Volumetric and Sedimentation Survey of LAKE CYPRESS SPRINGS

July 2007 Survey

Prepared by:
The Texas Water Development Board

October 2008

Texas Water Development Board

J. Kevin Ward, Executive Administrator

Texas Water Development Board

James E. Herring, Chairman
Lewis H. McMahan, Member
Edward G. Vaughan, Member

Jack Hunt, Vice Chairman
Thomas Weir Labatt III, Member
Joe M. Crutcher, Member

Prepared for:
Franklin County Water District

With Support Provided by:

U.S. Army Corps of Engineers, Fort Worth District

Authorization for use or reproduction of any original material contained in this publication, i.e. not obtained from other sources, is freely granted. The Board would appreciate acknowledgment.

This report was prepared by staff of the Surface Water Resources Division:

Barney Austin, Ph.D., P.E. Jordan Furnans, Ph.D., P.E. Jason Kemp, Team Leader Randall Burns
Tony Connell
Holly Weyant

Published and Distributed by the Texas Water Development Board P.O. Box 13231

Austin, TX 78711-3231

Executive Summary

In 2007, the Texas Water Development Board entered into agreement with the U.S. Army Corps of Engineers, Fort Worth District, for the purpose of performing a volumetric and sediment survey of Lake Cypress Springs. This survey was performed using a multifrequency ($200 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz) sub-bottom profiling depth sounder. In addition, sediment core samples were collected in selected locations and were used in interpreting the multi-frequency depth sounder signal returns to derive sediment accumulation estimates.

Franklin County Dam and Lake Cypress Springs are located on Big Cypress Creek in the Cypress River Basin 8 miles southeast of Mount Vernon in Franklin County, Texas. Bathymetric data collection for Lake Cypress Springs occurred on June $21^{\text {st }}$, June $27^{\text {th }}$-June $29^{\text {th }}$, July $10^{\text {th }}$, and July $11^{\text {th }}$ of 2007 , while the water surface elevation ranged between 378.22 feet and 379.42 feet above mean sea level (NGVD29). The conservation pool elevation of Lake Cypress Springs is 378.0 feet above mean sea level (NGVD 29).

The results of the TWDB 2007 Volumetric Survey indicate Lake Cypress Springs has a total reservoir capacity of 66,756 acre-feet and encompasses 3,252 acres at conservation pool elevation (378.0 feet above mean sea level, NGVD29). In 1998 TWDB estimated the capacity of Lake Cypress Springs (at conservation pool elevation) at 67,690 acre-feet. ${ }^{1}$ Due to differences in the methodologies used in calculating areas and capacities from this and previous Lake Cypress Springs surveys, comparison of these values is not recommended. ${ }^{2}$ The TWDB considers the 2007 survey to be a significant improvement over previous methods and recommends that a similar methodology be used to resurvey Lake Cypress Springs in 10 to 20 years or after a major flood event.

The results of the TWDB 2007 Sediment Survey indicate Lake Cypress Springs

 has accumulated 3,807 acre-feet of sediment since impoundment in 1970. Based on this measured sediment volume and assuming a constant sediment accumulation rate, Lake Cypress Springs loses approximately 100 acre-feet of capacity per year. The majority of the sediment accumulation has occurred within the main body of the lake, with the thickest deposits in the submerged Big Cypress Creek channel. The maximum sediment thickness observed in Lake Cypress Springs was 7.2 feet.
Table of Contents

Lake Cypress Springs General Information 1
Water Rights. 2
Certificate of Adjudication No. 04-4560 2
Amendment to Certificate of Adjudication No. 04-4560A 3
Amendment to Certificate of Adjudication No. 04-4560B 3
Volumetric and Sediment Survey of Lake Cypress Springs 4
Introduction 4
Datum. 4
TWDB Bathymetric Data Collection. 4
Data Processing 5
Model Boundaries 5
Triangulated Irregular Network (TIN) Model 6
Self-Similar Interpolation 9
Volumetric Survey Results - 2007 11
Sediment Survey Results - 2007 11
TWDB Contact Information 13
References 14

List of Tables

Table 1: Pertinent Data for Franklin County Dam and Lake Cypress Springs

List of Figures

Figure 1: Lake Cypress Springs Location Map
Figure 2: \quad Map of Data Collected during TWDB 2007 Survey
Figure 3: Elevation Relief Map
Figure 4: Depth Ranges Map
Figure 5: \quad-foot Contour Map
Figure 6: Application of the Self-Similar Interpolation technique
Figure 7: Map of Sediment Thicknesses throughout Lake Cypress Springs

Appendices

Appendix A: Lake Cypress Springs 2007 Reservoir Capacity Table
Appendix B: Lake Cypress Springs 2007 Reservoir Area Table
Appendix C: Lake Cypress Springs 2007 Area-Capacity-Elevation Graph
Appendix D: Analysis of Sediment Accumulation Data from Lake Cypress Springs

