# Volumetric Survey of <br> ALAN HENRY RESERVOIR 

## July 2005 Survey



Prepared by:
The Texas Water Development Board

September 2006

# Texas Water Development Board 

J. Kevin Ward, Executive Administrator

Texas Water Development Board
E. G. Rod Pittman, Chairman

William W. Meadows, Member Dario Vidal Guerra, Jr., Member

Jack Hunt, Vice Chairman
Thomas Weir Labatt III, Member
James Herring, Member

Prepared for: Brazos River Authority

Authorization for use or reproduction of any original material contained in this publication, i.e. not obtained from other sources, is freely granted. The Board would appreciate acknowledgment.

This report was prepared by staff of the Surface Water Resources Division:
Barney Austin, Ph.D.
Jordan Furnans, Ph.D., P.E.
Duane Thomas
Randall Burns
Tony Connell
Holly Weyant

Published and Distributed by the
Texas Water Development Board
P.O. Box 13231

Austin, TX 78711-3231

## Executive Summary

In March of 2005, the Texas Water Development Board (TWDB) entered into agreement with the Brazos River Authority, for the purpose of performing a volumetric survey of Alan Henry Reservoir while the reservoir was near the top of the conservation pool elevation. This information was converted into updated Elevation-Volume and Elevation-Area Tables. The original design information for Alan Henry Reservoir is unavailable; therefore, the TWDB 2005 results are compared to the impoundment rights allowed by Permit to Appropriate State Water No. 4146. In addition, the TWDB established twenty-two sediment range lines to track sedimentation in the reservoir.

The results of the TWDB 2005 Survey indicate Alan Henry Reservoir has a volume of 94,808 acre-feet and encompasses 2,741 acres at conservation pool elevation, 2,220.0 ft above msl. Original reservoir volume, as per Permit to Appropriate State Water No. 4146 granted in 1984, was 115,937 acre-feet. This indicates the reservoir has experienced an 18\% decrease in volume, or 21,129 acre-feet loss, since it was designed. The BRA states that the area of Lake Alan Henry is 2,884 acres at conservation pool elevation. The TWDB 2005 survey indicates a 5\%, or 143 acre, loss in surface area at the conservation pool elevation.

## Table of Contents

Alan Henry Reservoir General Information ..... 1
Volumetric Survey of Alan Henry Reservoir ..... 4
Introduction ..... 4
Bathymetric Survey ..... 4
Datum. ..... 5
Survey Results ..... 5
Data Processing ..... 6
Model Boundary ..... 6
Triangular Irregular Network (TIN) Model ..... 6
Self-Similar Interpolation and the Shallow Area Problem ..... 7
Sediment Range Lines ..... 8
References ..... 9

## List of Tables

Table 1: Pertinent Data for John T. Montford Dam and Alan Henry Reservoir

## List of Figures

Figure 1: Location of Alan Henry Reservoir Map
Figure 2: Lake Alan Henry Water Supply District Project Map
Figure 3: Map of TWDB 2005 Survey Data
Figure 4: Elevation Relief Map
Figure 5: Depth Ranges Map
Figure 6: 10’ - Contour Map
Figure 7: Map of Self-Similar Interpolation Routine Points
Figure 8: Map of HydroEdit "Shallow Area Problem" Routine Results

## Appendices

APPENDIX A: 2005 ALAN HENRY RESERVOIR VOLUME TABLE
APPENDIX B: 2005 ALAN HENRY RESERVOIR AREA TABLE
APPENDIX C: 2005 ELEVATION- VOLUME GRAPH
APPENDIX D: 2005 ELEVATION- AREA GRAPH
APPENDIX E: SEDIMENT RANGE LINES

## Alan Henry Reservoir General Information

Alan Henry Reservoir is located in Garza and Kent Counties on the South Fork of the Double Mountain Fork of the Brazos River. See Figure 1, below.


Planning for the John T. Montford Dam and Alan Henry Reservoir began in the 1960's when city leaders realized that if the population of the City of Lubbock continued to grow as projected; the city would need another source for water. The application was granted and design work completed in the 1980’s. Construction of the dam began in 1991, and was completed in October of $1993^{1,2}$. Currently, the City of Lubbock obtains $80 \%$ of its drinking water from Lake Meredith, north of Amarillo, and the other $20 \%$ from two ground water well fields in Bailey County (Muleshoe Area) and Roberts County (Pampa Area) that draw from the Ogallala Aquifer. Lake Alan Henry is a tertiary drinking water supply for future use. ${ }^{1}$

The City of Lubbock is located 65 miles Northwest of Alan Henry Reservoir, and is approximately $1,000 \mathrm{ft}$ higher in elevation. Therefore, for Lubbock to use Alan Henry

Reservoir, the city needs three pump stations to take the water uphill to the city, a 65-mile pipeline to carry the water, and a new treatment plant to blend the Lake Alan Henry water with Bailey County well water. The treatment plant will be located in southwest Lubbock. ${ }^{1}$

Garza County and the majority of Alan Henry Reservoir are located within the Llano Estacado Regional Water Planning Group (LERWPG), Region O. LERWPG is a planning body only and does not hold any implementation authority. In the January 2006 Regional Water Plan, approved by the TWDB, there are two water management strategies involving Lake Alan Henry. The first is as a future water supply for the City of Lubbock. The second is to supply water to areas in close proximity to the lake under the jurisdiction of the Lake Alan Henry Water Supply District. The Lake Alan Henry Water Supply District was created through legislation enacted during the $78^{\text {th }}$ Texas Legislative Session, 2003, for the purpose of supplying water from the lake to developing areas adjacent to and near the lake. Voters of the service area confirmed the District in 2004. The City of Lubbock, a wholesale water provider, and the Lake Alan Henry Water Supply District are currently in the process of negotiating a contract to supply water to the District. Figure 2 is a map of the Region O strategy and Lake Alan Henry Water Supply District Project. ${ }^{3}$


Figure 2. Lake Alan Henry Water Supply District Project Map, from the Region O Water Plan. ${ }^{3}$

Alan Henry Reservoir was built by the Brazos River Authority (BRA) ${ }^{4}$ and operated by the BRA until 2005, when ownership and operation of the dam and reservoir became the responsibility of the City of Lubbock. ${ }^{5}$ Water rights for Lake Alan Henry are as follows:

