AGRIPARTNER IRRIGATION RESULT DEMONSTRATIONS

2007 Final Report

May 21, 2008

Executive Administrator Texas Water Development Board 1700 N. Congress Avenue Austin, Texas 78701

Executive Administrator,

The requested copies of the final report for TWDB contract 0603580592 are in the mail to Mark Michon. Please convey AgriLife Extension's thanks to all TWDB staff who worked with us on the grant proposal to make the contract funds available to growers on the Texas High Plains.

In response to TWDB's review comments.

- 1. Task 1 and task 2 final reports are under one cover as planned labeled Final Report.
- 2a. An executive summary is added to the final report.
- 2b. Perhaps the TWDB is unaware that AgriLife Extension has an administrative statewide demonstration report format that includes Problem, Objectives, Materials and Methods and other as used in each AgriPartner demonstration report across all disciplines, ie. brush control, irrigation, fertilizer, variety trials and all demonstrations conducted in cooperation with growers and ranchers. In addition, most individual demonstration reports are printed seperately and discussed personally with the cooperating grower, other growers, used individually in county and area educational meetings as appropriate, individually by commodity groups and others. In my experience, very few people read and study the entire Agripartner demonstration report. But rather, they glean it by crop, irrigation system, grower data and other to obtain the information they want. Such as the corn historical summary states 21.42 inches of irrigation is needed to produce a good yield. Since the TWDB review suggestion is not in compliance with established AgriLife Extension demonstration reporting and the previous nine annual Agripartner demonstration reports, it is not used.
- 3. The single "Gray" County spelling error was finally located on page 133 and corrected.
- 4. The range of pre-water on page 75 is corrected.

Double space and double sided copies are utilized the best I can interpret to be both in partial compliance with the TWDB contract and yet the report remain functional for growers, Agri-industry, irrigation industry, crop consultants and others who funded the Agripartner demonstration program nine previous years. Hopefully, TWBD can bend a little on this where needed.

Ken Yeur

Leon New Agricultural Engineer

Texas AgriLife Extension Service at Amarillo 6500 Amarillo Blvd West Amarillo, Texas 79106 Phone: 806-677-5600 Fax: 806-677-5644

From:	"Mark Michon" <mark.michon@twdb.state.tx.us></mark.michon@twdb.state.tx.us>
To:	"Steve Amosson" <samosson@ag.tamu.edu>, <c-patrick@tamu.edu>, <l-new@tam< th=""></l-new@tam<></c-patrick@tamu.edu></samosson@ag.tamu.edu>
CC:	"Angela Ash" <angela.ash@twdb.state.tx.us>, "Aung Hla" <aung.hla@twdb.st< th=""></aung.hla@twdb.st<></angela.ash@twdb.state.tx.us>
Date:	5/9/2008 3:00 PM
Subject:	2007 Final Report contract# 0603580592

Leon,

I know I left you a phone message on this final report, however, I may need to add something or clarify what I was attempting to make known.

The Ag section has reviewed the draft final report and have realized that you are going to continue to edit and also insert crop and irrigation pictures. There is a few suggested edits that we would like to add and I believe this email then will confirm our reviews and will look anticipate the Final Report by May 31st.

1) Its probably your intentions already, however, we would like to see both Task 1 and Task 2 combined in what is titled the 2007 Final Report.

2) We would like to see an Executive Summary in the beginning. Perhaps the Problems and Objectives on each work sheet could be mentioned in the Summary and not repeated on each work sheet. Also, how the AgriLife Extension and funding from TWDB will help producers long term.

3) Gray County not Grey County.

4) Where ranges are given the same number ie. 1 inch to 1 inch. Simply state pre water as 1 inch.

Per the above-referenced contract, please submit one (1) electronic copy of the entire Final Report in PDF and nine (9) bound double-sided, double-spaced copies of the Final Report to the Executive Administrator no later than May 31, 2008. Please be sure to include a copy of the comments made on the draft final report in the submittal of the Final Report.

The Board looks forward to receiving one (1) electronic copy of the entire Final Report in Portable Document Format (PDF) and nine (9) bound double-sided copies. TAES shall also submit one (1) electronic copy of any computer programs or models and an operations manual developed under the terms of this CONTRACT.

If you have any questions concerning this contract, please contact Mr. Mark Michon, the Board's designated Contract Manager for this study, at (512) 463-7984.

Sincerely,

Mark Michon Program Specialist Texas Water Development Board Water Conservation Division 512/463-7984 mark.michon@twdb.state.tx.us

AGRIPARTNER DEMONSTRATIONS

Approximately 650 irrigation, water management and crop production field demonstrations have been conducted on more than 71,000 acres with more than 450 cooperating growers since '98. The demonstrations have identified representative crop water use and production response from limited to adequate water including dryland. Each demonstration is reported annually in comparison to full irrigation from the High Plains PET Weather Station Network, to help growers improve management decisions and irrigation system efficiency. Tools developed include crop production per inch of irrigation and from each inch of irrigation, rainfall and net soil water measured. Demonstration results are the basis for irrigation demand from Ogallala Groundwater in Region A's Senate Bill 1 and Senate Bill 2 water plans.

CROP	PERCENT	ACRES
Corn	26	18,815
Wheat	22	15,953
Cotton	18	13,096
Grain Sorghum	12	8,044
Soybean	9	6,555
Peanut	6	3,976
Silage	4	2,408
Sunflower	2	1,512
Forage and Other	_1	1,008
TOTAL	100	71,367

Executive Summary

Leon New, Professor and Extension Agricultural Engineer- Irrigation Texas AgriLife Extension Service, Amarillo, Texas

From a dream to an award winning team, the AgriPartner field demonstration program started in the Panhandle region in 1998 as a way to help the producer while the crop is growing in the field. Dr. Bob Robinson, retired North Region AgriLife Extension Service Director of Agriculture and Natural Resources, came up with the idea when he recognized a void in services to producers. Previous technical services for producers by primarily seed and chemical companies diminished due to consolidation. Robinson utilized AgriLife Extension Service infrastructure and partnered with private industry, other agencies, universities, commodity groups, groundwater districts and others to provide "now" information to growers during their crop production season. "We never had the capability to monitor crops so closely and integrate applied research so quickly before this program" Robinson stated. "Water is so precious" to all Panhandle citizens.

Five Farm Demonstration Assistants were employed and trained to go into cooperating grower's fields twice each week to measure and record irrigation, rainfall and soil water using sensors installed at 1, 2 and 3 feet in the soil root zone, plant growth stage, insect presents, disease systems and other overall crop production potential and adversities. Current crop production information is presented to each cooperating grower weekly.

The Texas Water Development Board Funded a \$100,000 AgriLife Extension grant proposal in support of the 2007 AgriPartner demonstration program. Fifty four irrigation and dryland crop production field demonstrations were conducted in cooperation with forty five cooperating growers on 6952 acres in fourteen Panhandle counties. It provided essential grower data to the historical AgriPartner crop irrigation, water use and grower management database. The program helps other growers manage farms and water more efficiently.

All AgriPartner demonstrations are tied to the Texas High Plains EvapoTranspiration (TXHPET) weather station network, based on extensive crop daily and seasonal water use research. Farmers can adjust their irrigation practices to conserve groundwater, improve management strategies and water use efficiency in producing a crop. The TXHPET weather station network is another cooperative effort between Texas AgriLife

Extension and Research and USDA-ARS at Bushland, Texas. To personally use the daily and seasonal crop water use data generated by TXHPET network go to http://amarillo2.tamu.edu/nppet/index.new.htm.

Published compiled grower data obtained from the fields of AgriPartner cooperating growers are instrumental in increasing crop production per inch of irrigation by adopting improved irrigation systems, techniques and management. Especially, LEPA center pivot and subsurface drip irrigation (SDI) system efficiencies show continually increasing crop production per inch of irrigation, a grower management tool introduced by the AgriPartner demonstration program. Corn production averaged 342 pounds per inch of irrigation, the first year of AgriPartners'. In 2007, it was 708 pounds. The ten year average of 129 demonstrations is 507 pounds per inch. Cotton averaged 69 pounds per inch of irrigation in '98. Production was 235 pounds per inch in '07. The ten year average from 115 AgriPartner demonstrations is 125 pounds of lint per inch of irrigation. The AgriPartner demonstration educational program documents and teaches this principle, the value of irrigation and Ogallala Aquifer groundwater.

Instrumental in obtaining previous funding for AgriLife Extension AgriPartner's, state representative David Swinford said "This program is the only one of it's kind in the nation. It works. It is effective and worth fighting to fund. Knowledge provided by this team is power. Recorded facts from this team's on-the-ground efforts are instrumental in maintaining agriculture's value to the state economy. It provides proof and evidence that agriculture is very valuable to the Texas economy and cannot be ignored. AgriPartner data recorded in cooperating grower fields were used to calculate the irrigation demand for the Region A Senate Bills 1 and 2 water plans and anticipated to be similarly used for Senate Bill 3.

Special thanks to the Texas Water Development Board for funding the 2007 AgriPartner field data collection and economic analyses. Additional organizations who provided funds for the 2007 and past nine years, 1998 thru 2006, demonstration program are acknowledged for their support on the back cover. Thanks to everyone. Your funds were essential in achieving the success of the 10 year AgriPartner field demonstration program in cooperation with progressive High Plains Growers.

TABLE OF CONTENTS

Task 1. Demonstration Reports and Summaries	
Executive Summary	i
Table of Contents	iii
Crop Irrigation and Production Summary	1
Corn- Grain	
Grain Corn Irrigation and Production Summary	6
Justin Crownover	8
Wade Lenz	10
Craig McCloy	12
Sieto Mellema	14
Harold Grall	10
Dan Krienke #8	18
Buich Harbert	20
Jon Krienke #47	22
Robert Gordon	24
Bill Cole	20
John R. Snearman	30
Dannie Morris	30
Cotton	
Cotton Irrigation and Production Summary	35
Derrel Johnson	37
Geno Abbe	39
Kerry Cartrite	41
Tony Cox	43
Dale Kleuskens	45
John R. Spearman	47
Pat & Rod White	49
Keith Watson	51
Charles Schlabs	53
Grain Sorghum	E (
Grain Sorgnum Irrigation and Production Summary	50
Grag Urbanozula	38 60
Den Krionko	00 62
Dala Klauskans	02 64
Terry Oneal	0 4 66
Neal Conrad	68
Neal Conrad	
Neal Conrad	70
Peanut	
Peanut Irrigation and Production Summary	75
Joe Baumgardner	77
Dan & Rex Henard	79
Pat & Rod White	81
Dannie Morris	83

Silage	
Silage Irrigation and Production Summary	86
Frankie Bezner	88
Mike Menke	90
C	
Southean Invigation and Draduction Summary	02
Soydean Inigation and Production Summary	93
Joe Holliel Mile Dudenhooffen	93
Mike Dudennoener	97
Wheat	
Wheat Irrigation and Production Summary	100
Dan Krienke	103
Dan Krienke	105
David Block	107
Greg Urbanczyk	109
Ray Schlabs Jr.	111
Troy Skarke	113
Neal Conrad	115
Mike Dudenhoeffer	117
Ray Schlabs Jr.	119
Dave Davis	121
Neal Conrad	123
Rex & Dan Henard	125
Bryan Bichsel	127
CJ Kuper	129
Bryan Bichsel	131
Rapstine Test Plot	133
Task 2. Economic Analysis	
Methodology	2
Result	3
Returns per acre-inch of Irrigation	6
Discussion and Limitation	8
References	10
Appendix A. Crop Budgets	11
BT Corn, Sprinkler Irrigated	12
Cotton, Sprinkler Irrigated	13
Grain Sorghum, Sprinkler Irrigated	14
Runner Peanuts, Sprinkler Irrigated	15
Silage Sorghum, Sprinkler Irrigated	16
Soybean, Sprinkler Irrigated	17
Wheat, Sprinkler Irrigated	18
Dryland Grain Sorghum	19
Dryland Wheat	20
-	

AgriPartners Crop Irrigation and Production Summary, 2007 Leon New Professor and Extension Agricultural Engineer-Irrigation Texas AgriLife Extension Service Amarillo, Texas

Fifty-four crop irrigation and dryland production field demonstrations were completed on 6952 acres with Forty-five volunteer cooperating growers in fourteen Panhandle counties. One dryland wheat demonstration failed. Corn, cotton, grain sorghum, peanut, silage, soybean, and wheat were produced on 5294 acres irrigated with center pivot, subsurface drip and furrow systems. Sixteen hundred fifty-eight acres were dryland. Forty-two fields that included all crops totaled 5014 acres, 72 percent of the acreage, were irrigated with center pivot systems. Two demonstrations on 140 acres was furrow irrigated. One 140 acre corn field, 2 percent, was irrigated with subsurface drip. Three fields planted to grain sorghum on 270 acres and 1388 acres of wheat in 9 fields were dryland, which is 24 percent of the total acreage. No lawn irrigation management demonstrations were conducted.

Cooperating volunteer growers were arranged by County Agricultural Extension agents. Irrigation, rainfall and soil water levels were measured and recorded by five farm demonstration assistants or the agents themselves two times each week. Reports that included progressive irrigation, soil water and other production data were submitted each week. Final crop production data was reported following harvest.

The date, number and amount of individual irrigations were recorded and calculated using well delivery gallons per minute and the number of acres irrigated. Water meters installed on growers' wells by the North Plains, Panhandle High Plains ground water districts were used where available. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at one, two and three feet in the crop root zone to measure soil water levels during the growing season and recorded twice each week. Beginning and ending soil moisture readings were used to calculate net soil water depletion during the growing season.

Irrigation, rainfall, and additional soil water measured are tabulated in comparison to corresponding crop seasonal water use reported by the North Plains PET (<u>Potential Evapo Transpiration</u>) Network for fully irrigated crops. Production from each inch of seasonal irrigation and average total rainfall, irrigation and additional soil water measured are listed in Table 1.

<u>CORN</u> Thirteen corn irrigation and production demonstrations were conducted on 2317 acres in eight counties in cooperation with twelve growers. Ninety-four percent of the acreage was irrigated with center pivot. Six percent was irrigated with subsurface drip. All fields were combine harvested for grain corn.

Grain corn production ranged from 15142 (270 Bu.) to 10360 pounds (185 Bu.) per acre and averaged 12903 pounds (230 Bu.). Production from each inch of seasonal irrigation applied ranged from 1099 (19.6 Bu.) to 542 (9.7 Bu.) and averaged 708 (12.6 Bu.) pounds per acre. It ranged from 558 (9.3 Bu.) to 352 (6.3 Bu.) and averaged 452 (8.8 Bu.) pounds from each inch of total rainfall, irrigation, and additional soil water measured. Rainfall, irrigation and soil water averaged 88 percent of that reported by the North Plains PET Network for fully irrigated full season corn. Greater than normal rainfall increased percent of PET.

<u>COTTON</u> Nine cotton irrigation production demonstrations were conducted on 986 acres in seven counties in cooperation with nine growers. No demonstration failed. One hundred percent of the acreage was irrigated using center pivot. None were irrigated using row water, none used subsurface drip.

Cotton production ranged from 2153 to 670 and averaged 1522 pounds of lint per acre. Production from each inch of seasonal irrigation water ranged from 467 to 164 and averaged 235 pounds per acre. It ranged from 114 to 47 and averaged 75 pounds from each inch of total irrigation, rainfall and additional soil water. Irrigation, rainfall and soil water averaged 83 percent of that reported by the North Plains PET

Network for fully irrigated cotton.

Production averaged 1522 pounds of lint per acre and 235 pounds per inch of irrigation using center pivot systems. Average irrigation, rainfall plus net soil water totaled 20.30 inches and was 83 percent of that reported by the North Plains PET Network for fully irrigated cotton. There were no subsurface drip irrigation cotton demonstrations.

Irrigation, rainfall and soil water was 83 percent of that reported by the North Plains PET Network. Production was 1522 pounds per acre from 20.30 inches of rainfall, irrigation, and soil water. Production was 75 pounds per inch measured. There was no dryland production.

<u>GRAIN SORGHUM</u> Eight grain sorghum irrigation production demonstrations were conducted on 810 acres in four counties in cooperation with five growers. Sixty-seven percent of the acreage was irrigated using center pivot and row water. Thirty-three percent of the acreage was dryland.

Irrigated grain sorghum yield ranged from 9128 to 5000 and averaged 7321 pounds per acre. Production from each inch of seasonal irrigation ranged from 1839 to 594 and averaged 885 pounds per acre. It ranged from 436 to 303 and averaged 358 pounds from each inch of irrigation, rainfall and additional soil water that totaled 20.43 inches. Irrigation, rainfall and additional soil water measured averaged 79 percent of that reported by the North Plains PET Network for fully irrigated full season grain sorghum.

Dryland production ranged from 4200 to 1200 pounds per acre. Average was 3033 pounds from 10.63 inches of rainfall and soil water. Soil water and rainfall averaged 41 percent of that reported by the north plains PET network for fully irrigated grain sorghum.

<u>PEANUT</u> Four peanut irrigation and production demonstrations were conducted on 294 acres in Collingsworth County in cooperation with four growers. All acreage was irrigated using center pivot systems.

Peanut production ranged from 4690 to 3100 and averaged 3838 pounds per acre. Production from each inch of seasonal irrigation ranged from 513 to 230 and averaged 351 pounds per acre. Irrigation averaged 10.91 inches. Production ranged from 210 to 154 and averaged 189 pounds from each inch of irrigation, rainfall and additional soil water measured. Irrigation, rainfall and soil water averaged 20.30 inches. Average rainfall, irrigation, and soil water was 103 percent of that reported by the North Plains PET Network for Runner peanut. Some rainfall events were intense and did not allow normal contribution to peanut production. However, all rainfall measured is reported.

<u>SILAGE</u> Two silage sorghum irrigation and production demonstration were conducted on 222 acres in Potter and Deaf Smith Counties by two growers. Fifty-five percent of the acreage was irrigated by center pivot systems. Forty-five percent was row water.

Silage sorghum production averaged 22 tons per acre from 8.72 inches of irrigation. Production from each inch averaged was 2.50 tons per acre. Rainfall, irrigation and soil water averaged 20.88 inches. Production was 1.04 tons per inch.

Rainfall, irrigation and additional soil water for silage sorghum was 102 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum. In eleven sorghum silage demonstrations ,'98-'07, total water measured was 95 percent of that the PET Network reported for fully irrigated full season grain sorghum production. Some rainfall events were intense and runoff prevented all recorded and reported from being fully utilized by the crop.

SOYBEAN Two soybean irrigation and production demonstrations were conducted on 390 acres in Carson County in cooperation with two growers. One hundred percent of the acreage was irrigated using center pivot systems.

Soybean yield ranged from 45 to 45 and averaged 45 bushels per acre. Irrigation ranged from 7.55 to 7.26 inches and averaged 7.41 inches. Average production from each inch of seasonal irrigation ranged from 5.96 to 6.20 and averaged 6.08 bushels per acre. It ranged from 3.08 to 2.58 and averaged 2.81 bushels from 16.02 inches average total irrigation, rainfall and additional soil water measured. Average rainfall, irrigation and soil water was 63 percent of that reported by the North Plains PET Network for fully irrigated soybean. The percentage was 63 percent using center pivot irrigation systems. There were no row water demonstrations.

WHEAT Sixteen wheat irrigation and dryland production demonstrations were conducted on 1933 acres in 8 counties in cooperation with 11 growers. One field was abandoned due to a poor stand. The fall was extremely dry. Twenty-eight percent of the acreage was irrigated with center pivot. Seventy-two percent was dryland following good spring rainfall.

Wheat yield ranged from 103 to 25 and averaged 57 bushels per acre. Irrigation ranged from 11.5 to 1.15 and averaged 6.09 inches. Production from each inch of seasonal irrigation ranged from 34.8 to 8.33 and averaged 11.91 bushels per acre. It ranged from 4.86 to 2.51 and averaged 3.32 bushels from each inch of average rainfall, irrigation and additional soil water measured. Average rainfall, irrigation and additional soil water measured. Average rainfall, irrigated wheat. Dryland production ranged from 62 to 25 bushels per acre and averaged 44 bushels. Production averaged 3.83 bushels from each inch of rainfall and soil water measured.

Summary crop irrigation and production data represented above are average of center pivot, subsurface drip and furrow systems.

Summary data plus that for center pivot, subsurface drip and furrow irrigation systems and dryland are listed separately in Table 1 on the following page.

LAWN No lawn and turf grass water measurement demonstration were conducted in '07.

CONCLUSION

Additional information on the 54 field demonstrations is presented in the summary for each crop. Site specific data is included in the two page report of each demonstration presented by crop, cooperating grower, and county on the following pages in this '07 demonstration report.

Thanks to the growers who volunteered their facilities, time, and operating data and other in cooperation and support of the field demonstrations. And, to Natalia Bernard and Ronda Fisher, two members of the Amarillo Texas AgriLife Center staff who prepared the reports and, special recognition to the Texas Water Development Board who designated citizen taxes to fund the '07 AgriPartner Demonstration Program.

Table 1. Average ci	rop produc	ction, per acre inch of irrigatio	n, rainfall an	d soil water and p	ercent of PET	by crop, irrigation m	ethod and dryland, 200	7
		Irrigation		Irrig/ Rain/ Soil		Production		PET
Crop	No.	Method	Inches	Inches	Per Acre	Inch of Irrigation	Inch of Irrg/Rain/Soil	% of
Corn	13	Center Pivot,SF	18.22	28.51	12903 LBS	708.04 LBS	452.66 LBS	88
	12	Center Pivot	18.38	28.78	12807 LBS	696.77 LBS	444.96 LBS	89
	1	SF Drip	16.34	25.18	14056 LBS	860.22 LBS	558.22 LBS	72
Cotton	6	Center Pivot	6.47	20.30	1522 LBS	235.10 LBS	74.97 LBS	104
Grain Sorghum	8	Center Pivot, RW, Dryland	8.27	16.75	5713 LBS	690.69 LBS	341.02 LBS	65
	4	Center Pivot	7.09	19.48	7219 LBS	1018.19 LBS	370.54 LBS	73
	٢	Row Water	13.00	24.22	7731 LBS	594.69 LBS	319.20 LBS	102
	3	Dryland	-	10.63	3033 LBS	•	285.45 LBS	41
Peanut	4	Center Pivot	10.91	20.30	3838 LBS	351.66 LBS	189.09 LBS	103
Sorghum Silage	2	Center Pivot, RW	8.72	20.88	22 TONS	2.50 TONS	1.04 TONS	102
	٢	Center Pivot	5.93	18.43	20 TONS	3.37 TONS	1.09 TONS	80
	٢	Row Water	11.50	23.32	24 TONS	2.05 TONS	1.01 TONS	123
Soybean	2	Center Pivot	7.41	16.02	45 BU	6.08 BU	2.81 BU	63
Wheat	15	Center Pivot, Dryland	-	17.73	57.25 BU		3.23 BU	98
	7	Center Pivot	6.09	21.83	72.57 BU	11.91 BU	3.32 BU	116
	8	Dryland	-	14.14	43.85 BU	-	3.83 BU	81

Corn Irrigation And Production 2007

Cooperating Growers	County
Justin Crownover	Sherman
Wade Lenz	Hartley
Craig McCloy	Hutchinson
Sieto Mellema	Dallam
Harold Grall	Moore
Dan Krienke #8	Ochiltree
Butch Harbert	Moore
Jon Englebrecht	Sherman
Dan Krienke #47	Ochiltree
Robert Gordon	Dallam
Bill Cole	Hartley
John R. Spearman	Gray
Dannie Morris	Collingsworth

AgriPartners Grain Corn Irrigation and Production Summary, 2007 Leon New Professor and Extension Agricultural Engineer- Irrigation Texas AgriLife Extension Service Amarillo, Texas

Thirteen grain corn irrigation and production demonstrations were conducted in 2007. The number was seven more than in 2006. Twelve were irrigated by center pivot systems. One was subsurface drip. The demonstrations were conducted on 2317 acres.