Lake Cypress Springs General Information

Franklin County Dam and Lake Cypress Springs are located on Big Cypress Creek in the Cypress River Basin 8 miles southeast of Mount Vernon in Franklin County, Texas. ${ }^{3}$ (Figure 1) Lake Cypress Springs is maintained and operated by the Franklin County Water District. ${ }^{4}$ Construction on Franklin County Dam began in July of 1968, with deliberate impoundment beginning on July 7, 1970. The project was completed on February 15, 1971. ${ }^{3}$ Lake Cypress Springs serves mainly as water supply storage for municipal and industrial uses. Additional pertinent data about Franklin County Dam and Lake Cypress Springs can be found in Table 1.

Figure 1. Location Map: Lake Cypress Springs

```
Table 1. Pertinent Data for Franklin County Dam and Lake Cypress Springs \({ }^{3}\)
Owner
    Franklin County Water District
Engineer (Design)
    Wisenbaker, Fix, and Associates
Location of Dam
    On Big Cypress Creek in Franklin County, 8 miles southeast of Mount Vernon
Drainage Area
    75 square miles
Dam
    Type Earthfill
    Length 5,230 feet
    Maximum Height 74 feet
    Top Width 44 feet
    Top elevation (varies) 395.0 to \(397.0 \pm\) feet above mean sea level
Spillway (emergency)
    Location To left of the dam
    Type Excavated and graded area
    Crest length
    1,000 feet
    Crest elevation 385.0 feet above mean sea level (NGVD29)
Spillway (service)
    Location Right end of main embankment
    Type Rectangular drop inlet, 23 by 23 feet
    Control
    Crest elevation 378.0 feet above mean sea level (NGVD29)
    Outlet Box culvert, 10 by 10 feet
    Discharge To stilling basin
Outlet Works
    Type
    Invert elevation
    Control
    317.75 feet above mean sea level (NGVD29)
    Duplicate valves with vertical stems
    Discharge
    To service spillway conduit
```


Water Rights

The water rights for Lake Cypress Springs have been appropriated to the Franklin County Water District through Certificate of Adjudication No. 04-4560 and its amendments. A brief summary of the certificate and each amendment follows. The complete certificates are on file in the Records Division of the Texas Commission on Environmental Quality.

Certificate of Adjudication No. 04-4560
Issued: October 13, 1986

Authorizes the Franklin County Water District to maintain an existing dam and reservoir (Lake Cypress Springs) and impound therein a maximum of 72,800 acre-feet of water. Franklin County Water District is authorized to divert and use up to 9,300 acre-feet of water per year for municipal purposes, of which 5,000 acre-feet of water may be diverted
into the Sabine River Basin and 2,185 acre-feet into the Sulphur River Basin, 5,940 acrefeet of water per year for industrial purposes, and up to 60 acre-feet per year for irrigation purposes. The impounded water may also be used for recreational purposes. The priority dates of the owners’ rights are January 31, 1966 for Lake Cypress Springs and the transbasin diversion of 1,000 acre-feet of water directed to the City of Mount Vernon for municipal purposes; July 20, 1970 for the diversion and use of 60 acre-feet of water per year for irrigation purposes, 8,300 acre-feet per year for municipal purposes, of which 4,173 acre-feet per year relates to transbasin diversion, and 5,940 acre-feet per year for industrial purposes; October 6, 1980 for an increase of the diversion rate from 27.0 cubic feet per second to 40.4 cubic feet per second and to transfer 2,012 acre-feet for municipal use from the Cypress Creek Basin to the Sabine River Basin; and April 18, 1983 for the increase of the diversion rate from 40.4 cubic feet per second to 161.5 cubic feet per second.

Amendment to Certificate of Adjudication No. 04-4560A

Granted: December 12, 1989
Authorizes a change in purpose of use of 300 acre-feet of the 5,940 acre-feet of water per annum for industrial use to irrigation use; thereby authorizing the Franklin County Water District to divert and use a maximum of 5,640 acre-feet of water per year for industrial purposes and 360 acre-feet per year for irrigation purposes. The time priority for these diversions remains July 20, 1970.

Amendment to Certificate of Adjudication No. 04-4560B

Granted: June 5, 1998
In lieu of the Franklin County Water District's authorization to divert and use from Lake Cypress Springs a maximum 2,050 acre-feet of water per year for industrial use, 360 acre-feet per year for irrigation use, and 9,300 acre-feet of water per year for municipal purposes (of which 2,185 acre-feet may be used in the Sulphur River Basin), Franklin County Water District is authorized to divert and use a maximum 11,500 acre-feet of water per year for municipal purposes (of which 4,385 acre-feet of water per year may be used in the Sulphur River Basin) and 210 acre-feet of water per year for irrigation purposes.