- Permit to Appropriate State Water No. 4146, granted August 6,1984, authorized the City of Lubbock to construct a dam and reservoir on the South Fork of the Double Mountain Fork of the Brazos River and impound therein not to exceed 115,937 acre-feet of water. The permit authorizes the City of Lubbock to divert and use not to exceed 35,000 acre-feet of water per annum from the reservoir for municipal purposes at a maximum diversion rate of 69.6 cfs. The City of Lubbock is also authorized to make secondary use of not to exceed 21,000 acre-feet of water per annum (treated sewage effluent) out of the maximum 35,000 acre-feet of water diverted for municipal purposes to irrigate 10,000 acres of land in Lubbock and Lynn Counties, Texas. In addition the permit authorizes the City of Lubbock to use the impounded water for non-consumptive recreational purposes.
- Amendment to Water Use Permit No. 4146A, granted May 2, 2005, recognizes that the Brazos River Authority (BRA) owns Permit No. 4146 with all the rights discussed above. The Amendment deletes the diversion point authorized by Permit 4146 and adds a diversion point at the existing diversion works of the dam, and adds a diversion segment on the north shore of Lake Alan Henry which includes the entire shoreline of the Sam Wahl Recreation Area in Garza County. The Amendment also requires the owner to implement water conservation plans.
- Texas Commission on Environmental Quality (TCEQ) interoffice
memorandum dated December 19, 2005, from the Water Rights Permitting \& Availability Section, Water Supply Division. This memorandum documents the change of ownership of Permit No. 4146A from the BRA to the City of Lubbock, a Texas home rule municipal corporation, by Agreement to Transfer Lake Alan Henry dated July 14, 2005; and Deed and Assignment Without Warranty and Bill of Sale dated August 16, 2005. The complete certificates and permits are on file in the Records Division of the TCEQ.

The following table is a list of pertinent data about the John T. Montford Dam and Alan Henry Reservoir. ${ }^{1,6}$

Table 1: Pertinent Data for the John T. Montford Dam and Alan Henry Reservoir
Owner:
City of Lubbock
Operator:
City of Lubbock
River Miles from Gulf: 1,056
Contributing drainage area (sq. miles): 394
Top of Conservation Pool Elevation: 2,220.0 ft above msl
Construction Facts
Composition: 6.5 Million cubic yards of soil, clay, and soil-cement
Height of Dam: 138 ft
Crest Elevation/ Top of Dam: 2,263 ft above msl
Length of Dam: 3,600 ft
Width of Dam: 1,000 ft wide at the base
Service Spillway (Concrete): Designed to pass 15.6 million gallons per minute
Emergency Spillway (Earthen): Designed to pass 211 million gallons per minute

## Volumetric Survey of Alan Henry Reservoir

## Introduction

In March of 2005, the Texas Water Development Board entered into agreement with the Brazos River Authority, for the purpose of performing a volumetric survey of Alan Henry Reservoir while the reservoir was near the top of the conservation pool elevation. This information was converted into updated Elevation-Volume and ElevationArea Tables. Original design information is unavailable, therefore, the TWDB Survey results are compared to the permitted impoundment capacity in Permit to Appropriate State Water No. 4146 and new Sediment Range Lines have been established by the TWDB throughout Alan Henry Reservoir to track future sedimentation.

## Bathymetric Survey

Bathymetric data collection for Alan Henry Reservoir occurred between July $7^{\text {th }}$ and July $9^{\text {th }}$ of 2005, while the water surface elevation was slightly below the conservation pool elevation of 2,220.0 ft above mean sea level (msl). The water surface elevation varied between $2,219.42 \mathrm{ft}$ and $2,219.46 \mathrm{ft}$ above msl during the TWDB survey. The
survey team used one shallow water boat equipped with a depth sounder, velocity profiler, and integrated Differential Global Positioning System (DGPS) equipment to navigate along pre-planned range lines spaced approximately 500 feet apart in a perpendicular fashion to the original stream channel. During the 2005 survey, the team navigated over 129 miles of range lines and collected approximately 70,000 data points. Figure 3 shows the data points collected during the TWDB 2005 survey.

The depth sounder was calibrated each day using the velocity profiler to measure the speed of sound in the water column and a weighted tape or stadia rod to verify the depth reading. The average speed of sound through the water column varied between 4,858 and 4,913 feet per second during the 2005 survey.

## Datum

The vertical datum used during this survey is that used by the United States Geological Survey (USGS) for the reservoir elevation gauge USGS 08079700 Lk Alan Henry Res nr Justiceburg, TX. ${ }^{7}$ The datum for this gauge is reported as National Geodetic Vertical Datum 1929 (NGVD29) or mean sea level (msl), thus elevations reported here are in feet (ft) above msl. Volume and area calculations in this report are referenced to water levels provided by the USGS gauge. The horizontal datum used for this report is NAD83 State Plane Texas North Central Zone.

## Survey Results

The results of the TWDB 2005 Survey indicate Alan Henry Reservoir has a volume of 94,808 acre-feet and encompasses 2,741 acres at conservation pool elevation, $2,220.0 \mathrm{ft}$ above msl. This indicates the reservoir has experienced an $18 \%$ decrease in volume, or 21,129 acre-feet loss, when compared to the original reservoir volume of 115,937 acre-feet, as given in Permit to Appropriate State Water No. 4146. The BRA states that the area of Lake Alan Henry is 2,884 acres at conservation pool elevation. ${ }^{6}$ The TWDB 2005 survey indicates a 5\%, or 143 acre, reduction in surface area at the conservation pool elevation. Due to the likely differences in the methodologies used to calculate the reservoir's capacity between 1984 and 2005, comparison of these values is not recommended and is presented here for informational purposes only. ${ }^{8}$ The TWDB
considers the 2005 survey to be a significant improvement over previous methods and recommends that the same methodology be used to resurvey Alan Henry Reservoir in 5 to 10 years.

## Data Processing

## Model Boundary

The reservoir boundary was digitized from aerial photographs using Environmental Systems Research Institute's (ESRI) ArcGIS 9.1 software. The aerial photographs, or digital orthophoto quadrangle images (DOQs), used for Alan Henry Reservoir were Justiceburg and Justiceburg SE. These images were photographed on October 18, 2004. At the time of the photographs the water surface elevation measured $2,220.2 \mathrm{ft}$ above msl, just above the conservation pool elevation. At the scale of the photographs, the difference between 2,220.0 ft and $2,220.2 \mathrm{ft}$ is indiscernible; therefore the boundary was digitized at the land water interface from the photos, and assigned the conservation pool elevation of $2,220 \mathrm{ft}$.

