Final Report: Groundwater Availability Model of the Seymour Aquifer in Haskell, Knox, and Baylor Counties

By Marius Jigmond, William R. Hutchison, Ph.D., P.E., P.G., and Jianyou (Jerry) Shi, Ph.D., P.G.
Texas Water Development Board
February 14, 2014
This page is intentionally blank
Final Report: Groundwater Availability Model of the Seymour Aquifer in Haskell, Knox, and Baylor Counties

Geoscientist and Engineering Seal

This report documents the work and supervision of work of the following licensed Texas Professional Geoscientists and licensed Texas Professional Engineer:

William R. Hutchison, Ph.D., P.E. (96287), P.G. (286)

Dr. Hutchison was the Project Manager for this work and was responsible for oversight on this project while employed at the Texas Water Development Board. He is currently an independent Groundwater Consultant.

Signature

Date

2/14/2014

Jianyou (Jerry) Shi, Ph.D., P.G. (11113)

Dr. Shi assisted with model calibration and editing of the report.

Signature

Date

2/14/2014

Cynthia K. Ridgeway, P.G. (471)

Cynthia K. Ridgeway is the Manager of the Groundwater Availability Modeling Section and was responsible for oversight of work performed by Marius Jigmond (lead modeler for the project) under her direct supervision while employed at TWDDB.

Signature

Date

February 14, 2014
Table of Contents

Table of Contents ... 9
List of Figures and Tables .. 9
EXECUTIVE SUMMARY .. 9
 ES 1.0 Introduction and Purpose of the Refined Groundwater Availability Model .. 9
 ES 2.0 Model Overview .. 10
 ES 3.0 Model Calibration and Results ... 10
 ES 4.0 Model Sensitivity Analysis .. 10
 ES 5.0 Model Limitations ... 10
1. INTRODUCTION AND PURPOSE OF THE GROUNDWATER AVAILABILITY MODEL ... 11
2. MODEL OVERVIEW ... 12
 2.1 Basic (BAS6) Package .. 12
 2.2 Discretization (DIS) Package .. 12
 2.3 Layer-Property Flow (LPF) Package ... 13
 2.4 Well (WEL) Package .. 14
 2.5 Drain (DRN) Package ... 14
 2.6 River (RIV) Package .. 14
 2.7 Recharge (RCH) Package ... 15
 2.8 Output Control (OC) Package .. 16
 2.9 Geometric Multigrid (GMG) Solver Package 16
3. MODEL CALIBRATION AND RESULTS ... 17
 3.1 Calibration Procedure .. 17
 3.2 Model Simulated versus Measured Heads 17
 3.3 Model Simulated versus Measured River Flux 17
 3.4 Model Simulated Water Budgets ... 18
4. SENSITIVITY ANALYSIS .. 19
 4.1 Procedure of Sensitivity Analysis ... 19
4.2 Results of Sensitivity Analysis

4.3 Correlation between Pumping, Precipitation, and Recharge

5. MODEL LIMITATIONS

6. FUTURE IMPROVEMENTS

6.1 Additional Supporting Data

6.2 Future Model Implementation Improvements

7. SUMMARY AND CONCLUSIONS

8. REFERENCES

ACKNOWLEDGMENTS

Appendix A: Measured and Simulated Water Levels

Appendix B: Select Hydrographs for Wells with 30 or More Measurements

19

19

20

21

21

21

22

23

25

51

150
List of Figures and Tables

Figure 1. Distribution of the Seymour Aquifer “pod” in Haskell, southern Knox, and western Baylor counties, Rolling Plains GCD, and the model grid outline.. 26

Figure 2. Conceptual groundwater flow model (after Jones and others, 2012). 27

Figure 3. Modified conceptual groundwater flow model. ... 28

Figure 4. Active and inactive areas of the numerical model... 29

Figure 5. Top elevation of model layer 1. ... 30

Figure 6. Bottom elevation of model layer 1. ... 31

Figure 7. Distribution of calibrated horizontal hydraulic conductivity. 32

Figure 8. Distribution of calibrated anisotropy. ... 33

Figure 9. Distribution of calibrated specific storage. Smaller numbers represent thicker aquifer. ... 34

Figure 10. Distribution of drain and river cells... 35

Figure 11. Spatial distribution of calibrated average recharge... 36

Figure 12. Spatial distribution of average water-level residuals. Residuals were calculated as observed value minus simulated value... 37

Figure 13. Simulated versus measured water levels along the perfect match line............. 38

Figure 14. Water-level residuals versus measured water levels...................................... 39

Figure 15. Histogram of water-level residuals (bars) and normal distribution (dashed line)... 40

Figure 16. Simulated general groundwater flow direction in 1979.................................... 41

Figure 17. General direction of groundwater flow (modified from R.W. Harden and Associates, 1978). ... 42

Figure 18. Change in water levels as a result of varying different parameters during the sensitivity analysis. ... 43

Figure 19. Correlation between pumping and precipitation. Each point represents a pumping year and corresponding precipitation for that year... 44

Table 1. Summary of MODFLOW-2000 model input packages...................................... 45
Table 2. Summary of MODFLOW-2000 model output packages. .. 46
Table 3. Summary of simulated pumping rates in acre-feet per year. 47
Table 4. Summary of overall average groundwater budget for the model in acre-feet per year. .. 48
Table 5. Summary of average groundwater budget by county in acre-feet per year............. 49
Table 6. Correlation between simulated pumping, recharge and precipitation. 50
Final Report: Groundwater Availability Model of the Seymour Aquifer in Haskell, Knox, and Baylor Counties

By Marius Jigmond,

William R. Hutchison, Ph.D., P.E., P.G., and

Jianyou (Jerry) Shi, Ph.D., P.G.

Texas Water Development Board

February 14, 2014

EXECUTIVE SUMMARY

ES 1.0 Introduction and Purpose of the Refined Groundwater Availability Model

The Texas Water Development Board (TWDB) contracted a modeling study and released a Groundwater Availability Model (GAM) of the Seymour and Blaine aquifers in 2004 (Ewing and others, 2004). That GAM used a single model to represent the entire Seymour Aquifer, which consists of isolated “pods” that are not hydraulically connected. The Seymour Aquifer pod located in Haskell, southern Knox, and western Baylor counties was identified as a prime candidate for a refined model due to the large quantities of groundwater pumping when compared to the other portions of the Seymour Aquifer. To accomplish this, the TWDB contracted a conceptual model study for the Seymour Aquifer in those three counties (Jones and others, 2012). The TWDB used this refined conceptual model, the previous modeling study (Ewing and others, 2004), and additional data from the Rolling Plains Groundwater Conservation District (GCD) to develop a refined numerical groundwater availability model covering these three counties.

The refined GAM has finer special and temporal resolutions. In addition, the refined GAM was well calibrated to the measured water levels in the Seymour Aquifer and the flow along the Brazos River. This refined GAM provides an effective tool to assess the water management strategies for the Seymour Aquifer in the selected counties that will benefit a variety of people, including the TWDB, Regional Water Planning Groups (B and G), the Rolling Plains Groundwater Conservation district, and Groundwater Management Area 6. Specifically, the refined GAM and information from the refined conceptual model (Jones and others, 2012) can help the Rolling Plains GCD to develop the desired future conditions and to evaluate the groundwater availability in this portion of the Seymour Aquifer.
ES 2.0 Model Overview

This refined GAM covers the Seymour Aquifer in Haskell, southern Knox, western Baylor, and a small portion of eastern Stonewall counties. The Seymour Aquifer consists of unconsolidated alluvium deposits of Quaternary age underlain by shale strata of the Clear Fork Group of Permian age that acts as an aquitard. The conceptual model report (Jones and others, 2012) describes the physical features, occurrence of groundwater, groundwater flow conditions, and groundwater usage in the Seymour Aquifer in the model area.

The GAM was developed using the U.S. Geological Survey (U.S.G.S.) MODFLOW-2000 code (Harbaugh and others, 2000). The MODFLOW-2000 flow model contains one numerical layer representing the Seymour Aquifer. The model contains one steady-state stress period (stress period 1) that was intended to provide starting water levels for the transient simulation, and 342 transient stress periods. The transient stress periods cover the years 1950 through 2005 with 30 annual stress periods from 1950 through 1979 and 312 monthly stress periods from 1980 through 2005.

ES 3.0 Model Calibration and Results

This groundwater flow model was calibrated by adjusting certain model parameters, within a reasonable range, to match the simulated values to the measured values of groundwater elevation and groundwater-surface water interaction. A calibrated groundwater flow model is a tool that can be used to test hypothesis and future conditions. This process is also called prediction. A well-calibrated model can improve the reliability of the prediction.

The refined flow model was calibrated to 2,949 water levels measured at wells and one (1) flux value measured on the Brazos River (Preston, 1978). The model was also qualitatively calibrated to the regional groundwater flow patterns documented by R.W. Harden and Associates (1978). The model calibration was performed using the parameter estimation code BeoPEST (Schreuder, 2009) and by the trial-and-error method. The model calibration was expedited by incorporating pre- and post-processors developed by the TWDB. Calibration of the model was considered acceptable given the purpose of the effort to assist the Rolling Plains GCD to develop the desired future conditions and to evaluate the groundwater availability in this portion of the Seymour Aquifer.

ES 4.0 Model Sensitivity Analysis

After the calibration, the model was tested for sensitivity of major parameters on calibrated water levels. The sensitivity analysis indicated that the model is very sensitive to recharge and pumping and only slightly sensitive to changes in other parameters.

ES 5.0 Model Limitations

Numerical models require some assumptions and have some limitations. Several input parameters for this refined numerical flow model are based on limited information. These include groundwater recharge, historic pumping, hydraulic conductivity, drain conductance, and specific storage. During the model sensitivity analysis, it was concluded that water levels were greatly affected by changes to recharge and pumping. As a result, uncertainty related to the model prediction should be investigated during the model application.
1. INTRODUCTION AND PURPOSE OF THE GROUNDWATER AVAILABILITY MODEL

The Seymour Aquifer in Haskell, southern Knox, and western Baylor counties (Figure 1) is classified as a major aquifer in Texas. It consists of unconsolidated alluvium deposits of Quaternary age that are underlain by shale strata of the Clear Fork Group of Permian age that acts as an aquitard. The conceptual model report (Jones and others, 2012) describes the physical features, occurrence of groundwater, groundwater flow conditions, and groundwater usage in the Seymour Aquifer in the model area.

The 2004 regional groundwater availability model of the Seymour and Blaine aquifers identified some areas of improvement for a future model of the Seymour Aquifer (Ewing and others, 2004). Specifically, the report identified the aquifer “pod” in Haskell, southern Knox, and western Baylor counties as a prime candidate for a refined model due to the large groundwater pumping when compared to the other “pods” of the Seymour Aquifer. As a result, the TWDB contracted the development of a refined conceptual model for the focused area (Jones and others, 2012) to precede the construction of a refined numerical groundwater flow model. This refined conceptual model, the previous modeling study (Ewing and others, 2004), and additional data from the Rolling Plains GCD were then used to develop this refined groundwater availability model.

This refined GAM was developed using the U.S. Geological Survey 3-dimensional numerical code MODFLOW-2000 (Version 1.19.01) (Harbaugh and others, 2000). The model has finer model grids (660 by 660 feet in the refined GAM versus 5280 by 5280 feet in the previous model) and finer temporal scale (monthly stress periods from 1980 to 2005). The finer temporal scale allows the Rolling Plains GCD to evaluate the aquifer response to seasonal changes of groundwater recharge and pumping. The Rolling Plains GCD can use the refined conceptual model and the refined GAM to develop the desired future conditions and to evaluate the groundwater availability in this portion of the Seymour Aquifer.

This technical report summarizes the development, construction, calibration, and sensitivity analysis of the refined GAM.
2. MODEL OVERVIEW

The refined GAM for the Seymour Aquifer in Haskell, southern Knox, and western Baylor counties (Figure 1) was based on the refined conceptual model (Jones and others, 2012), the previous modeling study (Ewing and others, 2004) and additional data from the Rolling Plains GCD. The report for the regional GAM (Ewing and others, 2004) describes the main elements of the regional groundwater availability model and the following paragraphs identify those features that were revised or modified in this refined model to account for additional data and changes in the calibration of the model.

During the development of the refined GAM, the refined conceptual model by Jones and others (2012) (Figure 2) was further revised with regards to no-flow boundaries and interaction with the Brazos River (Figure 3). In comparison with the 2004 GAM, the no-flow boundary for the refined GAM was moved outward to cover most of the Seymour Aquifer in those three counties. The refined GAM also applied drains to simulate groundwater seeps from the Seymour Aquifer to the Brazos River where the river is not in direct contact with the aquifer.

The refined GAM was calibrated to measured water levels at wells and flux value along a segment of the Brazos River in Baylor County. In addition, the model was qualitatively calibrated to regional groundwater flow pattern documented in the conceptual model report (Jones and others, 2012). During the model calibration, hydraulic conductivity, anisotropy, recharge, drain conductance, and pumping were adjusted using BeoPEST (Schreuder, 2009) and by the trial-and-error method. The model calibration was expedited by incorporating pre- and post-processors in the model batch file and by parallelizing model runs on a computer cluster running ROCKS Linux (San Diego Supercomputing Center, 2010). BeoPEST is a special version of the parameter estimate program PEST (Watermark Numerical Computing, 2005). Post-processing programs were also developed to further process the model-generated results to produce hydrographs. The flow budget was calculated using the U.S.G.S. code ZONEBUDGET (Version 3.01) (Harbaugh, 1990).

The groundwater availability model input and output packages, conforming to the MODFLOW-2000 code, are listed in Tables 1 and 2. These files are contained in a MODFLOW name file with unique integer identifiers. To run the model, MODFLOW calls the name file, symr_hkb.nam. The packages are discussed in detail in the following paragraphs.

2.1 Basic (BAS6) Package

The Basic package specifies the status of each cell (active or inactive), the assigned head for inactive cells (-9999), and specifications of starting heads for the active cells. Active cells are those cells within the aquifer boundary and, consequently, the cells outside the aquifer boundary were labeled as inactive (Figure 4).

2.2 Discretization (DIS) Package

The Discretization package defines the spatial and temporal discretization of the model, including the numbers of layers, rows, columns, stress periods, time and length units,
horizontal dimensions of model cells, the top and bottom elevations of model layer, and length of each stress period.

The MODFLOW-2000 model contains one numerical layer with 249 uniform rows and 470 uniform columns, with a row and column spacing of 660 feet (0.125 miles). The numerical layer represents the Seymour Aquifer in Haskell, southern Knox, and western Baylor counties. The model domain covers an area of approximately 31 miles by 59 miles (Figure 4). The grid was rotated clockwise by 47 degrees so that the rows and columns are consistent with the dominant groundwater flow directions described in the conceptual model. The layer top (Figure 5) was defined by averaging a digital elevation model (U.S. Geological Survey, 2012), and the layer bottom (Figure 6) was defined by kriging interpolation of datasets from the TWDB groundwater database and Rolling Plains GCD.

The temporal discretization includes one steady-state stress period (stress period 1) and 342 transient stress periods (stress periods 2 through 343). Stress periods 2 through 31 are one year (365 days) long with one time step and represent the timeframe of 1950 through 1979. The simulation period begins in 1950 due to a significant number of water level measurements from that period through 1980. Approximately two-thirds of all water-level measurements used in the calibration were collected prior to 1980. Stress periods 32 through 343 are one month long (30 days) with one time step and represent the timeframe of 1980 through 2005. The longer calibration time will enhance the reliability of the model predictions, especially when the calibrated model is used for 50- or 60-year predictive simulations. The steady state period is used to produce initial heads (water levels) for the transient stress periods, and is not intended to represent actual “pre-development” conditions.

2.3 Layer-Property Flow (LPF) Package

The Layer-Property Flow package contains the assignment of layer type, flags for cell-by-cell flow output, and data for hydraulic conductivity, anisotropy, and storativity/specific storage.

Thin portions of the Seymour aquifer may become dry during model runs and cause numerical instability. To minimize this numerical instability, the model layer type was set to zero, which assumes a constant transmissivity condition throughout the simulation to prevent cells converting to dry. As a result, the only storage value required is the specific storage (Ss).

In this model, hydraulic conductivity (Kx), Ss, and horizontal anisotropy (ANI) values are assigned on a cell-by-cell basis. Kx and ANI values are used to estimate the aquifer transmissivity values along model rows and columns.

The Kx values were estimated using 825 pilot points and ANI values were estimated using 226 pilot points. The pilot points were distributed throughout the active model domain with higher density around locations of head targets and areas of interests. Estimating parameters using pilot points has recently seen wider adoption in groundwater modeling (Doherty and others, 2010). Research by Jones and others (2012) suggests high Kx values and high spatial variability based on county reports data. The use of pilot points helped the model to catch the spatial variation of the aquifer properties. The Ss values were estimated assuming a constant storativity of 0.13 and a fully saturated aquifer. During the calibration, the parameter upper and lower bounds were set based on assumed ranges of values. Estimates of
these parameters were then refined through calibration with PEST. Specific details about the calibration are provided in the **Model Calibration and Results** section below. The distribution of horizontal hydraulic conductivity in the calibrated model is presented in Figure 7. The geometric mean of K_x is approximately 57 feet per day. Figure 8 represents the anisotropy values of the aquifer (the hydraulic conductivity along model columns to hydraulic conductivity along model rows). Figure 9 shows the distribution of specific storage. Both hydraulic conductivity and storativity values are consistent with the aquifer materials (gravels with sand, silt, and clay) and aquifer type (water table or unconfined aquifer). The aquifer anisotropy values are also consistent with the deposition environment and soil texture.

2.4 Well (WEL) Package

The Well package contains groundwater pumping information from the aquifer. The pumping data were based on TWDB Water Use Survey database and TWDB estimates of irrigation use. For this portion of the Seymour Aquifer, pumping is primarily for irrigation purposes. Irrigation pumping estimates prior to 1984 were issued every five to six years and yearly from 1984 on. Because irrigation pumping estimates are generally sparse and contain considerable uncertainty, the pumping was adjusted during the model calibration using PEST. For monthly stress periods 32 through 343, pumping follows a crop development curve, with rates increasing in spring and through the summer, and then decreasing into winter. Annual simulated pumping rates for the model area are presented in Table 3.

2.5 Drain (DRN) Package

The Drain package was used to simulate groundwater discharge at springs, seeps, wetlands, and creeks. Due to the quasi dome-like appearance of the aquifer overlying the less permeable Clear Fork Formation, it was assumed water seeps out on the perimeter of the aquifer and lowland areas. The locations of drains are shown in Figure 10.

The head of drain cells was set as the minimum elevation from the digital elevation model (DEM). The conductance of the drain cells was adjusted during the model calibration but remained constant through all stress periods. The calibration result and drain flow budget through time are presented in the **Model Calibration and Results** section below.

2.6 River (RIV) Package

The River package was used to simulate the interaction of the aquifer with the Brazos River. The river bottom was set as the minimum DEM value in the model cell, but not below the bottom of the aquifer, and the river levels were set two feet above the river bottoms based on river gauge data. During the model calibration, the conductance of river cells was adjusted to quantitatively match the simulated to the measured river flux (Preston, 1978). The locations of the river cells in the model are shown in Figure 10. The calibration result and river flow budget through time are presented in the **Model Calibration and Results** section below.
2.7 Recharge (RCH) Package

The Recharge package is used to simulate inflow to the aquifer due to precipitation and return flow from irrigation. The groundwater recharge due to precipitation was based on a revised algorithm developed by Maxey and Eakin (1949). The procedure includes calculating adjusted annual precipitation, annual recharge, and monthly recharge using equations 2.1, 2.2, and 2.3, respectively.

\[
Rainfall = damp \times AAP + (1 - damp) \times Prcp
\] \hspace{1cm} (2.1)

where:

Rainfall = Adjusted annual precipitation
AAP = Average annual precipitation
Prcp = Actual measured annual precipitation (PRISM Climate Group, 2005)
damp = Overall dampening factor

\[
Annual Recharge = Rainfall \times rfact \hspace{1cm} (2.2)
\]

\[
Monthly Recharge = Rainfall \times \frac{MoPrcp}{Prcp} \times rfact \hspace{1cm} (2.3)
\]

where:

Annual Recharge = Recharge for annual stress periods expressed in feet per day
Monthly Recharge = Recharge for monthly stress periods expressed in feet per day
MoPrcp = Actual measured monthly precipitation (PRISM Climate Group, 2005)
rfact = Recharge factor as a percentage.

The dampening factor controls the effect of precipitation on recharge. A dampening factor of one (1) causes no recharge variation due to annual precipitation change. Conversely, a dampening factor of zero (0) results in recharge variation that matches annual precipitation change. In calibration, the dampening factor was very small suggesting the aquifer responds relatively quickly to precipitation. This is consistent with the nature of the Seymour Aquifer which is shallow, permeable, and unconfined.

Initially, the recharge distribution was based on surface geology zoning. After an initial calibration phase, the water level target response was evaluated and targets were grouped into zones of similar response. The latter zones were intersected with the former zones for a better control of the recharge distribution.

A pre-processor written in FORTRAN was used to calculate the groundwater recharge due to precipitation and return flow related to irrigation. The pre-processor reads in data from four files representing recharge zones, irrigation zones, annual and monthly precipitation (PRISM Climate Group, 2005), pumping, and recharge factors. The recharge parameters and their bounds were all user-defined and adjusted during the model calibration. Where monthly
precipitation was less than half an inch recharge from precipitation was considered to be zero; however, recharge due to irrigation pumping return flow was allowed to occur. Also, the total recharge rates were capped at five inches per year in irrigation areas. Model cells that have been identified as irrigation cells contribute a percentage of pumping to the above recharge values ranging from five to twenty percent.

The calibrated recharge rates (Figure 11) vary spatially and temporally, with an overall average of approximately 3.2 inches per year across the entire model domain which is within the range of values documented by Jones and others (2012). These values range in average from 0.7 inches per year from the chloride mass balance method to 3.5 inches per year based on long-term, water-table fluctuation method. The recharge budget and calibration result are presented in the Model Calibration and Results section below.

2.8 Output Control (OC) Package

The Output Control package specifies when and what model outputs to be stored in files during the model run. It is a standard package required for all MODFLOW models. The output control file for this model was set up to output head, drawdown, and budget information at the end of each stress period.

2.9 Geometric Multigrid (GMG) Solver Package

MODFLOW requires the use of a solver to solve the finite difference equations that govern groundwater flow. This MODFLOW-2000 model uses the Geometric Multigrid (GMG) solver developed by Wilson and Naff (2004). The solver uses 0.01 feet residual convergence and 0.01 feet head change convergence criteria. In addition, through experimentation, it was found that the model runs faster and produces the same results when no coarsening is applied (ISC = 4 in the solver). This effectively turns the GMG solver into a PCG2 solver (Wilson and Naff, 2004). Evaluation of mass balance for each stress period and cumulative discrepancy between total inflows and outflows indicated negligible numerical errors with this solver setup.
3. MODEL CALIBRATION AND RESULTS

3.1 Calibration Procedure

The calibration of a groundwater flow model involves adjusting certain model parameters, within a reasonable range, to match the simulated to measured values or observed patterns. A calibrated groundwater flow model is an effective tool that can be used to test hypothesis and future conditions.

The primary targets for the calibration included 2,949 water levels measured at 864 wells and one flux measurement at the Brazos River in Baylor County (Preston, 1978). Artificial water levels were also used in areas where the aquifer is very thin with little or no pumping. The control points were used to make sure the model reflect the realistic water level in the area. These artificial targets received a smaller weight during the calibration process compared to actual measured water levels.

During the model calibration, the following parameters were adjusted: hydraulic conductivity, anisotropy, drain conductance, river conductance, recharge, and pumping. Initially, trial-and-error method was employed to obtain some reasonable parameter bounds based on published literature. After initial runs were completed and the model was stable, PEST (Watermark Numerical Computing, 2005; Schreuder, 2009) was used to expedite the calibration process on a computer cluster. At times, based on parameter behavior and model results, bounds were adjusted and/or pre-processor algorithms were revised. This process was repeated until the model matched the measured values and generated flow patterns consistent with the conceptual understanding of groundwater flows (Jones and others, 2012).

3.2 Model Simulated versus Measured Heads

The primary calibration target was measured water levels. Figure 12 shows the spatial distribution and average magnitude of residuals. Figure 13 shows the model simulated versus measured heads and related statistical analysis summary. Figure 14 shows the residuals versus measured heads. Overall, the plots suggest a good agreement between the simulated heads and measured heads. That agreement is reinforced by Figure 15, which shows an approximately normal distribution of the residuals. Table A-1 of Appendix A includes details of measured and simulated water levels for wells used in the calibration process.

The ratio of standard deviation of residuals over the range of measured heads is 0.2 percent, well within the 10 percent maximum required by the Groundwater Availability Modeling Program. The calibrated model also reasonably replicated the regional groundwater flow pattern (Figure 16 versus Figure 17) and the seasonal water level changes at state well 2135702, state well 2142201, and state well 2142409 (Appendix B).

3.3 Model Simulated versus Measured River Flux

Based on one round of measurements in February 1970, the Brazos River gained groundwater at a rate of approximately 3,000 acre-feet per year from a portion of the Seymour Aquifer in Baylor County (Preston, 1978). This river flux value received relatively low weight during the model calibration. The calibration results indicated that the model was also well calibrated to
the measured river flux (Table 4); however, no conclusion should be drawn with respect to the model’s ability to accurately simulate aquifer interaction with the river due to insufficient data.

3.4 Model Simulated Water Budgets

The simulated water budget was also used to verify if the model simulates regional groundwater flow consistent with our conceptual understanding of the regional geology, hydrogeology, and surface water hydrology. Simulated water budgets also help identify various anomalies not immediately apparent when analyzing only water levels. Further, zoning of the water budget can highlight any area that may be suffering of high model error. Model errors represent discrepancies between inflows and outflows to and from the aquifer system. A balanced water budget will have minimal errors, less than one percent.

Groundwater budgets are developed by quantifying all inflows and outflows to and from an aquifer system, and the system’s storage change over a specified period of time. The water budget can be subdivided and further used in various planning processes.

The overall water budget for this groundwater flow model includes the following components: river leakage, recharge, springs, seeps, wetlands, pumping, and storage change. Inflow and outflow components represent those contributing groundwater to or taking groundwater away from the aquifer in the model domain, respectively. As shown in Table 4, the groundwater inflow is from recharge due to precipitation and return flow in irrigation areas. The outflow components are primarily dominated by groundwater pumping and flow to springs, seeps, and wetlands where groundwater table intercepts the ground surface. The majority of the groundwater reaching the ground surface is expected to be lost due to evapotranspiration which leaves only minor discharge to the Brazos River. Please note the small differences between tables 4 and 5 are due to the slivers of the aquifer located in Stonewall County excluded in Table 5. Table 5 summarizes the water budget for the portion of the aquifer located in the current boundaries of the Rolling Plains GCD, excluding the island located in the northern portion of Knox County, which was not included in this model.
4. **SENSITIVITY ANALYSIS**

Following the model calibration a sensitivity analysis was performed to evaluate the model behavior as a result of altering the parameters. This process helps determine if reasonable variations of the estimated parameters result in behavior consistent with the conceptual and calibrated model.

4.1 Procedure of Sensitivity Analysis

During the sensitivity analysis the following parameters: hydraulic conductivity along rows, horizontal anisotropy, drain conductance, recharge, and pumping were adjusted by the following factors: 0.5, 0.8, 1.0, 1.5, and 2.0. While varying one parameter, all others were kept at their calibrated values except recharge due to irrigation return flow which was adjusted when pumping was varied. Section 2.7 discusses implementation of recharge and irrigation return flow as recharge. Thus, whenever pumping is varied, the recharge due to irrigation return flow is similarly varied.

4.2 Results of Sensitivity Analysis

Figure 18 summarizes the sensitivity analysis results. As shown in Figure 18, the model is very sensitive to recharge and pumping and only slightly sensitive to the other parameters. For example, doubling the recharge increases the simulated water levels by an average of approximately 40 feet. Reducing the recharge by half decreases the simulated water levels by an average of over 70 feet. Doubling the pumping would also decrease the simulated water levels by an average of about 80 feet.

4.3 Correlation between Pumping, Precipitation, and Recharge

The results of the sensitivity analysis revealed that the model is highly sensitive to recharge and pumping. Because recharge and pumping, specifically the irrigation pumping, are thought to be correlated, further analysis of this potential correlation was conducted.

Because groundwater withdrawal is largely related to agriculture, pumping is expected to negatively correlate to precipitation and, consequently, to recharge to the aquifer. As a result, groundwater pumping is usually higher in dry years than in wet years. The correlation between groundwater pumping and precipitation is presented in Figure 19. Figure 19 suggests two different clusters of correlation: (1) one where estimated pumping is generally lower than the average pumping and (2) the other where estimated pumping is generally higher than the average pumping but within the same precipitation range as the first cluster. One may conclude that for years in the second cluster, precipitation occurred largely outside the growing season or that crop rotation introduced additional water requirements.

The overall correlation between simulated pumping, groundwater recharge, and precipitation is presented in Table 6. Table 6 shows a strong and positive correlation between the groundwater recharge and precipitation, and a moderate but negative correlation between the groundwater pumping and groundwater recharge or precipitation.
5. MODEL LIMITATIONS

Numerical groundwater flow models are approximations of aquifer systems (Anderson and Woessner, 2002). Similar to analytical models, numerical models require some assumptions and have some limitations. These limitations are usually associated with the purpose for the groundwater flow models, our extent of understanding the aquifer(s), the quantity and quality of data needed to constrain parameters in the groundwater flow models, and assumptions made during model development. Models are best viewed as tools to help form decisions rather than as machines to generate truth or make decisions. The National Research Council (2007) concluded that scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or be able to prove that a given model is correct in all respects for a particular application.

The nature of regional groundwater flow models affects the scale of application of the model. This model is most accurate in assessing larger regional-scale groundwater issues, such as predicting aquifer-wide water-level changes and trends over the next 50 years that may result from different proposed water management strategies. Accuracy and applicability of the model decreases when using it to address more local-scale issues because of limitations of the information used in model construction and the model cell size that determines spatial resolution of the model. Consequently, this model is not likely to accurately predict water-level declines associated with a single well or spring because (1) these water-level declines depend on site-specific hydrologic properties not included in detail in regional-scale models, and (2) the cell size used in the model is too large to resolve changes in water levels that occur over relatively short distances. Addressing local-scale issues requires a more detailed model, with local estimates of hydrologic properties, or an analytical model. This model is more useful in determining the impacts of groups of wells distributed over many square miles. The model predicts changes in ambient water levels rather than actual water level changes at specific locations, such as an individual well.

Several input parameters for the model are based on limited information. These include groundwater recharge, pumping estimates, drain and river conductance, river level, hydraulic conductivity, and storativity. The sensitivity analysis revealed the model is very sensitive to recharge and pumping. As such, uncertainty in the magnitude and distribution of these two driving parameters may have been carried over and quite possibly magnified during the model calibration. This becomes important as models become tools for prediction. As pointed out by Moore and Doherty (2006) and Doherty and others (2010), “model predictions made based on the calibrated parameter set are [not] necessarily “right” or even “likely;” only that their potential for wrongness has been minimized.”
6. **FUTURE IMPROVEMENTS**

To use models to predict future conditions requires a commitment to improve the model as new data becomes available or when modeling assumptions or implementation issues change. All models developed for the Groundwater Availability Modeling Program have this commitment. Through the modeling process and sensitivity analysis, the modeler generally learns what can be done to improve the model's performance or what data would help better constrain the model calibration. Future improvements to the model are discussed below.

6.1 Additional Supporting Data

Several types of data could be collected to better support future enhancement of the model. These include recharge studies, irrigation return-flow studies, pumping schedules per month, and monitoring of spring discharge.

6.2 Future Model Implementation Improvements

The ground topography suggests two potential areas of improvement. Firstly, the aquifer boundary could be refined to better approximate the drop-off occurring at the edge of the aquifer. This is considered to be important due to the magnitude of flow that seeps out on the perimeter of the aquifer. Secondly, the model water budget suggests that the groundwater in the Seymour Aquifer directly interacts with and discharges to the Brazos River in Baylor County and eastern Knox County. In the rest of the modeled area, the Brazos River is not in direct contact with the aquifer. However, the river still receives water from the Seymour Aquifer by seepage. As a result, the whole Brazos River in the modeled area may be better simulated using MODFLOW drain boundary. The disadvantage to use MODFLOW river boundary is that it may act as an unrealistic water source to pumping in the aquifer during predictive simulation.

Another potential improvement would be to identify areas where the Seymour Aquifer does not produce much groundwater. These areas could be either eliminated from the aquifer delineation or inactivated in the numerical model.
7. **SUMMARY AND CONCLUSIONS**

This report documents a three-dimensional MODFLOW-2000 groundwater flow model developed for a portion of the Seymour Aquifer according to the groundwater availability model standards defined by the TWDB. Specifically, this refined model is for the Seymour Aquifer in Haskell, southern Knox, and western Baylor counties. The refined model addresses a key recommendation of the original regional groundwater availability model for the Seymour and Blaine aquifers (Ewing and others, 2004).

The purpose of this modeling activity is to provide a calibrated numerical model that can be used to evaluate the regional groundwater availability and the effects of water management strategies of the Seymour Aquifer in selected counties. This modeling tool will benefit a variety of people interested in groundwater management, including the TWDB, Regional Water Planning Groups (B and G), the Rolling Plains Groundwater Conservation district, and Groundwater Management Area 6.

The Seymour Aquifer GAM in those selected counties was developed using a modeling protocol that is standard to the groundwater model industry. This protocol includes: (1) development of a refined conceptual model for groundwater flow in the aquifer (previous study by Jones and others (2012)), (2) model design, (3) model calibration, (4) sensitivity analysis, and (5) reporting.

This groundwater availability model covers an area of approximately 1,800 square miles in Haskell, Knox, and Baylor counties. The transient model was calibrated from 1950 to 2005 to the water levels collected at wells using a combination of annual and monthly stress periods. The well hydrographs and calibration statistics suggest a reasonable match between measured and simulated water levels. The calibrated model also replicated the groundwater discharge from the Seymour Aquifer to the Brazos River over a small portion in Baylor County.

After the calibration, several model parameters were independently varied to assess model sensitivity to these parameters. The sensitivity analysis indicated the model being most sensitive to variations in pumping and recharge. Consequently, future revisions or new models of the Seymour Aquifer should focus on better estimates of recharge and pumping.
8. REFERENCES

ACKNOWLEDGMENTS

This project was made possible with the support of a number of individuals. We greatly appreciate the technical and editorial expertise of Cindy Ridgeway, Roberto Anaya, and Shirley Wade. We also greatly appreciate INTERA Inc. for their work on the conceptual model and we are grateful to Toya Jones and Van Kelley of INTERA Inc. for their assistance editing this report. We would also like to thank INTERA, Inc. and Rolling Plains Groundwater Conservation District for the additional data provided during development of the conceptual model. Efficient data analysis and various plots and charts were done using NumPy, SciPy, and matplotlib.
Figure 1. Distribution of the Seymour Aquifer “pod” in Haskell, southern Knox, and western Baylor counties, Rolling Plains Groundwater Conservation District, and the model grid outline.
Figure 2. Conceptual groundwater flow model (after Jones and others, 2012).

- Recharge (Precipitation)
- Discharge (Springs/Seeps)
- Discharge (Evapotranspiration)
- Discharge (Pumping)
- Surface Water-Formation Interaction
- No-Flow Boundary
- Connection to Brazos River through Clear Fork Group in some areas
Figure 3. Modified conceptual groundwater flow model.
Figure 4. Active and inactive areas of the numerical model.
Figure 5. Top elevation of model layer 1.
Figure 6. Bottom elevation of model layer 1.
Figure 7. Distribution of calibrated horizontal hydraulic conductivity.
Figure 8. Distribution of calibrated anisotropy.
Figure 9. Distribution of calibrated specific storage. Smaller numbers represent thicker aquifer.
Figure 10. Distribution of drain and river cells.
Figure 11. Spatial distribution of calibrated average recharge.
Figure 12. Spatial distribution of average water-level residuals. Residuals were calculated as observed value minus simulated value.
Figure 13. Simulated versus measured water levels along the perfect match line.
Figure 14. Water-level residuals versus measured water levels.
Figure 15. Histogram of water-level residuals (bars) and normal distribution (dashed line).
Figure 16. Simulated general groundwater flow direction in 1979.
Figure 17. General direction of groundwater flow (modified from R.W. Harden and Associates, 1978).
Figure 18. Change in water levels as a result of varying different parameters during the sensitivity analysis.
Figure 19. Correlation between pumping and precipitation. Each point represents a pumping year and corresponding precipitation for that year.
Table 1. Summary of MODFLOW-2000 model input packages.

<table>
<thead>
<tr>
<th>Packages</th>
<th>Input Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic (BAS6)</td>
<td>symr_hkb.bas</td>
</tr>
<tr>
<td>Discretization (DIS)</td>
<td>symr_hkb.dis</td>
</tr>
<tr>
<td>Layer-Property Flow (LPF)</td>
<td>symr_hkb.lpf</td>
</tr>
<tr>
<td>Well (WEL)</td>
<td>symr_hkb.wel</td>
</tr>
<tr>
<td>Drain (DRN)</td>
<td>symr_hkb.drn</td>
</tr>
<tr>
<td>River (RIV)</td>
<td>symr_hkb.riv</td>
</tr>
<tr>
<td>Recharge (RCH)</td>
<td>symr_hkb.rch</td>
</tr>
<tr>
<td>Output Control (OC)</td>
<td>symr_hkb.oc</td>
</tr>
<tr>
<td>Geometric Multigrid Solver (GMG)</td>
<td>symr_hkb.gmg</td>
</tr>
</tbody>
</table>
Table 2. Summary of MODFLOW-2000 model output packages.

<table>
<thead>
<tr>
<th>Packages</th>
<th>Output Files</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLOBAL (GLO)</td>
<td>symr_hkb.glo</td>
</tr>
<tr>
<td>LIST (LST)</td>
<td>symr_hkb.lst</td>
</tr>
<tr>
<td>Cell-by-Cell Budget (CBB)</td>
<td>symr_hkb.cbb</td>
</tr>
<tr>
<td>Heads (HDS)</td>
<td>symr_hkb.hds</td>
</tr>
<tr>
<td>Drawdown (DDN)</td>
<td>symr_hkb.ddn</td>
</tr>
</tbody>
</table>
Table 3. Summary of simulated pumping rates in acre-feet per year.

<table>
<thead>
<tr>
<th>Year</th>
<th>Pumping Rate</th>
<th>Year</th>
<th>Pumping Rate</th>
<th>Year</th>
<th>Pumping Rate</th>
<th>Year</th>
<th>Pumping Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady State</td>
<td>34,677</td>
<td>1964</td>
<td>72,612</td>
<td>1979</td>
<td>78,561</td>
<td>1994</td>
<td>74,367</td>
</tr>
<tr>
<td>1950</td>
<td>86,990</td>
<td>1965</td>
<td>68,078</td>
<td>1980</td>
<td>34,305</td>
<td>1995</td>
<td>66,994</td>
</tr>
<tr>
<td>1956</td>
<td>81,975</td>
<td>1971</td>
<td>29,476</td>
<td>1986</td>
<td>25,942</td>
<td>2001</td>
<td>72,462</td>
</tr>
<tr>
<td>1960</td>
<td>63,634</td>
<td>1975</td>
<td>30,819</td>
<td>1990</td>
<td>26,851</td>
<td>2005</td>
<td>73,671</td>
</tr>
<tr>
<td>1961</td>
<td>29,005</td>
<td>1976</td>
<td>37,712</td>
<td>1991</td>
<td>40,584</td>
<td>Average (1950 to 2005)</td>
<td>52,798</td>
</tr>
</tbody>
</table>
Table 4. Summary of overall average groundwater budget for the model in acre-feet per year.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recharge</td>
<td>103,573</td>
<td>106,951</td>
<td>105,141</td>
</tr>
<tr>
<td>Total Inflow</td>
<td>103,573</td>
<td>106,951</td>
<td>105,141</td>
</tr>
<tr>
<td>Outflow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>53,805</td>
<td>50,929</td>
<td>52,470</td>
</tr>
<tr>
<td>Drains</td>
<td>57,646</td>
<td>59,195</td>
<td>58,365</td>
</tr>
<tr>
<td>River Leakage</td>
<td>3,169</td>
<td>3,198</td>
<td>3,183</td>
</tr>
<tr>
<td>Total Outflow</td>
<td>114,620</td>
<td>113,322</td>
<td>114,018</td>
</tr>
<tr>
<td>Inflow - Outflow</td>
<td>-11,047</td>
<td>-6,371</td>
<td>-8,877</td>
</tr>
<tr>
<td>Storage Change</td>
<td>-11,048</td>
<td>-6,369</td>
<td>-8,875</td>
</tr>
<tr>
<td>Model Error</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>Model Error (percent)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
Table 5. Summary of average groundwater budget by county in acre-feet per year.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baylor</td>
<td>Haskell</td>
<td>Knox</td>
</tr>
<tr>
<td>Inflow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recharge</td>
<td>9,841</td>
<td>58,598</td>
<td>34,615</td>
</tr>
<tr>
<td>Lateral Flow</td>
<td>1,318</td>
<td>882</td>
<td>7,437</td>
</tr>
<tr>
<td>Total Inflow</td>
<td>11,159</td>
<td>59,480</td>
<td>42,052</td>
</tr>
<tr>
<td>Outflow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>1,134</td>
<td>32,291</td>
<td>20,183</td>
</tr>
<tr>
<td>Drains</td>
<td>7,933</td>
<td>22,495</td>
<td>24,094</td>
</tr>
<tr>
<td>River Leakage</td>
<td>2,114</td>
<td>0</td>
<td>1,055</td>
</tr>
<tr>
<td>Lateral Flow</td>
<td>59</td>
<td>10,208</td>
<td>2,140</td>
</tr>
<tr>
<td>Total Outflow</td>
<td>11,240</td>
<td>64,994</td>
<td>47,472</td>
</tr>
<tr>
<td>Inflow - Outflow</td>
<td>-81</td>
<td>-5,514</td>
<td>-5,420</td>
</tr>
<tr>
<td>Storage Change</td>
<td>-81</td>
<td>-5,514</td>
<td>-5,420</td>
</tr>
<tr>
<td>Model Error</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Model Error (percent)</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
Table 6. Correlation between simulated pumping, recharge and precipitation.

<table>
<thead>
<tr>
<th>Components</th>
<th>Recharge</th>
<th>Precipitation</th>
<th>Pumping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recharge</td>
<td>--</td>
<td>0.99</td>
<td>-0.45</td>
</tr>
<tr>
<td>Precipitation</td>
<td>0.99</td>
<td>--</td>
<td>-0.46</td>
</tr>
<tr>
<td>Pumping</td>
<td>-0.45</td>
<td>-0.46</td>
<td>--</td>
</tr>
</tbody>
</table>
Appendix A:

Measured and Simulated Water Levels
Table A - 1. water level targets, simulated water levels and residuals.