Volumetric and Sediment Survey of Lake Cypress Springs

Introduction

The Texas Water Development Board’s (TWDB) Hydrographic Survey Program was authorized by the state legislature in 1991. The Texas Water Code authorizes TWDB to perform surveys to determine reservoir storage capacity, sedimentation levels, rates of sedimentation, and projected water supply availability.

In 2007, TWDB entered into agreement with the U.S. Army Corps of Engineers, Fort Worth District, for the purpose of performing a volumetric and sediment survey of Lake Cypress Springs. This survey was performed using a single-beam multi-frequency ($200 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz) sub-bottom profiling depth sounder. The 200 kHz return indicates the current bathymetric surface, while the combination of the three frequencies is analyzed for evidence of sediment accumulation throughout the reservoir. Sediment core samples are collected in order to validate the interpretation of the multi-frequency acoustic signals and to verify the identification of the reservoir bathymetric surface at the time of initial impoundment.

Datum

The vertical datum used during this survey is that used by the United States Geological Survey (USGS) for the reservoir elevation gauge USGS 07344484 Lk Cypress Spgs nr Mount Vernon, TX. ${ }^{5}$ The datum for this gauge is reported as National Geodetic Vertical Datum 1929 (NGVD29) or mean sea level, thus elevations reported here are in feet above mean sea level. Volume and area calculations in this report are referenced to water levels provided by the USGS gauge. The horizontal datum used for this report is NAD83 State Plane Texas North Central Zone.

TWDB Bathymetric Data Collection

Bathymetric data collection for Lake Cypress Springs occurred on June 21 ${ }^{\text {st }}$, June $27^{\text {th }}$-June $29^{\text {th }}$, July $10^{\text {th }}$, and July $11^{\text {th }}$ of 2007, while the water surface elevation ranged between 378.22 feet and 379.42 feet above mean sea level (NGVD29). For data collection, TWDB used a Specialty Devices, Inc., multi-frequency ($200 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz)
sub-bottom profiling depth sounder integrated with Differential Global Positioning System (DGPS) equipment. Data collection occurred while navigating along pre-planned range lines oriented perpendicular to the assumed location of the original river channels and spaced approximately 500 feet apart. The depth sounder was calibrated daily using a velocity profiler to measure the speed of sound in the water column and a weighted tape or stadia rod for depth reading verification. During the 2007 survey, team members collected 70,445 data points over cross-sections totaling nearly 72 miles in length. Figure 2 shows where data points were collected during the TWDB 2007 survey.

Figure 2. Data points collected during TWDB 2007 Survey

Data Processing

Model Boundaries

The reservoir boundary was digitized from aerial photographs, or digital orthophoto quarter-quadrangle images (DOQQs) ${ }^{6,7}$, using Environmental Systems Research Institute’s (ESRI) ArcGIS 9.1 software. The quarter-quadrangles that cover Lake Cypress Springs are Purley SE, New Hope NW, New Hope NE, New Hope SW, and New Hope SE. These images were photographed on September 30, 2004, during which time the water surface elevation at Lake Cypress Springs measured 376.98 feet above mean sea level (NGVD29). Although the water surface elevation measured approximately one foot below conservation pool elevation at the time of the photos, TWDB determined that there was not a significant
difference in lake area between 376.98 feet and 378.00 feet, as discernable from the photographs and given the photographs have a 1-meter resolution. Therefore, the Lake Cypress Springs boundary was digitized from the land water interface in the aerial photos and labeled 378.00 feet to allow area and volume to be calculated to the conservation pool elevation.

Triangulated Irregular Network (TIN) Model

Upon completion of data collection, the raw data files collected by TWDB were edited using DepthPic and HydroEdit to remove any data anomalies. DepthPic is used to display, interpret, and manually-edit the multi-frequency data, while HydroEdit is used to automatically edit the multi-frequency data and to convert the depth measurements to bathymetric elevations using the known water surface elevation at the time of each sounding. For processing outside of DepthPic and HydroEdit, the sounding coordinates ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) are exported as a MASS points file. TWDB also created a MASS points file of interpolated data located in-between surveyed cross sections. This points file is described in the section entitled "Self-Similar Interpolation."

To create a surface representation of the Lake Cypress Springs bathymetry, the 3D Analyst Extension ${ }^{8}$ of ArcGIS (ESRI, Inc.) is used. With this extension, a triangulated irregular network (TIN) model of the bathymetry is created following the Delaunay ${ }^{8}$ criteria, where each MASS point and boundary node becomes the vertex of a triangular portion of the reservoir bottom surface. From the TIN model, reservoir capacities and areas are calculated at one-tenth of a foot (0.1 foot) intervals, from elevation 325.0 feet to elevation 378.0 feet.

The Elevation-Capacity and Elevation-Area Tables, updated for 2007, are presented in Appendices A and B, respectively. An Elevation-Area-Capacity graph is presented in Appendix C.