The United States Department of Agriculture, Farm Service Agency’s, Aerial Photography Field Office (APFO), National Agriculture Imagery Program (NAIP) acquires the photographic imagery during the agricultural growing seasons in the continental U.S. ${ }^{9}$ The imagery resides in the public domain and can be downloaded from the Texas Natural Resources Information System (TNRIS) website at http://www.tnris.state.tx.us/. For more information visit the APFO website at http://www.apfo.usda.gov/NAIP.html or contact TNRIS.

## Triangular Irregular Network (TIN) Model

Upon completion of data collection, the raw data files were edited using HydroEdit, an automated editing routine developed by the TWDB, to remove any data anomalies. The water surface elevations for each respective day are applied and the depths are converted to corresponding bathymetric elevations, exported, and converted to a shapefile using ArcCatalog. The ArcGIS 3D Analyst Extension is then used to create a Triangular Irregular Network (TIN) model of the bathymetry based on the sounding shapefile and the reservoir boundary files. The ArcGIS 3D Analyst Extension uses

Delaunay's criteria for triangulation to place a triangle between three non-uniformly spaced points, including vertices of the lines in the reservoir boundary file. ${ }^{10}$ The Alan Henry Reservoir TIN Model was enhanced through the use of a Self-Similar Interpolation routine developed by the TWDB. See the following section on Self-Similar Interpolation and the Shallow Area Problem for more information.

Using Arc/Info software, volumes and areas are calculated from the TIN Model for the entire lake at one-tenth of a foot intervals, from elevation 2,140.8 ft to elevation 2,220.0 ft. The Elevation-Volume and Elevation-Area Tables, updated for 2005, are presented in Appendices A and B, respectively. An Elevation-Volume graph and an Elevation- Area graph are presented in Appendices C and D, respectively.

The TIN Model was interpolated and averaged using a cell size of 10 ft and converted to a raster. The raster was used to produce Figure 4, an Elevation Relief Map representing the topography of the reservoir bottom, Figure 5, a map showing shaded depth ranges for Alan Henry Reservoir, and Figure 6, a 10-ft contour map.

## Self-Similar Interpolation and the Shallow Area Problem

A limitation of the Delaunay method for triangulation in the TIN Model results in artificially-curved contour lines extending into the reservoir where the reservoir walls are steep and the reservoir is relatively narrow. These curved contours are likely a poor representation of the true reservoir bathymetry in these areas. To ameliorate this problem, a Self-Similar Interpolation routine (developed by the TWDB) was used to interpolate the bathymetry in between many 500 ft -spaced survey lines to increase the density of points input into the TIN Model. The increased point density alters the mean triangle shape from long and skinny to more equilateral, thus providing better representations of reservoir topography. ${ }^{11}$ In areas where obvious geomorphic features indicate a high-probability of cross-section shape changes (e.g. incoming tributaries, significant widening/narrowing of channel, etc.), this self-similar assumption is not likely to be valid; therefore, self-similar interpolation was not used in areas of Alan Henry Reservoir where a high probability of change between cross-sections exists. ${ }^{11}$ Figure 7 shows the resulting point density after the Self-Similar Interpolation routine was employed. The area interpolated equals 36.5\% of the reservoir area (at conservation pool elevation).

Another limitation of the Delaunay method of TIN generation involves the calculation of areas and volumes in sections of the reservoir that were too shallow for bathymetric data collection by boat. This "shallow area problem," as identified by the TWDB, is corrected using the HydroEdit interpolation routines developed by the TWDB. The Delaunay triangulation method, within ArcGIS, creates large flat triangles throughout these un-surveyed areas for which each corner of the triangle lies on the reservoir boundary. These triangles do not suggests any change in slope along the boundary and are assigned zero depths, causing an artificial spike in the elevation-area graphs at the last elevation interval for which reservoir areas are calculated. To correct this, the HydroEdit software program linearly interpolates elevations along connecting lines between the reservoir boundary vertices and their closest sounding points. These interpolated data points are used in conjunction with the surveyed sounding points and the Self-Similar Interpolated points to generate the TIN model. The additional data points result in a model with a more realistic representation of the reservoir bathymetry. ${ }^{11}$ Figure 8 shows the resulting point density after the HydroEdit "Shallow Area Problem" routine was employed.

## Sediment Range Lines

Information for the original design, including range lines, was unavailable. Therefore, the TWDB established twenty-two Sediment Range Lines in Alan Henry Reservoir to track sedimentation in the reservoir. Using ArcGIS, the TWDB staff established sediment range lines near the confluences of each stream, the main channel of the lake, and in bends in the main lake channel where water velocities would slow and drop any sediment load. The Sediment Range Line cross-sectional plots presented in Appendix E were extracted from the TIN Model. Appendix E also contains a map displaying the location of the range lines and a Table listing the endpoint coordinates of each line.

## References

1. Lake Alan Henry, Official Website by City of Lubbock Parks and Recreation, http://www.lakealanhenry.org/, 3 April 2006.
2. Water Resources Data, Texas, Water Year 2002, Volume 3. San Jacinto River Basin, Brazos River Basin, San Bernard River Basin, and Intervening Coastal Basins, USGS 3.Llano Estacado Regional Water Planning Group (Region O) Homepage, 19 December 2005, http://www.llanoplan.org/, April 3, 2006.
3. BRA News Release, "FRASER ANNOUNCES ABILENE WATER AGREEMENT,"

11 April 2005, http://www.brazos.org/newsArchive.asp, 3 April 2006.
5. Texas Commission on Environmental Quality Interoffice Memorandum from Water

Rights Permitting and Availability Section, Water Supply Division, Subject: Change of Ownership, December 19, 2005.
6. Brazos River Authority, Water Supply and Reservoir Data, http://www.brazos.org/waterSupply.asp, 3 April 2006.
7. United States Geological Survey, http://tx.usgs.gov/ 11 July 2005.
8. Blanton III, James O. Bureau of Reclamation. 1982. "Procedures for Monitoring Reservoir Sedimentation."
9. U.S Department of Agriculture, Farm Service Agency, Aerial Photography Field Office, National Agriculture Imagery Program, http://www.apfo.usda.gov/NAIP.html, 2/10/06.
10. ESRI, Environmental Systems Research Institute. 1995. ARC/INFO Surface Modeling and Display, TIN Users Guide.
11. Furnans, Jordan. Texas Water Development Board. 2006. "HydroEdit User’s Manual."