<table>
<thead>
<tr>
<th>State Well Number</th>
<th>Stress Period</th>
<th>Measured Water Level</th>
<th>Simulated Water Level</th>
<th>Residual</th>
<th>Calibration Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>2120901</td>
<td>14</td>
<td>1405.75</td>
<td>1407.26</td>
<td>-1.51</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>15</td>
<td>1404.8</td>
<td>1407.04</td>
<td>-2.24</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>20</td>
<td>1405.87</td>
<td>1407.41</td>
<td>-1.54</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>21</td>
<td>1407.16</td>
<td>1408.13</td>
<td>-0.97</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>23</td>
<td>1405.61</td>
<td>1407.66</td>
<td>-2.05</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>24</td>
<td>1406.29</td>
<td>1408</td>
<td>-1.71</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>25</td>
<td>1407.61</td>
<td>1408.05</td>
<td>-0.44</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>26</td>
<td>1406.73</td>
<td>1408.01</td>
<td>-1.28</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>27</td>
<td>1407.3</td>
<td>1408.23</td>
<td>-0.93</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>28</td>
<td>1406.47</td>
<td>1408.16</td>
<td>-1.69</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>29</td>
<td>1407.01</td>
<td>1407.56</td>
<td>-0.55</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>30</td>
<td>1407.34</td>
<td>1407.73</td>
<td>-0.39</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>42</td>
<td>1407.71</td>
<td>1407.71</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>54</td>
<td>1408.34</td>
<td>1407.79</td>
<td>0.55</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>65</td>
<td>1407.59</td>
<td>1408.35</td>
<td>-0.76</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>77</td>
<td>1407.62</td>
<td>1408.32</td>
<td>-0.7</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>93</td>
<td>1408.47</td>
<td>1407.67</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>101</td>
<td>1408.9</td>
<td>1408.42</td>
<td>0.48</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>113</td>
<td>1409.88</td>
<td>1408.9</td>
<td>0.98</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>125</td>
<td>1410.92</td>
<td>1409.25</td>
<td>1.67</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>149</td>
<td>1409.97</td>
<td>1408.6</td>
<td>1.37</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>161</td>
<td>1410.89</td>
<td>1409.34</td>
<td>1.55</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>174</td>
<td>1411.08</td>
<td>1409.64</td>
<td>1.44</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>187</td>
<td>1411.84</td>
<td>1410.48</td>
<td>1.36</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>198</td>
<td>1410.65</td>
<td>1410.38</td>
<td>0.27</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>211</td>
<td>1411.9</td>
<td>1409.85</td>
<td>2.05</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>224</td>
<td>1412.47</td>
<td>1410.17</td>
<td>2.3</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>236</td>
<td>1410.02</td>
<td>1409.86</td>
<td>0.16</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>248</td>
<td>1412.82</td>
<td>1410.44</td>
<td>2.38</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>259</td>
<td>1410.8</td>
<td>1409.58</td>
<td>1.22</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>270</td>
<td>1407.1</td>
<td>1409.46</td>
<td>-2.36</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2120901</td>
<td>283</td>
<td>1408.93</td>
<td>1409.13</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>295</td>
<td>1409.45</td>
<td>1408.91</td>
<td>0.54</td>
<td>1</td>
</tr>
<tr>
<td>2120901</td>
<td>319</td>
<td>1405.85</td>
<td>1408.82</td>
<td>-2.97</td>
<td>1</td>
</tr>
<tr>
<td>2121701</td>
<td>21</td>
<td>1384.1</td>
<td>1384.51</td>
<td>-0.41</td>
<td>1</td>
</tr>
<tr>
<td>2121803</td>
<td>21</td>
<td>1378.7</td>
<td>1377.51</td>
<td>1.19</td>
<td>1</td>
</tr>
<tr>
<td>2121901</td>
<td>12</td>
<td>1332.5</td>
<td>1330.71</td>
<td>1.79</td>
<td>1</td>
</tr>
<tr>
<td>2121901</td>
<td>21</td>
<td>1333.2</td>
<td>1333.67</td>
<td>-0.47</td>
<td>1</td>
</tr>
<tr>
<td>2121905</td>
<td>20</td>
<td>1330.5</td>
<td>1331.17</td>
<td>-0.67</td>
<td>1</td>
</tr>
<tr>
<td>2121906</td>
<td>20</td>
<td>1330.7</td>
<td>1331.09</td>
<td>-0.39</td>
<td>1</td>
</tr>
<tr>
<td>2121906</td>
<td>21</td>
<td>1331</td>
<td>1331.89</td>
<td>-0.89</td>
<td>1</td>
</tr>
<tr>
<td>2121908</td>
<td>7</td>
<td>1331.2</td>
<td>1329.73</td>
<td>1.47</td>
<td>1</td>
</tr>
<tr>
<td>2121908</td>
<td>20</td>
<td>1331.5</td>
<td>1331.74</td>
<td>-0.24</td>
<td>1</td>
</tr>
<tr>
<td>2121908</td>
<td>21</td>
<td>1332</td>
<td>1332.58</td>
<td>-0.58</td>
<td>1</td>
</tr>
<tr>
<td>2121909</td>
<td>20</td>
<td>1330.2</td>
<td>1329.69</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td>2121909</td>
<td>21</td>
<td>1330.2</td>
<td>1330.48</td>
<td>-0.28</td>
<td>1</td>
</tr>
<tr>
<td>2121910</td>
<td>20</td>
<td>1329.4</td>
<td>1330.12</td>
<td>-0.72</td>
<td>1</td>
</tr>
<tr>
<td>2121910</td>
<td>21</td>
<td>1329.6</td>
<td>1330.91</td>
<td>-1.31</td>
<td>1</td>
</tr>
<tr>
<td>2121912</td>
<td>20</td>
<td>1329.1</td>
<td>1330.99</td>
<td>-1.89</td>
<td>1</td>
</tr>
<tr>
<td>2121912</td>
<td>21</td>
<td>1329.2</td>
<td>1331.83</td>
<td>-2.63</td>
<td>1</td>
</tr>
<tr>
<td>2121917</td>
<td>21</td>
<td>1326.6</td>
<td>1325.33</td>
<td>1.27</td>
<td>1</td>
</tr>
<tr>
<td>2121921</td>
<td>21</td>
<td>1330.9</td>
<td>1330.2</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>2121922</td>
<td>21</td>
<td>1331</td>
<td>1330.28</td>
<td>0.72</td>
<td>1</td>
</tr>
<tr>
<td>2121923</td>
<td>21</td>
<td>1356</td>
<td>1356.18</td>
<td>-0.18</td>
<td>1</td>
</tr>
<tr>
<td>2121939</td>
<td>21</td>
<td>1331.5</td>
<td>1330.6</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>2121940</td>
<td>21</td>
<td>1331.3</td>
<td>1330.6</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>2121941</td>
<td>21</td>
<td>1331.6</td>
<td>1330.6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>7</td>
<td>1324.57</td>
<td>1320.92</td>
<td>3.65</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>8</td>
<td>1323.49</td>
<td>1319.6</td>
<td>3.89</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>9</td>
<td>1323.66</td>
<td>1320.65</td>
<td>3.01</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>12</td>
<td>1322.78</td>
<td>1321.07</td>
<td>1.71</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>14</td>
<td>1321.35</td>
<td>1322.21</td>
<td>-0.86</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>15</td>
<td>1322.69</td>
<td>1321.89</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2122701</td>
<td>16</td>
<td>1321.79</td>
<td>1321.77</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>17</td>
<td>1321.21</td>
<td>1321.69</td>
<td>-0.48</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>18</td>
<td>1319.88</td>
<td>1321.92</td>
<td>-2.04</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>19</td>
<td>1320.39</td>
<td>1321.7</td>
<td>-1.31</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>20</td>
<td>1322.18</td>
<td>1322.21</td>
<td>-0.03</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>21</td>
<td>1322.82</td>
<td>1322.95</td>
<td>-0.13</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>22</td>
<td>1319.96</td>
<td>1322.02</td>
<td>-2.06</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>25</td>
<td>1323.27</td>
<td>1322.95</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>26</td>
<td>1323.05</td>
<td>1322.91</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>27</td>
<td>1323.7</td>
<td>1323.18</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>28</td>
<td>1323.25</td>
<td>1323.14</td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>29</td>
<td>1323.7</td>
<td>1322.53</td>
<td>1.17</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>42</td>
<td>1322.95</td>
<td>1322.67</td>
<td>0.28</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>54</td>
<td>1322.85</td>
<td>1322.71</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>65</td>
<td>1322.69</td>
<td>1323.27</td>
<td>-0.58</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>77</td>
<td>1321.25</td>
<td>1323.37</td>
<td>-2.12</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>93</td>
<td>1321.61</td>
<td>1322.69</td>
<td>-1.08</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>100</td>
<td>1321.64</td>
<td>1323.28</td>
<td>-1.64</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>113</td>
<td>1322.58</td>
<td>1324.13</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>125</td>
<td>1324.15</td>
<td>1324.23</td>
<td>-0.08</td>
<td>1</td>
</tr>
<tr>
<td>2122701</td>
<td>137</td>
<td>1323.55</td>
<td>1323.83</td>
<td>-0.28</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>7</td>
<td>1307.64</td>
<td>1305.71</td>
<td>1.93</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>8</td>
<td>1306.49</td>
<td>1304.51</td>
<td>1.98</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>9</td>
<td>1307.38</td>
<td>1305.25</td>
<td>2.13</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>15</td>
<td>1306.84</td>
<td>1305.95</td>
<td>0.89</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>16</td>
<td>1305.78</td>
<td>1305.84</td>
<td>-0.06</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>17</td>
<td>1306.09</td>
<td>1305.75</td>
<td>0.34</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>18</td>
<td>1306.82</td>
<td>1305.93</td>
<td>0.89</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>19</td>
<td>1306.37</td>
<td>1305.74</td>
<td>0.63</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>20</td>
<td>1307.46</td>
<td>1306.17</td>
<td>1.29</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>21</td>
<td>1306.74</td>
<td>1306.77</td>
<td>-0.03</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>22</td>
<td>1305.8</td>
<td>1306.07</td>
<td>-0.27</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2122703</td>
<td>23</td>
<td>1304.75</td>
<td>1306.51</td>
<td>-1.76</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>24</td>
<td>1304.57</td>
<td>1306.87</td>
<td>-2.3</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>25</td>
<td>1305.47</td>
<td>1307.01</td>
<td>-1.54</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>26</td>
<td>1304.41</td>
<td>1307.04</td>
<td>-2.63</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>27</td>
<td>1306.78</td>
<td>1307.31</td>
<td>-0.53</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>28</td>
<td>1306.02</td>
<td>1307.33</td>
<td>-1.31</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>29</td>
<td>1306.75</td>
<td>1306.88</td>
<td>-0.13</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>30</td>
<td>1306.39</td>
<td>1307.1</td>
<td>-0.71</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>54</td>
<td>1305.6</td>
<td>1306.94</td>
<td>-1.34</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>65</td>
<td>1306.06</td>
<td>1307.33</td>
<td>-1.27</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>77</td>
<td>1306.55</td>
<td>1307.51</td>
<td>-0.96</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>93</td>
<td>1305.74</td>
<td>1307.05</td>
<td>-1.31</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>100</td>
<td>1305.67</td>
<td>1307.51</td>
<td>-1.84</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>113</td>
<td>1306.73</td>
<td>1308.26</td>
<td>-1.53</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>125</td>
<td>1308.68</td>
<td>1308.29</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>137</td>
<td>1307.93</td>
<td>1308.08</td>
<td>-0.15</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>149</td>
<td>1307.88</td>
<td>1307.97</td>
<td>-0.09</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>161</td>
<td>1308.34</td>
<td>1308.61</td>
<td>-0.27</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>174</td>
<td>1309.21</td>
<td>1308.82</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>187</td>
<td>1310.56</td>
<td>1309.54</td>
<td>1.02</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>198</td>
<td>1310.55</td>
<td>1309.54</td>
<td>1.01</td>
<td>1</td>
</tr>
<tr>
<td>2122703</td>
<td>211</td>
<td>1310.2</td>
<td>1309.18</td>
<td>1.02</td>
<td>1</td>
</tr>
<tr>
<td>2122711</td>
<td>21</td>
<td>1319.5</td>
<td>1320.03</td>
<td>-0.53</td>
<td>1</td>
</tr>
<tr>
<td>2122712</td>
<td>21</td>
<td>1311.7</td>
<td>1313.47</td>
<td>-1.77</td>
<td>1</td>
</tr>
<tr>
<td>2122714</td>
<td>21</td>
<td>1353.6</td>
<td>1352.46</td>
<td>1.14</td>
<td>1</td>
</tr>
<tr>
<td>2122715</td>
<td>21</td>
<td>1342.6</td>
<td>1343.93</td>
<td>-1.33</td>
<td>1</td>
</tr>
<tr>
<td>2122728</td>
<td>12</td>
<td>1308.8</td>
<td>1307.92</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>2122730</td>
<td>21</td>
<td>1322.5</td>
<td>1321.8</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>2122801</td>
<td>21</td>
<td>1294.5</td>
<td>1295.07</td>
<td>-0.57</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>8</td>
<td>1281.35</td>
<td>1283.31</td>
<td>-1.96</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>14</td>
<td>1284.77</td>
<td>1283.82</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>15</td>
<td>1283.11</td>
<td>1283.7</td>
<td>-0.59</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2122802</td>
<td>16</td>
<td>1279.43</td>
<td>1283.54</td>
<td>-4.11</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>17</td>
<td>1279.57</td>
<td>1283.42</td>
<td>-3.85</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>18</td>
<td>1280.74</td>
<td>1283.69</td>
<td>-2.95</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>19</td>
<td>1279.83</td>
<td>1283.74</td>
<td>-3.91</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>20</td>
<td>1283.25</td>
<td>1284.12</td>
<td>-0.87</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>21</td>
<td>1284.07</td>
<td>1284.54</td>
<td>-0.47</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>22</td>
<td>1281.27</td>
<td>1284.32</td>
<td>-3.05</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>23</td>
<td>1280.63</td>
<td>1284.64</td>
<td>-4.01</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>24</td>
<td>1276.57</td>
<td>1284.95</td>
<td>-8.38</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>25</td>
<td>1280.62</td>
<td>1285.14</td>
<td>-4.52</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>26</td>
<td>1279.71</td>
<td>1285.16</td>
<td>-5.45</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>27</td>
<td>1283.96</td>
<td>1285.38</td>
<td>-1.42</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>28</td>
<td>1283.76</td>
<td>1285.46</td>
<td>-1.7</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>29</td>
<td>1284.85</td>
<td>1285.29</td>
<td>-0.44</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>30</td>
<td>1283.67</td>
<td>1285.37</td>
<td>-1.7</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>54</td>
<td>1283.9</td>
<td>1285.18</td>
<td>-1.28</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>65</td>
<td>1284.29</td>
<td>1285.48</td>
<td>-1.19</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>77</td>
<td>1284.32</td>
<td>1285.66</td>
<td>-1.34</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>93</td>
<td>1283.66</td>
<td>1285.59</td>
<td>-1.93</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>114</td>
<td>1285.23</td>
<td>1286.16</td>
<td>-0.93</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>137</td>
<td>1287.06</td>
<td>1286.31</td>
<td>0.75</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>149</td>
<td>1286.9</td>
<td>1286.22</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>174</td>
<td>1288.45</td>
<td>1286.68</td>
<td>1.77</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>187</td>
<td>1289.47</td>
<td>1287.06</td>
<td>2.41</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>198</td>
<td>1289.25</td>
<td>1287.09</td>
<td>2.16</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>211</td>
<td>1284.5</td>
<td>1286.71</td>
<td>-2.21</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>224</td>
<td>1289.84</td>
<td>1286.57</td>
<td>3.27</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>236</td>
<td>1293.77</td>
<td>1286.24</td>
<td>7.53</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>248</td>
<td>1290.67</td>
<td>1286.38</td>
<td>4.29</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>259</td>
<td>1287.45</td>
<td>1285.7</td>
<td>1.75</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>307</td>
<td>1288.5</td>
<td>1285.05</td>
<td>3.45</td>
<td>1</td>
</tr>
<tr>
<td>2122802</td>
<td>318</td>
<td>1284.98</td>
<td>1284.6</td>
<td>0.38</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2122802</td>
<td>334</td>
<td>1286.5</td>
<td>1284.84</td>
<td>1.66</td>
<td>1</td>
</tr>
<tr>
<td>2122805</td>
<td>8</td>
<td>1289.05</td>
<td>1289.55</td>
<td>-0.5</td>
<td>1</td>
</tr>
<tr>
<td>2122805</td>
<td>9</td>
<td>1290.76</td>
<td>1289.85</td>
<td>0.91</td>
<td>1</td>
</tr>
<tr>
<td>2122805</td>
<td>11</td>
<td>1289.84</td>
<td>1289.74</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>11</td>
<td>1303.03</td>
<td>1302.73</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>12</td>
<td>1303.01</td>
<td>1302.87</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>14</td>
<td>1304.13</td>
<td>1303.64</td>
<td>0.49</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>15</td>
<td>1303.34</td>
<td>1303.37</td>
<td>-0.03</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>17</td>
<td>1301.68</td>
<td>1303.17</td>
<td>-1.49</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>18</td>
<td>1301.24</td>
<td>1303.36</td>
<td>-2.12</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>19</td>
<td>1303.07</td>
<td>1303.19</td>
<td>-0.12</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>20</td>
<td>1303.3</td>
<td>1303.62</td>
<td>-0.32</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>21</td>
<td>1304.88</td>
<td>1304.21</td>
<td>0.67</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>22</td>
<td>1302.9</td>
<td>1303.54</td>
<td>-0.64</td>
<td>1</td>
</tr>
<tr>
<td>2122806</td>
<td>23</td>
<td>1301.69</td>
<td>1303.98</td>
<td>-2.29</td>
<td>1</td>
</tr>
<tr>
<td>2122807</td>
<td>6</td>
<td>1295.78</td>
<td>1294.18</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>2122807</td>
<td>7</td>
<td>1297.3</td>
<td>1293.99</td>
<td>3.31</td>
<td>1</td>
</tr>
<tr>
<td>2122808</td>
<td>7</td>
<td>1293.81</td>
<td>1290.98</td>
<td>2.83</td>
<td>1</td>
</tr>
<tr>
<td>2122809</td>
<td>20</td>
<td>1284.1</td>
<td>1283.26</td>
<td>0.84</td>
<td>1</td>
</tr>
<tr>
<td>2122809</td>
<td>21</td>
<td>1284.8</td>
<td>1283.68</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td>2122810</td>
<td>20</td>
<td>1289.2</td>
<td>1288.35</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>2122811</td>
<td>20</td>
<td>1291.3</td>
<td>1292.47</td>
<td>-1.17</td>
<td>1</td>
</tr>
<tr>
<td>2122811</td>
<td>21</td>
<td>1293.1</td>
<td>1292.9</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>2122813</td>
<td>20</td>
<td>1292.1</td>
<td>1290.74</td>
<td>1.36</td>
<td>0</td>
</tr>
<tr>
<td>2122814</td>
<td>21</td>
<td>1291.8</td>
<td>1293.68</td>
<td>-1.88</td>
<td>1</td>
</tr>
<tr>
<td>2122815</td>
<td>21</td>
<td>1291.9</td>
<td>1293.68</td>
<td>-1.78</td>
<td>1</td>
</tr>
<tr>
<td>2122816</td>
<td>20</td>
<td>1300</td>
<td>1298.87</td>
<td>1.13</td>
<td>1</td>
</tr>
<tr>
<td>2122817</td>
<td>20</td>
<td>1292.3</td>
<td>1293.76</td>
<td>-1.46</td>
<td>1</td>
</tr>
<tr>
<td>2122817</td>
<td>21</td>
<td>1293.8</td>
<td>1294.22</td>
<td>-0.42</td>
<td>1</td>
</tr>
<tr>
<td>2122820</td>
<td>20</td>
<td>1291.7</td>
<td>1293.15</td>
<td>-1.45</td>
<td>1</td>
</tr>
<tr>
<td>2122820</td>
<td>21</td>
<td>1293.3</td>
<td>1293.61</td>
<td>-0.31</td>
<td>1</td>
</tr>
<tr>
<td>2122822</td>
<td>20</td>
<td>1300.9</td>
<td>1298.87</td>
<td>2.03</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2122822</td>
<td>21</td>
<td>1301.9</td>
<td>1299.44</td>
<td>2.46</td>
<td>1</td>
</tr>
<tr>
<td>2122823</td>
<td>20</td>
<td>1301.6</td>
<td>1302.35</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2122824</td>
<td>20</td>
<td>1302.6</td>
<td>1302.35</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>2122838</td>
<td>11</td>
<td>1283.8</td>
<td>1282.55</td>
<td>1.25</td>
<td>1</td>
</tr>
<tr>
<td>2122839</td>
<td>11</td>
<td>1305</td>
<td>1302.73</td>
<td>2.27</td>
<td>1</td>
</tr>
<tr>
<td>2122839</td>
<td>12</td>
<td>1305</td>
<td>1302.87</td>
<td>2.13</td>
<td>1</td>
</tr>
<tr>
<td>2122847</td>
<td>21</td>
<td>1299.2</td>
<td>1299.55</td>
<td>-0.35</td>
<td>1</td>
</tr>
<tr>
<td>2122848</td>
<td>21</td>
<td>1298.2</td>
<td>1300.35</td>
<td>-2.15</td>
<td>1</td>
</tr>
<tr>
<td>2126201</td>
<td>12</td>
<td>1305.5</td>
<td>1307.32</td>
<td>-1.82</td>
<td>1</td>
</tr>
<tr>
<td>2122903</td>
<td>20</td>
<td>1284.7</td>
<td>1282.3</td>
<td>2.4</td>
<td>1</td>
</tr>
<tr>
<td>2122904</td>
<td>21</td>
<td>1311.9</td>
<td>1308.07</td>
<td>3.83</td>
<td>1</td>
</tr>
<tr>
<td>2122905</td>
<td>14</td>
<td>1360.8</td>
<td>1361.05</td>
<td>-0.25</td>
<td>1</td>
</tr>
<tr>
<td>2127602</td>
<td>15</td>
<td>1361.3</td>
<td>1363.04</td>
<td>-1.74</td>
<td>1</td>
</tr>
<tr>
<td>2127603</td>
<td>15</td>
<td>1361.5</td>
<td>1361.26</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>2127603</td>
<td>28</td>
<td>1361.1</td>
<td>1361.4</td>
<td>-0.3</td>
<td>1</td>
</tr>
<tr>
<td>2127701</td>
<td>28</td>
<td>1400.3</td>
<td>1400.64</td>
<td>-0.34</td>
<td>1</td>
</tr>
<tr>
<td>2127703</td>
<td>28</td>
<td>1398.8</td>
<td>1373.48</td>
<td>25.32</td>
<td>0</td>
</tr>
<tr>
<td>2127801</td>
<td>8</td>
<td>1423.11</td>
<td>1424.24</td>
<td>-1.13</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>9</td>
<td>1427.63</td>
<td>1425.24</td>
<td>2.39</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>11</td>
<td>1425.09</td>
<td>1424.1</td>
<td>0.99</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>12</td>
<td>1428.06</td>
<td>1424.13</td>
<td>3.93</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>14</td>
<td>1428.85</td>
<td>1424.17</td>
<td>4.68</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>15</td>
<td>1424.99</td>
<td>1424.03</td>
<td>0.96</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>16</td>
<td>1422.75</td>
<td>1423.44</td>
<td>-0.69</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>17</td>
<td>1420.78</td>
<td>1423.15</td>
<td>-2.37</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>18</td>
<td>1421.43</td>
<td>1424.05</td>
<td>-2.62</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>20</td>
<td>1425.04</td>
<td>1424.5</td>
<td>0.54</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>21</td>
<td>1426.37</td>
<td>1424.84</td>
<td>1.53</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>22</td>
<td>1423.65</td>
<td>1424.08</td>
<td>-0.43</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>23</td>
<td>1426.14</td>
<td>1424.67</td>
<td>1.47</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>24</td>
<td>1428.31</td>
<td>1425.01</td>
<td>3.3</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>25</td>
<td>1426.15</td>
<td>1425.09</td>
<td>1.06</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2127801</td>
<td>26</td>
<td>1423.67</td>
<td>1424.7</td>
<td>-1.03</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>27</td>
<td>1425.63</td>
<td>1425.12</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>28</td>
<td>1423.85</td>
<td>1425.06</td>
<td>-1.21</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>29</td>
<td>1425</td>
<td>1424.6</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>30</td>
<td>1423.27</td>
<td>1424.64</td>
<td>-1.37</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>42</td>
<td>1418.95</td>
<td>1424.21</td>
<td>-5.26</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>54</td>
<td>1416.98</td>
<td>1424.39</td>
<td>-7.41</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>65</td>
<td>1416.01</td>
<td>1424.77</td>
<td>-8.76</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>77</td>
<td>1417.92</td>
<td>1424.83</td>
<td>-6.91</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>101</td>
<td>1420.52</td>
<td>1424.9</td>
<td>-4.38</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>113</td>
<td>1424.22</td>
<td>1425.36</td>
<td>-1.14</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>125</td>
<td>1428.94</td>
<td>1425.55</td>
<td>3.39</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>137</td>
<td>1426.15</td>
<td>1425.2</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>149</td>
<td>1426.45</td>
<td>1424.89</td>
<td>1.56</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>161</td>
<td>1427.11</td>
<td>1425.61</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>174</td>
<td>1428.37</td>
<td>1425.65</td>
<td>2.72</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>187</td>
<td>1428.61</td>
<td>1426.26</td>
<td>2.35</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>198</td>
<td>1430.8</td>
<td>1426.1</td>
<td>4.7</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>211</td>
<td>1429.75</td>
<td>1425.09</td>
<td>4.66</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>224</td>
<td>1427.14</td>
<td>1425.08</td>
<td>2.06</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>236</td>
<td>1426.45</td>
<td>1424.58</td>
<td>1.87</td>
<td>1</td>
</tr>
<tr>
<td>2127801</td>
<td>248</td>
<td>1427.91</td>
<td>1424.99</td>
<td>2.92</td>
<td>1</td>
</tr>
<tr>
<td>2127807</td>
<td>8</td>
<td>1423.1</td>
<td>1425.74</td>
<td>-2.64</td>
<td>1</td>
</tr>
<tr>
<td>2127809</td>
<td>28</td>
<td>1399</td>
<td>1399.33</td>
<td>-0.33</td>
<td>1</td>
</tr>
<tr>
<td>2127810</td>
<td>28</td>
<td>1400.7</td>
<td>1404.6</td>
<td>-3.9</td>
<td>0</td>
</tr>
<tr>
<td>2127812</td>
<td>28</td>
<td>1386.7</td>
<td>1387.17</td>
<td>-0.47</td>
<td>1</td>
</tr>
<tr>
<td>2127813</td>
<td>28</td>
<td>1418.5</td>
<td>1419.01</td>
<td>-0.51</td>
<td>1</td>
</tr>
<tr>
<td>2127814</td>
<td>28</td>
<td>1412.3</td>
<td>1412.14</td>
<td>0.16</td>
<td>1</td>
</tr>
<tr>
<td>2127815</td>
<td>8</td>
<td>1427.5</td>
<td>1426.65</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>2127815</td>
<td>28</td>
<td>1428.6</td>
<td>1426.61</td>
<td>1.99</td>
<td>1</td>
</tr>
<tr>
<td>2127818</td>
<td>28</td>
<td>1388.9</td>
<td>1393.12</td>
<td>-4.22</td>
<td>0</td>
</tr>
<tr>
<td>2127902</td>
<td>8</td>
<td>1389.5</td>
<td>1388.18</td>
<td>1.32</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2127902</td>
<td>28</td>
<td>1387.6</td>
<td>1389.38</td>
<td>-1.78</td>
<td>1</td>
</tr>
<tr>
<td>2127904</td>
<td>28</td>
<td>1392.3</td>
<td>1394.25</td>
<td>-1.95</td>
<td>1</td>
</tr>
<tr>
<td>2127904</td>
<td>249</td>
<td>1398</td>
<td>1394.86</td>
<td>3.14</td>
<td>1</td>
</tr>
<tr>
<td>2127904</td>
<td>261</td>
<td>1395</td>
<td>1394.23</td>
<td>0.77</td>
<td>1</td>
</tr>
<tr>
<td>2127904</td>
<td>274</td>
<td>1392.08</td>
<td>1393.8</td>
<td>-1.72</td>
<td>1</td>
</tr>
<tr>
<td>2127904</td>
<td>287</td>
<td>1393.75</td>
<td>1393.37</td>
<td>0.38</td>
<td>1</td>
</tr>
<tr>
<td>2127904</td>
<td>298</td>
<td>1393.58</td>
<td>1393.41</td>
<td>0.17</td>
<td>1</td>
</tr>
<tr>
<td>2127904</td>
<td>310</td>
<td>1394.58</td>
<td>1393.41</td>
<td>1.17</td>
<td>1</td>
</tr>
<tr>
<td>2127904</td>
<td>321</td>
<td>1394.17</td>
<td>1393.31</td>
<td>0.86</td>
<td>1</td>
</tr>
<tr>
<td>2127905</td>
<td>8</td>
<td>1402</td>
<td>1400.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>2127905</td>
<td>15</td>
<td>1403.5</td>
<td>1400.89</td>
<td>2.61</td>
<td>1</td>
</tr>
<tr>
<td>2127905</td>
<td>28</td>
<td>1399.8</td>
<td>1401.9</td>
<td>-2.1</td>
<td>1</td>
</tr>
<tr>
<td>2127906</td>
<td>8</td>
<td>1401.5</td>
<td>1398.94</td>
<td>2.56</td>
<td>1</td>
</tr>
<tr>
<td>2127906</td>
<td>15</td>
<td>1402.5</td>
<td>1399.45</td>
<td>3.05</td>
<td>1</td>
</tr>
<tr>
<td>2127906</td>
<td>28</td>
<td>1396.8</td>
<td>1400.7</td>
<td>-3.9</td>
<td>1</td>
</tr>
<tr>
<td>2127911</td>
<td>8</td>
<td>1399.4</td>
<td>1399.43</td>
<td>-0.03</td>
<td>1</td>
</tr>
<tr>
<td>2127911</td>
<td>15</td>
<td>1401.2</td>
<td>1399.59</td>
<td>1.61</td>
<td>1</td>
</tr>
<tr>
<td>2127911</td>
<td>28</td>
<td>1399.2</td>
<td>1399.96</td>
<td>-0.76</td>
<td>1</td>
</tr>
<tr>
<td>2127913</td>
<td>8</td>
<td>1389.9</td>
<td>1390.56</td>
<td>-0.66</td>
<td>1</td>
</tr>
<tr>
<td>2127913</td>
<td>15</td>
<td>1391.7</td>
<td>1390.9</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>2127913</td>
<td>28</td>
<td>1390.4</td>
<td>1391.26</td>
<td>-0.86</td>
<td>1</td>
</tr>
<tr>
<td>2127914</td>
<td>5</td>
<td>1388.7</td>
<td>1389.02</td>
<td>-0.32</td>
<td>1</td>
</tr>
<tr>
<td>2127916</td>
<td>15</td>
<td>1447.2</td>
<td>1447.58</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>2127916</td>
<td>28</td>
<td>1447.7</td>
<td>1446.17</td>
<td>1.53</td>
<td>1</td>
</tr>
<tr>
<td>2127917</td>
<td>15</td>
<td>1371.4</td>
<td>1368.66</td>
<td>2.74</td>
<td>1</td>
</tr>
<tr>
<td>2127917</td>
<td>23</td>
<td>1370.7</td>
<td>1368.65</td>
<td>2.05</td>
<td>1</td>
</tr>
<tr>
<td>2127923</td>
<td>15</td>
<td>1371.6</td>
<td>1374.12</td>
<td>-2.52</td>
<td>1</td>
</tr>
<tr>
<td>2127925</td>
<td>15</td>
<td>1380</td>
<td>1381.15</td>
<td>-1.15</td>
<td>1</td>
</tr>
<tr>
<td>2127926</td>
<td>15</td>
<td>1380.6</td>
<td>1381.55</td>
<td>-0.95</td>
<td>1</td>
</tr>
<tr>
<td>2127927</td>
<td>15</td>
<td>1383.6</td>
<td>1380.86</td>
<td>2.74</td>
<td>1</td>
</tr>
<tr>
<td>2127929</td>
<td>15</td>
<td>1380.4</td>
<td>1381.67</td>
<td>-1.27</td>
<td>1</td>
</tr>
<tr>
<td>2127930</td>
<td>15</td>
<td>1388.7</td>
<td>1384.57</td>
<td>4.13</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2127931</td>
<td>15</td>
<td>1387.5</td>
<td>1386.64</td>
<td>0.86</td>
<td>1</td>
</tr>
<tr>
<td>2127932</td>
<td>15</td>
<td>1385.1</td>
<td>1386.14</td>
<td>-1.04</td>
<td>1</td>
</tr>
<tr>
<td>2127933</td>
<td>15</td>
<td>1384.6</td>
<td>1389.49</td>
<td>-4.89</td>
<td>1</td>
</tr>
<tr>
<td>2127934</td>
<td>15</td>
<td>1396.6</td>
<td>1392.56</td>
<td>4.04</td>
<td>1</td>
</tr>
<tr>
<td>2127935</td>
<td>15</td>
<td>1387.8</td>
<td>1389.36</td>
<td>-1.56</td>
<td>1</td>
</tr>
<tr>
<td>2127936</td>
<td>15</td>
<td>1390.3</td>
<td>1389.32</td>
<td>0.98</td>
<td>1</td>
</tr>
<tr>
<td>2127937</td>
<td>15</td>
<td>1400.7</td>
<td>1403.23</td>
<td>-2.53</td>
<td>1</td>
</tr>
<tr>
<td>2127938</td>
<td>15</td>
<td>1434.5</td>
<td>1438.06</td>
<td>-3.56</td>
<td>1</td>
</tr>
<tr>
<td>2127939</td>
<td>11</td>
<td>1435.8</td>
<td>1434.64</td>
<td>1.16</td>
<td>1</td>
</tr>
<tr>
<td>2127940</td>
<td>15</td>
<td>1437.8</td>
<td>1434.65</td>
<td>3.15</td>
<td>1</td>
</tr>
<tr>
<td>2127941</td>
<td>15</td>
<td>1398.5</td>
<td>1402.42</td>
<td>-3.92</td>
<td>1</td>
</tr>
<tr>
<td>2127944</td>
<td>15</td>
<td>1455.7</td>
<td>1454.12</td>
<td>1.58</td>
<td>1</td>
</tr>
<tr>
<td>2127946</td>
<td>15</td>
<td>1453.2</td>
<td>1454.52</td>
<td>-1.32</td>
<td>1</td>
</tr>
<tr>
<td>2127947</td>
<td>11</td>
<td>1369.2</td>
<td>1373.46</td>
<td>-4.26</td>
<td>1</td>
</tr>
<tr>
<td>2127949</td>
<td>28</td>
<td>1438.3</td>
<td>1433.18</td>
<td>5.12</td>
<td>0</td>
</tr>
<tr>
<td>2128301</td>
<td>7</td>
<td>1402.27</td>
<td>1400.3</td>
<td>1.97</td>
<td>1</td>
</tr>
<tr>
<td>2128301</td>
<td>8</td>
<td>1399.33</td>
<td>1399.1</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>2128301</td>
<td>9</td>
<td>1401.29</td>
<td>1400.17</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td>2128301</td>
<td>11</td>
<td>1400.91</td>
<td>1400.39</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>2128301</td>
<td>12</td>
<td>1401</td>
<td>1400.7</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2128301</td>
<td>14</td>
<td>1403.4</td>
<td>1401.89</td>
<td>1.51</td>
<td>1</td>
</tr>
<tr>
<td>2128401</td>
<td>8</td>
<td>1376.9</td>
<td>1375.95</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>2128401</td>
<td>9</td>
<td>1380.1</td>
<td>1377.29</td>
<td>2.81</td>
<td>1</td>
</tr>
<tr>
<td>2128401</td>
<td>28</td>
<td>1378.7</td>
<td>1379.86</td>
<td>-1.16</td>
<td>1</td>
</tr>
<tr>
<td>2128403</td>
<td>8</td>
<td>1373.6</td>
<td>1371.49</td>
<td>2.11</td>
<td>1</td>
</tr>
<tr>
<td>2128405</td>
<td>28</td>
<td>1373.4</td>
<td>1373.78</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>2128406</td>
<td>8</td>
<td>1370.5</td>
<td>1369.64</td>
<td>0.86</td>
<td>0</td>
</tr>
<tr>
<td>2128410</td>
<td>28</td>
<td>1371</td>
<td>1372.9</td>
<td>-1.9</td>
<td>1</td>
</tr>
<tr>
<td>2128411</td>
<td>28</td>
<td>1366.4</td>
<td>1366.76</td>
<td>-0.36</td>
<td>1</td>
</tr>
<tr>
<td>2128413</td>
<td>28</td>
<td>1371.9</td>
<td>1367.18</td>
<td>4.72</td>
<td>1</td>
</tr>
<tr>
<td>2128415</td>
<td>42</td>
<td>1361</td>
<td>1366.52</td>
<td>-5.52</td>
<td>1</td>
</tr>
<tr>
<td>2128502</td>
<td>28</td>
<td>1403.5</td>
<td>1404.36</td>
<td>-0.86</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2128504</td>
<td>28</td>
<td>1413.5</td>
<td>1404.4</td>
<td>9.1</td>
<td>0</td>
</tr>
<tr>
<td>2128604</td>
<td>28</td>
<td>1412.4</td>
<td>1394.46</td>
<td>17.94</td>
<td>0</td>
</tr>
<tr>
<td>2128703</td>
<td>8</td>
<td>1439.2</td>
<td>1440.2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>2128703</td>
<td>28</td>
<td>1433.5</td>
<td>1436.35</td>
<td>-2.85</td>
<td>1</td>
</tr>
<tr>
<td>2128704</td>
<td>28</td>
<td>1444.9</td>
<td>1446.34</td>
<td>-1.44</td>
<td>1</td>
</tr>
<tr>
<td>2128709</td>
<td>8</td>
<td>1383.7</td>
<td>1385.04</td>
<td>-1.34</td>
<td>1</td>
</tr>
<tr>
<td>2128711</td>
<td>28</td>
<td>1397.4</td>
<td>1403.06</td>
<td>-5.66</td>
<td>1</td>
</tr>
<tr>
<td>2128711</td>
<td>293</td>
<td>1406.1</td>
<td>1402.05</td>
<td>4.05</td>
<td>1</td>
</tr>
<tr>
<td>2128713</td>
<td>28</td>
<td>1431.6</td>
<td>1430.53</td>
<td>1.07</td>
<td>1</td>
</tr>
<tr>
<td>2128715</td>
<td>28</td>
<td>1432.5</td>
<td>1433.39</td>
<td>-0.89</td>
<td>1</td>
</tr>
<tr>
<td>2128719</td>
<td>8</td>
<td>1441.8</td>
<td>1443.35</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2128719</td>
<td>28</td>
<td>1436.1</td>
<td>1439.95</td>
<td>-3.85</td>
<td>1</td>
</tr>
<tr>
<td>2128725</td>
<td>28</td>
<td>1426.5</td>
<td>1426.11</td>
<td>0.39</td>
<td>0</td>
</tr>
<tr>
<td>2128726</td>
<td>28</td>
<td>1382.9</td>
<td>1390.62</td>
<td>-7.72</td>
<td>0</td>
</tr>
<tr>
<td>2128801</td>
<td>8</td>
<td>1424.7</td>
<td>1428.33</td>
<td>-3.63</td>
<td>1</td>
</tr>
<tr>
<td>2128801</td>
<td>28</td>
<td>1420.7</td>
<td>1424.39</td>
<td>-3.69</td>
<td>1</td>
</tr>
<tr>
<td>2128802</td>
<td>8</td>
<td>1423.7</td>
<td>1428.68</td>
<td>-4.98</td>
<td>1</td>
</tr>
<tr>
<td>2128805</td>
<td>8</td>
<td>1422.7</td>
<td>1427.41</td>
<td>-4.71</td>
<td>1</td>
</tr>
<tr>
<td>2128808</td>
<td>8</td>
<td>1417.5</td>
<td>1421.8</td>
<td>-4.3</td>
<td>1</td>
</tr>
<tr>
<td>2128813</td>
<td>8</td>
<td>1436.3</td>
<td>1435.45</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>2128813</td>
<td>28</td>
<td>1429.9</td>
<td>1431.68</td>
<td>-1.78</td>
<td>1</td>
</tr>
<tr>
<td>2128814</td>
<td>8</td>
<td>1435.3</td>
<td>1436.35</td>
<td>-1.05</td>
<td>1</td>
</tr>
<tr>
<td>2128814</td>
<td>28</td>
<td>1433</td>
<td>1432.96</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>2128817</td>
<td>8</td>
<td>1427.7</td>
<td>1427.52</td>
<td>0.18</td>
<td>1</td>
</tr>
<tr>
<td>2128817</td>
<td>28</td>
<td>1428.5</td>
<td>1427.29</td>
<td>1.21</td>
<td>1</td>
</tr>
<tr>
<td>2128822</td>
<td>8</td>
<td>1415.7</td>
<td>1415.77</td>
<td>-0.07</td>
<td>1</td>
</tr>
<tr>
<td>2128822</td>
<td>28</td>
<td>1421.1</td>
<td>1418.54</td>
<td>2.56</td>
<td>1</td>
</tr>
<tr>
<td>2128827</td>
<td>28</td>
<td>1420.3</td>
<td>1425.7</td>
<td>-5.4</td>
<td>0</td>
</tr>
<tr>
<td>2128831</td>
<td>8</td>
<td>1437.5</td>
<td>1436.56</td>
<td>0.94</td>
<td>1</td>
</tr>
<tr>
<td>2128833</td>
<td>28</td>
<td>1420.8</td>
<td>1426.98</td>
<td>-6.18</td>
<td>0</td>
</tr>
<tr>
<td>2128835</td>
<td>19</td>
<td>1425</td>
<td>1425.5</td>
<td>-0.5</td>
<td>1</td>
</tr>
<tr>
<td>2128837</td>
<td>28</td>
<td>1401.3</td>
<td>1416.28</td>
<td>-14.98</td>
<td>0</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2128901</td>
<td>8</td>
<td>1412.3</td>
<td>1412.37</td>
<td>-0.07</td>
<td>1</td>
</tr>
<tr>
<td>2128901</td>
<td>28</td>
<td>1411.8</td>
<td>1409.26</td>
<td>2.54</td>
<td>1</td>
</tr>
<tr>
<td>2128903</td>
<td>8</td>
<td>1423.1</td>
<td>1428.66</td>
<td>-5.56</td>
<td>1</td>
</tr>
<tr>
<td>2128903</td>
<td>28</td>
<td>1420.1</td>
<td>1424</td>
<td>-3.9</td>
<td>1</td>
</tr>
<tr>
<td>2128907</td>
<td>28</td>
<td>1421.3</td>
<td>1423.64</td>
<td>-2.34</td>
<td>1</td>
</tr>
<tr>
<td>2128910</td>
<td>28</td>
<td>1407.7</td>
<td>1396.58</td>
<td>11.12</td>
<td>0</td>
</tr>
<tr>
<td>2128911</td>
<td>28</td>
<td>1420.9</td>
<td>1425.48</td>
<td>-4.58</td>
<td>1</td>
</tr>
<tr>
<td>2128912</td>
<td>28</td>
<td>1405</td>
<td>1372.26</td>
<td>32.74</td>
<td>0</td>
</tr>
<tr>
<td>2128913</td>
<td>28</td>
<td>1412</td>
<td>1392.3</td>
<td>19.7</td>
<td>0</td>
</tr>
<tr>
<td>2128914</td>
<td>28</td>
<td>1415.2</td>
<td>1415.55</td>
<td>-0.35</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>8</td>
<td>1399.3</td>
<td>1399.27</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>9</td>
<td>1399.73</td>
<td>1401.04</td>
<td>-1.31</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>11</td>
<td>1399.47</td>
<td>1400.93</td>
<td>-1.46</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>12</td>
<td>1399.66</td>
<td>1401.4</td>
<td>-1.74</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>14</td>
<td>1401.84</td>
<td>1402.62</td>
<td>-0.78</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>15</td>
<td>1401.33</td>
<td>1402.35</td>
<td>-1.02</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>16</td>
<td>1400.35</td>
<td>1402.11</td>
<td>-1.76</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>17</td>
<td>1399.8</td>
<td>1402.07</td>
<td>-2.27</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>18</td>
<td>1401.71</td>
<td>1402.82</td>
<td>-1.11</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>19</td>
<td>1401.22</td>
<td>1402.54</td>
<td>-1.32</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>20</td>
<td>1403.51</td>
<td>1403.27</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>21</td>
<td>1404.15</td>
<td>1404.01</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>22</td>
<td>1402.77</td>
<td>1402.73</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>23</td>
<td>1402.2</td>
<td>1403.42</td>
<td>-1.22</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>24</td>
<td>1402.46</td>
<td>1403.85</td>
<td>-1.39</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>25</td>
<td>1403.98</td>
<td>1403.85</td>
<td>0.13</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>26</td>
<td>1402.3</td>
<td>1403.54</td>
<td>-1.24</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>27</td>
<td>1403.33</td>
<td>1403.93</td>
<td>-0.6</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>28</td>
<td>1402.1</td>
<td>1403.78</td>
<td>-1.68</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>29</td>
<td>1403.77</td>
<td>1402.97</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>30</td>
<td>1403.4</td>
<td>1403.22</td>
<td>0.18</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>42</td>
<td>1403.36</td>
<td>1403.3</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2129102</td>
<td>54</td>
<td>1402.95</td>
<td>1403.5</td>
<td>-0.55</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>65</td>
<td>1402.81</td>
<td>1404.23</td>
<td>-1.42</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>93</td>
<td>1402.71</td>
<td>1403.55</td>
<td>-0.84</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>113</td>
<td>1404.1</td>
<td>1404.99</td>
<td>-0.89</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>125</td>
<td>1406.57</td>
<td>1405.1</td>
<td>1.47</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>137</td>
<td>1404.8</td>
<td>1404.34</td>
<td>0.46</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>149</td>
<td>1404.77</td>
<td>1403.97</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>161</td>
<td>1406.23</td>
<td>1405.11</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>174</td>
<td>1406.1</td>
<td>1405.25</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>187</td>
<td>1406.78</td>
<td>1406.22</td>
<td>0.56</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>198</td>
<td>1407.05</td>
<td>1405.82</td>
<td>1.23</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>211</td>
<td>1406.2</td>
<td>1404.73</td>
<td>1.47</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>224</td>
<td>1406.02</td>
<td>1405.16</td>
<td>0.86</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>236</td>
<td>1406.59</td>
