Volumetric Survey of MARTIN LAKE August 2014 Survey

Texas Water
 Development Board

Texas Water Development Board
Bech Bruun, Chairman | Kathleen Jackson, Member
Kevin Patteson, Executive Administrator

Prepared for:

Luminant Generation Company LLC

Authorization for use or reproduction of any original material contained in this publication, i.e. not obtained from other sources, is freely granted. The Board would appreciate acknowledgement.

This report was prepared by staff of the Surface Water Resources Division:

Ruben S. Solis, Ph.D., P.E.
Jason J. Kemp, Team Lead Holly Holmquist
Michael Vielleux, P.E.
Khan Iqbal
Bianca Whitaker
Nathan Leber

Published and distributed by the

Texas Water
 Development Board

P.O. Box 13231, Austin, TX 78711-3231

Executive summary

In July 2014, the Texas Water Development Board entered into agreement with Luminant Generation Company LLC, to perform a volumetric survey of Martin Lake. Surveying was performed using a multi-frequency ($208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz), sub-bottom profiling depth sounder, although only the 208 kHz frequency was analyzed for this report.

Martin Lake Dam and Martin Lake are located on Martin Creek in Rusk and Panola Counties, approximately 3.0 miles southwest of Tatum, Texas. The conservation pool elevation of Martin Lake is 306.0 feet above mean sea level (NGVD29). TWDB collected bathymetric data for Martin Lake between July 30, 2014, and September 3, 2014. The daily average water surface elevation during the survey ranged between 304.98 and 305.95 feet above mean sea level.

The 2014 TWDB volumetric survey indicates that Martin Lake has a total reservoir capacity of 75,726 acre-feet and encompasses 4,954 acres at conservation pool elevation (306.0 feet above mean sea level, NGVD29). Previous capacity estimates include the original design capacity of 77,619 acre-feet, a 1984 capacity estimate by Jones and Boyd, Inc. of 69,822 acre-feet, and the volume obtained from a TWDB survey in 1999. The TWDB volumetric survey conducted in 1999 was re-evaluated using current processing procedures that resulted in an updated capacity estimate of 76,624 acre-feet.

TWDB recommends that a similar methodology be used to resurvey Martin Lake in 10 years or after a major flood event. To further improve estimates of capacity loss, TWDB recommends a volumetric and sedimentation survey. Sedimentation surveys include additional analysis of the multi-frequency data for post-impoundment sediment by correlation with sediment core samples and a map identifying the spatial distribution of sediment throughout the reservoir.

Table of Contents

Introduction 1
Martin Lake general information 1
Volumetric survey of Martin Lake 3
Datum 3
TWDB bathymetric data collection 4
Data processing 5
Model boundaries 5
Triangulated Irregular Network model 6
Spatial interpolation of reservoir bathymetry 6
Area, volume, and contour calculation 9
Survey results 12
Volumetric survey 12
Recommendations. 13
TWDB contact information 14
References 15

List of Tables

Table 1: \quad Pertinent data for Martin Lake Dam and Martin Lake
Table 2: \quad Current and previous survey capacity and surface area data
Table 3: Capacity loss comparisons for Martin Lake

List of Figures

Figure 1: Location of Martin Lake
Figure 2: Data collected during 2014 TWDB Martin Lake survey
Figure 3: Anisotropic spatial interpolation of Martin Lake
Figure 4: Elevation relief map
Figure 5: Depth ranges map
Figure 6: 2-foot contour map

Appendices

Appendix A: Martin Lake 2014 capacity table
Appendix B: Martin Lake 2014 area table
Appendix C: Martin Lake 2014 capacity curve
Appendix D: Martin Lake 2014 area curve
Note: References to brand names throughout this report do not imply endorsement by the Texas Water Development Board

Introduction

The Hydrographic Survey Program of the Texas Water Development Board (TWDB) was authorized by the 72nd Texas State Legislature in 1991. Section 15.804 of the Texas Water Code authorizes TWDB to perform surveys to determine reservoir storage capacity, sedimentation levels, rates of sedimentation, and projected water supply availability.