Grain corn yield ranged from 15142 pounds (270 bu) to 10360 (185 bu) per acre. Production was 12320 pounds (220 bu) per acre or more at ten sites. Average was 12903 pounds (230 bu) per acre. All yields are by combined harvest.

Irrigation amounts ranged from 25.62 to 11.10 inches per acre. Average irrigation for grain corn using center pivot was 18.38 inches per acre. Sixteen inches were applied by subsurface drip. Two were pre-watered. Average pre-water was 1.25 inches. Pre-water, if applied, is included in irrigation inches. There were no demonstrations with row water.

Grain corn production per inch of irrigation water applied ranged from 1099 to 542 pounds. Average was 708 pounds (12.6 bu.) per inch of irrigation using center pivot. Production was 860 pounds (15.3 bu) using drip irrigation.

Irrigation, rainfall and additional water stored in three feet of soil ranged from 36.12 to 22.31 inches. Average was 28.51 inches per acre. Grain production from each inch of irrigation, rainfall and additional soil water measured ranged from 558 to 352 pounds per acre. Average was 452 pounds (8.08 bu.) from each inch. Production from irrigation, rainfall and additional soil water averaged 445 pounds (7.94 bu.) per inch with center pivot irrigation. It was 558 pounds (9.96 bu.) using drip irrigation.

Rainfall, irrigation and additional water used from the top three feet of soil ranged from 107 to 63 percent of that reported by the North Plains PET Network for fully irrigated full season corn. Average was 88 percent and grain corn yields averaged 12903 pounds (230 bu) per acre. Total rainfall, irrigation and soil water where center pivots were used averaged 89 percent of the PET and corn yield 12807 pounds (228 bu) per acre. Total drip irrigation, rainfall, and net soil water was 72 percent of weather station PET. Production from each inch was 860 pounds (15.35 bu).

The value of irrigation water in producing grain corn priced at \$7.00 per hundred weight ranged from \$76.99 to \$37.99 per acre inch applied. Average of the thirteen locations was \$49.56 from each inch of irrigation. These values consume or include production by rainfall and water used from the soil as well as irrigation system efficiency and management of resources. A five year running average of corn production per inch of irrigation water applied is a good management tool. The value per inch of rainfall, irrigation and net soil water ranged from \$39.08 to \$24.67 and averaged \$31.69 per acre.

A tabulated summary of the thirteen grain corn irrigation and production demonstrations are listed in Table 1. Additional information for each demonstration is listed in the individual grower reports.

One hundred twenty-nine grain corn irrigation and production demonstrations were conducted in 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, and 2007. One hundred twenty were irrigated by center pivot and seven with row water systems. Two used subsurface drip. Irrigation averaged 21.42 inches and production 10868 pounds (194 bu) per acre. Production averaged 507 pounds (9.0 bu) from each inch of irrigation. Rainfall, irrigation and soil water averaged 30.71 inches from which 354 pounds (6.3 bu) per acre were harvested per inch. Irrigation, rainfall and soil water measured averaged 87 percent of that reported by the North Plains PET Network for fully irrigated grain corn. The ten year summary is listed last in Table 1.

Thanks to area growers who provided facilities, personal time, operating data and other assistance. Hopefully the information assembled will help you and other growers.

Table 1. Corn Irrigation and Prc	oduction, 2007								
		WATE	ER-INCHES	PET		PROD	DUCTION	CROP VALI	JE @\$7.00/CWT-\$
						ILBS//	ACRE/IN	AC	:RE/INCH
COUNTY	GROWER	IRRIGATION	RAIN/IRRIG/SOIL	% OF	LBS/AC	IRRIGATION	RAIN/IRRIG/SOIL	IRRIGATON	RAIN/IRRIG/SOIL
Sherman	CP-Justin Crownover	18.24	29.74	89	15142	830.15	509.15	58.11	35.64
Hartley	CP-Wade Lenz	18.53	27.7	78	14728	794.82	531.70	55.64	37.22
Hutchinson	SF-Craig McCloy	16.34	25.18	72	14056	860.22	558.22	60.21	39.08
Dallam	CP-Mellema	25.62	36.21	106	13944	544.26	385.09	38.10	26.96
Moore	CP-Harold Grall	17.50	26.20	83	12768	729.60	487.33	51.07	34.11
Ochiltree	CP-Dan Krienke #8	15.68	28.81	95	12768	814.29	443.18	57.00	31.02
Moore	CP-Butch Harbert	18.75	28.40	87	12712	677.97	447.61	47.46	31.33
Sherman	CP-Jon Englebrecht	23.32	34.07	107	12656	542.71	371.47	37.99	26.00
Ochiltree	CP-Dan Krienke #47	17.13	32.06	104	12432	725.74	387.77	50.80	27.14
Dallam	CP-Gordon	19.70	28.14	82	12320	625.38	437.81	43.78	30.65
Hartley	CP-Bill Cole	11.10	22.31	63	12208	1099.82	547.20	76.99	38.30
Gray	CP-John R. Spearman	16.00	22.44	74	11648	728.00	519.07	50.96	36.34
Collingsworth	CP-Dannie Morris	19.00	29.40	98	10360	545.26	352.38	38.17	24.67
AVERAGE 2007	13	18.22	28.51	88	12903	708.04	452.55	49.56	31.68
AVG CENTER PIVOT	12	18.38	28.79	89	12807	696.77	444.85	48.77	31.14
AVG SF DRIP	1	16.34	25.18	72	14056	860.22	558.22	60.21	39.08
AVG '98'99'00'01'02'03'04'05'07	129	21.42	30.71	87	10868	507.40	353.86	35.52	24.77
AVG CENTER PIVOT	120	20.99	30.32	86	10909	519.83	359.85	36.39	25.19
AVG ROW WATER	7	29.33	37.90	92	9534	325.10	251.53	22.76	17.61
AVG SF DRIP	2	19.67	29.32	93	13048	663.35	445.10	46.43	31.16
CP- CENTER PIVOT, SF- SUBSU	JRFACE DRIP								

IRRIGATED CORN PRODUCTION USING CENTER PIVOT SHERMAN COUNTY - 2007 JUSTIN CROWNOVER, DAVID GRAF, AND DENNIS BEILUE

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	May 5	Fertilizer:	10 Tons Manure, 75-39-0
	Variety:	Pioneer 33B54	Insecticide:	Pauncho @ plt'g
	Seeding Rate:	33,000	Herbicide:	None
	Soil Type: Sher	rm Clay Loam/Gruver Clay	Loam Harvested:	October 15
	Row Width:	30 Inches	No. Acres:	120

RAINFALL

<u>May – 1.05"</u> June- 1.50" July- 1.30" August- 3.15 September- 4.50" Total: 11.50"

MATERIALS AND METHODS: One hundred and twenty acres irrigated by a center pivot nozzled at 750 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$7.00/ CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
18	18.24	89*	15,142	830.15	\$1059.94	\$58.11

*Includes 0.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: An excellent corn yield and good irrigation management to supplement good beginning soil water at 1, 2 and 3 feet and seasonal rainfall. The soil profile was maintained at full available capacity throughout the growing season. Production was 830 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 29.74 inches. Production was 509 pounds per inch measured. Irrigation, rainfall, and net soil water was 89 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT HARTLEY COUNTY - 2007 WADE LENZ AND NICK SIMPSON

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	April 27	Fertilizer:	300-0-0
	Variety:	Nct	Insecticide:	Comite
	Seeding Rate:	32,000	Herbicide:	Dual, Atrazine
	Soil Type:	Dallam Fine Sandy Loam	Harvested:	October 7
	Row Width:	30 Inches	No. Acres:	120

RAINFALL

May- 1.15" June- 1.47" July- 2.30" August- 2.30" September- 1.25" Total: 8.47"

MATERIALS AND METHODS: One hundred and twenty acres irrigated by a center pivot nozzled at 650 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$7.00/ CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
18	18.53	78*	14,728	794.82	\$1030.96	\$55.64

*Includes 0.70 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Another excellent corn yield and water management. Soil water was good at 1, 2 and 3 feet throughout the growing season. Production was in residue management of previous year corn. Production was 795 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 27.70 inches. Production was 531 pounds per inch measured. Irrigation, rainfall, and net soil water was 78 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING DRIP IRRIGATION HUTCHINSON COUNTY - 2007 <u>CRAIG McCLOY AND TOM BENTON</u>

PROBLEM:	High Plains growers need more field measurements and documented data on corn
	production from selected or available irrigation and rainfall to make management
	decisions and conserve water.

OBJECTIVES: To determine corn production from measured irrigation, rainfall, and soil moisture levels using sub surface drip irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY: Planted:	April 20	Fertilizer:	270-100-0
Variety:	Golden Harvest 9250	Insecticide:	None
Seeding Ra	te: 32,000	Herbicide:	1.5 Oz Balance, 1 Qt Inch
Soil Type:	Sherm Silty Clay Loam	Harvested:	October 2
Row Width	: Double Row 40"	No. Acres:	140

RAINFALL April- 0.61" May- 1.22" June- 1.02" July- 2.40" Total: 5.25"

MATERIALS AND METHODS: One hundred and forty acres irrigated by a drip irrigation at 825 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results						
IRRIGATION PET PRODUCTION		CROP VALUE @ \$7.00/ CWT-				
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
28	16.34	72*	14,056	860	\$983.92	\$60.21

*Includes 3.59 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Installation of the subsurface drip irrigation was completed late due to spring rainfall. However, the crop was planted on time, with good soil water at 1, 2 and 3 feet. The drip irrigation system is automatically time controlled cycling through the acreage zones. Production was 860 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 25.18 inches. Production was 558 pounds per inch measured. Irrigation, rainfall, and net soil water was 72 percent of that reported by the North Plains PET Network for fully irrigated corn. The crop had sufficient water, producing an excellent yield.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT DALLAM COUNTY - 2007 SIETO MELLEMA AND NICK SIMPSON

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.
- SUMMARY:Planted:May 10Fertilizer:299-31-02Variety:33B29Insecticide:Intrepid; Fungicide@HeadlineSeeding Rate:28,500Herbicide:Pre-emerged-Lumax; StatusSoil Type:Dallam Fine Sandy LoamHarvested:October 19Row Width:30 InchesNo. Acres:120

RAINFALL

May – 0.42" June- 2.10" July- 2.35" August- 2.95" September- 2.65" Total: 10.47"

MATERIALS AND METHODS: One hundred and twenty acres irrigated by a center pivot nozzled at 600 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results						
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$7.00/ CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
21	25.62	106*	13,944	544.26	\$976.08	\$38.10

*Includes 0.12 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: The crop had sufficient rainfall and irrigation to maintain high soil water levels at 1, 2 and 3 feet throughout the growing season. Seasonal rainfall totaled 10.47 inches. Irrigation capacity was 5.0 GPM per acre. Production was 544 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 36.21 inches. Production was 385 pounds per inch measured. Irrigation, rainfall, and net soil water was 106 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT MOORE COUNTY - 2007 HAROLD GRALL, DENNIS BEILUE, AND MARCEL FISCHBACHER

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY: Planted	: April 27	Fertilizer:	220-65-0
Variety	Pioneer 33H27	Insecticide:	Comite
Seeding	Rate: 28,500	Herbicide:	Roundup
Soil Ty	De: ShA- Sherm Silty Clay L	oam Harvested:	September 26
Row W	idth: None	No. Acres:	480

RAINFALL

May- 0.75" June- 2.25" July- 1.40" August- 1.60" September- 1.95" Total: 7.95"

MATERIALS AND METHODS: Four hundred and eighty acres irrigated by center pivot nozzled at 2450 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results						
IRRIGATION PET PRODUCTION		CROP VALUE @ \$7.00/ CWT-				
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
18	17.50	83*	12,768	729.60	\$893.76	\$51.07

*Includes 0.75 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Good tracking of the accumulated daily and seasonal crop use reported from the North Plains ET Network Etter weather station. Good management of irrigation to supplement rainfall and soil water. Irrigation capacity was 5.10 GPM per acre. Production was 729 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 26.20 inches. Production was 487 pounds per inch measured. Irrigation, rainfall, and net soil water was 83 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT OCHILTREE COUNTY - 2007 DAN KRIENKE #8 AND SCOTT STRAWN

PROBLEM:	High Plains growers need more field measurements and documented data on
	corn production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	May 1	Fertilizer:	160-0-0+10 Ton Manure
	Variety:	Pioneer 33B54	Insecticide:	None
	Seeding Rate:	34,000	Herbicide:	Dual+Atrazine
	Soil Type:	Pullman Clay Loam	Harvested:	September 6
	Row Width:	30 Inches	No. Acres:	125

RAINFALL

May – 4.20" June- 1.70" July- 1.70" August- 0.75" Total

MATERIALS AND METHODS: One hundred and twenty-five acres irrigated by a center pivot nozzled at 1000 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results						
IRRIGATION PET PRODUCT		DUCTION	CROP VALUE @ \$7.00/ CWT- \$			
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
11	15.68	95*	12,768	814.29	\$893.76	\$57.00

*Includes 4.78 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Good early season rainfall provided high soil water levels that were maintained throughout the growing season. Good soil water management that utilized soil water to finish the crop. Production was 814 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 28.81 inches. Production was 443 pounds per inch measured. Irrigation, rainfall, and net soil water was 95 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT MOORE COUNTY - 2007 BUTCH HARBERT, DENNIS BEILUE, AND MARCEL FISCHBACHER

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	May 4	Fertilizer:	246-39-0
	Variety:	Pioneer 32-B29	Insecticide:	None
	Seeding Rate:	32,000	Herbicide:	None
	Soil Type:	DmA-Dumas Loam	Harvested:	October 4
	Row Width:	30 Inches	No. Acres:	466

RAINFALL

May- 0.50" June- 0.75" July- 1.40" August- 2.60" September- 3.75" Total: 9.00"

MATERIALS AND METHODS: Four hundred and sixty-six acres irrigated by center pivot nozzled at 2500 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results						
IRRIGATION PET PRODUCTION		CROP VALUE @ \$7.00/ CWT-				
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
15	18.75	87*	12,712	677.97	\$889.84	\$47.46

*Includes 0.65 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in May and was maintained at good levels throughout the growing season. Good mid and late season rainfall separated by 5.36 GPM per acre irrigation capacity. Production was 678 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 28.40 inches. Production was 447 pounds per inch measured. Irrigation, rainfall, and net soil water was 87 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT SHERMAN COUNTY - 2007 JON ENGLEBRECHT, DAVID GRAF, AND DENNIS BEILUE

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	April 30	Fertilizer:	5 tons compost +40-40-0 preplt
	Variety:	Pioneer 33B53	Insecticide:	None
	Seeding Rate	e: 29,500	Herbicide:	None
	Soil Type:	Sherman Silty Clay Loam	Harvested:	September 28
	Row Width:	30 Inches	No. Acres:	122

RAINFALL

May-1.35" June- 0.55" July- 3.25" August- 1.10" September- 1.70" Total: 7.95"

MATERIALS AND METHODS: One hundred and twenty-two acres irrigated by a center pivot nozzled at 650 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results							
IRRIG	GATION	РЕТ	PRODUCTION		CROP VALUE @ \$7.00/ CWT- \$		
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation	
23	23.32	107*	12,656	542.71	\$885.92	\$37.99	

*Includes 2.80 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Periodic rainfall helped produce a good corn yield. Soil water was sufficient at 1, 2 and 3 feet throughout the growing season. Irrigation capacity was 5.3 GPM per acre. Production was 542 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 34.07 inches. Production was 371 pounds per inch measured. Irrigation, rainfall, and net soil water was 107 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT OCHILTREE COUNTY - 2007 DAN KRIENKE #47 AND SCOTT STRAWN

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	April 28	Fertilizer:	130-0-0
	Variety:	Pioneer 33B54	Insecticide:	None
	Seeding Rate	: 29,000	Herbicide:	Dual+Atrazine
	Soil Type:	Pullman Silty Clay Loam	Harvested:	September 10
	Row Width:	30 Inches	No. Acres:	120

RAINFALL

May – 3.60" June- 1.00" July- 1.40" August- 3.40" Tot	al: 9.40"
---	-----------

MATERIALS AND METHODS: One hundred and twenty acres irrigated by a center pivot nozzled at 625 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results							
IRRIG	GATION	РЕТ	PRODUCTION		CROP VALUE @ \$7.00/ CWT- \$		
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation	
17	17.13	104*	12,432	725.74	\$870.24	\$50.80	

*Includes 5.53 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water readings show the crop had sufficient water throughout the growing season. Periodic rainfall was enough to limit irrigation to 17.13 inches. Irrigation capacity was 5.21 GPM per acre. Production was 725 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 32.06 inches. Production was 388 pounds per inch measured. Irrigation, rainfall, and net soil water was 104 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT DALLAM COUNTY - 2007 <u>ROBERT GORDON AND NICK SIMPSON</u>

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.
- SUMMARY:Planted:May 11Fertilizer:326-60-25Variety:dkc64-76Insecticide:Oberon & Headline FungicideSeeding Rate:27,500Herbicide:Status prowl RT3Soil Type:Dallam Fine Sandy LoamHarvested:October 15Row Width:30 InchesNo. Acres:88

RAINFALL

June- 0.50" July- 1.85" August- 1.10" September- 0.75" October: 0.40" Total: 4.60"

MATERIALS AND METHODS: Eighty-eight acres irrigated by a center pivot nozzled at 375 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results								
IRRIGATION PE			PRODUCTION		CROP VALUE @ \$7.00/ CWT- \$			
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation		
19	19.70	82*	12,320	625.38	\$862.40	\$43.77		

*Includes 3.84 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in June and remained good until mid July when crop water use was high at silk and pollination growth stages. The graph on the following page illustrates the crop's high demand for water during July. Irrigation capacity was approximately 4.0 GPM per acre. Production was 625 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 28.14 inches. Production was 625 pounds per inch measured. Irrigation, rainfall, and net soil water was 82 percent of that reported by the North Plains PET Network for fully irrigated corn. Good corn production with limited water.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT HARTLEY COUNTY - 2007 <u>BILL COLE AND NICK SIMPSON</u>

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	April 30	Fertilizer:	250-50-0
	Variety:	33B54	Insecticide:	Intrepid
	Seeding Rate:	30,000	Herbicide:	Atrazine & 2-4 D
	Soil Type:	Sunray Clay Loam	Harvested:	October 3
	Row Width:	30 Inches	No. Acres:	252

RAINFALL

May- 1.15" June- 2.20" July- 1.35" August- 2.95" September- 1.00" Total: 8.65"

MATERIALS AND METHODS: Two hundred and fifty-two acres irrigated by center pivot nozzled at 1100 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

2007 Demonstration Results								
IRRIG	GATION	РЕТ	PRODUCTION		CROP VALUE @ \$7.00/ CWT- \$			
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation		
12	11.10	63*	12,208	1099.82	\$854.56	\$76.99		

*Includes 2.56 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was temporarily good at 1, 2 and 3 feet in early May. The crop used soil water from all depths by late July, plus rainfall and irrigation. Good corn production from limited water. Production was 1100 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 22.31 inches. Production was 547 pounds per inch measured. Irrigation, rainfall, and net soil water was 63 percent of that reported by the North Plains PET Network for fully irrigated corn. Apparently, rainfall and irrigation were very timely, producing a good yield with less than normal water.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT GRAY COUNTY - 2007 JOHN R. SPEARMAN, BRANDON McGINTY, AND CHARLEY RUSS

PROBLEM:	High Plains growers need more field measurements and documented data on corn
	production from selected or available irrigation and rainfall to make management
	decisions and conserve water.

OBJECTIVES: To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	May 14	Fertilizer:	160-0-0
	Variety:	Pioneer 32 B 29 R R	Insecticide:	2 Pts. Lorsban/Acre
	Seeding Rate:	31,000/Acre	Herbicide:	1 lb Atrazine/Acre
	Soil Type:	Pullman Clay Loam	Harvested:	September 26
	Row Width:	30 Inches	No. Acres:	60

RAINFALL

	June- 0.3"	July- 1.40"	August- 1.10"	September- 2.50"	Total: 5.30"
--	------------	-------------	---------------	------------------	--------------

MATERIALS AND METHODS: Sixty acres irrigated by center pivot nozzled at 800 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$7.00/ CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
16	16.00	74*	11,648	728	\$815.36	\$50.96

*Includes 1.14 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Weekly and seasonal soil water readings show the crop had sufficient water at 1, 2 and 3 feet throughout the growing season. However, corn yield was down slightly for the levels measured. Rainfall was less in this area than most in '07. A good yield for the water measured. Production was 728 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 22.44 inches. Production was 519 pounds per inch measured. Irrigation, rainfall, and net soil water was 74 percent of that reported by the North Plains PET Network for fully irrigated corn.

IRRIGATED CORN PRODUCTION USING CENTER PIVOT COLLINGSWORTH COUNTY - 2007 DANNIE MORRIS, DALE DUNLAP, AND PRISCILLA GREEN

- **PROBLEM:** High Plains growers need more field measurements and documented data on corn production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine corn production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated corn to help growers predict yields.

SUMMARY:	Planted:	April 4	Fertilizer:	Anhydrous ammonia & amino hydrate
	Variety:	NC+	Insecticide:	None
	Seeding Rate: 32,000		Herbicide:	RU atrozine Bicep
	Soil Type: S	pringer Loamy Fine Sand	Harvested:	September 3-4
	Row Width:	36 Inches	No. Acres:	104
		RAINFA	LL	

April- 1.15" ___ May- 3.00" ___ June- 2.15" July- 2.10" ___ August- 2.00 Total: 10.40"

MATERIALS AND METHODS: One hundred and four acres irrigated by center pivot nozzled at 700 gpm were planted to corn. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated corn are reported on the same page.

			2007 Demo	onstration Results		
IRRIGATION		РЕТ	PRODUCTION		CROP VALU	E @ \$7.00/ CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
19	19.00	98*	10,360	545.26	\$725.20	\$38.17

*Includes 0.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Seasonal irrigation, rainfall and soil water was a close pattern to that reported by the North Plains PET Network Wellington weather station. Irrigation and rainfall produced a 185 bushel yield, where attempts to grow corn failed. Production was 545 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 29.40 inches. Production was 352 pounds per inch measured. Irrigation, rainfall, and net soil water was 98 percent of that reported by the North Plains PET Network for fully irrigated corn.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

Cotton Irrigation And Production 2007

Cooperating Growers	County
Derrel Johnson	Briscoe
Geno Abbe	Carson
Kerry Cartright	Sherman
Tony Cox	Collingsworth
Dale Kleuskens	Deaf Smith
John R. Spearman	Gray
Pat & Rod White	Collingsworth
Keith Watson	Moore
Charles Schlabs	Deaf Smith

AgriPartners Cotton Irrigation and Production Summary, 2007 Leon New Professor and Extension Agricultural Engineer-Irrigation Texas AgriLife Extension Service Amarillo, Texas

Nine cotton irrigation and production demonstrations were completed in 2007 in seven counties by nineteen growers. No demonstrations utilized furrow system. Nine used center pivot irrigation systems. None were dryland. The cotton demonstrations were on 986 acres.

Cotton production ranged from 2153 to 670 pounds of lint per acre. Average yield was 1522 pounds per acre. Yields are by stripper harvest. 2007 is the first year average yield was three bales per acre.

Irrigation amounts ranged from 10.0 to 1.5 inches per acre and averaged 6.47 inches. Average irrigation using center pivot was 6.47 inches. Average furrow irrigation was 0 inches. Irrigation using subsurface drip was 0 inches. Two of the nine growers pre-watered. Pre-water ranged from 1.0 to 2.0 inches and averaged 1.0.

Cotton production from each inch of irrigation water applied ranged from 467 to 164 pounds per acre and averaged 235 pounds. Average production with center pivot irrigation was 235 pounds per inch. It was 0 pounds per inch using subsurface drip irrigation. Furrow averaged 0 pounds per inch.