<td>1404.71</td>
<td>1.88</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>248</td>
<td>1407.83</td>
<td>1405.62</td>
<td>2.21</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>270</td>
<td>1405.2</td>
<td>1403.75</td>
<td>1.45</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>283</td>
<td>1404.53</td>
<td>1403.75</td>
<td>0.78</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>295</td>
<td>1404.8</td>
<td>1403.53</td>
<td>1.27</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>307</td>
<td>1405.05</td>
<td>1404.71</td>
<td>0.34</td>
<td>1</td>
</tr>
<tr>
<td>2129102</td>
<td>319</td>
<td>1404.15</td>
<td>1403.3</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>2129104</td>
<td>21</td>
<td>1390.9</td>
<td>1391.21</td>
<td>-0.31</td>
<td>1</td>
</tr>
<tr>
<td>2129203</td>
<td>21</td>
<td>1373.9</td>
<td>1372.5</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>2129304</td>
<td>21</td>
<td>1356.9</td>
<td>1358.86</td>
<td>-1.96</td>
<td>1</td>
</tr>
<tr>
<td>2129305</td>
<td>21</td>
<td>1371.5</td>
<td>1370.94</td>
<td>0.56</td>
<td>1</td>
</tr>
<tr>
<td>2129306</td>
<td>21</td>
<td>1357.2</td>
<td>1353.92</td>
<td>3.28</td>
<td>1</td>
</tr>
<tr>
<td>2129316</td>
<td>21</td>
<td>1305.3</td>
<td>1303.39</td>
<td>1.91</td>
<td>1</td>
</tr>
<tr>
<td>2130101</td>
<td>7</td>
<td>1314.52</td>
<td>1314.15</td>
<td>0.37</td>
<td>1</td>
</tr>
<tr>
<td>2130101</td>
<td>8</td>
<td>1313.63</td>
<td>1312.69</td>
<td>0.94</td>
<td>1</td>
</tr>
<tr>
<td>2130101</td>
<td>9</td>
<td>1314.27</td>
<td>1313.7</td>
<td>0.57</td>
<td>1</td>
</tr>
<tr>
<td>2130101</td>
<td>11</td>
<td>1314.69</td>
<td>1313.77</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2130101</td>
<td>12</td>
<td>1314.57</td>
<td>1314</td>
<td>0.57</td>
<td>1</td>
</tr>
<tr>
<td>2130101</td>
<td>14</td>
<td>1315.72</td>
<td>1315.13</td>
<td>0.59</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2130104</td>
<td>20</td>
<td>1313.4</td>
<td>1313.23</td>
<td>0.17</td>
<td>1</td>
</tr>
<tr>
<td>2130105</td>
<td>20</td>
<td>1312.8</td>
<td>1312.51</td>
<td>0.29</td>
<td>1</td>
</tr>
<tr>
<td>2130105</td>
<td>21</td>
<td>1312.4</td>
<td>1313.29</td>
<td>-0.89</td>
<td>1</td>
</tr>
<tr>
<td>2130106</td>
<td>20</td>
<td>1308.9</td>
<td>1309.53</td>
<td>-0.63</td>
<td>1</td>
</tr>
<tr>
<td>2130106</td>
<td>21</td>
<td>1309.3</td>
<td>1310.22</td>
<td>-0.92</td>
<td>1</td>
</tr>
<tr>
<td>2130107</td>
<td>20</td>
<td>1309.5</td>
<td>1310.66</td>
<td>-1.16</td>
<td>1</td>
</tr>
<tr>
<td>2130109</td>
<td>21</td>
<td>1293.7</td>
<td>1294.55</td>
<td>-0.85</td>
<td>1</td>
</tr>
<tr>
<td>2130110</td>
<td>21</td>
<td>1351.3</td>
<td>1350.05</td>
<td>1.25</td>
<td>1</td>
</tr>
<tr>
<td>2130116</td>
<td>21</td>
<td>1355.9</td>
<td>1358.73</td>
<td>-2.83</td>
<td>1</td>
</tr>
<tr>
<td>2130126</td>
<td>21</td>
<td>1346.3</td>
<td>1347.07</td>
<td>-0.77</td>
<td>1</td>
</tr>
<tr>
<td>2130127</td>
<td>21</td>
<td>1300.3</td>
<td>1301.28</td>
<td>-0.98</td>
<td>1</td>
</tr>
<tr>
<td>2130128</td>
<td>21</td>
<td>1299.9</td>
<td>1301.28</td>
<td>-1.38</td>
<td>1</td>
</tr>
<tr>
<td>2130129</td>
<td>21</td>
<td>1301.1</td>
<td>1301.28</td>
<td>-0.18</td>
<td>1</td>
</tr>
<tr>
<td>2130130</td>
<td>21</td>
<td>1300.9</td>
<td>1301.28</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>11</td>
<td>1281.16</td>
<td>1279.15</td>
<td>2.01</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>12</td>
<td>1281.21</td>
<td>1279.14</td>
<td>2.07</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>14</td>
<td>1283.56</td>
<td>1279.5</td>
<td>4.06</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>15</td>
<td>1282.2</td>
<td>1279.39</td>
<td>2.81</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>16</td>
<td>1279.9</td>
<td>1279.2</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>17</td>
<td>1277.71</td>
<td>1279.08</td>
<td>-1.37</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>18</td>
<td>1279.71</td>
<td>1279.49</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>19</td>
<td>1279.31</td>
<td>1279.54</td>
<td>-0.23</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>20</td>
<td>1281.75</td>
<td>1279.97</td>
<td>1.78</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>21</td>
<td>1281.7</td>
<td>1280.38</td>
<td>1.32</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>22</td>
<td>1278.21</td>
<td>1280.09</td>
<td>-1.88</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>23</td>
<td>1278.47</td>
<td>1280.45</td>
<td>-1.98</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>24</td>
<td>1278.74</td>
<td>1280.77</td>
<td>-2.03</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>25</td>
<td>1280.06</td>
<td>1280.94</td>
<td>-0.88</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>26</td>
<td>1278.86</td>
<td>1280.9</td>
<td>-2.04</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>27</td>
<td>1280.4</td>
<td>1281.15</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>29</td>
<td>1281.37</td>
<td>1281.01</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>30</td>
<td>1279.85</td>
<td>1281.09</td>
<td>-1.24</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2130202</td>
<td>42</td>
<td>1279.18</td>
<td>1280.81</td>
<td>-1.63</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>54</td>
<td>1278.92</td>
<td>1280.95</td>
<td>-2.03</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>65</td>
<td>1278.89</td>
<td>1281.27</td>
<td>-2.38</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>77</td>
<td>1277.2</td>
<td>1281.42</td>
<td>-4.22</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>93</td>
<td>1278.14</td>
<td>1281.4</td>
<td>-3.26</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>100</td>
<td>1277.56</td>
<td>1281.48</td>
<td>-3.92</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>113</td>
<td>1279</td>
<td>1281.92</td>
<td>-2.92</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>125</td>
<td>1279.62</td>
<td>1282.1</td>
<td>-2.48</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>137</td>
<td>1280.55</td>
<td>1281.98</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>149</td>
<td>1280.61</td>
<td>1281.85</td>
<td>-1.24</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>161</td>
<td>1280.95</td>
<td>1282.24</td>
<td>-1.29</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>174</td>
<td>1283.3</td>
<td>1282.35</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>187</td>
<td>1283.38</td>
<td>1282.73</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>198</td>
<td>1283.75</td>
<td>1282.7</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>211</td>
<td>1282</td>
<td>1282.21</td>
<td>-0.21</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>248</td>
<td>1283.48</td>
<td>1281.97</td>
<td>1.51</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>259</td>
<td>1281.43</td>
<td>1281.11</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>270</td>
<td>1279.9</td>
<td>1280.82</td>
<td>-0.92</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>284</td>
<td>1278.29</td>
<td>1280.72</td>
<td>-2.43</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>295</td>
<td>1279.32</td>
<td>1280.42</td>
<td>-1.1</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>307</td>
<td>1279.85</td>
<td>1280.68</td>
<td>-0.83</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>318</td>
<td>1276.6</td>
<td>1280.1</td>
<td>-3.5</td>
<td>1</td>
</tr>
<tr>
<td>2130202</td>
<td>334</td>
<td>1279.17</td>
<td>1280.53</td>
<td>-1.36</td>
<td>1</td>
</tr>
<tr>
<td>2130203</td>
<td>8</td>
<td>1275.19</td>
<td>1275.29</td>
<td>-0.1</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>6</td>
<td>1265.4</td>
<td>1271.1</td>
<td>-5.7</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>7</td>
<td>1266.05</td>
<td>1271.01</td>
<td>-4.96</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>8</td>
<td>1264.23</td>
<td>1270.6</td>
<td>-6.37</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>9</td>
<td>1267.47</td>
<td>1270.82</td>
<td>-3.35</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>11</td>
<td>1267.74</td>
<td>1270.75</td>
<td>-3.01</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>12</td>
<td>1268.08</td>
<td>1270.77</td>
<td>-2.69</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>14</td>
<td>1269.8</td>
<td>1270.99</td>
<td>-1.19</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>15</td>
<td>1267.58</td>
<td>1270.9</td>
<td>-3.32</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2130204</td>
<td>16</td>
<td>1269.05</td>
<td>1270.83</td>
<td>-1.78</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>19</td>
<td>1270.71</td>
<td>1270.83</td>
<td>-0.12</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>20</td>
<td>1271.99</td>
<td>1271.01</td>
<td>0.98</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>21</td>
<td>1273.2</td>
<td>1271.23</td>
<td>1.97</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>22</td>
<td>1270.29</td>
<td>1271.03</td>
<td>-0.74</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>23</td>
<td>1267.08</td>
<td>1271.21</td>
<td>-4.13</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>24</td>
<td>1268.24</td>
<td>1271.35</td>
<td>-3.11</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>25</td>
<td>1270.75</td>
<td>1271.42</td>
<td>-0.67</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>26</td>
<td>1270</td>
<td>1271.43</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>27</td>
<td>1272.2</td>
<td>1271.55</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>28</td>
<td>1270.16</td>
<td>1271.57</td>
<td>-1.41</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>29</td>
<td>1270.95</td>
<td>1271.45</td>
<td>-0.5</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>30</td>
<td>1272.47</td>
<td>1271.52</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>42</td>
<td>1277.27</td>
<td>1271.47</td>
<td>5.8</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>54</td>
<td>1269</td>
<td>1271.5</td>
<td>-2.5</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>65</td>
<td>1269.56</td>
<td>1271.66</td>
<td>-2.1</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>77</td>
<td>1270</td>
<td>1271.73</td>
<td>-1.73</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>93</td>
<td>1270.18</td>
<td>1271.62</td>
<td>-1.44</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>100</td>
<td>1269.13</td>
<td>1271.76</td>
<td>-2.63</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>113</td>
<td>1273.43</td>
<td>1272.02</td>
<td>1.41</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>137</td>
<td>1272.23</td>
<td>1272.01</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>149</td>
<td>1272.49</td>
<td>1271.98</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>161</td>
<td>1273.02</td>
<td>1272.19</td>
<td>0.83</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>174</td>
<td>1273.84</td>
<td>1272.26</td>
<td>1.58</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>187</td>
<td>1274.67</td>
<td>1272.48</td>
<td>2.19</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>198</td>
<td>1272.9</td>
<td>1272.47</td>
<td>0.43</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>211</td>
<td>1271.8</td>
<td>1272.31</td>
<td>-0.51</td>
<td>1</td>
</tr>
<tr>
<td>2130204</td>
<td>224</td>
<td>1272.9</td>
<td>1272.32</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td>2130205</td>
<td>7</td>
<td>1267.3</td>
<td>1270.41</td>
<td>-3.11</td>
<td>0</td>
</tr>
<tr>
<td>2130205</td>
<td>8</td>
<td>1267.34</td>
<td>1270.03</td>
<td>-2.69</td>
<td>0</td>
</tr>
<tr>
<td>2130205</td>
<td>11</td>
<td>1269.75</td>
<td>1270.18</td>
<td>-0.43</td>
<td>1</td>
</tr>
<tr>
<td>2130206</td>
<td>6</td>
<td>1272.25</td>
<td>1271.1</td>
<td>1.15</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2130206</td>
<td>7</td>
<td>1272.79</td>
<td>1271.01</td>
<td>1.78</td>
<td>1</td>
</tr>
<tr>
<td>2130206</td>
<td>8</td>
<td>1270.91</td>
<td>1270.6</td>
<td>0.31</td>
<td>1</td>
</tr>
<tr>
<td>2130206</td>
<td>9</td>
<td>1273.26</td>
<td>1270.82</td>
<td>2.44</td>
<td>1</td>
</tr>
<tr>
<td>2130206</td>
<td>11</td>
<td>1273.53</td>
<td>1270.75</td>
<td>2.78</td>
<td>1</td>
</tr>
<tr>
<td>2130206</td>
<td>12</td>
<td>1274.01</td>
<td>1270.77</td>
<td>3.24</td>
<td>1</td>
</tr>
<tr>
<td>2130206</td>
<td>14</td>
<td>1277.56</td>
<td>1270.99</td>
<td>6.57</td>
<td>1</td>
</tr>
<tr>
<td>2130206</td>
<td>20</td>
<td>1274.1</td>
<td>1271.01</td>
<td>3.09</td>
<td>1</td>
</tr>
<tr>
<td>2130206</td>
<td>21</td>
<td>1273.4</td>
<td>1271.23</td>
<td>2.17</td>
<td>1</td>
</tr>
<tr>
<td>2130207</td>
<td>11</td>
<td>1271.11</td>
<td>1270.89</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>2130212</td>
<td>21</td>
<td>1280.1</td>
<td>1276.43</td>
<td>3.67</td>
<td>1</td>
</tr>
<tr>
<td>2130213</td>
<td>11</td>
<td>1273.7</td>
<td>1270.18</td>
<td>3.52</td>
<td>1</td>
</tr>
<tr>
<td>2130213</td>
<td>12</td>
<td>1274.1</td>
<td>1270.19</td>
<td>3.91</td>
<td>1</td>
</tr>
<tr>
<td>2130213</td>
<td>20</td>
<td>1274.1</td>
<td>1270.4</td>
<td>3.7</td>
<td>1</td>
</tr>
<tr>
<td>2130213</td>
<td>21</td>
<td>1277.6</td>
<td>1270.61</td>
<td>6.99</td>
<td>1</td>
</tr>
<tr>
<td>2130216</td>
<td>20</td>
<td>1283.6</td>
<td>1284.96</td>
<td>-1.36</td>
<td>1</td>
</tr>
<tr>
<td>2130216</td>
<td>21</td>
<td>1284.1</td>
<td>1285.36</td>
<td>-1.26</td>
<td>1</td>
</tr>
<tr>
<td>2130217</td>
<td>20</td>
<td>1288</td>
<td>1285.04</td>
<td>2.96</td>
<td>1</td>
</tr>
<tr>
<td>2130217</td>
<td>21</td>
<td>1288.8</td>
<td>1285.43</td>
<td>3.37</td>
<td>1</td>
</tr>
<tr>
<td>2130218</td>
<td>20</td>
<td>1286</td>
<td>1284.97</td>
<td>1.03</td>
<td>1</td>
</tr>
<tr>
<td>2130219</td>
<td>20</td>
<td>1287</td>
<td>1288.6</td>
<td>-1.6</td>
<td>1</td>
</tr>
<tr>
<td>2130219</td>
<td>21</td>
<td>1288</td>
<td>1289.1</td>
<td>-1.1</td>
<td>1</td>
</tr>
<tr>
<td>2130220</td>
<td>20</td>
<td>1300</td>
<td>1300.53</td>
<td>-0.53</td>
<td>1</td>
</tr>
<tr>
<td>2130221</td>
<td>20</td>
<td>1303.1</td>
<td>1300.53</td>
<td>2.57</td>
<td>1</td>
</tr>
<tr>
<td>2130222</td>
<td>20</td>
<td>1307.7</td>
<td>1304.92</td>
<td>2.78</td>
<td>1</td>
</tr>
<tr>
<td>2130228</td>
<td>20</td>
<td>1284.3</td>
<td>1284.74</td>
<td>-0.44</td>
<td>1</td>
</tr>
<tr>
<td>2130228</td>
<td>21</td>
<td>1284.7</td>
<td>1285.14</td>
<td>-0.44</td>
<td>1</td>
</tr>
<tr>
<td>2130229</td>
<td>20</td>
<td>1286</td>
<td>1284.8</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>2130229</td>
<td>21</td>
<td>1286.4</td>
<td>1285.19</td>
<td>1.21</td>
<td>1</td>
</tr>
<tr>
<td>2130230</td>
<td>20</td>
<td>1287.3</td>
<td>1284.89</td>
<td>2.41</td>
<td>1</td>
</tr>
<tr>
<td>2130230</td>
<td>21</td>
<td>1287.8</td>
<td>1285.29</td>
<td>2.51</td>
<td>1</td>
</tr>
<tr>
<td>2130231</td>
<td>20</td>
<td>1287.9</td>
<td>1284.92</td>
<td>2.98</td>
<td>1</td>
</tr>
<tr>
<td>2130231</td>
<td>21</td>
<td>1288.5</td>
<td>1285.31</td>
<td>3.19</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2130232</td>
<td>20</td>
<td>1279.1</td>
<td>1285.04</td>
<td>-5.94</td>
<td>1</td>
</tr>
<tr>
<td>2130234</td>
<td>20</td>
<td>1279.4</td>
<td>1280.07</td>
<td>-0.67</td>
<td>1</td>
</tr>
<tr>
<td>2130239</td>
<td>21</td>
<td>1275.8</td>
<td>1273.91</td>
<td>1.89</td>
<td>1</td>
</tr>
<tr>
<td>2130240</td>
<td>21</td>
<td>1266.1</td>
<td>1265.67</td>
<td>0.43</td>
<td>1</td>
</tr>
<tr>
<td>2130246</td>
<td>21</td>
<td>1276.4</td>
<td>1273.98</td>
<td>2.42</td>
<td>1</td>
</tr>
<tr>
<td>2130252</td>
<td>21</td>
<td>1269.2</td>
<td>1270.89</td>
<td>-1.69</td>
<td>1</td>
</tr>
<tr>
<td>2130267</td>
<td>6</td>
<td>1285.11</td>
<td>1282.98</td>
<td>2.13</td>
<td>1</td>
</tr>
<tr>
<td>2130267</td>
<td>7</td>
<td>1286.21</td>
<td>1282.73</td>
<td>3.48</td>
<td>1</td>
</tr>
<tr>
<td>2130267</td>
<td>8</td>
<td>1282.46</td>
<td>1281.99</td>
<td>0.47</td>
<td>1</td>
</tr>
<tr>
<td>2130267</td>
<td>9</td>
<td>1283.6</td>
<td>1282.34</td>
<td>1.26</td>
<td>1</td>
</tr>
<tr>
<td>2130267</td>
<td>11</td>
<td>1282.67</td>
<td>1282.2</td>
<td>0.47</td>
<td>1</td>
</tr>
<tr>
<td>2130267</td>
<td>12</td>
<td>1282.27</td>
<td>1282.16</td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>2130268</td>
<td>6</td>
<td>1284.65</td>
<td>1281.4</td>
<td>3.25</td>
<td>1</td>
</tr>
<tr>
<td>2130268</td>
<td>7</td>
<td>1284.94</td>
<td>1281.14</td>
<td>3.8</td>
<td>1</td>
</tr>
<tr>
<td>2130268</td>
<td>8</td>
<td>1282.86</td>
<td>1280.41</td>
<td>2.45</td>
<td>1</td>
</tr>
<tr>
<td>2130268</td>
<td>9</td>
<td>1284.64</td>
<td>1280.82</td>
<td>3.82</td>
<td>1</td>
</tr>
<tr>
<td>2130269</td>
<td>9</td>
<td>1284</td>
<td>1280.82</td>
<td>3.18</td>
<td>1</td>
</tr>
<tr>
<td>2130270</td>
<td>9</td>
<td>1284.49</td>
<td>1280.44</td>
<td>4.05</td>
<td>1</td>
</tr>
<tr>
<td>2130301</td>
<td>20</td>
<td>1270.7</td>
<td>1276.03</td>
<td>-5.33</td>
<td>1</td>
</tr>
<tr>
<td>2130303</td>
<td>8</td>
<td>1274.5</td>
<td>1274.36</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2130303</td>
<td>9</td>
<td>1274.59</td>
<td>1274.92</td>
<td>-0.33</td>
<td>1</td>
</tr>
<tr>
<td>2130307</td>
<td>12</td>
<td>1259.82</td>
<td>1265.35</td>
<td>-5.53</td>
<td>1</td>
</tr>
<tr>
<td>2130308</td>
<td>20</td>
<td>1277.6</td>
<td>1275.27</td>
<td>2.33</td>
<td>1</td>
</tr>
<tr>
<td>2130317</td>
<td>20</td>
<td>1271.9</td>
<td>1275.41</td>
<td>-3.51</td>
<td>1</td>
</tr>
<tr>
<td>2130317</td>
<td>21</td>
<td>1271.4</td>
<td>1275.82</td>
<td>-4.42</td>
<td>1</td>
</tr>
<tr>
<td>2130318</td>
<td>20</td>
<td>1273.2</td>
<td>1274.82</td>
<td>-1.62</td>
<td>1</td>
</tr>
<tr>
<td>2130318</td>
<td>21</td>
<td>1273.8</td>
<td>1275.22</td>
<td>-1.42</td>
<td>1</td>
</tr>
<tr>
<td>2130319</td>
<td>20</td>
<td>1274.5</td>
<td>1276.03</td>
<td>-1.53</td>
<td>1</td>
</tr>
<tr>
<td>2130319</td>
<td>21</td>
<td>1279</td>
<td>1276.44</td>
<td>2.56</td>
<td>1</td>
</tr>
<tr>
<td>2130322</td>
<td>20</td>
<td>1283</td>
<td>1278.61</td>
<td>4.39</td>
<td>1</td>
</tr>
<tr>
<td>2130322</td>
<td>21</td>
<td>1281.7</td>
<td>1278.99</td>
<td>2.71</td>
<td>1</td>
</tr>
<tr>
<td>2130323</td>
<td>20</td>
<td>1282</td>
<td>1278.86</td>
<td>3.14</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2130323</td>
<td>21</td>
<td>1281</td>
<td>1279.23</td>
<td>1.77</td>
<td>1</td>
</tr>
<tr>
<td>2130324</td>
<td>20</td>
<td>1280.4</td>
<td>1278.53</td>
<td>1.87</td>
<td>1</td>
</tr>
<tr>
<td>2130324</td>
<td>21</td>
<td>1280</td>
<td>1278.91</td>
<td>1.09</td>
<td>1</td>
</tr>
<tr>
<td>2130325</td>
<td>20</td>
<td>1281.2</td>
<td>1276.66</td>
<td>4.54</td>
<td>1</td>
</tr>
<tr>
<td>2130325</td>
<td>21</td>
<td>1281.5</td>
<td>1277</td>
<td>4.5</td>
<td>1</td>
</tr>
<tr>
<td>2130327</td>
<td>20</td>
<td>1274.1</td>
<td>1276.71</td>
<td>-2.61</td>
<td>1</td>
</tr>
<tr>
<td>2130327</td>
<td>21</td>
<td>1274</td>
<td>1277.16</td>
<td>-3.16</td>
<td>1</td>
</tr>
<tr>
<td>2130328</td>
<td>20</td>
<td>1278.2</td>
<td>1277.67</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>2130330</td>
<td>20</td>
<td>1273.7</td>
<td>1276</td>
<td>-2.3</td>
<td>1</td>
</tr>
<tr>
<td>2130330</td>
<td>21</td>
<td>1273.4</td>
<td>1276.45</td>
<td>-3.05</td>
<td>1</td>
</tr>
<tr>
<td>2130369</td>
<td>21</td>
<td>1273.9</td>
<td>1274.85</td>
<td>-0.95</td>
<td>1</td>
</tr>
<tr>
<td>2130372</td>
<td>21</td>
<td>1276.3</td>
<td>1275.54</td>
<td>0.76</td>
<td>1</td>
</tr>
<tr>
<td>2130373</td>
<td>21</td>
<td>1279.4</td>
<td>1275.97</td>
<td>3.43</td>
<td>1</td>
</tr>
<tr>
<td>2130374</td>
<td>21</td>
<td>1275.3</td>
<td>1275.54</td>
<td>-0.24</td>
<td>1</td>
</tr>
<tr>
<td>2130376</td>
<td>21</td>
<td>1275</td>
<td>1275.54</td>
<td>-0.54</td>
<td>1</td>
</tr>
<tr>
<td>2130377</td>
<td>21</td>
<td>1278.6</td>
<td>1274.01</td>
<td>4.59</td>
<td>1</td>
</tr>
<tr>
<td>2130378</td>
<td>21</td>
<td>1275.1</td>
<td>1273.57</td>
<td>1.53</td>
<td>1</td>
</tr>
<tr>
<td>2130380</td>
<td>21</td>
<td>1279.3</td>
<td>1274.51</td>
<td>4.79</td>
<td>1</td>
</tr>
<tr>
<td>2130389</td>
<td>35</td>
<td>1271</td>
<td>1274.16</td>
<td>-3.16</td>
<td>1</td>
</tr>
<tr>
<td>2130390</td>
<td>35</td>
<td>1270</td>
<td>1273.83</td>
<td>-3.83</td>
<td>1</td>
</tr>
<tr>
<td>2130391</td>
<td>35</td>
<td>1274</td>
<td>1273.5</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>2130392</td>
<td>35</td>
<td>1275</td>
<td>1273.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>2130607</td>
<td>21</td>
<td>1335.8</td>
<td>1336.98</td>
<td>-1.18</td>
<td>1</td>
</tr>
<tr>
<td>2130607</td>
<td>250</td>
<td>1337.5</td>
<td>1337.52</td>
<td>-0.02</td>
<td>1</td>
</tr>
<tr>
<td>2130701</td>
<td>21</td>
<td>1400.2</td>
<td>1400.07</td>
<td>0.13</td>
<td>1</td>
</tr>
<tr>
<td>2133604</td>
<td>8</td>
<td>1452.8</td>
<td>1452.88</td>
<td>-0.08</td>
<td>1</td>
</tr>
<tr>
<td>2133604</td>
<td>28</td>
<td>1453.3</td>
<td>1455.63</td>
<td>-2.33</td>
<td>1</td>
</tr>
<tr>
<td>2133702</td>
<td>8</td>
<td>1491.1</td>
<td>1485.68</td>
<td>5.42</td>
<td>1</td>
</tr>
<tr>
<td>2133702</td>
<td>28</td>
<td>1489.1</td>
<td>1488.98</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>2133704</td>
<td>28</td>
<td>1486.1</td>
<td>1488.48</td>
<td>-2.38</td>
<td>0</td>
</tr>
<tr>
<td>2133712</td>
<td>28</td>
<td>1469.1</td>
<td>1468.78</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>2133718</td>
<td>28</td>
<td>1474</td>
<td>1481.85</td>
<td>-7.85</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2133808</td>
<td>28</td>
<td>1477.92</td>
<td>1479.05</td>
<td>-1.13</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>8</td>
<td>1471.87</td>
<td>1472.63</td>
<td>-0.76</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>9</td>
<td>1471.77</td>
<td>1474.49</td>
<td>-2.72</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>11</td>
<td>1471.05</td>
<td>1472.88</td>
<td>-1.83</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>12</td>
<td>1470.42</td>
<td>1472.88</td>
<td>-2.46</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>14</td>
<td>1472.00</td>
<td>1473.08</td>
<td>-1.08</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>15</td>
<td>1471.71</td>
<td>1472.89</td>
<td>-1.18</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>16</td>
<td>1471.82</td>
<td>1471.98</td>
<td>-0.16</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>17</td>
<td>1473.01</td>
<td>1471.6</td>
<td>1.41</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>18</td>
<td>1473.12</td>
<td>1473.56</td>
<td>-0.44</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>19</td>
<td>1473.32</td>
<td>1473.7</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>20</td>
<td>1474.66</td>
<td>1475.12</td>
<td>-0.46</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>21</td>
<td>1470.11</td>
<td>1475.85</td>
<td>-5.74</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>22</td>
<td>1475.62</td>
<td>1474.88</td>
<td>0.74</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>23</td>
<td>1476.55</td>
<td>1476.19</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>24</td>
<td>1478.07</td>
<td>1477.03</td>
<td>1.04</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>25</td>
<td>1480.07</td>
<td>1477.41</td>
<td>2.66</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>26</td>
<td>1478.7</td>
<td>1476.85</td>
<td>1.85</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>27</td>
<td>1480.13</td>
<td>1477.75</td>
<td>2.38</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>28</td>
<td>1479.64</td>
<td>1477.83</td>
<td>1.81</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>29</td>
<td>1481.65</td>
<td>1477.3</td>
<td>4.35</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>30</td>
<td>1481.1</td>
<td>1477.52</td>
<td>3.58</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>54</td>
<td>1477.93</td>
<td>1477.47</td>
<td>0.46</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>65</td>
<td>1478.38</td>
<td>1478.37</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>77</td>
<td>1478.06</td>
<td>1478.61</td>
<td>-0.55</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>101</td>
<td>1479.00</td>
<td>1479.09</td>
<td>-0.09</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>113</td>
<td>1478.81</td>
<td>1480.04</td>
<td>-1.23</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>125</td>
<td>1479.16</td>
<td>1480.28</td>
<td>-1.12</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>137</td>
<td>1476.75</td>
<td>1479.79</td>
<td>-3.04</td>
<td>1</td>
</tr>
<tr>
<td>2133901</td>
<td>211</td>
<td>1480.5</td>
<td>1478.92</td>
<td>1.58</td>
<td>1</td>
</tr>
<tr>
<td>2133902</td>
<td>8</td>
<td>1543.1</td>
<td>1544.57</td>
<td>-1.47</td>
<td>1</td>
</tr>
<tr>
<td>2133903</td>
<td>8</td>
<td>1543.8</td>
<td>1549.22</td>
<td>-5.42</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2133903</td>
<td>28</td>
<td>1548.9</td>
<td>1549.2</td>
<td>-0.3</td>
<td>1</td>
</tr>
<tr>
<td>2133905</td>
<td>8</td>
<td>1539.6</td>
<td>1539.33</td>
<td>0.27</td>
<td>1</td>
</tr>
<tr>
<td>2133911</td>
<td>8</td>
<td>1533.5</td>
<td>1532.98</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>2133911</td>
<td>28</td>
<td>1541.6</td>
<td>1541.86</td>
<td>-0.26</td>
<td>1</td>
</tr>
<tr>
<td>2133912</td>
<td>8</td>
<td>1534.5</td>
<td>1532.98</td>
<td>1.52</td>
<td>1</td>
</tr>
<tr>
<td>2133913</td>
<td>8</td>
<td>1533.8</td>
<td>1534.21</td>
<td>-0.41</td>
<td>1</td>
</tr>
<tr>
<td>2133914</td>
<td>8</td>
<td>1531.9</td>
<td>1530.58</td>
<td>1.32</td>
<td>1</td>
</tr>
<tr>
<td>2133917</td>
<td>8</td>
<td>1473.9</td>
<td>1478.26</td>
<td>-4.36</td>
<td>1</td>
</tr>
<tr>
<td>2133920</td>
<td>8</td>
<td>1472</td>
<td>1475.29</td>
<td>-3.29</td>
<td>1</td>
</tr>
<tr>
<td>2133920</td>
<td>28</td>
<td>1480.9</td>
<td>1479.48</td>
<td>1.42</td>
<td>1</td>
</tr>
<tr>
<td>2133922</td>
<td>8</td>
<td>1466.8</td>
<td>1471.27</td>
<td>-4.47</td>
<td>1</td>
</tr>
<tr>
<td>2133923</td>
<td>8</td>
<td>1467.9</td>
<td>1470.78</td>
<td>-2.88</td>
<td>1</td>
</tr>
<tr>
<td>2133926</td>
<td>8</td>
<td>1470</td>
<td>1466.59</td>
<td>3.41</td>
<td>1</td>
</tr>
<tr>
<td>2133927</td>
<td>8</td>
<td>1469.6</td>
<td>1467.58</td>
<td>2.02</td>
<td>1</td>
</tr>
<tr>
<td>2133929</td>
<td>8</td>
<td>1475.5</td>
<td>1470.19</td>
<td>5.31</td>
<td>1</td>
</tr>
<tr>
<td>2133930</td>
<td>28</td>
<td>1476.1</td>
<td>1474.67</td>
<td>1.43</td>
<td>1</td>
</tr>
<tr>
<td>2133931</td>
<td>8</td>
<td>1468.9</td>
<td>1470.5</td>
<td>-1.6</td>
<td>1</td>
</tr>
<tr>
<td>2133937</td>
<td>8</td>
<td>1472.5</td>
<td>1466.9</td>
<td>5.6</td>
<td>1</td>
</tr>
<tr>
<td>2133939</td>
<td>28</td>
<td>1542.3</td>
<td>1532.04</td>
<td>10.26</td>
<td>0</td>
</tr>
<tr>
<td>2133940</td>
<td>137</td>
<td>1479.25</td>
<td>1478.2</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>2133940</td>
<td>149</td>
<td>1477.75</td>
<td>1477.83</td>
<td>-0.08</td>
<td>1</td>
</tr>
<tr>
<td>2133940</td>
<td>161</td>
<td>1475.84</td>
<td>1478.83</td>
<td>-2.99</td>
<td>1</td>
</tr>
<tr>
<td>2133940</td>
<td>174</td>
<td>1479.08</td>
<td>1478.87</td>
<td>0.21</td>
<td>1</td>
</tr>
<tr>
<td>2133940</td>
<td>187</td>
<td>1479.93</td>
<td>1479.55</td>
<td>0.38</td>
<td>1</td>
</tr>
<tr>
<td>2133940</td>
<td>198</td>
<td>1481.45</td>
<td>1479.28</td>
<td>2.17</td>
<td>1</td>
</tr>
<tr>
<td>2133940</td>
<td>211</td>
<td>1480.5</td>
<td>1477.68</td>
<td>2.82</td>
<td>1</td>
</tr>
<tr>
<td>2133940</td>
<td>224</td>
<td>1478.55</td>
<td>1477.34</td>
<td>1.21</td>
<td>1</td>
</tr>
<tr>
<td>2134101</td>
<td>28</td>
<td>1437.1</td>
<td>1437.35</td>
<td>-0.25</td>
<td>1</td>
</tr>
<tr>
<td>2134201</td>
<td>8</td>
<td>1433.7</td>
<td>1430.77</td>
<td>2.93</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>8</td>
<td>1434.36</td>
<td>1433.82</td>
<td>0.54</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>9</td>
<td>1435.15</td>
<td>1434.3</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>11</td>
<td>1434.88</td>
<td>1434.15</td>
<td>0.73</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134202</td>
<td>14</td>
<td>1435.68</td>
<td>1434.45</td>
<td>1.23</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>15</td>
<td>1434.95</td>
<td>1434.27</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>16</td>
<td>1434.69</td>
<td>1434.08</td>
<td>0.61</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>17</td>
<td>1433.32</td>
<td>1433.96</td>
<td>-0.64</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>19</td>
<td>1430.81</td>
<td>1434.17</td>
<td>-3.36</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>20</td>
<td>1435.68</td>
<td>1434.46</td>
<td>1.22</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>21</td>
<td>1433.24</td>
<td>1434.74</td>
<td>-1.5</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>22</td>
<td>1435.71</td>
<td>1434.34</td>
<td>1.37</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>23</td>
<td>1435.98</td>
<td>1434.59</td>
<td>1.39</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>24</td>
<td>1437.73</td>
<td>1434.79</td>
<td>2.94</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>25</td>
<td>1437.06</td>
<td>1434.85</td>
<td>2.21</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>27</td>
<td>1435.8</td>
<td>1434.92</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>28</td>
<td>1435.07</td>
<td>1434.91</td>
<td>0.16</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>29</td>
<td>1435.2</td>
<td>1434.67</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>30</td>
<td>1434.64</td>
<td>1434.75</td>
<td>-0.11</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>42</td>
<td>1434.58</td>
<td>1434.56</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>54</td>
<td>1433.1</td>
<td>1434.68</td>
<td>-1.58</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>65</td>
<td>1431.93</td>
<td>1434.96</td>
<td>-3.03</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>77</td>
<td>1431.2</td>
<td>1434.99</td>
<td>-3.79</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>101</td>
<td>1434.76</td>
<td>1435.1</td>
<td>-0.34</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>113</td>
<td>1434.86</td>
<td>1435.37</td>
<td>-0.51</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>125</td>
<td>1434.27</td>
<td>1435.45</td>
<td>-1.18</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>137</td>
<td>1434.2</td>
<td>1435.26</td>
<td>-1.06</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>149</td>
<td>1434.33</td>
<td>1435.14</td>
<td>-0.81</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>161</td>
<td>1433.56</td>
<td>1435.5</td>
<td>-1.94</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>174</td>
<td>1434.63</td>
<td>1435.56</td>
<td>-0.93</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>187</td>
<td>1434.66</td>
<td>1435.82</td>
<td>-1.16</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>198</td>
<td>1437.95</td>
<td>1435.73</td>
<td>2.22</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>211</td>
<td>1437.35</td>
<td>1435.3</td>
<td>2.05</td>
<td>1</td>
</tr>
<tr>
<td>2134202</td>
<td>224</td>
<td>1437.8</td>
<td>1435.29</td>
<td>2.51</td>
<td>1</td>
</tr>
<tr>
<td>2134205</td>
<td>9</td>
<td>1434.1</td>
<td>1434.3</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>2134213</td>
<td>8</td>
<td>1434.6</td>
<td>1434.73</td>
<td>-0.13</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2134213</td>
<td>28</td>
<td>1435.2</td>
<td>1436.5</td>
<td>-1.3</td>
<td>1</td>
</tr>
<tr>
<td>2134215</td>
<td>8</td>
<td>1432.7</td>
<td>1433.19</td>
<td>-0.49</td>
<td>1</td>
</tr>
<tr>
<td>2134216</td>
<td>8</td>
<td>1416.8</td>
<td>1418.43</td>
<td>-1.63</td>
<td>1</td>
</tr>
<tr>
<td>2134216</td>
<td>28</td>
<td>1417.7</td>
<td>1419.17</td>
<td>-1.47</td>
<td>1</td>
</tr>
<tr>
<td>2134217</td>
<td>8</td>
<td>1437.3</td>
<td>1437.46</td>
<td>-0.16</td>
<td>1</td>
</tr>
<tr>
<td>2134218</td>
<td>8</td>
<td>1437.9</td>
<td>1437.77</td>
<td>0.13</td>
<td>1</td>
</tr>
<tr>
<td>2134218</td>
<td>28</td>
<td>1437.8</td>
<td>1439.65</td>
<td>-1.85</td>
<td>1</td>
</tr>
<tr>
<td>2134304</td>
<td>8</td>
<td>1439.5</td>
<td>1436.62</td>
<td>2.88</td>
<td>1</td>
</tr>
<tr>
<td>2134304</td>
<td>28</td>
<td>1436.7</td>
<td>1437.97</td>
<td>-1.27</td>
<td>1</td>
</tr>
<tr>
<td>2134305</td>
<td>8</td>
<td>1436.4</td>
<td>1436.62</td>
<td>-0.22</td>
<td>1</td>
</tr>
<tr>
<td>2134306</td>
<td>8</td>
<td>1440.8</td>
<td>1440.18</td>
<td>0.62</td>
<td>1</td>
</tr>
<tr>
<td>2134310</td>
<td>8</td>
<td>1442.3</td>
<td>1440.13</td>
<td>2.17</td>
<td>1</td>
</tr>
<tr>
<td>2134312</td>
<td>28</td>
<td>1412.3</td>
<td>1404.87</td>
<td>7.43</td>
<td>1</td>
</tr>
<tr>
<td>2134319</td>
<td>28</td>
<td>1427.3</td>
<td>1427.05</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>2134322</td>
<td>28</td>
<td>1434.4</td>
<td>1430.73</td>
<td>3.67</td>
<td>0</td>
</tr>
<tr>
<td>2134324</td>
<td>28</td>
<td>1422.7</td>
<td>1393.29</td>
<td>29.41</td>
<td>0</td>
</tr>
<tr>
<td>2134325</td>
<td>28</td>
<td>1449.7</td>
<td>1449.14</td>
<td>0.56</td>
<td>0</td>
</tr>
<tr>
<td>2134402</td>
<td>8</td>
<td>1456.56</td>
<td>1456.88</td>
<td>-0.32</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>9</td>
<td>1458.45</td>
<td>1457.47</td>
<td>0.98</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>11</td>
<td>1457.8</td>
<td>1456.98</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>12</td>
<td>1458.67</td>
<td>1457.08</td>
<td>1.59</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>14</td>
<td>1459.66</td>
<td>1457.35</td>
<td>2.31</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>15</td>
<td>1459.05</td>
<td>1457.25</td>
<td>1.8</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>16</td>
<td>1458.04</td>
<td>1457</td>
<td>1.04</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>17</td>
<td>1457.48</td>
<td>1456.86</td>
<td>0.62</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>18</td>
<td>1458.51</td>
<td>1457.26</td>
<td>1.25</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>19</td>
<td>1457.84</td>
<td>1457.1</td>
<td>0.74</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>20</td>
<td>1459.45</td>
<td>1457.48</td>
<td>1.97</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>21</td>
<td>1459.68</td>
<td>1457.8</td>
<td>1.88</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>22</td>
<td>1458.73</td>
<td>1457.31</td>
<td>1.42</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>23</td>
<td>1459.32</td>
<td>1457.71</td>
<td>1.61</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>24</td>
<td>1459.64</td>
<td>1457.96</td>
<td>1.68</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134402</td>
<td>25</td>
<td>1460.37</td>
<td>1458.05</td>
<td>2.32</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>26</td>
<td>1458.56</td>
<td>1457.94</td>
<td>0.62</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>27</td>
<td>1459.58</td>
<td>1458.23</td>
<td>1.35</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>28</td>
<td>1458.4</td>
<td>1458.23</td>
<td>0.17</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>29</td>
<td>1458.85</td>
<td>1457.95</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>30</td>
<td>1457.52</td>
<td>1458.06</td>
<td>-0.54</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>42</td>
<td>1456.32</td>
<td>1458.01</td>
<td>-1.69</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>54</td>
<td>1456.52</td>
<td>1458.08</td>
<td>-1.56</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>65</td>
<td>1456.56</td>
<td>1458.38</td>
<td>-1.82</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>93</td>
<td>1456.35</td>
<td>1458.41</td>
<td>-2.06</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>113</td>
<td>1457.1</td>
<td>1458.96</td>
<td>-1.86</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>125</td>
<td>1459.12</td>
<td>1459.12</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>137</td>
<td>1458.5</td>
<td>1458.99</td>
<td>-0.49</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>149</td>
<td>1457.64</td>
<td>1458.89</td>
<td>-1.25</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>161</td>
<td>1456.96</td>
<td>1459.33</td>
<td>-2.37</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>174</td>
<td>1459.1</td>
<td>1459.44</td>
<td>-0.34</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>187</td>
<td>1459.83</td>
<td>1459.9</td>
<td>-0.07</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>198</td>
<td>1461.15</td>
<td>1459.86</td>
<td>1.29</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>211</td>
<td>1459.05</td>
<td>1459.44</td>
<td>-0.39</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>224</td>
<td>1459.68</td>
<td>1459.48</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>236</td>
<td>1457.56</td>
<td>1459.16</td>
<td>-1.6</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>248</td>
<td>1457.46</td>
<td>1459.35</td>
<td>-1.89</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>259</td>
<td>1456.9</td>
<td>1458.47</td>
<td>-1.57</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>270</td>
<td>1453.75</td>
<td>1458.19</td>
<td>-4.44</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>283</td>
<td>1455.38</td>
<td>1457.95</td>
<td>-2.57</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>295</td>
<td>1455.33</td>
<td>1457.6</td>
<td>-2.27</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>307</td>
<td>1455.56</td>
<td>1457.81</td>
<td>-2.25</td>
<td>1</td>
</tr>
<tr>
<td>2134402</td>
<td>319</td>
<td>1455.25</td>
<td>1457.06</td>
<td>-1.81</td>
<td>1</td>
</tr>
<tr>
<td>2134403</td>
<td>8</td>
<td>1459.6</td>
<td>1456.88</td>
<td>2.72</td>
<td>1</td>
</tr>
<tr>
<td>2134403</td>
<td>9</td>
<td>1460.25</td>
<td>1457.47</td>
<td>2.78</td>
<td>1</td>
</tr>
<tr>
<td>2134403</td>
<td>12</td>
<td>1460.44</td>
<td>1457.08</td>
<td>3.36</td>
<td>1</td>
</tr>
<tr>
<td>2134407</td>
<td>28</td>
<td>1428.3</td>
<td>1441.22</td>
<td>-12.92</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134410</td>
<td>8</td>
<td>1446.3</td>
<td>1440.62</td>
<td>5.68</td>
<td>1</td>
</tr>
<tr>
<td>2134414</td>
<td>8</td>
<td>1434.8</td>
<td>1436.68</td>
<td>-1.88</td>
<td>1</td>
</tr>
<tr>
<td>2134415</td>
<td>8</td>
<td>1439.8</td>
<td>1436.68</td>
<td>3.12</td>
<td>1</td>
</tr>
<tr>
<td>2134417</td>
<td>8</td>
<td>1446.2</td>
<td>1446.78</td>
<td>-0.58</td>
<td>1</td>
</tr>
<tr>
<td>2134421</td>
<td>8</td>
<td>1468.4</td>
<td>1466.91</td>
<td>1.49</td>
<td>1</td>
</tr>
<tr>
<td>2134422</td>
<td>8</td>
<td>1469.7</td>
<td>1470.61</td>
<td>-0.91</td>
<td>1</td>
</tr>
<tr>
<td>2134422</td>
<td>28</td>
<td>1473.2</td>
<td>1472.41</td>
<td>0.79</td>
<td>1</td>
</tr>
<tr>
<td>2134423</td>
<td>28</td>
<td>1510.5</td>
<td>1510.78</td>
<td>-0.28</td>
<td>1</td>
</tr>
<tr>
<td>2134428</td>
<td>28</td>
<td>1450.3</td>
<td>1449.53</td>
<td>0.77</td>
<td>0</td>
</tr>
<tr>
<td>2134430</td>
<td>8</td>
<td>1465.8</td>
<td>1469.27</td>
<td>-3.47</td>
<td>1</td>
</tr>
<tr>
<td>2134430</td>
<td>28</td>
<td>1468.2</td>
<td>1472.05</td>
<td>-3.85</td>
<td>1</td>
</tr>
<tr>
<td>2134432</td>
<td>28</td>
<td>1434.5</td>
<td>1438.29</td>
<td>-3.79</td>
<td>0</td>
</tr>
<tr>
<td>2134440</td>
<td>8</td>
<td>1446.9</td>
<td>1437.51</td>
<td>9.39</td>
<td>1</td>
</tr>
<tr>
<td>2134442</td>
<td>8</td>
<td>1468.2</td>
<td>1463.88</td>
<td>4.32</td>
<td>1</td>
</tr>
<tr>
<td>2134446</td>
<td>28</td>
<td>1471.1</td>
<td>1461.59</td>
<td>9.51</td>
<td>0</td>
</tr>
<tr>
<td>2134501</td>
<td>4</td>
<td>1503.87</td>
<td>1510.1</td>
<td>-6.23</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>5</td>
<td>1501.97</td>
<td>1509.96</td>
<td>-7.99</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>6</td>
<td>1506.57</td>
<td>1509.35</td>
<td>-2.78</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>7</td>
<td>1502.69</td>
<td>1509.12</td>
<td>-6.43</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>8</td>
<td>1499.16</td>
<td>1507.84</td>
<td>-8.68</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>9</td>
<td>1500.97</td>
<td>1508.49</td>
<td>-7.52</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>12</td>
<td>1504.16</td>
<td>1508.25</td>
<td>-4.09</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>20</td>
<td>1507.95</td>
<td>1507.9</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>21</td>
<td>1507.76</td>
<td>1508.47</td>
<td>-0.71</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>23</td>
<td>1508.88</td>
<td>1508.23</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>24</td>
<td>1509.5</td>
<td>1508.62</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>25</td>
<td>1509.2</td>
<td>1508.79</td>
<td>0.41</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>26</td>
<td>1509.13</td>
<td>1508.82</td>
<td>0.31</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>28</td>
<td>1507.11</td>
<td>1509.17</td>
<td>-2.06</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>29</td>
<td>1504.55</td>
<td>1508.77</td>
<td>-4.22</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>30</td>