Figure 3

## Alan Henry Reservoir

Data Points Collected During TWDB 2005 Survey



Figure 4
Alan Henry Reservoir


Figure 5

## Alan Henry Reservoir



Figure 7

## Alan Henry Reservoir

## Self-Similar Interpolation Routine Results



## Legend

..... Data Points Collected During TWDB 2005 Survey
..... Data Points Added Using the HydroEdit Self-Similar Interpolation Routine

IslandsLake Boundary Elev. 2,220 ft above msl


Figure 8

## Alan Henry Reservoir

## HydroEdit "Shallow Area Problem" Routine Results



## Legend

..... Data Points Collected During TWDB 2005 Survey
..... Data Points Added Using the HydroEdit
"Shallow Area Problem" Routine
IslandsLake Boundary
Elevation 2,220 ft above msl


## Appendix A

## Alan Henry Reservoir <br> RESERVOIR VOLUME TABLE

## TEXAS WATER DEVELOPMENT BOARD <br> JULY 2005 SURVEY

Conservation Pool Elevation 2,220.0'
VOLUME IN ACRE-FEET
ELEVATION INCREMENT IS ONE TENTH FOOT

| ELEVATION in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2,140 |  |  |  |  |  |  |  |  | 0 | 0 |
| 2,141 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,143 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 3 |
| 2,144 | 3 | 4 | 5 | 6 | 7 | 9 | 10 | 12 | 14 | 17 |
| 2,145 | 19 | 22 | 25 | 29 | 34 | 39 | 46 | 54 | 62 | 72 |
| 2,146 | 83 | 95 | 108 | 121 | 136 | 152 | 168 | 185 | 203 | 222 |
| 2,147 | 242 | 262 | 282 | 303 | 325 | 348 | 371 | 394 | 418 | 443 |
| 2,148 | 468 | 494 | 519 | 546 | 572 | 599 | 626 | 654 | 682 | 710 |
| 2,149 | 739 | 768 | 797 | 827 | 858 | 889 | 921 | 953 | 985 | 1,017 |
| 2,150 | 1,050 | 1,082 | 1,116 | 1,149 | 1,182 | 1,216 | 1,250 | 1,285 | 1,319 | 1,354 |
| 2,151 | 1,389 | 1,424 | 1,460 | 1,496 | 1,532 | 1,569 | 1,606 | 1,644 | 1,682 | 1,720 |
| 2,152 | 1,759 | 1,797 | 1,836 | 1,876 | 1,915 | 1,955 | 1,995 | 2,036 | 2,077 | 2,118 |
| 2,153 | 2,159 | 2,200 | 2,242 | 2,285 | 2,327 | 2,370 | 2,413 | 2,457 | 2,500 | 2,544 |
| 2,154 | 2,588 | 2,632 | 2,677 | 2,722 | 2,767 | 2,812 | 2,858 | 2,903 | 2,949 | 2,996 |
| 2,155 | 3,042 | 3,089 | 3,136 | 3,183 | 3,231 | 3,279 | 3,327 | 3,375 | 3,424 | 3,473 |
| 2,156 | 3,523 | 3,572 | 3,622 | 3,673 | 3,723 | 3,774 | 3,825 | 3,876 | 3,927 | 3,979 |
| 2,157 | 4,031 | 4,083 | 4,135 | 4,188 | 4,241 | 4,294 | 4,347 | 4,401 | 4,455 | 4,509 |
| 2,158 | 4,563 | 4,618 | 4,672 | 4,728 | 4,783 | 4,839 | 4,894 | 4,951 | 5,007 | 5,064 |
| 2,159 | 5,121 | 5,178 | 5,235 | 5,293 | 5,350 | 5,409 | 5,467 | 5,525 | 5,584 | 5,643 |
| 2,160 | 5,703 | 5,762 | 5,822 | 5,883 | 5,943 | 6,004 | 6,065 | 6,126 | 6,188 | 6,250 |
| 2,161 | 6,313 | 6,375 | 6,438 | 6,501 | 6,565 | 6,628 | 6,692 | 6,757 | 6,821 | 6,886 |
| 2,162 | 6,951 | 7,017 | 7,082 | 7,149 | 7,215 | 7,282 | 7,349 | 7,416 | 7,484 | 7,552 |
| 2,163 | 7,621 | 7,690 | 7,759 | 7,829 | 7,898 | 7,968 | 8,039 | 8,109 | 8,180 | 8,251 |
| 2,164 | 8,322 | 8,394 | 8,465 | 8,537 | 8,609 | 8,682 | 8,754 | 8,827 | 8,900 | 8,973 |
| 2,165 | 9,047 | 9,121 | 9,195 | 9,269 | 9,344 | 9,419 | 9,494 | 9,569 | 9,645 | 9,720 |
| 2,166 | 9,796 | 9,873 | 9,949 | 10,026 | 10,102 | 10,180 | 10,257 | 10,334 | 10,412 | 10,490 |
| 2,167 | 10,569 | 10,647 | 10,726 | 10,805 | 10,884 | 10,963 | 11,043 | 11,123 | 11,203 | 11,283 |
| 2,168 | 11,364 | 11,445 | 11,526 | 11,608 | 11,689 | 11,771 | 11,854 | 11,936 | 12,019 | 12,102 |
| 2,169 | 12,185 | 12,268 | 12,352 | 12,436 | 12,520 | 12,604 | 12,688 | 12,773 | 12,858 | 12,943 |
| 2,170 | 13,029 | 13,115 | 13,200 | 13,287 | 13,373 | 13,460 | 13,546 | 13,633 | 13,721 | 13,808 |
| 2,171 | 13,896 | 13,984 | 14,072 | 14,161 | 14,249 | 14,339 | 14,428 | 14,517 | 14,607 | 14,697 |
| 2,172 | 14,787 | 14,878 | 14,969 | 15,060 | 15,151 | 15,243 | 15,335 | 15,426 | 15,519 | 15,611 |
| 2,173 | 15,704 | 15,797 | 15,891 | 15,984 | 16,078 | 16,172 | 16,266 | 16,360 | 16,455 | 16,550 |
| 2,174 | 16,645 | 16,740 | 16,836 | 16,932 | 17,027 | 17,124 | 17,220 | 17,317 | 17,414 | 17,511 |
| 2,175 | 17,609 | 17,707 | 17,804 | 17,903 | 18,001 | 18,100 | 18,199 | 18,298 | 18,398 | 18,497 |
| 2,176 | 18,597 | 18,697 | 18,798 | 18,899 | 18,999 | 19,101 | 19,202 | 19,304 | 19,406 | 19,508 |
| 2,177 | 19,610 | 19,713 | 19,816 | 19,919 | 20,022 | 20,126 | 20,230 | 20,334 | 20,438 | 20,542 |
| 2,178 | 20,647 | 20,753 | 20,858 | 20,964 | 21,069 | 21,176 | 21,282 | 21,389 | 21,496 | 21,603 |
| 2,179 | 21,711 | 21,819 | 21,926 | 22,035 | 22,143 | 22,252 | 22,361 | 22,470 | 22,580 | 22,689 |
| 2,180 | 22,800 | 22,910 | 23,020 | 23,131 | 23,242 | 23,353 | 23,465 | 23,577 | 23,689 | 23,801 |
| 2,181 | 23,914 | 24,027 | 24,140 | 24,253 | 24,366 | 24,480 | 24,595 | 24,709 | 24,824 | 24,939 |
| 2,182 | 25,054 | 25,170 | 25,285 | 25,401 | 25,518 | 25,634 | 25,751 | 25,868 | 25,986 | 26,104 |
| 2,183 | 26,222 | 26,340 | 26,458 | 26,577 | 26,696 | 26,816 | 26,936 | 27,056 | 27,176 | 27,296 |
| 2,184 | 27,417 | 27,539 | 27,660 | 27,782 | 27,903 | 28,026 | 28,149 | 28,271 | 28,394 | 28,518 |
| 2,185 | 28,641 | 28,766 | 28,890 | 29,014 | 29,139 | 29,264 | 29,390 | 29,516 | 29,642 | 29,768 |
| 2,186 | 29,895 | 30,022 | 30,149 | 30,276 | 30,404 | 30,532 | 30,660 | 30,788 | 30,917 | 31,046 |
| 2,187 | 31,176 | 31,306 | 31,436 | 31,566 | 31,696 | 31,827 | 31,959 | 32,090 | 32,222 | 32,353 |
| 2,188 | 32,486 | 32,618 | 32,751 | 32,884 | 33,017 | 33,151 | 33,285 | 33,419 | 33,554 | 33,689 |
| 2,189 | 33,824 | 33,959 | 34,095 | 34,231 | 34,367 | 34,504 | 34,641 | 34,778 | 34,916 | 35,054 |
| 2,190 | 35,192 | 35,331 | 35,469 | 35,609 | 35,748 | 35,888 | 36,028 | 36,169 | 36,310 | 36,451 |
| 2,191 | 36,592 | 36,734 | 36,876 | 37,018 | 37,161 | 37,304 | 37,447 | 37,590 | 37,734 | 37,878 |
| 2,192 | 38,023 | 38,167 | 38,312 | 38,458 | 38,603 | 38,750 | 38,896 | 39,043 | 39,190 | 39,337 |
| 2,193 | 39,485 | 39,633 | 39,781 | 39,930 | 40,079 | 40,229 | 40,379 | 40,529 | 40,680 | 40,831 |
| 2,194 | 40,982 | 41,134 | 41,286 | 41,439 | 41,592 | 41,745 | 41,899 | 42,053 | 42,207 | 42,362 |
| 2,195 | 42,517 | 42,672 | 42,828 | 42,984 | 43,141 | 43,298 | 43,455 | 43,613 | 43,771 | 43,930 |
| 2,196 | 44,089 | 44,248 | 44,408 | 44,568 | 44,729 | 44,890 | 45,052 | 45,213 | 45,376 | 45,538 |
| 2,197 | 45,702 | 45,865 | 46,029 | 46,194 | 46,358 | 46,523 | 46,689 | 46,854 | 47,021 | 47,187 |
| 2,198 | 47,354 | 47,522 | 47,689 | 47,857 | 48,026 | 48,195 | 48,364 | 48,533 | 48,704 | 48,874 |
| 2,199 | 49,045 | 49,216 | 49,387 | 49,559 | 49,731 | 49,904 | 50,077 | 50,250 | 50,424 | 50,598 |