The TIN model was interpolated and averaged using a cell size of 1 foot by 1 foot and converted to a raster. The raster was used to produce Figure 3, an Elevation Relief Map representing the topography of the reservoir bottom, Figure 4, a map showing shaded depth ranges for Lake Cypress Springs, and Figure 5, a 5-foot contour map (attached).

Self-Similar Interpolation

A limitation of the Delaunay method for triangulation when creating TIN models results in artificially-curved contour lines extending into the reservoir where the reservoir walls are steep and the reservoir is relatively narrow. These curved contours are likely a poor representation of the true reservoir bathymetry in these areas. Also, if the surveyed cross sections are not perpendicular to the centerline of submerged river channel (the location of which is often unknown until after the survey), then the TIN model is not likely to well-represent the true channel bathymetry.

To ameliorate these problems, a self-similar interpolation routine (developed by TWDB) was used to interpolate the bathymetry in between many 500 foot-spaced survey lines. The self-similar interpolation technique effectively increases the density of points input into the TIN model, and directs the TIN interpolation to better represent the reservoir topography. ${ }^{9}$ In the case of Lake Cypress Springs, the application of self-similar interpolation helped represent the lake morphology near the banks and improved the representation of the submerged river channel (Figure 6). In areas where obvious geomorphic features indicate a high-probability of cross-section shape changes (e.g. incoming tributaries, significant widening/narrowing of channel, etc.), the assumptions used in applying the self-similar interpolation technique are not likely to be valid; therefore, selfsimilar interpolation was not used in areas of Lake Cypress Springs where a high probability of change between cross-sections exists. ${ }^{9}$ Figure 6 illustrates typical results of the application of the self-similar interpolation technique in Lake Cypress Springs, and the bathymetry shown in Figure 6C was used in computing reservoir capacity and area tables (Appendix A, B).

Figure 6 Application of the Self-Similar Interpolation technique to Lake Cypress Springs 2007 sounding data - A) bathymetric contours without interpolated points, B) Sounding points (black) and interpolated points (red) with reservoir boundary shown at elevation 378.0 feet (black), C) bathymetric contours with the interpolated points. Note: In 6A the steep banks indicated by the surveyed cross sections are not represented for the areas inbetween the cross sections. This is an artifact of the TIN generation routine when data points are too far apart. Inclusion of the interpolated points (6C) corrects this and smoothes the bathymetric contours. The submerged river channel is also apparent in 6C where it is discontinuous in 6A.

Volumetric Survey Results - 2007

The results of the TWDB 2007 Volumetric Survey indicate Lake Cypress Springs has a total reservoir capacity of 66,756 acre-feet and encompasses 3,252 acres at conservation pool elevation (378.0 feet above mean sea level, NGVD29). In 1998 TWDB estimated the capacity of Lake Cypress Springs (at conservation pool elevation) at 67,690 acre-feet. ${ }^{1}$ Due to differences in the methodologies used in calculating areas and capacities from this and previous Lake Cypress Springs surveys, comparison of these values is not recommended. ${ }^{2}$ The TWDB considers the 2007 survey to be a significant improvement over previous methods and recommends that a similar methodology be used to resurvey Lake Cypress Springs in 10 to 20 years or after a major flood event.

Sediment Survey Results - 2007

The $200 \mathrm{kHz}, 50 \mathrm{kHz}$, and 24 kHz frequency data were used to interpret sediment distribution and accumulation throughout Lake Cypress Springs. Figure 7 shows the thickness of sediment throughout the lake. To assist in the interpretation of postimpoundment sediment accumulation, ancillary data was collected in the form of five core samples. Sediment cores were collected on May 20, 2008 using a Specialty Devices, Inc. VibeCore system.

The results of the TWDB 2007 Sediment Survey indicate Lake Cypress Springs has accumulated 3,807 acre-feet of sediment since impoundment in 1970. Based on this measured sediment volume and assuming a constant sediment accumulation rate, Lake Cypress Springs loses approximately 100 acre-feet of capacity per year. The majority of the sediment accumulation has occurred within the main body of the lake, with the thickest deposits in the submerged Big Cypress Creek channel. The maximum sediment thickness observed in Lake Cypress Springs was 7.2 feet.

A complete description of the sediment measurement methodology and sample results is presented in Appendix D.