<td>1509.27</td>
<td>1509.02</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>42</td>
<td>1510.02</td>
<td>1508.76</td>
<td>1.26</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134501</td>
<td>54</td>
<td>1510</td>
<td>1508.76</td>
<td>1.24</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>65</td>
<td>1511.26</td>
<td>1509.14</td>
<td>2.12</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>93</td>
<td>1512.05</td>
<td>1508.9</td>
<td>3.15</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>113</td>
<td>1512.81</td>
<td>1510.12</td>
<td>2.69</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>125</td>
<td>1513.58</td>
<td>1510.11</td>
<td>3.47</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>137</td>
<td>1513.24</td>
<td>1509.86</td>
<td>3.38</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>149</td>
<td>1512.18</td>
<td>1509.72</td>
<td>2.46</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>161</td>
<td>1512.95</td>
<td>1510.32</td>
<td>2.63</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>174</td>
<td>1513.72</td>
<td>1510.44</td>
<td>3.28</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>187</td>
<td>1516.14</td>
<td>1510.97</td>
<td>5.17</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>211</td>
<td>1513</td>
<td>1510.33</td>
<td>2.67</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>224</td>
<td>1514.25</td>
<td>1510.2</td>
<td>4.05</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>236</td>
<td>1511.46</td>
<td>1509.65</td>
<td>1.81</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>248</td>
<td>1511.61</td>
<td>1509.89</td>
<td>1.72</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>259</td>
<td>1510.32</td>
<td>1508.82</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>283</td>
<td>1508.65</td>
<td>1507.79</td>
<td>0.86</td>
<td>1</td>
</tr>
<tr>
<td>2134501</td>
<td>319</td>
<td>1509.55</td>
<td>1506.48</td>
<td>3.07</td>
<td>1</td>
</tr>
<tr>
<td>2134504</td>
<td>8</td>
<td>1438.1</td>
<td>1444.41</td>
<td>-6.31</td>
<td>1</td>
</tr>
<tr>
<td>2134504</td>
<td>28</td>
<td>1446.2</td>
<td>1445.62</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td>2134511</td>
<td>8</td>
<td>1451.7</td>
<td>1444.2</td>
<td>7.5</td>
<td>1</td>
</tr>
<tr>
<td>2134525</td>
<td>28</td>
<td>1472.7</td>
<td>1485.58</td>
<td>-12.88</td>
<td>0</td>
</tr>
<tr>
<td>2134527</td>
<td>8</td>
<td>1442.3</td>
<td>1454.22</td>
<td>-11.92</td>
<td>1</td>
</tr>
<tr>
<td>2134528</td>
<td>28</td>
<td>1511.1</td>
<td>1510.25</td>
<td>0.85</td>
<td>1</td>
</tr>
<tr>
<td>2134535</td>
<td>8</td>
<td>1446.4</td>
<td>1444.59</td>
<td>1.81</td>
<td>1</td>
</tr>
<tr>
<td>2134536</td>
<td>28</td>
<td>1447.3</td>
<td>1446.48</td>
<td>0.82</td>
<td>0</td>
</tr>
<tr>
<td>2134544</td>
<td>28</td>
<td>1506.4</td>
<td>1496.45</td>
<td>9.95</td>
<td>0</td>
</tr>
<tr>
<td>2134545</td>
<td>28</td>
<td>1462.9</td>
<td>1465.6</td>
<td>-2.7</td>
<td>0</td>
</tr>
<tr>
<td>2134546</td>
<td>28</td>
<td>1463.8</td>
<td>1451.05</td>
<td>12.75</td>
<td>0</td>
</tr>
<tr>
<td>2134547</td>
<td>73</td>
<td>1470</td>
<td>1464.02</td>
<td>5.98</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>9</td>
<td>1494.23</td>
<td>1491.88</td>
<td>2.35</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>11</td>
<td>1492.95</td>
<td>1491.22</td>
<td>1.73</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>12</td>
<td>1493.38</td>
<td>1491.12</td>
<td>2.26</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2134601</td>
<td>14</td>
<td>1492.8</td>
<td>1491.49</td>
<td>1.31</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>15</td>
<td>1491.24</td>
<td>1490.94</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>16</td>
<td>1490.29</td>
<td>1490.49</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>18</td>
<td>1490.01</td>
<td>1490.12</td>
<td>-0.11</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>19</td>
<td>1489.86</td>
<td>1489.66</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>20</td>
<td>1492.06</td>
<td>1490.01</td>
<td>2.05</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>21</td>
<td>1492.55</td>
<td>1490.58</td>
<td>1.97</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>22</td>
<td>1491.94</td>
<td>1489.64</td>
<td>2.3</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>24</td>
<td>1493.35</td>
<td>1490.6</td>
<td>2.75</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>25</td>
<td>1492.77</td>
<td>1490.81</td>
<td>1.96</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>26</td>
<td>1489.73</td>
<td>1490.86</td>
<td>-1.13</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>27</td>
<td>1491.62</td>
<td>1491.3</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>28</td>
<td>1489.97</td>
<td>1491.41</td>
<td>-1.44</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>29</td>
<td>1490.77</td>
<td>1490.95</td>
<td>-0.18</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>30</td>
<td>1489.75</td>
<td>1491.3</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>42</td>
<td>1488.6</td>
<td>1491.1</td>
<td>-2.5</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>54</td>
<td>1489.86</td>
<td>1491.1</td>
<td>-1.24</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>65</td>
<td>1490.96</td>
<td>1491.48</td>
<td>-0.52</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>77</td>
<td>1491.05</td>
<td>1491.68</td>
<td>-0.63</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>101</td>
<td>1491.31</td>
<td>1491.89</td>
<td>-0.58</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>113</td>
<td>1491.93</td>
<td>1492.61</td>
<td>-0.68</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>125</td>
<td>1492.2</td>
<td>1492.73</td>
<td>-0.53</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>137</td>
<td>1490.2</td>
<td>1492.51</td>
<td>-2.31</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>149</td>
<td>1490.3</td>
<td>1492.4</td>
<td>-2.1</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>161</td>
<td>1490.66</td>
<td>1493.22</td>
<td>-2.56</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>174</td>
<td>1491.62</td>
<td>1493.47</td>
<td>-1.85</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>187</td>
<td>1492.04</td>
<td>1494.36</td>
<td>-2.32</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>198</td>
<td>1495.3</td>
<td>1494.38</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>211</td>
<td>1493.15</td>
<td>1493.85</td>
<td>-0.7</td>
<td>1</td>
</tr>
<tr>
<td>2134601</td>
<td>224</td>
<td>1493.9</td>
<td>1493.87</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>2134602</td>
<td>6</td>
<td>1505.43</td>
<td>1506.26</td>
<td>-0.83</td>
<td>1</td>
</tr>
<tr>
<td>2134602</td>
<td>8</td>
<td>1500.52</td>
<td>1501.4</td>
<td>-0.88</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134602</td>
<td>9</td>
<td>1500.98</td>
<td>1501.79</td>
<td>-0.81</td>
<td>1</td>
</tr>
<tr>
<td>2134602</td>
<td>11</td>
<td>1498.96</td>
<td>1500.13</td>
<td>-1.17</td>
<td>1</td>
</tr>
<tr>
<td>2134602</td>
<td>12</td>
<td>1498.1</td>
<td>1499.26</td>
<td>-1.16</td>
<td>1</td>
</tr>
<tr>
<td>2134602</td>
<td>28</td>
<td>1497.6</td>
<td>1502.03</td>
<td>-4.43</td>
<td>1</td>
</tr>
<tr>
<td>2134603</td>
<td>6</td>
<td>1503.74</td>
<td>1502.59</td>
<td>1.15</td>
<td>1</td>
</tr>
<tr>
<td>2134603</td>
<td>8</td>
<td>1497.86</td>
<td>1497.25</td>
<td>0.61</td>
<td>1</td>
</tr>
<tr>
<td>2134603</td>
<td>9</td>
<td>1498.6</td>
<td>1498.59</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>2134603</td>
<td>11</td>
<td>1496.53</td>
<td>1496.13</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>2134603</td>
<td>12</td>
<td>1496.07</td>
<td>1495.56</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td>2134603</td>
<td>14</td>
<td>1497.86</td>
<td>1495.33</td>
<td>2.53</td>
<td>1</td>
</tr>
<tr>
<td>2134606</td>
<td>8</td>
<td>1447.9</td>
<td>1453.25</td>
<td>-5.35</td>
<td>1</td>
</tr>
<tr>
<td>2134606</td>
<td>28</td>
<td>1453.9</td>
<td>1454.32</td>
<td>-0.42</td>
<td>1</td>
</tr>
<tr>
<td>2134609</td>
<td>8</td>
<td>1444.4</td>
<td>1443.75</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>2134610</td>
<td>28</td>
<td>1449.9</td>
<td>1446.06</td>
<td>3.84</td>
<td>1</td>
</tr>
<tr>
<td>2134613</td>
<td>8</td>
<td>1439</td>
<td>1441.56</td>
<td>-2.56</td>
<td>1</td>
</tr>
<tr>
<td>2134613</td>
<td>28</td>
<td>1445.6</td>
<td>1443.26</td>
<td>2.34</td>
<td>1</td>
</tr>
<tr>
<td>2134614</td>
<td>8</td>
<td>1455.2</td>
<td>1454.06</td>
<td>1.14</td>
<td>1</td>
</tr>
<tr>
<td>2134616</td>
<td>8</td>
<td>1494.4</td>
<td>1491.29</td>
<td>3.11</td>
<td>1</td>
</tr>
<tr>
<td>2134616</td>
<td>9</td>
<td>1495.2</td>
<td>1491.88</td>
<td>3.32</td>
<td>1</td>
</tr>
<tr>
<td>2134618</td>
<td>8</td>
<td>1486.2</td>
<td>1480.93</td>
<td>5.27</td>
<td>1</td>
</tr>
<tr>
<td>2134618</td>
<td>28</td>
<td>1485.7</td>
<td>1480.65</td>
<td>5.05</td>
<td>1</td>
</tr>
<tr>
<td>2134619</td>
<td>8</td>
<td>1483.6</td>
<td>1486.58</td>
<td>-2.98</td>
<td>1</td>
</tr>
<tr>
<td>2134620</td>
<td>8</td>
<td>1480.1</td>
<td>1481.51</td>
<td>-1.41</td>
<td>1</td>
</tr>
<tr>
<td>2134629</td>
<td>8</td>
<td>1499.4</td>
<td>1496.69</td>
<td>2.71</td>
<td>1</td>
</tr>
<tr>
<td>2134630</td>
<td>8</td>
<td>1500.1</td>
<td>1496.69</td>
<td>3.41</td>
<td>1</td>
</tr>
<tr>
<td>2134631</td>
<td>8</td>
<td>1500.7</td>
<td>1495</td>
<td>5.7</td>
<td>1</td>
</tr>
<tr>
<td>2134633</td>
<td>8</td>
<td>1491.2</td>
<td>1491.93</td>
<td>-0.73</td>
<td>1</td>
</tr>
<tr>
<td>2134633</td>
<td>28</td>
<td>1490.3</td>
<td>1490.6</td>
<td>-0.3</td>
<td>1</td>
</tr>
<tr>
<td>2134637</td>
<td>28</td>
<td>1503.9</td>
<td>1507.98</td>
<td>-4.08</td>
<td>1</td>
</tr>
<tr>
<td>2134638</td>
<td>8</td>
<td>1476.5</td>
<td>1476.77</td>
<td>-0.27</td>
<td>1</td>
</tr>
<tr>
<td>2134642</td>
<td>8</td>
<td>1446</td>
<td>1442.63</td>
<td>3.37</td>
<td>1</td>
</tr>
<tr>
<td>2134643</td>
<td>8</td>
<td>1435.9</td>
<td>1442.11</td>
<td>-6.21</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134644</td>
<td>28</td>
<td>1501.2</td>
<td>1508.07</td>
<td>-6.87</td>
<td>0</td>
</tr>
<tr>
<td>2134645</td>
<td>28</td>
<td>1499.3</td>
<td>1497.69</td>
<td>1.61</td>
<td>0</td>
</tr>
<tr>
<td>2134701</td>
<td>4</td>
<td>1516.97</td>
<td>1521.22</td>
<td>-4.25</td>
<td>1</td>
</tr>
<tr>
<td>2134701</td>
<td>5</td>
<td>1517.24</td>
<td>1521.03</td>
<td>-3.79</td>
<td>1</td>
</tr>
<tr>
<td>2134701</td>
<td>6</td>
<td>1516.85</td>
<td>1520.38</td>
<td>-3.53</td>
<td>1</td>
</tr>
<tr>
<td>2134701</td>
<td>7</td>
<td>1518.23</td>
<td>1520.07</td>
<td>-1.84</td>
<td>1</td>
</tr>
<tr>
<td>2134701</td>
<td>8</td>
<td>1513.34</td>
<td>1518.37</td>
<td>-5.03</td>
<td>1</td>
</tr>
<tr>
<td>2134701</td>
<td>9</td>
<td>1516.09</td>
<td>1519.35</td>
<td>-3.26</td>
<td>1</td>
</tr>
<tr>
<td>2134701</td>
<td>11</td>
<td>1514.17</td>
<td>1519.11</td>
<td>-4.94</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>9</td>
<td>1533.49</td>
<td>1534.59</td>
<td>-1.1</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>11</td>
<td>1531.67</td>
<td>1531.79</td>
<td>-0.12</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>14</td>
<td>1534.85</td>
<td>1532.46</td>
<td>2.39</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>15</td>
<td>1532.96</td>
<td>1532.37</td>
<td>0.59</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>16</td>
<td>1532.27</td>
<td>1530.93</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>17</td>
<td>1530.91</td>
<td>1530.39</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>18</td>
<td>1533.68</td>
<td>1533.43</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>19</td>
<td>1533.56</td>
<td>1533.2</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>20</td>
<td>1534.37</td>
<td>1535.12</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>21</td>
<td>1533.75</td>
<td>1535.92</td>
<td>-2.17</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>22</td>
<td>1535.91</td>
<td>1534.02</td>
<td>1.89</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>23</td>
<td>1534.65</td>
<td>1535.94</td>
<td>-1.29</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>26</td>
<td>1530.42</td>
<td>1536.25</td>
<td>-5.83</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>27</td>
<td>1535.49</td>
<td>1537.62</td>
<td>-2.13</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>28</td>
<td>1536.32</td>
<td>1537.55</td>
<td>-1.23</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>29</td>
<td>1533.35</td>
<td>1536.54</td>
<td>-3.19</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>42</td>
<td>1532.07</td>
<td>1536.53</td>
<td>-4.46</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>54</td>
<td>1535.79</td>
<td>1537.16</td>
<td>-1.37</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>64</td>
<td>1537.63</td>
<td>1537.76</td>
<td>-0.13</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>77</td>
<td>1538.09</td>
<td>1538.14</td>
<td>-0.05</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>101</td>
<td>1540.52</td>
<td>1538.51</td>
<td>2.01</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>113</td>
<td>1540.64</td>
<td>1539.57</td>
<td>1.07</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>125</td>
<td>1541.74</td>
<td>1539.87</td>
<td>1.87</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134702</td>
<td>137</td>
<td>1540.88</td>
<td>1538.87</td>
<td>2.01</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>149</td>
<td>1539.35</td>
<td>1538.12</td>
<td>1.23</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>161</td>
<td>1541.42</td>
<td>1539.96</td>
<td>1.46</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>173</td>
<td>1541.29</td>
<td>1539.66</td>
<td>1.63</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>185</td>
<td>1541.71</td>
<td>1540.36</td>
<td>1.35</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>199</td>
<td>1541.67</td>
<td>1540.59</td>
<td>1.08</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>213</td>
<td>1539.06</td>
<td>1538.63</td>
<td>0.43</td>
<td>1</td>
</tr>
<tr>
<td>2134702</td>
<td>224</td>
<td>1536.15</td>
<td>1537.87</td>
<td>-1.72</td>
<td>1</td>
</tr>
<tr>
<td>2134705</td>
<td>28</td>
<td>1510.5</td>
<td>1514.99</td>
<td>-4.49</td>
<td>0</td>
</tr>
<tr>
<td>2134706</td>
<td>8</td>
<td>1519.6</td>
<td>1515.53</td>
<td>4.07</td>
<td>1</td>
</tr>
<tr>
<td>2134706</td>
<td>28</td>
<td>1527.8</td>
<td>1517.61</td>
<td>10.19</td>
<td>1</td>
</tr>
<tr>
<td>2134707</td>
<td>8</td>
<td>1531.3</td>
<td>1533.46</td>
<td>-2.16</td>
<td>1</td>
</tr>
<tr>
<td>2134708</td>
<td>8</td>
<td>1541.6</td>
<td>1543.6</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>2134710</td>
<td>28</td>
<td>1540.1</td>
<td>1522.45</td>
<td>17.65</td>
<td>0</td>
</tr>
<tr>
<td>2134711</td>
<td>8</td>
<td>1534.3</td>
<td>1529.97</td>
<td>4.33</td>
<td>1</td>
</tr>
<tr>
<td>2134718</td>
<td>8</td>
<td>1472.3</td>
<td>1473.26</td>
<td>-0.96</td>
<td>1</td>
</tr>
<tr>
<td>2134718</td>
<td>28</td>
<td>1479.9</td>
<td>1482.14</td>
<td>-2.24</td>
<td>1</td>
</tr>
<tr>
<td>2134722</td>
<td>8</td>
<td>1532.8</td>
<td>1536.46</td>
<td>-3.66</td>
<td>1</td>
</tr>
<tr>
<td>2134723</td>
<td>8</td>
<td>1533.6</td>
<td>1536.46</td>
<td>-2.86</td>
<td>1</td>
</tr>
<tr>
<td>2134801</td>
<td>5</td>
<td>1503.57</td>
<td>1504.16</td>
<td>-0.59</td>
<td>1</td>
</tr>
<tr>
<td>2134801</td>
<td>6</td>
<td>1502.86</td>
<td>1503</td>
<td>-0.14</td>
<td>1</td>
</tr>
<tr>
<td>2134801</td>
<td>7</td>
<td>1503.03</td>
<td>1502.32</td>
<td>0.71</td>
<td>1</td>
</tr>
<tr>
<td>2134801</td>
<td>8</td>
<td>1501.8</td>
<td>1500.27</td>
<td>1.53</td>
<td>1</td>
</tr>
<tr>
<td>2134801</td>
<td>9</td>
<td>1501.92</td>
<td>1500.69</td>
<td>1.23</td>
<td>1</td>
</tr>
<tr>
<td>2134801</td>
<td>11</td>
<td>1499.8</td>
<td>1500.06</td>
<td>-0.26</td>
<td>1</td>
</tr>
<tr>
<td>2134802</td>
<td>4</td>
<td>1510.56</td>
<td>1511.79</td>
<td>-1.23</td>
<td>1</td>
</tr>
<tr>
<td>2134802</td>
<td>5</td>
<td>1510.25</td>
<td>1511.67</td>
<td>-1.42</td>
<td>1</td>
</tr>
<tr>
<td>2134802</td>
<td>7</td>
<td>1509.69</td>
<td>1510.87</td>
<td>-1.18</td>
<td>1</td>
</tr>
<tr>
<td>2134802</td>
<td>8</td>
<td>1507.06</td>
<td>1509.62</td>
<td>-2.56</td>
<td>1</td>
</tr>
<tr>
<td>2134802</td>
<td>9</td>
<td>1508.93</td>
<td>1510.27</td>
<td>-1.34</td>
<td>1</td>
</tr>
<tr>
<td>2134802</td>
<td>11</td>
<td>1508.41</td>
<td>1510.1</td>
<td>-1.69</td>
<td>1</td>
</tr>
<tr>
<td>2134802</td>
<td>12</td>
<td>1508.82</td>
<td>1510.07</td>
<td>-1.25</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2134803</td>
<td>8</td>
<td>1514.6</td>
<td>1520.04</td>
<td>-5.44</td>
<td>1</td>
</tr>
<tr>
<td>2134803</td>
<td>28</td>
<td>1515.9</td>
<td>1524.72</td>
<td>-8.82</td>
<td>1</td>
</tr>
<tr>
<td>2134804</td>
<td>8</td>
<td>1516.9</td>
<td>1520.26</td>
<td>-3.36</td>
<td>1</td>
</tr>
<tr>
<td>2134806</td>
<td>28</td>
<td>1507.7</td>
<td>1510.04</td>
<td>-2.34</td>
<td>0</td>
</tr>
<tr>
<td>2134808</td>
<td>28</td>
<td>1516.3</td>
<td>1525.7</td>
<td>-9.4</td>
<td>1</td>
</tr>
<tr>
<td>2134810</td>
<td>8</td>
<td>1523.2</td>
<td>1520.69</td>
<td>2.51</td>
<td>1</td>
</tr>
<tr>
<td>2134811</td>
<td>8</td>
<td>1526.6</td>
<td>1524.11</td>
<td>2.49</td>
<td>1</td>
</tr>
<tr>
<td>2134813</td>
<td>8</td>
<td>1529.9</td>
<td>1532.75</td>
<td>-2.85</td>
<td>1</td>
</tr>
<tr>
<td>2134814</td>
<td>8</td>
<td>1531</td>
<td>1529.2</td>
<td>1.8</td>
<td>1</td>
</tr>
<tr>
<td>2134814</td>
<td>28</td>
<td>1538.4</td>
<td>1535.82</td>
<td>2.58</td>
<td>1</td>
</tr>
<tr>
<td>2134815</td>
<td>8</td>
<td>1536.3</td>
<td>1536.39</td>
<td>-0.09</td>
<td>1</td>
</tr>
<tr>
<td>2134816</td>
<td>8</td>
<td>1519.9</td>
<td>1515.57</td>
<td>4.33</td>
<td>1</td>
</tr>
<tr>
<td>2134819</td>
<td>7</td>
<td>1520</td>
<td>1525.12</td>
<td>-5.12</td>
<td>1</td>
</tr>
<tr>
<td>2134819</td>
<td>28</td>
<td>1520.5</td>
<td>1526.42</td>
<td>-5.92</td>
<td>1</td>
</tr>
<tr>
<td>2134821</td>
<td>8</td>
<td>1521.9</td>
<td>1522.06</td>
<td>-0.16</td>
<td>1</td>
</tr>
<tr>
<td>2134822</td>
<td>8</td>
<td>1522.6</td>
<td>1522.8</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>2134823</td>
<td>8</td>
<td>1521.5</td>
<td>1522.36</td>
<td>-0.86</td>
<td>1</td>
</tr>
<tr>
<td>2134825</td>
<td>8</td>
<td>1526.6</td>
<td>1523.01</td>
<td>3.59</td>
<td>1</td>
</tr>
<tr>
<td>2134826</td>
<td>8</td>
<td>1522.9</td>
<td>1521.32</td>
<td>1.58</td>
<td>1</td>
</tr>
<tr>
<td>2134826</td>
<td>28</td>
<td>1524.5</td>
<td>1526.76</td>
<td>-2.26</td>
<td>1</td>
</tr>
<tr>
<td>2134837</td>
<td>8</td>
<td>1519</td>
<td>1513.2</td>
<td>5.8</td>
<td>1</td>
</tr>
<tr>
<td>2134837</td>
<td>28</td>
<td>1524.8</td>
<td>1515.04</td>
<td>9.76</td>
<td>1</td>
</tr>
<tr>
<td>2134838</td>
<td>8</td>
<td>1520.8</td>
<td>1519.93</td>
<td>0.87</td>
<td>1</td>
</tr>
<tr>
<td>2134841</td>
<td>8</td>
<td>1525</td>
<td>1525.79</td>
<td>-0.79</td>
<td>1</td>
</tr>
<tr>
<td>2134841</td>
<td>28</td>
<td>1528.6</td>
<td>1533.68</td>
<td>-5.08</td>
<td>1</td>
</tr>
<tr>
<td>2134842</td>
<td>8</td>
<td>1527.8</td>
<td>1526.91</td>
<td>0.89</td>
<td>1</td>
</tr>
<tr>
<td>2134844</td>
<td>8</td>
<td>1527.4</td>
<td>1521.42</td>
<td>5.98</td>
<td>1</td>
</tr>
<tr>
<td>2134846</td>
<td>28</td>
<td>1515</td>
<td>1513.55</td>
<td>1.45</td>
<td>0</td>
</tr>
<tr>
<td>2134851</td>
<td>28</td>
<td>1527.5</td>
<td>1518.94</td>
<td>8.56</td>
<td>0</td>
</tr>
<tr>
<td>2134852</td>
<td>28</td>
<td>1531</td>
<td>1532.15</td>
<td>-1.15</td>
<td>0</td>
</tr>
<tr>
<td>2134853</td>
<td>48</td>
<td>1542</td>
<td>1522.89</td>
<td>19.11</td>
<td>1</td>
</tr>
<tr>
<td>2134901</td>
<td>8</td>
<td>1513</td>
<td>1515.26</td>
<td>-2.26</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2134902</td>
<td>6</td>
<td>1526.4</td>
<td>1524.31</td>
<td>2.09</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>7</td>
<td>1525.17</td>
<td>1522.05</td>
<td>3.12</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>8</td>
<td>1519.83</td>
<td>1517.65</td>
<td>2.18</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>9</td>
<td>1519.93</td>
<td>1520.31</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>11</td>
<td>1516.9</td>
<td>1517.08</td>
<td>-0.18</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>12</td>
<td>1517</td>
<td>1517.01</td>
<td>-0.01</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>14</td>
<td>1514.08</td>
<td>1516.89</td>
<td>-2.81</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>15</td>
<td>1512.94</td>
<td>1516.35</td>
<td>-3.41</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>16</td>
<td>1511.31</td>
<td>1514.49</td>
<td>-3.18</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>17</td>
<td>1509.15</td>
<td>1513.5</td>
<td>-4.35</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>18</td>
<td>1511.84</td>
<td>1516.38</td>
<td>-4.54</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>19</td>
<td>1511.67</td>
<td>1516.21</td>
<td>-4.54</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>20</td>
<td>1517.52</td>
<td>1518.64</td>
<td>-1.12</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>21</td>
<td>1518.24</td>
<td>1520.06</td>
<td>-1.82</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>22</td>
<td>1516.69</td>
<td>1518.24</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>23</td>
<td>1525.88</td>
<td>1520.69</td>
<td>5.19</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>24</td>
<td>1526.68</td>
<td>1522.3</td>
<td>4.38</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>25</td>
<td>1530.09</td>
<td>1523.28</td>
<td>6.81</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>26</td>
<td>1526.78</td>
<td>1522.68</td>
<td>-4.1</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>27</td>
<td>1529.32</td>
<td>1524.49</td>
<td>4.83</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>28</td>
<td>1525.85</td>
<td>1524.8</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>29</td>
<td>1525.34</td>
<td>1523.84</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>30</td>
<td>1524.84</td>
<td>1524.43</td>
<td>0.41</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>42</td>
<td>1520.75</td>
<td>1522.25</td>
<td>-1.5</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>54</td>
<td>1521.42</td>
<td>1522.48</td>
<td>-1.06</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>64</td>
<td>1524.35</td>
<td>1522.9</td>
<td>1.45</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>77</td>
<td>1524.5</td>
<td>1524.01</td>
<td>0.49</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>101</td>
<td>1529</td>
<td>1524.57</td>
<td>4.43</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>113</td>
<td>1527.45</td>
<td>1526.15</td>
<td>1.3</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>125</td>
<td>1533.47</td>
<td>1526.66</td>
<td>6.81</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>137</td>
<td>1530.52</td>
<td>1525.78</td>
<td>4.74</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>149</td>
<td>1529</td>
<td>1524.76</td>
<td>4.24</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>-----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134902</td>
<td>161</td>
<td>1530.51</td>
<td>1526.7</td>
<td>3.81</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>173</td>
<td>1528.29</td>
<td>1526.62</td>
<td>1.67</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>185</td>
<td>1529.69</td>
<td>1527.38</td>
<td>2.31</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>199</td>
<td>1529.88</td>
<td>1527.81</td>
<td>2.07</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>213</td>
<td>1527.59</td>
<td>1525.01</td>
<td>2.58</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>224</td>
<td>1522.32</td>
<td>1523.09</td>
<td>-0.77</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>236</td>
<td>1519.7</td>
<td>1520.72</td>
<td>-1.02</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>248</td>
<td>1520.12</td>
<td>1520.93</td>
<td>-0.81</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>259</td>
<td>1515.43</td>
<td>1514.8</td>
<td>0.63</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>270</td>
<td>1509.8</td>
<td>1512.57</td>
<td>-2.77</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>284</td>
<td>1508.59</td>
<td>1512.29</td>
<td>-3.7</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>295</td>
<td>1504.26</td>
<td>1509.72</td>
<td>-5.46</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>307</td>
<td>1508.8</td>
<td>1510.46</td>
<td>-1.66</td>
<td>1</td>
</tr>
<tr>
<td>2134902</td>
<td>319</td>
<td>1502.45</td>
<td>1506.28</td>
<td>-3.83</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>4</td>
<td>1525.78</td>
<td>1525.99</td>
<td>-0.21</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>5</td>
<td>1524.06</td>
<td>1525.5</td>
<td>-1.44</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>6</td>
<td>1523.62</td>
<td>1524.22</td>
<td>-0.6</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>7</td>
<td>1521.95</td>
<td>1522.19</td>
<td>-0.24</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>8</td>
<td>1516.2</td>
<td>1518.01</td>
<td>-1.81</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>9</td>
<td>1517.37</td>
<td>1519.9</td>
<td>-2.53</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>11</td>
<td>1514.12</td>
<td>1517.47</td>
<td>-3.35</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>12</td>
<td>1512.58</td>
<td>1517.02</td>
<td>-4.44</td>
<td>1</td>
</tr>
<tr>
<td>2134903</td>
<td>14</td>
<td>1509.42</td>
<td>1517.06</td>
<td>-7.64</td>
<td>1</td>
</tr>
<tr>
<td>2134904</td>
<td>4</td>
<td>1528.38</td>
<td>1525.27</td>
<td>3.11</td>
<td>1</td>
</tr>
<tr>
<td>2134904</td>
<td>5</td>
<td>1526.7</td>
<td>1525</td>
<td>1.7</td>
<td>1</td>
</tr>
<tr>
<td>2134904</td>
<td>6</td>
<td>1525.97</td>
<td>1523.75</td>
<td>2.22</td>
<td>1</td>
</tr>
<tr>
<td>2134904</td>
<td>7</td>
<td>1524.47</td>
<td>1521.64</td>
<td>2.83</td>
<td>1</td>
</tr>
<tr>
<td>2134904</td>
<td>8</td>
<td>1518.95</td>
<td>1517.39</td>
<td>1.56</td>
<td>1</td>
</tr>
<tr>
<td>2134904</td>
<td>9</td>
<td>1519.05</td>
<td>1519.47</td>
<td>-0.42</td>
<td>1</td>
</tr>
<tr>
<td>2134904</td>
<td>11</td>
<td>1516.1</td>
<td>1516.81</td>
<td>-0.71</td>
<td>1</td>
</tr>
<tr>
<td>2134904</td>
<td>14</td>
<td>1513.58</td>
<td>1516.43</td>
<td>-2.85</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>4</td>
<td>1526.06</td>
<td>1518.04</td>
<td>8.02</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134905</td>
<td>5</td>
<td>1524.7</td>
<td>1518.1</td>
<td>6.6</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>6</td>
<td>1523.41</td>
<td>1516.92</td>
<td>6.49</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>7</td>
<td>1522.06</td>
<td>1514.48</td>
<td>7.58</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>8</td>
<td>1516.34</td>
<td>1509.86</td>
<td>6.48</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>9</td>
<td>1516.95</td>
<td>1512.38</td>
<td>4.57</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>11</td>
<td>1513.78</td>
<td>1508.99</td>
<td>4.79</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>12</td>
<td>1513.69</td>
<td>1508.72</td>
<td>4.97</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>14</td>
<td>1511.45</td>
<td>1508.51</td>
<td>2.94</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>15</td>
<td>1509.64</td>
<td>1507.88</td>
<td>1.76</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>16</td>
<td>1508.27</td>
<td>1505.9</td>
<td>2.37</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>17</td>
<td>1505.33</td>
<td>1504.78</td>
<td>0.55</td>
<td>0</td>
</tr>
<tr>
<td>2134905</td>
<td>18</td>
<td>1508.78</td>
<td>1507.79</td>
<td>0.99</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>19</td>
<td>1508.89</td>
<td>1507.72</td>
<td>1.17</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>20</td>
<td>1506.82</td>
<td>1510.22</td>
<td>-3.4</td>
<td>0</td>
</tr>
<tr>
<td>2134905</td>
<td>21</td>
<td>1507.29</td>
<td>1511.69</td>
<td>-4.4</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>22</td>
<td>1507.55</td>
<td>1509.92</td>
<td>-2.37</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>23</td>
<td>1508.2</td>
<td>1512.38</td>
<td>-4.18</td>
<td>1</td>
</tr>
<tr>
<td>2134905</td>
<td>24</td>
<td>1506.38</td>
<td>1514.11</td>
<td>-7.73</td>
<td>0</td>
</tr>
<tr>
<td>2134907</td>
<td>8</td>
<td>1511.1</td>
<td>1509.72</td>
<td>1.38</td>
<td>1</td>
</tr>
<tr>
<td>2134907</td>
<td>28</td>
<td>1516.4</td>
<td>1516.51</td>
<td>-0.11</td>
<td>1</td>
</tr>
<tr>
<td>2134908</td>
<td>8</td>
<td>1514.4</td>
<td>1513</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>2134910</td>
<td>8</td>
<td>1519.1</td>
<td>1515.24</td>
<td>3.86</td>
<td>1</td>
</tr>
<tr>
<td>2134912</td>
<td>8</td>
<td>1505.1</td>
<td>1503.47</td>
<td>1.63</td>
<td>1</td>
</tr>
<tr>
<td>2134912</td>
<td>28</td>
<td>1510</td>
<td>1511.6</td>
<td>-1.6</td>
<td>1</td>
</tr>
<tr>
<td>2134913</td>
<td>8</td>
<td>1505.2</td>
<td>1506.61</td>
<td>-1.41</td>
<td>1</td>
</tr>
<tr>
<td>2134914</td>
<td>8</td>
<td>1506.1</td>
<td>1505.06</td>
<td>1.04</td>
<td>1</td>
</tr>
<tr>
<td>2134917</td>
<td>8</td>
<td>1506.6</td>
<td>1506.74</td>
<td>-0.14</td>
<td>1</td>
</tr>
<tr>
<td>2134917</td>
<td>28</td>
<td>1506.8</td>
<td>1511.13</td>
<td>-4.33</td>
<td>1</td>
</tr>
<tr>
<td>2134921</td>
<td>28</td>
<td>1509</td>
<td>1515.92</td>
<td>-6.92</td>
<td>1</td>
</tr>
<tr>
<td>2134923</td>
<td>8</td>
<td>1513.3</td>
<td>1515.14</td>
<td>-1.84</td>
<td>1</td>
</tr>
<tr>
<td>2134925</td>
<td>28</td>
<td>1518.1</td>
<td>1519.28</td>
<td>-1.18</td>
<td>1</td>
</tr>
<tr>
<td>2134928</td>
<td>8</td>
<td>1514.9</td>
<td>1510.88</td>
<td>4.02</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2134929</td>
<td>8</td>
<td>1515.4</td>
<td>1512.39</td>
<td>3.01</td>
<td>1</td>
</tr>
<tr>
<td>2134930</td>
<td>8</td>
<td>1515.2</td>
<td>1510.88</td>
<td>4.32</td>
<td>1</td>
</tr>
<tr>
<td>2134931</td>
<td>8</td>
<td>1515.7</td>
<td>1510.59</td>
<td>5.11</td>
<td>1</td>
</tr>
<tr>
<td>2134934</td>
<td>8</td>
<td>1517.9</td>
<td>1519.69</td>
<td>-1.79</td>
<td>1</td>
</tr>
<tr>
<td>2134937</td>
<td>8</td>
<td>1521.7</td>
<td>1519.43</td>
<td>2.27</td>
<td>1</td>
</tr>
<tr>
<td>2134939</td>
<td>8</td>
<td>1519.5</td>
<td>1518.68</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td>2134939</td>
<td>28</td>
<td>1524.1</td>
<td>1525.51</td>
<td>-1.41</td>
<td>1</td>
</tr>
<tr>
<td>2134941</td>
<td>8</td>
<td>1522.9</td>
<td>1520.49</td>
<td>2.41</td>
<td>1</td>
</tr>
<tr>
<td>2134943</td>
<td>8</td>
<td>1518.6</td>
<td>1519.15</td>
<td>-0.55</td>
<td>1</td>
</tr>
<tr>
<td>2134945</td>
<td>7</td>
<td>1519.1</td>
<td>1522.14</td>
<td>-3.04</td>
<td>0</td>
</tr>
<tr>
<td>2134945</td>
<td>28</td>
<td>1522.6</td>
<td>1524.31</td>
<td>-1.71</td>
<td>0</td>
</tr>
<tr>
<td>2134950</td>
<td>8</td>
<td>1519.4</td>
<td>1521.95</td>
<td>-2.55</td>
<td>1</td>
</tr>
<tr>
<td>2134950</td>
<td>28</td>
<td>1529.6</td>
<td>1529.14</td>
<td>0.46</td>
<td>1</td>
</tr>
<tr>
<td>2134951</td>
<td>8</td>
<td>1505.3</td>
<td>1507.59</td>
<td>-2.29</td>
<td>1</td>
</tr>
<tr>
<td>2134952</td>
<td>8</td>
<td>1522.9</td>
<td>1519.81</td>
<td>3.09</td>
<td>1</td>
</tr>
<tr>
<td>2135101</td>
<td>8</td>
<td>1427.73</td>
<td>1428.66</td>
<td>-0.93</td>
<td>1</td>
</tr>
<tr>
<td>2135101</td>
<td>11</td>
<td>1426.15</td>
<td>1428.45</td>
<td>-2.3</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>6</td>
<td>1450.79</td>
<td>1450.69</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>7</td>
<td>1450.37</td>
<td>1449.99</td>
<td>0.38</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>8</td>
<td>1445.03</td>
<td>1448.51</td>
<td>-3.48</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>9</td>
<td>1447.5</td>
<td>1449.21</td>
<td>-1.71</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>11</td>
<td>1444.25</td>
<td>1448.23</td>
<td>-3.98</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>12</td>
<td>1447.64</td>
<td>1448.07</td>
<td>-0.43</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>14</td>
<td>1449.98</td>
<td>1448.16</td>
<td>1.82</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>15</td>
<td>1446.51</td>
<td>1447.86</td>
<td>-1.35</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>16</td>
<td>1445.34</td>
<td>1447.24</td>
<td>-1.9</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>17</td>
<td>1442.26</td>
<td>1446.82</td>
<td>-4.56</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>18</td>
<td>1444.02</td>
<td>1447.48</td>
<td>-3.46</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>19</td>
<td>1447.43</td>
<td>1447.33</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>20</td>
<td>1448.1</td>
<td>1447.91</td>
<td>0.19</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>21</td>
<td>1450.6</td>
<td>1448.36</td>
<td>2.24</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>22</td>
<td>1447.65</td>
<td>1447.67</td>
<td>-0.02</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135102</td>
<td>23</td>
<td>1453.5</td>
<td>1448.2</td>
<td>5.3</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>24</td>
<td>1456.32</td>
<td>1448.6</td>
<td>7.72</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>25</td>
<td>1453.46</td>
<td>1448.78</td>
<td>4.68</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>26</td>
<td>1448.33</td>
<td>1448.51</td>
<td>-0.18</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>27</td>
<td>1450.62</td>
<td>1448.91</td>
<td>1.71</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>28</td>
<td>1447.49</td>
<td>1448.93</td>
<td>-1.44</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>29</td>
<td>1446.87</td>
<td>1448.5</td>
<td>-1.63</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>30</td>
<td>1446.93</td>
<td>1448.56</td>
<td>-1.63</td>
<td>1</td>
</tr>
<tr>
<td>2135102</td>
<td>42</td>
<td>1449.21</td>
<td>1447.94</td>
<td>1.27</td>
<td>1</td>
</tr>
<tr>
<td>2135103</td>
<td>6</td>
<td>1434.72</td>
<td>1430.2</td>
<td>4.52</td>
<td>1</td>
</tr>
<tr>
<td>2135103</td>
<td>7</td>
<td>1432.09</td>
<td>1429.66</td>
<td>2.43</td>
<td>1</td>
</tr>
<tr>
<td>2135103</td>
<td>8</td>
<td>1426.59</td>
<td>1428.47</td>
<td>-1.88</td>
<td>1</td>
</tr>
<tr>
<td>2135103</td>
<td>9</td>
<td>1428.63</td>
<td>1429.01</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>2135103</td>
<td>11</td>
<td>1426.52</td>
<td>1428.27</td>
<td>-1.75</td>
<td>1</td>
</tr>
<tr>
<td>2135104</td>
<td>6</td>
<td>1452</td>
<td>1450.69</td>
<td>1.31</td>
<td>1</td>
</tr>
<tr>
<td>2135104</td>
<td>7</td>
<td>1452.03</td>
<td>1449.99</td>
<td>2.04</td>
<td>1</td>
</tr>
<tr>
<td>2135104</td>
<td>9</td>
<td>1449.33</td>
<td>1449.21</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>2135104</td>
<td>11</td>
<td>1446.3</td>
<td>1448.23</td>
<td>-1.93</td>
<td>1</td>
</tr>
<tr>
<td>2135104</td>
<td>12</td>
<td>1448.88</td>
<td>1448.07</td>
<td>0.81</td>
<td>1</td>
</tr>
<tr>
<td>2135107</td>
<td>8</td>
<td>1425.7</td>
<td>1427.91</td>
<td>-2.21</td>
<td>1</td>
</tr>
<tr>
<td>2135108</td>
<td>8</td>
<td>1429.6</td>
<td>1431.92</td>
<td>-2.32</td>
<td>1</td>
</tr>
<tr>
<td>2135110</td>
<td>28</td>
<td>1424.2</td>
<td>1425.97</td>
<td>-1.77</td>
<td>0</td>
</tr>
<tr>
<td>2135112</td>
<td>8</td>
<td>1445.3</td>
<td>1448.08</td>
<td>-2.78</td>
<td>1</td>
</tr>
<tr>
<td>2135113</td>
<td>8</td>
<td>1448.5</td>
<td>1448.79</td>
<td>-0.29</td>
<td>1</td>
</tr>
<tr>
<td>2135113</td>
<td>28</td>
<td>1451.9</td>
<td>1449.12</td>
<td>2.78</td>
<td>1</td>
</tr>
<tr>
<td>2135115</td>
<td>28</td>
<td>1431.6</td>
<td>1431.8</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>2135116</td>
<td>28</td>
<td>1422.3</td>
<td>1420.06</td>
<td>2.24</td>
<td>1</td>
</tr>
<tr>
<td>2135118</td>
<td>8</td>
<td>1420.4</td>
<td>1420.23</td>
<td>0.17</td>
<td>1</td>
</tr>
<tr>
<td>2135122</td>
<td>8</td>
<td>1458.5</td>
<td>1460.36</td>
<td>-1.86</td>
<td>1</td>
</tr>
<tr>
<td>2135123</td>
<td>28</td>
<td>1465.2</td>
<td>1462.67</td>
<td>2.53</td>
<td>1</td>
</tr>
<tr>
<td>2135129</td>
<td>8</td>
<td>1421.1</td>
<td>1422.43</td>
<td>-1.33</td>
<td>1</td>
</tr>
<tr>
<td>2135129</td>
<td>28</td>
<td>1422.9</td>
<td>1422.57</td>
<td>0.33</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135144</td>
<td>8</td>
<td>1454.8</td>
<td>1452.84</td>
<td>1.96</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>8</td>
<td>1475.64</td>
<td>1475.36</td>
<td>0.28</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>9</td>
<td>1477.96</td>
<td>1475.91</td>
<td>2.05</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>11</td>
<td>1476.17</td>
<td>1474.41</td>
<td>1.76</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>12</td>
<td>1476.74</td>
<td>1474.02</td>
<td>2.72</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>14</td>
<td>1476.28</td>
<td>1473.71</td>
<td>2.57</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>15</td>
<td>1475.12</td>
<td>1473.02</td>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>17</td>
<td>1472.19</td>
<td>1471.42</td>
<td>0.77</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>20</td>
<td>1474.1</td>
<td>1471.39</td>
<td>2.71</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>21</td>
<td>1470.3</td>
<td>1471.72</td>
<td>-1.42</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>22</td>
<td>1474.94</td>
<td>1470.6</td>
<td>4.34</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>23</td>
<td>1475.3</td>
<td>1471.01</td>
<td>4.29</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>24</td>
<td>1475.95</td>
<td>1471.28</td>
<td>4.67</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>25</td>
<td>1475.57</td>
<td>1471.31</td>
<td>4.26</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>26</td>
<td>1471.8</td>
<td>1470.98</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>27</td>
<td>1475.76</td>
<td>1471.33</td>
<td>4.43</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>28</td>
<td>1474.1</td>
<td>1471.26</td>
<td>2.84</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>29</td>
<td>1475.1</td>
<td>1470.66</td>
<td>4.44</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>30</td>
<td>1472.3</td>
<td>1470.77</td>
<td>1.53</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>42</td>
<td>1474.01</td>
<td>1470.07</td>
<td>3.94</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>54</td>
<td>1467.65</td>
<td>1470.1</td>
<td>-2.45</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>65</td>
<td>1462.51</td>
<td>1470.43</td>
<td>-7.92</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>93</td>
<td>1464.52</td>
<td>1470.24</td>
<td>-5.72</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>114</td>
<td>1464.48</td>
<td>1471.18</td>
<td>-6.7</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>125</td>
<td>1465.73</td>
<td>1471.37</td>
<td>-5.64</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>137</td>
<td>1460.8</td>
<td>1471.08</td>
<td>-10.28</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>149</td>
<td>1463.09</td>
<td>1470.86</td>
<td>-7.77</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>161</td>
<td>1467.57</td>
<td>1471.65</td>
<td>-4.08</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>174</td>
<td>1469.23</td>
<td>1471.84</td>
<td>-2.61</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>187</td>
<td>1469.52</td>
<td>1472.66</td>
<td>-3.14</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>198</td>
<td>1469.9</td>
<td>1472.69</td>
<td>-2.79</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>211</td>
<td>1466.9</td>
<td>1471.93</td>
<td>-5.03</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2135201</td>
<td>224</td>
<td>1468.15</td>
<td>1471.85</td>
<td>-3.7</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>236</td>
<td>1471.55</td>
<td>1471.23</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>248</td>
<td>1472.13</td>
<td>1471.58</td>
<td>0.55</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>259</td>
<td>1469.3</td>
<td>1469.92</td>
<td>-0.62</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>270</td>
<td>1467.8</td>
<td>1469.25</td>
<td>-1.45</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>283</td>
<td>1469.09</td>
<td>1468.59</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>295</td>
<td>1468.78</td>
<td>1467.81</td>
<td>0.97</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>307</td>
<td>1469.9</td>
<td>1467.91</td>
<td>1.99</td>
<td>1</td>
</tr>
<tr>
<td>2135201</td>
<td>319</td>
<td>1469.15</td>
<td>1466.27</td>
<td>2.88</td>
<td>1</td>
</tr>
<tr>
<td>2135202</td>
<td>8</td>
<td>1475.35</td>
<td>1475.08</td>
<td>0.27</td>
<td>1</td>
</tr>
<tr>
<td>2135202</td>
<td>9</td>
<td>1477.3</td>
<td>1475.69</td>
<td>1.61</td>
<td>1</td>
</tr>
<tr>
<td>2135206</td>
<td>28</td>
<td>1472.2</td>
<td>1469.85</td>
<td>2.35</td>
<td>1</td>
</tr>
<tr>
<td>2135209</td>
<td>28</td>
<td>1479.2</td>
<td>1472.11</td>