|  |  |  |  | Appe Alan SERV | (Conti <br> y Rese <br> OLUME | 3LE |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | TEXAS | ER DEV | MENT |  |  |  | ULY 2005 | VEY |  |  |
|  |  |  |  |  |  | Con | tion Pool | tion 2,2 |  |  |
|  |  | UME IN | -FEET |  | ELE | ON INCR | NT IS ON | NTH FO |  |  |
| in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 2,200 | 50,773 | 50,948 | 51,123 | 51,298 | 51,474 | 51,650 | 51,827 | 52,004 | 52,181 | 52,359 |
| 2,201 | 52,537 | 52,716 | 52,894 | 53,074 | 53,253 | 53,433 | 53,614 | 53,794 | 53,975 | 54,156 |
| 2,202 | 54,338 | 54,520 | 54,703 | 54,886 | 55,069 | 55,252 | 55,437 | 55,621 | 55,806 | 55,991 |
| 2,203 | 56,177 | 56,363 | 56,550 | 56,737 | 56,924 | 57,112 | 57,301 | 57,489 | 57,679 | 57,868 |
| 2,204 | 58,058 | 58,249 | 58,440 | 58,631 | 58,823 | 59,015 | 59,208 | 59,401 | 59,595 | 59,789 |
| 2,205 | 59,984 | 60,179 | 60,374 | 60,570 | 60,766 | 60,963 | 61,160 | 61,358 | 61,556 | 61,754 |
| 2,206 | 61,954 | 62,153 | 62,353 | 62,554 | 62,754 | 62,956 | 63,158 | 63,359 | 63,562 | 63,765 |
| 2,207 | 63,969 | 64,173 | 64,377 | 64,583 | 64,788 | 64,994 | 65,201 | 65,408 | 65,616 | 65,824 |
| 2,208 | 66,032 | 66,242 | 66,451 | 66,662 | 66,872 | 67,083 | 67,295 | 67,507 | 67,721 | 67,934 |
| 2,209 | 68,148 | 68,363 | 68,577 | 68,793 | 69,009 | 69,226 | 69,443 | 69,661 | 69,879 | 70,097 |
| 2,210 | 70,317 | 70,537 | 70,756 | 70,977 | 71,198 | 71,420 | 71,642 | 71,864 | 72,088 | 72,311 |
| 2,211 | 72,535 | 72,760 | 72,985 | 73,211 | 73,437 | 73,664 | 73,891 | 74,119 | 74,347 | 74,576 |
| 2,212 | 74,805 | 75,035 | 75,266 | 75,497 | 75,728 | 75,960 | 76,193 | 76,426 | 76,660 | 76,894 |
| 2,213 | 77,129 | 77,364 | 77,599 | 77,836 | 78,072 | 78,310 | 78,548 | 78,786 | 79,025 | 79,264 |
| 2,214 | 79,504 | 79,744 | 79,985 | 80,226 | 80,468 | 80,710 | 80,954 | 81,197 | 81,441 | 81,684 |
| 2,215 | 81,929 | 82,175 | 82,420 | 82,667 | 82,913 | 83,160 | 83,408 | 83,656 | 83,905 | 84,153 |
| 2,216 | 84,403 | 84,654 | 84,904 | 85,155 | 85,406 | 85,658 | 85,911 | 86,164 | 86,417 | 86,671 |
| 2,217 | 86,926 | 87,181 | 87,436 | 87,692 | 87,948 | 88,205 | 88,463 | 88,720 | 88,979 | 89,238 |
| 2,218 | 89,497 | 89,758 | 90,018 | 90,279 | 90,540 | 90,803 | 91,066 | 91,329 | 91,593 | 91,857 |
| 2,219 | 92,122 | 92,388 | 92,654 | 92,921 | 93,188 | 93,457 | 93,726 | 93,995 | 94,265 | 94,536 |
| 2,220 | 94,808 |  |  |  |  |  |  |  |  |  |

