Mapping Fresh, Brackish, and Saline Groundwater in the Queen City, Sparta, and Carrizo-Wilcox Aquifers mainly in Groundwater Management Area 13

Scott Hamlin1, Bob Reedy1, Bridget Scanlon1, Amy Banerji1
Steve Young2
Ian Jones, Contract Manager (TWDB)

1Bureau of Economic Geology, Jackson School of Geosciences, Univ. of Texas at Austin, Texas
2INTERA Inc., Austin, Texas

Meeting at Evergreen Underground Water Conservation District, April 15, 2016
Relationship between current TWDB Project and House Bill 30

- Our current project contract is being amended to incorporate House Bill 30 requirements for suggesting potential brackish groundwater production areas and scheduling.

- We will estimate potential production areas in the Carrizo-Wilcox Aquifer in 2016 and the Queen City and Sparta aquifers in 2017.

- After TWDB staff evaluates the potential areas and recommends the final areas, we will calculate water volumes in those areas.
Background

• Definition of water types:
 - Fresh: ≤1,000 mg/L Total Dissolved Solids (TDS)
 - Brackish: 1,000 – 10,000 mg/L TDS
 • Slightly saline: 1,000 – 3,000 mg/L;
 • moderately saline, 3,000 – 10,000 mg/L TDS
 - Saline: ≥ 10,000 mg/L TDS
 - Seawater: 35,000 mg/L TDS
Tasks
GMA 13 Brackish Groundwater Mapping

• Task 1: Project management
• Task 2: Groundwater quality
• Task 3: Use of geophysical log interpretation to map fresh, brackish, and saline groundwater
• Task 4. GIS-based application to calculate volumes of fresh, brackish, and saline groundwater
• Task 5. Visualization and groundwater quality
Additional Tasks
Studies to Support House Bill 30

- Task 6: Aquifer hydraulic properties
- Task 7: Mapping brackish groundwater production areas
Task 3: Use of Geophysical Log Interpretation to Map Fresh, Brackish, and Saline Groundwater

• 3.1: Evaluation of geophysical well logs, including availability, log quality, and data management (5,200 wells in BRACs database, 3,300 geophysical well logs)

• 3.2: Interpreting groundwater salinity from geophysical logs – 500 to 600 selected logs

• 3.3: Groundwater salinity and lithology mapping
Electric Log Response to Groundwater Salinity

<table>
<thead>
<tr>
<th>SP (mv)</th>
<th>Lith</th>
<th>Resistivity (ohm-m)1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-50</td>
<td>Mud</td>
<td>Depth (feet)</td>
</tr>
<tr>
<td>50</td>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mud</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mud</td>
<td></td>
</tr>
</tbody>
</table>

Freshwater sand
- SP positive
- Res very high

Slightly saline water sand
- SP neutral
- Res high

Moderately saline water sand
- SP negative
- Res low

Very saline water sand
- SP very negative
- Res very low

Graph showing the relationship between SP (Simplified Profile) values and resistivity with depth.
Brackish Groundwater Production Areas

1. Lower Wilcox in Gonzales County and northeastern Wilson County
 a) mostly moderately saline groundwater 1,500 to 5,500 feet deep
 b) very high sand area
 c) Middle Wilcox shale hydrogeologic barrier

2. Lower Wilcox in southwestern Wilson County and Atascosa County
 a) mostly moderately saline groundwater 1,500 to 5,500 feet deep
 b) less sandy than area 1
 c) Middle Wilcox shale hydrogeologic barrier

3. Lower Wilcox in Frio County and eastern Zavala County
 a) mostly slightly saline groundwater 1,500 to 4,500 feet deep
 b) mixed sand and shale
 c) Middle Wilcox shale hydrogeologic barrier

4. Carrizo-Upper Wilcox in Webb County
 a) mixed slightly and moderately saline gw 2,500 to 4,500 feet deep
 b) downdip from fresh groundwater
 c) hydrogeologic barrier provided by distance
CARRIZO-WILCOX AQUIFER CROSS SECTION 1

Wilson County + Karnes County + De Witt +

CARRIZO-UPPER WILCOX

MIDDLE WILCOX

LOWER WILCOX

Lithology and Water Quality

- Freshwater Sand
- Slightly Saline Water Sand
- Moderately Saline Water Sand
- Very Saline Water Sand
- Shale

Feet

0 5000 10,000

0 15 miles
CARRIZO-WILCOX AQUIFER CROSS SECTION 2

Lithology and Water Quality
- Freshwater Sand
- Slightly Saline Water Sand
- Moderately Saline Water Sand
- Very Saline Water Sand
- Saline Water Sand
- Shale
CARRIZO-WILCOX AQUIFER CROSS SECTION 3

Lithology and Water Quality

- Freshwater Sand
- Slightly Saline Water Sand
- Moderately Saline Water Sand
- Very Saline Water Sand
- Shale

