e∈Ie

(∂tR,κ)Ωe(t)
+

∑

i∈Iint

〈

R↑ Û · n, [κ]
〉

γi(t)

+
∑

i∈Iext

〈

R↑ Û · n, κ
〉

γi(t)
−
∑

e∈Ie

(R U · ∇, κ)Ωe(t)
= 0. (39)

Here Û is computed using the same method as in (29), and R↑ is the upwind value of R, determined
by the sign of Û · n.

2.15 Turbulence

The issue of realistic modeling of the turbulent eddy viscosity and diffusivity terms is an active
research topic. The vertical eddy visosity coefficient is a particularly important parameter if one
aims to achieve good vertical resolution of the computational domain.

UTBEST3D provides vertical eddy viscosity models of various levels of computational and
conceptual complexity. In order of increasing complexity these include a constant eddy viscosity
coefficient, an algebraic (zeroth order) model, as well as one and two equation models.

• The simplest model amounts to explicitly specifiying diagonal entries to the tensor of eddy
viscosity coefficients in (1).

• Two algebraic models implemented in UTBEST3D are due to Davies [14] and give good
results at a reasonable computational cost in cases where accurate vertical resolution of flow
is not important.

In the first model the eddy viscosity and diffusivity coefficients are set equal to Ct
(ū2+v̄2)
ωa

,

where ū and v̄ are depth averaged horizontal velocity components, Ct = 2× 10−5 is a dimen-
sionless coefficient, and ωa a typical long wave frequency set to 10−4s−1.

Model two is very similar to model one, except that the eddy viscosity is assumed to be
proportional to H

√
ū2 + v̄2.
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• The first order vertical eddy viscosity closure model solves a transport eqaution for the tur-
bulent kinetic energy in addition to the mass, momentum, and species transport equations.

kt + ∇ · (uk) − ∂

∂z
(νk

∂

∂z
k) = νt

(

(

∂u

∂z

)2

+

(

∂v

∂x

)2
)

+ νr
g

ρ0

∂ρ

∂z
− ǫ, (40)

where νk is the vertical diffusion coefficient for k and ǫ = (C0
µ)

3k
3
2 l−1 is the dissipation rate

of the turbulent kinetic energy. The turbulent mixing length, l(z), is computed in this model
algebraically and is set equal to κ(z − zb)

√
ξ − z (see Delft3D-Flow manual [16]). C0

µ =
√

0.3
is a calibration constant, κ = 0.4 is the von Karman constant. Once k is computed one can
obtain vertical eddy viscosity and diffusivity coefficients by νk = νr = νt = Cµk

1
2 l, where Cµ

is a stability function that accounts for stratification effects and is set to 0.5774 for barotropic
flow simulations.

At the free surface and the sea bed Neumann boundary conditions are employed for k: νk
∂k
∂n

=
0.

(40) is discretized similarly to the species transport equation (39).

• The second order closure model implemented in UTBEST3D is based on the generic turbu-
lence length scale model proposed by Warner et al [25]. The advantage of this formulation is
the ability to switch between several two equation models, including k−ǫ and Mellor-Yamada,
by changing a few constant parameters. In addition to the transport equation for k this model
includes a second transport equation for a derived quantity ψ.

ψt + ∇ · (uψ) − ∂

∂z
(νψ

∂

∂z
ψ)

=
ψ

k

(

C1νt

(

(

∂u

∂z

)2

+

(

∂v

∂x

)2
)

+ C3νr
g

ρ0

∂ρ

∂z
− C2ǫFwall

)

, (41)

where ψ = (C0
µ)
pkmln and C3 is equal C−

3 for stably stratified flow and C+
3 otherwise. De-

pending on the choice of p, m, and n we obtain different closure schemes. Values of the
parameters for four popular two equation models are shown in Table 1. Discretization of (41)
is also done similarly to (39).

This model uses Neumann boundary conditions for ψ at the free surface νψ
∂ψ
∂n

= 0 (in the case

of no wind forcing at the free surface) and at the sea bed νψ
∂ψ
∂n

= −nνψ(C0
µ)
pkmκln−1. Here we

assume l = κ∆zb

2 , where ∆zb is the height of the bottom-most element.