<td>7.09</td>
<td>1</td>
</tr>
<tr>
<td>2135215</td>
<td>28</td>
<td>1474.6</td>
<td>1469.8</td>
<td>4.8</td>
<td>1</td>
</tr>
<tr>
<td>2135216</td>
<td>8</td>
<td>1431.8</td>
<td>1430.48</td>
<td>1.32</td>
<td>1</td>
</tr>
<tr>
<td>2135216</td>
<td>28</td>
<td>1429.2</td>
<td>1430.56</td>
<td>-1.36</td>
<td>1</td>
</tr>
<tr>
<td>2135221</td>
<td>8</td>
<td>1432.1</td>
<td>1430.7</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>5</td>
<td>1465.8</td>
<td>1465.58</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>6</td>
<td>1463.07</td>
<td>1464.42</td>
<td>-1.35</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>7</td>
<td>1461.03</td>
<td>1462.64</td>
<td>-1.61</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>8</td>
<td>1455.2</td>
<td>1459.26</td>
<td>-4.06</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>9</td>
<td>1460.14</td>
<td>1460.36</td>
<td>-0.22</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>11</td>
<td>1455.81</td>
<td>1457.56</td>
<td>-1.75</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>12</td>
<td>1458.85</td>
<td>1456.86</td>
<td>1.99</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>14</td>
<td>1456.22</td>
<td>1456.12</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>15</td>
<td>1455.07</td>
<td>1455.09</td>
<td>-0.02</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>16</td>
<td>1451.85</td>
<td>1453.4</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>17</td>
<td>1450.59</td>
<td>1452.14</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>18</td>
<td>1450.22</td>
<td>1453.21</td>
<td>-2.99</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>19</td>
<td>1451.68</td>
<td>1452.57</td>
<td>-0.89</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>20</td>
<td>1455.91</td>
<td>1453.54</td>
<td>2.37</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>21</td>
<td>1456.6</td>
<td>1454.18</td>
<td>2.42</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2135301</td>
<td>22</td>
<td>1453.41</td>
<td>1452.57</td>
<td>0.84</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>23</td>
<td>1453.82</td>
<td>1453.63</td>
<td>0.19</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>24</td>
<td>1456.26</td>
<td>1454.37</td>
<td>1.89</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>25</td>
<td>1455</td>
<td>1454.7</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>26</td>
<td>1451</td>
<td>1454.1</td>
<td>-3.1</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>27</td>
<td>1455.09</td>
<td>1454.94</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>28</td>
<td>1450.96</td>
<td>1454.96</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>54</td>
<td>1448.36</td>
<td>1452.22</td>
<td>-3.86</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>77</td>
<td>1451.8</td>
<td>1452.77</td>
<td>-0.97</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>101</td>
<td>1452.55</td>
<td>1452.89</td>
<td>-0.34</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>113</td>
<td>1453.06</td>
<td>1453.89</td>
<td>-0.83</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>125</td>
<td>1454.62</td>
<td>1454.32</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>137</td>
<td>1453.81</td>
<td>1453.61</td>
<td>0.2</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>149</td>
<td>1454.22</td>
<td>1452.91</td>
<td>1.31</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>161</td>
<td>1454.81</td>
<td>1454.4</td>
<td>0.41</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>174</td>
<td>1455.75</td>
<td>1454.47</td>
<td>1.28</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>187</td>
<td>1456.12</td>
<td>1455.69</td>
<td>0.43</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>224</td>
<td>1453.85</td>
<td>1452.48</td>
<td>1.37</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>236</td>
<td>1456.17</td>
<td>1450.83</td>
<td>5.34</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>248</td>
<td>1452.95</td>
<td>1451.17</td>
<td>1.78</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>270</td>
<td>1447.2</td>
<td>1445.18</td>
<td>2.02</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>283</td>
<td>1444.83</td>
<td>1444.14</td>
<td>0.69</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>295</td>
<td>1445.62</td>
<td>1442.55</td>
<td>3.07</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>307</td>
<td>1445.9</td>
<td>1442.77</td>
<td>3.13</td>
<td>1</td>
</tr>
<tr>
<td>2135301</td>
<td>319</td>
<td>1445.06</td>
<td>1439.48</td>
<td>5.58</td>
<td>1</td>
</tr>
<tr>
<td>2135305</td>
<td>11</td>
<td>1458.5</td>
<td>1457.62</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>2135307</td>
<td>8</td>
<td>1456</td>
<td>1457.73</td>
<td>-1.73</td>
<td>1</td>
</tr>
<tr>
<td>2135307</td>
<td>28</td>
<td>1465.9</td>
<td>1460.12</td>
<td>5.78</td>
<td>1</td>
</tr>
<tr>
<td>2135318</td>
<td>8</td>
<td>1474.2</td>
<td>1468.17</td>
<td>6.03</td>
<td>1</td>
</tr>
<tr>
<td>2135318</td>
<td>28</td>
<td>1462.4</td>
<td>1462.48</td>
<td>-0.08</td>
<td>1</td>
</tr>
<tr>
<td>2135326</td>
<td>8</td>
<td>1462.2</td>
<td>1464.41</td>
<td>-2.21</td>
<td>1</td>
</tr>
<tr>
<td>2135327</td>
<td>8</td>
<td>1467.9</td>
<td>1466.5</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2135329</td>
<td>8</td>
<td>1465.7</td>
<td>1465.96</td>
<td>-0.26</td>
<td>1</td>
</tr>
<tr>
<td>2135332</td>
<td>8</td>
<td>1465.1</td>
<td>1468.08</td>
<td>-2.98</td>
<td>1</td>
</tr>
<tr>
<td>2135332</td>
<td>28</td>
<td>1465</td>
<td>1462.71</td>
<td>2.29</td>
<td>1</td>
</tr>
<tr>
<td>2135338</td>
<td>8</td>
<td>1467.5</td>
<td>1471.23</td>
<td>-3.73</td>
<td>1</td>
</tr>
<tr>
<td>2135338</td>
<td>28</td>
<td>1467</td>
<td>1467.6</td>
<td>-0.6</td>
<td>1</td>
</tr>
<tr>
<td>2135342</td>
<td>28</td>
<td>1465</td>
<td>1472.04</td>
<td>-7.04</td>
<td>0</td>
</tr>
<tr>
<td>2135343</td>
<td>28</td>
<td>1457.7</td>
<td>1455.62</td>
<td>2.08</td>
<td>0</td>
</tr>
<tr>
<td>2135362</td>
<td>11</td>
<td>1459.2</td>
<td>1456.68</td>
<td>2.52</td>
<td>1</td>
</tr>
<tr>
<td>2135368</td>
<td>28</td>
<td>1453.2</td>
<td>1456.96</td>
<td>-3.76</td>
<td>0</td>
</tr>
<tr>
<td>2135372</td>
<td>11</td>
<td>1458.2</td>
<td>1464.07</td>
<td>-5.87</td>
<td>1</td>
</tr>
<tr>
<td>2135373</td>
<td>8</td>
<td>1466.9</td>
<td>1467.26</td>
<td>-0.36</td>
<td>1</td>
</tr>
<tr>
<td>2135401</td>
<td>4</td>
<td>1499.49</td>
<td>1499.18</td>
<td>0.31</td>
<td>1</td>
</tr>
<tr>
<td>2135401</td>
<td>5</td>
<td>1500</td>
<td>1498.94</td>
<td>1.06</td>
<td>1</td>
</tr>
<tr>
<td>2135401</td>
<td>6</td>
<td>1498.96</td>
<td>1497.96</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2135401</td>
<td>7</td>
<td>1497.42</td>
<td>1496.12</td>
<td>1.3</td>
<td>1</td>
</tr>
<tr>
<td>2135401</td>
<td>8</td>
<td>1484.66</td>
<td>1492.71</td>
<td>-8.05</td>
<td>1</td>
</tr>
<tr>
<td>2135401</td>
<td>9</td>
<td>1493.78</td>
<td>1494.13</td>
<td>-0.35</td>
<td>1</td>
</tr>
<tr>
<td>2135401</td>
<td>11</td>
<td>1491.35</td>
<td>1491.35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2135401</td>
<td>12</td>
<td>1491.08</td>
<td>1490.84</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>6</td>
<td>1506.75</td>
<td>1502.83</td>
<td>3.92</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>7</td>
<td>1505.61</td>
<td>1500.73</td>
<td>4.88</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>8</td>
<td>1492.87</td>
<td>1496.62</td>
<td>-3.76</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>9</td>
<td>1500.51</td>
<td>1498.28</td>
<td>2.23</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>11</td>
<td>1498.79</td>
<td>1495.4</td>
<td>3.39</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>12</td>
<td>1498.51</td>
<td>1494.72</td>
<td>3.79</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>14</td>
<td>1497.71</td>
<td>1494.49</td>
<td>3.22</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>16</td>
<td>1493.88</td>
<td>1491.76</td>
<td>2.12</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>17</td>
<td>1492.67</td>
<td>1490.57</td>
<td>2.1</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>19</td>
<td>1494.01</td>
<td>1492.59</td>
<td>1.42</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>20</td>
<td>1495.6</td>
<td>1494.54</td>
<td>1.06</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>21</td>
<td>1495.65</td>
<td>1495.87</td>
<td>-0.22</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>22</td>
<td>1495.33</td>
<td>1494.36</td>
<td>0.97</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135402</td>
<td>23</td>
<td>1497.21</td>
<td>1496.21</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>24</td>
<td>1497.84</td>
<td>1497.66</td>
<td>0.18</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>25</td>
<td>1499.87</td>
<td>1498.57</td>
<td>1.3</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>26</td>
<td>1496.62</td>
<td>1498.17</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>27</td>
<td>1498.42</td>
<td>1499.63</td>
<td>-1.21</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>28</td>
<td>1497.1</td>
<td>1500.03</td>
<td>-2.93</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>29</td>
<td>1497.43</td>
<td>1499.3</td>
<td>-1.87</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>30</td>
<td>1498.58</td>
<td>1500.03</td>
<td>-0.55</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>31</td>
<td>1499.87</td>
<td>1500.03</td>
<td>-1.78</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>32</td>
<td>1500.35</td>
<td>1500.03</td>
<td>-0.09</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>33</td>
<td>1500.21</td>
<td>1500.3</td>
<td>-2.21</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>34</td>
<td>1499.51</td>
<td>1500.3</td>
<td>-1.99</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>35</td>
<td>1499.95</td>
<td>1500.3</td>
<td>-1.81</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>36</td>
<td>1500.23</td>
<td>1500.3</td>
<td>-0.72</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>37</td>
<td>1500.7</td>
<td>1500.3</td>
<td>-1.78</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>38</td>
<td>1502.02</td>
<td>1500.3</td>
<td>-0.57</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>39</td>
<td>1502.45</td>
<td>1500.3</td>
<td>-1.36</td>
<td>1</td>
</tr>
<tr>
<td>2135402</td>
<td>40</td>
<td>1506.45</td>
<td>1500.3</td>
<td>2.85</td>
<td>1</td>
</tr>
<tr>
<td>2135405</td>
<td>8</td>
<td>1472.1</td>
<td>1474.83</td>
<td>-2.73</td>
<td>1</td>
</tr>
<tr>
<td>2135407</td>
<td>8</td>
<td>1475.3</td>
<td>1475.67</td>
<td>-0.37</td>
<td>1</td>
</tr>
<tr>
<td>2135409</td>
<td>8</td>
<td>1462.1</td>
<td>1465.02</td>
<td>-2.92</td>
<td>1</td>
</tr>
<tr>
<td>2135411</td>
<td>8</td>
<td>1472</td>
<td>1471.39</td>
<td>0.61</td>
<td>1</td>
</tr>
<tr>
<td>2135411</td>
<td>28</td>
<td>1475.9</td>
<td>1470.76</td>
<td>5.14</td>
<td>1</td>
</tr>
<tr>
<td>2135412</td>
<td>8</td>
<td>1473.3</td>
<td>1476.6</td>
<td>-3.3</td>
<td>1</td>
</tr>
<tr>
<td>2135414</td>
<td>8</td>
<td>1484.2</td>
<td>1490.95</td>
<td>-6.75</td>
<td>1</td>
</tr>
<tr>
<td>2135418</td>
<td>8</td>
<td>1499.6</td>
<td>1497.17</td>
<td>2.43</td>
<td>1</td>
</tr>
<tr>
<td>2135422</td>
<td>8</td>
<td>1496.4</td>
<td>1497.39</td>
<td>-0.99</td>
<td>1</td>
</tr>
<tr>
<td>2135425</td>
<td>28</td>
<td>1490.2</td>
<td>1491.9</td>
<td>-1.7</td>
<td>1</td>
</tr>
<tr>
<td>2135427</td>
<td>8</td>
<td>1494.1</td>
<td>1495.52</td>
<td>-1.42</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135429</td>
<td>8</td>
<td>1491.8</td>
<td>1496.93</td>
<td>-5.13</td>
<td>1</td>
</tr>
<tr>
<td>2135429</td>
<td>28</td>
<td>1497.8</td>
<td>1499.88</td>
<td>-2.08</td>
<td>1</td>
</tr>
<tr>
<td>2135431</td>
<td>8</td>
<td>1493.3</td>
<td>1497.9</td>
<td>-4.6</td>
<td>1</td>
</tr>
<tr>
<td>2135432</td>
<td>8</td>
<td>1493.35</td>
<td>1495.57</td>
<td>-2.22</td>
<td>1</td>
</tr>
<tr>
<td>2135439</td>
<td>8</td>
<td>1488.1</td>
<td>1487.7</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>2135440</td>
<td>8</td>
<td>1487.4</td>
<td>1488.95</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2135440</td>
<td>28</td>
<td>1484.3</td>
<td>1484.03</td>
<td>0.27</td>
<td>1</td>
</tr>
<tr>
<td>2135448</td>
<td>8</td>
<td>1494.2</td>
<td>1494.18</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>2135457</td>
<td>28</td>
<td>1492.6</td>
<td>1490.19</td>
<td>2.41</td>
<td>0</td>
</tr>
<tr>
<td>2135501</td>
<td>6</td>
<td>1492.63</td>
<td>1494.57</td>
<td>-1.94</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>7</td>
<td>1491.39</td>
<td>1492.82</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>8</td>
<td>1489.72</td>
<td>1489.25</td>
<td>0.47</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>9</td>
<td>1488.32</td>
<td>1489.82</td>
<td>-1.5</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>11</td>
<td>1486.2</td>
<td>1487.44</td>
<td>-1.24</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>12</td>
<td>1485.95</td>
<td>1486.7</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>14</td>
<td>1485.54</td>
<td>1486.13</td>
<td>-0.59</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>15</td>
<td>1485.09</td>
<td>1485.01</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>16</td>
<td>1483.6</td>
<td>1483.51</td>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>17</td>
<td>1482.65</td>
<td>1482.26</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>19</td>
<td>1486.63</td>
<td>1482.07</td>
<td>4.56</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>20</td>
<td>1484.6</td>
<td>1482.97</td>
<td>1.63</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>21</td>
<td>1484.79</td>
<td>1483.87</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>22</td>
<td>1487.9</td>
<td>1482.52</td>
<td>5.38</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>23</td>
<td>1483.85</td>
<td>1483.58</td>
<td>0.27</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>24</td>
<td>1485.17</td>
<td>1484.47</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>25</td>
<td>1482.6</td>
<td>1485.03</td>
<td>-2.43</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>26</td>
<td>1484.78</td>
<td>1484.91</td>
<td>-0.13</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>27</td>
<td>1485.04</td>
<td>1485.82</td>
<td>-0.78</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>28</td>
<td>1484.45</td>
<td>1486.05</td>
<td>-1.6</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>29</td>
<td>1484.75</td>
<td>1485.36</td>
<td>-0.61</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>30</td>
<td>1483.83</td>
<td>1485.75</td>
<td>-1.92</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>42</td>
<td>1482.9</td>
<td>1484.51</td>
<td>-1.61</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135501</td>
<td>54</td>
<td>1482.55</td>
<td>1484.48</td>
<td>-1.93</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>65</td>
<td>1482.83</td>
<td>1485.16</td>
<td>-2.33</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>77</td>
<td>1483.93</td>
<td>1485.35</td>
<td>-1.42</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>101</td>
<td>1484.26</td>
<td>1485.8</td>
<td>-1.54</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>113</td>
<td>1484.86</td>
<td>1486.68</td>
<td>-1.82</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>125</td>
<td>1485.52</td>
<td>1487.46</td>
<td>-1.94</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>137</td>
<td>1486.4</td>
<td>1487.06</td>
<td>-0.66</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>149</td>
<td>1486.33</td>
<td>1486.76</td>
<td>-0.43</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>161</td>
<td>1486.62</td>
<td>1487.87</td>
<td>-1.25</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>174</td>
<td>1487.34</td>
<td>1488.2</td>
<td>-0.86</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>187</td>
<td>1487.56</td>
<td>1489.42</td>
<td>-1.86</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>198</td>
<td>1487.3</td>
<td>1489.36</td>
<td>-2.06</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>211</td>
<td>1488.2</td>
<td>1487.97</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>224</td>
<td>1485.93</td>
<td>1487.36</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>270</td>
<td>1486.3</td>
<td>1480.83</td>
<td>5.47</td>
<td>1</td>
</tr>
<tr>
<td>2135501</td>
<td>283</td>
<td>1486.29</td>
<td>1478.97</td>
<td>7.32</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>6</td>
<td>1487.15</td>
<td>1489.91</td>
<td>-2.76</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>7</td>
<td>1486.5</td>
<td>1488.18</td>
<td>-1.68</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>8</td>
<td>1481.1</td>
<td>1484.58</td>
<td>-3.48</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>9</td>
<td>1484.7</td>
<td>1484.72</td>
<td>-0.02</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>12</td>
<td>1481.95</td>
<td>1481.54</td>
<td>0.41</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>14</td>
<td>1482.56</td>
<td>1480.95</td>
<td>1.61</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>15</td>
<td>1481.51</td>
<td>1479.59</td>
<td>1.92</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>16</td>
<td>1480.27</td>
<td>1478.04</td>
<td>2.23</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>17</td>
<td>1478.7</td>
<td>1476.61</td>
<td>2.09</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>18</td>
<td>1479.45</td>
<td>1476.69</td>
<td>2.76</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>19</td>
<td>1481.57</td>
<td>1476.09</td>
<td>5.48</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>20</td>
<td>1481.27</td>
<td>1476.82</td>
<td>4.45</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>21</td>
<td>1481.43</td>
<td>1477.77</td>
<td>3.66</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>22</td>
<td>1480.63</td>
<td>1476.53</td>
<td>4.1</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>24</td>
<td>1480.61</td>
<td>1478.23</td>
<td>2.38</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>26</td>
<td>1479.78</td>
<td>1478.76</td>
<td>1.02</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2135502</td>
<td>27</td>
<td>1481.09</td>
<td>1479.49</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>28</td>
<td>1478.97</td>
<td>1479.76</td>
<td>-0.79</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>29</td>
<td>1479.24</td>
<td>1479.1</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>30</td>
<td>1477.81</td>
<td>1479.4</td>
<td>-1.59</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>113</td>
<td>1477.5</td>
<td>1479.88</td>
<td>-2.38</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>125</td>
<td>1480.38</td>
<td>1480.87</td>
<td>-0.49</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>137</td>
<td>1478.3</td>
<td>1480.47</td>
<td>-2.17</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>149</td>
<td>1478.31</td>
<td>1480.17</td>
<td>-1.86</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>161</td>
<td>1479.56</td>
<td>1481.23</td>
<td>-1.67</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>174</td>
<td>1479.89</td>
<td>1481.66</td>
<td>-1.77</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>187</td>
<td>1480.31</td>
<td>1482.86</td>
<td>-2.55</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>198</td>
<td>1482.38</td>
<td>1482.83</td>
<td>-0.45</td>
<td>1</td>
</tr>
<tr>
<td>2135502</td>
<td>224</td>
<td>1480.79</td>
<td>1480.6</td>
<td>0.19</td>
<td>1</td>
</tr>
<tr>
<td>2135503</td>
<td>9</td>
<td>1482.7</td>
<td>1484.92</td>
<td>-2.22</td>
<td>1</td>
</tr>
<tr>
<td>2135503</td>
<td>11</td>
<td>1480.57</td>
<td>1482.74</td>
<td>-2.17</td>
<td>1</td>
</tr>
<tr>
<td>2135503</td>
<td>12</td>
<td>1480.82</td>
<td>1481.7</td>
<td>-0.88</td>
<td>1</td>
</tr>
<tr>
<td>2135505</td>
<td>28</td>
<td>1483.2</td>
<td>1484.3</td>
<td>-1.1</td>
<td>1</td>
</tr>
<tr>
<td>2135507</td>
<td>28</td>
<td>1476.3</td>
<td>1471.43</td>
<td>4.87</td>
<td>1</td>
</tr>
<tr>
<td>2135508</td>
<td>8</td>
<td>1487.6</td>
<td>1485.61</td>
<td>1.99</td>
<td>1</td>
</tr>
<tr>
<td>2135508</td>
<td>28</td>
<td>1483.1</td>
<td>1482.85</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>2135512</td>
<td>8</td>
<td>1493.7</td>
<td>1488.39</td>
<td>5.31</td>
<td>1</td>
</tr>
<tr>
<td>2135515</td>
<td>8</td>
<td>1485.1</td>
<td>1488.36</td>
<td>-3.26</td>
<td>1</td>
</tr>
<tr>
<td>2135518</td>
<td>8</td>
<td>1494.8</td>
<td>1493.07</td>
<td>1.73</td>
<td>1</td>
</tr>
<tr>
<td>2135518</td>
<td>28</td>
<td>1491.5</td>
<td>1493.64</td>
<td>-2.14</td>
<td>1</td>
</tr>
<tr>
<td>2135520</td>
<td>28</td>
<td>1480.6</td>
<td>1482.17</td>
<td>-1.57</td>
<td>1</td>
</tr>
<tr>
<td>2135522</td>
<td>8</td>
<td>1481</td>
<td>1481.94</td>
<td>-0.94</td>
<td>1</td>
</tr>
<tr>
<td>2135531</td>
<td>8</td>
<td>1481.8</td>
<td>1482.41</td>
<td>-0.61</td>
<td>1</td>
</tr>
<tr>
<td>2135532</td>
<td>8</td>
<td>1484.1</td>
<td>1480.32</td>
<td>3.78</td>
<td>1</td>
</tr>
<tr>
<td>2135534</td>
<td>8</td>
<td>1478.2</td>
<td>1479.7</td>
<td>-1.5</td>
<td>1</td>
</tr>
<tr>
<td>2135535</td>
<td>8</td>
<td>1482.5</td>
<td>1479.38</td>
<td>3.12</td>
<td>1</td>
</tr>
<tr>
<td>2135535</td>
<td>28</td>
<td>1477.8</td>
<td>1477.39</td>
<td>0.41</td>
<td>1</td>
</tr>
<tr>
<td>2135537</td>
<td>8</td>
<td>1484.5</td>
<td>1484.92</td>
<td>-0.42</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2135543</td>
<td>28</td>
<td>1484.1</td>
<td>1486.41</td>
<td>-2.31</td>
<td>1</td>
</tr>
<tr>
<td>2135601</td>
<td>6</td>
<td>1473.34</td>
<td>1469.63</td>
<td>3.71</td>
<td>1</td>
</tr>
<tr>
<td>2135601</td>
<td>7</td>
<td>1468.62</td>
<td>1467.75</td>
<td>0.87</td>
<td>1</td>
</tr>
<tr>
<td>2135601</td>
<td>8</td>
<td>1460.78</td>
<td>1464.27</td>
<td>-3.49</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>5</td>
<td>1472.95</td>
<td>1471.17</td>
<td>1.78</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>6</td>
<td>1469.63</td>
<td>1469.63</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>7</td>
<td>1462.23</td>
<td>1467.75</td>
<td>-5.52</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>8</td>
<td>1461.18</td>
<td>1464.27</td>
<td>-3.09</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>12</td>
<td>1462.14</td>
<td>1460.92</td>
<td>1.22</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>14</td>
<td>1466.67</td>
<td>1460.21</td>
<td>6.46</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>15</td>
<td>1463.42</td>
<td>1458.81</td>
<td>4.61</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>18</td>
<td>1459.28</td>
<td>1456.08</td>
<td>3.2</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>19</td>
<td>1462.26</td>
<td>1455.81</td>
<td>6.45</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>20</td>
<td>1461.66</td>
<td>1456.83</td>
<td>4.83</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>21</td>
<td>1464.89</td>
<td>1457.8</td>
<td>7.09</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>22</td>
<td>1460.05</td>
<td>1456.67</td>
<td>3.38</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>23</td>
<td>1459.4</td>
<td>1457.54</td>
<td>1.86</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>24</td>
<td>1466</td>
<td>1458.49</td>
<td>7.51</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>25</td>
<td>1460.51</td>
<td>1459.09</td>
<td>1.42</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>27</td>
<td>1458.66</td>
<td>1459.53</td>
<td>-0.87</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>29</td>
<td>1456.63</td>
<td>1459.14</td>
<td>-2.51</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>42</td>
<td>1456.66</td>
<td>1456.93</td>
<td>-0.27</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>54</td>
<td>1456.21</td>
<td>1457.2</td>
<td>-0.99</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>65</td>
<td>1456.93</td>
<td>1457.95</td>
<td>-1.02</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>93</td>
<td>1456.31</td>
<td>1458.35</td>
<td>-2.04</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>113</td>
<td>1456.56</td>
<td>1459.77</td>
<td>-3.21</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>125</td>
<td>1458.78</td>
<td>1460.48</td>
<td>-1.7</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>137</td>
<td>1456.66</td>
<td>1460.17</td>
<td>-3.51</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>149</td>
<td>1456.3</td>
<td>1459.61</td>
<td>-3.31</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>161</td>
<td>1458.72</td>
<td>1460.63</td>
<td>-1.91</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>174</td>
<td>1458.43</td>
<td>1460.95</td>
<td>-2.52</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>187</td>
<td>1458.69</td>
<td>1461.92</td>
<td>-3.23</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2135602</td>
<td>198</td>
<td>1461.65</td>
<td>1461.84</td>
<td>-0.19</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>211</td>
<td>1458.9</td>
<td>1459.8</td>
<td>-0.9</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>224</td>
<td>1459.45</td>
<td>1458.54</td>
<td>0.91</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>236</td>
<td>1458.78</td>
<td>1456.6</td>
<td>2.18</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>248</td>
<td>1457.04</td>
<td>1456.5</td>
<td>0.54</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>259</td>
<td>1456.6</td>
<td>1452.78</td>
<td>3.82</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>270</td>
<td>1455.8</td>
<td>1450.72</td>
<td>5.08</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>283</td>
<td>1450.07</td>
<td>1449.01</td>
<td>1.06</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>307</td>
<td>1453.85</td>
<td>1446.98</td>
<td>6.87</td>
<td>1</td>
</tr>
<tr>
<td>2135602</td>
<td>319</td>
<td>1452.8</td>
<td>1444.06</td>
<td>8.74</td>
<td>1</td>
</tr>
<tr>
<td>2135603</td>
<td>4</td>
<td>1470.69</td>
<td>1471.72</td>
<td>-1.03</td>
<td>1</td>
</tr>
<tr>
<td>2135603</td>
<td>5</td>
<td>1471.77</td>
<td>1470.17</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>2135603</td>
<td>6</td>
<td>1468.5</td>
<td>1468.64</td>
<td>-0.14</td>
<td>1</td>
</tr>
<tr>
<td>2135603</td>
<td>8</td>
<td>1458.48</td>
<td>1463.3</td>
<td>-4.82</td>
<td>1</td>
</tr>
<tr>
<td>2135603</td>
<td>11</td>
<td>1461.12</td>
<td>1461.23</td>
<td>-0.11</td>
<td>1</td>
</tr>
<tr>
<td>2135613</td>
<td>28</td>
<td>1458.6</td>
<td>1460.32</td>
<td>-1.72</td>
<td>1</td>
</tr>
<tr>
<td>2135614</td>
<td>8</td>
<td>1464.4</td>
<td>1465.61</td>
<td>-1.21</td>
<td>1</td>
</tr>
<tr>
<td>2135615</td>
<td>28</td>
<td>1470</td>
<td>1465.77</td>
<td>4.23</td>
<td>0</td>
</tr>
<tr>
<td>2135618</td>
<td>8</td>
<td>1471.4</td>
<td>1471.12</td>
<td>0.28</td>
<td>1</td>
</tr>
<tr>
<td>2135619</td>
<td>8</td>
<td>1479.2</td>
<td>1474.56</td>
<td>4.64</td>
<td>1</td>
</tr>
<tr>
<td>2135619</td>
<td>28</td>
<td>1474</td>
<td>1470.73</td>
<td>3.27</td>
<td>1</td>
</tr>
<tr>
<td>2135620</td>
<td>8</td>
<td>1475.4</td>
<td>1476.56</td>
<td>-1.16</td>
<td>1</td>
</tr>
<tr>
<td>2135638</td>
<td>28</td>
<td>1461.9</td>
<td>1463.93</td>
<td>-2.03</td>
<td>1</td>
</tr>
<tr>
<td>2135646</td>
<td>28</td>
<td>1472.9</td>
<td>1471.5</td>
<td>1.4</td>
<td>0</td>
</tr>
<tr>
<td>2135648</td>
<td>8</td>
<td>1477.4</td>
<td>1475.79</td>
<td>1.61</td>
<td>1</td>
</tr>
<tr>
<td>2135649</td>
<td>28</td>
<td>1468.9</td>
<td>1469.76</td>
<td>-0.86</td>
<td>0</td>
</tr>
<tr>
<td>2135651</td>
<td>8</td>
<td>1476.7</td>
<td>1476.31</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td>2135653</td>
<td>8</td>
<td>1474.4</td>
<td>1472.97</td>
<td>1.43</td>
<td>1</td>
</tr>
<tr>
<td>2135653</td>
<td>28</td>
<td>1470.3</td>
<td>1472.17</td>
<td>-1.87</td>
<td>1</td>
</tr>
<tr>
<td>2135658</td>
<td>8</td>
<td>1477.7</td>
<td>1478.5</td>
<td>-0.8</td>
<td>1</td>
</tr>
<tr>
<td>2135660</td>
<td>8</td>
<td>1468.6</td>
<td>1469.14</td>
<td>-0.54</td>
<td>1</td>
</tr>
<tr>
<td>2135662</td>
<td>8</td>
<td>1465.5</td>
<td>1470.18</td>
<td>-4.68</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135662</td>
<td>28</td>
<td>1459.5</td>
<td>1469.46</td>
<td>-9.96</td>
<td>1</td>
</tr>
<tr>
<td>2135663</td>
<td>8</td>
<td>1470.3</td>
<td>1469.79</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td>2135665</td>
<td>8</td>
<td>1472.5</td>
<td>1470.76</td>
<td>1.74</td>
<td>1</td>
</tr>
<tr>
<td>2135666</td>
<td>8</td>
<td>1471.2</td>
<td>1471.27</td>
<td>-0.07</td>
<td>1</td>
</tr>
<tr>
<td>2135667</td>
<td>8</td>
<td>1469.3</td>
<td>1470.28</td>
<td>-0.98</td>
<td>1</td>
</tr>
<tr>
<td>2135669</td>
<td>8</td>
<td>1468.2</td>
<td>1466.89</td>
<td>1.31</td>
<td>1</td>
</tr>
<tr>
<td>2135701</td>
<td>8</td>
<td>1501.56</td>
<td>1492.67</td>
<td>8.89</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>4</td>
<td>1519.14</td>
<td>1516.25</td>
<td>2.89</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>5</td>
<td>1518.02</td>
<td>1515.55</td>
<td>2.47</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>6</td>
<td>1517.1</td>
<td>1514.17</td>
<td>2.93</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>8</td>
<td>1508.43</td>
<td>1507.38</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>9</td>
<td>1511.28</td>
<td>1509.19</td>
<td>2.09</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>11</td>
<td>1507.98</td>
<td>1506.42</td>
<td>1.56</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>12</td>
<td>1507.98</td>
<td>1505.76</td>
<td>2.22</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>14</td>
<td>1505.89</td>
<td>1505.66</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>15</td>
<td>1503.97</td>
<td>1504.77</td>
<td>-0.8</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>16</td>
<td>1502.52</td>
<td>1502.89</td>
<td>-0.37</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>17</td>
<td>1500.53</td>
<td>1501.67</td>
<td>-1.14</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>18</td>
<td>1503.22</td>
<td>1504.07</td>
<td>-0.85</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>19</td>
<td>1502.98</td>
<td>1504.17</td>
<td>-1.19</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>20</td>
<td>1503.8</td>
<td>1506.42</td>
<td>-2.62</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>21</td>
<td>1504.86</td>
<td>1507.98</td>
<td>-3.12</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>22</td>
<td>1503.22</td>
<td>1506.49</td>
<td>-3.27</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>23</td>
<td>1506.71</td>
<td>1508.62</td>
<td>-1.91</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>24</td>
<td>1505.4</td>
<td>1510.35</td>
<td>-4.95</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>25</td>
<td>1508.42</td>
<td>1511.5</td>
<td>-3.08</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>27</td>
<td>1511.78</td>
<td>1512.76</td>
<td>-0.98</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>28</td>
<td>1508.8</td>
<td>1513.26</td>
<td>-4.46</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>29</td>
<td>1509.35</td>
<td>1512.46</td>
<td>-3.11</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>30</td>
<td>1509.1</td>
<td>1512.97</td>
<td>-3.87</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>42</td>
<td>1506.26</td>
<td>1510.26</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>54</td>
<td>1506.88</td>
<td>1510.61</td>
<td>-3.73</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135702</td>
<td>64</td>
<td>1511.25</td>
<td>1511.31</td>
<td>-0.06</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>93</td>
<td>1511.82</td>
<td>1512.59</td>
<td>-0.77</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>113</td>
<td>1511.21</td>
<td>1514.13</td>
<td>-2.92</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>125</td>
<td>1518.26</td>
<td>1515.02</td>
<td>3.24</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>137</td>
<td>1513.23</td>
<td>1514.23</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>149</td>
<td>1513.02</td>
<td>1513.26</td>
<td>-0.24</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>161</td>
<td>1514.33</td>
<td>1515.03</td>
<td>-0.7</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>173</td>
<td>1513.56</td>
<td>1515.08</td>
<td>-1.52</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>185</td>
<td>1516.8</td>
<td>1515.86</td>
<td>0.94</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>199</td>
<td>1515.34</td>
<td>1516.4</td>
<td>-1.06</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>213</td>
<td>1513.19</td>
<td>1513.43</td>
<td>-0.24</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>224</td>
<td>1512.82</td>
<td>1511.37</td>
<td>1.45</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>236</td>
<td>1510.55</td>
<td>1508.77</td>
<td>1.78</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>248</td>
<td>1509.34</td>
<td>1508.96</td>
<td>0.38</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>259</td>
<td>1503.86</td>
<td>1503.02</td>
<td>0.84</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>270</td>
<td>1501.9</td>
<td>1500.5</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>284</td>
<td>1499.99</td>
<td>1499.59</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>295</td>
<td>1498.81</td>
<td>1497.06</td>
<td>1.75</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>304</td>
<td>1493.25</td>
<td>1495.8</td>
<td>-2.55</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>307</td>
<td>1497.7</td>
<td>1497.48</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>310</td>
<td>1494.58</td>
<td>1494.79</td>
<td>-0.21</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>319</td>
<td>1495.4</td>
<td>1493.4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>321</td>
<td>1495.25</td>
<td>1494.62</td>
<td>0.63</td>
<td>1</td>
</tr>
<tr>
<td>2135702</td>
<td>334</td>
<td>1496.17</td>
<td>1492.6</td>
<td>3.57</td>
<td>1</td>
</tr>
<tr>
<td>2135703</td>
<td>6</td>
<td>1514.13</td>
<td>1513.76</td>
<td>0.37</td>
<td>1</td>
</tr>
<tr>
<td>2135703</td>
<td>7</td>
<td>1513.18</td>
<td>1511.62</td>
<td>1.56</td>
<td>1</td>
</tr>
<tr>
<td>2135703</td>
<td>8</td>
<td>1507.83</td>
<td>1507.21</td>
<td>0.62</td>
<td>1</td>
</tr>
<tr>
<td>2135703</td>
<td>9</td>
<td>1509.2</td>
<td>1508.64</td>
<td>0.56</td>
<td>1</td>
</tr>
<tr>
<td>2135703</td>
<td>11</td>
<td>1505.98</td>
<td>1506.31</td>
<td>-0.33</td>
<td>1</td>
</tr>
<tr>
<td>2135703</td>
<td>12</td>
<td>1506.14</td>
<td>1505.44</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>2135704</td>
<td>8</td>
<td>1501.8</td>
<td>1498.39</td>
<td>3.41</td>
<td>1</td>
</tr>
<tr>
<td>2135704</td>
<td>28</td>
<td>1497.9</td>
<td>1503.31</td>
<td>-5.41</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135705</td>
<td>8</td>
<td>1499</td>
<td>1498.76</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>2135706</td>
<td>8</td>
<td>1496.5</td>
<td>1495.09</td>
<td>1.41</td>
<td>1</td>
</tr>
<tr>
<td>2135711</td>
<td>8</td>
<td>1499.8</td>
<td>1500.89</td>
<td>-1.09</td>
<td>1</td>
</tr>
<tr>
<td>2135712</td>
<td>8</td>
<td>1491.7</td>
<td>1494.56</td>
<td>-2.86</td>
<td>1</td>
</tr>
<tr>
<td>2135718</td>
<td>8</td>
<td>1504.2</td>
<td>1504.53</td>
<td>-0.33</td>
<td>1</td>
</tr>
<tr>
<td>2135718</td>
<td>28</td>
<td>1502.7</td>
<td>1509.45</td>
<td>-6.75</td>
<td>1</td>
</tr>
<tr>
<td>2135720</td>
<td>8</td>
<td>1515.8</td>
<td>1502.22</td>
<td>13.58</td>
<td>1</td>
</tr>
<tr>
<td>2135721</td>
<td>8</td>
<td>1501.4</td>
<td>1495.71</td>
<td>5.69</td>
<td>1</td>
</tr>
<tr>
<td>2135721</td>
<td>28</td>
<td>1498.4</td>
<td>1501.69</td>
<td>-3.29</td>
<td>1</td>
</tr>
<tr>
<td>2135726</td>
<td>8</td>
<td>1508.9</td>
<td>1492.1</td>
<td>16.8</td>
<td>1</td>
</tr>
<tr>
<td>2135726</td>
<td>28</td>
<td>1510.4</td>
<td>1499.05</td>
<td>11.35</td>
<td>1</td>
</tr>
<tr>
<td>2135727</td>
<td>8</td>
<td>1513</td>
<td>1512.88</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>2135727</td>
<td>28</td>
<td>1515</td>
<td>1516.15</td>
<td>-1.15</td>
<td>1</td>
</tr>
<tr>
<td>2135728</td>
<td>8</td>
<td>1511.1</td>
<td>1510.09</td>
<td>1.01</td>
<td>1</td>
</tr>
<tr>
<td>2135730</td>
<td>8</td>
<td>1513</td>
<td>1516.49</td>
<td>-3.49</td>
<td>1</td>
</tr>
<tr>
<td>2135731</td>
<td>8</td>
<td>1517.3</td>
<td>1517.07</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>2135731</td>
<td>28</td>
<td>1521</td>
<td>1522.92</td>
<td>-1.92</td>
<td>1</td>
</tr>
<tr>
<td>2135733</td>
<td>8</td>
<td>1513.4</td>
<td>1512.7</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>2135734</td>
<td>28</td>
<td>1508</td>
<td>1508.39</td>
<td>-0.39</td>
<td>1</td>
</tr>
<tr>
<td>2135736</td>
<td>8</td>
<td>1498.7</td>
<td>1498.16</td>
<td>0.54</td>
<td>1</td>
</tr>
<tr>
<td>2135737</td>
<td>8</td>
<td>1503.2</td>
<td>1501.16</td>
<td>2.04</td>
<td>1</td>
</tr>
<tr>
<td>2135738</td>
<td>8</td>
<td>1501.3</td>
<td>1498.35</td>
<td>2.95</td>
<td>1</td>
</tr>
<tr>
<td>2135739</td>
<td>8</td>
<td>1498.3</td>
<td>1496.78</td>
<td>1.52</td>
<td>1</td>
</tr>
<tr>
<td>2135740</td>
<td>8</td>
<td>1499.7</td>
<td>1497.71</td>
<td>1.99</td>
<td>1</td>
</tr>
<tr>
<td>2135741</td>
<td>8</td>
<td>1504.1</td>
<td>1504.59</td>
<td>-0.49</td>
<td>1</td>
</tr>
<tr>
<td>2135742</td>
<td>8</td>
<td>1503.7</td>
<td>1504.53</td>
<td>-0.83</td>
<td>1</td>
</tr>
<tr>
<td>2135746</td>
<td>28</td>
<td>1500.8</td>
<td>1498.68</td>
<td>2.12</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>8</td>
<td>1496.1</td>
<td>1487.48</td>
<td>8.62</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>9</td>
<td>1497.6</td>
<td>1491.43</td>
<td>6.17</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>11</td>
<td>1493.6</td>
<td>1488.65</td>
<td>4.95</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>12</td>
<td>1494.87</td>
<td>1489.35</td>
<td>5.52</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>15</td>
<td>1493.53</td>
<td>1489.57</td>
<td>3.96</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2135801</td>
<td>16</td>
<td>1491.72</td>
<td>1488.01</td>
<td>3.71</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>17</td>
<td>1489.42</td>
<td>1487.56</td>
<td>1.86</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>19</td>
<td>1484.56</td>
<td>1491.01</td>
<td>-6.45</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>20</td>
<td>1492.55</td>
<td>1493.4</td>
<td>-0.85</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>21</td>
<td>1493.83</td>
<td>1494.3</td>
<td>-0.47</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>22</td>
<td>1492.34</td>
<td>1492.1</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>23</td>
<td>1492.91</td>
<td>1494.44</td>
<td>-1.53</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>24</td>
<td>1496.78</td>
<td>1495.6</td>
<td>1.18</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>25</td>
<td>1498.87</td>
<td>1496.02</td>
<td>2.85</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>26</td>
<td>1493.6</td>
<td>1494.76</td>
<td>-1.16</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>27</td>
<td>1496.69</td>
<td>1496.32</td>
<td>0.37</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>28</td>
<td>1494.3</td>
<td>1496.15</td>
<td>-1.85</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>29</td>
<td>1493.9</td>
<td>1494.88</td>
<td>-0.98</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>30</td>
<td>1493.56</td>
<td>1495.25</td>
<td>-1.69</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>42</td>
<td>1489.9</td>
<td>1494.31</td>
<td>-4.41</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>64</td>
<td>1492.7</td>
<td>1495.66</td>
<td>-2.96</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>77</td>
<td>1493</td>
<td>1496.23</td>
<td>-3.23</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>113</td>
<td>1488.15</td>
<td>1497.76</td>
<td>-9.61</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>125</td>
<td>1496.47</td>
<td>1498.26</td>
<td>-1.79</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>137</td>
<td>1490.54</td>
<td>1496.98</td>
<td>-6.44</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>149</td>
<td>1490.81</td>
<td>1495.97</td>
<td>-5.16</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>161</td>
<td>1494.42</td>
<td>1497.81</td>
<td>-3.39</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>173</td>
<td>1495.5</td>
<td>1497.5</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>185</td>
<td>1495.57</td>
<td>1498.11</td>
<td>-2.54</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>199</td>
<td>1495.92</td>
<td>1498.25</td>
<td>-2.33</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>213</td>
<td>1492.85</td>
<td>1495.69</td>
<td>-2.84</td>
<td>1</td>
</tr>
<tr>
<td>2135801</td>
<td>224</td>
<td>1493.43</td>
<td>1494.34</td>
<td>-0.91</td>
<td>1</td>
</tr>
<tr>
<td>2135804</td>
<td>8</td>
<td>1492.8</td>
<td>1490.52</td>
<td>2.28</td>
<td>1</td>
</tr>
<tr>
<td>2135806</td>
<td>8</td>
<td>1490.6</td>
<td>1485.48</td>
<td>5.12</td>
<td>1</td>
</tr>
<tr>
<td>2135808</td>
<td>8</td>
<td>1486.5</td>