Rainfall, irrigation, and additional water stored in the top three feet of soil ranged from 27.70 to 14.09 inches and averaged 20.30 inches. Cotton production from 20.30 inches of water measured averaged 1522 pounds per acre and 75 pounds per inch.

Total irrigation, rainfall, and additional soil water measured ranged from 125 to 55 percent of that reported by the North Plains PET Network for fully irrigated cotton production. From an average of 83 percent of North Plains weather station PET, cotton production averaged 1522 pounds per acre.

The value of irrigation water in producing cotton priced at \$0.64 per pound ranged from \$299.07 to \$105.34 and averaged \$150.46 from each inch applied. These irrigation water values per inch include production from rainfall and additional water used from the soil as well as irrigation system efficiency and management of resources. A five year running average of cotton production per inch of water has helped growers improve water management.

A tabulated summary of 2007 cotton irrigation and production is listed in Table 1. Additional data and information concerning each demonstration are listed in each grower report.

One hundred seventeen cotton irrigation and dryland production demonstrations were conducted in '98, '99, '00, '01, '02, '03, '04, '05, '06 and '07. One hundred fifteen utilized center pivot, three subsurface drip, two side roll sprinkler, and four row water systems. Two were dryland. Irrigation averaged 10.60 inches. Cotton production averaged 1105 pounds per acre and 125 pounds from each inch applied. Rainfall, irrigation, and soil water averaged 23.62 inches and production 46 pounds per acre from each inch measured. Rainfall, irrigation, and soil water averaged 91 percent of that reported by the North Plains PET Network for fully irrigated cotton. The '98, '99, '00, '01, '02, '03, '04, '05, '06 and '07 summary is included in Table 1.

Thanks to area cotton growers who provided facilities, personal time, operating data, and other information.

Table 1. Cotton Irrigation and Prc	oduction, 2007								
		WATI	ER-INCHES	PET		PROD	UCTION	CROP VALU	E@\$0.64/LB-\$
						LBS/A	CRE/IN	ACR	E INCH
COUNTY	GROWER	IRRIGATION	RAIN/IRRIG/SOIL	% OF 1	LBS/AC	IRRIGATION	RAIN/IRRI/SOIL	IRRIGATION	RAIN/IRRI/SOIL
Briscoe	Derrel Johnson-CP	9.20	21.09	84	2153	234.02	102.09	149.77	65.34
Carson	Geno Abbe-CP	4.28	17.53	59	2000	467.29	114.09	20.092	73.02
Sherman	Kerry Cartright-CP	10.00	27.70	125	1923	192.30	69.42	123.07	44.43
Collingsworth	Tony Cox-CP	7.91	17.96	77	1590	201.01	88.53	128.65	56.66
Deaf Smith	Dale Kleuskens-CP	5.75	22.00	86	1573	273.57	71.50	175.08	45.76
Gray	John R. Spearman-CP	6.00	21.55	89	1488	248.00	69.05	158.72	44.19
Collingsworth	Pat & Rod White-CP	8.02	21.77	87	1320	164.59	60.63	105.34	38.81
Moore	Keith Watson-CP	5.60	19.02	86	980	175.00	51.52	112.00	32.97
Deaf Smith	Charles Schlabs-CP	1.50	14.09	55	670	446.67	47.55	285.87	30.43
AVERAGE 2007	6	6.47	20.30	83	1522	235.10	74.97	150.46	47.98
AVG '98'99'00'01'02'03'04'05'06'07	117		23.39	06	1095		46.82	•	29.96
AVG IRRIGATION	115	10.60	23.62	91	1105	125.50	46.79	80.32	29.95
AVG CENTER PIVOT	106	10.74	23.60	06	1129	126.18	47.57	92.08	30.44
AVG ROW WATER	4	8.28	21.27	85	746	90.49	36.10	57.91	23.10
AVG DRYLAND	2		10.51	39	513		48.69	-	31.16
AVG SF DRIP	3	10.80	26.89	106	1324	167.80	50.69	107.39	32.44
AVG SIDE ROLL	2	7.63	24.65	113	254	35.48	10.57	22.71	6.76
CP= CENTER PIVOT, RW= ROW W	VATER, SF= SUBSURFACE I	DRIP							

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT BRISCOE COUNTY - 2007 DERREL JOHNSON AND SETH MANNEY

PROBLEM:	High Plains growers need more field measurements and documented data on
	cotton production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

Planted:	May 5	Fertilizer:	104-20-0
Variety:	DP445BGRR	Insecticide:	3 ¹ / ₂ lbs Timic, Carbine
Seeding Rate:	54,000	Herbicide:	1 qt Trifloralin; 1 lb Direx; 2 applications of Roundup @ 22oz
Soil Type: Row Width:	Pullman Clay Loam 40 Inches	Harvested: No. Acres:	November 6-7 120
	Planted: Variety: Seeding Rate: Soil Type: Row Width:	Planted:May 5Variety:DP445BGRRSeeding Rate:54,000Soil Type:Pullman Clay LoamRow Width:40 Inches	Planted:May 5Fertilizer:Variety:DP445BGRRInsecticide:Seeding Rate:54,000Herbicide:Soil Type:Pullman Clay LoamHarvested:Row Width:40 InchesNo. Acres:

RAINFALL

June- 1.50"	July- 2.55"	Aug- 0.60"	Sept- 2.30"	Oct: 0.30"	Total: 7.25 "

MATERIALS AND METHODS: One hundred and twenty acres irrigated by center pivot nozzled at 425 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	PET	PRODUCTION		CROP VALUE @ \$0.64/ Lbs- \$	
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
9	9.20	84*	2,153	234.02	\$1377.92	\$149.77

*Includes 4.64 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in June. The crop used all soil water from 1, 2 and 3 feet plus 6. 1 inches of additional irrigation and rainfall. Soil water from 3 feet was then used in early August plus 6.50 inches of rainfall and irrigation during August. Production was 234 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 21.09 inches. Production was 102 pounds per inch measured. Irrigation, rainfall, and net soil water was 84 percent of that reported by the North Plains PET Network for fully irrigated cotton. Superior water management and cotton production.

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT CARSON COUNTY - 2007 <u>GENO ABBE AND JODY BRADFORD</u>

- **PROBLEM:** High Plains growers need more field measurements and documented data on cotton production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

SUMMARY:	Planted:	May 14	Fertilizer:	45-35-10-2S
	Variety:	Fibermax 9058	Insecticide:	Cruiser
	Seeding Rate:	65,000 per acre	Herbicide:	Diurex, Dual
	Soil Type:	Pullman Clay Loam	Harvested:	November 19
	Row Width:	30 Inches	No. Acres:	65

RAINFALL

May- 0.15" June- 2.70" July- 1.80" Aug- 1.3" Sept- 2.55" Oct- 1.20" Total: 9.70"

MATERIALS AND METHODS: Sixty-five acres irrigated by a center pivot nozzled at 900 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

2007 Demonstration Results							
IRRIGATION		РЕТ	PRODUCTION		CROP VALUE @ \$0.64/ Lbs- \$		
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation	
6	4.28	59*	2,000	467.29	\$1280.00	\$299.07	

*Includes 3.55 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Superior water management that produced four bale per acre cotton. Soil water was good at 1, 2 and 3 feet in early June. It was maintained at all soil profile levels by timely rainfall and limited irrigation. The graph on the following page shows the crop had sufficient water. Production was 467 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 17.53 inches. Production was 114 pounds per inch measured. Irrigation, rainfall, and net soil water was 59 percent of that reported by the North Plains PET Network for fully irrigated cotton.

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT SHERMAN COUNTY - 2007 KERRY CARTRIGHT, DAVID GRAF, AND DENNIS BEILUE

PROBLEM:	High Plains growers need more field measurements and documented data on
	cotton production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

SUMMARY:	Planted:	May 15	Fertilizer:	66-0-0-2mg
	Variety:	AFD 50641	Insecticide:	None
	Seeding Rate	e: 80,000 plt-70,000 stand	Herbicide:	Roundup, Prowl + PIX
	Soil Type:	ShA-Sherm Silty Clay Loam	Harvested:	November 10
	Row Width:	30 Inches	No. Acres:	240

RAINFALL

May- 0.30" June- 2.00" July- 1.00" Aug- 2.80" Sept- 5.60" Total: 11.70"

MATERIALS AND METHODS: Two hundred and forty acres irrigated by center pivot nozzled at 3000 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

2007 Demonstration Results							
IRRIGATION PE			PRODUCTION		CROP VALUE @ \$0.64/ Lbs- \$		
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation	
13	10.00	125*	1,923	192.30	\$1230.72	\$123.07	

*Includes 6.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Good soil water at 1, 2 and 3 feet in early June. It was fully maintained throughout the growing season. Soil water, irrigation, and rainfall tracked cotton water use reported by the North Plains PET Network Etter weather station May through August. September rainfall that totaled 5.60 pushed it beyond that cotton needed. Production was 192 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 27.70 inches. Production was 69 pounds per inch measured. Irrigation, rainfall, and net soil water was 125 percent of that reported by the North Plains PET Network for fully irrigated cotton.

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT COLLINGSWORTH COUNTY - 2007 TONY COX, DALE DUNLAP, AND PRISCILLA GREEN

PROBLEM:	High Plains growers need more field measurements and documented data on cotton production from selected or available irrigation and rainfall to make management decisions and conserve water.

OBJECTIVES: To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

SUMMARY:	Planted:	May 25	Fertilizer:	76-40-0-10
	Variety:	PM 960B2R	Insecticide:	None
	Seeding Rate:	12.5 Lbs/Acre	Herbicide:	Prowl H2O lqt/22oz
	Soil Type:	Woodward Loam	Harvested:	October 28
	Row Width:	40 Inches	No. Acres:	121

RAINFALL

June- 1.25"	July- 2.35"	August- 3.20"	September- 3.25"	Total: 10.05"

MATERIALS AND METHODS: One hundred and twenty-one acres irrigated by a center pivot nozzled at 500 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

2007 Demonstration Results							
IRRIGATION		РЕТ	PRODUCTION		CROP VALUE @ \$0.64/ Lbs- \$		
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation	
9	7.91	77*	1,590	201.01	\$1017.60	\$128.65	

*Includes 0.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: There was sufficient soil water at 1, 2 and 3 feet throughout the growing season. August rainfall totaled 3.20 inches. It helped finish the crop, limited irrigation, and refilled the soil profile. Irrigation capacity was 4.10 GPM per acre. Production was 201 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 17.96 inches. Production was 89 pounds per inch measured. Irrigation, rainfall, and net soil water was 77 percent of that reported by the North Plains PET Network for fully irrigated cotton.

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT DEAF SMITH COUNTY - 2007 DALE KLEUSKENS AND RICK AUCKERMAN

- **PROBLEM:** High Plains growers need more field measurements and documented data on cotton production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

SUMMARY:	Planted:	May 1	Fertilizer:	10 Ton Manure + 100-0-0
	Variety:	Fiber Max 958	Insecticide:	Orthene
	Seeding Rate:	48,000	Herbicide:	Roundup, Treflan
	Soil Type:	Pullman Clay Loam	Harvested:	October 29
	Row Width:	30 Inches	No. Acres:	120

RAINFALL

June- 1.73"	July- 1.50"	Aug- 2.70"	Sept- 2.80"	Oct- 1.60"	Total: 10.33"
-------------	-------------	------------	-------------	------------	---------------

MATERIALS AND METHODS: One hundred and twenty acres irrigated by center pivot nozzled at 750 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

2007 Demonstration Results							
IRRIGATION P		РЕТ	PRODUCTION		CROP VALUE @ \$0.64/ Lbs- \$		
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation	
5	5.75	86*	1,573	273.57	\$1006.72	\$175.08	

*Includes 5.92 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: The crop used all soil water stored at 1, 2 and 3 feet by mid August, plus more than 7 inches of rainfall and irrigation. Soil water from one foot brought the crop through late August and September. Hail damage on October 20 was estimated to be 20 percent. Production was 273 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 22.00 inches. Production was 71.5 pounds per inch measured. Irrigation, rainfall, and net soil water was 86 percent of that reported by the North Plains PET Network for fully irrigated cotton.

7/30/07

Date

8/29/07

9/28/07

10/28/07

5/1/07

5/31/07

6/30/07

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT GRAY COUNTY - 2007 JOHN R. SPEARMAN, CHARLEY RUSS, AND BRANDON McGINTY

- **PROBLEM:** High Plains growers need more field measurements and documented data on cotton production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

SUMMARY:	Planted:	May 30	Fertilizer:	100-0-0
	Variety:	Nex Gen 3550 Flex	Insecticide:	4 Lbs Timec
	Seeding Rate:	95,000/Acre	Herbicide:	Diurex Roundup
	Soil Type:	Pullman Clay Loam	Harvested:	December 1
	Row Width:	Ultra Narrow Row	No. Acres:	60

RAINFALL

May- 3.97" June- 1.09" July- 0.50" Aug- 2.20" Sept- 2.50" Oct- 1.15" Total: 11.41"

MATERIALS AND METHODS: Sixty acres irrigated by center pivot nozzled at 800 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

2007 Demonstration Results						
IRRIG	GATION	РЕТ	ET PRODUCTION		DUCTION CROP VALUE @ S	
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
4	6.00	89*	1,488	248.00	\$952.32	\$158.72

*Includes 4.14 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet throughout the growing season. Irrigation was in late July and early August when rainfall was limited. Planting was difficult in May due to wet fields from rainfall. Good cotton production and water management. Production was 248 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 21.55 inches. Production was 69 pounds per inch measured. Irrigation, rainfall, and net soil water was 89 percent of that reported by the North Plains PET Network for fully irrigated cotton.

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT COLLINGSWORTH COUNTY - 2007 PAT & ROD WHITE, DALE DUNLAP, AND PRISCILLA GREEN

PROBLEM:	High Plains growers need more field measurements and documented data on
	cotton production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

SUMMARY:	Planted:	May 15	Fertilizer:	100-15-0
	Variety:	ST 3892 BT	Insecticide:	None
	Seeding Rate:	: 14 Lbs/Acre	Herbicide:	Roundup
	Soil Type:	Miles Loamy Fine Sand	Harvested:	November 15
	Row Width:	40 Inches	No. Acres:	60

RAINFALL

June- 2.25"	July- 2.45"	August- 2.10"	September- 2.85"	Total: 9.65"

MATERIALS AND METHODS: Sixty acres irrigated by a center pivot nozzled at 600 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

2007 Demonstration Results						
IRRIG	GATION	РЕТ	PET PRODUCTION		CROP VALUE @ \$0.64/	
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
9	8.02	87*	1,320	164.59	\$844.80	\$105.34

*Includes 4.10 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Good accumulative irrigation and rainfall tracking of daily and progressive cotton water use reported by the North Plains PET Network Wellington weather station. Soil water was sufficient at 1, 2 and 3 feet. Soil water was mostly used in during late August and early September, but restored at 1, 2 and 3 feet by the 2.10 inch rainfall on September 11. Production was 164 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 21.77 inches. Production was 60 pounds per inch measured. Irrigation, rainfall, and net soil water was 87 percent of that reported by the North Plains PET Network for fully irrigated cotton.

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT MOORE COUNTY - 2007 KEITH WATSON, MARCEL FISCHBACHER, AND DENNIS BEILUE

- **PROBLEM:** High Plains growers need more field measurements and documented data on cotton production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

SUMMARY:	Planted:	May 14	Fertilizer:	100 Lbs N
	Variety:	Americot 556	Insecticide:	4 Lbs temik at planting
	Seeding Rate:	62,000	Herbicide:	Roundup/pix
	Soil Type:	ShA- Silt Clay Loam	Harvested:	November 12
	Row Width:	30 Inches	No. Acres:	80

RAINFALL

May- 1.10" June- 2.00" July- 1.30" Aug- 2.30" Sept- 3.50" Oct- 0.20" Total: 10.40"

MATERIALS AND METHODS: Eighty acres irrigated by center pivot nozzled at 450 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

2007 Demonstration Results						
IRRIG	GATION	PET PRODUCTION		CROP VALUE @ \$0.64/ Lbs		
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
7	5.60	86*	980	175	\$627.20	\$112.00

*Includes 3.02 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in May following planting. The crop used all soil water, irrigation, and rainfall in July and August. It used early September rainfall to help when additional heat units arrived. Production was 175 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 19.02 inches. Production was 51.5 pounds per inch measured. Irrigation, rainfall, and net soil water was 86 percent of that reported by the North Plains PET Network for fully irrigated cotton.

IRRIGATED COTTON PRODUCTION USING CENTER PIVOT DEAF SMITH COUNTY - 2007 <u>CHARLES SCHLABS AND RICK AUCKERMAN</u>

- **PROBLEM:** High Plains growers need more field measurements and documented data on cotton production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine cotton production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated cotton to help growers predict yields.

SUMMARY:	Planted:	May 19	Fertilizer:	10 Ton Manure
	Variety:	NG 2448	Insecticide:	Orthene
	Seeding Rate:	: 48,000	Herbicide:	Roundup, Karmex
	Soil Type:	Pullman Clay Loam	Harvested:	January 8-11
	Row Width:	40 Inches	No. Acres:	120

RAINFALL

	May- 0.56"	June- 1.91"	July- 0.82"	Aug- 1.10"	Sept- 2.20"	Total: 6.59"
--	------------	-------------	-------------	------------	-------------	--------------

MATERIALS AND METHODS: One hundred and twenty acres irrigated by center pivot nozzled at 800 gpm were planted to cotton. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated cotton are reported on the same page.

2007 Demonstration Results								
IRRIG	GATION	РЕТ	PRODUCTION		PET PRODUCTION		CROP VALU	JE @ \$0.64/ Lbs- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation		
1	1.50	55*	670	446.67	\$428.80	\$285.87		

*Includes 6.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: The crop used 6.0 inches of soil water, 3.29 inches of rainfall and 1.5 inches of irrigation, a total of 10.79 inches by mid August. September rainfall was not enough for the September and October heat units that finally arrived. Production was 447 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 14.09 inches. Production was 47 pounds per inch measured. Irrigation, rainfall, and net soil water was 55 percent of that reported by the North Plains PET Network for fully irrigated cotton.

Grain Sorghum Irrigation And Dryland Production 2007

Cooperating Growers	County
Dan Krienke- Full	Ochiltree
Greg Urbanczyk	Deaf Smith
Dan Krienke- Limited	Ochiltree
Dale Kleuskens	Deaf Smith
Terry Oneal	Gray
Neal Conrad- East	Armstrong
Neal Conrad- West	Armstrong
Neal Conrad- South	Armstrong

AgriPartners Grain Sorghum Irrigation and Production Summary, 2007 Leon New Professor and Extension Agricultural Engineer-Irrigation Texas AgriLife Extension Service Amarillo, Texas

Eight grain sorghum irrigation and dryland production demonstrations were conducted in 2007 in four counties with five growers. Four were irrigated by center pivot and one with furrow systems. The remaining three demonstrations were dryland. The eight demonstrations occupied 810 acres. Five hundred forty acres were irrigated. Two hundred seventy acres, 33 percent was dryland.

Grain sorghum production ranged from 9128 to 1200 pounds per acre. Yield was 3000 pounds per acre or more at seven of the eight locations. Average irrigated production was 7321 pounds per acre. Dryland averaged 3033 pounds per acre. All yields are by combine harvest.

Irrigation amounts ranged from 13.00 to 4.05 inches and averaged 8.27 inches. Production per acre inch of irrigation water applied ranged from 1839 to 594 pounds. Average was 885 pounds from each inch of irrigation water applied. Irrigation with center pivot averaged 7.09 inches and production 7219 pounds per acre. Production was 1018 pounds per inch. The row water demonstration used 13.00 inches and production was 7731 pounds per acre. No demonstrations used prewater irrigation to establish the crop.

Rainfall, irrigation and additional water stored in the first three feet of soil and removed by the grain sorghum crop ranged from 24.22 to 16.50 inches. Average was 20.43 inches. Production from each inch of irrigation, rainfall and additional soil water ranged from 436 to 303 pounds per inch. Average production was 358 pounds from each inch of total water measured. Dryland soil water and rainfall averaged 10.63 inches. Production was 285 pounds from each inch measured.

Total irrigation, rainfall, and additional water stored in the top three feet of soil and measured ranged from 102 to 56 percent and averaged 79 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum. Grain sorghum yields averaged 7321 pounds per acre from 20.43 inches of total water measured. Dryland rainfall and soil water averaged 41 percent of that reported by the PET weather station network. Production averaged 3033 pounds from 10.63 inches.

Value of irrigation water in producing grain sorghum priced at \$6.29 per hundred weight ranged from \$115.67 to \$37.41 per inch. Average was \$55.67 from 8.27 inches of irrigation water. These values from irrigation water applied include production from rainfall and additional water stored in the soil and used by the crop as well as irrigation system efficiency and management of resources. An annual past five years running average of grain sorghum production per acre inch of irrigation water applied is a good management tool.

A tabulated summary of 2007 grain sorghum irrigation demonstrations is listed in Table 1. Additional data and information concerning each demonstration is listed in the site and grower individual reports. Beneficial irrigation grain sorghum production data was obtained.

Sixty-seven grain sorghum irrigation and production demonstrations were conducted in '98, '99, '00, '01, '02, '03, '04, '05, '06, and '07. Grain sorghum production averaged 6492 pounds per acre from 12.12 inches of irrigation. Production from each inch of irrigation averaged 536 pounds and 279 pounds per acre inch of rainfall, irrigation, and additional soil water measured. Rainfall, irrigation, and soil water averaged 23.22 inches, which is 87 percent of that reported by the North Plains PET Network. Twenty fields were furrow irrigated and 47 utilized center pivot systems. Production averaged 2465 pounds per acre in eighteen dryland demonstrations. Rainfall and net soil water averaged 10.85 inches per acre and 44 percent of PET. Production was 227 pounds per inch. The ten year summary is in Table 1.

Thanks to the area growers who cooperated, provided the facilities plus personal time, operating data, and other information. Hopefully, this report provides information that will help you, your neighbors, and many other growers, agri industry leaders and others.

Table 1. Grain Sorghum Irrigation	n and Production, 2007								
		WATE	R-INCHES	PET		PRO	DUCTION	CROP VALI	UE @\$6.29/CWT
						LBS	/ACRE/IN	ACI	RE INCH
COUNTY	GROWER	IRRIGATION	RAIN/IRRIG/SOIL	% OF	LBS/AC	IRRIGATION	RAIN/IRRIG/SOIL	IRRIGATION	RAIN/IRRIG/SOIL
Ochiltree	Dan Krienke-CP	8.61	23.73	89	9128	1060.16	384.66	66.68	24.20
Deaf Smith	Greg Urbanczyk-RW	13.00	24.22	102	7731	594.69	319.20	37.41	20.08
Ochiltree	Dan Krienke-CP	4.05	20.96	78	7448	1839.01	355.34	115.67	22.35
Deaf Smith	Dale Kleuskens-CP	7.70	16.74	56	7300	948.05	436.08	59.63	27.43
Gray	Terry Oneal-CP	8.00	16.50	20	5000	625.00	303.03	39.31	19.06
Armstrong	Neal Conrad East-DRLND		69.6	38	4200		433.44	-	27.26
Armstrong	Neal Conrad West-DRLND		10.35	41	3700		357.49	-	22.49
Armstrong	Neal Conrad South-DRLND	1	11.84	45	1200		101.35		6.38
AVERAGE 2007	8	8.27	16.75	65	5713	690.69	341.02	43.44	21.45
AVG IRRIGATION	5	8.27	20.43	79	7321	885.08	358.37	55.67	22.54
AVG CENTER PIVOT	4	7.09	19.48	73	7219	1018.19	370.54	64.04	23.31
AVG ROW WATER	1	13.00	24.22	102	7731	594.69	319.20	37.41	20.08
AVG DRYLAND	3	ı	10.63	41	3033		285.45	-	17.95
AVG '98'99'00'01'02'03'04'05'06'07	85		20.6	78	5639	•	273.82		14.81
AVG IRRIGATION	67	12.12	23.22	87	6492	535.58	279.66	28.97	15.13
AVG CENTER PIVOT	47	11.06	21.85	82	6104	552.02	279.41	29.86	15.12
AVG ROW WATER	20	14.62	26.13	98	7405	506.37	280.15	27.39	15.16
AVG DRYLAND	18	ı	10.85	44	2465		227.27		12.30
CP= CENTER PIVOT, RW= ROW W	/ATER, DRLND= DRYLAND								

IRRIGATED GRAIN SORGHUM PRODUCTION USING CENTER PIVOT OCHILTREE COUNTY - 2007 DAN KRIENKE (FULL) AND SCOTT STRAWN

PROBLEM:	High Plains growers need more field measurements and documented data on
	grain sorghum production from selected or available irrigation and rainfall to
	make management decisions and conserve water.