## Appendix B

## Alan Henry Reservoir RESERVOIR AREA TABLE

JULY 2005 SURVEY
Conservation Pool Elevation 2,220.0'

|  | AREA IN ACRES |  |  |  | ELEVATION INCREMENT IS ONE TENTH FOOT |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ELEVATION in Feet | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 2,140 |  |  |  |  |  |  |  |  | 0 | 0 |
| 2,141 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2,142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 2,143 | , | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 5 |
| 2,144 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| 2,145 | 27 | 30 | 35 | 41 | 50 | 61 | 72 | 82 | 92 | 104 |
| 2,146 | 114 | 122 | 132 | 143 | 151 | 160 | 169 | 177 | 184 | 191 |
| 2,147 | 197 | 203 | 209 | 215 | 222 | 228 | 233 | 238 | 244 | 249 |
| 2,148 | 253 | 257 | 260 | 264 | 267 | 270 | 274 | 277 | 281 | 285 |
| 2,149 | 289 | 294 | 298 | 303 | 309 | 313 | 317 | 320 | 322 | 325 |
| 2,150 | 327 | 329 | 332 | 335 | 337 | 339 | 342 | 345 | 347 | 349 |
| 2,151 | 352 | 355 | 358 | 362 | 366 | 370 | 374 | 377 | 381 | 384 |
| 2,152 | 387 | 389 | 392 | 394 | 397 | 400 | 403 | 406 | 409 | 411 |
| 2,153 | 414 | 417 | 421 | 424 | 427 | 430 | 433 | 435 | 437 | 440 |
| 2,154 | 442 | 444 | 446 | 449 | 452 | 454 | 457 | 459 | 461 | 464 |
| 2,155 | 466 | 469 | 472 | 474 | 477 | 480 | 483 | 487 | 490 | 493 |
| 2,156 | 496 | 498 | 501 | 503 | 506 | 508 | 511 | 514 | 516 | 518 |
| 2,157 | 520 | 522 | 524 | 527 | 529 | 532 | 534 | 537 | 540 | 542 |
| 2,158 | 545 | 547 | 550 | 553 | 555 | 558 | 560 | 563 | 565 | 568 |
| 2,159 | 570 | 573 | 575 | 577 | 580 | 582 | 584 | 587 | 589 | 592 |
| 2,160 | 595 | 598 | 601 | 604 | 607 | 610 | 613 | 616 | 619 | 622 |
| 2,161 | 624 | 627 | 630 | 633 | 636 | 639 | 642 | 644 | 647 | 650 |
| 2,162 | 653 | 656 | 659 | 662 | 666 | 670 | 673 | 677 | 680 | 684 |
| 2,163 | 687 | 690 | 693 | 696 | 699 | 701 | 704 | 706 | 709 | 711 |
| 2,164 | 714 | 716 | 718 | 721 | 723 | 725 | 727 | 729 | 732 | 734 |
| 2,165 | 737 | 740 | 742 | 745 | 747 | 749 | 751 | 754 | 756 | 759 |
| 2,166 | 761 | 763 | 766 | 768 | 770 | 772 | 775 | 777 | 779 | 782 |
| 2,167 | 784 | 786 | 788 | 790 | 793 | 795 | 798 | 800 | 803 | 805 |
| 2,168 | 808 | 810 | 813 | 816 | 819 | 821 | 824 | 826 | 828 | 830 |
| 2,169 | 833 | 835 | 837 | 839 | 842 | 844 | 847 | 849 | 851 | 853 |
| 2,170 | 856 | 858 | 860 | 862 | 865 | 867 | 869 | 872 | 874 | 876 |
| 2,171 | 879 | 882 | 884 | 887 | 889 | 892 | 894 | 896 | 899 | 902 |
| 2,172 | 904 | 907 | 909 | 912 | 914 | 917 | 919 | 922 | 924 | 927 |
| 2,173 | 929 | 932 | 934 | 936 | 938 | 940 | 943 | 945 | 947 | 950 |
| 2,174 | 952 | 954 | 957 | 959 | 962 | 964 | 966 | 969 | 971 | 974 |
| 2,175 | 976 | 979 | 981 | 983 | 986 | 988 | 991 | 993 | 996 | 998 |
| 2,176 | 1,001 | 1,003 | 1,006 | 1,008 | 1,010 | 1,013 | 1,016 | 1,018 | 1,020 | 1,023 |
| 2,177 | 1,025 | 1,028 | 1,030 | 1,032 | 1,035 | 1,037 | 1,039 | 1,042 | 1,044 | 1,047 |
| 2,178 | 1,050 | 1,053 | 1,055 | 1,058 | 1,061 | 1,064 | 1,066 | 1,069 | 1,071 | 1,074 |
| 2,179 | 1,076 | 1,079 | 1,081 | 1,084 | 1,086 | 1,089 | 1,091 | 1,094 | 1,096 | 1,099 |
| 2,180 | 1,101 | 1,104 | 1,106 | 1,109 | 1,112 | 1,114 | 1,117 | 1,119 | 1,122 | 1,124 |
| 2,181 | 1,127 | 1,130 | 1,132 | 1,135 | 1,138 | 1,140 | 1,143 | 1,146 | 1,148 | 1,151 |
| 2,182 | 1,153 | 1,156 | 1,159 | 1,162 | 1,165 | 1,168 | 1,171 | 1,173 | 1,176 | 1,179 |
| 2,183 | 1,182 | 1,184 | 1,187 | 1,190 | 1,193 | 1,196 | 1,198 | 1,201 | 1,204 | 1,207 |
| 2,184 | 1,210 | 1,213 | 1,216 | 1,218 | 1,221 | 1,224 | 1,227 | 1,230 | 1,233 | 1,236 |
| 2,185 | 1,239 | 1,242 | 1,245 | 1,248 | 1,250 | 1,253 | 1,256 | 1,259 | 1,262 | 1,264 |
| 2,186 | 1,267 | 1,270 | 1,273 | 1,276 | 1,278 | 1,281 | 1,284 | 1,287 | 1,290 | 1,293 |
| 2,187 | 1,296 | 1,299 | 1,302 | 1,304 | 1,307 | 1,310 | 1,312 | 1,315 | 1,318 | 1,321 |
| 2,188 | 1,324 | 1,326 | 1,329 | 1,332 | 1,335 | 1,338 | 1,341 | 1,344 | 1,347 | 1,350 |
| 2,189 | 1,353 | 1,356 | 1,359 | 1,362 | 1,365 | 1,368 | 1,371 | 1,374 | 1,378 | 1,381 |
| 2,190 | 1,384 | 1,387 | 1,390 | 1,394 | 1,397 | 1,400 | 1,403 | 1,407 | 1,410 | 1,413 |
| 2,191 | 1,416 | 1,419 | 1,422 | 1,425 | 1,428 | 1,430 | 1,433 | 1,436 | 1,439 | 1,442 |
| 2,192 | 1,446 | 1,449 | 1,452 | 1,455 | 1,459 | 1,462 | 1,466 | 1,469 | 1,472 | 1,476 |
| 2,193 | 1,479 | 1,483 | 1,486 | 1,490 | 1,494 | 1,497 | 1,501 | 1,505 | 1,508 | 1,512 |
| 2,194 | 1,516 | 1,520 | 1,524 | 1,527 | 1,531 | 1,535 | 1,538 | 1,542 | 1,545 | 1,549 |
| 2,195 | 1,553 | 1,557 | 1,560 | 1,564 | 1,568 | 1,572 | 1,576 | 1,580 | 1,584 | 1,588 |
| 2,196 | 1,592 | 1,596 | 1,600 | 1,604 | 1,609 | 1,613 | 1,617 | 1,622 | 1,626 | 1,629 |
| 2,197 | 1,633 | 1,637 | 1,641 | 1,645 | 1,649 | 1,652 | 1,656 | 1,660 | 1,664 | 1,668 |
| 2,198 | 1,672 | 1,676 | 1,679 | 1,683 | 1,687 | 1,691 | 1,694 | 1,698 | 1,702 | 1,706 |
| 2,199 | 1,710 | 1,713 | 1,717 | 1,721 | 1,724 | 1,728 | 1,732 | 1,735 | 1,739 | 1,743 |