<td>1485.87</td>
<td>0.63</td>
<td>1</td>
</tr>
<tr>
<td>2135809</td>
<td>8</td>
<td>1486.7</td>
<td>1486.09</td>
<td>0.61</td>
<td>1</td>
</tr>
<tr>
<td>2135810</td>
<td>28</td>
<td>1485.2</td>
<td>1487.39</td>
<td>-2.19</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2135811</td>
<td>8</td>
<td>1486.3</td>
<td>1486.92</td>
<td>-0.62</td>
<td>1</td>
</tr>
<tr>
<td>2135813</td>
<td>8</td>
<td>1487.1</td>
<td>1481.32</td>
<td>5.78</td>
<td>1</td>
</tr>
<tr>
<td>2135813</td>
<td>28</td>
<td>1478.3</td>
<td>1481.49</td>
<td>-3.19</td>
<td>1</td>
</tr>
<tr>
<td>2135814</td>
<td>8</td>
<td>1503</td>
<td>1491.39</td>
<td>11.61</td>
<td>1</td>
</tr>
<tr>
<td>2135815</td>
<td>8</td>
<td>1501.5</td>
<td>1490.53</td>
<td>10.97</td>
<td>1</td>
</tr>
<tr>
<td>2135816</td>
<td>8</td>
<td>1496</td>
<td>1491.13</td>
<td>4.87</td>
<td>1</td>
</tr>
<tr>
<td>2135817</td>
<td>8</td>
<td>1500.4</td>
<td>1491.64</td>
<td>8.76</td>
<td>1</td>
</tr>
<tr>
<td>2135817</td>
<td>28</td>
<td>1497.8</td>
<td>1498.6</td>
<td>-0.8</td>
<td>1</td>
</tr>
<tr>
<td>2135819</td>
<td>8</td>
<td>1495.5</td>
<td>1492.8</td>
<td>2.7</td>
<td>1</td>
</tr>
<tr>
<td>2135819</td>
<td>28</td>
<td>1490.5</td>
<td>1497.03</td>
<td>-6.53</td>
<td>1</td>
</tr>
<tr>
<td>2135822</td>
<td>8</td>
<td>1496.2</td>
<td>1488.36</td>
<td>7.84</td>
<td>1</td>
</tr>
<tr>
<td>2135823</td>
<td>8</td>
<td>1493.1</td>
<td>1488.4</td>
<td>4.7</td>
<td>1</td>
</tr>
<tr>
<td>2135824</td>
<td>8</td>
<td>1495.5</td>
<td>1490.81</td>
<td>4.69</td>
<td>1</td>
</tr>
<tr>
<td>2135825</td>
<td>8</td>
<td>1494.4</td>
<td>1491.38</td>
<td>3.02</td>
<td>1</td>
</tr>
<tr>
<td>2135826</td>
<td>8</td>
<td>1486.9</td>
<td>1486.13</td>
<td>0.77</td>
<td>1</td>
</tr>
<tr>
<td>2135827</td>
<td>8</td>
<td>1487.1</td>
<td>1491.24</td>
<td>-4.14</td>
<td>1</td>
</tr>
<tr>
<td>2135827</td>
<td>28</td>
<td>1486.1</td>
<td>1498.01</td>
<td>-11.91</td>
<td>1</td>
</tr>
<tr>
<td>2135829</td>
<td>28</td>
<td>1482.8</td>
<td>1482.27</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>2135903</td>
<td>8</td>
<td>1479.1</td>
<td>1479.41</td>
<td>-0.31</td>
<td>1</td>
</tr>
<tr>
<td>2135903</td>
<td>28</td>
<td>1477.1</td>
<td>1478.37</td>
<td>-1.27</td>
<td>1</td>
</tr>
<tr>
<td>2135905</td>
<td>8</td>
<td>1475.9</td>
<td>1476.66</td>
<td>-0.76</td>
<td>1</td>
</tr>
<tr>
<td>2135906</td>
<td>8</td>
<td>1474.6</td>
<td>1475.52</td>
<td>-0.92</td>
<td>1</td>
</tr>
<tr>
<td>2135906</td>
<td>28</td>
<td>1475.3</td>
<td>1475.61</td>
<td>-0.31</td>
<td>1</td>
</tr>
<tr>
<td>2135907</td>
<td>8</td>
<td>1474.5</td>
<td>1472.57</td>
<td>1.93</td>
<td>1</td>
</tr>
<tr>
<td>2135909</td>
<td>8</td>
<td>1479.9</td>
<td>1479.86</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>2135910</td>
<td>8</td>
<td>1480.2</td>
<td>1479.93</td>
<td>0.27</td>
<td>1</td>
</tr>
<tr>
<td>2135910</td>
<td>28</td>
<td>1478.4</td>
<td>1479.12</td>
<td>-0.72</td>
<td>1</td>
</tr>
<tr>
<td>2135913</td>
<td>8</td>
<td>1483.8</td>
<td>1480.21</td>
<td>3.59</td>
<td>1</td>
</tr>
<tr>
<td>2135916</td>
<td>28</td>
<td>1477.3</td>
<td>1480.72</td>
<td>-3.42</td>
<td>1</td>
</tr>
<tr>
<td>2136103</td>
<td>27</td>
<td>1449.22</td>
<td>1447.06</td>
<td>2.16</td>
<td>1</td>
</tr>
<tr>
<td>2136103</td>
<td>28</td>
<td>1448.36</td>
<td>1447.21</td>
<td>1.15</td>
<td>1</td>
</tr>
<tr>
<td>2136103</td>
<td>29</td>
<td>1446.96</td>
<td>1446.75</td>
<td>0.21</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2136103</td>
<td>30</td>
<td>1446.37</td>
<td>1446.84</td>
<td>-0.47</td>
<td>1</td>
</tr>
<tr>
<td>2136103</td>
<td>42</td>
<td>1446.33</td>
<td>1445.24</td>
<td>1.09</td>
<td>1</td>
</tr>
<tr>
<td>2136103</td>
<td>54</td>
<td>1445.92</td>
<td>1445.11</td>
<td>0.81</td>
<td>1</td>
</tr>
<tr>
<td>2136103</td>
<td>65</td>
<td>1446.35</td>
<td>1445.59</td>
<td>0.76</td>
<td>1</td>
</tr>
<tr>
<td>2136103</td>
<td>93</td>
<td>1445.66</td>
<td>1445.52</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2136103</td>
<td>113</td>
<td>1446.1</td>
<td>1446.89</td>
<td>-0.79</td>
<td>1</td>
</tr>
<tr>
<td>2136104</td>
<td>8</td>
<td>1448.7</td>
<td>1444.3</td>
<td>4.4</td>
<td>1</td>
</tr>
<tr>
<td>2136104</td>
<td>28</td>
<td>1440.4</td>
<td>1440.35</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>2136109</td>
<td>8</td>
<td>1454.6</td>
<td>1455.21</td>
<td>-0.61</td>
<td>1</td>
</tr>
<tr>
<td>2136112</td>
<td>8</td>
<td>1454.9</td>
<td>1454.42</td>
<td>0.48</td>
<td>1</td>
</tr>
<tr>
<td>2136120</td>
<td>8</td>
<td>1444.9</td>
<td>1443.45</td>
<td>1.45</td>
<td>1</td>
</tr>
<tr>
<td>2136120</td>
<td>28</td>
<td>1439.5</td>
<td>1439.64</td>
<td>-0.14</td>
<td>1</td>
</tr>
<tr>
<td>2136121</td>
<td>8</td>
<td>1443.2</td>
<td>1442.85</td>
<td>0.35</td>
<td>1</td>
</tr>
<tr>
<td>2136122</td>
<td>8</td>
<td>1438</td>
<td>1439.17</td>
<td>-1.17</td>
<td>1</td>
</tr>
<tr>
<td>2136122</td>
<td>28</td>
<td>1442</td>
<td>1438.19</td>
<td>3.81</td>
<td>1</td>
</tr>
<tr>
<td>2136123</td>
<td>8</td>
<td>1453.4</td>
<td>1457.88</td>
<td>-4.48</td>
<td>1</td>
</tr>
<tr>
<td>2136123</td>
<td>28</td>
<td>1449.6</td>
<td>1453.6</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>2136124</td>
<td>28</td>
<td>1445.3</td>
<td>1445.01</td>
<td>0.29</td>
<td>1</td>
</tr>
<tr>
<td>2136128</td>
<td>28</td>
<td>1449</td>
<td>1447.85</td>
<td>1.15</td>
<td>0</td>
</tr>
<tr>
<td>2136129</td>
<td>28</td>
<td>1447.2</td>
<td>1445.37</td>
<td>1.83</td>
<td>0</td>
</tr>
<tr>
<td>2136131</td>
<td>28</td>
<td>1452</td>
<td>1449.68</td>
<td>2.32</td>
<td>1</td>
</tr>
<tr>
<td>2136133</td>
<td>28</td>
<td>1440.6</td>
<td>1441.12</td>
<td>-0.52</td>
<td>1</td>
</tr>
<tr>
<td>2136145</td>
<td>28</td>
<td>1453.5</td>
<td>1451.97</td>
<td>1.53</td>
<td>0</td>
</tr>
<tr>
<td>2136201</td>
<td>4</td>
<td>1437.12</td>
<td>1437.55</td>
<td>-0.43</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>5</td>
<td>1435.4</td>
<td>1436.66</td>
<td>-1.26</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>6</td>
<td>1434.93</td>
<td>1435.61</td>
<td>-0.68</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>8</td>
<td>1431.84</td>
<td>1431.91</td>
<td>-0.07</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>9</td>
<td>1430.22</td>
<td>1432.29</td>
<td>-2.07</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>11</td>
<td>1431.98</td>
<td>1430.54</td>
<td>1.44</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>12</td>
<td>1433.37</td>
<td>1429.7</td>
<td>3.67</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>14</td>
<td>1433.28</td>
<td>1429.16</td>
<td>4.12</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>15</td>
<td>1432.46</td>
<td>1428.18</td>
<td>4.28</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2136201</td>
<td>16</td>
<td>1430.41</td>
<td>1426.91</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>17</td>
<td>1429.2</td>
<td>1425.82</td>
<td>3.38</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>18</td>
<td>1429.72</td>
<td>1426.22</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>19</td>
<td>1432.39</td>
<td>1425.89</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>20</td>
<td>1429.92</td>
<td>1426.54</td>
<td>3.38</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>21</td>
<td>1429.49</td>
<td>1427.13</td>
<td>2.36</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>22</td>
<td>1427.57</td>
<td>1426.17</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>23</td>
<td>1426.46</td>
<td>1426.78</td>
<td>-0.32</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>24</td>
<td>1427.94</td>
<td>1427.35</td>
<td>0.59</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>25</td>
<td>1428.04</td>
<td>1427.64</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>26</td>
<td>1426.6</td>
<td>1427.33</td>
<td>-0.73</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>27</td>
<td>1428.23</td>
<td>1427.8</td>
<td>0.43</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>28</td>
<td>1426.75</td>
<td>1427.85</td>
<td>-1.1</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>29</td>
<td>1427.55</td>
<td>1427.31</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>30</td>
<td>1427.46</td>
<td>1427.36</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>42</td>
<td>1425.71</td>
<td>1425.79</td>
<td>-0.08</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>54</td>
<td>1424.68</td>
<td>1425.91</td>
<td>-1.23</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>65</td>
<td>1422.72</td>
<td>1426.42</td>
<td>-3.7</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>77</td>
<td>1424.09</td>
<td>1426.64</td>
<td>-2.55</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>101</td>
<td>1424.85</td>
<td>1426.9</td>
<td>-2.05</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>113</td>
<td>1425.04</td>
<td>1427.62</td>
<td>-2.58</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>125</td>
<td>1427.6</td>
<td>1428.01</td>
<td>-0.41</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>137</td>
<td>1425.35</td>
<td>1427.75</td>
<td>-2.4</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>149</td>
<td>1425.22</td>
<td>1427.38</td>
<td>-2.16</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>161</td>
<td>1426.73</td>
<td>1428.17</td>
<td>-1.44</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>174</td>
<td>1426.82</td>
<td>1428.34</td>
<td>-1.52</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>187</td>
<td>1427.37</td>
<td>1429.05</td>
<td>-1.68</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>198</td>
<td>1429.6</td>
<td>1428.95</td>
<td>0.65</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>211</td>
<td>1427.25</td>
<td>1427.54</td>
<td>-0.29</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>224</td>
<td>1427.48</td>
<td>1426.74</td>
<td>0.74</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>236</td>
<td>1431.03</td>
<td>1425.45</td>
<td>5.58</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>248</td>
<td>1427.94</td>
<td>1425.47</td>
<td>2.47</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2136201</td>
<td>259</td>
<td>1425.8</td>
<td>1422.82</td>
<td>2.98</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>283</td>
<td>1420.86</td>
<td>1420.36</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>307</td>
<td>1421.55</td>
<td>1419.03</td>
<td>2.52</td>
<td>1</td>
</tr>
<tr>
<td>2136201</td>
<td>319</td>
<td>1420.1</td>
<td>1416.88</td>
<td>3.22</td>
<td>1</td>
</tr>
<tr>
<td>2136203</td>
<td>8</td>
<td>1443.2</td>
<td>1442.4</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>2136205</td>
<td>28</td>
<td>1439.4</td>
<td>1440.44</td>
<td>-1.04</td>
<td>1</td>
</tr>
<tr>
<td>2136206</td>
<td>28</td>
<td>1439.9</td>
<td>1439.52</td>
<td>0.38</td>
<td>1</td>
</tr>
<tr>
<td>2136208</td>
<td>8</td>
<td>1438.8</td>
<td>1440.95</td>
<td>-2.15</td>
<td>1</td>
</tr>
<tr>
<td>2136209</td>
<td>28</td>
<td>1432.4</td>
<td>1433.88</td>
<td>-1.48</td>
<td>1</td>
</tr>
<tr>
<td>2136210</td>
<td>8</td>
<td>1439.8</td>
<td>1437.12</td>
<td>2.68</td>
<td>1</td>
</tr>
<tr>
<td>2136212</td>
<td>28</td>
<td>1437.9</td>
<td>1438.29</td>
<td>-0.39</td>
<td>0</td>
</tr>
<tr>
<td>2136214</td>
<td>8</td>
<td>1439.3</td>
<td>1437.8</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>2136214</td>
<td>28</td>
<td>1434.1</td>
<td>1433.78</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>2136216</td>
<td>8</td>
<td>1441.8</td>
<td>1442.4</td>
<td>-0.6</td>
<td>1</td>
</tr>
<tr>
<td>2136226</td>
<td>8</td>
<td>1446.4</td>
<td>1444.8</td>
<td>1.6</td>
<td>1</td>
</tr>
<tr>
<td>2136227</td>
<td>28</td>
<td>1438.8</td>
<td>1438.28</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>2136229</td>
<td>8</td>
<td>1434.5</td>
<td>1432.22</td>
<td>2.28</td>
<td>1</td>
</tr>
<tr>
<td>2136230</td>
<td>8</td>
<td>1441.7</td>
<td>1443.21</td>
<td>-1.51</td>
<td>1</td>
</tr>
<tr>
<td>2136231</td>
<td>8</td>
<td>1442.1</td>
<td>1442.38</td>
<td>-0.28</td>
<td>1</td>
</tr>
<tr>
<td>2136240</td>
<td>28</td>
<td>1436.4</td>
<td>1438.04</td>
<td>-1.64</td>
<td>0</td>
</tr>
<tr>
<td>2136242</td>
<td>28</td>
<td>1433.3</td>
<td>1431.23</td>
<td>2.07</td>
<td>0</td>
</tr>
<tr>
<td>2136301</td>
<td>8</td>
<td>1425.96</td>
<td>1431.4</td>
<td>-5.44</td>
<td>1</td>
</tr>
<tr>
<td>2136301</td>
<td>9</td>
<td>1430.84</td>
<td>1431.41</td>
<td>-0.57</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>4</td>
<td>1435.28</td>
<td>1435.92</td>
<td>-0.64</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>5</td>
<td>1434.36</td>
<td>1434.91</td>
<td>-0.55</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>6</td>
<td>1434.11</td>
<td>1433.71</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>7</td>
<td>1433.14</td>
<td>1432.81</td>
<td>0.33</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>8</td>
<td>1429.1</td>
<td>1430.83</td>
<td>-1.73</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>9</td>
<td>1431.89</td>
<td>1430.89</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>11</td>
<td>1431.27</td>
<td>1429.95</td>
<td>1.32</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>12</td>
<td>1432.04</td>
<td>1429.36</td>
<td>2.68</td>
<td>1</td>
</tr>
<tr>
<td>2136302</td>
<td>14</td>
<td>1432.8</td>
<td>1429.23</td>
<td>3.57</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2136303</td>
<td>4</td>
<td>1429.4</td>
<td>1432.39</td>
<td>-2.99</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>5</td>
<td>1429.49</td>
<td>1431.71</td>
<td>-2.22</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>6</td>
<td>1431.32</td>
<td>1430.65</td>
<td>0.67</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>7</td>
<td>1430.2</td>
<td>1429.97</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>8</td>
<td>1424.6</td>
<td>1428.35</td>
<td>-3.75</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>9</td>
<td>1428.14</td>
<td>1428.4</td>
<td>-0.26</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>11</td>
<td>1427.63</td>
<td>1427.64</td>
<td>-0.01</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>12</td>
<td>1429.28</td>
<td>1427.3</td>
<td>1.98</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>14</td>
<td>1429.98</td>
<td>1427.3</td>
<td>2.68</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>15</td>
<td>1428.01</td>
<td>1426.65</td>
<td>1.36</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>16</td>
<td>1426.35</td>
<td>1426.05</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>17</td>
<td>1423.96</td>
<td>1425.41</td>
<td>-1.45</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>18</td>
<td>1426.24</td>
<td>1425.08</td>
<td>1.16</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>19</td>
<td>1425.99</td>
<td>1424.58</td>
<td>1.41</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>20</td>
<td>1426.9</td>
<td>1424.72</td>
<td>2.18</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>22</td>
<td>1425.45</td>
<td>1424.48</td>
<td>0.97</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>23</td>
<td>1425.22</td>
<td>1424.73</td>
<td>0.49</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>24</td>
<td>1426.57</td>
<td>1425.01</td>
<td>1.56</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>25</td>
<td>1428.12</td>
<td>1425.13</td>
<td>2.99</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>26</td>
<td>1425.38</td>
<td>1425.15</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>27</td>
<td>1427.07</td>
<td>1425.36</td>
<td>1.71</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>28</td>
<td>1425.59</td>
<td>1425.37</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>29</td>
<td>1425.51</td>
<td>1424.95</td>
<td>0.56</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>42</td>
<td>1424.38</td>
<td>1424.57</td>
<td>-0.19</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>54</td>
<td>1424.24</td>
<td>1424.38</td>
<td>-0.14</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>93</td>
<td>1423.28</td>
<td>1424.35</td>
<td>-1.07</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>113</td>
<td>1422.76</td>
<td>1425.39</td>
<td>-2.63</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>125</td>
<td>1423.98</td>
<td>1425.72</td>
<td>-1.74</td>
<td>1</td>
</tr>
<tr>
<td>2136303</td>
<td>137</td>
<td>1422.63</td>
<td>1425.62</td>
<td>-2.99</td>
<td>1</td>
</tr>
<tr>
<td>2136307</td>
<td>8</td>
<td>1436.4</td>
<td>1436.36</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>2136311</td>
<td>28</td>
<td>1425.5</td>
<td>1428.07</td>
<td>-2.57</td>
<td>1</td>
</tr>
<tr>
<td>2136313</td>
<td>8</td>
<td>1433.5</td>
<td>1431.42</td>
<td>2.08</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2136313</td>
<td>28</td>
<td>1430.6</td>
<td>1427.71</td>
<td>2.89</td>
<td>1</td>
</tr>
<tr>
<td>2136314</td>
<td>8</td>
<td>1433.5</td>
<td>1431.48</td>
<td>2.02</td>
<td>1</td>
</tr>
<tr>
<td>2136314</td>
<td>28</td>
<td>1429.6</td>
<td>1428.19</td>
<td>1.41</td>
<td>1</td>
</tr>
<tr>
<td>2136319</td>
<td>8</td>
<td>1428.9</td>
<td>1429.98</td>
<td>-1.08</td>
<td>1</td>
</tr>
<tr>
<td>2136322</td>
<td>8</td>
<td>1427.6</td>
<td>1428.35</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2136322</td>
<td>28</td>
<td>1429</td>
<td>1427.09</td>
<td>1.91</td>
<td>1</td>
</tr>
<tr>
<td>2136323</td>
<td>8</td>
<td>1427.9</td>
<td>1427.53</td>
<td>0.37</td>
<td>1</td>
</tr>
<tr>
<td>2136328</td>
<td>8</td>
<td>1427.5</td>
<td>1427.45</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>2136329</td>
<td>28</td>
<td>1409.8</td>
<td>1404.42</td>
<td>5.38</td>
<td>0</td>
</tr>
<tr>
<td>2136330</td>
<td>28</td>
<td>1435.4</td>
<td>1426.19</td>
<td>9.21</td>
<td>0</td>
</tr>
<tr>
<td>2136401</td>
<td>4</td>
<td>1464.86</td>
<td>1469.68</td>
<td>-4.82</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>5</td>
<td>1465.86</td>
<td>1468.26</td>
<td>-2.4</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>6</td>
<td>1465.86</td>
<td>1466.77</td>
<td>-0.91</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>7</td>
<td>1468.14</td>
<td>1464.86</td>
<td>3.28</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>9</td>
<td>1465.52</td>
<td>1461.78</td>
<td>3.74</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>11</td>
<td>1462.39</td>
<td>1459.31</td>
<td>3.08</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>12</td>
<td>1464.79</td>
<td>1458.09</td>
<td>6.7</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>16</td>
<td>1452.1</td>
<td>1454.17</td>
<td>-2.07</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>17</td>
<td>1451.92</td>
<td>1452.65</td>
<td>-0.73</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>18</td>
<td>1452.71</td>
<td>1453.32</td>
<td>-0.61</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>20</td>
<td>1453.72</td>
<td>1454</td>
<td>-0.28</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>21</td>
<td>1457.4</td>
<td>1454.9</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>22</td>
<td>1452.38</td>
<td>1453.74</td>
<td>-1.36</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>23</td>
<td>1451.18</td>
<td>1454.66</td>
<td>-3.48</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>24</td>
<td>1454.18</td>
<td>1455.57</td>
<td>-1.39</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>25</td>
<td>1455.2</td>
<td>1456.12</td>
<td>-0.92</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>26</td>
<td>1452.45</td>
<td>1455.79</td>
<td>-3.34</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>27</td>
<td>1452.01</td>
<td>1456.55</td>
<td>-4.54</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>28</td>
<td>1451.4</td>
<td>1456.75</td>
<td>-5.35</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>42</td>
<td>1449.95</td>
<td>1454.04</td>
<td>-4.09</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>54</td>
<td>1449.54</td>
<td>1454.29</td>
<td>-4.75</td>
<td>1</td>
</tr>
<tr>
<td>2136401</td>
<td>65</td>
<td>1449.85</td>
<td>1454.98</td>
<td>-5.13</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2136402</td>
<td>8</td>
<td>1463.3</td>
<td>1461.1</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>2136409</td>
<td>28</td>
<td>1452.3</td>
<td>1454.42</td>
<td>-2.12</td>
<td>0</td>
</tr>
<tr>
<td>2136410</td>
<td>28</td>
<td>1443.6</td>
<td>1445.24</td>
<td>-1.64</td>
<td>1</td>
</tr>
<tr>
<td>2136415</td>
<td>8</td>
<td>1458.7</td>
<td>1459.08</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>2136415</td>
<td>28</td>
<td>1453.7</td>
<td>1455.26</td>
<td>-1.56</td>
<td>1</td>
</tr>
<tr>
<td>2136416</td>
<td>28</td>
<td>1449.4</td>
<td>1457.29</td>
<td>-7.89</td>
<td>0</td>
</tr>
<tr>
<td>2136417</td>
<td>8</td>
<td>1462.3</td>
<td>1460.66</td>
<td>1.64</td>
<td>1</td>
</tr>
<tr>
<td>2136419</td>
<td>8</td>
<td>1461.5</td>
<td>1458.93</td>
<td>2.57</td>
<td>1</td>
</tr>
<tr>
<td>2136419</td>
<td>28</td>
<td>1454.5</td>
<td>1454.96</td>
<td>-0.46</td>
<td>1</td>
</tr>
<tr>
<td>2136420</td>
<td>8</td>
<td>1461.4</td>
<td>1459.82</td>
<td>1.58</td>
<td>1</td>
</tr>
<tr>
<td>2136421</td>
<td>28</td>
<td>1451.6</td>
<td>1457.04</td>
<td>-5.44</td>
<td>0</td>
</tr>
<tr>
<td>2136428</td>
<td>8</td>
<td>1458.9</td>
<td>1459.4</td>
<td>-0.5</td>
<td>1</td>
</tr>
<tr>
<td>2136429</td>
<td>8</td>
<td>1463</td>
<td>1465.61</td>
<td>-2.61</td>
<td>1</td>
</tr>
<tr>
<td>2136430</td>
<td>8</td>
<td>1464.7</td>
<td>1462.53</td>
<td>2.17</td>
<td>1</td>
</tr>
<tr>
<td>2136430</td>
<td>28</td>
<td>1459.3</td>
<td>1459.55</td>
<td>-0.25</td>
<td>1</td>
</tr>
<tr>
<td>2136431</td>
<td>8</td>
<td>1454.7</td>
<td>1455.33</td>
<td>-0.63</td>
<td>1</td>
</tr>
<tr>
<td>2136431</td>
<td>28</td>
<td>1448.9</td>
<td>1450.91</td>
<td>-2.01</td>
<td>1</td>
</tr>
<tr>
<td>2136434</td>
<td>28</td>
<td>1446.4</td>
<td>1444.67</td>
<td>1.73</td>
<td>0</td>
</tr>
<tr>
<td>2136438</td>
<td>28</td>
<td>1445.9</td>
<td>1446.78</td>
<td>-0.88</td>
<td>1</td>
</tr>
<tr>
<td>2136440</td>
<td>8</td>
<td>1454.8</td>
<td>1452.05</td>
<td>2.75</td>
<td>1</td>
</tr>
<tr>
<td>2136442</td>
<td>28</td>
<td>1454.7</td>
<td>1456.45</td>
<td>-1.75</td>
<td>0</td>
</tr>
<tr>
<td>2136443</td>
<td>28</td>
<td>1457.3</td>
<td>1459.68</td>
<td>-2.38</td>
<td>0</td>
</tr>
<tr>
<td>2136444</td>
<td>28</td>
<td>1451.9</td>
<td>1454.85</td>
<td>-2.95</td>
<td>0</td>
</tr>
<tr>
<td>2136501</td>
<td>5</td>
<td>1456.61</td>
<td>1452.82</td>
<td>3.79</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>6</td>
<td>1454.2</td>
<td>1451.64</td>
<td>2.56</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>7</td>
<td>1452.62</td>
<td>1449.9</td>
<td>2.72</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>8</td>
<td>1445.46</td>
<td>1446.76</td>
<td>-1.3</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>9</td>
<td>1450.2</td>
<td>1447.65</td>
<td>2.55</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>11</td>
<td>1449.39</td>
<td>1444.98</td>
<td>4.41</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>12</td>
<td>1450.27</td>
<td>1444.16</td>
<td>6.11</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>14</td>
<td>1451.36</td>
<td>1443.36</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>15</td>
<td>1447.65</td>
<td>1442.29</td>
<td>5.36</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2136501</td>
<td>16</td>
<td>1445.79</td>
<td>1440.62</td>
<td>5.17</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>17</td>
<td>1443.16</td>
<td>1439.33</td>
<td>3.83</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>18</td>
<td>1442.94</td>
<td>1440.22</td>
<td>2.72</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>19</td>
<td>1442.58</td>
<td>1439.68</td>
<td>2.9</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>20</td>
<td>1444.16</td>
<td>1440.63</td>
<td>3.53</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>21</td>
<td>1444.94</td>
<td>1441.3</td>
<td>3.64</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>22</td>
<td>1441.57</td>
<td>1439.93</td>
<td>1.64</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>23</td>
<td>1441.82</td>
<td>1440.91</td>
<td>0.91</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>24</td>
<td>1445.22</td>
<td>1441.65</td>
<td>3.57</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>25</td>
<td>1444.61</td>
<td>1441.99</td>
<td>2.62</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>26</td>
<td>1440.15</td>
<td>1441.47</td>
<td>-1.32</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>27</td>
<td>1444.27</td>
<td>1442.24</td>
<td>2.03</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>28</td>
<td>1440.58</td>
<td>1442.28</td>
<td>-1.7</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>29</td>
<td>1441.72</td>
<td>1441.54</td>
<td>0.18</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>30</td>
<td>1439.4</td>
<td>1441.67</td>
<td>-2.27</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>42</td>
<td>1438.16</td>
<td>1440.04</td>
<td>-1.88</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>54</td>
<td>1437.21</td>
<td>1440.26</td>
<td>-3.05</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>65</td>
<td>1437</td>
<td>1440.84</td>
<td>-3.84</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>77</td>
<td>1438.83</td>
<td>1441.05</td>
<td>-2.22</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>101</td>
<td>1435.76</td>
<td>1441.48</td>
<td>-5.72</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>113</td>
<td>1436.45</td>
<td>1442.34</td>
<td>-5.89</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>125</td>
<td>1437.81</td>
<td>1442.88</td>
<td>-5.07</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>137</td>
<td>1435.1</td>
<td>1442.48</td>
<td>-7.38</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>149</td>
<td>1436.37</td>
<td>1442.01</td>
<td>-5.64</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>161</td>
<td>1437.91</td>
<td>1443.16</td>
<td>-5.25</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>174</td>
<td>1438.36</td>
<td>1443.31</td>
<td>-4.95</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>187</td>
<td>1438.83</td>
<td>1444.28</td>
<td>-5.45</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>198</td>
<td>1444.3</td>
<td>1444.13</td>
<td>0.17</td>
<td>1</td>
</tr>
<tr>
<td>2136501</td>
<td>211</td>
<td>1439.9</td>
<td>1442.3</td>
<td>-2.4</td>
<td>1</td>
</tr>
<tr>
<td>2136502</td>
<td>8</td>
<td>1447.94</td>
<td>1446.69</td>
<td>1.25</td>
<td>1</td>
</tr>
<tr>
<td>2136502</td>
<td>11</td>
<td>1449.75</td>
<td>1444.91</td>
<td>4.84</td>
<td>1</td>
</tr>
<tr>
<td>2136502</td>
<td>14</td>
<td>1451.5</td>
<td>1443.3</td>
<td>8.2</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2136502</td>
<td>15</td>
<td>1448.64</td>
<td>1442.26</td>
<td>6.38</td>
<td>1</td>
</tr>
<tr>
<td>2136505</td>
<td>28</td>
<td>1438.1</td>
<td>1442.47</td>
<td>-4.37</td>
<td>1</td>
</tr>
<tr>
<td>2136508</td>
<td>8</td>
<td>1444.7</td>
<td>1447.19</td>
<td>-2.49</td>
<td>1</td>
</tr>
<tr>
<td>2136508</td>
<td>28</td>
<td>1442.9</td>
<td>1442.68</td>
<td>0.22</td>
<td>1</td>
</tr>
<tr>
<td>2136509</td>
<td>8</td>
<td>1441.8</td>
<td>1446.76</td>
<td>-4.96</td>
<td>1</td>
</tr>
<tr>
<td>2136509</td>
<td>28</td>
<td>1438.9</td>
<td>1442.46</td>
<td>-3.56</td>
<td>1</td>
</tr>
<tr>
<td>2136510</td>
<td>8</td>
<td>1445.5</td>
<td>1447.03</td>
<td>-1.53</td>
<td>1</td>
</tr>
<tr>
<td>2136512</td>
<td>8</td>
<td>1449</td>
<td>1449.59</td>
<td>-0.59</td>
<td>1</td>
</tr>
<tr>
<td>2136513</td>
<td>8</td>
<td>1449.5</td>
<td>1447.16</td>
<td>2.34</td>
<td>1</td>
</tr>
<tr>
<td>2136513</td>
<td>28</td>
<td>1443.5</td>
<td>1442.45</td>
<td>1.05</td>
<td>1</td>
</tr>
<tr>
<td>2136518</td>
<td>28</td>
<td>1444.3</td>
<td>1442.68</td>
<td>1.62</td>
<td>1</td>
</tr>
<tr>
<td>2136519</td>
<td>25</td>
<td>1439</td>
<td>1442.19</td>
<td>-3.19</td>
<td>1</td>
</tr>
<tr>
<td>2136522</td>
<td>8</td>
<td>1449.6</td>
<td>1449.59</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>2136522</td>
<td>28</td>
<td>1445</td>
<td>1445.75</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2136523</td>
<td>25</td>
<td>1431</td>
<td>1442.79</td>
<td>-11.79</td>
<td>1</td>
</tr>
<tr>
<td>2136525</td>
<td>8</td>
<td>1448.8</td>
<td>1449.8</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>2136527</td>
<td>28</td>
<td>1442.5</td>
<td>1442.43</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>2136528</td>
<td>57</td>
<td>1438</td>
<td>1440.35</td>
<td>-2.35</td>
<td>1</td>
</tr>
<tr>
<td>2136603</td>
<td>28</td>
<td>1428.8</td>
<td>1409.84</td>
<td>18.96</td>
<td>0</td>
</tr>
<tr>
<td>2141104</td>
<td>8</td>
<td>1498</td>
<td>1493.68</td>
<td>4.32</td>
<td>1</td>
</tr>
<tr>
<td>2141105</td>
<td>8</td>
<td>1500</td>
<td>1501.43</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2141107</td>
<td>8</td>
<td>1496.8</td>
<td>1495.5</td>
<td>1.3</td>
<td>1</td>
</tr>
<tr>
<td>2141107</td>
<td>28</td>
<td>1500.6</td>
<td>1501.39</td>
<td>-0.79</td>
<td>1</td>
</tr>
<tr>
<td>2141117</td>
<td>28</td>
<td>1506.1</td>
<td>1509.73</td>
<td>-3.63</td>
<td>0</td>
</tr>
<tr>
<td>2141120</td>
<td>28</td>
<td>1491.9</td>
<td>1491.47</td>
<td>0.43</td>
<td>0</td>
</tr>
<tr>
<td>2141123</td>
<td>28</td>
<td>1494.2</td>
<td>1498.7</td>
<td>-4.5</td>
<td>1</td>
</tr>
<tr>
<td>2141138</td>
<td>28</td>
<td>1510.2</td>
<td>1497.45</td>
<td>12.75</td>
<td>0</td>
</tr>
<tr>
<td>2141201</td>
<td>28</td>
<td>1563.3</td>
<td>1552.88</td>
<td>10.42</td>
<td>0</td>
</tr>
<tr>
<td>2141206</td>
<td>28</td>
<td>1546.4</td>
<td>1547.66</td>
<td>-1.26</td>
<td>0</td>
</tr>
<tr>
<td>2141207</td>
<td>28</td>
<td>1560.9</td>
<td>1554.93</td>
<td>5.97</td>
<td>0</td>
</tr>
<tr>
<td>2141208</td>
<td>28</td>
<td>1556.8</td>
<td>1563.72</td>
<td>-6.92</td>
<td>0</td>
</tr>
<tr>
<td>2141214</td>
<td>28</td>
<td>1552.3</td>
<td>1549.33</td>
<td>2.97</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2141302</td>
<td>8</td>
<td>1547.7</td>
<td>1550.62</td>
<td>-2.92</td>
<td>1</td>
</tr>
<tr>
<td>2141303</td>
<td>8</td>
<td>1545.8</td>
<td>1550.62</td>
<td>-4.82</td>
<td>1</td>
</tr>
<tr>
<td>2141304</td>
<td>8</td>
<td>1553.1</td>
<td>1559.09</td>
<td>-5.99</td>
<td>1</td>
</tr>
<tr>
<td>2141304</td>
<td>28</td>
<td>1560.5</td>
<td>1561.21</td>
<td>-0.71</td>
<td>1</td>
</tr>
<tr>
<td>2141305</td>
<td>8</td>
<td>1559.2</td>
<td>1559.09</td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>2141310</td>
<td>28</td>
<td>1569.1</td>
<td>1566.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2141312</td>
<td>28</td>
<td>1571.7</td>
<td>1569.68</td>
<td>2.02</td>
<td>0</td>
</tr>
<tr>
<td>2141314</td>
<td>8</td>
<td>1566.3</td>
<td>1566.71</td>
<td>-0.41</td>
<td>1</td>
</tr>
<tr>
<td>2141317</td>
<td>8</td>
<td>1558.5</td>
<td>1559</td>
<td>-0.5</td>
<td>1</td>
</tr>
<tr>
<td>2141318</td>
<td>8</td>
<td>1556.7</td>
<td>1557.31</td>
<td>-0.61</td>
<td>1</td>
</tr>
<tr>
<td>2141318</td>
<td>28</td>
<td>1561.8</td>
<td>1557.09</td>
<td>4.71</td>
<td>1</td>
</tr>
<tr>
<td>2141320</td>
<td>28</td>
<td>1577.5</td>
<td>1584.95</td>
<td>-7.45</td>
<td>0</td>
</tr>
<tr>
<td>2141321</td>
<td>8</td>
<td>1554.5</td>
<td>1552.71</td>
<td>1.79</td>
<td>1</td>
</tr>
<tr>
<td>2141322</td>
<td>28</td>
<td>1568.4</td>
<td>1577.41</td>
<td>-9.01</td>
<td>0</td>
</tr>
<tr>
<td>2141323</td>
<td>28</td>
<td>1566.7</td>
<td>1567.42</td>
<td>-0.72</td>
<td>0</td>
</tr>
<tr>
<td>2141330</td>
<td>28</td>
<td>1572.5</td>
<td>1569.3</td>
<td>3.2</td>
<td>0</td>
</tr>
<tr>
<td>2141401</td>
<td>8</td>
<td>1558.8</td>
<td>1560.53</td>
<td>-1.73</td>
<td>1</td>
</tr>
<tr>
<td>2141402</td>
<td>28</td>
<td>1510.4</td>
<td>1510.57</td>
<td>-0.17</td>
<td>1</td>
</tr>
<tr>
<td>2141414</td>
<td>28</td>
<td>1511.4</td>
<td>1536</td>
<td>-24.6</td>
<td>0</td>
</tr>
<tr>
<td>2141418</td>
<td>28</td>
<td>1513.6</td>
<td>1510.57</td>
<td>3.03</td>
<td>0</td>
</tr>
<tr>
<td>2141433</td>
<td>8</td>
<td>1558.7</td>
<td>1554.76</td>
<td>3.94</td>
<td>1</td>
</tr>
<tr>
<td>2141433</td>
<td>28</td>
<td>1564.9</td>
<td>1558.89</td>
<td>6.01</td>
<td>1</td>
</tr>
<tr>
<td>2141434</td>
<td>8</td>
<td>1555.2</td>
<td>1554.76</td>
<td>0.44</td>
<td>1</td>
</tr>
<tr>
<td>2141435</td>
<td>8</td>
<td>1553.1</td>
<td>1553.1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2141501</td>
<td>28</td>
<td>1579.1</td>
<td>1585.52</td>
<td>-6.42</td>
<td>0</td>
</tr>
<tr>
<td>2141504</td>
<td>28</td>
<td>1578.6</td>
<td>1586.34</td>
<td>-7.74</td>
<td>1</td>
</tr>
<tr>
<td>2141509</td>
<td>28</td>
<td>1563.4</td>
<td>1587.21</td>
<td>-23.81</td>
<td>0</td>
</tr>
<tr>
<td>2141514</td>
<td>28</td>
<td>1580.5</td>
<td>1586.92</td>
<td>-6.42</td>
<td>0</td>
</tr>
<tr>
<td>2141601</td>
<td>8</td>
<td>1582</td>
<td>1586.88</td>
<td>-4.88</td>
<td>1</td>
</tr>
<tr>
<td>2141602</td>
<td>8</td>
<td>1581</td>
<td>1581.89</td>
<td>-0.89</td>
<td>1</td>
</tr>
<tr>
<td>2141602</td>
<td>28</td>
<td>1590.9</td>
<td>1586.66</td>
<td>4.24</td>
<td>1</td>
</tr>
<tr>
<td>2141606</td>
<td>28</td>
<td>1576.3</td>
<td>1580.71</td>
<td>-4.41</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2141609</td>
<td>28</td>
<td>1581.9</td>
<td>1585.04</td>
<td>-3.14</td>
<td>0</td>
</tr>
<tr>
<td>2141612</td>
<td>28</td>
<td>1583.5</td>
<td>1584.28</td>
<td>-0.78</td>
<td>0</td>
</tr>
<tr>
<td>2141615</td>
<td>8</td>
<td>1587.4</td>
<td>1584.59</td>
<td>2.81</td>
<td>1</td>
</tr>
<tr>
<td>2141616</td>
<td>28</td>
<td>1582.5</td>
<td>1587.32</td>
<td>-4.82</td>
<td>0</td>
</tr>
<tr>
<td>2141617</td>
<td>8</td>
<td>1587.2</td>
<td>1585.06</td>
<td>2.14</td>
<td>1</td>
</tr>
<tr>
<td>2141617</td>
<td>28</td>
<td>1589.6</td>
<td>1588.04</td>
<td>1.56</td>
<td>1</td>
</tr>
<tr>
<td>2141618</td>
<td>8</td>
<td>1587.8</td>
<td>1586.88</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2141621</td>
<td>28</td>
<td>1584.9</td>
<td>1581.26</td>
<td>3.64</td>
<td>1</td>
</tr>
<tr>
<td>2141623</td>
<td>8</td>
<td>1576.9</td>
<td>1579.1</td>
<td>-2.2</td>
<td>1</td>
</tr>
<tr>
<td>2141624</td>
<td>8</td>
<td>1582.9</td>
<td>1579.56</td>
<td>3.34</td>
<td>1</td>
</tr>
<tr>
<td>2141626</td>
<td>28</td>
<td>1580</td>
<td>1583.89</td>
<td>-3.89</td>
<td>0</td>
</tr>
<tr>
<td>2141702</td>
<td>28</td>
<td>1519.4</td>
<td>1525.71</td>
<td>-6.31</td>
<td>1</td>
</tr>
<tr>
<td>2141707</td>
<td>8</td>
<td>1554.9</td>
<td>1557.93</td>
<td>-3.03</td>
<td>1</td>
</tr>
<tr>
<td>2141708</td>
<td>28</td>
<td>1558.3</td>
<td>1560.74</td>
<td>-2.44</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>6</td>
<td>1581.73</td>
<td>1583.91</td>
<td>-2.18</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>7</td>
<td>1581.6</td>
<td>1583.13</td>
<td>-1.53</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>8</td>
<td>1580.54</td>
<td>1580.44</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>9</td>
<td>1580.69</td>
<td>1582.59</td>
<td>-1.9</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>11</td>
<td>1581.18</td>
<td>1581.24</td>
<td>-0.06</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>12</td>
<td>1581.06</td>
<td>1581.2</td>
<td>-0.14</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>14</td>
<td>1582.27</td>
<td>1582.01</td>
<td>0.26</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>15</td>
<td>1582.46</td>
<td>1581.33</td>
<td>1.13</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>16</td>
<td>1582.13</td>
<td>1580.33</td>
<td>1.8</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>17</td>
<td>1580.68</td>
<td>1579.76</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>18</td>
<td>1582.76</td>
<td>1581.22</td>
<td>1.54</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>19</td>
<td>1581.58</td>
<td>1580.92</td>
<td>0.66</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>20</td>
<td>1582.43</td>
<td>1582.13</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>21</td>
<td>1583.08</td>
<td>1583.06</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>22</td>
<td>1582.55</td>
<td>1581.26</td>
<td>1.29</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>23</td>
<td>1582.39</td>
<td>1582.34</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>24</td>
<td>1582.58</td>
<td>1583.1</td>
<td>-0.52</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>25</td>
<td>1583.73</td>
<td>1583.28</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2141801</td>
<td>26</td>
<td>1583.1</td>
<td>1582.65</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>27</td>
<td>1583.46</td>
<td>1583.42</td>
<td>0.04</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>28</td>
<td>1583.28</td>
<td>1583.37</td>
<td>-0.09</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>29</td>
<td>1582.05</td>
<td>1582.36</td>
<td>-0.31</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>30</td>
<td>1582.74</td>
<td>1582.65</td>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>42</td>
<td>1581.93</td>
<td>1582</td>
<td>-0.07</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>54</td>
<td>1582.32</td>
<td>1582.62</td>
<td>-0.3</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>64</td>
<td>1582.79</td>
<td>1583.74</td>
<td>-0.95</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>77</td>
<td>1582.33</td>
<td>1583.9</td>
<td>-1.57</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>93</td>
<td>1583.37</td>
<td>1583.49</td>
<td>-0.12</td>
<td>1</td>
</tr>
<tr>
<td>2141801</td>
<td>113</td>
<td>1585.45</td>
<td>1585.2</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>2141802</td>
<td>8</td>
<td>1580.9</td>
<td>1580.44</td>
<td>0.46</td>
<td>1</td>
</tr>
<tr>
<td>2141803</td>
<td>8</td>
<td>1580.4</td>
<td>1580.44</td>
<td>-0.04</td>
<td>1</td>
</tr>
<tr>
<td>2141808</td>
<td>8</td>
<td>1584.5</td>
<td>1588.41</td>
<td>-3.91</td>
<td>1</td>
</tr>
<tr>
<td>2141809</td>
<td>8</td>
<td>1587.3</td>
<td>1587.64</td>
<td>-0.34</td>
<td>1</td>
</tr>
<tr>
<td>2141809</td>
<td>28</td>
<td>1585.1</td>
<td>1587.96</td>
<td>-2.86</td>
<td>1</td>
</tr>
<tr>
<td>2141810</td>
<td>8</td>
<td>1591.3</td>
<td>1591.65</td>
<td>-0.35</td>
<td>1</td>
</tr>
<tr>
<td>2141810</td>
<td>28</td>
<td>1595.3</td>
<td>1592.34</td>
<td>2.96</td>
<td>1</td>
</tr>
<tr>
<td>2141815</td>
<td>28</td>
<td>1606</td>
<td>1599.98</td>
<td>6.02</td>
<td>1</td>
</tr>
<tr>
<td>2141816</td>
<td>28</td>
<td>1600.5</td>
<td>1598.88</td>
<td>1.62</td>
<td>0</td>
</tr>
<tr>
<td>2141904</td>
<td>28</td>
<td>1593.8</td>
<td>1593.97</td>
<td>-0.17</td>
<td>1</td>
</tr>
<tr>
<td>2141907</td>
<td>28</td>
<td>1593.6</td>
<td>1597.23</td>
<td>-3.63</td>
<td>0</td>
</tr>
<tr>
<td>2141908</td>
<td>8</td>
<td>1586.6</td>
<td>1587.38</td>
<td>-0.78</td>
<td>1</td>
</tr>
<tr>
<td>2141912</td>
<td>8</td>
<td>1600.9</td>
<td>1604.45</td>
<td>-3.55</td>
<td>1</td>
</tr>
<tr>
<td>2141913</td>
<td>8</td>
<td>1598.7</td>
<td>1600.53</td>
<td>-1.83</td>
<td>1</td>
</tr>
<tr>
<td>2141913</td>
<td>9</td>
<td>1599.7</td>
<td>1601.53</td>
<td>-1.83</td>
<td>1</td>
</tr>
<tr>
<td>2141913</td>
<td>28</td>
<td>1601.5</td>
<td>1602.37</td>
<td>-0.87</td>
<td>1</td>
</tr>
<tr>
<td>2141915</td>
<td>8</td>
<td>1596.5</td>
<td>1599.33</td>
<td>-2.83</td>
<td>1</td>
</tr>
<tr>
<td>2141917</td>
<td>28</td>
<td>1605.6</td>
<td>1605.77</td>
<td>-0.17</td>
<td>1</td>
</tr>
<tr>
<td>2141918</td>
<td>8</td>
<td>1595.7</td>
<td>1598.74</td>
<td>-3.04</td>
<td>1</td>
</tr>
<tr>
<td>2141919</td>
<td>8</td>
<td>1598.4</td>
<td>1597.52</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>2141919</td>
<td>28</td>
<td>1603.9</td>
<td>1599.95</td>
<td>3.95</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142101</td>
<td>8</td>
<td>1563.5</td>
<td>1564.04</td>
<td>-0.54</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>4</td>
<td>1565.68</td>
<td>1570.05</td>
<td>-4.37</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>5</td>
<td>1564.97</td>
<td>1569.25</td>
<td>-4.28</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>6</td>
<td>1563.89</td>
<td>1568.06</td>
<td>-4.17</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>7</td>
<td>1566.28</td>
<td>1566.76</td>
<td>-0.48</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>8</td>
<td>1564.5</td>
<td>1563.51</td>
<td>0.99</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>9</td>
<td>1564.64</td>
<td>1564.57</td>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>11</td>
<td>1563</td>
<td>1563.2</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>12</td>
<td>1563.53</td>
<td>1562.61</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>14</td>
<td>1563.96</td>
<td>1562.97</td>
<td>0.99</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>15</td>
<td>1562.37</td>
<td>1562.05</td>
<td>0.32</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>16</td>
<td>1561.37</td>
<td>1560.85</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>17</td>
<td>1559.4</td>
<td>1559.91</td>
<td>-0.51</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>18</td>
<td>1561.96</td>
<td>1560.97</td>
<td>0.99</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>19</td>
<td>1562.22</td>
<td>1560.92</td>
<td>1.3</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>20</td>