In July 2014, the Texas Water Development Board entered into agreement with Luminant Generation Company LLC, to perform a volumetric survey of Martin Lake (TWDB, 2014). This report describes the methods used to conduct the volumetric survey, including data collection and processing techniques. This report serves as the final contract deliverable from TWDB to Luminant Generation Company LLC, and contains as deliverables: (1) a shaded relief plot of the reservoir bottom [Figure 4], (2) a bottom contour map [Figure 6], and (3) an elevation-area-capacity table of the reservoir acceptable to the Texas Commission on Environmental Quality [Appendix A, B].

Martin Lake general information

Martin Lake Dam and Martin Lake are located on Martin Creek in Rusk and Panola Counties in the Sabine River Basin, approximately three miles southwest of Tatum, Texas (Figure 1). Construction of Martin Lake Dam began on May 31, 1972, and deliberate impoundment of water began on September 30, 1974 (TWDB, 1974, TWDB, 2003). Martin Lake is owned and operated by Luminant Generation Company LLC, Texas' largest generator of electricity (Luminant, 2015a).

Martin Lake is a power plant reservoir, providing water primarily for cooling. The Martin Lake Power Plant is a lignite coal steam electric plant capable of generating 2,250 megawatts of power (Luminant, 2015b). Additional pertinent data about Martin Lake Dam and Martin Lake can be found in Table 1.

Water rights for Martin Lake have been appropriated to Luminant Generation Company LLC, formerly the Texas Utilities Electric Company, through Certificate of Adjudication No. 05-4649 and Amendments to Certificate of Adjudication Nos. 05-4649A, 05-4649B, and 05-4649C. The complete certificates are on file in the Information Resources Division of the Texas Commission on Environmental Quality.

Figure 1. Location of Martin Lake

able 1. Pertinent data for Martin Lake Dam and Martin Lake	
Owner	
Luminant Generation Company LLC	
Engineer	
Forrest and Cotton, Inc.	
Location of dam	
On Martin Creek in Rusk and Panola Counties, 17 miles northeast of Henderson and 3 miles southwest of Tatum, Texas	
Drainage area	
130 square miles	
Dam	
Type	Earthfill
Length	6,875 feet
Height	$61 \pm$ feet
Top width	20 feet
Top elevation	321.5 feet above mean sea level
Spillway (emergency)	
Location	Left of the dam
Type	Uncontrolled
Crest elevation	312.0 feet above mean sea level
Crest length	1,000 feet
Spillway (service)	
Location	Near left end of the dam
Type	Concrete ogee and chute
Control	4 tainter gates, each 40 by 14 feet
Crest elevation	294.0 feet above mean sea level
Crest length (net)	160 feet

Outlet works

One low-flow outlet is a 3 by 5 foot conduit with sluice gate control located in one of the gate piers with invert at elevation 284.0 feet above mean sea level. Additional low-flow outlet is an 8 -inch pipe with invert at elevation 286.0 feet above mean sea level with a downstream sluice gate control. Water is pumped from the lake to the power plant and returned to the lake.
Reservoir data (Based on 2014 TWDB survey)
$\left.\left.\begin{array}{lcll}\text { Feature } & \begin{array}{c}\text { Elevation } \\ \text { (feet NGVD29 }\end{array} \text {) }\end{array}\right) \begin{array}{l}\text { Capacity } \\ \text { (acre-feet) }\end{array}\right)$

Source: (TWDB, 1974)
${ }^{\text {a }}$ NGVD29 $=$ National Geodetic Vertical Datum 1929
${ }^{\mathrm{b}}$ Usable conservation storage space equals total capacity at conservation pool elevation minus dead pool capacity. Dead pool refers to water that cannot be drained by gravity through a dam's outlet works.

