Texas Water Reuse

National Science Foundation
April 28-29, 2015
Erika Mancha

Texas Water Development Board
The following presentation is based upon professional research and analysis within the scope of the Texas Water Development Board’s statutory responsibilities and priorities but, unless specifically noted, does not necessarily reflect official Board positions or decisions.
Mission

To provide
• Leadership,
• Information,
• Education, and
• Support for planning, financial assistance, and outreach for the conservation and responsible development of water for Texas.
Regional Water Planning Areas
Projected Existing Water Supplies by 2060

Volume (acre-feet per year)

- 2010: 482,164
- 2020: 510,692
- 2030: 549,497
- 2040: 581,817
- 2050: 593,312
- 2060: 613,701

2012 State Water Plan
Recommended Water Management Strategies by 2060

~915,000 acre-feet per year

- Reuse, 10.0%
- Groundwater, 8.8%
- Municipal Conservation, 7.1%
- Groundwater Desalination, 2.0%
- Conjunctive Use, 1.5%
- Seawater Desalination, 2.8%
- Aquifer Storage and Recovery, 0.9%
- Other Conservation, 0.3%
- Brush Control, 0.2%
- Weather Modification, 0.2%
- Surface Water Desalination, <0.1%
- Other Surface Water, 33.4%
- New Major Reservoir, 16.4%
- Irrigation Conservation, 16.4%

Source: Amended 2012 State Water Plan
Capital Costs

Capital costs of water treatment and distribution $88.9

Capital costs of wastewater treatment and collection $81.7

Capital costs of flood control $7.5

Total capital costs: $231 billion

$5.15 Billion for Reuse Water Management Strategies

Capital costs of water management strategies recommended in 2012 State Water Plan $53.1
Clean Water State Revolving Fund

Who can apply?
• Political subdivisions
• Federally recognized tribes
• Private entities for newly eligible projects
 – Reduce publically-owned water treatment works capacity through reuse
 – Reduce energy consumption needs for publically-owned treatment works
 – Reuse or recycling wastewater

Eligible Projects:
• Wastewater infrastructure
• Reuse/conservation/stormwater facilities
• Nonpoint source pollution control
State-Funded Financial Programs

<table>
<thead>
<tr>
<th>Programs</th>
<th>Project Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Agricultural Water Conservation</td>
<td>• Sewer treatment plants</td>
</tr>
<tr>
<td>• Economically Distressed Areas Program</td>
<td>• Collection systems</td>
</tr>
<tr>
<td>• State Participation Program</td>
<td>• Lift stations</td>
</tr>
<tr>
<td>• Texas Water Development Fund</td>
<td>• System acquisition</td>
</tr>
<tr>
<td>• State Water Implementation Fund for Texas (SWIFT)</td>
<td>• System Rehabilitation</td>
</tr>
<tr>
<td></td>
<td>• Non-point source pollution abatement</td>
</tr>
<tr>
<td></td>
<td>• Trunk lines</td>
</tr>
<tr>
<td></td>
<td>• Reuse projects</td>
</tr>
</tbody>
</table>
Direct Potable Water Reuse Existing and Proposed Facilities

- **Raw Water Production Facility**
 - Operating since May 2013

- **Direct Potable Reuse Project**
 - Operating since July 2014 (emergency project)

- **Advanced Purified Water Treatment**
 - Completed piloting protocol

- **Direct Potable Reuse Project**
 - Awaiting city council approval
Raw Water Production Facility in Big Spring, Texas
Direct Potable Reuse Project in Wichita, Texas
Advanced Purified WTP Concept

Advanced Purified WTP

Source Water → MF/UF → NF or RO → UV/AOP → GAC for H_2O_2 Quenching → Engineered Storage → Distribution System

<table>
<thead>
<tr>
<th>MF/UF</th>
<th>NF or RO</th>
<th>UV-AOP</th>
<th>GAC</th>
<th>Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulates</td>
<td>TOC</td>
<td>Nutrients</td>
<td>TDS (Hardness)</td>
<td>TDS (Chloride)</td>
</tr>
</tbody>
</table>

- Primary removal mechanism; >90% effectiveness
- Additional removal mechanism; >90% effectiveness
- 75 to 90% effectiveness
- 50 to 75% effectiveness
- 25 to 50% effectiveness
- None to <25% effectiveness

25 July 2014 © 2014 ARCADIS
Water Reuse Research

Evaluating the Potential for Direct Potable Reuse

- Contaminants of Concern
- Water quality performance targets
- Water quality characterization
- Source control
- Treatment technologies
- Environmental buffers
- Quantitative relative risk assessment
- Pilot protocols
- Regulatory summary
- Public awareness and outreach
Testing Water Quality in a Municipal Wastewater Effluent Treated to Drinking Water Standards

- Quarterly sampling
 - Chemicals of Emerging Concern
 - Microbial pathogens
- Develop correlations for surrogates compounds
- Guidance document for monitoring at direct potable reuse facilities
Brazos River Wetland

- Engineered wetland constructed in Waco, Texas to evaluate how endocrine disrupting compounds can be reduced from treated wastewater effluent.
Erika Mancha
erika.mancha@twdb.texas.gov

Innovative Water Technologies
http://www.twdb.texas.gov/innovativewater/reuse/index.asp

Texas Water Development Board
www.twdb.texas.gov