<td>1561.9</td>
<td>1562.26</td>
<td>-0.36</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>21</td>
<td>1562.11</td>
<td>1563.51</td>
<td>-1.4</td>
<td>1</td>
</tr>
<tr>
<td>2142102</td>
<td>22</td>
<td>1564.2</td>
<td>1562.31</td>
<td>1.89</td>
<td>1</td>
</tr>
<tr>
<td>2142103</td>
<td>4</td>
<td>1570.15</td>
<td>1568.84</td>
<td>1.31</td>
<td>1</td>
</tr>
<tr>
<td>2142103</td>
<td>5</td>
<td>1569.37</td>
<td>1568.86</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td>2142103</td>
<td>6</td>
<td>1568.12</td>
<td>1568.01</td>
<td>0.11</td>
<td>1</td>
</tr>
<tr>
<td>2142103</td>
<td>7</td>
<td>1570.3</td>
<td>1565.91</td>
<td>4.39</td>
<td>1</td>
</tr>
<tr>
<td>2142103</td>
<td>8</td>
<td>1564.26</td>
<td>1561.48</td>
<td>2.78</td>
<td>1</td>
</tr>
<tr>
<td>2142103</td>
<td>9</td>
<td>1565.29</td>
<td>1564.17</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td>2142103</td>
<td>11</td>
<td>1564.04</td>
<td>1561.34</td>
<td>2.7</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>7</td>
<td>1566.41</td>
<td>1565.17</td>
<td>1.24</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>8</td>
<td>1560.45</td>
<td>1560.75</td>
<td>-0.3</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>9</td>
<td>1561.49</td>
<td>1563.33</td>
<td>-1.84</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>11</td>
<td>1560.37</td>
<td>1560.59</td>
<td>-0.22</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>12</td>
<td>1554.08</td>
<td>1560.19</td>
<td>-6.11</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>14</td>
<td>1557.95</td>
<td>1560.41</td>
<td>-2.46</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>15</td>
<td>1557.58</td>
<td>1559.68</td>
<td>-2.1</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142104</td>
<td>16</td>
<td>1556.61</td>
<td>1557.81</td>
<td>-1.2</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>17</td>
<td>1554.05</td>
<td>1556.72</td>
<td>-2.67</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>18</td>
<td>1556.44</td>
<td>1559.64</td>
<td>-3.2</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>19</td>
<td>1558.7</td>
<td>1559.77</td>
<td>-1.07</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>20</td>
<td>1561.22</td>
<td>1562.23</td>
<td>-1.01</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>21</td>
<td>1561.21</td>
<td>1563.78</td>
<td>-2.57</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>22</td>
<td>1560.6</td>
<td>1561.95</td>
<td>-1.35</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>23</td>
<td>1560.16</td>
<td>1564.18</td>
<td>-4.02</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>24</td>
<td>1565.48</td>
<td>1565.83</td>
<td>-0.35</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>25</td>
<td>1568.86</td>
<td>1566.78</td>
<td>2.08</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>26</td>
<td>1567.51</td>
<td>1566.05</td>
<td>1.46</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>27</td>
<td>1570.9</td>
<td>1567.65</td>
<td>3.25</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>28</td>
<td>1568.7</td>
<td>1567.94</td>
<td>0.76</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>29</td>
<td>1569.08</td>
<td>1566.88</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>30</td>
<td>1569.57</td>
<td>1567.29</td>
<td>2.28</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>42</td>
<td>1566.73</td>
<td>1564.33</td>
<td>2.4</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>54</td>
<td>1566.64</td>
<td>1564.95</td>
<td>1.69</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>64</td>
<td>1571.5</td>
<td>1565.88</td>
<td>5.62</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>93</td>
<td>1570.78</td>
<td>1567.44</td>
<td>3.34</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>113</td>
<td>1569.12</td>
<td>1569.18</td>
<td>-0.06</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>125</td>
<td>1576.16</td>
<td>1569.91</td>
<td>6.25</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>137</td>
<td>1571.87</td>
<td>1568.86</td>
<td>3.01</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>149</td>
<td>1570.5</td>
<td>1567.71</td>
<td>2.79</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>161</td>
<td>1573.22</td>
<td>1569.85</td>
<td>3.37</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>173</td>
<td>1573.31</td>
<td>1569.81</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>185</td>
<td>1572.89</td>
<td>1570.71</td>
<td>2.18</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>199</td>
<td>1572.31</td>
<td>1571.27</td>
<td>1.04</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>213</td>
<td>1567.2</td>
<td>1568</td>
<td>-0.8</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>224</td>
<td>1568.28</td>
<td>1566.02</td>
<td>2.26</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>236</td>
<td>1565.35</td>
<td>1563.67</td>
<td>1.68</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>248</td>
<td>1566.89</td>
<td>1564.5</td>
<td>2.39</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>259</td>
<td>1561.08</td>
<td>1557.97</td>
<td>3.11</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142104</td>
<td>270</td>
<td>1559.15</td>
<td>1555.86</td>
<td>3.29</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>284</td>
<td>1554.33</td>
<td>1555.98</td>
<td>-1.65</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>295</td>
<td>1552.82</td>
<td>1553.65</td>
<td>-0.83</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>307</td>
<td>1551.77</td>
<td>1554.78</td>
<td>-3.01</td>
<td>1</td>
</tr>
<tr>
<td>2142104</td>
<td>319</td>
<td>1549.48</td>
<td>1550.53</td>
<td>-1.05</td>
<td>1</td>
</tr>
<tr>
<td>2142105</td>
<td>22</td>
<td>1561</td>
<td>1562.89</td>
<td>-1.89</td>
<td>1</td>
</tr>
<tr>
<td>2142106</td>
<td>22</td>
<td>1559.2</td>
<td>1559.45</td>
<td>-0.25</td>
<td>0</td>
</tr>
<tr>
<td>2142107</td>
<td>28</td>
<td>1572.2</td>
<td>1572.32</td>
<td>-0.12</td>
<td>1</td>
</tr>
<tr>
<td>2142110</td>
<td>8</td>
<td>1558.4</td>
<td>1560.67</td>
<td>-2.27</td>
<td>1</td>
</tr>
<tr>
<td>2142110</td>
<td>28</td>
<td>1567.4</td>
<td>1565.68</td>
<td>1.72</td>
<td>1</td>
</tr>
<tr>
<td>2142111</td>
<td>8</td>
<td>1549</td>
<td>1548.61</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td>2142111</td>
<td>28</td>
<td>1556.5</td>
<td>1552.59</td>
<td>3.91</td>
<td>1</td>
</tr>
<tr>
<td>2142112</td>
<td>28</td>
<td>1551.7</td>
<td>1553.33</td>
<td>-1.63</td>
<td>0</td>
</tr>
<tr>
<td>2142116</td>
<td>8</td>
<td>1544.5</td>
<td>1546.56</td>
<td>-2.06</td>
<td>1</td>
</tr>
<tr>
<td>2142119</td>
<td>8</td>
<td>1560.3</td>
<td>1563.06</td>
<td>-2.76</td>
<td>1</td>
</tr>
<tr>
<td>2142120</td>
<td>8</td>
<td>1564.1</td>
<td>1567.76</td>
<td>-3.66</td>
<td>1</td>
</tr>
<tr>
<td>2142120</td>
<td>28</td>
<td>1572.1</td>
<td>1571.5</td>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>2142121</td>
<td>8</td>
<td>1559.45</td>
<td>1556.66</td>
<td>2.79</td>
<td>1</td>
</tr>
<tr>
<td>2142122</td>
<td>28</td>
<td>1563.1</td>
<td>1559.73</td>
<td>3.37</td>
<td>1</td>
</tr>
<tr>
<td>2142123</td>
<td>8</td>
<td>1549</td>
<td>1550.96</td>
<td>-1.96</td>
<td>1</td>
</tr>
<tr>
<td>2142124</td>
<td>8</td>
<td>1543.1</td>
<td>1548.75</td>
<td>-5.65</td>
<td>1</td>
</tr>
<tr>
<td>2142125</td>
<td>8</td>
<td>1543</td>
<td>1542.14</td>
<td>0.86</td>
<td>1</td>
</tr>
<tr>
<td>2142127</td>
<td>8</td>
<td>1545.3</td>
<td>1543.72</td>
<td>1.58</td>
<td>1</td>
</tr>
<tr>
<td>2142127</td>
<td>28</td>
<td>1551</td>
<td>1549.82</td>
<td>1.18</td>
<td>1</td>
</tr>
<tr>
<td>2142128</td>
<td>8</td>
<td>1542.7</td>
<td>1543.39</td>
<td>-0.69</td>
<td>1</td>
</tr>
<tr>
<td>2142129</td>
<td>8</td>
<td>1558</td>
<td>1557.31</td>
<td>0.69</td>
<td>1</td>
</tr>
<tr>
<td>2142134</td>
<td>28</td>
<td>1574.2</td>
<td>1567.34</td>
<td>6.86</td>
<td>0</td>
</tr>
<tr>
<td>2142201</td>
<td>6</td>
<td>1537.9</td>
<td>1539.71</td>
<td>-1.81</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>7</td>
<td>1538.09</td>
<td>1537.63</td>
<td>0.46</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>8</td>
<td>1538.96</td>
<td>1533.14</td>
<td>5.82</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>9</td>
<td>1533.52</td>
<td>1535.45</td>
<td>-1.93</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>11</td>
<td>1531.72</td>
<td>1533.1</td>
<td>-1.38</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142201</td>
<td>12</td>
<td>1530.91</td>
<td>1532.4</td>
<td>-1.49</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>14</td>
<td>1528.55</td>
<td>1532.9</td>
<td>-4.35</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>15</td>
<td>1528.18</td>
<td>1531.92</td>
<td>-3.74</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>16</td>
<td>1527.7</td>
<td>1530.07</td>
<td>-2.37</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>17</td>
<td>1526.56</td>
<td>1528.9</td>
<td>-2.34</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>18</td>
<td>1528.98</td>
<td>1531.68</td>
<td>-2.7</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>19</td>
<td>1528.12</td>
<td>1532.06</td>
<td>-3.94</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>20</td>
<td>1532.37</td>
<td>1534.57</td>
<td>-2.2</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>21</td>
<td>1532.58</td>
<td>1536.35</td>
<td>-3.77</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>22</td>
<td>1535.18</td>
<td>1534.69</td>
<td>0.49</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>23</td>
<td>1536.68</td>
<td>1536.88</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>24</td>
<td>1539</td>
<td>1538.72</td>
<td>0.28</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>25</td>
<td>1544.18</td>
<td>1539.83</td>
<td>4.35</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>26</td>
<td>1541.5</td>
<td>1539.26</td>
<td>2.24</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>27</td>
<td>1544.57</td>
<td>1540.84</td>
<td>3.73</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>28</td>
<td>1541.18</td>
<td>1541.29</td>
<td>-0.11</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>29</td>
<td>1543.49</td>
<td>1540.31</td>
<td>3.18</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>30</td>
<td>1540.75</td>
<td>1540.73</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>42</td>
<td>1540.65</td>
<td>1537.77</td>
<td>2.88</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>54</td>
<td>1541.28</td>
<td>1538.54</td>
<td>2.74</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>64</td>
<td>1543.11</td>
<td>1539.62</td>
<td>3.49</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>93</td>
<td>1543.32</td>
<td>1540.95</td>
<td>2.37</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>113</td>
<td>1546.11</td>
<td>1542.77</td>
<td>3.34</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>125</td>
<td>1553.74</td>
<td>1543.55</td>
<td>10.19</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>137</td>
<td>1547.7</td>
<td>1542.48</td>
<td>5.22</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>149</td>
<td>1546.55</td>
<td>1541.31</td>
<td>5.24</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>161</td>
<td>1547.14</td>
<td>1543.46</td>
<td>3.68</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>173</td>
<td>1546.8</td>
<td>1543.41</td>
<td>3.39</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>185</td>
<td>1548.12</td>
<td>1544.26</td>
<td>3.86</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>199</td>
<td>1547.56</td>
<td>1544.81</td>
<td>2.75</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>213</td>
<td>1540.35</td>
<td>1541.25</td>
<td>-0.9</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>224</td>
<td>1541.55</td>
<td>1539.13</td>
<td>2.42</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142201</td>
<td>298</td>
<td>1527.67</td>
<td>1526.66</td>
<td>1.01</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>304</td>
<td>1527</td>
<td>1524.52</td>
<td>2.48</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>310</td>
<td>1529.18</td>
<td>1526.73</td>
<td>2.45</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>321</td>
<td>1526.58</td>
<td>1523.5</td>
<td>3.08</td>
<td>1</td>
</tr>
<tr>
<td>2142201</td>
<td>334</td>
<td>1527.58</td>
<td>1524.54</td>
<td>3.04</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>4</td>
<td>1538.8</td>
<td>1534.68</td>
<td>4.12</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>5</td>
<td>1536.3</td>
<td>1535.29</td>
<td>1.01</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>6</td>
<td>1533.59</td>
<td>1534.47</td>
<td>-0.88</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>8</td>
<td>1527.96</td>
<td>1527.53</td>
<td>0.43</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>9</td>
<td>1527.48</td>
<td>1530.8</td>
<td>-3.32</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>11</td>
<td>1526.01</td>
<td>1527.34</td>
<td>-1.33</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>12</td>
<td>1525.11</td>
<td>1527.28</td>
<td>-2.17</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>14</td>
<td>1521.7</td>
<td>1527.37</td>
<td>-5.67</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>15</td>
<td>1522.4</td>
<td>1526.86</td>
<td>-4.46</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>16</td>
<td>1518.8</td>
<td>1524.84</td>
<td>-6.04</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>17</td>
<td>1520.81</td>
<td>1523.84</td>
<td>-3.03</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>18</td>
<td>1523.82</td>
<td>1527.38</td>
<td>-3.56</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>19</td>
<td>1523.02</td>
<td>1527.35</td>
<td>-4.33</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>20</td>
<td>1526.9</td>
<td>1530.11</td>
<td>-3.21</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>21</td>
<td>1527.32</td>
<td>1531.63</td>
<td>-4.31</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>22</td>
<td>1530.98</td>
<td>1529.57</td>
<td>1.41</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>23</td>
<td>1531.89</td>
<td>1532.23</td>
<td>-0.34</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>24</td>
<td>1535.42</td>
<td>1533.97</td>
<td>1.45</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>25</td>
<td>1538.74</td>
<td>1534.94</td>
<td>3.8</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>26</td>
<td>1535.68</td>
<td>1534.04</td>
<td>1.64</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>27</td>
<td>1540.98</td>
<td>1535.97</td>
<td>5.01</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>28</td>
<td>1534.91</td>
<td>1536.24</td>
<td>-1.33</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>29</td>
<td>1538.8</td>
<td>1535.11</td>
<td>3.69</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>30</td>
<td>1538.63</td>
<td>1535.65</td>
<td>2.98</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>42</td>
<td>1533.08</td>
<td>1533.38</td>
<td>-0.3</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>54</td>
<td>1535.21</td>
<td>1534.01</td>
<td>1.2</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>64</td>
<td>1536.76</td>
<td>1534.95</td>
<td>1.81</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142202</td>
<td>77</td>
<td>1539.42</td>
<td>1535.88</td>
<td>3.54</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>101</td>
<td>1540.68</td>
<td>1536.54</td>
<td>4.14</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>113</td>
<td>1540.2</td>
<td>1538.2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>125</td>
<td>1547.33</td>
<td>1538.87</td>
<td>8.46</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>137</td>
<td>1538.14</td>
<td>1537.73</td>
<td>0.41</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>149</td>
<td>1537.25</td>
<td>1536.56</td>
<td>0.69</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>161</td>
<td>1537.96</td>
<td>1538.86</td>
<td>-0.9</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>173</td>
<td>1537.38</td>
<td>1538.64</td>
<td>-1.26</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>185</td>
<td>1538.05</td>
<td>1539.51</td>
<td>-1.46</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>199</td>
<td>1538.87</td>
<td>1539.9</td>
<td>-1.03</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>213</td>
<td>1536.45</td>
<td>1536.6</td>
<td>-0.15</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>224</td>
<td>1532.78</td>
<td>1534.6</td>
<td>-1.82</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>236</td>
<td>1530</td>
<td>1532.16</td>
<td>-2.16</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>248</td>
<td>1532.61</td>
<td>1532.81</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>259</td>
<td>1523.07</td>
<td>1525.7</td>
<td>-2.63</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>284</td>
<td>1520.11</td>
<td>1523.89</td>
<td>-3.78</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>295</td>
<td>1522.81</td>
<td>1521.19</td>
<td>1.62</td>
<td>1</td>
</tr>
<tr>
<td>2142202</td>
<td>307</td>
<td>1523.01</td>
<td>1522.33</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>2142203</td>
<td>7</td>
<td>1539.5</td>
<td>1541.43</td>
<td>-1.93</td>
<td>1</td>
</tr>
<tr>
<td>2142204</td>
<td>28</td>
<td>1565.5</td>
<td>1562.02</td>
<td>3.48</td>
<td>0</td>
</tr>
<tr>
<td>2142205</td>
<td>8</td>
<td>1546.3</td>
<td>1548.32</td>
<td>-2.02</td>
<td>1</td>
</tr>
<tr>
<td>2142209</td>
<td>8</td>
<td>1548</td>
<td>1547.56</td>
<td>0.44</td>
<td>1</td>
</tr>
<tr>
<td>2142210</td>
<td>8</td>
<td>1550.4</td>
<td>1551.95</td>
<td>-1.55</td>
<td>1</td>
</tr>
<tr>
<td>2142213</td>
<td>28</td>
<td>1556.8</td>
<td>1554.31</td>
<td>2.49</td>
<td>1</td>
</tr>
<tr>
<td>2142219</td>
<td>8</td>
<td>1540.6</td>
<td>1540.64</td>
<td>-0.04</td>
<td>1</td>
</tr>
<tr>
<td>2142220</td>
<td>8</td>
<td>1545</td>
<td>1539.52</td>
<td>5.48</td>
<td>1</td>
</tr>
<tr>
<td>2142221</td>
<td>8</td>
<td>1543.3</td>
<td>1541.37</td>
<td>1.93</td>
<td>1</td>
</tr>
<tr>
<td>2142223</td>
<td>8</td>
<td>1537.1</td>
<td>1537.26</td>
<td>-0.16</td>
<td>1</td>
</tr>
<tr>
<td>2142224</td>
<td>8</td>
<td>1527.5</td>
<td>1535.52</td>
<td>-8.02</td>
<td>1</td>
</tr>
<tr>
<td>2142226</td>
<td>8</td>
<td>1533.3</td>
<td>1538.96</td>
<td>-5.66</td>
<td>1</td>
</tr>
<tr>
<td>2142226</td>
<td>28</td>
<td>1544.9</td>
<td>1546.72</td>
<td>-1.82</td>
<td>1</td>
</tr>
<tr>
<td>2142231</td>
<td>8</td>
<td>1538</td>
<td>1541.56</td>
<td>-3.56</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2142232</td>
<td>8</td>
<td>1534.3</td>
<td>1537.38</td>
<td>-3.08</td>
<td>1</td>
</tr>
<tr>
<td>2142234</td>
<td>8</td>
<td>1541.5</td>
<td>1542.38</td>
<td>-0.88</td>
<td>1</td>
</tr>
<tr>
<td>2142235</td>
<td>8</td>
<td>1541.3</td>
<td>1538.97</td>
<td>2.33</td>
<td>1</td>
</tr>
<tr>
<td>2142235</td>
<td>28</td>
<td>1553.2</td>
<td>1547.43</td>
<td>5.77</td>
<td>1</td>
</tr>
<tr>
<td>2142236</td>
<td>8</td>
<td>1538.4</td>
<td>1539.53</td>
<td>-1.13</td>
<td>1</td>
</tr>
<tr>
<td>2142237</td>
<td>8</td>
<td>1535.5</td>
<td>1536.66</td>
<td>-1.16</td>
<td>1</td>
</tr>
<tr>
<td>2142237</td>
<td>28</td>
<td>1545.1</td>
<td>1544.76</td>
<td>0.34</td>
<td>1</td>
</tr>
<tr>
<td>2142238</td>
<td>8</td>
<td>1533.1</td>
<td>1536.1</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>2142239</td>
<td>8</td>
<td>1531.7</td>
<td>1535.36</td>
<td>-3.66</td>
<td>1</td>
</tr>
<tr>
<td>2142241</td>
<td>8</td>
<td>1534.3</td>
<td>1536.76</td>
<td>-2.46</td>
<td>1</td>
</tr>
<tr>
<td>2142241</td>
<td>28</td>
<td>1542.5</td>
<td>1543.54</td>
<td>-1.04</td>
<td>1</td>
</tr>
<tr>
<td>2142242</td>
<td>8</td>
<td>1528.2</td>
<td>1530.67</td>
<td>-2.47</td>
<td>1</td>
</tr>
<tr>
<td>2142244</td>
<td>7</td>
<td>1533.8</td>
<td>1539.74</td>
<td>-5.94</td>
<td>1</td>
</tr>
<tr>
<td>2142246</td>
<td>8</td>
<td>1529.8</td>
<td>1529.29</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td>2142247</td>
<td>7</td>
<td>1527.9</td>
<td>1533.24</td>
<td>-5.34</td>
<td>1</td>
</tr>
<tr>
<td>2142249</td>
<td>8</td>
<td>1526.7</td>
<td>1528.13</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2142249</td>
<td>28</td>
<td>1532.4</td>
<td>1536.79</td>
<td>-4.39</td>
<td>1</td>
</tr>
<tr>
<td>2142250</td>
<td>8</td>
<td>1530.8</td>
<td>1528.59</td>
<td>2.21</td>
<td>1</td>
</tr>
<tr>
<td>2142251</td>
<td>8</td>
<td>1527.5</td>
<td>1524.92</td>
<td>2.58</td>
<td>1</td>
</tr>
<tr>
<td>2142252</td>
<td>8</td>
<td>1525.9</td>
<td>1524.09</td>
<td>1.81</td>
<td>1</td>
</tr>
<tr>
<td>2142253</td>
<td>8</td>
<td>1529.9</td>
<td>1524.14</td>
<td>5.76</td>
<td>1</td>
</tr>
<tr>
<td>2142254</td>
<td>8</td>
<td>1528.4</td>
<td>1528.38</td>
<td>0.02</td>
<td>1</td>
</tr>
<tr>
<td>2142256</td>
<td>4</td>
<td>1554.28</td>
<td>1557.88</td>
<td>-3.6</td>
<td>1</td>
</tr>
<tr>
<td>2142256</td>
<td>5</td>
<td>1553.34</td>
<td>1557.16</td>
<td>-3.82</td>
<td>1</td>
</tr>
<tr>
<td>2142256</td>
<td>6</td>
<td>1552.94</td>
<td>1555.87</td>
<td>-2.93</td>
<td>1</td>
</tr>
<tr>
<td>2142256</td>
<td>7</td>
<td>1552.6</td>
<td>1553.81</td>
<td>-1.21</td>
<td>1</td>
</tr>
<tr>
<td>2142256</td>
<td>8</td>
<td>1547.93</td>
<td>1549.51</td>
<td>-1.58</td>
<td>1</td>
</tr>
<tr>
<td>2142256</td>
<td>9</td>
<td>1551.35</td>
<td>1551.35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2142256</td>
<td>11</td>
<td>1547.48</td>
<td>1549.01</td>
<td>-1.53</td>
<td>1</td>
</tr>
<tr>
<td>2142301</td>
<td>8</td>
<td>1538.5</td>
<td>1535.96</td>
<td>2.54</td>
<td>1</td>
</tr>
<tr>
<td>2142301</td>
<td>28</td>
<td>1545.5</td>
<td>1543.13</td>
<td>2.37</td>
<td>1</td>
</tr>
<tr>
<td>2142302</td>
<td>8</td>
<td>1528.6</td>
<td>1526.85</td>
<td>1.75</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142302</td>
<td>28</td>
<td>1536.4</td>
<td>1531.84</td>
<td>4.56</td>
<td>1</td>
</tr>
<tr>
<td>2142305</td>
<td>28</td>
<td>1539.5</td>
<td>1532.81</td>
<td>6.69</td>
<td>0</td>
</tr>
<tr>
<td>2142306</td>
<td>8</td>
<td>1535</td>
<td>1529.23</td>
<td>5.77</td>
<td>1</td>
</tr>
<tr>
<td>2142307</td>
<td>28</td>
<td>1541.6</td>
<td>1532.52</td>
<td>9.08</td>
<td>1</td>
</tr>
<tr>
<td>2142308</td>
<td>8</td>
<td>1529.8</td>
<td>1527.01</td>
<td>2.79</td>
<td>1</td>
</tr>
<tr>
<td>2142310</td>
<td>8</td>
<td>1541.5</td>
<td>1538.69</td>
<td>2.81</td>
<td>1</td>
</tr>
<tr>
<td>2142313</td>
<td>8</td>
<td>1527.6</td>
<td>1527.62</td>
<td>-0.02</td>
<td>1</td>
</tr>
<tr>
<td>2142313</td>
<td>28</td>
<td>1537.5</td>
<td>1534.48</td>
<td>3.02</td>
<td>1</td>
</tr>
<tr>
<td>2142315</td>
<td>8</td>
<td>1525.8</td>
<td>1524.43</td>
<td>1.37</td>
<td>1</td>
</tr>
<tr>
<td>2142316</td>
<td>8</td>
<td>1524</td>
<td>1523.45</td>
<td>0.55</td>
<td>1</td>
</tr>
<tr>
<td>2142317</td>
<td>8</td>
<td>1522</td>
<td>1523.94</td>
<td>-1.94</td>
<td>1</td>
</tr>
<tr>
<td>2142319</td>
<td>8</td>
<td>1520.6</td>
<td>1524.21</td>
<td>-3.61</td>
<td>1</td>
</tr>
<tr>
<td>2142319</td>
<td>28</td>
<td>1534.9</td>
<td>1531</td>
<td>3.9</td>
<td>1</td>
</tr>
<tr>
<td>2142320</td>
<td>8</td>
<td>1518.8</td>
<td>1522.26</td>
<td>-3.46</td>
<td>1</td>
</tr>
<tr>
<td>2142320</td>
<td>28</td>
<td>1528.9</td>
<td>1529.44</td>
<td>-0.54</td>
<td>1</td>
</tr>
<tr>
<td>2142320</td>
<td>321</td>
<td>1509.5</td>
<td>1513.55</td>
<td>-4.05</td>
<td>1</td>
</tr>
<tr>
<td>2142320</td>
<td>334</td>
<td>1509.58</td>
<td>1512.4</td>
<td>-2.82</td>
<td>1</td>
</tr>
<tr>
<td>2142321</td>
<td>8</td>
<td>1518.3</td>
<td>1523.82</td>
<td>-5.52</td>
<td>1</td>
</tr>
<tr>
<td>2142324</td>
<td>8</td>
<td>1522.8</td>
<td>1524.23</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2142325</td>
<td>28</td>
<td>1532.4</td>
<td>1529.12</td>
<td>3.28</td>
<td>1</td>
</tr>
<tr>
<td>2142326</td>
<td>7</td>
<td>1520.3</td>
<td>1525.32</td>
<td>-5.02</td>
<td>1</td>
</tr>
<tr>
<td>2142327</td>
<td>8</td>
<td>1528.4</td>
<td>1524.74</td>
<td>3.66</td>
<td>1</td>
</tr>
<tr>
<td>2142327</td>
<td>28</td>
<td>1535.9</td>
<td>1530.52</td>
<td>5.38</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>4</td>
<td>1578.31</td>
<td>1583.59</td>
<td>-5.28</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>7</td>
<td>1579.1</td>
<td>1580.31</td>
<td>-1.21</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>8</td>
<td>1574.06</td>
<td>1576.26</td>
<td>-2.2</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>9</td>
<td>1575.47</td>
<td>1578.29</td>
<td>-2.82</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>14</td>
<td>1575.46</td>
<td>1576.1</td>
<td>-0.64</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>15</td>
<td>1571.8</td>
<td>1575.11</td>
<td>-3.31</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>16</td>
<td>1574.18</td>
<td>1573.5</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>17</td>
<td>1575.57</td>
<td>1572.44</td>
<td>3.13</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>18</td>
<td>1580.45</td>
<td>1574.7</td>
<td>5.75</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142401</td>
<td>21</td>
<td>1572</td>
<td>1578.52</td>
<td>-6.52</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>23</td>
<td>1582.94</td>
<td>1578.62</td>
<td>4.32</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>25</td>
<td>1586.54</td>
<td>1580.97</td>
<td>5.57</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>26</td>
<td>1582.23</td>
<td>1580.43</td>
<td>1.8</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>27</td>
<td>1585.83</td>
<td>1581.73</td>
<td>4.1</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>28</td>
<td>1581.17</td>
<td>1582.04</td>
<td>-0.87</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>64</td>
<td>1583.5</td>
<td>1580.88</td>
<td>2.62</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>77</td>
<td>1584.13</td>
<td>1581.59</td>
<td>2.54</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>101</td>
<td>1587.26</td>
<td>1582.06</td>
<td>5.2</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>113</td>
<td>1587.43</td>
<td>1583.7</td>
<td>3.73</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>125</td>
<td>1588.25</td>
<td>1584.22</td>
<td>4.03</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>137</td>
<td>1588.12</td>
<td>1583.42</td>
<td>4.7</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>149</td>
<td>1581.27</td>
<td>1582.43</td>
<td>-1.16</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>161</td>
<td>1584.5</td>
<td>1584.26</td>
<td>0.24</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>173</td>
<td>1582.92</td>
<td>1584.49</td>
<td>-1.57</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>185</td>
<td>1584.23</td>
<td>1585.25</td>
<td>-1.02</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>202</td>
<td>1591.2</td>
<td>1585.66</td>
<td>5.54</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>213</td>
<td>1577</td>
<td>1582.82</td>
<td>-5.82</td>
<td>1</td>
</tr>
<tr>
<td>2142401</td>
<td>224</td>
<td>1578.46</td>
<td>1581.31</td>
<td>-2.85</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>5</td>
<td>1563.97</td>
<td>1569.01</td>
<td>-5.04</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>6</td>
<td>1563.32</td>
<td>1568.07</td>
<td>-4.75</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>7</td>
<td>1563.54</td>
<td>1565.91</td>
<td>-2.37</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>8</td>
<td>1561.2</td>
<td>1561.38</td>
<td>-0.18</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>9</td>
<td>1561.37</td>
<td>1563.95</td>
<td>-2.58</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>11</td>
<td>1558.25</td>
<td>1561.25</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>12</td>
<td>1558.55</td>
<td>1560.7</td>
<td>-2.15</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>14</td>
<td>1557.91</td>
<td>1561.07</td>
<td>-3.16</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>15</td>
<td>1557.57</td>
<td>1560.21</td>
<td>-2.64</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>16</td>
<td>1556.63</td>
<td>1558.28</td>
<td>-1.65</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>17</td>
<td>1556.38</td>
<td>1557.13</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>18</td>
<td>1560.06</td>
<td>1560.14</td>
<td>-0.08</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>19</td>
<td>1562.06</td>
<td>1560.42</td>
<td>1.64</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2142402</td>
<td>20</td>
<td>1560.1</td>
<td>1563</td>
<td>-2.9</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>21</td>
<td>1562.77</td>
<td>1564.7</td>
<td>-1.93</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>22</td>
<td>1562.19</td>
<td>1562.88</td>
<td>-0.69</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>23</td>
<td>1563.55</td>
<td>1565.14</td>
<td>-1.59</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>24</td>
<td>1564.24</td>
<td>1566.9</td>
<td>-2.66</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>25</td>
<td>1569.95</td>
<td>1567.91</td>
<td>2.04</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>26</td>
<td>1568.84</td>
<td>1567.19</td>
<td>1.65</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>27</td>
<td>1570.27</td>
<td>1568.81</td>
<td>1.46</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>28</td>
<td>1568.01</td>
<td>1569.16</td>
<td>-1.15</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>29</td>
<td>1570.85</td>
<td>1568.1</td>
<td>2.75</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>30</td>
<td>1567.84</td>
<td>1568.48</td>
<td>-0.64</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>42</td>
<td>1565.28</td>
<td>1565.74</td>
<td>-0.46</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>54</td>
<td>1566.55</td>
<td>1566.41</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>64</td>
<td>1567.01</td>
<td>1567.49</td>
<td>-0.48</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>93</td>
<td>1570.58</td>
<td>1568.89</td>
<td>1.69</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>113</td>
<td>1572.78</td>
<td>1570.7</td>
<td>2.08</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>125</td>
<td>1574.7</td>
<td>1571.48</td>
<td>3.22</td>
<td>1</td>
</tr>
<tr>
<td>2142402</td>
<td>137</td>
<td>1572.96</td>
<td>1570.48</td>
<td>2.48</td>
<td>1</td>
</tr>
<tr>
<td>2142404</td>
<td>8</td>
<td>1569.7</td>
<td>1568.75</td>
<td>0.95</td>
<td>1</td>
</tr>
<tr>
<td>2142404</td>
<td>28</td>
<td>1577</td>
<td>1575.88</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td>2142405</td>
<td>8</td>
<td>1570.4</td>
<td>1570.56</td>
<td>-0.16</td>
<td>1</td>
</tr>
<tr>
<td>2142405</td>
<td>22</td>
<td>1573.6</td>
<td>1572.01</td>
<td>1.59</td>
<td>1</td>
</tr>
<tr>
<td>2142405</td>
<td>28</td>
<td>1579</td>
<td>1577.69</td>
<td>1.31</td>
<td>1</td>
</tr>
<tr>
<td>2142407</td>
<td>22</td>
<td>1569.3</td>
<td>1566.18</td>
<td>3.12</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>27</td>
<td>1586.74</td>
<td>1582.47</td>
<td>4.27</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>28</td>
<td>1583.09</td>
<td>1582.83</td>
<td>0.26</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>29</td>
<td>1581.51</td>
<td>1582.01</td>
<td>-0.5</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>30</td>
<td>1582.45</td>
<td>1582.36</td>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>31</td>
<td>1580.23</td>
<td>1579.84</td>
<td>0.39</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>32</td>
<td>1580.1</td>
<td>1579.74</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>33</td>
<td>1579.89</td>
<td>1579.8</td>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>34</td>
<td>1579.87</td>
<td>1579.74</td>
<td>0.13</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142409</td>
<td>40</td>
<td>1575.08</td>
<td>1579.79</td>
<td>-4.71</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>41</td>
<td>1576.32</td>
<td>1579.83</td>
<td>-3.51</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>43</td>
<td>1576.9</td>
<td>1580.17</td>
<td>-3.27</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>44</td>
<td>1579.25</td>
<td>1580.18</td>
<td>-0.93</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>45</td>
<td>1577.43</td>
<td>1580.45</td>
<td>-3.02</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>46</td>
<td>1577.59</td>
<td>1580.52</td>
<td>-2.93</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>47</td>
<td>1577.41</td>
<td>1580.65</td>
<td>-3.24</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>48</td>
<td>1578.03</td>
<td>1580.63</td>
<td>-2.6</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>49</td>
<td>1578.73</td>
<td>1580.38</td>
<td>-1.65</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>50</td>
<td>1579.33</td>
<td>1580.06</td>
<td>-0.73</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>51</td>
<td>1576.73</td>
<td>1580.08</td>
<td>-3.35</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>52</td>
<td>1577.97</td>
<td>1580.09</td>
<td>-2.12</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>53</td>
<td>1577.12</td>
<td>1580.66</td>
<td>-3.54</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>54</td>
<td>1577.34</td>
<td>1580.59</td>
<td>-3.25</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>55</td>
<td>1577.32</td>
<td>1580.55</td>
<td>-3.23</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>56</td>
<td>1577</td>
<td>1580.72</td>
<td>-3.72</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>57</td>
<td>1577.05</td>
<td>1580.82</td>
<td>-3.77</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>58</td>
<td>1576.98</td>
<td>1580.84</td>
<td>-3.86</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>59</td>
<td>1576.68</td>
<td>1580.78</td>
<td>-4.1</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>60</td>
<td>1576.77</td>
<td>1581.56</td>
<td>-4.79</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>61</td>
<td>1579.82</td>
<td>1581.9</td>
<td>-2.08</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>62</td>
<td>1583.32</td>
<td>1581.59</td>
<td>1.73</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>63</td>
<td>1584.79</td>
<td>1581.58</td>
<td>3.21</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>64</td>
<td>1584.35</td>
<td>1581.64</td>
<td>2.71</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>65</td>
<td>1584.36</td>
<td>1581.7</td>
<td>2.66</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>66</td>
<td>1583.69</td>
<td>1581.92</td>
<td>1.77</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>67</td>
<td>1583.51</td>
<td>1582.08</td>
<td>1.43</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>68</td>
<td>1583.18</td>
<td>1582.34</td>
<td>0.84</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>69</td>
<td>1583.87</td>
<td>1582.45</td>
<td>1.42</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>70</td>
<td>1584.43</td>
<td>1582.57</td>
<td>1.86</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>71</td>
<td>1584.49</td>
<td>1582.46</td>
<td>2.03</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>72</td>
<td>1584.71</td>
<td>1582.55</td>
<td>2.16</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2142409</td>
<td>73</td>
<td>1588.34</td>
<td>1582.31</td>
<td>6.03</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>74</td>
<td>1588.62</td>
<td>1581.97</td>
<td>6.65</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>75</td>
<td>1587.35</td>
<td>1581.7</td>
<td>5.65</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>76</td>
<td>1585.63</td>
<td>1581.68</td>
<td>3.95</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>77</td>
<td>1584.5</td>
<td>1582.33</td>
<td>2.17</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>78</td>
<td>1585.9</td>
<td>1582.48</td>
<td>3.42</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>79</td>
<td>1585.97</td>
<td>1582.52</td>
<td>3.45</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>80</td>
<td>1585.68</td>
<td>1582.49</td>
<td>3.19</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>81</td>
<td>1585.57</td>
<td>1582.62</td>
<td>2.95</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>82</td>
<td>1585.37</td>
<td>1582.57</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>83</td>
<td>1585.17</td>
<td>1582.23</td>
<td>2.94</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>84</td>
<td>1584.24</td>
<td>1581.79</td>
<td>2.45</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>85</td>
<td>1582.48</td>
<td>1581.32</td>
<td>1.16</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>86</td>
<td>1582.4</td>
<td>1580.98</td>
<td>1.42</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>87</td>
<td>1580.86</td>
<td>1580.93</td>
<td>-0.07</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>88</td>
<td>1580.62</td>
<td>1580.99</td>
<td>-0.37</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>89</td>
<td>1580.62</td>
<td>1581.4</td>
<td>-0.78</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>90</td>
<td>1580.82</td>
<td>1581.66</td>
<td>-0.84</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>91</td>
<td>1581.23</td>
<td>1582.05</td>
<td>-0.82</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>92</td>
<td>1581.88</td>
<td>1582</td>
<td>-0.12</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>94</td>
<td>1585.37</td>
<td>1582.48</td>
<td>2.89</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>95</td>
<td>1586.28</td>
<td>1582.69</td>
<td>3.59</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>96</td>
<td>1588.16</td>
<td>1582.58</td>
<td>5.58</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>97</td>
<td>1590.95</td>
<td>1582.58</td>
<td>8.37</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>98</td>
<td>1589.45</td>
<td>1582.38</td>
<td>7.07</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>99</td>
<td>1586.53</td>
<td>1582.24</td>
<td>4.29</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>100</td>
<td>1585.43</td>
<td>1582.46</td>
<td>2.97</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>101</td>
<td>1585.03</td>
<td>1582.81</td>
<td>2.22</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>102</td>
<td>1585.47</td>
<td>1582.83</td>
<td>2.64</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>103</td>
<td>1585.22</td>
<td>1582.79</td>
<td>2.43</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>104</td>
<td>1585.01</td>
<td>1582.77</td>
<td>2.24</td>
<td>1</td>
</tr>
<tr>
<td>2142409</td>
<td>105</td>
<td>1584.84</td>
<td>1582.89</td>
<td>1.95</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2142409</td>
<td>106</td>
<td>1584.57</td>
<td>1582.91</td>
<td>1.66</td>
<td>1</td>
</tr>
<tr>
<td>2142410</td>
<td>8</td>
<td>1583.3</td>
<td>1584.83</td>
<td>-1.53</td>
<td>1</td>
</tr>
<tr>
<td>2142412</td>
<td>8</td>
<td>1576.5</td>
<td>1580.58</td>
<td>-4.08</td>
<td>1</td>
</tr>
<tr>
<td>2142413</td>
<td>28</td>
<td>1578.8</td>
<td>1583.59</td>
<td>-4.79</td>
<td>1</td>
</tr>
<tr>
<td>2142414</td>
<td>28</td>
<td>1586.3</td>
<td>1585.28</td>
<td>1.02</td>
<td>0</td>
</tr>
<tr>
<td>2142415</td>
<td>8</td>
<td>1576.4</td>
<td>1578.82</td>
<td>-2.42</td>
<td>1</td>
</tr>
<tr>
<td>2142415</td>
<td>28</td>
<td>1585.7</td>
<td>1584.2</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>2142417</td>
<td>8</td>
<td>1578.6</td>
<td>1579.21</td>
<td>-0.61</td>
<td>1</td>
</tr>
<tr>
<td>2142418</td>
<td>8</td>
<td>1577.3</td>
<td>1577.79</td>
<td>-0.49</td>
<td>1</td>
</tr>
<tr>
<td>2142418</td>
<td>28</td>
<td>1587.7</td>
<td>1583.98</td>
<td>3.72</td>
<td>1</td>
</tr>
<tr>
<td>2142422</td>
<td>28</td>
<td>1582.1</td>
<td>1579.34</td>
<td>2.76</td>
<td>1</td>
</tr>
<tr>
<td>2142426</td>
<td>28</td>
<td>1575.5</td>
<td>1578.36</td>
<td>-2.86</td>
<td>0</td>
</tr>
<tr>
<td>2142429</td>
<td>8</td>
<td>1574.1</td>
<td>1582.65</td>
<td>-8.55</td>
<td>1</td>
</tr>
<tr>
<td>2142430</td>
<td>28</td>
<td>1585.9</td>
<td>1586.66</td>
<td>-0.76</td>
<td>1</td>
</tr>
<tr>
<td>2142431</td>
<td>8</td>
<td>1571.4</td>
<td>1581.95</td>
<td>-10.55</td>
<td>1</td>
</tr>
<tr>
<td>2142432</td>
<td>8</td>
<td>1576.3</td>
<td>1574.62</td>
<td>1.68</td>
<td>1</td>
</tr>
<tr>
<td>2142433</td>
<td>8</td>
<td>1572.9</td>
<td>1573.99</td>
<td>-1.09</td>
<td>1</td>
</tr>
<tr>
<td>2142433</td>
<td>28</td>
<td>1579.8</td>
<td>1577.39</td>
<td>2.41</td>
<td>1</td>
</tr>
<tr>
<td>2142434</td>
<td>8</td>
<td>1563.2</td>
<td>1569.06</td>
<td>-5.86</td>
<td>1</td>
</tr>
<tr>
<td>2142435</td>
<td>8</td>
<td>1560.5</td>
<td>1558.08</td>
<td>2.42</td>
<td>1</td>
</tr>
<tr>
<td>2142435</td>
<td>28</td>
<td>1575.2</td>
<td>1566.17</td>
<td>9.03</td>
<td>1</td>
</tr>
<tr>
<td>2142454</td>
<td>8</td>
<td>1576.1</td>
<td>1575.07</td>
<td>1.03</td>
<td>1</td>
</tr>
<tr>
<td>2142454</td>
<td>28</td>
<td>1585.6</td>
<td>1581.03</td>
<td>4.57</td>
<td>1</td>
</tr>
<tr>
<td>2142455</td>
<td>8</td>
<td>1564.4</td>
<td>1564.51</td>
<td>-0.11</td>
<td>1</td>
</tr>
<tr>
<td>2142459</td>
<td>236</td>
<td>1570</td>
<td>1579.21</td>
<td>-9.21</td>
<td>1</td>
</tr>
<tr>
<td>2142459</td>
<td>270</td>
<td>1566.9</td>
<td>1572.84</td>
<td>-5.94</td>
<td>1</td>