Volumetric survey of Martin Lake

Datum

The vertical datum used during this survey is the National Geodetic Vertical Datum 1929 (NGVD29). This datum is also utilized by the United States Geological Survey (USGS) for the reservoir elevation gage USGS 08022060 Martin Lk nr Tatum, TX (USGS, 2015). Elevations herein are reported in feet relative to the NGVD29 datum. Volume and
area calculations in this report are referenced to water levels provided by the USGS gage. The horizontal datum used for this report is North American Datum 1983 (NAD83), and the horizontal coordinate system is State Plane Texas North Central Zone (feet).

TWDB bathymetric data collection

TWDB collected bathymetric data for Martin Lake between July 30, 2014, and September 3, 2014. The daily average water surface elevations during the survey ranged between 304.98 and 305.95 feet above mean sea level (NGVD29). For data collection, TWDB used a Specialty Devices, Inc. (SDI), single-beam, multi-frequency ($208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz) sub-bottom profiling depth sounder integrated with differential global positioning system (DGPS) equipment. Data was collected along pre-planned survey lines oriented perpendicular to the assumed location of the original river channels and spaced approximately 500 feet apart. Many of the same survey lines were also used by TWDB during the 1999 survey. The depth sounder was calibrated daily using a velocity profiler to measure the speed of sound in the water column and a weighted tape or stadia rod for depth reading verification. Figure 2 shows where data collection occurred during the 2014 TWDB survey.

Figure 2. Data collected during 2014 TWDB Martin Lake survey

Data processing

Model boundaries

The reservoir boundary was digitized using Environmental Systems Research Institute's ArcGIS software (ArcGIS) from aerial photographs, also known as digital orthophoto quarter-quadrangle images (DOQQs), obtained from the Texas Natural Resources Information System (TNRIS, 2014). The quarter-quadrangles that cover Martin Lake are Tatum (SW, SE) and Fair Play (NW, NE). The DOQQs were photographed on September 1, 2004, while the daily average water surface elevation measured 304.49 feet (NGVD29). According to metadata associated with the 2004 DOQQs, the photographs have a resolution or ground sample distance of 1.0 -meters and a horizontal accuracy within ± 5 meters of reference DOQQs from the National Digital Ortho Program (TNRIS, 2014, USDA, 2013). For this analysis, the boundary was digitized at the land-water interface in
the 2004 photographs and assigned an elevation of 304.5 feet. The section titled "Area, volume, and contour calculation" describes how areas and capacities were generated up to the conservation pool elevation.

Triangulated Irregular Network model

Following completion of data collection, the raw data files were edited to remove data anomalies. DepthPic©, software developed by SDI, Inc., was used to display, interpret, and edit the multi-frequency data by manually removing data anomalies in the current bottom surface. For processing outside of DepthPic®, an in-house software package, HydroTools, was used to identify the current reservoir-bottom surface, and to output the data into a single file. The water surface elevation at the time of each sounding was used to convert each sounding depth to a corresponding reservoir-bottom elevation. This survey point dataset was then preconditioned by inserting a uniform grid of artificial survey points between the actual survey lines. Bathymetric elevations at these artificial points are determined using an anisotropic spatial interpolation algorithm described in the next section. This technique creates a high resolution, uniform grid of interpolated bathymetric elevation points throughout a majority of the reservoir (McEwen et al., 2011a). Finally, the point file resulting from spatial interpolation was used in conjunction with sounding and boundary data to create volumetric Triangulated Irregular Network (TIN) models utilizing the 3D Analyst Extension of ArcGIS. The 3D Analyst algorithm uses Delaunay's criteria for triangulation to create a grid composed of triangles from non-uniformly spaced points, including the boundary vertices (ESRI, 1995).