TWDB Contact Information

More information about the Hydrographic Survey Program can be found at:
http://www.twdb.state.tx.us/assistance/lakesurveys/volumetricindex.asp

Any questions regarding the TWDB Hydrographic Survey Program may be addressed to:

Barney Austin, Ph.D., P.E.
Director of the Surface Water Resources Division
Phone: (512) 463-8856
Email: Barney.Austin@twdb.state.tx.us
Or
Jason Kemp
Team Leader, TWDB Hydrographic Survey Program
Phone: (512) 463-2465
Email: Jason.Kemp@twdb.state.tx.us

References

1. Texas Water Development Board (1998) "Volumetric Survey of Lake Cypress Springs"
2. United States Department of Agriculture, Natural Resource Conservation Service, National Engineering Handbook, Section 3, Sedimentation, Chapter 7, Field Investigations and Surveys, December 1983.
3. Texas Water Development Board, Report 126, Engineering Data on Dams and Reservoirs in Texas, Part I, October 1974.
4. Franklin County Water District, viewed March 18, 2008, http://www.fcwd.com/.
5. United States Geological Survey, http://tx.usgs.gov/ 07 June 2006.
6. Texas Natural Resources Information System (TNRIS), viewed 31 October 2007, http://www.tnris.state.tx.us/.
7. U.S Department of Agriculture, Farm Service Agency, Aerial Photography Field Office, National Agriculture Imagery Program, viewed February 10, 2006 http://www.apfo.usda.gov/NAIP.html.
8. ESRI, Environmental Systems Research Institute. 1995. ARC/INFO Surface Modeling and Display, TIN Users Guide.
9. Furnans, Jordan. Texas Water Development Board. 2006. "HydroEdit User’s Manual."

Appendix A

Lake Cypress Springs

RESERVOIR CAPACITY TABLE
TEXAS WATER DEVELOPMENT BOARD JULY 2007 SURVEY CAPACITY IN ACRE-FEET

Conservation Pool Elevation 378.0 Feet NGVD29
ELEVATION INCREMENT IS ONE TENTH FOOT

ELEVATION in Feet	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
325	0	0	0	0	0	0	0	0	0	0
326	0	0	0	0	0	0	0	0	0	0
327	0	0	0	0	0	0	0	0	0	0
328	0	0	0	0	0	0	0	0	0	0
329	0	1	1	1	1	1	1	1	1	1
330	2	2	2	2	3	3	4	5	6	7
331	9	10	12	14	16	19	22	25	29	33
332	37	42	47	53	59	66	74	82	90	99
333	109	119	130	141	153	165	178	191	205	219
334	233	249	264	280	296	313	330	348	366	384
335	403	422	441	461	481	502	523	545	567	589
336	613	636	660	684	708	733	759	784	810	836
337	863	890	917	945	974	1,003	1,032	1,062	1,092	1,122
338	1,153	1,184	1,216	1,248	1,280	1,313	1,346	1,380	1,414	1,449
339	1,484	1,520	1,556	1,592	1,629	1,667	1,705	1,744	1,783	1,823
340	1,863	1,904	1,946	1,989	2,032	2,077	2,122	2,168	2,215	2,262
341	2,310	2,359	2,408	2,458	2,508	2,559	2,611	2,662	2,715	2,768
342	2,821	2,875	2,930	2,985	3,040	3,097	3,153	3,211	3,269	3,327
343	3,386	3,445	3,505	3,566	3,627	3,689	3,751	3,814	3,877	3,942
344	4,006	4,072	4,138	4,204	4,271	4,338	4,406	4,475	4,544	4,613
345	4,683	4,753	4,824	4,896	4,968	5,041	5,115	5,190	5,265	5,341
346	5,418	5,496	5,574	5,653	5,733	5,813	5,895	5,977	6,059	6,142
347	6,226	6,311	6,396	6,482	6,569	6,656	6,744	6,833	6,922	7,012
348	7,103	7,194	7,287	7,380	7,474	7,569	7,664	7,760	7,857	7,954
349	8,052	8,150	8,249	8,349	8,449	8,550	8,651	8,753	8,855	8,958
350	9,062	9,166	9,270	9,375	9,481	9,587	9,694	9,801	9,910	10,019
351	10,128	10,239	10,349	10,461	10,573	10,686	10,799	10,913	11,028	11,143
352	11,259	11,376	11,493	11,611	11,729	11,848	11,968	12,088	12,209	12,331
353	12,453	12,576	12,700	12,824	12,949	13,075	13,201	13,328	13,456	13,584
354	13,712	13,842	13,972	14,102	14,233	14,365	14,497	14,630	14,764	14,898
355	15,033	15,168	15,305	15,442	15,580	15,719	15,858	15,998	16,139	16,280
356	16,422	16,565	16,708	16,852	16,997	17,143	17,289	17,436	17,583	17,732
357	17,881	18,031	18,181	18,332	18,484	18,636	18,789	18,943	19,097	19,251
358	19,407	19,563	19,720	19,877	20,035	20,194	20,353	20,513	20,673	20,835
359	20,997	21,159	21,322	21,486	21,650	21,816	21,981	22,148	22,315	22,482
360	22,651	22,820	22,990	23,160	23,331	23,503	23,676	23,850	24,024	24,199
361	24,374	24,551	24,728	24,906	25,084	25,264	25,444	25,625	25,807	25,990
362	26,174	26,358	26,543	26,729	26,915	27,102	27,290	27,478	27,667	27,857
363	28,047	28,238	28,430	28,623	28,816	29,010	29,205	29,400	29,597	29,794
364	29,992	30,191	30,391	30,591	30,793	30,995	31,198	31,402	31,606	31,812
365	32,018	32,225	32,433	32,642	32,852	33,063	33,275	33,488	33,702	33,917
366	34,133	34,350	34,568	34,786	35,006	35,226	35,447	35,669	35,892	36,116
367	36,342	36,568	36,795	37,023	37,253	37,483	37,714	37,947	38,180	38,414
368	38,649	38,885	39,123	39,360	39,599	39,839	40,080	40,321	40,563	40,807
369	41,051	41,296	41,542	41,788	42,036	42,284	42,534	42,784	43,035	43,287
370	43,540	43,794	44,048	44,304	44,560	44,817	45,076	45,335	45,594	45,855
371	46,116	46,379	46,642	46,906	47,171	47,437	47,704	47,972	48,240	48,510
372	48,781	49,053	49,325	49,599	49,874	50,150	50,426	50,704	50,983	51,262
373	51,543	51,825	52,107	52,391	52,675	52,961	53,248	53,536	53,824	54,114
374	54,405	54,698	54,991	55,285	55,580	55,876	56,173	56,472	56,772	57,072
375	57,374	57,676	57,980	58,284	58,589	58,895	59,201	59,508	59,816	60,124
376	60,433	60,743	61,053	61,364	61,676	61,988	62,301	62,615	62,929	63,244
377	63,560	63,876	64,193	64,511	64,829	65,148	65,468	65,789	66,110	66,433
378	66,756									