2.16 Approximating spaces and time-stepping

The approximations H ∈ H∆, Uxy ∈ U∆, W ∈ W∆ and Q ∈ Z∆ are constructed from basis
functions consisting of complete polynomials in (x, y, z) defined on each element. Currently the
maximum degree polynomial one can choose is two, thus constant, linear and quadratic approxima-
tions are allowed. The polynomial degree of the spaces U∆ and Z∆ are assumed equal. However,
if desired one can choose different orders of polynomials for H and W . For example, one might
use piecewise linears for W and H and piecewise constants for Uxy. In addition, any transported
quantities are approximated using similar discontinuous piecewise polynomials of maximum degree
two.
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Mellor-Yamada [20] k − ǫ [6] k − ω [27] generic [22]

p 0 3 -1 2
m 1 1.5 0.5 2
n 1 -1 -1 2/3
νk

νt

2.44 νt
νt

2
νt

0.8
νψ

νt

2.44
νt

1.3
νt

2
νt

1.07
C1 0.9 1.44 0.555 1
C2 0.5 1.92 0.833 1.22
C+

3 1 1 1 1
C−

3 2.53 -0.52 -0.58 0.1
kmin 5e-6 7.6e-6 7.6e-6 7.6e-6
ψmin 1e-8 1e-12 1e-12 1e-12

Fwall 1 + 1.33
(

l
z−zb

)2
+ 0.25

(

l
ξs−z

)2
1 1 1

Table 1: Generic turbulence closure model parameters.

After spatial discretization, one arrives at a system of ODEs

y′(t) = Lh(y(t), t), (42)

where y represents all degrees of freedom associated with the time-dependent state variables, and
Lh stands for the LDG space discretization operator. The time-stepping method we use is based
on an explicit TVD Runge-Kutta method given below, with the order of the method matching
the highest order of the spatial discretization. For example, if the highest order is linear, then we
integrate in time using a second-order Runge-Kutta method. At each stage of the Runge-Kutta
method, the solution process consists of four steps:

1. Solve (29) for the vertical velocity component from the previous time stage. In order to
preserve the local mass conservation properties of our LDG scheme we must compute W with
the same boundary flux as in the discrete version of the primitive continuity equation (26).
Thus, this step requires solution of the Riemann problem on interior lateral faces, the results
of which can be then stored for use in 3.

2. Compute the values of auxiliary variable Q using (28). Since Q is discontinuous, the compu-
tation of Q is completely local to an element, and only involves the solution of element-wise
systems of equations.

3. Compute species transport and turbulent closure scheme unknowns.

4. Compute C from (26), (27) using solutions to the Riemann problem on interior lateral faces
obtained in step 1. The linear term Q̂ can be taken equal to the average of values of Q on
both sides of the discontinuity.

5. Update (when desired) the position of the free surface and perform surface mesh smoothing.
Update the geometry of prisms and faces in the surface layer.

2.16.1 The TVD Runge-Kutta time-stepping method

To solve the system of ODEs (42), the traditional Runge-Kutta methods offer a wide variety of
explicit and implicit schemes of various order (see, e.g., [5]). For most problems with smooth
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solutions, these methods can be utilized in the time-stepping routine without any reservations.
However, for problems with discontinuities or very steep gradients, numerical solutions obtained
using traditional Runge-Kutta schemes may suffer from spurious oscillations. This was the principal
motivation behind the total variation diminishing (TVD) Runge-Kutta methods introduced by
Cockburn and Shu in [9] – [13]. These schemes – denoted RKΛΠP – can capture discontinuities
without or with essentially dampened oscillations.

The main idea of a RKΛΠP method is, first, to reformulate the explicit Runge-Kutta scheme
in some suitable form and then to perform, where needed, a limiting procedure on the degrees of
freedom corresponding to the higher-order (linear, quadratic, etc) basis functions.

The explicit Runge-Kutta scheme used in RKΛΠP methods can be written as follows:

y(0) = yn−1,

y(i) =
i−1
∑

l=0

[

αil y
(l) + βil ∆tLh(y

(l), tn−1 + δl∆t)
]

, i = 1, . . . , s,

yn = y(s), (43)

where s is the number of stages.

• The first order scheme is simply the forward Euler method.

• In the second order scheme (s=2) the coefficients are:

α10 = β10 = 1, α20 = α21 = β21 =
1

2
, β20 = 0,

δ0 = 0, δ1 = 1. (44)

• The coefficients for the third order scheme (s=3) are as follows:

α10 = β10 = 1, α20 =
3

4
, α21 = β21 =

1

4
, β20 = 0,

α30 =
1

3
, β30 = α31 = β31 = 0, α32 = β32 =

2

3
,

δ0 = 0, δ1 = 1, δ2 =
1

2
. (45)

The second component of the RKΛΠP methods is the local projection operator ΛΠ whose
purpose is to control the magnitude of the higher-order degrees of freedom. Examples of ΛΠ
operators for 1D are given in [11] and for standard 2D element shapes in [12]. With the local
projection operator, the RKΛΠP method is defined as

y(0) = yn−1,

y(i) = ΛΠ

(

i−1
∑

l=0

[

αil y
(l) + βil ∆tLh(y

(l), tn−1 + δl∆t)
]

)

, i = 1, . . . , s,

yn = y(s). (46)

For a suitable choice of the ΛΠ operator and for ∆t satisfying the CFL condition, the scheme
above can be shown to be TVD in the 1D [11] and 2D [12] cases. We note that in our implemen-
tation, we avoid the use of the local projection operator where possible, since our experience with
various limiters shows that they generally interfere with the wave structure, thus we take ΛΠ = I.
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2.17 Numerical results

In this section we present results of some preliminary tests for the turbulence closure schemes
implemented in UTBEST3D. For results of simulations on a range of analytical test cases and
realistic flow scenarios that employ algebraic turbulence models, see [1, 15].