Spatial interpolation of reservoir bathymetry

Isotropic spatial interpolation techniques such as the Delaunay triangulation used by the 3D Analyst extension of ArcGIS are, in many instances, unable to suitably interpolate bathymetries between survey lines common to reservoir surveys. Reservoirs and stream channels are anisotropic morphological features where bathymetry at any particular location is more similar to upstream and downstream locations than to transverse locations. Interpolation schemes that do not consider this anisotropy lead to the creation of several types of artifacts in the final representation of the reservoir bottom surface and hence to errors in volume. These include: artificially-curved contour lines extending into the reservoir where the reservoir walls are steep or the reservoir is relatively narrow; intermittent representation of submerged stream channel connectivity; and oscillations of
contour lines in between survey lines. These artifacts reduce the accuracy of the resulting volumetric TIN models in areas between actual survey data.

To improve the accuracy of bathymetric representation between survey lines, TWDB developed various anisotropic spatial interpolation techniques. Generally, the directionality of interpolation at different locations of a reservoir can be determined from external data sources. A basic assumption is that the reservoir profile in the vicinity of a particular location has upstream and downstream similarity. In addition, the sinuosity and directionality of submerged stream channels can be determined by directly examining survey data or more robustly by examining scanned USGS 7.5 minute quadrangle maps (known as digital raster graphics or DRGs) and hypsography files (the vector format of USGS 7.5 minute quadrangle map contours), when available. Using the survey data, polygons are created to partition the reservoir into segments with centerlines defining directionality of interpolation within each segment. For surveys with similar spatial coverage, these interpolation definition files are in principle independent of the survey data and could be applied to past and future survey data of the same reservoir. In practice, however, minor revisions of the interpolation definition files may be needed to account for differences in spatial coverage and boundary conditions between surveys. Using the interpolation definition files and survey data, the current reservoir-bottom elevation, when applicable, is calculated for each point in the high resolution uniform grid of artificial survey points. The reservoir boundary, artificial survey points grid, and survey data points are used to create the volumetric TIN model representing the reservoir bathymetry. Specific details of this interpolation technique can be found in the HydroTools manual (McEwen et al., 2011a) and in McEwen et al., 2011b.

In areas inaccessible to survey data collection such as small coves and shallow upstream areas of the reservoir, linear interpolation is used for volumetric estimations. The linear interpolation follows a linear definition file linking the survey points file to the lake boundary file (McEwen et al., 2011a). Without interpolated data, the TIN model builds flat triangles. A flat triangle is defined as a triangle where all three vertices are equal in elevation, generally the elevation of the reservoir boundary. Reducing flat triangles by applying linear interpolation improves the elevation-capacity and elevation-area calculations. It is not always possible to remove all flat triangles, and linear interpolation is only applied where adding bathymetry is deemed reasonable. For example, linear interpolation was applied throughout Martin Lake following channel features indicated by
the 1999 survey data or visible on aerial photographs taken on July 28 and July 29, 2012, while the water surface elevation measured 301.41 and 301.40 feet, respectively.

Figure 3 illustrates typical results from application of the anisotropic interpolation and linear interpolation techniques to Martin Lake. In Figure 3A, deeper channels indicated by surveyed cross sections are not continuously represented in areas between survey cross sections. This is an artifact of the TIN generation routine rather than an accurate representation of the physical bathymetric surface. Inclusion of interpolation points, represented in Figure 3B, in creation of the volumetric TIN model directs Delaunay triangulation to better represent the lake bathymetry between survey cross-sections. The bathymetry shown in Figure 3C was used in computing reservoir capacity and area tables (Appendix A, B).

Figure 3. Anisotropic spatial interpolation and linear interpolation of Martin Lake sounding data A) bathymetric contours without interpolated points, B) sounding points (black) and interpolated points (red), C) bathymetric contours with the interpolated points