Appendix B (Continued)

## Alan Henry Reservoir

RESERVOIR AREA TABLE
TEXAS WATER DEVELOPMENT BOARD
JULY 2005 SURVEY
Conservation Pool Elevation 2,220.0'
AREA IN ACRES ELEVATION INCREMENT IS ONE TENTH FOOT

| ELEVATION in Feet |  | AREA |  | ELEVATION INCREMENT IS ONE TENTH |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| 2,200 | 1,746 | 1,750 | 1,754 | 1,757 | 1,761 | 1,765 | 1,768 | 1,772 | 1,775 | 1,779 |
| 2,201 | 1,783 | 1,786 | 1,790 | 1,794 | 1,797 | 1,801 | 1,805 | 1,808 | 1,812 | 1,816 |
| 2,202 | 1,819 | 1,823 | 1,827 | 1,830 | 1,834 | 1,839 | 1,843 | 1,847 | 1,851 | 1,855 |
| 2,203 | 1,859 | 1,864 | 1,868 | 1,872 | 1,877 | 1,881 | 1,886 | 1,890 | 1,894 | 1,899 |
| 2,204 | 1,903 | 1,908 | 1,912 | 1,916 | 1,921 | 1,925 | 1,930 | 1,935 | 1,939 | 1,943 |
| 2,205 | 1,948 | 1,952 | 1,956 | 1,961 | 1,966 | 1,970 | 1,975 | 1,979 | 1,984 | 1,988 |
| 2,206 | 1,993 | 1,997 | 2,002 | 2,006 | 2,011 | 2,015 | 2,020 | 2,024 | 2,028 | 2,033 |
| 2,207 | 2,038 | 2,043 | 2,048 | 2,053 | 2,059 | 2,064 | 2,069 | 2,074 | 2,079 | 2,084 |
| 2,208 | 2,089 | 2,094 | 2,100 | 2,105 | 2,110 | 2,115 | 2,121 | 2,126 | 2,132 | 2,137 |
| 2,209 | 2,143 | 2,148 | 2,153 | 2,159 | 2,164 | 2,169 | 2,174 | 2,179 | 2,184 | 2,189 |
| 2,210 | 2,194 | 2,199 | 2,203 | 2,208 | 2,213 | 2,218 | 2,224 | 2,229 | 2,234 | 2,239 |
| 2,211 | 2,244 | 2,249 | 2,254 | 2,259 | 2,265 | 2,270 | 2,275 | 2,280 | 2,285 | 2,291 |
| 2,212 | 2,296 | 2,302 | 2,307 | 2,313 | 2,319 | 2,324 | 2,329 | 2,334 | 2,339 | 2,344 |
| 2,213 | 2,349 | 2,354 | 2,359 | 2,365 | 2,370 | 2,375 | 2,380 | 2,385 | 2,390 | 2,396 |
| 2,214 | 2,401 | 2,406 | 2,411 | 2,416 | 2,421 | 2,426 | 2,431 | 2,436 | 2,440 | 2,445 |
| 2,215 | 2,450 | 2,455 | 2,459 | 2,464 | 2,469 | 2,474 | 2,479 | 2,483 | 2,488 | 2,493 |
| 2,216 | 2,498 | 2,503 | 2,508 | 2,513 | 2,517 | 2,522 | 2,527 | 2,532 | 2,537 | 2,542 |
| 2,217 | 2,547 | 2,552 | 2,557 | 2,562 | 2,567 | 2,572 | 2,577 | 2,582 | 2,587 | 2,592 |
| 2,218 | 2,598 | 2,603 | 2,608 | 2,614 | 2,619 | 2,625 | 2,630 | 2,636 | 2,642 | 2,648 |
| 2,219 | 2,654 | 2,660 | 2,666 | 2,672 | 2,678 | 2,685 | 2,691 | 2,698 | 2,705 | 2,713 |
| 2,220 | 2,741 |  |  |  |  |  |  |  |  |  |