2.17.1 Channel flow

In the first test case we simulate steady homogenuous flow in a rectangular channel with a constant
slope of 4×10−5. A constant flow rate with average flow velocity of 1 m/s is imposed on the upstream
(left) boundary. The channel dimensions (in meters) are: L×W ×D = 6, 000 × 2, 000 × 10. The
triangular surface grid consisting of 48 elements is shown in Figure 3. In the vertical the domain
was subdivided in up to 40 equidistant layers.

The vertical profiles of x-velocity and kinetic turbulent energy at the midpoint of the ouflow
boundary (x,y)=(6000, 0) for all of the one and two equation models we implemented are compared
in Figure 4. Here we used 5 layers in the vertical direction and piecewise quadratic approximating
spaces for all variables. These results were found to be in good agreement with results presented
by Warner et al [25] for a similar test case. The velocity profiles in particular are quite similar for
all models.

In Figure 5, we compare the vertical x-velocity and kinetic turbulent energy profiles for differ-
ent approximation spaces and various vertical grid resolutions, for the Mellor-Yamada turbulence
model. These include piecewise constant approximations with 10, 20 and 40 vertical layers; piece-
wise linears with 10 and 20 layers; and piecewise quadratics with 5 and 10 layers. Although the axial
velocity profiles lie rather close together, the quadratic approximation appears to have a definite
advantage when resolving the boundary layer at the sea bed, and gives reasonably converged results
even with only 5 vertical layers. These results also confirm that piecewise constant approximations
can be quite inaccurate, especially on coarser grids, which we have observed in previous studies.
Piecewise linears or quadratics generally give much more accurate (and physically meaningful) an-
swers. While quadratic solutions are more expensive to compute on a per-element basis, they may
also allow for coarser grids, and thus end up being more efficient. Such efficiency studies will be
the subject of future work.

2.17.2 Tidal flow in the Bight of Abaco

In the next test case, we simulate tide-driven flow in the Bight of Abaco, The Bahamas. The
domain bathymetry and the finite element mesh consisting of 1696 elements are shown in Figure 6.

The following tidal forcing with time(t) in hours was imposed at the open sea boundary:

ξ̂(t) = 0.075 cos( t
25.82 + 3.40)

+ 0.095 cos( t
23.94 + 3.60)

+ 0.100 cos( t
12.66 + 5.93)

+ 0.395 cos( t
12.42 + 0.00)

+ 0.060 cos( t
12.00 + 0.75) (meters).

(47)

The simulations were cold-started and the tidal forcing was imposed gradually over a period of two
days. The Coriolis parameter was set to 3.19 × 10−5s−1.

In Figure 7, we compare the free surface elevation at time t=1,000,000 seconds computed using
piecewise linear approximating spaces and up to 5 layers in the vertical direction. The actual
number of vertical layers at any point in the grid varies due to changes in the bathymetry. The
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Figure 3: 2D mesh and the computational domain.
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Figure 4: Comparison of order one (Delft3D), and four order two turbulence closure schemes.

time step for these runs was 5 seconds, except in the k − ω model, where it was 4 seconds. The
results, including those obtained using the algebraic turbulence closure model, are closely matched
(the differences are on the order of 1 cm or less). We did however observe numerical instabilities
with the Mellor-Yamada model (results not presented) for this problem, perhaps due to the model’s
sensitivity to variations in the bathymetry. This will be the subject of future investigation.
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Figure 5: Comparison of Mellor-Yamada scheme results for different approximation spaces and
vertical grid resolutions.
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Figure 6: Finite element mesh and domain bathymetry for tidal flows around Bahamas simulation.

3 Conclusions and recommendations

Various algebraic, one and two equation turbulence models have been implemented in the UTBEST3D
simulator, developed at the University of Texas at Austin. The model has gone through preliminary
testing, with further testing to occur over the next few months.

Specific recommendations include testing this model under baroclinic conditions on problems
of particular interest to the Texas Water Development Board. Inclusion of forcings due to wind,
and implementation of a wetting and drying algorithm are the next steps in the development.
The wetting and drying algorithm will mimic recent work on thin-layer models in a discontinuous
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Galerkin-based code for the depth-averaged shallow water equations, developed by our group in
collaboration with the group of J. Westerink [4].

Comparisons of UTBEST3D to other models, such as the ELCIRC or SELFE models, are
warranted at this point, on problems of interest to TWDB.
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Figure 7: Free surface elevation at time t=1,000,000 seconds for the Bight of Abaco. Lengths are
in meters.
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