OBJECTIVES: To determine grain sorghum production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated grain sorghum to help growers predict yields.

SUMMARY:	Planted:	May 20	Fertilizer:	135-0-0
	Variety:	Pioneer 84G62	Insecticide:	None
	Seeding Rate:	90,000	Herbicide:	Guardsmen
	Soil Type:	Pullman Clay Loam	Harvested:	October 4
	Row Width:	30 Inches	No. Acres:	60
		RAINFALL	ı	

May- 3.10" June- 1.00" July- 1.40" Aug- 3.80" Sept- 1.17" Total: 10.47"

MATERIALS AND METHODS: Sixty acres irrigated by a center pivot nozzled at 450 gpm were planted to grain sorghum. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated grain sorghum are reported on the same page.

			2007 Dem	onstration Results		
IRRIG	GATION	PET	PROI	DUCTION	CROP VALU	E @ \$6.29/CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
6	8.61	89*	9,128	1060.16	\$574.15	\$66.68

*Includes 4.65 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Management of this demonstration provided the crop sufficient water to produce a top yield. In another comparative demonstration irrigation was approximately one-half. However, with timely rainfall only 8.61 inches of irrigation was applied to this field. Good water management utilizing rainfall and soil water. Production was 1060 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 23.73 inches. Production was 384 pounds per inch measured. Irrigation, rainfall, and net soil water was 89 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum.

IRRIGATED GRAIN SORGHUM PRODUCTION USING ROW WATER DEAF SMITH COUNTY - 2007 <u>GREG URBANCZYK AND RICK AUCKERMAN</u>

PROBLEM:	High Plains g grain sorghum make managen	rowers need more fie production from sele- nent decisions and cons	ld measuremer ected or availal serve water.	its and documents and documents and documents by the second s	mented data on and rainfall to
OBJECTIVES:	To determine soil moisture q PET Network annual yield po	grain sorghum produc uantities using furrow report of fully irrigat otential, manage crop p	tion from meas irrigation and red grain sorgh roduction and c	sured irrigation relating it to the num to help conserve wate	on, rainfall, and the North Plains growers predict er.
SUMMARY:	Planted:	May 30	Fertilizer:	15 Tons ma	anure
	Variety:	NC+8R18	Insecticide:	Lorsban	
	Seeding Rate:	90,000	Herbicide:	Atrazine+D	ual Strane
	Soil Type:	Pullman Clay Loam	Harvested:	October 16	
	Row Width:	30 Inches	No. Acres:	40	
		RAINFALL	1		
<u>June- 1.93"</u>	July- 1.25"	August- 0.80"	Septemb	er- 2.50"	Total: 6.48"

MATERIALS AND METHODS: Grain sorghum was planted on forty acres of a furrow irrigated field. The dates and numbers of irrigations from a well/s that delivered 850 GPM were recorded. Irrigation amounts were calculated from well water flow and the number of hours used to irrigate the acreage. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water during the growing season. Two measurements were made each week and recorded. They are reported at the top of the following page. Irrigation, rainfall, additional soil water measured and water use reported by the North Plains PET Network for fully irrigated grain sorghum is summarized on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$6.29/ CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
3	13.00	102*	7,731	594.69	\$486.28	\$37.41

*Includes 4.74 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was low at 1 foot in early July, but was fully replenished by the July 13 irrigation. The crop used all available irrigation, rainfall and soil water. Graphs of weekly soil water sensor readings describe how water was available to the crop. Production was 594 pounds per inch of irrigation and 319 pounds per acre from each inch of irrigation, rainfall, and additional soil water measured. Irrigation, rainfall, and additional soil water totaled 24.32 inches, which is 102 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum.

IRRIGATED GRAIN SORGHUM PRODUCTION USING CENTER PIVOT OCHILTREE COUNTY - 2007 DAN KRIENKE (LIMITED) AND SCOTT STRAWN

- **PROBLEM:** High Plains growers need more field measurements and documented data on grain sorghum production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine grain sorghum production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated grain sorghum to help growers predict yields.

SUMMARY:	Planted:	May 20	Fertilizer:	65-0-0		
	Variety:	Pioneer 84G62	Insecticide:	None		
	Seeding Rate	: 45,000	Herbicide:	Gardsman		
	Soil Type:	Pullman Clay Loam	Harvested:	October 4		
	Row Width:	30 Inches	No. Acres:	20		
	RAINFALL					

May- 3.10" June- 1.00" July- 1.40" Aug- 3.80" Sept- 0.86" Oct: 0.33" Total: 10.46"

MATERIALS AND METHODS: Twenty acres irrigated by a center pivot nozzled at 450 gpm were planted to grain sorghum. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated grain sorghum are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$6.29/CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
3	4.05	78*	7,448	1839.01	\$468.47	\$115.67

*Includes 6.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Seeding rate, fertilizers, and irrigation were approximately one-half of that for the more fully irrigation comparison field. Irrigation, rainfall and soil water is 88 percent of the more fully irrigated grain sorghum. Comparative production is 82 percent. More soil water was used in September to finish the crop. Production was 1839 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 20.96 inches. Production was 355 pounds per inch measured. Irrigation, rainfall, and net soil water was 78 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum. Special thanks to Dan Krienke for using personal time and equipment to obtain the comparative grain sorghum production data.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

IRRIGATED GRAIN SORGHUM PRODUCTION USING CENTER PIVOT DEAF SMITH COUNTY - 2007 DALE KLEUSKENS AND RICK AUCKERMAN

June- 1.63"	July- 0.45"	August- 2.20"	Septemb	er- 2.70" Total: 6.98"
		RAINFALI	1	
	Row Width:	30 Inches	No. Acres:	120
	Soil Type:	Pullman Clay Loam	Harvested:	October 5
	Seeding Rate:	102,000	Herbicide:	Atrazine 2, 4-D
	Variety:	Seed Production	Insecticide:	One application of Lorsban
SUMMARY:	Planted:	May 7	Fertilizer:	10 Tons Manure
OBJECTIVES:	To determine soil moisture le PET Network yields.	grain sorghum produc evels using center pivo report of fully irriga	ction from meas t irrigation and ted grain sorgh	sured irrigation, rainfall, and relating it to the North Plains um to help growers predict
PROBLEM:	High Plains g grain sorghum make managen	rowers need more field production from self ment decisions and con	eld measuremer ected or availal serve water.	its and documented data on one of the original to
DDODI EM.	II' 1 D1	1	11	· · · · 1 1 · · · · · · · · · 1 1 · · · · ·

MATERIALS AND METHODS: One hundred and twenty acres irrigated by center pivot nozzled at 800 gpm were planted to grain sorghum. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated grain sorghum are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$6.29/CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
6	7.70	56*	7,300	948.05	\$459.17	\$59.63

*Includes 2.06 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Good beginning soil water at 1, 2 and 3 feet adequately maintained throughout the growing season by rainfall and irrigation management. Soil water was significant in producing a good yield. The crop partially depleted soil water at 1, 2 and 3 feet in August, however sufficient amounts were available for the crop. Production was 948 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 16.74 inches. Production was 436 pounds per inch measured. Irrigation, rainfall, and net soil water was 56 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum.

IRRIGATED GRAIN SORGHUM PRODUCTION USING CENTER PIVOT GRAY COUNTY - 2007 TERRY O'NEAL, CHARLEY RUSS, AND BRANDON McGINTY

PROBLEM:	High Plains gr grain sorghum make managen	rowers need more fiel production from sele nent decisions and cons	d measurement cted or availab erve water.	ts and documented data on le irrigation and rainfall to
OBJECTIVES:	To determine soil moisture le	grain sorghum product	tion from mease	ured irrigation, rainfall, and
	PET Network	evels using center pivot	irrigation and r	relating it to the North Plains
	yields.	report of fully irrigat	ed grain sorghu	um to help growers predict
SUMMARY:	Planted:	June 10	Fertilizer:	120-0-0
	Variety:	D K 39 Y	Insecticide:	Green Bug Treatment
	Seeding Rate:	36,000/Acre	Herbicide:	Lasso 1.5 Qts/Acre
	Soil Type:	Pullman Clay Loam	Harvested:	October 20
	Row Width:	30 Inches	No. Acres:	300
		RAINFALL		

July- 0.50" ____ August- 2.20" ____ September- 2.35" ___October- 0.25" ____ Total: 5.30"

MATERIALS AND METHODS: Three hundred acres irrigated by center pivot nozzled at 750 gpm were planted to grain sorghum. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated grain sorghum are reported on the same page.

			2007 Dem	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$6.29/ CWT- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
4	8.00	70*	5,000	625.00	\$314.50	\$39.31

*Includes 3.20 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Weekly soil water sensor measurements show sufficient water was available to the crop throughout the growing season. Soil was approximately one-half depleted in October to finish the crop. Look at the graph of seasonal soil water presented on the following page. Production was 625 pounds per inch of irrigation. Irrigation, rainfall, and soil water totaled 16.50 inches. Production was 303 pounds per inch measured. Irrigation, rainfall, and net soil water was 70 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum.

DRYLAND GRAIN SORGHUM PRODUCTION ARMSTRONG COUNTY - 2007 NEAL CONRAD (EAST) AND KYLE STEWART

- **PROBLEM:** High Plains growers need more field measurements and documented data on grain sorghum production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine grain sorghum production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated grain sorghum to help growers predict annual yield potential and manage crop production.

SUMMARY:	Planted:	June 2	Fertilizer:	50 lbs NH3
	Variety:	NC + 6 B	Insecticide:	None
	Seeding Rate:	1.3 Lbs/Acre	Herbicide:	None
	Soil Type:	Pullman Clay Loam	Harvested:	October 3
	Row Width:	40 Inches	No. Acres:	70

RAINFALL June- 1.51" July- 1.48" August- 1.00" September- 2.20" Total: 6.19"

MATERIALS AND METHODS: Seventy acres of dryland were planted to grain sorghum. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated grain sorghum.

		2007 Demo	onstration Results		
RAIN/SOIL	РЕТ	PROI	DUCTION	CROP VALU	E @ \$6.29/ CWT- \$
Inches	% Of	Lbs/Ac	Lbs/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil
9.69	38*	4,200	433.44	\$264.18	\$27.26

*Includes 3.50 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Good yield from very limited-timely seasonal rainfall. A full soil water profile beginning was significant in achieving good dryland production. Production was 433 per inch of rainfall and net soil water. Rainfall and soil water measured totaled 9.69 inches which was 38 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

DRYLAND GRAIN SORGHUM PRODUCTION ARMSTRONG COUNTY - 2007 NEAL CONRAD (WEST) AND KYLE STEWART

- **PROBLEM:** High Plains growers need more field measurements and documented data on grain sorghum production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine grain sorghum production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated grain sorghum to help growers predict annual yield potential and manage crop production.

SUMMARY:	Planted:	June 3	Fertilizer:	50 lbs. NH 3/acre
	Variety:	NC + 6 B	Insecticide:	None
	Seeding Rate:	: 1/3 lbs/acre	Herbicide:	None
	Soil Type:	Pullman Clay Loam	Harvested:	October 5
	Row Width:	40 Inches	No. Acres:	130

RAINFALL June- 1.43" July- 1.49" August- 1.40" September- 2.50" Total: 6.82"

MATERIALS AND METHODS: One hundred and thirty acres of dryland were planted tog grain sorghum. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated grain sorghum.

		2007 Dem	onstration Results		
RAIN/SOIL	PET	PROI	DUCTION	CROP VALU	E @ \$6.29/CWT- \$
Inches	% Of	Lbs/Ac	Lbs/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil
10.35	41*	3,700	357.49	\$232.73	\$22.49

*Includes 3.53" inches of water removed from three feet of soil and rainfall.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in June due to abundant spring rainfall. Soil water that totaled approximately six inches plus 4.3 inches of rainfall was used by late August. The 2.25 inch rainfall on September 11 was timely and finished the crop. Production was 357 pounds per inch of rainfall and net soil water. Rainfall and soil water totaled 10.35 inches which was 41 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum.

DRYLAND GRAIN SORGHUM PRODUCTION ARMSTRONG COUNTY - 2007 NEAL CONRAD (SOUTH) AND KYLE STEWART

- **PROBLEM:** High Plains growers need more field measurements and documented data on grain sorghum production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine grain sorghum production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated grain sorghum to help growers predict annual yield potential and manage crop production.

SUMMARY:	Planted:	June 1	Fertilizer:	50 lbs. NH3
	Variety:	D K 44 +	Insecticide:	None
	Seeding Rate:	1.3 Lbs/Acre	Herbicide:	None
	Soil Type:	Pullman Clay Loam	Harvested:	October 10
	Row Width:	40 Inches	No. Acres:	70

		RAINFA	LL	
June- 1.43"	July- 1.50"	August- 1.20"	September- 2.70"	Total: 6.83"

MATERIALS AND METHODS: Seventy acres of dryland were planted to grain sorghum. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated grain sorghum.

		2007 Demo	onstration Results		
RAIN/SOIL	РЕТ	PROI	DUCTION	CROP VALU	E @ \$6.29/CWT- \$
Inches	% Of	Lbs/Ac	Lbs/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil
11.84	45*	1,200	101.35	\$75.48	\$6.38

*Includes 5.01 inches of water removed from three feet of soil and rainfall.

CONCLUSION: The soil profile was full at 1, 2 and 3 feet in early July, but was used quickly by the crop. July and August rainfall totaled 2.70 inches, but soil water was depleted in August. Plants in this field exhibited greater water stress than those in other area dryland fields. Production was one-third or less than from other dryland crops. Production was 101 pounds per inch of rainfall and net soil water. Rainfall and soil water was 45 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

Peanut Irrigation And Production 2007

Cooperating Growers	County
Joe Baumgardner	Collingsworth
Dan & Rex Henard	Collingsworth
Pat & Rod White	Collingsworth
Dannie Morris	Collingsworth

AgriPartners Peanut Irrigation and Production Summary, 2007 Leon New Professor and Extension Agricultural Engineer-Irrigation Texas AgriLife Extension Service Amarillo, Texas

Four peanut irrigation and production demonstrations were conducted in 2007. Peanut row width was 30 and 40 inches. All were in Collingsworth County in cooperation with four growers. All irrigation was by center pivot. Production was on 294 acres.

Peanut production ranged from 4690 to 3100 pounds per acre and averaged 3838 pounds. The highest production was on 30 inch row spacing. Production averaged 3553 pounds per acre on 40 inch rows and 4690 on 30 inch. All yields are by thrasher harvest. One grower pre-watered. Pre-water averaged 1.0 inch.

Seasonal irrigation ranged from 6.82 to 13.47 inches per acre. Average was 10.91 inches per acre. Peanut production from each inch of irrigation water applied ranged from 230 to 513 pounds. It was highest for 40 inch rows and lowest for 40 inch. Average production was 351 pounds per inch of irrigation water.

Rainfall, irrigation, and additional water used from the top three feet of soil ranged from 18.90 to 22.26 inches. Average was 20.30 inches. Peanut production from each inch of irrigation, rainfall, and additional soil water measured ranged from 154 to 210 pounds. Average was 189 pounds.

Total irrigation, rainfall, and additional water removed from the soil measured ranged from 94 to 113 percent of that reported by the North Plains PET weather station network for fully irrigated Runner peanuts. Average was 103 percent when peanut production averaged 3838 pounds per acre from an average of 10.91 inches of irrigation and 20.30 inches of total rainfall, irrigation, and additional soil water.

The value of irrigation water in producing peanuts priced at \$420 per ton ranged from \$48.33 to \$107.77 per inch applied. Average was \$73.85 from each inch. These values for irrigation water include rainfall and additional water removed from the soil by the crop as well as irrigation system application efficiency and management of resources.

A tabulated summary of the 2007 peanut irrigation and production demonstrations are listed in Table 1. Additional information is presented in the individual grower reports.

Forty-seven peanut irrigation and production demonstrations were conducted during '98, '99, '00, '01, '02, '03, '04, '05, '06, and '07 growing seasons. All were irrigation by center pivot systems. Irrigation averaged 16.56 inches and production 3876 pounds per acre. Production per inch of irrigation averaged 234 pounds per acre. Rainfall, irrigation, and additional soil water averaged 27.68 inches from which peanut production was 140 pounds per inch measured. Rainfall, irrigation, and soil water averaged 127 percent of that reported by the North Plains PET Network for fully irrigated Runner peanuts. The '98, '99, '00, '01, '02, '03, '04, '05, '06, and '07 summary is included in Table 1.

Thanks to the peanut growers who cooperated in making the information presented available by providing personal facilities, management time, operating data and other information. Hopefully, the information reported will help you and other peanut growers.

Table 1. Peanut Irrigation and	d Production, 2007	2							
		WATE	ER-INCHES	PET		PROI	DUCTION	CROP VALUE	@\$420.00/TON- \$
						LB//	\CRE/IN	ACF	RE INCH
COUNTY	GROWER	IRRIGATION	RAIN/IRRIG/SOIL	% OF	LB/AC	IRRIGATION	RAIN/IRRIG/SOIL	IRRIGATION	RAIN/IRRIG/SOIL
Collingsworth	Joe Baumgardner	12.10	22.26	113	4690	387.60	210.69	81.40	44.25
Collingsworth	Dan & Rex Henard	11.26	19.91	101	4060	360.57	203.92	75.72	42.82
Collingsworth	Pat & Rod White	6.82	18.90	94	3500	513.20	185.19	107.77	38.89
Collingsworth	Dannie Morris	13.47	20.11	103	3100	230.14	154.15	48.33	32.37
AVERAGE 2007	4	10.91	20.30	103	3838	351.66	189.09	73.85	39.71
AVG '98'99'00'01'02'03'04'05'06'07	47	16.56	27.68	127	3876	234.14	140.05	49.17	29.41

All irrigated by Center Pivot Systems

IRRIGATED PEANUT PRODUCTION USING CENTER PIVOT COLLINGSWORTH COUNTY - 2007 JOE BAUMGARDNER, DALE DUNLAP, AND PRISCILLA GREEN

- **PROBLEM:** High Plains growers need more field measurements and documented data on peanut production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine peanut production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated peanuts to help growers predict yields.

SUMMARY:	Planted:	May 10	Fertilizer:	10-34-0
	Variety:	Flavor Runner 458	Insecticide:	None
	Seeding Rate:	75 Lbs	Herbicide:	Cadre & Prowl
	Soil Type:	Miles Loamy Fine Sand	Harvested:	October 16
	Row Width:	30 Inches	No. Acres:	132

RAINFALL

<u>May – 1.50"</u> June- 1.25" July- 2.10" August- 3.50" September- 0.50" Total: 8.85"

MATERIALS AND METHODS: One hundred and thirty-two acres irrigated by a center pivot nozzled at 800 gpm were planted to peanuts. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated peanuts are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$420.00/ Ton- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
12	12.10	113*	4690	387.60	\$984.90	\$81.40

*Includes 1.31 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet throughout the growing season. The crop had adequate water. Early and late season rainfall helped produce a good peanut yield. Production was 387.6 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 22.26 inches. Production was 210 pounds per inch measured. Irrigation, rainfall, and net soil water was 113 percent of that reported by the North Plains PET Network for fully irrigated runner peanut.

IRRIGATED PEANUT PRODUCTION USING CENTER PIVOT COLLINGSWORTH COUNTY - 2007 DAN & REX HENARD, DALE DUNLAP, AND PRISCILLA GREEN

PROBLEM:	High Plains gr peanut produc management de	rowers need more fiel tion from selected or ecisions and conserve w	d measurement available irrig vater.	es and documented data on ation and rainfall to make
OBJECTIVES:	To determine	peanut production from	om measured i	rrigation, rainfall, and soil
	moisture levels	s using center pivot in	igation and rel	ating it to the North Plains
	PET Network r	report of fully irrigated	peanuts to help	growers predict yields.
SUMMARY:	Planted:	May 8	Fertilizer:	NA
	Variety:	458	Insecticide:	None
	Seeding Rate:	90 Lbs/Acre	Herbicide:	Butarack w/Select
	Soil Type:	Miles Loamy Fine Sand	Harvested:	October 21

RAINFALL

No. Acres:

60

Row Width: 40 Inches

	June- 1.30" July	v- 1.75" August	- 2.85" September	:- 2.75" To	otal: 8.65"
--	------------------	-----------------	-------------------	-------------	-------------

MATERIALS AND METHODS: Sixty acres irrigated by a center pivot nozzled at 750 gpm were planted to peanuts. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated peanuts are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$420.00/ Ton- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
11	11.26	101*	4,060	360.57	852.60	\$75.72

*Includes 0.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet throughout the growing season. Soil water readings show the crop had sufficient water. Summer rainfall helped produce a good peanut yield and conserve irrigation water. Production was 360 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 19.91 inches. Production was 204 pounds per inch measured. Irrigation, rainfall, and net soil water was 101 percent of that reported by the North Plains PET Network for fully irrigated runner peanut.

IRRIGATED PEANUT PRODUCTION USING CENTER PIVOT COLLINGSWORTH COUNTY - 2007 PAT & ROD WHITE, DALE DUNLAP, AND PRISCILLA GREEN

- **PROBLEM:** High Plains growers need more field measurements and documented data on peanut production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine peanut production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated peanuts to help growers predict yields.

SUMMARY:	Planted:	May 4	Fertilizer:	220 Lbs Dry Mix
	Variety:	458's	Insecticide:	None
	Seeding Rate:	80 Lbs	Herbicide:	Prowl
	Soil Type:	Miles Loamy Fine Sand	Harvested:	October 4
	Row Width:	40 Inches	No. Acres:	60

RAINFALL

June- 2.25" July- 2.45" August- 2.10" September- 2.85" Total:

MATERIALS AND METHODS: Sixty acres irrigated by a center pivot nozzled at 600 gpm were planted to peanuts. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated peanuts are reported on the same page.

			2007 Dem	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALUI	E @ \$420.00/ Ton- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
7	6.82	94*	3,500	513.20	\$735.00	\$107.77

*Includes 2.43 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Beginning Soil water was good at 1, 2 and 3 feet. It was used from 2 and 3 feet in August by high plant requirements. Early and late season rainfall helped produce a good crop and limit irrigation. Ending soil water was good at 1 and 2 feet, but depleted at 3 feet. Production was 513 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 18.90 inches. Production was 185 pounds per inch measured. Irrigation, rainfall, and net soil water was 94 percent of that reported by the North Plains PET Network for fully irrigated runner peanut.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

IRRIGATED PEANUT PRODUCTION USING CENTER PIVOT COLLINGSWORTH COUNTY - 2007 DANNIE MORRIS, DALE DUNLAP, AND PRISCILLA GREEN

PROBLEM:	High Plains growers need more field measurements and documented data on
	peanut production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine peanut production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated peanuts to help growers predict yields.