Appendix B

Lake Cypress Springs

RESERVOIR AREA TABLE

	TEXAS WATER DEVELOPMENT BOARDAREA IN ACRESELEVATION INCREMENT IS ONE TENTH FOOT				JULY 2007 SURVEYConservation Pool Elevation 378.0 Feet NGVD29					
ELEVATION in Feet	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
325	0	0	0	0	0	0	0	0	0	0
326	0	0	0	0	0	0	0	0	0	0
327	0	0	0	0	0	0	0	0	0	0
328	0	0	0	0	0	0	0	0	0	1
329	1	1	1	1	1	1	1	1	2	2
330	2	2	3	4	5	6	8	9	11	13
331	15	17	19	21	25	28	31	35	38	42
332	46	51	55	60	66	71	77	83	88	94
333	100	105	109	114	119	125	130	135	139	144
334	149	153	157	161	165	169	173	177	181	185
335	189	193	196	200	205	209	214	219	224	229
336	233	236	240	243	247	250	254	257	261	265
337	268	273	277	282	286	290	294	298	302	306
338	310	314	318	322	327	331	335	340	345	349
339	353	358	364	369	373	378	385	390	395	401
340	407	413	421	429	441	449	457	465	472	478
341	484	489	495	501	506	511	516	522	527	532
342	537	542	548	553	560	565	570	575	581	586
343	592	597	603	609	615	620	626	631	638	645
344	650	656	662	667	672	677	682	687	692	697
345	702	707	713	720	726	734	742	750	757	764
346	772	779	786	795	803	809	816	822	829	836
347	842	849	856	863	870	876	883	890	897	903
348	911	920	929	937	944	950	957	963	969	975
349	981	988	994	1,000	1,005	1,011	1,016	1,021	1,026	1,031
350	1,037	1,042	1,048	1,053	1,059	1,065	1,072	1,079	1,086	1,093
351	1,099	1,105	1,111	1,118	1,124	1,131	1,137	1,144	1,151	1,157
352	1,163	1,170	1,175	1,181	1,186	1,193	1,200	1,207	1,213	1,220
353	1,227	1,234	1,240	1,247	1,253	1,260	1,266	1,272	1,278	1,284
354	1,290	1,296	1,302	1,308	1,314	1,320	1,326	1,332	1,339	1,346
355	1,353	1,360	1,368	1,375	1,383	1,390	1,397	1,404	1,410	1,417
356	1,424	1,431	1,438	1,445	1,452	1,459	1,466	1,473	1,480	1,487
357	1,495	1,501	1,507	1,514	1,520	1,526	1,532	1,538	1,544	1,551
358	1,557	1,564	1,570	1,577	1,583	1,590	1,596	1,602	1,609	1,616
359	1,622	1,629	1,635	1,641	1,647	1,654	1,660	1,667	1,674	1,680
360	1,688	1,695	1,702	1,709	1,716	1,723	1,731	1,739	1,746	1,753
361	1,760	1,767	1,775	1,782	1,790	1,798	1,807	1,816	1,824	1,832
362	1,839	1,847	1,854	1,861	1,867	1,874	1,881	1,887	1,894	1,900
363	1,907	1,914	1,921	1,928	1,936	1,944	1,953	1,961	1,969	1,977
364	1,985	1,993	2,002	2,010	2,018	2,026	2,034	2,042	2,050	2,058
365	2,066	2,075	2,083	2,093	2,103	2,115	2,126	2,136	2,146	2,155
366	2,164	2,173	2,182	2,190	2,198	2,207	2,216	2,227	2,237	2,247
367	2,256	2,267	2,278	2,288	2,298	2,308	2,318	2,329	2,338	2,347
368	2,356	2,366	2,375	2,384	2,393	2,402	2,411	2,419	2,428	2,436
369	2,445	2,454	2,463	2,471	2,480	2,489	2,498	2,507	2,515	2,524
370	2,533	2,542	2,551	2,560	2,568	2,577	2,585	2,594	2,602	2,611
371	2,619	2,628	2,637	2,645	2,654	2,664	2,673	2,682	2,692	2,702
372	2,713	2,723	2,733	2,743	2,753	2,762	2,772	2,782	2,792	2,801
373	2,811	2,821	2,831	2,840	2,851	2,862	2,873	2,883	2,894	2,906
374	2,916	2,926	2,935	2,945	2,957	2,969	2,980	2,992	3,002	3,011
375	3,021	3,030	3,038	3,046	3,053	3,060	3,067	3,074	3,080	3,087
376	3,093	3,100	3,107	3,113	3,120	3,126	3,133	3,140	3,147	3,153
377	3,160	3,167	3,174	3,181	3,188	3,195	3,203	3,210	3,218	3,226
378	3,252									