Feet

Zavala County Dimmit La Salle County McMullen

Land Surface

CARRIZO-UPPER WILCOX

MIDDLE WILCOX

LOWER WILCOX

0 15 miles

10,000
CARRIZO-WILCOX AQUIFER CROSS SECTION 4

Lithology and Water Quality:
- Freshwater Sand
- Slightly Saline Water Sand
- Moderately Saline Water Sand
- Very Saline Water Sand
- Shale
Lower Wilcox
Net Freshwater Sandstone

GMA 13

Net Freshwater Sand Thickness (Ft)

Legend:
- 1000
- 900
- 800
- 700
- 600
- 500
- 400
- 300
- 200
- 100
- 0
Lower Wilcox
Net Slightly Saline Water Sandstone

GMA 13

Net Brackish Water Sand Thickness (Ft)
Stakeholder advisory forum for the GMA 13 Brackish Groundwater Mapping Project

April 15, 2016 10–12am.

Meeting held at the Evergreen Underground Water Conservation District, Pleasanton, TX.

List of Stakeholder Statements (S), questions (Q), and responses (R).

Note: This list is based on meeting notes. A video recording was not made.

1. S: The Yoakum Channel in the middle Wilcox Group is very important. You need to mention this in the report.
 R: The Yoakum Channel has been mapped and data will be used in the report.

2. Q: How will you calculate the volume of brackish groundwater?
 R: The method will be the same as the TWDB’s Total Estimated Recoverable Storage (TERS).

3. Q: Is this brackish groundwater being recharged or is it fossil water?
 R: Some groundwater recharges in the outcrop area and moves downdip. Some of the higher salinity groundwater is probably fossil (very old) groundwater.

4. S: Age-dating of Carrizo groundwater 5 miles downdip from the outcrop in the Guadalupe – Caldwell county area is about 2,000 years old and the Wilcox groundwater is about 40,000 years old. Suggest TWDB procure money to age-date groundwater.
 R: The shale and sand layers are mapped and will be used in the model. Some of the shale is interbedded with sand and silt. The thickness of the units is determined. The model will consider the shale layers and faults. The modeling task will evaluate impact.
8. **S:** Wilcox sediments contain clay clasts containing bound water that will affect resistivity analysis of the sands. Carrizo sands are cleaner and do not contain the clay clasts.

 R: The character of the Wilcox and Carrizo sands is taken into account during analysis.

9. **S:** In 2007 San Antonio Water System drilled a well in northeast Atascosa County. No study was performed showing the relationship between the Carrizo and Wilcox. Evergreen Underground Water Conservation District contracted with Mr. Hargis to map the Carrizo and Wilcox to study the water resources. Mr. Hargis mapped the major shale units. There are buried hills of Wilcox underneath the Carrizo. There is a major unconformity between the Carrizo and Wilcox as seen in outcrops. Where this unconformity exists, the shale between the Carrizo and Wilcox is missing. The middle Wilcox does contain some sand and shale. In northwest Atascosa County the Carrizo overlies the lower Wilcox and the middle Wilcox shale is missing. Continuous pumping in the lower Wilcox will affect the Carrizo. There is over 300 years of experience with the Carrizo in the Evergreen Underground Water Conservation District region. The solution is that San Antonio should desalinate seawater. The study must tie in outcrop work. Was the Hargis study used for this project?

 R: Yes, the Hargis study was used, and shale layers in his report are also in the cross sections.

10. **S:** The legacy of big [aquifer] drawdowns will be left to the landowners. Desired Future Conditions is an issue. Edwards Aquifer Authority versus Bragg will affect districts. Large districts can afford lawsuits, smaller districts cannot.

11. **S:** Cross-section 2 showed a shale layer that can be considered a hydrogeologic barrier but on cross-section 4 there is no barrier – just distance downdip.

 R: Modeling will estimate impact. In the area of cross-section 4 if there is impact then this area will be re-evaluated as a zone.

12. **S:** Any impact to fresh water is significant impact.

13. **Q:** The dots on the map in the areas of potential production areas – are these monitor wells?

 R: No, the dots represent well control used for interpretation of geology.

14. **S:** The well density in the study means some areas have no control. How can you draw conclusions in these areas? You will need more monitor wells in these areas to see impact.

 R: This is a regional study with a set timeframe. We cannot use every well. This is a desktop study based on existing information. We are estimating aquifer properties for the modeling task since there are few to no deep brackish wells in the region. One of the requirements of House Bill 30 is to recommend monitor well locations. Once an entity proposes a well or well field, test wells will need to be drilled and evaluated. Once pumping begins, monitor wells will indicate if there is impact.

15. **S:** San Antonio Water System drilled Wilcox wells.
R: We (Bureau of Economic Geology) were not involved with that work.

16. Q: Do you mean you did not know of this work? You should use this data.
R: Neither the Bureau of Economic Geology or the Texas Water Development Board were consultants to San Antonio Water System for their brackish water well field. The well data from San Antonio was made available to TWDB and the contractor for our studies.