Area, volume, and contour calculation

Using ArcInfo software and the volumetric TIN model, volumes and areas were calculated for the entire reservoir at 0.1 feet intervals, from 264.6 to 304.5 feet. While linear interpolation was used to estimate the topography in areas that were inaccessible by boat or too shallow for the instruments to work properly, development of anomalous "flat triangles", that is triangles whose three vertices all have the same elevation, in the TIN model are unavoidable. The flat triangles in turn lead to anomalous calculations of surface area and volume at the boundary elevation 304.5 feet. To eliminate the effects of the flat triangles on area and volume calculations, areas between elevations 300.0 feet and 304.5 feet were linearly interpolated between the computed values, and volumes above elevation 300.0 feet were calculated based on the corrected areas. Areas above elevation 304.5 feet were linearly extrapolated and capacities were calculated from the extrapolated areas. The elevation-capacity table and elevation-area table, updated for 2014, are presented in Appendices A and B, respectively. The capacity curve is presented in Appendix C, and the area curve is presented in Appendix D.

The volumetric TIN model was converted to a raster representation using a cell size of 1 foot by 1 foot. The raster data was then used to produce: an elevation relief map (Figure 4), representing the topography of the reservoir bottom; a depth range map (Figure 5), showing shaded depth ranges for Martin Lake; and a 2-foot contour map (Figure 6 attached).

Figure 4 Martin Lake

Figure 5 Martin Lake

Survey results

Volumetric survey

The results of the 2014 TWDB volumetric survey indicate Martin Lake has a total reservoir capacity of $\mathbf{7 5 , 7 2 6}$ acre-feet and encompasses $\mathbf{4 , 9 5 4}$ acres at conservation pool elevation (306.0 feet above mean sea level, NGVD29). Previous capacity estimates include the original design capacity of 77,619 acre-feet, a 1984 capacity estimate by Jones and Boyd, Inc. of 69,822 acre-feet, and the recalculated volume obtained from a TWDB survey in 1999 of 76,624 acre-feet. Because of differences in past and present survey methodologies, direct comparison of volumetric surveys to estimate loss of capacity is difficult and can be unreliable.

To properly compare results of TWDB surveys, TWDB applied the 2015 data processing techniques to the data collected in 1999. Specifically, TWDB applied anisotropic spatial interpolation to the survey data collected in 1999 using the same interpolation definition file as was used for the 2014 survey with minor edits to account for differences in data coverage and boundary conditions. The 1999 survey boundary at conservation pool elevation was digitized from the digital USGS 7.5 minute quadrangle maps, or DRGs. The USGS quadrangle maps have a stated accuracy of $\pm 1 / 2$ the contour interval (USBB, 1947). To eliminate the effects of the flat triangles on area and volume calculations, areas between elevations 302.0 feet and 306.0 feet were linearly interpolated between the computed values, and volumes above elevation 302.0 feet were calculated based on the corrected areas. Re-evaluation of the 1999 survey resulted in a 2.0 percent increase in the total capacity estimate (Table 2). Comparison of capacity estimates of Martin Lake derived using differing methodologies are provided in Table 3 for capacity loss rate calculation.

Table 2. Current and previous survey capacity and surface area data

Survey	Surface area (acres)	Total capacity (acre-feet)
1974^{a}	5,020	77,619
Jones and Boyd, Inc. 1984	5,010	69,822
TWDB 1999	c	4,981
TWDB 1999 (re-calculated)	4,960	75,116
TWDB 2014	4,954	76,624

${ }^{\text {a }}$ Source: (TWDB, 1974)
${ }^{\mathrm{b}}$ Source: (TXU, 1985)
${ }^{\mathrm{c}}$ Source: (TWDB, 2003)
Table 3. Capacity loss comparisons for Martin Lake

Survey	Volume comparisons at conservation pool elevation (acre-feet)	
1974^{a}	77,619	$<>$
TWDB 1999 (re-calculated)	$>$	76,624
2014 volumetric survey	75,726	75,726
Volume difference (acre-feet)	$1,893(2.4 \%)$	$898(1.2 \%)$
Number of years	40	15
Capacity loss rate (acre-feet/year)	47	60

${ }^{\text {a }}$ Source: (TWDB, 2003). Note: Impoundment of Martin Lake began September 30, 1974.