## - - - - Conservation Pool Elevation 2220.0' —— Volume 2005

```
Alan Henry Reservoir
July 2005
Prepared by: TWDB
```


-- -- - Conservation Pool Elevation 2,220.0' $\quad$-_ Area 2005

## Appendix E

## Alan Henry Reservoir

## Legend



Sediment Range Lines
Islands
Reservoir at 2,220.0 ft
$2^{\text {Miles }}$

| Endpoint Coordinates for Alan Henry Reservoir Sediment Range Lines est. 2006 TWDB Coordinates in NAD83 (feet) State Plane Texas North Central Zone |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Range | $\begin{aligned} & \text { L=Left } \\ & \text { R=Right } \\ & \hline \end{aligned}$ | X | Y | Range | $\begin{aligned} & \hline \text { L=Left } \\ & \text { R=Right } \\ & \hline \end{aligned}$ | X | Y |
| SR-1 | L | 1,186,496.60691 | 7,078,530.17418 | SR-12 | L | 1,156,408.49789 | 7,066,080.11369 |
|  | R | 1,192,103.31509 | 7,075,896.94448 |  | R | 1,156,390.34971 | 7,065,227.14902 |
| SR-2 | L | 1,185,621.48336 | 7,078,657.30517 | SR-13 | R | 1,155,164.26962 | 7,066,335.75008 |
|  | R | 1,186,696.31816 | 7,076,935.25801 |  | L | 1,154,671.45741 | 7,065,797.52053 |
| SR-3 | L | 1,183,518.04319 | 7,074,970.50622 | SR-14 | L | 1,154,539.33615 | 7,065,676.75112 |
|  | R | 1,185,124.51672 | 7,074,993.62095 |  | R | 1,154,428.86340 | 7,065,015.72562 |
| SR-4 | L | 1,178,444.36062 | 7,076,646.32392 | SR-15 | L | 1,159,281.89041 | 7,064,288.26294 |
|  | R | 1,179,519.19542 | 7,075,617.71858 |  | R | 1,159,714.82979 | 7,064,580.06789 |
| SR-5 | L | 1,175,362.45263 | 7,074,088.81046 | SR-16 | L | 1,158,528.53774 | 7,064,797.49119 |
|  | R | 1,174,489.71679 | 7,073,461.61498 |  | R | 1,158,919.51824 | 7,064,328.31458 |
| SR-6 | L | 1,170,073.15921 | 7,072,694.25225 | SR-17 | L | 1,168,491.38240 | 7,066,407.57997 |
|  | R | 1,171,057.09690 | 7,071,611.92078 |  | R | 1,169,249.75069 | 7,066,566.04499 |
| SR-7 | L | 1,169,145.71202 | 7,068,555.06060 | SR-18 | L | 1,168,864.35343 | 7,071,773.36783 |
|  | R | 1,169,903.46899 | 7,068,093.87496 |  | R | 1,168,277.21472 | 7,070,341.24639 |
| SR-8 | L | 1,168,990.43727 | 7,068,070.76023 | SR-19 | L | 1,178,201.82458 | 7,076,913.63834 |
|  | R | 1,168,204.53656 | 7,067,296.41686 |  | R | 1,177,689.70452 | 7,076,139.76802 |
| SR-9 | L | 1,165,500.11351 | 7,070,231.98719 | SR-20 | L | 1,182,689.56493 | 7,072,393.14076 |
|  | R | 1,165,846.83441 | 7,069,191.82448 |  | R | 1,184,048.14408 | 7,071,988.36598 |
| SR-10 | L | 1,165,349.02440 | 7,068,477.07963 | SR-21 | L | 1,189,574.39519 | 7,073,446.47950 |
|  | R | 1,165,922.45705 | 7,067,548.46109 |  | R | 1,191,788.28621 | 7,074,753.47540 |
| SR-11 | L | 1,159,664.19158 | 7,066,359.72380 | SR-22 | L | 1,192,107.48690 | 7,068,904.11188 |
|  | R | 1,160,375.43798 | 7,066,040.02213 |  | R | 1,193,541.66260 | 7,068,353.95268 |

Alan Henry Reservoir
Range Line SR01


Range Line SR02


Appendix E

## Alan Henry Reservoir

Range Line SR03


Range Line SR04


Appendix E

## Alan Henry Reservoir

Range Line SR05


Range Line SR06


Appendix E

## Alan Henry Reservoir

Range Line SR07


Range Line SR08


Appendix E

## Alan Henry Reservoir

Range Line SR09


Range Line SR10


Appendix E

Alan Henry Reservoir
Range Line SR11


Range Line SR12


Appendix E

## Alan Henry Reservoir

Range Line SR13


Range Line SR14


Appendix E

## Alan Henry Reservoir

Range Line SR15


Range Line SR16


Appendix E

## Alan Henry Reservoir

Range Line SR17


Range Line SR18


Appendix E

## Alan Henry Reservoir

Range Line SR19


Range Line SR20


Appendix E

## Alan Henry Reservoir

Range Line SR21


Range Line SR22


Appendix E

Figure 6


## ALAN HENRY RESERVOIR