17. S: San Antonio Water System drilled one monitor well in the Wilcox, Carrizo, and Queen City aquifers in Atascosa County.

18. S: San Antonio has unlimited brackish groundwater production in southern Bexar County.
R: There is no groundwater conservation district in southern Bexar County regulating the Wilcox (response from another participant in the meeting).

19. Q: So you have existing well control with brackish groundwater use?
R: We are using publicly available well control for the study. One of the requirements of House Bill 30 is to exclude areas with existing brackish groundwater use from the designation of brackish groundwater production zones. These areas, in conjunction with modeling, will be used to refine the boundaries of the proposed production areas.

The next step, after the study is completed in August, is for TWDB staff to review the data and make recommendations to our Executive Administrator. These recommendations will be presented to our Board next fall and the final brackish groundwater production zones will be presented in our biennial Brackish and Seawater Desalination Report to the Legislature due December 1. The Board meetings discussing brackish groundwater production zones and the biennial report will be open to the public and offer another meeting for stakeholder input. If you have any comments after this meeting, please forward them to TWDB. This presentation will be available on our website next week.

20. Q: What will the final shape of the brackish groundwater production zones look like?
R: They will be three-dimensional blobs based on study data and modeling.
We will exclude areas where wells are currently using brackish groundwater. We will also exclude areas where Class II injection wells (produced water from oil/gas operations) are used. Typically injection is in zones with total dissolved solids greater than 10,000 (U.S. EPA definition of Underground Source of Drinking Water), but there are Railroad Commission exceptions to this.

21. Q: Will you consider the fault zones? Some of these faults will allow water to move between aquifers.
R: The faults will be considered during the modeling phase of the study.

22. S: The modeling needs to account for the Carrizo – Wilcox unconformity.
<table>
<thead>
<tr>
<th>Participant</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art Troell</td>
<td>McCoy W .S. Corp.</td>
</tr>
<tr>
<td>Morris Cowley</td>
<td></td>
</tr>
<tr>
<td>Wendi Denton</td>
<td>Fayette County Groundwater Conservation District</td>
</tr>
<tr>
<td>Humberto Ramos</td>
<td>Canyon Regional Water Authority</td>
</tr>
<tr>
<td>Ian Jones</td>
<td>Texas Water Development Board</td>
</tr>
<tr>
<td>Nathan van Oort</td>
<td>Texas Water Development Board</td>
</tr>
<tr>
<td>Lonnie Stewart</td>
<td>McMullen Groundwater Conservation District</td>
</tr>
<tr>
<td>Amy Banerji</td>
<td>Bureau of Economic Geology</td>
</tr>
<tr>
<td>Bridget Scanlon</td>
<td>Bureau of Economic Geology</td>
</tr>
<tr>
<td>Richard Donat</td>
<td>San Antonio Water System</td>
</tr>
<tr>
<td>Kelley Vickers</td>
<td>Guadalupe County Groundwater Conservation District</td>
</tr>
<tr>
<td>Andy Garza</td>
<td>Kenedy County Groundwater Conservation District</td>
</tr>
<tr>
<td>Felix Saenz</td>
<td>Brush Country Groundwater Conservation District</td>
</tr>
<tr>
<td>Larry Fox</td>
<td>Evergreen Underground Water Conservation District</td>
</tr>
<tr>
<td>Justin Westmoreland</td>
<td>GCWCD</td>
</tr>
<tr>
<td>John Meyer</td>
<td>Texas Water Development Board</td>
</tr>
<tr>
<td>Scott Hamlin</td>
<td>Bureau of Economic Geology</td>
</tr>
<tr>
<td>Daniel Meyer</td>
<td>Plum Creek Conservation District</td>
</tr>
<tr>
<td>Ginger Coleman</td>
<td></td>
</tr>
<tr>
<td>Diane Savage</td>
<td>Evergreen Underground Water Conservation District</td>
</tr>
<tr>
<td>Greg Sengelmann</td>
<td>Gonzales County Underground Water Conservation District</td>
</tr>
<tr>
<td>Kay Love</td>
<td></td>
</tr>
<tr>
<td>James Beach</td>
<td>LBG-Guyton Associates</td>
</tr>
<tr>
<td>Thomas D. Hill</td>
<td>GBRA</td>
</tr>
<tr>
<td>Clifton R. Stacy</td>
<td>Evergreen Underground Water Conservation District</td>
</tr>
<tr>
<td>Jay Troell</td>
<td>Evergreen Underground Water Conservation District</td>
</tr>
<tr>
<td>Monica Jacobs</td>
<td>Kelly Hart</td>
</tr>
<tr>
<td>Bob Ulrich</td>
<td>Pleasanton, TX</td>
</tr>
<tr>
<td>Natalie Bartek</td>
<td></td>
</tr>
<tr>
<td>Participant</td>
<td>Affiliation</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Larry Bartek</td>
<td>Poteet</td>
</tr>
<tr>
<td>Bob Reedy</td>
<td>Bureau of Economic Geology</td>
</tr>
</tbody>
</table>