Recommendations

To improve estimates of sediment accumulation rates, TWDB recommends resurveying Martin Lake in approximately 10 years or after a major flood event. To further improve estimates of capacity loss, TWDB recommends a volumetric and sedimentation survey. Sedimentation surveys include additional analysis of the multi-frequency data for post-impoundment sediment by correlation with sediment core samples and a map identifying the spatial distribution of sediment throughout the reservoir.

TWDB contact information

More information about the Hydrographic Survey Program can be found at:
http://www.twdb.texas.gov/surfacewater/surveys/index.asp
Any questions regarding the TWDB Hydrographic Survey Program may be addressed to:
Jason J. Kemp
Team Lead, Hydrographic Survey Program
Phone: (512) 463-2456
Email: Jason.Kemp@twdb.texas.gov
Or
Ruben S. Solis, Ph.D., P.E.
Director, Surface Water Resources Division
Phone: (512) 936-0820
Email: Ruben.Solis@twdb.texas.gov

References

ESRI (Environmental Systems Research Institute), 1995, ARC/INFO Surface Modeling and Display, TIN Users Guide, ESRI, 380 New York Street, Redlands, CA 92373.

Luminant (Luminant Generation Company LLC), 2015a, Luminant - Powering Texas, http://www.luminant.com/plants/, accessed March 2015.

Luminant (Luminant Generation Company LLC), 2015b, Martin Lake Power Plant and Mines, http://www.luminant.com/plants/pdf/MartinLake_Facts.pdf, accessed March 2015.

McEwen, T., Brock, N., Kemp, J., Pothina, D. \& Weyant, H., 2011a, HydroTools User’s Manual, Texas Water Development Board.

McEwen, T., Pothina, D. \& Negusse, S., 2011b, Improving efficiency and repeatability of lake volume estimates using Python, submitted, Proceedings of the 10th Python for Scientific Computing Conference (SciPy 2011).

TNRIS (Texas Natural Resources Information System), 2014, http://www.tnris.org/, accessed September 2013.

TWDB (Texas Water Development Board), 1974, Martin Lake Dam and Martin Lake, Report 126, Engineering Data on Dams and Reservoirs in Texas, Part I.

TWDB (Texas Water Development Board), March 2003, Volumetric Survey of Martin Lake, http://www.twdb.texas.gov/hydro_survey/Martin/199905/Martin1999_FinalReport.pdf

TWDB (Texas Water Development Board), 2014, Contract No. 1448011748 with U.S. Army Corps of Engineers, Fort Worth District.

TXU (Texas Utilities Generating Company), 1985, Martin Lake Areas and Capacities (1984 Condition) from a Jones and Boyd, Inc. sediment survey report.

USBB (United States Bureau of the Budget), 1947, United States National Map Accuracy Standards, http://nationalmap.gov/standards/pdf/NMAS647.PDF.

USDA (US Department of Agriculture), 2013, National Agricultural Imagery Program (NAIP) Information Sheet, http://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2013.pdf.

USGS (United States Geological Survey), 2015, U.S. Geological Survey National Water Information System: Web Interface, USGS Real-Time Water Data for USGS 08022060 Martin Lk nr Tatum, TX, http://waterdata.usgs.gov/tx/nwis/uv/?site_no=08022060\&PARAmeter_cd=00062,7 2020,00054, accessed February 2015.

Appendix A
Martin Lake
RESERVOIR CAPACITY TABLE

Note: Capacities above elevation 300.0 calculated from interpolated and extrapolated areas