SUMMARY:	Planted:	May 14	Fertilizer:	Ammonia Nitrate
	Variety:	Flavor Runner 458	Insecticide:	Orthene/Fungicide w/ Foliar Feed
	Seeding Rate:	100 Lbs	Herbicide:	Cadre & Butarac/Prowl & Roundup pp
	Soil Type:	Springer-Heatley	Harvested:	October 12
	Row Width:	40 Inches	No. Acres:	42

RAINFALL

June- 1.85" July- 1.00" Aug	2.29" September- 1.50" Total: 6.64"
-----------------------------	-------------------------------------

MATERIALS AND METHODS: Sixty acres irrigated by a center pivot nozzled at 250 gpm were planted to peanuts. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated peanuts are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$420.00/ Ton- \$
Number	Inches	% Of	Lbs/Ac	Lbs/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
14	13.47	103*	3,100	230.14	\$651.00	\$48.33

*Includes 0.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet throughout the growing season. Summer rainfall helped maintain soil water. Weekly soil water readings shown in the graph on page two show the crop had sufficient water. Production was 230 pounds per inch of irrigation. Irrigation, rainfall and soil water totaled 20.11 inches. Production was 154 pounds per inch measured. Irrigation, rainfall, and net soil water was 103 percent of that reported by the North Plains PET Network for fully irrigated runner peanut.

Silage Irrigation And Production 2007

Cooperating Growers

<u>Silage Sorghum</u> Frankie Bezner

Mike Menke

County

Deaf Smith

Potter

AgriPartners Silage Irrigation and Production Summary, 2007 Leon New Professor and Extension Agricultural Engineer-Irrigation Texas AgriLife Extension Service Amarillo, Texas

Two silage sorghum irrigation and production demonstrations were conducted on 222 acres in Potter and Deaf Smith Counties in 2007. One demonstration was irrigated using a center pivot system. The other used row water.

Silage sorghum production ranged from 20 to 24 tons per acre and averaged 22 tons per acre. All yields are by silage cutter harvest.

Silage sorghum irrigation ranged from 5.9 tons to 11.5 inches and averaged 8.7 inches. Production averaged 2.50 tons from each inch of irrigation applied. With center pivot production was 3.4 tons per inch of irrigation. It was 2.0 tons per inch using row water.

Irrigation, rainfall, and additional water removed from the soil by silage sorghum ranged from 18.43 to 23.32 and averaged 20.88 inches. Production averaged 1.04 tons from each inch of irrigation, rainfall, and soil water measured. Production was 1.09 tons per inch using center pivot and 1.01 with row water.

Rainfall, irrigation, and soil water for silage sorghum ranged from 92 to 123 percent and averaged 108 percent of that reported by the North Plains PET Network for fully irrigated grain sorghum. Rainfall, irrigation and net soil water averaged 102 percent.

Value of water in producing silage sorghum priced at \$24.00 per ton ranged from \$49.26 to \$80.94 and averaged \$60.00 per acre inch of irrigation. These values for irrigation include production from rainfall, additional soil water, irrigation system efficiency and management of resources.

A tabulated summary of 2007 silage irrigation and production demonstrations are listed in Table 1. Additional data and information on each demonstration are listed in the grower reports.

Thanks to the Potter and Deaf Smith County growers who cooperated, provided facilities and personal time, operating data and other information.

Table 1 includes average silage corn production for twenty-one irrigation demonstrations conducted in '98, '99, '00, '01, '02, '03, '04, '05, and '06. Production averaged 25 tons per acre from 21.00 inches of irrigation, which is 1.19 tons per inch. Irrigation, rainfall, and soil water averaged 29.41 inches and production 0.85 tons from each inch of water measured. Rainfall, irrigation, and soil water totaled 89 percent of that reported by the North Plains PET Network for fully irrigated corn.

Also, Table 1 includes average silage sorghum production for eleven grower demonstrations conducted during '98-'07. Five were irrigated by center pivot and six with row water. Silage sorghum production averaged 21 tons per acre. Irrigation averaged 13.92 inches. Production averaged 1.54 tons per inch of irrigation. Irrigation, rainfall, and soil water averaged 23.84 inches from which production was .90 tons per inch.

Table 1. Silage Irrigation and Produ	uction, 2007								
		WATE	ER-INCHES	PET		IOAG	DUCTION	CROP VALU	E @\$30.00/Ton-\$
						INOT	ACRE/IN	ACF	RE INCH
COUNTY	GROWER	IRRIGATION	RAIN/IRRIG/SOIL	% OF	TONS/AC	IRRIGATION	RAIN/IRRIG/SOIL	IRRIGATION	RAIN/IRRIG/SOIL
CORN									
AVG '98 '99 '00 '01 '02 '03 '04 '05 '06 '07	21	21.00	29.41	89	25	1.19	0.85	35.70	25.50
AVG CENTER PIVOT	18	20.63	29.37	88	26	1.25	0.87	37.50	26.10
AVG ROW WATER	3	23.27	29.64	95	21	0.89	0.70	26.70	21.00
		WATE	ER-INCHES	PET		PROI	DUCTION	CROP VALU	E @\$24.00/Ton-\$
						TON	/ACRE/IN	ACF	RE INCH
COUNTY	GROWER	IRRIGATION	RAIN/IRRIG/SOIL	% OF	TONS/AC	IRRIGATION	RAIN/IRRIG/SOIL	IRRIGATION	RAIN/IRRIG/SOIL
SORGHUM									
Deaf Smith	Frankie Bezner-RW	11.50	23.32	123	23.6	2.05	1.01	49.25	24.29
Potter	Mike Menke-CP	5.93	18.43	80	20	3.37	1.09	80.94	26.04
AVERAGE 2007	2	8.72	20.88	102	22	2.50	1.04	60.03	25.06
AVG CENTER PIVOT	1	5.93	18.43	80	20	3.37	1.09	80.94	26.04
AVG ROW WATER	1	11.50	23.32	123	24	2.05	1.01	49.25	24.29
AVG '98 '99 '00 '01 '02 '03 '04 '05 '06 '07	11	13.92	23.84	95	21	1.54	0:00	36.96	21.60
AVG CENTER PIVOT	5	16.46	27.81	101	25	1.52	0:00	36.48	21.60
AVG ROW WATER	9	11.81	20.53	90	19	1.57	0.90	37.68	21.60
CP- Center Pivot RW- Row Water									

IRRIGATED SORGHUM SILAGE PRODUCTION USING ROW WATER DEAF SMITH COUNTY - 2007 FRANKIE BEZNER AND RICK AUCKERMAN

PROBLEM:	High Plains g sorghum silag make managen	rowers need more field e production from select nent decisions and const	ld measuremen ected or availat serve water.	ts and documented data on ble irrigation and rainfall to
OBJECTIVES:	To determine soil moisture q PET Network annual yield po	sorghum silage produc uantities using furrow report of fully irrigate otential, manage crop p	tion from meas irrigation and r ed sorghum sila roduction and c	ured irrigation, rainfall, and elating it to the North Plains age to help growers predict onserve water.
SUMMARY:	Planted:	May 28	Fertilizer:	10 Ton Manure
	Variety:	NC+	Insecticide:	None
	Seeding Rate:	67,000	Herbicide:	Atrizine, 2, 4-D
	Soil Type:	Pullman Clay Loam	Harvested:	September 18
	Row Width:	30 Inches	No. Acres:	100
		RAINFALL		
June- 1.85"	July- 1.35"	August- 1.90"	September- 1	.80" Total: 6.90"

MATERIALS AND METHODS: Sorghum Silage was planted on one-hundred acres of a furrow irrigated field. The dates and number of irrigations from a well/s that delivered 650 GPM were recorded. Irrigation amounts were calculated from well water flow and the number of hours used to irrigate the acreage. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water during the growing season. Two measurements were made each week and recorded. They are reported at the top of the following page. Irrigation, rainfall, additional soil water measured and water use reported by the North Plains PET Network for fully irrigated sorghum silage is summarized on the same page.

	2007 Demonstration Results							
IRRIG	GATION	PET	PROI	DUCTION	CROP VALU	E @ \$24.00/ Ton- \$		
Number	Inches	% Of	Ton/Ac	Ton/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation		
3	11.50	123*	23.60	2.05	\$566.40	\$49.25		

*Includes 4.92 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil Water was good beginning and was maintained at one and two feet until mid august. It was replenished at one and two feet root zone depths by an irrigation and 1.10 inches of rainfall that followed. Timely late August rainfall helped finish the crop. Silage sorghum production was 2.05 Tons per inch of irrigation and 0.99 Tons per acre from each inch of irrigation, rainfall, and additional soil water measured. Irrigation, rainfall, and additional soil water totaled 23.32 inches, which is 123 percent of that reported by the North Plains PET Network for fully irrigated sorghum silage.

IRRIGATED SORGHUM SILAGE PRODUCTION USING CENTER PIVOT POTTER COUNTY - 2007 <u>MIKE MENKE AND LEON CHURCH</u>

PROBLEM:	High Plains growers need more field measurements and documented data on
	sorghum silage production from selected or available irrigation and rainfall to
	make management decisions and conserve water.

OBJECTIVES: To determine sorghum silage production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated sorghum silage to help growers predict yields.

SUMMARY:	Planted:	May 27	Fertilizer:	Manure				
	Variety:	Net	Insecticide:	None				
	Seeding Rate:	60,000	Herbicide:	Atrazine				
	Soil Type:	Pullman Clay Loam	Harvested:	September 2	27			
	Row Width:	30 Inches	No. Acres:	122				
RAINFALL								
June- 2.40"	July- 2.05"	August- 3.10"	Septemb	er- 0.95"	Total:	8.50"		

MATERIALS AND METHODS: One hundred and twenty-two acres irrigated by a center pivot nozzled at 450 gpm were planted to sorghum silage. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated sorghum silage are reported on the same page.

	2007 Demonstration Results							
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	E @ \$24.00/ Ton- \$		
Number	Inches	% Of	Ton/Ac	Ton/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation		
7	5.93	80*	20	3.37	\$480.00	\$80.94		

*Includes 4.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in June soon after planting. The crop used all soil water, irrigation, and rainfall by mid July. Irrigation and rainfall replenished the 1 and 2 feet soil root zones in August to finish the crop. Production was 3.37 Tons per inch of irrigation. Irrigation, rainfall and soil water totaled 18.43 inches. Production was 1.08 Tons per inch measured. Irrigation, rainfall, and net soil water was 80 percent of that reported by the North Plains PET Network for fully irrigated sorghum silage.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

Soybean Irrigation And Production 2007

Cooperating Growers	County
Joe Homer	Carson
Mike Dudenhoeffer	Carson

92

AgriPartners Soybean Irrigation and Production Summary, 2007 Leon New Professor and Extension Agricultural Engineer-Irrigation Texas AgriLife Extension Service Amarillo, Texas

Two soybean irrigation and production demonstrations were conducted with two growers in Carson in 2007. All were irrigated by center pivot systems. The soybean demonstrations occupied 390 acres.

Soybean production ranged from 45 to 45 bushels per acre. Average production was 45 bushels. That is the truth. All yields are by combine harvest.

Seasonal irrigation ranged from 7.26 to 7.55 inches per acre and averaged 7.41 inches. Soybean production from each inch of irrigation water ranged from 5.96 to 6.20 bushels per acre and averaged 6.08 bushels. Production from each inch of irrigation using center pivot average 6.08 bushels per acre. Irrigation using center pivot systems averaged 7.41 inches per acre. None of the two growers used prewater.

Rainfall, irrigation, and additional water used from that stored in the soil root zone and measured, ranged from 14.61 to 17.42 inches and averaged 16.02 inches. Average production from each inch of measured rainfall, irrigation and additional soil water was 2.81 bushels per acre.

Additional soil water, rainfall, and irrigation water measured ranged from 54 to 72 percent of that reported by the North Plains PET Weather Station Network for soybean daily and seasonal cumulative water use for group 4.0 soybeans. Average was 63 percent. Any water used below the top three feet of the root zone was not measured nor included.

Value of irrigation water in producing soybeans priced at \$8.75 per bushel ranged from \$52.15 to \$54.24 from each inch applied. Average was \$53.17 per inch of irrigation water. This gross return from irrigation water includes contributive production from rainfall and additional water measured and removed from the soil profile as well as irrigation system efficiency and management of resources.

A tabulated summary of soybean irrigation and production demonstrations are listed in Table 1. Additional site and grower information are presented in individual reports.

Fifty-four soybean irrigation and production demonstrations were conducted in 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, and 2007. Forty-two were irrigated by center pivot and twelve with row water systems. Production averaged 53 bushels per acre from 14.06 inches of irrigation. Production from each inch of irrigation averaged 3.78 bushels per acre. Production per inch of irrigation averaged 3.99 bushels per acre using center pivot. It averaged 3.12 bushels using row water. Soil water, irrigation, and rainfall averaged 26.51 inches from which production was 2.01 bushels per acre per inch. Irrigation, rainfall, and soil water averaged 92 percent of that reported by the North Plains PET Network for fully irrigated soybeans. Irrigation, rainfall, and net soil water using center pivot systems averaged 25.66 inches and production 2.15 bushels per inch measured. With row water, irrigation, rainfall, and soil water measured averaged 29.48 inches and soybean production 1.58 bushels from each inch. The ten year summary is included last in Table 1, on the following page.

Thanks to the soybean growers who provided their facilities, personal time, operating data and other information. Hopefully, this report is helpful to you and other soybean growers.

Table 1. Soybean Irrigation an	nd Production, 2007	2							
		WATE	R-INCHES	PET		ЮЛЯ	DUCTION	CROP VAL	UE @\$8.75/BU
						/Na	ACRE/IN	ACF	KE INCH
COUNTY	GROWER	IRRIGATION	RAIN/IRRIG/SOIL	% OF	BU/AC	IRRIGATION	RAIN/IRRIG/SOIL	IRRIGATION	RAIN/IRRIG/SOIL
Carson	Joe Homer	7.26	14.61	54	45	6.20	3.08	54.24	26.95
Carson	Mike Dudenhoeffer	7.55	17.42	72	45	96'9	2.58	52.15	22.60
AVERAGE 2007	2	7.41	16.02	63	45	90.9	2.81	53.17	24.59
AVG CENTER PIVOT	2	7.41	16.02	63	45	6.08	2.81	53.17	24.59
AVG '98'99'00'01'02'03'04'05'06'07	54	14.06	26.51	92	53	3.78	2.01	33.08	17.59
AVG CENTER PIVOT	42	13.80	25.66	89	55	3.99	2.15	34.91	18.81
AVG ROW WATER	12	14.97	29.48	102	47	3.12	1.58	27.30	13.83
CP= CENTER PIVOT, RW= ROW WA	ATER								

IRRIGATED SOYBEAN PRODUCTION USING CENTER PIVOT CARSON COUNTY - 2007 JOE HOMER AND JODY BRADFORD

- **PROBLEM:** High Plains growers need more field measurements and documented data on soybean production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine soybean production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated soybeans to help growers predict yields.

SUMMARY:	Planted:	May 11	Fertilizer:	65 lbs NH3
	Variety:	NC +, Pioneer	Insecticide:	None
	Seeding Rate:	55 lbs/acre	Herbicide:	2 QT Treflan
	Soil Type:	Pullman Clay Loam	Harvested:	October 5
	Row Width:	40 Inches	No. Acres:	150

RAINFALL

May - 0.90" June- 0.35" July- 1.30" August- 0.80" September- 2.60" Total: 5.95"

MATERIALS AND METHODS: One hundred and fifty acres irrigated by a center pivot nozzled at 700 gpm were planted to soybeans. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated soybeans are reported on the same page.

	2007 Demonstration Results							
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	UE @ \$8.75/ BU- \$		
Number	Inches	% Of	BU/Ac	BU/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation		
7	7.26	54*	45	6.20	\$393.75	\$54.24		

*Includes 1.40 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet. The graph on the following page shows significant water use at 1, 2 and 3 feet during reproduction stage R5 in August. Seasonal soil water readings show the crop has sufficient water. Production was 6.20 bushels per inch of irrigation. Irrigation, rainfall and soil water totaled 14.61 inches. Production was 3.08 bushels per inch measured. Irrigation, rainfall, and net soil water was 54 percent of that reported by the North Plains PET Network for fully irrigated soybean.

IRRIGATED SOYBEAN PRODUCTION USING CENTER PIVOT CARSON COUNTY - 2007 <u>MIKE DUDENHOEFFER AND JODY BRADFORD</u>

PROBLEM:	High Plains growers need more field measurements and documented data on
	soybean production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine soybean production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated soybeans to help growers predict yields.

SUMMARY:	Planted:	May 23	Fertilizer:	80-0-0
	Variety:	Pioneer 94 M 80	Insecticide:	None
	Seeding Rate:	: 60 lbs per acre	Herbicide:	Roundup
	Soil Type:	Pullman Clay	Harvested:	October 1
	Row Width:	Drilled 7.6 Inches	No. Acres:	240

RAINFALL

June- 2.00" July- 1.05" Augu	st- 1.65" September	- 3.65" To	otal: 8.35"
------------------------------	---------------------	------------	-------------

MATERIALS AND METHODS: Two hundred and forty acres irrigated by a center pivot nozzled at 600 gpm were planted to soybeans. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated soybeans are reported on the same page.

2007 Demonstration Results								
IRRIGATION		РЕТ	PRODUCTION		CROP VALUE @ \$8.75/ BU \$			
Number	Inches	% Of	BU/Ac	BU/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation		
6	7.55	72*	45	5.96	\$393.75	\$52.15		

*Includes 1.52 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet beginning and throughout most of the growing season. Soil water measurements indicate the crop did not utilize all water that was available. Production was 5.96 bushels per inch of irrigation. Irrigation, rainfall and soil water totaled 17.42 inches. Production was 2.58 bushels per inch measured. Irrigation, rainfall, and net soil water was 72 percent of that reported by the North Plains PET Network for fully irrigated Soybean.

Wheat Irrigation And Dryland Production 2007

Cooperating Growers	County
Dan Krienke- #8	Ochiltree
Dan Krienke- #47	Ochiltree
David Block	Moore
Greg Urbanczyk	Deaf Smith
Ray Schlabs Jr.	Deaf Smith
Troy Sharke	Armstrong
Neal Conrad- West	Armstrong
Mike Dudenhoeffer	Carson
Ray Schlabs Jr.	Deaf Smith
Dave Davis	Gray
Neal Conrad- East	Armstrong
Rex & Dan Henard	Collingsworth
Brian Bichsel- West	Armstrong
CJ Kuper	Hartley
Brian Bichsel- East	Armstrong
Not Harvested	
Rapstine Test Plot	Gray

AgriPartners Wheat Irrigation and Production Summary, 2007 Leon New Professor and Extension Agricultural Engineer- Irrigation Texas AgriLife Extension Service Amarillo, Texas

Fifteen wheat irrigation and dryland demonstrations were conducted in 2007. One dryland demonstration was abandoned due to the lack of a good stand. Seven were irrigated by center pivot. There was no furrow irrigation. Eight were dryland. The demonstrations were conducted on 1933 acres.

Wheat yield ranged from 103 to 25 bushels per acre. Average yield was 57 bushels per acre. Irrigated wheat averaged 72 bushels. Yields averaged 72 bushels per acre using center pivot and 0 with row water. Dryland averaged 42 bushels per acre. All yields are by combined harvest.

Irrigation amounts ranged from 11.55 to 1.15 and averaged 6.09 inches per acre. Production ranged from 34.8 to 8.30 bushels per acre inch of irrigation. Average was 11.9 bushels per inch of irrigation. Wheat production averaged approximately 11.9 bushels from each inch of irrigation using center pivot and 0 bushels from row water. Irrigation fuel was expensive.

Rainfall, irrigation and additional water stored in the top three feet of soil and removed by the wheat crop ranged from 35.05 to 15.76 inches. Average was 21.83 inches. Production from one inch of rainfall, irrigation and additional soil water ranged from 4.86 bushels to 2.51 bushels per acre. Average production was 3.37 bushels per inch of total water measured. Rainfall and soil water ranged from 16.37 to 13.29 and averaged 14.06 inches in dryland. Production averaged 3.83 bushels from each inch of rainfall and net soil water. Rainfall was generally above normal during the spring but lacking at planting.

Total rainfall, irrigation and additional water stored in the top three feet of soil ranged from 168 to 73 percent of that reported by the North Plains PET Network for fully irrigated wheat. Average was 116 percent and wheat yields averaged approximately 72 bushels per acre. Any water used from the soil root zone below three feet was not measured nor included. Rainfall, irrigation and additional soil water averaged 116 percent of PET using center pivot and yield averaged 72 bushels per acre. It was 0 percent using row water and yield averaged 0 bushels per acre. In dryland, rainfall and soil water averaged 81 percent of that reported by the North Plains PET Weather Station Network and production 42 bushels per acre.

The value of irrigation, rainfall and soil water in producing wheat priced at \$5.50 per bushel ranged from \$26.74 to \$13.81 per acre inch and averaged \$18.28. These numbers include irrigation system efficiency and management of resources. A continuing past seven years average of wheat production per acre inch of irrigation, rainfall and soil water is a good management tool among others. In dryland, the value of rainfall and net soil water ranged from \$27.72 to \$9.92 and averaged \$21.05 from each inch measured.

A tabulated summary of the wheat irrigation and dryland production demonstrations are listed in Table 1. Significant irrigated and dryland wheat production data were obtained when there was limited rainfall to get the crop germinated and up. Wheat production was boosted by rainfall that limited irrigation. Water stored in the soil was good early and quickly used. Reports of each '07 wheat production demonstration follow in Table 1.

One hundred thirty-five wheat irrigation and dryland production result demonstrations were conducted in 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 and 2007. They are included with the fifteen successfully conducted in 2007 in the summary report in Table 1. Wheat production averaged
61 bushels per acre. Irrigation, rainfall and soil water averaged 82 percent of that reported by the North Plains PET Network for fully irrigated wheat. Rainfall, irrigation and soil water averaged 18.15 inches per acre and production 3.64 bushels from each inch. The value per inch at \$5.50 per bushels wheat is \$20.02. Average irrigation was 8.08 inches for the one hundred one demonstrations irrigated. Production was 8.19 bushels from each inch applied. Averaged dryland production was 44 bushels per acre. Production averaged 3.31 bushels from each inch of soil water and rainfall. Rainfall and soil water averaged 67 percent wheat water use reported by the North Plains PET Weather Station Water Management Network.

Thanks to the area wheat growers who cooperated, provided the facilities and personal operating data and information. They are listed on the first page of the wheat section.

		WATE	ER-INCHES	PET		PROI	DUCTION	CROP VALUE	@\$5.50/BU-\$
						BU/J	ACRE/IN	ACR	E INCH
COUNTY	GROWER	IRRIGATION	RAIN/IRRIG/SOIL	% OF	BU/AC	IRRIGATION	RAIN/IRRIG/SOIL	IRRIGATION	RAIN/IRRIG/SOIL
Ochiltree	Dan Krienke- CP	11.55	31.38	154	103	8.92	3.28	49.05	18.05
Ochiltree	Dan Krienke- CP	6.21	35.05	168	88	14.17	2.51	77.94	13.81
Moore	David Block- CP	4.25	17.50	96	82	19.29	4.69	106.12	25.77
Deaf Smith	Greg Urbanczyk- CP	9.00	21.62	118	80	8.89	3.70	48.89	20.35
Deaf Smith	Ray Schlabs Jr CP	4.50	13.37	73	65	14.44	4.86	79.44	26.74
Armstrong	Troy Skarke- DrInd	1	12.36	73	62.3	-	5.04	-	27.72
Armstrong	Neal Conrad West- DrInd		14.67	84	51.5		3.51	-	19.31
Carson	Mike Dudenhoeffer- DrInd		13.90	82	50		3.60		19.78
Deaf Smith	Ray Schlabs Jr CP	6.00	18.14	66	50	8.33	2.76	45.83	15.16
Gray	Dave Davis- DrInd		14.85	06	49		3.30	-	18.15
Armstrong	Neal Conrad East- DrInd	-	16.37	93	47		2.87	-	15.79
Collingsworth	Rex & Dan Henard- CP	1.15	15.76	105	40	34.78	2.54	191.30	13.96
Armstrong	Bryan Bichsel West- DrInd		13.29	76	34	-	2.56	-	14.07
Hartley	CJ Kuper- DrInd		13.80	78	32		2.32	-	12.75
Armstrong	Bryan Bichsel East- DrInd		13.86	81	25		1.80	-	9.92
AVERAGE 2007	15	-	17.73	98	57.25	-	3.23	-	17.76
AVG IRRIGATION	7	6.09	21.83	116	72.57	11.91	3.32	65.49	18.28
AVG CENTER PIVOT	7	6.09	21.83	116	72.57	11.91	3.32	65.49	18.28
AVG DRYLAND	8		14.14	81	43.85	ı	3.83		21.05
AVG '98'99'00'01'02',03',04,'05,'06,'07	135	-	16.91	79	61		3.58	-	19.69
AVG IRRIGATION	101	8.08	18.15	82	66	8.19	3.64	45.05	20.02
AVG CENTER PIVOT	85	7.95	18.38	83	66	8.25	3.57	45.38	19.64
AVG ROW WATER	16	8.72	16.94	77	69	7.90	4.07	43.45	22.40
AVG DRYLAND	34	1	13.23	67	44	-	3.31		18.21
CP= CENTER PIVOT RW= ROW WAT	TER DRI ND= DRYI AND								

IRRIGATED WHEAT PRODUCTION USING CENTER PIVOT OCHILTREE COUNTY - 2007 DAN KRIENKE AND SCOTT STRAWN

PROBLEM:	High Plains growers need more field measurements and documented data on
	wheat production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine wheat production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict yields.