Appendix C: Area and Capacity Curves

Appendix D

Analysis of Sediment Accumulation Data from Lake Cypress Springs

Executive Summary

The results of the TWDB 2007 Sedimentation Survey indicate Lake Cypress Springs has accumulated 3,807 acre-feet of sediment since impoundment in 1970. Based on this measured sediment volume and assuming a constant rate of sediment accumulation, Lake Cypress Springs loses approximately 100 acre-feet of capacity per year. The majority of the sediment accumulation has occurred within the main body of the lake, with the thickest deposits in the submerged Big Cypress Creek channel. The maximum sediment thickness observed in Lake Cypress Springs was 7.2 feet.

Introduction

This appendix includes the results of the sediment investigation using multifrequency depth sounder data collected on June $21^{\text {st }}$, June $27^{\text {th }}$-June $29^{\text {th }}$, July $10^{\text {th }}$, and July $11^{\text {th }}$ of 2007 by the Texas Water Development Board (TWDB). Through careful analysis and interpretation of the multi-frequency signal returns, it is possible to discern the pre-impoundment bathymetric surface, as well as the current surface and sediment thickness. Such interpretations are aided and validated through comparisons with sediment core samples which provide independent measurements of sediment thickness. On May 20, 2008 TWDB collected five core samples of the impoundment bottom throughout the reservoir. The remainder of this appendix presents a discussion of the results from and methodology used in the core sampling and multi-frequency data collection efforts, followed by a composite analysis of sediment measured in Lake Cypress Springs.

Data Collection \& Processing Methodology

TWDB conducted the Lake Cypress Springs bathymetric survey on June $21^{\text {st }}$, June $27^{\text {th }}$-June $29^{\text {th }}$, July $10^{\text {th }}$, and July $11^{\text {th }}$ of 2007 , while the water surface elevation ranged between 378.22 feet and 379.42 feet above mean sea level (NGVD29). For all data collection efforts, TWDB used a Specialty Devices, Inc., multi-frequency (200 kHz , 50 kHz , and 24 kHz) sub-bottom profiling depth sounder integrated with Differential Global Positioning System (DGPS) equipment. Data collection occurred while navigating along pre-planned range lines oriented perpendicular to the assumed location of the original river channels and spaced approximately 500 feet apart. For all data collection efforts, the depth sounder was calibrated daily using a velocity profiler to measure the speed of sound in the water column and a weighted tape or stadia rod for depth reading verification. During the 2007 survey, team members collected 70,445 data points over cross-sections totaling nearly 72 miles in length. Figure E1 shows where data points were collected during the TWDB 2007 survey. The coordinates and a description of each core sample are provided in Table E1.

Core samples collected by TWDB were collected at locations where sounding data had been previously collected (Figure E1). All cores were collected with a customcoring boat and SDI VibraCore system. Cores were analyzed by TWDB, and both the sediment thickness and the distance the core penetrated the pre-impoundment boundary were recorded. Figure E2 shows the cross-section of sediment core \#1. At this location, TWDB collected 18" of sediment, with the upper sediment layers (Figure E2) having a high water content, consisting of clay material and lacking in vegetation. The preimpoundment boundary was evident from this core at a distance of 10" above the core base; above this location, the moisture content in the sediment greatly increases (Figure E2).