Appendix B

Martin Lake
 RESERVOIR AREA TABLE

TEXAS WATER DEVELOPMENT BOARD AREA IN ACRES					August 2014 Survey					
						nservatio	ool Eleva	306.0 fe	D29	
ELEVATION INCREMENT IS ONE TENTH FOOT										
ELEVATION in Feet	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
264	0	0	0	0	0	0	0	0	0	0
265	0	0	0	0	0	0	0	0	0	0
266	0	0	0	0	0	0	0	0	0	1
267	1	1	1	1	2	2	2	3	3	3
268	4	4	5	5	6	6	7	8	9	10
269	11	13	14	17	20	23	27	31	36	41
270	46	51	56	62	68	75	82	88	94	101
271	110	117	126	133	141	150	156	164	172	181
272	191	199	206	215	224	232	239	245	252	258
273	265	271	277	284	292	300	308	316	324	332
274	339	346	352	357	363	370	378	386	396	405
275	415	425	435	446	457	466	477	489	500	511
276	522	532	542	551	560	569	577	586	594	602
277	609	617	624	632	640	647	655	661	669	676
278	682	687	692	698	703	710	719	726	734	742
279	750	758	766	774	783	791	800	812	825	837
280	848	861	872	883	895	906	917	928	939	951
281	962	973	984	994	1,005	1,015	1,027	1,037	1,047	1,057
282	1,067	1,077	1,087	1,097	1,108	1,118	1,127	1,136	1,145	1,156
283	1,167	1,177	1,187	1,197	1,206	1,216	1,226	1,238	1,250	1,262
284	1,274	1,287	1,300	1,312	1,323	1,336	1,349	1,363	1,376	1,389
285	1,402	1,415	1,428	1,444	1,460	1,475	1,489	1,504	1,519	1,534
286	1,549	1,563	1,577	1,589	1,600	1,614	1,628	1,643	1,657	1,671
287	1,684	1,697	1,711	1,725	1,739	1,753	1,768	1,782	1,796	1,810
288	1,824	1,837	1,848	1,861	1,875	1,890	1,906	1,922	1,938	1,955
289	1,972	1,989	2,005	2,021	2,036	2,051	2,068	2,085	2,104	2,122
290	2,142	2,163	2,194	2,226	2,262	2,294	2,319	2,343	2,365	2,386
291	2,406	2,427	2,446	2,464	2,482	2,499	2,518	2,535	2,550	2,566
292	2,582	2,597	2,612	2,628	2,645	2,662	2,678	2,693	2,709	2,724
293	2,739	2,754	2,769	2,785	2,800	2,815	2,829	2,843	2,857	2,872
294	2,887	2,901	2,916	2,931	2,947	2,963	2,979	2,994	3,008	3,023
295	3,040	3,056	3,073	3,092	3,111	3,130	3,150	3,169	3,187	3,205
296	3,222	3,240	3,257	3,275	3,294	3,313	3,330	3,346	3,362	3,377
297	3,392	3,408	3,423	3,439	3,455	3,471	3,488	3,503	3,518	3,534
298	3,550	3,567	3,583	3,599	3,614	3,630	3,647	3,662	3,677	3,693
299	3,708	3,723	3,738	3,754	3,769	3,784	3,799	3,814	3,830	3,846
300	3,862	3,880	3,898	3,916	3,935	3,953	3,971	3,989	4,007	4,026
301	4,044	4,062	4,080	4,098	4,117	4,135	4,153	4,171	4,189	4,208
302	4,226	4,244	4,262	4,281	4,299	4,317	4,335	4,353	4,372	4,390
303	4,408	4,426	4,444	4,463	4,481	4,499	4,517	4,535	4,554	4,572
304	4,590	4,608	4,627	4,645	4,663	4,681	4,699	4,718	4,736	4,754
305	4,772	4,790	4,809	4,827	4,845	4,863	4,881	4,900	4,918	4,936
306	4,954									

Note: Areas between elevations 300.0 and 304.5 feet linearly interpolated, areas above elevation 304.5 feet linearly extrapolated

——Total capacity 2014
------ Conservation pool elevation 306.0 feet
Martin Lake
August 2014 Survey
Prepared by: TWDB

Appendix C: Capacity curve

—Total area 2014
------ Conservation pool elevation 306.0 feet

Martin Lake
August 2014 Survey
Prepared by: TWDB
Appendix D: Area curve