	Variety:	TAM 111	Insecticide:	Spray for ru	st May 3
	Seeding Rate:	90 lbs/acre	Herbicide:	None Repor	ted
	Soil Type:	Pullman Silty Clay Loam	Harvested:	June 25	
	Row Width:	7.5 Inches	No. Acres:	125	
		RAINFALL			
Dec- 1.65"	Jan- 4.20" Feb-	0.30" Mar- 3.40" A	Apr- 1.95"	May- 2.80"	Total: 14.30"

MATERIALS AND METHODS: One hundred twenty-five acres irrigated by a center pivot nozzled at 1000 gpm were planted to wheat. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated wheat are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VAL	UE @ \$5.50/BU- \$
Number	Inches	% Of	Bu/Ac	Bu/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
10	11.55"	154*	103	8.92	\$566.50	\$49.05

*Includes 5.53 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet throughout the growing season. Soil water was used in June to finish the crop. December and January rainfall totaled 5.85 inches and the primary reason irrigation, rainfall and soil water is 54 percent more than that reported by the PET Network. Production was 8.92 bushels per inch of irrigation. Irrigation, rainfall and soil water totaled 31.38 inches. Production was 3.25 bushels per inch measured. Irrigation, rainfall, and net soil water was 154 percent of that reported by the North Plains PET Network for fully irrigated wheat. Without December and January unusual high rainfall, irrigation, rainfall and soil water totaled 25.53 inches which is 125 percent of weather station PET.

IRRIGATED WHEAT PRODUCTION USING CENTER PIVOT OCHILTREE COUNTY - 2007 DAN KRIENKE AND SCOTT STRAWN

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict yields.

SUMMARY:	Planted:	September 29	Fertilizer:	145-0-0/ 10 Ton Manure
	Variety:	Dumas	Insecticide:	None Reported
	Seeding Rate:	50 lbs/acre	Herbicide:	None Reported
	Soil Type:	Pullman Silty Clay Loam	Harvested:	June 21
	Row Width:	7.5 Inches	No. Acres:	120

RAINFALL

Oct-2.90" Nov-0.0" Dec-1.65" Jan-4.20" Feb-0.35" Mar-8.75" Apr-1.55" May-4.40" Total: 23.80"

MATERIALS AND METHODS: One hundred and twenty acres irrigated by a center pivot nozzled at 600 gpm were planted to wheat. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated wheat are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	PET	PROI	DUCTION	CROP VAL	UE @ \$5.50/BU- \$
Number	Inches	% Of	Bu/Ac	Bu/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
4	6.21	168*	88	14.17	\$484.00	\$77.94

*Includes 5.04 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good throughout the growing season. Rainfall was unusually abundant. Four irrigations that totaled 6.21 inches were used when rainfall was lacking and to apply nitrogen fertilizer. Production was 14.17 bushels per inch of irrigation. Irrigation, rainfall and soil water totaled 35.05 inches. Production was 2.51 bushels per inch measured. Irrigation, rainfall, and net soil water was 168 percent of that reported by the North Plains PET Network for fully irrigated wheat due to unusually high rainfall.

IRRIGATED WHEAT PRODUCTION USING CENTER PIVOT MOORE COUNTY - 2007 DAVID BLOCK, MARCEL FISCHBACHER, AND DENNIS BEILUE

PROBLEM:	High Plains wheat produ management	growers need more ction from selected decisions and conserv	field measurement or available irri we water.	nts and docu gation and	umented data on rainfall to make
OBJECTIVES:	To determin moisture leve PET Networl	e wheat production els using center pivo k report of fully irriga	from measured t irrigation and re ted wheat to help	irrigation, r elating it to growers prec	ainfall, and soil the North Plains lict yields.
SUMMARY:	Planted:	November 1	Fertilizer:	100-0-0	

SUMMARY:	Planted:	November 1	Fertilizer:	100-0-0
	Variety:	TAM 111	Insecticide:	None Reported
	Seeding Rat	e: 120 lbs/Acre	Herbicide:	None Reported
	Soil Type:	Sha- Sherm Silty Clay Loam	Harvested:	July 9
	Row Width:	Drilled	No. Acres:	60

RAINFALL

Feb- 0.00" Mar- 2.75" Apr- 4.20" May- 0.30" June- 0.00" Total: 7.25"

MATERIALS AND METHODS: Sixty acres irrigated by center pivot nozzled at 500 gpm were planted to wheat. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated wheat are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	PET	PROI	DUCTION	CROP VALU	UE @ \$5.50/ BU- \$
Number	Inches	% Of	Bu/Ac	Bu/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
4	4.25	96*	82	19.29	\$451.00	\$106.12

*Includes 6.00 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil moisture was good at 1, 2 and 3 feet throughout the spring growing season. Good rainfall in late March and April limited irrigation until May. Rainfall, irrigation and soil water was managed well to produce a good wheat yield. Production was 19.29 bushels per inch of irrigation. Irrigation, rainfall, and soil water totaled 17.50 inches. Production was 4.67 bushels per inch measured. Irrigation, rainfall, and net soil water was 96 percent of that reported by the North Plains PET Network for fully irrigated wheat.

IRRIGATED WHEAT PRODUCTION USING CENTER PIVOT DEAF SMITH COUNTY - 2007 <u>GREG URBANCZYK AND RICK AUCKERMAN</u>

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict yields.

SUMMARY:	Planted:	November 6	Fertilizer:	10 Tons Manure
	Variety:	None Reported	Insecticide:	None Reported
	Seeding Rate:	90 lbs/Acre	Herbicide:	None Reported
	Soil Type:	Pullman Clay loam	Harvested:	July 4
	Row Width:	Drilled	No. Acres:	60

RAINFALL

Feb- 0.00" Mar- 2.50" Apr- 0.00" May- 4.10" June- 3.10" Total: 9.70"

MATERIALS AND METHODS: Sixty acres irrigated by center pivot nozzled at 600 gpm were planted to wheat. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated wheat are reported on the same page.

			2007 Demo	onstration Results		
IRRIG	GATION	РЕТ	PROI	DUCTION	CROP VALU	UE @ \$5.50/ BU- \$
Number	Inches	% Of	Bu/Ac	Bu/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
8	9.00	118*	80	8.89	\$440.00	\$48.89

*Includes 2.92 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Beginning soil water was good at 1, 2 and 3 feet. High crop water use in late April and early May depleted soil water from 1 and 2 feet. Good rainfall in March and May was used by the crop plus irrigation. The yield indicates the crop had adequate water. Production was 8.89 bushels per inch of irrigation. Irrigation, rainfall, and soil water totaled 21.62 inches. Production was 3.7 bushels per inch measured. Irrigation, rainfall, and net soil water was 118 percent of that reported by the North Plains PET Network for fully irrigated wheat.

IRRIGATED WHEAT PRODUCTION USING CENTER PIVOT DEAF SMITH COUNTY - 2007 RAY SCHLABS JR. AND RICK AUCKERMAN

PROBLEM:	High Plains growers need more field measurements and documented data on
	wheat production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine wheat production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict yields.

SUMMARY:	Planted:	December 6	Fertilizer:	10 Tons Manure
	Variety:	Tam 111	Insecticide:	None Reported
	Seeding Rate:	150 lbs/Acre	Herbicide:	None Reported
	Soil Type:	Pullman Clay Loam	Harvested:	July 6
	Row Width:	Drilled	No. Acres:	60

RAINFALL

Feb- 0.00"	Mar- 1.80"	Apr- 0.30"	Mav- 3.40"	Jun- 2.70"	Total: 8.20 "
200 0000		1101 0000		0000	

MATERIALS AND METHODS: Sixty acres irrigated by a center pivot nozzled at 500 gpm were planted to wheat. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated wheat are reported on the same page.

2007 Demonstration Results							
IRRIGATION PET		PET	PRODUCTION		CROP VALUE @ \$5.50/ BU- \$		
Number	Inches	% Of	Bu/Ac	Bu/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation	
3	4.50	73*	65	14.44	\$357.50	\$79.44	

*Includes 0.67 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in March and remained at sufficient levels throughout the growing season. Although soil water was depleted from one foot in early during Heading, approximately 40 percent was available at two feet and 80 percent at three feet. Both irrigation and rainfall refilled the soil profile. Production was 14.44 bushels per inch of irrigation. Irrigation, rainfall, and soil water totaled 13.37 inches. Production was 4.86 bushels per inch measured. Irrigation, rainfall, and net soil water was 73 percent of that reported by the North Plains PET Network for fully irrigated wheat.

DRYLAND WHEAT PRODUCTION ARMSTRONG COUNTY - 2007 TROY SKARKE AND KYLE STEWART

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY: Planted:	September 28	Fertilizer:	50 lbs NH 3
Variety:	Tam 110	Insecticide:	None Reported
Seeding Rate:	30 lbs	Herbicide:	None Reported
Soil Type:	Pullman Clay Loam	Harvested:	June 19
Row Width:	10 Inches	No. Acres:	168

RAINFALL

Jan- 0.80" Feb- 0.40" Mar- 2.95" Apr- 1.20" May- 3.85" Jun- 0.80" Total: 10.00"

MATERIALS AND METHODS: One hundred and sixty-eight acres of dryland were planted to wheat. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results						
RAIN/SOIL PET PRODUCTION				CROP VALUE @ \$5.50/ BU- \$		
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil	
12.36	73*	62.3	5.04	\$342.65	\$27.72	

*Includes 2.36 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in January. Snow and timely rainfall that followed maintained good soil water levels to make a very good dryland yield. Soil water was temporarily used to approximately 25 percent available water at Heading in early May. 2.8 inches of rainfall on was needed to finish the crop. Production was 5.04 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 12.36 inches which was 73 percent of that reported by the North Plains PET Network for fully irrigated wheat.

DRYLAND WHEAT PRODUCTION ARMSTRONG COUNTY - 2007 NEAL CONRAD AND KYLE STEWART- WEST

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY: Plan	nted:	September 12	Fertilizer:	None Reported
Var	riety:	Jagline	Insecticide:	None Reported
See	ding Rate:	39 lbs/Acre	Herbicide:	None Reported
Soil	Type:	Pullman Clay Loam	Harvested:	June 25
Rov	v Width:	10 Inches	No. Acres:	135

RAINFALL

Jan- 0.80" Feb- 0.40" Mar- 4.65" Apr- 1.35" May- 4.65" Jun- 0.80" Total: 12.65"

MATERIALS AND METHODS: One hundred and sixty-eight acres of dryland were planted to wheat. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results						
RAIN/SOIL PET PRODUCTION				CROP VALUE @ \$5.50/ BU- \$		
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil	
14.67	84*	51.5	3.51	\$283.25	\$19.31	

*Includes 2.02 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Soil water was good at 1, 2 and 3 feet beginning in January and generally throughout the growing season. The crop used most soil water from one foot prior to 0.8 inches of rainfall on April 16. The crop used significant soil water from 1, 2 and 3 feet before it was replenished again by 3.20 inches of rain on May 7. Production was 3.51 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 14.67 inches which was 84 percent of that reported by the North Plains PET Network for fully irrigated wheat.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

DRYLAND WHEAT PRODUCTION CARSON COUNTY - 2007 MIKE DUDENHOEFFER AND JODY BRADFORD

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY: Planted:	September 15	Fertilizer:	None Reported
Variety:	Tam 107	Insecticide:	None Reported
Seeding Rat	e: 35 lbs	Herbicide:	None Reported
Soil Type:	Pullman Clay Loam	Harvested:	July 2
Row Width	: 10 Inches	No. Acres:	240

RAINFALL

Jan- 0.00" Feb- 0.00" Mar- 3.25" Apr- 1.00" May- 2.90" Jun- 1.75" Total: 8.90"

MATERIALS AND METHODS: Three hundred acres of dryland were planted to wheat. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results						
RAIN/SOIL PET PRODUCTION				CROP VALUE @ \$5.50/ BU- \$		
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil	
13.90	82*	50	3.60	\$275.00	\$19.78	

*Includes 5.00 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Soil water was ninety-five percent at 1, 2 and 3 feet in early April. Corp water use was high in April, using most of the stored soil moisture. Periodic rainfall in May that totaled 2.90 inches helped finish the crop that made a very good dryland yield. Production was 3.60 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 13.90 inches which was 82 percent of that reported by the North Plains PET Network for fully irrigated wheat.

IRRIGATED WHEAT PRODUCTION USING CENTER PIVOT DEAF SMITH COUNTY - 2007 RAY SCHLABS JR. AND RICK AUCKERMAN

PROBLEM:	High Plains growers need more field measurements and documented data on
	wheat production from selected or available irrigation and rainfall to make
	management decisions and conserve water.

OBJECTIVES: To determine wheat production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict yields.

SUMMARY:	Planted:	December 6	Fertilizer:	10 Tons Manure
	Variety:	Tam 105	Insecticide:	None Reported
	Seeding Rate:	120 lbs/Acre	Herbicide:	None Reported
	Soil Type:	Pullman Clay Loam	Harvested:	July 11
	Row Width:	Not Reported	No. Acres:	60

RAINFALL

Feb- 0.00" Mar- 2.5" Apr- 0.40" May- 4.20" Jun- 2.20" Total: 9.30"

MATERIALS AND METHODS: Sixty acres irrigated by center pivot nozzled at 400 gpm were planted to wheat. The date, number, and amount of individual irrigations, as indicated by the precipitation chart, were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated wheat are reported on the same page.

2007 Demonstration Results						
IRRIGATION PE		РЕТ	PRODUCTION		CROP VALUE @ \$5.50/ BU- \$	
Number	Inches	% Of	Bu/Ac	Bu/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
4	6.00	99*	50	8.33	\$275.00	\$45.83

*Includes 2.84 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in March and remained at high levels until mid May at Heading. High crop water use depleted soil water at 1 and 2 feet to about 20 percent available water and used additional irrigation and rainfall. Production was 8.33 bushels per inch of irrigation. Irrigation, rainfall, and soil water totaled 18.14 inches. Production was 2.75 bushels per inch measured. Irrigation, rainfall, and net soil water was 99 percent of that reported by the North Plains PET Network for fully irrigated wheat.

DRYLAND WHEAT PRODUCTION GRAY COUNTY - 2007 DAVE DAVIS, BRANDON McGINTY, AND CHARLEY RUSS

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY:	Planted:	November 9	Fertilizer:	80 lbs nh3 25 lbs topdress
	Variety:	Jagaline	Insecticide	None Reported
	Seeding Rate:	100 lbs/Acre	Herbicide:	2 4 d ½ lb/Acre
	Soil Type:	Pullman Clay	Harvested:	July 3
	Row Width:	10 Inches	No. Acres:	120

RAINFALL

Jan- 0.00" Feb- 0.50" Mar- 3.25" Apr- 1.40" May- 3.70" Jun- 0.90" Total: 9.75"

MATERIALS AND METHODS: One hundred and twenty acres of dryland were planted to wheat. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results						
RAIN/SOIL PET PRODUCTION CROP VALUE				UE @ \$5.50/ BU- \$		
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil	
14.85	90*	49	3.30	\$269.50	\$18.15	

*Includes 5.10 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Wheat was planted for irrigation, but no spring irrigation was applied due to good rainfall. Three quarter inch of irrigation was used to establish the crop in November. Soil water was good in early April when soil water sensors were installed, and sufficient throughout the growing season. Production was 3.30 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 14. 85 inches which was 90 percent of that reported by the North Plains PET Network for fully irrigated wheat.

DRYLAND WHEAT PRODUCTION ARMSTRONG COUNTY - 2007 NEAL CONRAD AND KYLE STEWART- EAST

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY:	Planted:	September 14	Fertilizer:	None Reported
	Variety:	Tam 110	Insecticide:	None Reported
	Seeding Rate:	38 lbs/Acre	Herbicide:	None Reported
	Soil Type:	Pullman Clay Loam	Harvested:	June 25
	Row Width:	10 Inches	No. Acres:	70

RAINFALL

Jan- 0.80" Feb- 0.40" Mar- 4.55" Apr- 0.90" May- 5.00" Jun- 0.75" Total: 12.40"

MATERIALS AND METHODS: Seventy acres of dryland were planted to wheat. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results					
RAIN/SOIL PET PRODUCTION			CROP VALUE @ \$5.50/ BU- \$		
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil
16.37	93*	47	2.87	\$258.50	\$15.79

*Includes 3.97 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Soil water was about 80 percent at 1, 2 and 3 feet in February. It continued to be good until the Flag leaf growth stage in late April when crop water use was high. The crop depleted soil water from 1, 2 and 3 feet to approximately 20 percent during the Heading growth stage in early May prior to the saving rain on May 7. Production was 2.87 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 16.37 inches which was 93 percent of that reported by the North Plains PET Network for fully irrigated wheat.

IRRIGATED WHEAT PRODUCTION USING CENTER PIVOT COLLINGSWORTH COUNTY - 2007 REX & DAN HENARD, DALE DUNLAP, AND PRISCILLA GREEN

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from selected or available irrigation and rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured irrigation, rainfall, and soil moisture levels using center pivot irrigation and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict yields.

SUMMARY:	Planted:	October 22	Fertilizer:	32-0-0
	Variety:	Cutter	Insecticide:	None
	Seeding Rate:	90 lbs/acre	Herbicide:	None Reported
	Soil Type:	Miles Loamy Fine Sand	Harvested:	June 25
	Row Width:	Drilled 6 Inches	No. Acres:	60

RAINFALL

Jan- 0.10" Feb- 0.00" Mar- 5.75" Apr- 1.85" May- 5.25" Jun- 0.35" Total: 13.30"

MATERIALS AND METHODS: Sixty acres irrigated by a center pivot nozzled at 1000 gpm were planted to wheat. The date, number, and amount of individual irrigations, as indicated by a water meter were recorded and operating pressure monitored. A rain gauge located at the site measured rainfall. Moisture sensors were installed at 1, 2 and 3 feet in the root zone to measure soil water levels. They were measured twice each week, recorded, and reported in a graph on the following page. Rainfall, irrigation, additional soil water, and water use reported by the North Plains PET Network for fully irrigated wheat are reported on the same page.

2007 Demonstration Results						
IRRIGATION PET		PRODUCTION		CROP VALUE @ \$5.50/BU- \$		
Number	Inches	% Of	Bu/Ac	Bu/Ac-In Irrigation	Per Acre	Acre-Inch of Irrigation
1	1.15	105*	40	34.78	\$220.00	\$191.30

*Includes 1.31 inches of water removed from three feet of soil, rainfall, and irrigation.

CONCLUSION: Soil water was good at 1, 2 and 3 feet throughout the growing season. Soil water was used from one foot to finish the crop. Only one irrigation was used on March 9 just prior to the two inch rain on March 10. Rainfall was significantly above normal in March and April. Production was 34.78 bushels per inch of irrigation. Irrigation, rainfall and soil water totaled 15.76 inches. Production was 2.53 bushels per inch measured. Irrigation, rainfall, and net soil water was 105 percent of that reported by the North Plains PET Network for fully irrigated wheat.

DRYLAND WHEAT PRODUCTION ARMSTRONG COUNTY - 2007 BRYAN BICHSEL AND KYLE STEWART

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY:	Planted:	September 20	Fertilizer:	30-30-0
	Variety:	Cutter	Insecticide:	None Reported
	Seeding Rate:	40 lbs	Herbicide:	Ally and 2-4-D
	Soil Type:	Pullman Clay Loam	Harvested:	June 29
	Row Width:	12 Inches	No. Acres:	150

RAINFALL

Jan- 0.80" Feb- 0.40" Mar- 2.85" Apr- 1.10" May- 4.10" Jun- 0.95" Total: 10.20"

MATERIALS AND METHODS: One hundred and fifty acres of dryland were planted to wheat. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results						
RAIN/SOIL	SOIL PET PRODUCTION				UE @ \$5.50/ BU- \$	
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil	
13.29	76*	34	2.56	\$187.00	\$14.07	

*Includes 3.09 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Soil water was good at 1, 2 and 3 feet until mid April. The crop used all soil water from one and two feet. The crop then used most of 6.15 inches of rainfall that followed plus two inches of soil water from three feet. Production was 2.56 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 13.29 inches which was 76 percent of that reported by the North Plains PET Network for fully irrigated wheat.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

DRYLAND WHEAT PRODUCTION HARTLEY COUNTY - 2007 CJ KUPER AND NICK SIMPSON

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY: Planted:	October 12	Fertilizer:	None Reported
Variety:	Tam 111	Insecticide:	None Reported
Seeding Rate:	60 lbs	Herbicide:	None Reported
Soil Type:	Sunray Clay Loam	Harvested:	June 19
Row Width:	Drilled	No. Acres:	300

RAINFALL

Jan- 0.00" Feb- 0.00" Mar- 2.60" Apr- 2.20" May- 2.25" Jun- 0.75" Total: 7.80"

MATERIALS AND METHODS: Three hundred acres of dryland were planted to wheat. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results						
RAIN/SOIL	RAIN/SOIL PET PRODUCTION				UE @ \$5.50/ BU- \$	
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil	
13.80	78*	32	2.32	\$176.00	\$12.75	

*Includes 6.00 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Soil water was good at 1, 2 and 3 feet beginning. Timely rainfall in March, April and May totaled 7.05 inches was fully used by the crop plus 6.0 inches of soil water. Production was 2.32 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 13.80 inches which was 78 percent of that reported by the North Plains PET Network for fully irrigated wheat.

Extension programs serve people of all ages regardless of socioeconomic level, race, color, sex, religion, disability or national origin. The Texas A&M University System, U. S. Department of Agriculture, and the County Commissioners Courts of Texas Cooperating.

DRYLAND WHEAT PRODUCTION ARMSTRONG COUNTY - 2007 BRYAN BICHSEL AND KYLE STEWART

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report for fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY: Plante	d: September 22	Fertilizer:	30-30-0
Variet	cy: Cutter	Insecticide:	None Reported
Seedin	ng Rate: 40 lbs	Herbicide:	Ally and 2-4 D
Soil T	ype: Pullman Clay Loam	Harvested:	June 29
Row V	Width: 12 Inches	No. Acres:	200

RAINFALL

Jan- 0.80" Feb- 0.40" Mar- 2.75" Apr- 1.90" May- 3.85" Jun- 0.95" Total: 10.65"

MATERIALS AND METHODS: One hundred and sixty-eight acres of dryland were planted to wheat. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results						
RAIN/SOIL PET PRODUCTION			CROP VALUE @ \$5.50/ BU- \$			
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil	
13.86	81*	25	1.80	\$137.50	\$9.92	

*Includes 3.21 inches of water removed from three feet of soil and rainfall.