Table D1 - Core Sampling Analysis Data

Core	Easting** (ft)	Northing** (ft)	Description
1	2984546.46	7083312.15	18 " of muddy sediment with plant material visible.
2	2972427.51	7079991.96	18 " of alternating muddy and sandy sediment, dry clay found 32" below pre- impoundment boundary
3	2968465.25	7077895.17	$15 "$ of clay sediment, dark color with orange spots.
4	2983536.81	7089095.45	12 " of wet, fine grained sediment (clay)
5	2995017.84	7086446.74	16 " of sediment with little plant material visible.

** Coordinates are based on NAD 1983 State Plane Texas North Central system

Figure E1 - TWDB 2007 survey data points for Lake Cypress Springs

Figure E2 - Upper portion of core \#1 from Lake Cypress Springs, showing the preimpoundment boundary 10" above the base of the core (left).

All sounding data is processed using the DepthPic software, within which both the pre-impoundment and current bathymetric surfaces are identified and digitized manually. These surfaces are first identified along cross-sections for which core samples have been collected - thereby allowing the user to identify color bands in the DepthPic display that correspond to the sediment layer(s) observed in the core samples. This process is illustrated in Figure E3 where core sample \#1 is shown with its corresponding sounding data. Core sample \#1 contained 18" of sediment above the pre-impoundment bathymetry, as indicated by the yellow \& green boxes, respectively, representing the core sample in Figure E3. The pre-impoundment surface is usually identified within the core sample by one of the following methods: (1) a visual examination of the core for in-place terrestrial materials, such as leaf litter, tree bark, twigs, intact roots, etc., concentrations of which tend to occur on or just below the pre-impoundment surface, (2) changes in texture from well sorted, relatively fine-grained sediment to poorly sorted mixtures of coarse and fine-grained materials, and (3) variations in the physical properties of the sediment, particularly sediment water content and penetration resistance with depth.

Figure E3 - DepthPic \& core sample use in identifying the pre-impoundment bathymetry.

Within DepthPic, the current surface is automatically determined based on the signal returns from the 200 kHz transducer. The pre-impoundment surface must be determined visually based on the pixel color display and any available core sample data. Based on core sample \#1, it is clear that the pre-impoundment bathymetric surface for this cross-section may be identified as the base of the bright-colored blue pixels in the DepthPic display. The top of the sediment layer is also clearly identifiable as the band of red and green pixels (Figure E3).

In analyzing data from cross-sections where core samples were not collected, the assumption is made that sediment layers may be identified in a similar manner as when core sample data is available. To improve the validity of this assumption, core samples are collected at regularly spaced intervals within the lake, or at locations where interpretation of the DepthPic display would be difficult without site-specific core data. For this reason, all sounding data is collected and reviewed before core sites are selected and cores are collected.

After manually digitizing the pre-impoundment surface from all cross-sections, both the pre-impoundment and current bathymetric surfaces are exported as $\mathrm{X}-, \mathrm{Y}-, \mathrm{Z}-$ coordinates from DepthPic into text files suitable for use in ArcGIS. Within ArcGIS, the sounding points are then processed into TIN models following standard GIS techniques ${ }^{1}$.

Results

The results of the TWDB 2007 Sediment Survey indicate Lake Cypress Springs has accumulated 3,807 acre-feet of sediment since impoundment in 1970.

Based on this measured sediment volume and assuming a constant sediment accumulation rate, Lake Cypress Springs loses approximately 100 acre-feet of capacity per year. The majority of the sediment accumulation has occurred within the main body of the lake, with the thickest deposits in the submerged Big Cypress Creek channel. The maximum sediment thickness observed in Lake Cypress Springs was 7.2 feet.

The accumulated sediment volume for Lake Cypress Springs was calculated from a sediment thickness TIN model created in ArcGIS. Sediment thicknesses were computed as the difference in elevations between the current and pre-impoundment bathymetric surfaces as determined with the DepthPic software. Sediment thicknesses were interpolated for locations between surveyed cross-sections using the TWDB self-similar interpolation technique ${ }^{2}$. For the purposes of the TIN model creation, TWDB assumed 0feet sediment thicknesses at the model boundaries (defined as the 378.0 foot NGVD29 elevation contour). Figure E4 depicts the sediment thickness in Lake Cypress Springs.

Figure E4 - Sediment thicknesses in Lake Cypress Springs derived from multi-frequency sounding data.

References

1. Furnans, J., Austin, B., Hydrographic survey methods for determining reservoir volume, Environmental Modelling \& Software (2007), doi: 10.1016/j.envsoft.2007.05.011
2. Furnans, Jordan. Texas Water Development Board. 2006. "HydroEdit User’s Manual."