CONCLUSION: The soil profile was approximately two-thirds full at 1, 2 and 3 feet beginning. That is about four inches of available plant water. Periodic, timely rainfall in March, April and May totaled 8.50 inches. Cattle were removed March 5. Production was 1.80 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 13.86 inches which was 81 percent of that reported by the North Plains PET Network for fully irrigated wheat.

DRYLAND WHEAT PRODUCTION GRAY COUNTY - 2007 RAY RAPSTINE, BRANDON McGINTY, AND CHARLEY RUSS

- **PROBLEM:** High Plains growers need more field measurements and documented data on wheat production from available rainfall to make management decisions and conserve water.
- **OBJECTIVES:** To determine wheat production from measured rainfall and soil moisture quantities and relating it to the North Plains PET Network report of fully irrigated wheat to help growers predict annual yield potential and manage crop production.

SUMMARY:	Planted:	November 15	Fertilizer:	50 lbs nh3
	Variety:	Jagaline, TAM 110	Insecticide:	None Reported
	Seeding Rate	: 30 Lbs/Acre	Herbicide:	None
	Soil Type:	Pullman Clay Loam	Harvested:	Abandoned May 11
	Row Width:	10 Inches	No. Acres:	5

RAINFALL

Dec- 2.10" Jan- 0.70" Feb- 0.40" Mar- 4.15" Apr- 1.25" May- 1.90" Total: 10.50"

MATERIALS AND METHODS: Five acres of dryland were planted to wheat variety test plot. A rain gauge located at the site measured rainfall. Soil moisture sensors were installed at 1, 2, and 3 feet in the root zone to monitor soil water levels in variety Tam 110. They were read and recorded two times each week and reported on the following page. Seasonal rainfall and additional soil water used are reported on the following page in comparison to that reported by the North Plains PET Network for fully irrigated wheat.

2007 Demonstration Results								
RAIN/SOIL	РЕТ	PRODUCTION		CROP VALUE @ \$5.50/ BU- \$				
Inches	% Of	Bu/Ac	Bu/Ac-In Rain/ Soil	Per Acre	Acre-Inch of Rain/ Soil			
10.50	79*	None	None	None	None			

*Includes 0.00 inches of water removed from three feet of soil and rainfall.

CONCLUSION: Soil water was good at 1, 2 and 3 feet in February and until the crop and test plot was abandoned on May 11. It appeared some plots would be sufficient plant stands to harvest. However because of poor plant populations, the test plots were abandoned May 11. It was too dry after seed were planted in November for germination. There were too many dryland acres that way. This was one. Production was 0 bushels per inch of rainfall and net soil water. Rainfall and soil water totaled 10.50 inches which was 79 percent of that reported by the North Plains PET Network for fully irrigated wheat.

· · · · · · · · · · · · · · · · · · ·								
	INC	PRODUCTION						
CROP	IRRIGATION	RAIN/IRRIG/ SOIL	ACRE	INCH IRRIG	INCH RAIN/IRRIG/ SOIL			
Corn (129)	21.42	30.71	10868	507.40	353.86			
Cotton (115)	10.60	23.62	1105	125.5	46.79			
Grain Sorg. (67)	12.12	23.22	6492	535.58	279.66			
Peanut (47)	16.56	27.68	3876	234.14	140.05			
Silage Corn (21)	21.00	29.41	25	1.19	0.85			
Silage Sorg. (11)	13.92	23.84	21	1.54	0.90			
Soybean (54)	14.06	26.51	53	3.78	2.01			
Wheat (101)	8.08	18.15	66	8.19	3.64			

AGRIPARTNER IRRIGATION

In 1978, Texas AgriLife Extension Service launched the AgriPartner crop irrigation and production educational program in cooperation with Panhandle area growers, Agriindustry, Commodity and Groundwater District leaders and others. The above summary data recorded in more than 600 grower fields are one of a kind in the United States. The data shows average irrigation and crop production. It lists average seasonal irrigation, rainfall and net soil water measured in each grower's field during the ten year program. A unique measurement in soil water using sensors installed at 1, 2 and 3 feet in each field to combine with rainfall and irrigation measurements. Seasonal rainfall, irrigation and net soil water are added to obtain total water available to the crop during each annual growing season. Crop production per inch of irrigation provides individual growers and their neighbor's information to help make timely management decisions and crop production changes. Crop production per inch of irrigation is a unique management tool that reviews management decisions, irrigation system efficiency, crop production characteristics and the response to irrigation costs invested. Production per inch of total rainfall, irrigation and net soil water measured in producing a specific crop yield indicates how much water individual crops require and how to plan and commit available water. The number in parenthesis by each crop is the total number of grower field tests the average summary represents for that crop. For example, for corn the data represents 129 grower fields. This and similar data is the basis for the irrigation water demand from the Ogallala aquifer for Panhandle Region A's state water plan. 2007 is the last year the Texas AgriLife Extension educational program will be conducted. Special thanks to all growers who cooperated in the water management program and to the Texas Water Development Board for funding data collection for the '07 crop year. Additional data is available on Website http://amarillo.tamu.edu. Open AgriLife Extension programs located in the left and the **AgriPartner link.**

Economic Analysis of 2007 Agripartner Irrigation Result Demonstrations-Task 2

by

Steve Amosson and Fran Bretz

Texas AgriLife Research and Extension Center at Amarillo Amarillo, Texas

Technical Report Submitted to the Texas Water Development Board Austin, Texas 78701

May 2008
Economic Analysis of 2007 Agripartner Irrigation Result Demonstrations – Task 2

Steve Amosson and Fran Bretz¹

The objective of Task 2 was to estimate the economic returns per acreinch of irrigation water applied for each of the irrigated demonstrations.

Methodology

The value of irrigation water applied was measured by calculating the return over variable cost (ROVC) for each irrigated demonstration and subtracting the ROVC for the common dryland alternative. The net ROVC was divided by the acre-inches applied in that demonstration to estimate the value per acre-inch applied.

Texas AgriLife Extension Service crop budgets projected for 2007 were used to establish the variable costs associated with both the irrigated and dryland crops evaluated. No less than three sources are used to estimate the variable costs (seed, fertilizer, chemicals, etc.) associated with the budgets. The budgets were modified to reflect the water applied and production associated with each demonstration. Budgeted yields for the dryland alternatives (grain sorghum for the summer crops and wheat for the winter crops) were modified with an average of the 2007 yields reported by the Texas Agricultural Statistics Service (TASS). Substituting TASS yields helped negate yield variations caused by climatic factors, thus, resulting in a more representative accounting of the value of irrigation water. In addition, actual harvest prices were substituted for the

¹ Regents Fellow, Professor and Extension Economist, Texas AgriLife Extension Service, and Research Associate, Texas AgriLife Research, Amarillo, Texas.

projected prices in the budgets. An average of actual irrigation fuel prices from the three primary venders in the region during the irrigation season were utilized in the budgets. Examples of the irrigated and dryland budgets are given in Appendix A.

The fixed costs associated with each of the irrigated systems were not used in the analysis, since irrigators were faced with a short run decision and already had the investment in these systems. In addition, some of the demonstrators were double cropping which would have distorted the analysis if fixed cost were included. For more information on the fixed cost associated with each delivery system, consult the Texas AgriLife Extension Service crop budgets or Amosson et al. 2001.

Results

The dryland alternatives (grain sorghum and wheat) in 2007 were estimated to have a return over variable cost (ROVC) of \$69.57 and \$118.97 per acre after the budgets were adjusted for the actual 2007 yields. The average ROVC per acre by irrigated crop ranged from \$502.43/acre for cotton to \$136.95/acre for peanuts, Table 1. This resulted in a net ROVC to irrigation that varied from \$432.86/acre (cotton) to \$61.24/acre (wheat). Standardizing the value of the water to an acre-inch of applied ranged from \$66.87/acre-inch for cotton to a low of \$9.35/acre-inch for peanuts. The ROVC/acre-inch for the sorghum silage, corn, grain sorghum, soybeans and wheat were \$29.88, \$17.88, \$14.74, \$12.78 and \$10.05, respectively.

Cron	Viold	Prico/Unit	Gross	Variable	ROVC	ROVC	ROVC	Applied	ROVC/
Clop	Tielu	FICe/Onic	Revenue	Cost	(Irrigated)	(Dryland)	(Net)	Ac-in	Ac-in
Corn	230	\$3.92/bu	\$903.11	\$507.64	\$395.47	\$69.57	\$325.89	18.22	\$17.88
	Cotton Lint 1,522	\$0.64/lb							
Cotton	Cottonseed 1.06	\$130/ton	\$1,112.40	\$609.97	\$502.43	\$69.57	\$432.86	6.47	\$66.87
Grain Sorghum	73.21	\$6.29/cwt	\$460.52	\$269.04	\$191.48	\$69.57	\$121.90	8.27	\$14.74
Peanuts	1.919	420/ton	\$805.88	\$668.92	\$136.95	\$69.57	\$102.03	10.91	\$9.35
Sorghum Silage	21.80	\$30/ton	\$664.00	\$334.06	\$329.94	\$69.57	\$260.36	8.72	\$29.88
Soybeans	45	\$8.75/bu	\$383.18	\$218.97	\$164.21	\$69.57	\$94.63	7.41	\$12.78
Wheat	73	\$5.50/bu	\$399.14	\$218.93	\$180.21	\$118.97	\$61.24	6.09	\$10.05

Table 1. Economic returns per acre-inch of irrigation water applied to 2007 irrgated demonstrations in the Texas Panhandle.

The economic evaluation for each of the irrigated demonstrations is given in Table 2. The net return over variable cost for the 13 corn demonstrations ranged from \$154.17 per acre to \$470.77 per acre. The ROVC/acre-inch applied varied from a low of \$8.11 to \$25.81 with an average of \$17.88. The two demonstrators that applied the most water (25.62 and 23.32 acre-inches) had ROVC/acre-inch of \$13.29 and \$11.70, well below the average.

The exceptional yields in the cotton demonstrations resulted in the highest net ROVC among all the irrigated crops. Excluding the demonstration that had production problems, net ROVC ranged from \$764.59 to -\$8.60 and ROVC/acreinch from \$167.01 to -\$5.73. Grain sorghum demonstrations yielded a net ROVC ranging from \$223.09 per acre to -\$10.26 with an associated ROVC/acre-inch range of negative to \$39.34. The one demonstration that applied significantly more water (13 acre-inches) had the second lowest ROVC/acre-inch.

The peanut demonstrations had a net ROVC per acre ranging from \$201.58 to \$40.48 with a corresponding ROVC/acre-inch range of \$16.66 to \$4.74 for an average of \$9.35. Only two sorghum silage and two soybean demonstrations were conducted, the sorghum silage demonstrations averaged a ROVC/acre-inch of \$29.88 and the soybean demonstrations averaged \$12.78 per acre-inch. The wheat demonstrations had a large variability in net ROVC

ranging from \$178.82 to -\$70.59/acres. The average ROVC/acre-inch for the wheat was \$10.05. However, if the demonstration that was basically dryland (applied 1.15 acre-inches) was eliminated from the calculations, the average ROVC/acre-inch increased to \$12.03.

There was insufficient data to draw any definitive conclusions between delivery systems with only one drip demonstration and two furrow demonstrations being conducted. However, results were consistent with expectations. The drip demonstration conducted on corn yielded a ROVC/acreinch of \$25.40 considerably better than the average of \$17.88 suggesting the demonstration benefited from higher application efficiency. Conversely, the furrow demonstrations (grain sorghum and sorghum silage) had lower ROVC/acre-inch \$8.69 and \$23.98 compared with the demonstration averages of \$14.74 and \$29.88, respectively. This is consistent with the lower application efficiency expected with furrow irrigation relative to sprinkler.

Table 2. Econ wheat in the T€	omic returns per acre sxas Panhandle.	e-inch of irriç	gation water fo	r 2007 irri(gated demor	nstrations ii	ncluding corn	n, cotton, gr	ain sorghum	, peanuts, s	orghum sila	ige, soybe	ans, and
						Corn							
County	Producer	Method of Irrigation	Corn Yi	eld	Price/L	Jnit	Gross Revenue	Variable Cost	ROVC (Irrigated)	ROVC (Dryland)	ROVC (Net)	Applied Ac-in	ROVC/ Ac in
Sherman	Justin Crownover	Sprinkler	270		\$3.92/	,pu	\$1,058.40	\$518.06	\$540.34	\$69.57	\$470.77	18.24	\$25.81
Hartley	W ade Lenz	Sprinkler	263		\$3.92/	nq,	\$1,030.96	\$518.34	\$512.62	\$69.57	\$443.05	18.53	\$23.91
Hutchinson	Craig McCloy	Drip	251		\$3.92/	nq,	\$983.92	\$499.36	\$484.56	\$69.57	\$414.99	16.34	\$25.40
Dallam	Sieto Mellema	Sprinkler	249		\$3.92/	nq,	\$976.08	\$566.03	\$410.05	\$69.57	\$340.48	25.62	\$13.29
M oo re	Harold Grall	Sprinkler	228		\$3.92/	nq,	\$893.76	\$501.78	\$391.98	\$69.57	\$322.41	17.50	\$18.42
Ochiltree	Dan Krienke #8	Sprinkler	228		\$3.92/	nq,	\$893.76	\$488.60	\$405.16	\$69.57	\$335.58	15.68	\$21.40
M oo re	Butch Harbert	Sprinkler	227		\$3.92/	nq,	\$889.84	\$510.57	\$379.27	\$69.57	\$309.70	18.75	\$16.52
Sherman	John Engelbrecht	Sprinkler	226		\$3.92/	nq	\$885.92	\$543.40	\$342.52	\$69.57	\$272.95	23.32	\$11.70
Ochiltree	Dan Krienke #47	Sprinkler	222		\$3.92/	nq,	\$870.24	\$497.54	\$372.70	\$69.57	\$303.13	17.13	\$17.70
Dallam	Robert Gordon	Sprinkler	220		\$3.92/	nq	\$862.40	\$515.63	\$346.77	\$ 69.57	\$277.20	19.70	\$14.07
Hartley	Bill Cole	Sprinkler	218		\$3.92/	,pn	\$854.56	\$452.84	\$401.72	\$69.57	\$332.14	11.10	\$29.92
Gray	John R. Spearman	Sprinkler	208		\$3.92/	,pn	\$815.36	\$485.72	\$329.64	\$69.57	\$260.07	16.00	\$16.25
Collingsworth	Dannie Morris	Sprinkler	185		\$3.92/	nq,	\$725.20	\$501.46	\$223.74	\$ 69.57	\$154.17	19.00	\$8.11
		Average	230		\$3.92/	nq,	\$903.11	\$507.64	\$395.47	\$69.57	\$325.89	18.22	\$17.88
					0	otton							
County	Producer	Method of Irrigation	Cotton Lint	rice/Unit	C otton F	Price/Unit	Gross	Variable	ROVC (Irrigated)	ROVC		Applied Ac-in	ROVC/ Ac in
Briscoe	Darrel Johnson	Sprinkler	2.153	\$0.64/lb	1.5071	\$130/ton	\$1.573.84	\$739.68	(IIII)galeu) \$834.16	(U)	\$764.59	9.20	\$83.11
Carson	Geno Abbe	Sprinkler	2,000	\$0.64/lb	1.4000	\$130/ton	\$1.462.00	\$677.64	\$784.36	\$69.57	\$714.79	4.28	\$167.01
Sherman	Kerry Cartright	Sprinkler	1,923	\$0.64/lb	1.3461	\$130/ton	\$1,405.71	\$705.70	\$700.01	\$69.57	\$630.44	10.00	\$63.04
Collingsworth	Tony Cox	Sprinkler	1,590	\$0.64/lb	1.1100	\$130/ton	\$1,161.90	\$632.85	\$529.05	\$69.57	\$459.47	7.91	\$58.09
Deaf Smith	Dale Kleuskens	Sprinkler	1,573	\$0.64/lb	1.1011	\$130/ton	\$1,149.86	\$606.41	\$543.46	\$69.57	\$473.88	5.75	\$82.41
Gray	John R. Spearman	Sprinkler	1,488	\$0.64/lb	1.0416	\$130/ton	\$1,087.73	\$601.35	\$486.38	\$69.57	\$416.80	6.00	\$69.47
Collingsworth	Pat & Rod White	Sprinkler	1,320	\$0.64/lb	0.9200	\$130/ton	\$964.40	\$586.86	\$377.54	\$69.57	\$307.97	8.02	\$38.40
Moore	Keith Watson	Sprinkler	980	\$0.64/lb	0.6860	\$130/ton	\$716.38	\$510.41	\$205.97	\$69.57	\$136.40	5.60	\$24.36
Deaf Smith	Charles Schlabs	Sprinkler	670	\$0.64/lb	0.4690	\$130/ton	\$489.77	\$428.79	\$60.98	\$69.57	-\$8.60	1.50	-\$5.73
		Average	1,522	\$0.64/lb	1.0645	\$130/ton	\$1,112.40	\$609.97	\$502.43	\$69.57	\$432.86	6.47	\$66.87
					Grain	Sorgh	um						
County	Producer	Method of Irrigation	Grain Sorghu	ım Yield	Price/L	Jnit	Gross	Variable	ROVC (Irrigated)	ROVC		Applied Actin	ROVC/ Ac in
Ochiltree	Dan Krienke	Sprinkler	91.28		\$6.29/0	owt	\$574.15	\$281.48	\$292.67	\$69.57	\$223.09	8.61	\$25.91
Deaf Smith	Greg Urbanczyk	Furrow	77.31		\$6.29/0	owt	\$486.28	\$303.74	\$182.54	\$69.57	\$112.96	13.00	\$8.69
Ochiltree	Dan Krienke	Sprinkler	74.48		\$6.29/	owt	\$468.48	\$239.57	\$228.91	\$69.57	\$159.34	4.05	\$39.34
Deaf Smith	Dale Kleuskens	Sprinkler	73.00		\$6.29/(cwt	\$459.17	\$265.21	\$193.96	\$69.57	\$124.39	7.70	\$16.15
Gray	Terry O'Neal	Sprinkler	50.00		\$6.29/(cwt	\$314.50	\$255.19	\$59.31	\$69.57	-\$10.26	8.00	-\$1.28
		Average	73.21		\$6.29/(cwt	\$460.52	\$269.04	\$191.48	\$69.57	\$121.90	8.27	\$14.74

Table 2. (cont	inued)										
				Peanuts							
County	Producer	Method of Irrigation	Peanuts Yield	Price/Unit	Gross Revenue	Variable Cost	ROVC (Irrigated)	ROVC (Dryland)	ROVC (Net)	Applied Ac-in	ROVC/ Ac in
Collingsworth	Joe Baumgardner	Sprinkler	2.345	\$420/ton	\$984.90	\$713.75	\$271.15	\$69.57	\$201.58	12.10	\$16.66
Collingsworth	Dan & Rex Henard	Sprinkler	2.030	\$420/ton	\$852.60	\$680.89	\$171.71	\$69.57	\$102.13	11.26	\$9.07
Collingsworth	Pat & Rod White	Sprinkler	1.750	\$420/ton	\$735.00	\$624.95	\$110.05	\$69.57	\$40.48	6.82	\$5.94
Collingsworth	Dannie Morrris	Sprinkler	1.550	\$420/ton	\$651.00	\$656.09	-\$5.09	\$69.57	\$63.91	13.47	\$4.74
		Average	1.919	\$420/ton	\$805.88	\$668.92	\$136.95	\$69.57	\$102.03	10.91	\$9.35
				Sorghum Si	lage						
County	Producer	Method of Irrigation	Sorghum Silage Yield	Price/Unit	Gross Revenue	Variable Cost	ROVC (Irrigated)	ROVC (Drvland)	ROVC (Net)	Applied Ac-in	ROVC/ Ac
Deaf Smith	Frankie Bezner	Furrow	23.60	\$30/ton	\$708.00	\$362.62	\$345.38	\$69.57	\$275.81	11.50	\$23.98
Potter	Mike Menke	Sprinkler	20.00	\$30/ton	\$620.00	\$305.51	\$314.49	\$69.57	\$244.91	5.93	\$41.30
		Average	21.80	\$30/ton	\$664.00	\$334.06	\$329.94	\$69.57	\$260.36	8.72	\$29.88
				Soybean	S						
County	Producer	Method of Irrigation	Soybeans Yield	Price/Unit	Gross Revenue	Variable Cost	(Irrigated)	ROVC (Drvland)		Applied Ac-in	ROVC/ Ac
Carson	Mike Dudenhoeffer	Sprinkler	45	\$8.75/bu	\$393.75	\$222.49	\$171.26	\$69.57	\$101.68	7.55	\$13.47
Carson	Joe Homer	Sprinkler	45	\$8.75/bu	\$372.60	\$215.44	\$157.16	\$69.57	\$87.58	7.26	\$12.06
		Average	45	\$8.75/bu	\$383.18	\$218.97	\$164.21	\$69.57	\$94.63	7.41	\$12.78
				Wheat							
County	Producer	Method of	Wheat Yield	Price/Unit	Gross	Variable	ROVC	ROVC	ROVC	Applied	ROVC/ Ac
641000	0000	Irrigation			Revenue	Cost	(Irrigated)	(Dryland)	(Net)	Ac-in	. ⊑
Ochiltree	Dan Krienke	Sprinkler	103	\$5.50/bu	\$566.50	\$268.71	\$297.79	\$118.97	\$178.82	11.55	\$15.48
Ochiltree	Dan Krienke	Sprinkler	88	\$5.50/bu	\$484.00	\$226.49	\$257.51	\$118.97	\$138.54	6.21	\$22.31
Moore	David Block	Sprinkler	82	\$5.50/bu	\$451.00	\$210.78	\$240.22	\$118.97	\$121.25	4.25	\$28.53
Deaf Smith	Greg Urbanczyk	Sprinkler	80	\$5.50/bu	\$440.00	\$241.58	\$198.42	\$118.97	\$79.45	9.00	\$8.83
Deaf Smith	Ray Schlabs, Jr.	Sprinkler	65	\$5.50/bu	\$357.50	\$204.97	\$152.54	\$118.97	\$33.56	4.50	\$7.46
Deaf Smith	Ray Schlabs, Jr.	Sprinkler	50	\$5.50/bu	\$275.00	\$208.37	\$66.63	\$118.97	-\$52.34	6.00	-\$8.72
Collingsworth	Rex & Dan Henard	Sprinkler	40	\$5.50/bu	\$220.00	\$171.62	\$48.38	\$118.97	-\$70.59	1.15	-\$61.39
		Average	73	\$5.50/bu	\$399.14	\$218.93	\$180.21	\$118.97	\$61.24	60.09	\$10.05

Discussion and limitations

The direction of results was as anticipated with cotton, corn and sorghum silage generating the highest ROVC/acre-inch with grain sorghum, wheat and soybeans generating relatively lower returns. Peanuts had the lowest ROVC/acre-inch, which was not anticipated. While the number of demonstrations by drip and furrow delivery systems was limited, the anticipated impact of their relative application efficiencies was apparent in the analysis.

The magnitude of the returns should be viewed as somewhat distorted for several reasons. First, environmental factors in 2007 including above average rainfall and perfect growing conditions in the fall led to well above average production. An attempt was made to negate this distortion by using actual 2007 yields of alternative dryland crops in calculating the net return over variable cost due to irrigation. However, dryland cotton that is considered the primary alternative to irrigated cotton could not be used in the analysis because the 2007 production data is not yet available from TASS so dryland grain sorghum was utilized. In addition, the rapid price rise of approximately a dollar per bushel from 2006 to 2007 harvest prices in corn, wheat and soybeans (~ +\$3.50) may have distorted the returns for corn, wheat, grain sorghum, sorghum silage and soybeans.

Economic analysis of the demonstration data does provide some valuable information relative to the economic value of irrigation by crop. However, utilizing a single year's data limits the dimensions and validity of the analysis. It is imperative that this type of demonstrations be analyzed in the future and/or a

complete analysis of the historical data set associated with the Agripartner program which has been in existence the past ten years be conducted to be able to get statistically valid answers to such questions as the value of irrigation by crop, differences among systems, etc.

References

Amosson, S.H., L. New, L. Almas, F. Bretz, and T. Marek. 2006. "Economics of Irrigation Systems." 2001. B-6113. Texas Cooperative Extension, College Station, Texas. December.

Amosson, S. H., J. Smith, L. Almas, F. Bretz, B. Guerrero, and M. Freeman. "Texas Crops and Livestock Budgets, Texas High Plains, Projected for 2007." 2006. B-1241 (C1 and C2) and B-1241 (L1 and L2), Texas Cooperative Extension, College Station, Texas. December.

Texas Agricultural Statistics Service. 2007. Texas Agricultural Statistics Service: U.S. and All States County Data – Crops. Internet site: http://nass.usda.gov/QUICKSTATS/PULLDATA_US_CNTY.jsp. (accessed April 1, 2008).

Appendix A

Estimated costs and returns per Acre Bt Corn (Corn Borer) for Grain, Sprinkler Irrig, (NG) 2007 Projected Costs and Returns per Acre

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars		dollars
Corn	bu.	3.92	220.0000	862.40
TOTAL INCOME				862.40
DIRECT EXPENSES				
SEED				
seed - Bt corngr.	bags	145.00	0.3500	50.75
INSECTICIDE				
miticide	acre	25.00	1.0000	25.00
HERBICIDE				
herb - corn pre	acre	17.30	1.0000	17.30
herb -corn post	acre	15.00	1.0000	15.00
FERTILIZER				
fert(N) - ANH ₃	lb.	0.20	126.0000	25.20
fert(P) - liquid	lb.	0.41	60.0000	24.60
fert(N) - liquid	lb.	0.35	78.0000	27.30
CUSTOM				
fert appl - ANH ₃	acre	9.00	1.0000	9.00
crop consultant	acre	6.00	1.0000	6.00
harv & haul - corn	bu.	0.26	220.0000	57.20
CROP INSURANCE				
corn -CP	acre	15.00	1.0000	15.00
OPERATOR LABOR				
Implements	hour	9.10	0.2925	2.66
Tractors	hour	9.10	0.3965	3.60
HAND LABOR				
Implements	hour	9 10	0.1527	1.38
TRRIGATION LABOR	nour	5.10		
Center Pivot	hour	9 10	1,4080	12.81
DIESEL FIIEL				
Tractors	gal	2 00	2 1861	4 37
GA SOLINE	gar	2.00	2.1001	1.57
Pickup	gal	2 25	2 0100	4 52
IRRIGATION ENERGY	gar	2.25	2.0100	1.52
Contor Bivot	ag-in	10 70	7 24	142 63
DEDATE & MAINTENANCE	ac 111	19.70	/.21	112.05
Imploments	Agro	5 61	1 0000	5 61
Tractors	Acre	4 90	1.0000	1 90
Dialaum	ACTE	4.00	1.0000	4.00
Contor Divet	ACLE	0.10	1.0000	44 66
Center Pivot	ac-in	2.03	22.0000	44.00
INTEREST ON OP. CAP.	Acre	10.08	1.0000	10.08
TOTAL DIDEOT EXDENCES				515 62
DETUDNE NOVE DIDECT EXPENSES				246 77
REIURNS ABOVE DIRECT EXPENSES				340.//
ETVED EVDENCEC				
FIXED EXPENSES	7	10 10	1 0000	10 10
Implements	Acre	10.19	1.0000	10.19
Tractors	Acre	8.55	1.0000	8.55
Pickup	Acre	0.30	1.0000	0.30
Center Pivot	Acre	33.60	1.0000	33.60
TOTAL FIXED EXPENSES				52.64
TOTAL SPECIFIED EXPENSES				568.27
RETURNS ABOVE TOTAL SPECIFIED	EXPENSES			294.13
ALLOCATED COST ITEMS				
cash rent - corn	acre	75.00	1.0000	75.00
RESIDUAL RETURNS				219.13

Estima	ated	costs	and	return	s per	Acre			
Cottor	n, Sj	prinkl	er Ir	rigate	d (He	rbici	de	Resistant	Seed)
2007 1	Proj	ected	Costs	and R	eturn	s per	Ad	cre	

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars		dollars
INCOME				
cotton lint	lb.	0.64	850.0000	544.00
cottonseed	ton	130.00	0.6000	78.00
TOTAL INCOME				622.00
DIRECT EXPENSES				
SEED				
seed - cotton	lb.	2.40	15.0000	36.00
seed treatment-cttn	acre	12.00	1.0000	12.00
FERTILIZER				
fert(P) - dry	1b.	0.30	25.0000	7.50
fert(N) - dry	1b.	0.35	100.0000	35.00
CUSTOM				
fert appl - dry	acre	4.50	1.0000	4.50
prepiant nerb + appi acre		12.00	1.0000	12.00
post emerg nerb+appi acre	1	10.00	1.0000	10.00
insec+appi - cotton	appi	12.00	1.0000	12.00
strip & modulo-setto	acre	25.00	21 2500	18.75
gipping - gottop	cwt.	2 40	21 2500	75 00
CROP INSURANCE	Cwt.	2.40	51.2500	/5.00
cotton - CP	acre	20 00	1 0000	20 00
BOLL WEEVIL ASSESS	ucic	20.00	1.0000	20.00
Irrigated	acre	12.00	1.0000	12.00
OPERATOR LABOR				
Implements	hour	9.10	1.0587	9.63
Tractors	hour	9.10	1.0846	9.87
HAND LABOR				
Implements	hour	9.10	0.1908	1.73
IRRIGATION LABOR				
Center Pivot	hour	9.10	0.7680	6.98
DIESEL FUEL				
Tractors	gal	2.00	4.8545	9.70
GASOLINE				
Pickup	gal	2.25	3.5175	7.91
IRRIGATION ENERGY				
Center Pivot	ac-in	7.24	12.0000	86.88
REPAIR & MAINTENANCE				
Implements	Acre	12.45	1.0000	12.45
Tractors	Acre	11.77	1.0000	11.77
Pickup	Acre	0.28	1.0000	0.28
Center Pivot	ac-in	2.03	12.0000	24.36
INTEREST ON OP. CAP.	Acre	19.58	1.0000	19.58
TOTAL DIRECT EXPENSES				507.20
RETURNS ABOVE DIRECT EXPENSES				114.80
FIXED EXPENSES	_	00.05	1 0000	
Implements	Acre	22.35	1.0000	22.35
Diakun	Acre	19.04	1.0000	19.04
Conton Divet	Acre	0.54	1.0000	22 60
Center Pivot	ACLE	33.00	1.0000	33.00
TOTAL FIXED EXPENSES				76.33
TOTAL SPECIFIED FYDENSES				582 52
RETURNS ABOVE TOTAL SPECIFIED EXP	PENSES			38.47
ALLOCATED COST ITEMS				
cash rent - cottoni	acre	45.00	1.0000	45.00
RESIDUAL RETURNS				-6.53

Estimated costs and returns per Acre Cont. Sorghum, Sprinkler Irrigated, (NG) 2007 Projected Costs and Returns per Acre

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars	·	dollars
INCOME				
sorghum	cwt	6.29	70.0000	440.30
TOTAL INCOME				440.30
DIRECT EXPENSES				
SEED				
seed - sorghum	lb.	1.25	4.5000	5.62
FERTILIZER				
fert(N) - ANH ₃	lb.	0.20	60.0000	12.00
fert(P) - liquid	lb.	0.41	50.0000	20.50
fert(N) - liquid	lb.	0.35	40.0000	14.00
CUSTOM				
fert appl - ANH,	acre	9.00	1.0000	9.00
herb&appl-sorghumi	acre	21 12	1 0000	21 12
insectannl - sorghum	appl	13 00	0 3300	4 29
harvest & haul - sor	CWT	0.53	70.0000	37.10
OPERATOR LABOR				
Implements	hour	9 1 0	0 5437	4 94
Tractors	hour	9 10	0.6058	5 51
HAND LABOR	noul	5.10	0.0050	5.51
Implements	hour	9.10	0.1527	1.38
TRRIGATION LABOR				
Center Pivot	hour	9.10	0.8960	8.15
DIESEL FILEL	nour	5.10	0.0000	0.15
Tractors	gal	2.00	3,1646	6.32
GASOLINE	941	2100	5.1010	0.52
Pickup	gal	2.25	2,0100	4.52
TRRIGATION ENERGY	941	2125	2.0100	1102
Center Pivot	ac-in	7.24	14,0000	101.36
REPAIR & MAINTENANCE				
Implements	Acre	7.37	1.0000	7.37
Tractors	Acre	7.72	1.0000	7.72
Pickup	Acre	0.16	1.0000	0.16
Center Pivot	ac-in	2.03	14.0000	28.42
INTEREST ON OP. CAP.	Acre	12.02	1.0000	12.02
TOTAL DIRECT EXPENSES				311.50
RETURNS ABOVE DIRECT EXPENSES				128.80
FIXED EXPENSES				
Implements	Acre	13.43	1.0000	13.43
Tractors	Acre	14.07	1.0000	14.07
Pickup	Acre	0.30	1.0000	0.30
Center Pivot	Acre	33.60	1.0000	33.60
TOTAL FIXED EXPENSES				61.40
TOTAL SPECIFIED EXPENSES				372.90
RETURNS ABOVE TOTAL SPECIFIED EXP	ENSES			67.40
ALLOCATED COST ITEMS				
cash rent - sorghumf	acre	45.00	1.0000	45.00
RESIDUAL RETURNS				22.40

Estimated costs and returns per Acre Peanuts, Runner, Sprinkler Irrigated 2007 Projected Costs and Returns per Acre

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars		dollars
peanuts - runner	ton	420.00	2.2500	945.00
TOTAL INCOME				945.00
DIRECT EXPENSES				
SEED				
innoculant peanut	acre	6.00	1.0000	6.00
seed - peanut	lb.	0.81	100.0000	81.00
HERBICIDE		15 00	1 0000	15 00
FEPTILIZED	acre	15.00	1.0000	15.00
fert(N) = dry	lb	0 35	80 0000	28 00
$fert(\mathbf{R}) = dry$	lb.	0.35	50.0000	15 00
CUSTOM	10.	0.50	50.0000	10.00
fert appl - peanut	acre	4.50	1.0000	4.50
insectary - peanut	laas	12.00	1.0000	12.00
fung & appl - peanut	lage	14.00	3.0000	42.00
hoeing - peanut	acre	15.00	1.0000	15.00
dig & shake - peanut	acre	22.50	1.0000	22.50
harv&haul - peanuts	t.on	55.00	2.2500	123.75
drving - peanut	ton	30.00	2.2500	67.50
OPERATOR LABOR				
Implements	hour	9.10	1.5913	14.48
Tractors	hour	9.10	1.7942	16.32
HAND LABOR				
Implements	hour	9.10	0.4681	4.25
IRRIGATION LABOR				
Center Pivot	hour	9.10	1.3440	12.23
DIESEL FUEL				
Tractors	qal	2.00	9.1968	18.39
GASOLINE	5			
Pickup	gal	2.25	2.0100	4.52
IRRIGATION ENERGY				
Center Pivot	ac-in	7.24	21.0000	152.04
REPAIR & MAINTENANCE				
Implements	Acre	19.59	1.0000	19.59
Tractors	Acre	22.57	1.0000	22.57
Pickup	Acre	0.16	1.0000	0.16
Center Pivot	ac-in	2.03	21.0000	42.63
INTEREST ON OP. CAP.	Acre	30.68	1.0000	30.68
TOTAL DIRECT EXPENSES				736.36
RETURNS ABOVE DIRECT EXPENSES				208.64
FIXED EXPENSES				
Implements	Acre	32.75	1.0000	32.75
Tractors	Acre	41.46	1.0000	41.46
Pickup	Acre	0.30	1.0000	0.30
Center Pivot	Acre	33.60	1.0000	33.60
TOTAL FIXED EXPENSES				108.12
				841 17
RETURNS ABOVE TOTAL SPECIFIED EXI	PENSES			100.53
ALLOCATED COST ITEMS				
cash rent - peanuts	acre	75.00	1.0000	75.00
RESIDUAL RETURNS				25.53

Estimated costs and returns per Acre Sorghum Silage, Sprinkler Irrigated 2007 Projected Costs and Returns per Acre

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars		dollars
INCOME				
sorghum silage	ton	30.00	18.0000	540.00
TOTAL INCOME				540.00
DIRECT EXPENSES				
SEED				
seed - sorghum	lb.	1.25	7.0000	8.75
FERTILIZER				
fert(N) - ANH ₃	lb.	0.20	174.0000	34.80
fert(P) - dry	lb.	0.30	60.0000	18.00
CUSTOM				
fert appl - ANH_3	acre	9.00	1.0000	9.00
fert application	acre	4.50	1.0000	4.50
herb+appl - sorghum	acre	10.50	1.0000	10.50
insec+appl - sorghum	appl	13.00	0.3300	4.29
harv & haul - sorgh	ton	4.66	18.0000	83.88
OPERATOR LABOR				
Implements	hour	9.10	0.3796	3.45
Tractors	hour	9.10	0.4691	4.26
HAND LABOR				
Implements	hour	9.10	0.1527	1.38
IRRIGATION LABOR				
Center Pivot	hour	9.10	0.8320	7.57
DIESEL FUEL				
Tractors	gal	2.00	2.4264	4.85
GASOLINE				
Pickup	gal	2.25	3.0150	6.78
IRRIGATION ENERGY				
Center Pivot	ac-in	7.24	13.0000	94.12
REPAIR & MAINTENANCE	_			
Implements	Acre	6.28	1.0000	6.28
Tractors	Acre	5.90	1.0000	5.90
Pickup Comton Direct	Acre	0.24	12 0000	0.24
Center Pivot	ac-in	2.03	1 0000	26.39
INTEREST ON OP. CAP.	Acre	12.44	1.0000	12.44
TOTAL DIRECT EXPENSES				347.38
RETURNS ABOVE DIRECT EXPENSES				192.62
FIXED EXPENSES				
Implements	Acre	11.32	1.0000	11.32
Tractors	Acre	10.62	1.0000	10.62
Pickup	Acre	0.46	1.0000	0.46
Center Pivot	Acre	33.60	1.0000	33.60
TOTAL FIXED EXPENSES				56.00
				402 22
TOTAL SPECIFIED EXPENSES	ENGEG			403.38
RETURNS ABOVE TOTAL SPECIFIED EXP	ENSES			136.62
ALLOCATED COST ITEMS				
cash rent - sorghsil	acre	75.00	1.0000	75.00
RESIDUAL RETURNS				61.62

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars		dollars
INCOME				
soybeans	bu.	8.75	60.0000	525.00
TOTAL INCOME				525.00
DIRECT EXPENSES SEED				
seed – soybeans	lb.	0.45	60.0000	27.00
innoculant soybeans	acre	7.00	1.0000	7.00
FERTILIZER				
fert(P) - liquid CUSTOM	lb.	0.41	45.0000	18.45
herb+appl-soybeans i	acre	9.00	2.0000	18.00
insec+appl-soybeans	acre	10.24	0.5000	5.12
harv & haul - soybea OPERATOR LABOR	bu.	0.33	60.0000	19.80
Implements	hour	9.10	0.3225	2.93
Tractors	hour	9.10	0.4215	3.83
HAND LABOR				
Implements	hour	9.10	0.1527	1.38
IRRIGATION LABOR				
Center Pivot	hour	9.10	0.8960	8.15
DIESEL FUEL				
Tractors	gal	2.00	2.3443	4.68
GASOLINE				
Pickup	gal	2.25	2.0100	4.52
IRRIGATION ENERGY				
Center Pivot	ac-in	7.24	14.0000	101.36
REPAIR & MAINTENANCE				
Implements	Acre	5.55	1.0000	5.55
Tractors	Acre	4.75	1.0000	4.75
Pickup	Acre	0.16	1.0000	0.16
Center Pivot	ac-in	2.03	14.0000	28.42
INTEREST ON OP. CAP.	Acre	8.29	1.0000	8.29
TOTAL DIRECT EXPENSES				269.39
RETURNS ABOVE DIRECT EXPENSES				255.61
FIXED EXPENSES				
Implements	Acre	10.52	1.0000	10.52
Tractors	Acre	8.46	1.0000	8.46
Pickup	Acre	0.30	1.0000	0.30
Center Pivot	Acre	33.60	1.0000	33.60
TOTAL FIXED EXPENSES				52.88
TOTAL SORCIFIED EVDENSES				300 07
RETURNS ABOVE TOTAL SPECIFIED EXPE	NSES			202.73
ALLOCATED COST ITEMS		46 00	1 0000	45 00
CASH LEHL- SUYDEARS	acre	45.00	1.0000	40.00
VEDIDOAD KEIOKNO				101.13

Estimated costs and returns per Acre Soybeans, Roundup Ready, Sprinkler Irr., (NG) 2007 Projected Costs and Returns per Acre

Estimated costs and returns per Acre Cont. Wheat, Sprinkler Irrigated, (NG) 2007 Projected Costs and Returns per Acre

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars		dollars
INCOME				
wheat	bu.	5.50	65.0000	357.50
TOTAL INCOME				357.50
DIRECT EXPENSES				
seed- wheat a	bu.	7.00	1.5000	10.50
FERTILIZER	241		1	
$fert(N) - ANH_{2}$	lb	0 20	60 0000	12 00
fert(P) = dry	⊥£. lb	0.30	50.0000	15 00
	10.	0.50	50.0000	15.00
fort appl ANH	2.970	9 0 0	1 0000	9 00
fort appl dru	acre	9.00	1 0000	1 50
incontappi - dry	acre	4.50	1.0000	4.50
insectappi - wheat	acre	11.00	1.0000	22 60
Marvenaul-Wheat irr	bu.	0.44	65.0000	20.00
Implements	hour	0 10	0 2626	2 20
Tractors	hour	9.10	0.5050	4 68
	nour	9.10	0.5151	4.00
Implements	hour	9 10	0 2121	1 93
TREIGATION LABOR	nour	9.10	0.2121	1.75
Center Divot	hour	9 10	0 9600	8 73
DIESEL EUEL	nour	9.10	0.9000	0.75
Tractors	aal	2 00	2 4615	4 92
GASOLINE	gai	2.00	2.1015	1.72
Pickup	aal	2 25	2,0100	4.52
TRRIGATION ENERGY	gai	2.25	2.0100	1.52
Center Divot	ac-in	7 24	15 0000	108 60
REPAIR & MAINTENANCE	ac III	7.21	15.0000	100.00
Implements	Acre	4.47	1.0000	4.47
Tractors	Acre	5.55	1.0000	5.55
Pickup	Acre	0 16	1 0000	0 16
Center Pivot	ac-in	2.03	15.0000	30.45
INTEREST ON OP. CAP.	Acre	15.64	1.0000	15.64
TOTAL DIRECT EXPENSES				283.55
RETURNS ABOVE DIRECT EXPENSES				73.95
FIXED EXPENSES				
Implements	Acre	8.34	1.0000	8.34
Tractors	Acre	9.99	1.0000	9.99
Pickup	Acre	0.30	1.0000	0.30
Center Pivot	Acre	33.60	1.0000	33.60
TOTAL FIXED EXPENSES				52.23
TOTAL CODCIETED EVDENCES				335 79
TOTAL SECTUTED EVENDED	DENCES			222.70 21 72
REIGENS ABOVE IGTAL SPECIFIED EX	LENO FO			21.12
ALLOCATED COST ITEMS				
cash rent - wheati	acre	45.00	1.0000	46.00
RESIDUAL RETURNS				21.72

Estimated costs and returns per Acre Sorghum, Dryland, Continuous, Minimum Tillage 2007 Projected Costs and Returns per Acre

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars		dollars
INCOME				
Sorghum	cwt	6.29	24.5800	154.61
TOTAL INCOME				154.51
DIRECT EXPENSES				
SEED				
Seed - sorghum	lb.	1.25	2.2500	2.81
FERTILIZER				
$Fert(N) - ANH_3$	lb.	0.20	40.0000	8.00
CUSTOM				
Fert appl - ANH_3	acre	9.00	1.0000	9.00
Herb+appl - sorghum	acre	10.50	1.0000	10.50
Insec+appl - sorghum	appl	13.00	0.3300	4.29
Cust harv-sorgh dry	acre	12.60	1.0000	12.60
Cust haul-sorgh dry	cwt	0.25	24.5800	6.15
Implements	hour	9 10	0 1569	1 42
Tractors	hour	9.10	0.4412	4.01
HAND LABOR	nour	2.10	0.1112	1.01
Implements	hour	9.10	0.3104	2.82
DIESEL FUEL				
Tractors	gal	2.00	2.4507	4.90
GASOLINE	-			
Pickup	gal	2.25	2.0100	4.52
REPAIR & MAINTENANCE				
Implements	Acre	5.81	1.0000	5.81
Tractors	Acre	5.02	1.0000	5.02
Pickup	Acre	0.16	1.0000	0.16
INTEREST ON OP. CAP.	Acre	3.03	1.0000	3.03
TOTAL DIRECT EXPENSES				85.04
RETURNS ABOVE DIRECT EXPENSES				69.57
FIXED EXPENSES				
Implements	Acre	10.10	1.0000	10.10
Tractors	Acre	8.96	1.0000	8.96
Pickup	Acre	0.30	1.0000	0.30
TOTAL FIXED EXPENSES				19.36
TOTAL SDECIFIED EXDENSES				104 40
RETURNS ABOVE TOTAL SPECIFIED E	XPENSES			50.21
ALLOCATED COST ITEMS				
cash rent- sorghum	acre	15.00	1.0000	15.00
RESIDUAL RETURNS				35.21

Estimated costs and returns per Acre Continuous Wheat, Dryland 2007 Projected Costs and Returns per Acre

ITEM	UNIT	PRICE	QUANTITY	AMOUNT
		dollars		dollars
INCOME				
wheat	bu.	5.50	35.4800	195.14
TOTAL INCOME				195.14
DIRECT EXPENSES				
SEED				
seed- wheat	bu.	7.00	1.0000	7.00
FERTILIZER				
$fert(N) - ANH_3$	lb.	0.20	30.0000	6.00
CUSTOM				
fert appl - ANH_3	acre	9.00	1.0000	9.00
insec+appl - wheat	acre	11.00	0.5000	5.50
cust harv-wheat dry	acre	12.60	1.0000	12.60
cust haul-wheat dry	bu.	0.14	35.4800	4.97
OPERATOR LABOR				
Implements	hour	9.10	0.2764	2.51
Tractors	hour	9.10	0.4425	4.02
HAND LABOR				
Implements	hour	9.10	0.2121	1.93
DIESEL FUEL				
Tractors	gal	2.00	2.2211	4.44
GASOLINE				
Pickup	gal	2.25	2.0100	4.52
REPAIR & MAINTENANCE				
Implements	Acre	3.80	1.0000	3.80
Tractors	Acre	4.46	1.0000	4.46
Pickup	Acre	0.16	1.0000	0.16
INTEREST ON OP. CAP.	Acre	5.26	1.0000	5.26
TOTAL DIRECT EXPENSES				76.17
RETURNS ABOVE DIRECT EXPENSES				118.97
FIXED EXPENSES				
Implements	Acre	7.21	1.0000	7.21
Tractors	Acre	7.92	1.0000	7.92
Pickup	Acre	0.30	1.0000	0.30
TOTAL FIXED EXPENSES				15.43
TOTAL SDECIFIED EXDENSES				91 60
RETURNS ABOVE TOTAL SPECIFIED EXP	ENSES			103.54
ALLOCATED COST ITEMS		15 00	1 0000	15 00
cash rent - wheatd	acre	15.00	T.0000	15.00
RESIDUAL RETURNS				88.54

Texas Soybean Board

North Plains Groundwater Conservation District

Plains Cotton Growers