</tr>
<tr>
<td>2142459</td>
<td>284</td>
<td>1562.38</td>
<td>1572.44</td>
<td>-10.06</td>
<td>1</td>
</tr>
<tr>
<td>2142459</td>
<td>295</td>
<td>1563.17</td>
<td>1570.52</td>
<td>-7.35</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>9</td>
<td>1551.12</td>
<td>1551.31</td>
<td>-0.19</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>11</td>
<td>1548.45</td>
<td>1548.83</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>14</td>
<td>1549.63</td>
<td>1548.44</td>
<td>1.19</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>15</td>
<td>1547.3</td>
<td>1547.64</td>
<td>-0.34</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142502</td>
<td>16</td>
<td>1547.35</td>
<td>1545.88</td>
<td>1.47</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>17</td>
<td>1545.43</td>
<td>1544.76</td>
<td>0.67</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>18</td>
<td>1547.66</td>
<td>1547.17</td>
<td>0.49</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>19</td>
<td>1547.04</td>
<td>1547.29</td>
<td>-0.25</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>20</td>
<td>1552.6</td>
<td>1549.54</td>
<td>3.06</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>21</td>
<td>1552.77</td>
<td>1551.11</td>
<td>1.66</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>22</td>
<td>1553.12</td>
<td>1549.61</td>
<td>3.51</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>23</td>
<td>1560.77</td>
<td>1551.68</td>
<td>9.09</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>24</td>
<td>1560.53</td>
<td>1553.34</td>
<td>7.19</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>25</td>
<td>1560.19</td>
<td>1554.41</td>
<td>5.78</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>26</td>
<td>1555.63</td>
<td>1553.98</td>
<td>1.65</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>27</td>
<td>1561.13</td>
<td>1555.52</td>
<td>5.61</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>28</td>
<td>1555.9</td>
<td>1555.94</td>
<td>-0.04</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>29</td>
<td>1554.93</td>
<td>1555.06</td>
<td>-0.13</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>30</td>
<td>1557.66</td>
<td>1555.52</td>
<td>2.14</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>42</td>
<td>1551.75</td>
<td>1553.11</td>
<td>-1.36</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>54</td>
<td>1552.25</td>
<td>1553.65</td>
<td>-1.4</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>64</td>
<td>1557.09</td>
<td>1554.51</td>
<td>2.58</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>93</td>
<td>1559.32</td>
<td>1555.72</td>
<td>3.6</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>113</td>
<td>1557.84</td>
<td>1557.39</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>125</td>
<td>1560.13</td>
<td>1558.35</td>
<td>1.78</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>137</td>
<td>1556.77</td>
<td>1557.63</td>
<td>-0.86</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>149</td>
<td>1554.3</td>
<td>1556.73</td>
<td>-2.43</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>161</td>
<td>1555.75</td>
<td>1558.36</td>
<td>-2.61</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>173</td>
<td>1555.67</td>
<td>1558.56</td>
<td>-2.89</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>185</td>
<td>1558.44</td>
<td>1559.39</td>
<td>-0.95</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>199</td>
<td>1556.83</td>
<td>1559.91</td>
<td>-3.08</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>213</td>
<td>1555.27</td>
<td>1557.06</td>
<td>-1.79</td>
<td>1</td>
</tr>
<tr>
<td>2142502</td>
<td>224</td>
<td>1549.58</td>
<td>1555.21</td>
<td>-5.63</td>
<td>1</td>
</tr>
<tr>
<td>2142504</td>
<td>8</td>
<td>1564.8</td>
<td>1569.49</td>
<td>-4.69</td>
<td>1</td>
</tr>
<tr>
<td>2142504</td>
<td>28</td>
<td>1573.7</td>
<td>1573.63</td>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>2142506</td>
<td>28</td>
<td>1572</td>
<td>1572.06</td>
<td>-0.06</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2142508</td>
<td>28</td>
<td>1572.8</td>
<td>1573.28</td>
<td>-0.48</td>
<td>0</td>
</tr>
<tr>
<td>2142510</td>
<td>28</td>
<td>1568</td>
<td>1562.7</td>
<td>5.3</td>
<td>0</td>
</tr>
<tr>
<td>2142513</td>
<td>28</td>
<td>1557.7</td>
<td>1572.26</td>
<td>-14.56</td>
<td>0</td>
</tr>
<tr>
<td>2142521</td>
<td>8</td>
<td>1546.3</td>
<td>1548.2</td>
<td>-1.9</td>
<td>1</td>
</tr>
<tr>
<td>2142522</td>
<td>8</td>
<td>1546.4</td>
<td>1550.1</td>
<td>-3.7</td>
<td>1</td>
</tr>
<tr>
<td>2142524</td>
<td>8</td>
<td>1550.1</td>
<td>1553.12</td>
<td>-3.02</td>
<td>1</td>
</tr>
<tr>
<td>2142602</td>
<td>28</td>
<td>1551.1</td>
<td>1531.4</td>
<td>19.7</td>
<td>0</td>
</tr>
<tr>
<td>2142603</td>
<td>28</td>
<td>1545.6</td>
<td>1534.36</td>
<td>11.24</td>
<td>0</td>
</tr>
<tr>
<td>2142701</td>
<td>4</td>
<td>1615</td>
<td>1623.23</td>
<td>-8.23</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>5</td>
<td>1614.68</td>
<td>1622.85</td>
<td>-8.17</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>6</td>
<td>1612.6</td>
<td>1621.89</td>
<td>-9.29</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>7</td>
<td>1613.72</td>
<td>1621.44</td>
<td>-7.72</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>8</td>
<td>1611.66</td>
<td>1619.54</td>
<td>-7.88</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>9</td>
<td>1615.09</td>
<td>1620.2</td>
<td>-5.11</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>11</td>
<td>1616.66</td>
<td>1619.71</td>
<td>-3.05</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>12</td>
<td>1617.94</td>
<td>1619.56</td>
<td>-1.62</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>15</td>
<td>1618.43</td>
<td>1619.51</td>
<td>-1.08</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>16</td>
<td>1618.51</td>
<td>1619.02</td>
<td>-0.51</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>17</td>
<td>1616.56</td>
<td>1618.54</td>
<td>-1.98</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>18</td>
<td>1623.2</td>
<td>1618.53</td>
<td>4.67</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>19</td>
<td>1620</td>
<td>1618.11</td>
<td>1.89</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>20</td>
<td>1620.52</td>
<td>1618.56</td>
<td>1.96</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>21</td>
<td>1620.56</td>
<td>1619.34</td>
<td>1.22</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>22</td>
<td>1619.88</td>
<td>1618.33</td>
<td>1.55</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>23</td>
<td>1626.47</td>
<td>1618.81</td>
<td>7.66</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>24</td>
<td>1627.86</td>
<td>1619.3</td>
<td>8.56</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>25</td>
<td>1625.18</td>
<td>1619.51</td>
<td>5.67</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>26</td>
<td>1623.75</td>
<td>1619.55</td>
<td>4.2</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>27</td>
<td>1626.43</td>
<td>1619.94</td>
<td>6.49</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>28</td>
<td>1624.1</td>
<td>1620.02</td>
<td>4.08</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>29</td>
<td>1620.23</td>
<td>1619.45</td>
<td>0.78</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>30</td>
<td>1622.7</td>
<td>1619.74</td>
<td>2.96</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2142701</td>
<td>42</td>
<td>1623.5</td>
<td>1619.41</td>
<td>4.09</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>64</td>
<td>1622.55</td>
<td>1620.15</td>
<td>2.4</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>101</td>
<td>1622.9</td>
<td>1620.36</td>
<td>2.54</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>113</td>
<td>1626.91</td>
<td>1621.14</td>
<td>5.77</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>125</td>
<td>1625.25</td>
<td>1621.39</td>
<td>3.86</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>137</td>
<td>1621.26</td>
<td>1621.12</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>149</td>
<td>1618.68</td>
<td>1620.96</td>
<td>2.28</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>161</td>
<td>1621.58</td>
<td>1621.79</td>
<td>-0.21</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>173</td>
<td>1621.12</td>
<td>1622.4</td>
<td>-1.28</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>185</td>
<td>1622.67</td>
<td>1622.93</td>
<td>-0.26</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>199</td>
<td>1619.99</td>
<td>1622.88</td>
<td>-2.89</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>213</td>
<td>1620.95</td>
<td>1622.03</td>
<td>-1.08</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>224</td>
<td>1617.16</td>
<td>1622.37</td>
<td>-5.21</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>236</td>
<td>1614.25</td>
<td>1621.69</td>
<td>-7.44</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>248</td>
<td>1615.81</td>
<td>1622.06</td>
<td>-6.25</td>
<td>1</td>
</tr>
<tr>
<td>2142701</td>
<td>259</td>
<td>1609.75</td>
<td>1620.7</td>
<td>-10.95</td>
<td>1</td>
</tr>
<tr>
<td>2142702</td>
<td>28</td>
<td>1624.4</td>
<td>1625.31</td>
<td>-0.91</td>
<td>1</td>
</tr>
<tr>
<td>2142705</td>
<td>28</td>
<td>1609.6</td>
<td>1615.68</td>
<td>-6.08</td>
<td>0</td>
</tr>
<tr>
<td>2142708</td>
<td>28</td>
<td>1597.6</td>
<td>1596.96</td>
<td>0.64</td>
<td>1</td>
</tr>
<tr>
<td>2142710</td>
<td>8</td>
<td>1585.1</td>
<td>1589.55</td>
<td>-4.45</td>
<td>1</td>
</tr>
<tr>
<td>2142710</td>
<td>28</td>
<td>1595.5</td>
<td>1593.64</td>
<td>1.86</td>
<td>1</td>
</tr>
<tr>
<td>2142711</td>
<td>8</td>
<td>1580.5</td>
<td>1585.54</td>
<td>-5.04</td>
<td>1</td>
</tr>
<tr>
<td>2142711</td>
<td>28</td>
<td>1589.6</td>
<td>1589.99</td>
<td>-0.39</td>
<td>1</td>
</tr>
<tr>
<td>2142713</td>
<td>28</td>
<td>1610.1</td>
<td>1607.53</td>
<td>2.57</td>
<td>1</td>
</tr>
<tr>
<td>2142716</td>
<td>8</td>
<td>1595</td>
<td>1599.69</td>
<td>-4.69</td>
<td>1</td>
</tr>
<tr>
<td>2142717</td>
<td>8</td>
<td>1613</td>
<td>1618.15</td>
<td>-5.15</td>
<td>1</td>
</tr>
<tr>
<td>2142717</td>
<td>28</td>
<td>1624.8</td>
<td>1618.52</td>
<td>6.28</td>
<td>1</td>
</tr>
<tr>
<td>2142804</td>
<td>28</td>
<td>1617.7</td>
<td>1619.6</td>
<td>-1.9</td>
<td>1</td>
</tr>
<tr>
<td>2143103</td>
<td>8</td>
<td>1517.4</td>
<td>1498.99</td>
<td>18.41</td>
<td>1</td>
</tr>
<tr>
<td>2143104</td>
<td>8</td>
<td>1514.9</td>
<td>1495.69</td>
<td>19.21</td>
<td>1</td>
</tr>
<tr>
<td>2143105</td>
<td>8</td>
<td>1510.4</td>
<td>1494.13</td>
<td>16.27</td>
<td>1</td>
</tr>
<tr>
<td>2143106</td>
<td>8</td>
<td>1526.1</td>
<td>1527.01</td>
<td>-0.91</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2143107</td>
<td>8</td>
<td>1522.1</td>
<td>1524.96</td>
<td>-2.86</td>
<td>1</td>
</tr>
<tr>
<td>2143107</td>
<td>28</td>
<td>1531</td>
<td>1530.7</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2143109</td>
<td>28</td>
<td>1532.1</td>
<td>1528.72</td>
<td>3.38</td>
<td>0</td>
</tr>
<tr>
<td>2143111</td>
<td>28</td>
<td>1518.2</td>
<td>1494.4</td>
<td>23.8</td>
<td>0</td>
</tr>
<tr>
<td>2143202</td>
<td>28</td>
<td>1519.3</td>
<td>1500.68</td>
<td>18.62</td>
<td>0</td>
</tr>
<tr>
<td>2143204</td>
<td>28</td>
<td>1502.7</td>
<td>1499.46</td>
<td>3.24</td>
<td>1</td>
</tr>
<tr>
<td>2149201</td>
<td>6</td>
<td>1606.15</td>
<td>1604.71</td>
<td>1.44</td>
<td>1</td>
</tr>
<tr>
<td>2149201</td>
<td>7</td>
<td>1606.26</td>
<td>1604.53</td>
<td>1.73</td>
<td>1</td>
</tr>
<tr>
<td>2149201</td>
<td>9</td>
<td>1605.26</td>
<td>1604.12</td>
<td>1.14</td>
<td>1</td>
</tr>
<tr>
<td>2149205</td>
<td>28</td>
<td>1609</td>
<td>1604.33</td>
<td>4.67</td>
<td>0</td>
</tr>
<tr>
<td>2149206</td>
<td>28</td>
<td>1601</td>
<td>1598.36</td>
<td>2.64</td>
<td>1</td>
</tr>
<tr>
<td>2149208</td>
<td>28</td>
<td>1608.2</td>
<td>1605.62</td>
<td>2.58</td>
<td>0</td>
</tr>
<tr>
<td>2149210</td>
<td>6</td>
<td>1604.92</td>
<td>1605.66</td>
<td>-0.74</td>
<td>1</td>
</tr>
<tr>
<td>2149210</td>
<td>7</td>
<td>1603.79</td>
<td>1605.41</td>
<td>-1.62</td>
<td>1</td>
</tr>
<tr>
<td>2149210</td>
<td>9</td>
<td>1600.89</td>
<td>1605.27</td>
<td>-4.38</td>
<td>1</td>
</tr>
<tr>
<td>2149210</td>
<td>12</td>
<td>1597.78</td>
<td>1605.13</td>
<td>-7.35</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>8</td>
<td>1604.85</td>
<td>1603.96</td>
<td>0.89</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>9</td>
<td>1604.19</td>
<td>1605.27</td>
<td>-1.08</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>11</td>
<td>1602.68</td>
<td>1604.96</td>
<td>-2.28</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>12</td>
<td>1600.96</td>
<td>1605.13</td>
<td>-4.17</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>14</td>
<td>1601.87</td>
<td>1605.93</td>
<td>-4.06</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>15</td>
<td>1601.22</td>
<td>1605.62</td>
<td>-4.4</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>18</td>
<td>1603.52</td>
<td>1605.77</td>
<td>-2.25</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>19</td>
<td>1602.66</td>
<td>1605.64</td>
<td>-2.98</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>20</td>
<td>1603.05</td>
<td>1606.36</td>
<td>-3.31</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>21</td>
<td>1603.62</td>
<td>1607.01</td>
<td>-3.39</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>22</td>
<td>1604.69</td>
<td>1606.02</td>
<td>-1.33</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>25</td>
<td>1603.94</td>
<td>1607.23</td>
<td>-3.29</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>27</td>
<td>1606.68</td>
<td>1607.37</td>
<td>-0.69</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>28</td>
<td>1606.97</td>
<td>1607.32</td>
<td>-0.35</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>29</td>
<td>1606.31</td>
<td>1606.7</td>
<td>-0.39</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>42</td>
<td>1605.9</td>
<td>1606.55</td>
<td>-0.65</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2149211</td>
<td>54</td>
<td>1605.65</td>
<td>1606.76</td>
<td>-1.11</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>64</td>
<td>1606.17</td>
<td>1607.34</td>
<td>-1.17</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>93</td>
<td>1610.03</td>
<td>1607.09</td>
<td>2.94</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>113</td>
<td>1612.21</td>
<td>1608.2</td>
<td>4.01</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>125</td>
<td>1615.35</td>
<td>1608.28</td>
<td>7.07</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>137</td>
<td>1614.92</td>
<td>1607.76</td>
<td>7.16</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>149</td>
<td>1614.97</td>
<td>1607.39</td>
<td>7.58</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>161</td>
<td>1616.07</td>
<td>1608.26</td>
<td>7.81</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>173</td>
<td>1614.86</td>
<td>1608.49</td>
<td>6.37</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>185</td>
<td>1614.9</td>
<td>1608.86</td>
<td>6.04</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>199</td>
<td>1614.98</td>
<td>1608.81</td>
<td>6.17</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>213</td>
<td>1614.06</td>
<td>1607.75</td>
<td>6.31</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>224</td>
<td>1615.56</td>
<td>1607.79</td>
<td>7.77</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>259</td>
<td>1612.33</td>
<td>1606.14</td>
<td>6.19</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>270</td>
<td>1610.85</td>
<td>1605.8</td>
<td>5.05</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>284</td>
<td>1609.3</td>
<td>1605.81</td>
<td>3.49</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>295</td>
<td>1608.48</td>
<td>1605.34</td>
<td>3.14</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>307</td>
<td>1608.5</td>
<td>1606.15</td>
<td>2.35</td>
<td>1</td>
</tr>
<tr>
<td>2149211</td>
<td>319</td>
<td>1607.68</td>
<td>1604.84</td>
<td>2.84</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>6</td>
<td>1633.6</td>
<td>1645.95</td>
<td>-12.35</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>7</td>
<td>1633.62</td>
<td>1645.43</td>
<td>-11.81</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>9</td>
<td>1633.2</td>
<td>1644.03</td>
<td>-10.83</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>12</td>
<td>1634.05</td>
<td>1643.66</td>
<td>-9.61</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>14</td>
<td>1639.51</td>
<td>1644.75</td>
<td>-5.24</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>15</td>
<td>1640.4</td>
<td>1644.23</td>
<td>-3.83</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>16</td>
<td>1640.36</td>
<td>1643.87</td>
<td>-3.51</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>17</td>
<td>1640.17</td>
<td>1643.54</td>
<td>-3.37</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>18</td>
<td>1640.98</td>
<td>1643.76</td>
<td>-2.78</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>19</td>
<td>1640.26</td>
<td>1643.53</td>
<td>-3.27</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>20</td>
<td>1643.31</td>
<td>1644.22</td>
<td>-0.91</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>21</td>
<td>1644.46</td>
<td>1645.26</td>
<td>-0.8</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>22</td>
<td>1644.65</td>
<td>1644.29</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2149301</td>
<td>23</td>
<td>1644.67</td>
<td>1644.91</td>
<td>-0.24</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>24</td>
<td>1645.33</td>
<td>1645.55</td>
<td>-0.22</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>25</td>
<td>1646.63</td>
<td>1645.87</td>
<td>0.76</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>26</td>
<td>1647.55</td>
<td>1645.96</td>
<td>1.59</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>27</td>
<td>1649.89</td>
<td>1646.44</td>
<td>3.45</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>28</td>
<td>1644.55</td>
<td>1646.57</td>
<td>-2.02</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>29</td>
<td>1649.35</td>
<td>1645.95</td>
<td>3.4</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>30</td>
<td>1648.44</td>
<td>1646.23</td>
<td>2.21</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>42</td>
<td>1647.76</td>
<td>1645.77</td>
<td>1.99</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>54</td>
<td>1649.05</td>
<td>1645.79</td>
<td>3.26</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>64</td>
<td>1649.22</td>
<td>1646.61</td>
<td>2.61</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>93</td>
<td>1650.76</td>
<td>1645.88</td>
<td>4.88</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>113</td>
<td>1653.89</td>
<td>1647.56</td>
<td>6.33</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>125</td>
<td>1657.26</td>
<td>1647.98</td>
<td>9.28</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>137</td>
<td>1657.03</td>
<td>1647.67</td>
<td>9.36</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>149</td>
<td>1653.25</td>
<td>1647.44</td>
<td>5.81</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>161</td>
<td>1654.34</td>
<td>1648.3</td>
<td>6.04</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>173</td>
<td>1653.97</td>
<td>1649.01</td>
<td>4.96</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>185</td>
<td>1655.52</td>
<td>1649.74</td>
<td>5.78</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>199</td>
<td>1654.29</td>
<td>1649.84</td>
<td>4.45</td>
<td>1</td>
</tr>
<tr>
<td>2149301</td>
<td>213</td>
<td>1652.38</td>
<td>1648.91</td>
<td>3.47</td>
<td>1</td>
</tr>
<tr>
<td>2149302</td>
<td>28</td>
<td>1610.5</td>
<td>1611.13</td>
<td>-0.63</td>
<td>0</td>
</tr>
<tr>
<td>2149304</td>
<td>28</td>
<td>1616.8</td>
<td>1605.41</td>
<td>11.39</td>
<td>0</td>
</tr>
<tr>
<td>2149306</td>
<td>8</td>
<td>1633.3</td>
<td>1636.52</td>
<td>-3.22</td>
<td>1</td>
</tr>
<tr>
<td>2149309</td>
<td>8</td>
<td>1634.3</td>
<td>1640.77</td>
<td>-6.47</td>
<td>1</td>
</tr>
<tr>
<td>2149310</td>
<td>8</td>
<td>1603.4</td>
<td>1601.79</td>
<td>1.61</td>
<td>1</td>
</tr>
<tr>
<td>2149310</td>
<td>28</td>
<td>1612.2</td>
<td>1603.32</td>
<td>8.88</td>
<td>1</td>
</tr>
<tr>
<td>2149311</td>
<td>8</td>
<td>1608.4</td>
<td>1605.01</td>
<td>3.39</td>
<td>1</td>
</tr>
<tr>
<td>2149312</td>
<td>8</td>
<td>1633.5</td>
<td>1637.21</td>
<td>-3.71</td>
<td>1</td>
</tr>
<tr>
<td>2149313</td>
<td>28</td>
<td>1621.3</td>
<td>1629.45</td>
<td>-8.15</td>
<td>0</td>
</tr>
<tr>
<td>2149316</td>
<td>28</td>
<td>1616</td>
<td>1607.94</td>
<td>8.06</td>
<td>0</td>
</tr>
<tr>
<td>2149317</td>
<td>187</td>
<td>1625</td>
<td>1628.12</td>
<td>-3.12</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2149503</td>
<td>6</td>
<td>1609.44</td>
<td>1610.33</td>
<td>-0.89</td>
<td>1</td>
</tr>
<tr>
<td>2149503</td>
<td>8</td>
<td>1603.9</td>
<td>1608.14</td>
<td>-4.24</td>
<td>1</td>
</tr>
<tr>
<td>2149503</td>
<td>9</td>
<td>1603.65</td>
<td>1609.89</td>
<td>-6.24</td>
<td>1</td>
</tr>
<tr>
<td>2149503</td>
<td>11</td>
<td>1601.53</td>
<td>1609.16</td>
<td>-7.63</td>
<td>1</td>
</tr>
<tr>
<td>2149506</td>
<td>8</td>
<td>1604.9</td>
<td>1607.22</td>
<td>-2.32</td>
<td>1</td>
</tr>
<tr>
<td>2149509</td>
<td>6</td>
<td>1609.08</td>
<td>1610.33</td>
<td>-1.25</td>
<td>1</td>
</tr>
<tr>
<td>2149509</td>
<td>7</td>
<td>1606.89</td>
<td>1609.85</td>
<td>-2.96</td>
<td>1</td>
</tr>
<tr>
<td>2149509</td>
<td>8</td>
<td>1604.41</td>
<td>1608.14</td>
<td>-3.73</td>
<td>1</td>
</tr>
<tr>
<td>2149509</td>
<td>11</td>
<td>1601.9</td>
<td>1609.16</td>
<td>-7.26</td>
<td>1</td>
</tr>
<tr>
<td>2149509</td>
<td>12</td>
<td>1600.04</td>
<td>1609.44</td>
<td>-9.4</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>7</td>
<td>1640.88</td>
<td>1646.73</td>
<td>-5.85</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>8</td>
<td>1639.02</td>
<td>1644.64</td>
<td>-5.62</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>9</td>
<td>1639.9</td>
<td>1645.73</td>
<td>-5.83</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>12</td>
<td>1638.73</td>
<td>1645.58</td>
<td>-6.85</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>15</td>
<td>1641.28</td>
<td>1646.4</td>
<td>-5.12</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>16</td>
<td>1640.36</td>
<td>1646.05</td>
<td>-5.69</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>17</td>
<td>1641.54</td>
<td>1645.79</td>
<td>-4.25</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>18</td>
<td>1643.4</td>
<td>1646.39</td>
<td>-2.99</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>19</td>
<td>1642.29</td>
<td>1646.28</td>
<td>-3.99</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>20</td>
<td>1643.03</td>
<td>1647.17</td>
<td>-4.14</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>21</td>
<td>1647.06</td>
<td>1648.25</td>
<td>-1.19</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>22</td>
<td>1644.58</td>
<td>1647.22</td>
<td>-2.64</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>23</td>
<td>1645.89</td>
<td>1647.98</td>
<td>-2.09</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>24</td>
<td>1645.65</td>
<td>1648.69</td>
<td>-3.04</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>25</td>
<td>1648.27</td>
<td>1649.03</td>
<td>-0.76</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>27</td>
<td>1645.69</td>
<td>1649.54</td>
<td>-3.85</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>28</td>
<td>1649.47</td>
<td>1649.64</td>
<td>-0.17</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>29</td>
<td>1649.48</td>
<td>1648.95</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>30</td>
<td>1649.87</td>
<td>1649.21</td>
<td>0.66</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>42</td>
<td>1649.45</td>
<td>1648.61</td>
<td>0.84</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>64</td>
<td>1650.43</td>
<td>1649.51</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>77</td>
<td>1650.96</td>
<td>1649.62</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2149601</td>
<td>101</td>
<td>1652.93</td>
<td>1649.77</td>
<td>3.16</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>113</td>
<td>1655.86</td>
<td>1650.63</td>
<td>5.23</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>125</td>
<td>1658.65</td>
<td>1650.98</td>
<td>7.67</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>137</td>
<td>1658.67</td>
<td>1650.57</td>
<td>8.1</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>149</td>
<td>1655.38</td>
<td>1650.22</td>
<td>5.16</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>161</td>
<td>1656.66</td>
<td>1651.16</td>
<td>5.5</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>173</td>
<td>1655.84</td>
<td>1651.76</td>
<td>4.08</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>185</td>
<td>1656.35</td>
<td>1652.44</td>
<td>3.91</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>199</td>
<td>1656.12</td>
<td>1652.56</td>
<td>3.56</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>213</td>
<td>1652.87</td>
<td>1651.42</td>
<td>1.45</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>224</td>
<td>1642.17</td>
<td>1651.6</td>
<td>-9.43</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>248</td>
<td>1650.32</td>
<td>1651.42</td>
<td>-1.1</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>259</td>
<td>1656.69</td>
<td>1649.67</td>
<td>7.02</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>270</td>
<td>1648.5</td>
<td>1649.04</td>
<td>-0.54</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>284</td>
<td>1651.77</td>
<td>1648.42</td>
<td>3.35</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>295</td>
<td>1650.54</td>
<td>1647.76</td>
<td>2.78</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>307</td>
<td>1650.9</td>
<td>1648.52</td>
<td>2.38</td>
<td>1</td>
</tr>
<tr>
<td>2149601</td>
<td>319</td>
<td>1643.18</td>
<td>1646.94</td>
<td>-3.76</td>
<td>1</td>
</tr>
<tr>
<td>2149602</td>
<td>5</td>
<td>1642.26</td>
<td>1644.09</td>
<td>-1.83</td>
<td>1</td>
</tr>
<tr>
<td>2149602</td>
<td>7</td>
<td>1641.52</td>
<td>1642.76</td>
<td>-1.24</td>
<td>1</td>
</tr>
<tr>
<td>2149602</td>
<td>8</td>
<td>1635.8</td>
<td>1640.6</td>
<td>-4.8</td>
<td>1</td>
</tr>
<tr>
<td>2149602</td>
<td>9</td>
<td>1641.4</td>
<td>1641.76</td>
<td>-0.36</td>
<td>1</td>
</tr>
<tr>
<td>2149602</td>
<td>12</td>
<td>1639.11</td>
<td>1641.56</td>
<td>-2.45</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>4</td>
<td>1640.73</td>
<td>1646.83</td>
<td>-6.1</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>5</td>
<td>1640.48</td>
<td>1647.04</td>
<td>-6.56</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>17</td>
<td>1638.81</td>
<td>1645.08</td>
<td>-6.27</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>18</td>
<td>1640.08</td>
<td>1646.25</td>
<td>-6.17</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>19</td>
<td>1639.62</td>
<td>1646.15</td>
<td>-6.53</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>25</td>
<td>1645.36</td>
<td>1648.94</td>
<td>-3.58</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>29</td>
<td>1646.61</td>
<td>1648.61</td>
<td>-2</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>54</td>
<td>1648.12</td>
<td>1648.38</td>
<td>-0.26</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>64</td>
<td>1648.67</td>
<td>1649.05</td>
<td>-0.38</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2149603</td>
<td>77</td>
<td>1650.58</td>
<td>1649.24</td>
<td>1.34</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>113</td>
<td>1654.68</td>
<td>1650.28</td>
<td>4.4</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>125</td>
<td>1657.16</td>
<td>1650.55</td>
<td>6.61</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>137</td>
<td>1655.95</td>
<td>1649.93</td>
<td>6.02</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>149</td>
<td>1654.24</td>
<td>1649.42</td>
<td>4.82</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>161</td>
<td>1654.78</td>
<td>1650.67</td>
<td>4.11</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>173</td>
<td>1654.61</td>
<td>1651.02</td>
<td>3.59</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>185</td>
<td>1656.02</td>
<td>1651.75</td>
<td>4.27</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>199</td>
<td>1655.89</td>
<td>1652.08</td>
<td>3.81</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>202</td>
<td>1655.1</td>
<td>1651.74</td>
<td>3.36</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>213</td>
<td>1653.26</td>
<td>1650.73</td>
<td>2.53</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>224</td>
<td>1651.88</td>
<td>1650.7</td>
<td>1.18</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>259</td>
<td>1648.48</td>
<td>1648.36</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>270</td>
<td>1646.4</td>
<td>1647.85</td>
<td>-1.45</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>284</td>
<td>1644.6</td>
<td>1647.79</td>
<td>-3.19</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>307</td>
<td>1645.05</td>
<td>1647.96</td>
<td>-2.91</td>
<td>1</td>
</tr>
<tr>
<td>2149603</td>
<td>319</td>
<td>1643.08</td>
<td>1646.02</td>
<td>-2.94</td>
<td>1</td>
</tr>
<tr>
<td>2149604</td>
<td>6</td>
<td>1639.72</td>
<td>1643.28</td>
<td>-3.56</td>
<td>1</td>
</tr>
<tr>
<td>2149604</td>
<td>9</td>
<td>1640.14</td>
<td>1641.76</td>
<td>-1.62</td>
<td>1</td>
</tr>
<tr>
<td>2149605</td>
<td>8</td>
<td>1642</td>
<td>1643.73</td>
<td>-1.73</td>
<td>1</td>
</tr>
<tr>
<td>2149606</td>
<td>28</td>
<td>1656.9</td>
<td>1653.44</td>
<td>3.46</td>
<td>1</td>
</tr>
<tr>
<td>2149608</td>
<td>8</td>
<td>1641</td>
<td>1642.06</td>
<td>-1.06</td>
<td>1</td>
</tr>
<tr>
<td>2149610</td>
<td>8</td>
<td>1639.3</td>
<td>1641.47</td>
<td>-2.17</td>
<td>1</td>
</tr>
<tr>
<td>2149611</td>
<td>28</td>
<td>1637.8</td>
<td>1632.57</td>
<td>5.23</td>
<td>1</td>
</tr>
<tr>
<td>2149612</td>
<td>8</td>
<td>1636.8</td>
<td>1638.93</td>
<td>-2.13</td>
<td>1</td>
</tr>
<tr>
<td>2149612</td>
<td>28</td>
<td>1647.8</td>
<td>1644.3</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>2149613</td>
<td>8</td>
<td>1640.9</td>
<td>1639.37</td>
<td>1.53</td>
<td>1</td>
</tr>
<tr>
<td>2149614</td>
<td>8</td>
<td>1642.2</td>
<td>1639.38</td>
<td>2.82</td>
<td>1</td>
</tr>
<tr>
<td>2149614</td>
<td>28</td>
<td>1651.8</td>
<td>1644.81</td>
<td>6.99</td>
<td>1</td>
</tr>
<tr>
<td>2149615</td>
<td>8</td>
<td>1640.4</td>
<td>1639.13</td>
<td>1.27</td>
<td>1</td>
</tr>
<tr>
<td>2149617</td>
<td>28</td>
<td>1651.4</td>
<td>1644.73</td>
<td>6.67</td>
<td>1</td>
</tr>
<tr>
<td>2149618</td>
<td>28</td>
<td>1653.5</td>
<td>1646.85</td>
<td>6.65</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2149620</td>
<td>8</td>
<td>1641.8</td>
<td>1642.02</td>
<td>-0.22</td>
<td>1</td>
</tr>
<tr>
<td>2149620</td>
<td>28</td>
<td>1647.2</td>
<td>1647.11</td>
<td>0.09</td>
<td>1</td>
</tr>
<tr>
<td>2149621</td>
<td>8</td>
<td>1642.4</td>
<td>1641.68</td>
<td>0.72</td>
<td>1</td>
</tr>
<tr>
<td>2149623</td>
<td>28</td>
<td>1650.2</td>
<td>1645.32</td>
<td>4.88</td>
<td>1</td>
</tr>
<tr>
<td>2149903</td>
<td>28</td>
<td>1658.4</td>
<td>1656.83</td>
<td>1.57</td>
<td>1</td>
</tr>
<tr>
<td>2149906</td>
<td>28</td>
<td>1659.3</td>
<td>1658.04</td>
<td>1.26</td>
<td>1</td>
</tr>
<tr>
<td>2149907</td>
<td>28</td>
<td>1656.3</td>
<td>1656.83</td>
<td>-0.53</td>
<td>1</td>
</tr>
<tr>
<td>2150101</td>
<td>8</td>
<td>1621.4</td>
<td>1630.72</td>
<td>-9.32</td>
<td>1</td>
</tr>
<tr>
<td>2150101</td>
<td>28</td>
<td>1638.9</td>
<td>1631.38</td>
<td>7.52</td>
<td>1</td>
</tr>
<tr>
<td>2150102</td>
<td>28</td>
<td>1651</td>
<td>1650.32</td>
<td>0.68</td>
<td>1</td>
</tr>
<tr>
<td>2150104</td>
<td>28</td>
<td>1649.7</td>
<td>1634.98</td>
<td>14.72</td>
<td>0</td>
</tr>
<tr>
<td>2150105</td>
<td>8</td>
<td>1631.6</td>
<td>1632.41</td>
<td>-0.81</td>
<td>1</td>
</tr>
<tr>
<td>2150106</td>
<td>28</td>
<td>1640.8</td>
<td>1630.47</td>
<td>10.33</td>
<td>0</td>
</tr>
<tr>
<td>2150110</td>
<td>28</td>
<td>1628.5</td>
<td>1627.09</td>
<td>1.41</td>
<td>0</td>
</tr>
<tr>
<td>2150113</td>
<td>28</td>
<td>1657.8</td>
<td>1637.96</td>
<td>19.84</td>
<td>0</td>
</tr>
<tr>
<td>2150201</td>
<td>28</td>
<td>1650.8</td>
<td>1654.41</td>
<td>-3.61</td>
<td>1</td>
</tr>
<tr>
<td>2150202</td>
<td>28</td>
<td>1654.5</td>
<td>1651.69</td>
<td>2.81</td>
<td>1</td>
</tr>
<tr>
<td>2150204</td>
<td>8</td>
<td>1609.3</td>
<td>1625.04</td>
<td>-15.74</td>
<td>1</td>
</tr>
<tr>
<td>2150205</td>
<td>8</td>
<td>1600.3</td>
<td>1605.82</td>
<td>-5.52</td>
<td>1</td>
</tr>
<tr>
<td>2150205</td>
<td>28</td>
<td>1616.7</td>
<td>1613.55</td>
<td>3.15</td>
<td>1</td>
</tr>
<tr>
<td>2150206</td>
<td>28</td>
<td>1614.2</td>
<td>1638.55</td>
<td>-24.35</td>
<td>0</td>
</tr>
<tr>
<td>2150306</td>
<td>8</td>
<td>1598.7</td>
<td>1596.24</td>
<td>2.46</td>
<td>1</td>
</tr>
<tr>
<td>2150307</td>
<td>28</td>
<td>1603.4</td>
<td>1598.47</td>
<td>4.93</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>5</td>
<td>1634.95</td>
<td>1635.51</td>
<td>-0.56</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>6</td>
<td>1633.79</td>
<td>1634.81</td>
<td>-1.02</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>7</td>
<td>1631.85</td>
<td>1634.34</td>
<td>-2.49</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>8</td>
<td>1627.8</td>
<td>1632.29</td>
<td>-4.49</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>9</td>
<td>1626.93</td>
<td>1633.6</td>
<td>-6.67</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>11</td>
<td>1624.36</td>
<td>1633.28</td>
<td>-8.92</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>12</td>
<td>1624.59</td>
<td>1633.45</td>
<td>-8.86</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>14</td>
<td>1625.18</td>
<td>1634.58</td>
<td>-9.4</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>15</td>
<td>1627.4</td>
<td>1634.24</td>
<td>-6.84</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2150401</td>
<td>16</td>
<td>1627.4</td>
<td>1633.84</td>
<td>-6.44</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>17</td>
<td>1629.03</td>
<td>1633.6</td>
<td>-4.57</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>18</td>
<td>1629.79</td>
<td>1634.42</td>
<td>-4.63</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>19</td>
<td>1628.98</td>
<td>1634.3</td>
<td>-5.32</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>20</td>
<td>1628.42</td>
<td>1635.25</td>
<td>-6.83</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>21</td>
<td>1628.68</td>
<td>1636.25</td>
<td>-7.57</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>22</td>
<td>1632.46</td>
<td>1635.17</td>
<td>-2.71</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>23</td>
<td>1632.77</td>
<td>1636.02</td>
<td>-3.25</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>24</td>
<td>1633.84</td>
<td>1636.73</td>
<td>-2.89</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>25</td>
<td>1636.08</td>
<td>1637.05</td>
<td>-0.97</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>26</td>
<td>1635.25</td>
<td>1636.93</td>
<td>-1.68</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>27</td>
<td>1637.06</td>
<td>1637.5</td>
<td>-0.44</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>28</td>
<td>1636.6</td>
<td>1637.56</td>
<td>-0.96</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>29</td>
<td>1638.08</td>
<td>1636.84</td>
<td>1.24</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>30</td>
<td>1637.63</td>
<td>1637.1</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>42</td>
<td>1637.4</td>
<td>1636.43</td>
<td>0.97</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>54</td>
<td>1638.4</td>
<td>1636.59</td>
<td>1.81</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>64</td>
<td>1639.79</td>
<td>1637.3</td>
<td>2.49</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>93</td>
<td>1641.83</td>
<td>1636.97</td>
<td>4.86</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>113</td>
<td>1644.22</td>
<td>1638.44</td>
<td>5.78</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>125</td>
<td>1648.47</td>
<td>1638.8</td>
<td>9.67</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>137</td>
<td>1646.09</td>
<td>1638.28</td>
<td>7.81</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>149</td>
<td>1646.35</td>
<td>1637.89</td>
<td>8.46</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>161</td>
<td>1648.33</td>
<td>1638.9</td>
<td>9.43</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>173</td>
<td>1648.2</td>
<td>1639.35</td>
<td>8.85</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>185</td>
<td>1649.64</td>
<td>1640.02</td>
<td>9.62</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>199</td>
<td>1649.88</td>
<td>1640.14</td>
<td>9.74</td>
<td>1</td>
</tr>
<tr>
<td>2150401</td>
<td>213</td>
<td>1647.67</td>
<td>1638.92</td>
<td>8.75</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>6</td>
<td>1628.67</td>
<td>1629.42</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>9</td>
<td>1624.14</td>
<td>1628.47</td>
<td>-4.33</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>11</td>
<td>1622.84</td>
<td>1627.86</td>
<td>-5.02</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>12</td>
<td>1622.59</td>
<td>1628.15</td>
<td>-5.56</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2150402</td>
<td>14</td>
<td>1624.29</td>
<td>1629.25</td>
<td>-4.96</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>15</td>
<td>1625.26</td>
<td>1628.99</td>
<td>-3.73</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>16</td>
<td>1625.01</td>
<td>1628.5</td>
<td>-3.49</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>17</td>
<td>1626.09</td>
<td>1628.29</td>
<td>-2.2</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>18</td>
<td>1626.96</td>
<td>1629.49</td>
<td>-2.53</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>19</td>
<td>1626.32</td>
<td>1629.35</td>
<td>-3.03</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>20</td>
<td>1628.2</td>
<td>1630.46</td>
<td>-2.26</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>21</td>
<td>1629.05</td>
<td>1631.42</td>
<td>-2.37</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>22</td>
<td>1628.71</td>
<td>1630.16</td>
<td>-1.45</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>23</td>
<td>1628.93</td>
<td>1631.2</td>
<td>-2.27</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>24</td>
<td>1629.77</td>
<td>1631.94</td>
<td>-2.17</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>25</td>
<td>1632.04</td>
<td>1632.23</td>
<td>-0.19</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>26</td>
<td>1631.16</td>
<td>1631.93</td>
<td>-0.77</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>27</td>
<td>1633.44</td>
<td>1632.62</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>28</td>
<td>1632.93</td>
<td>1632.63</td>
<td>0.3</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>29</td>
<td>1628.93</td>
<td>1631.82</td>
<td>-2.89</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>30</td>
<td>1632.97</td>
<td>1632.09</td>
<td>0.88</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>42</td>
<td>1632.62</td>
<td>1631.5</td>
<td>1.12</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>64</td>
<td>1637.34</td>
<td>1632.43</td>
<td>4.91</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>77</td>
<td>1637.78</td>
<td>1632.65</td>
<td>5.13</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>101</td>
<td>1640.96</td>
<td>1632.84</td>
<td>8.12</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>113</td>
<td>1642.5</td>
<td>1633.69</td>
<td>8.81</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>125</td>
<td>1646.49</td>
<td>1634.01</td>
<td>12.48</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>137</td>
<td>1643</td>
<td>1633.34</td>
<td>9.66</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>149</td>
<td>1641.97</td>
<td>1632.86</td>
<td>9.11</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>161</td>
<td>1642.84</td>
<td>1634.06</td>
<td>8.78</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>173</td>
<td>1642.72</td>
<td>1634.38</td>
<td>8.34</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>185</td>
<td>1644.19</td>
<td>1635.07</td>
<td>9.12</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>199</td>
<td>1643.11</td>
<td>1635.23</td>
<td>7.88</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>213</td>
<td>1641.56</td>
<td>1633.85</td>
<td>7.71</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>224</td>
<td>1640.63</td>
<td>1633.81</td>
<td>6.82</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>236</td>
<td>1638.18</td>
<td>1632.98</td>
<td>5.2</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2150402</td>
<td>248</td>
<td>1637.78</td>
<td>1633.8</td>
<td>3.98</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>259</td>
<td>1632.48</td>
<td>1631.35</td>
<td>1.13</td>
<td>1</td>
</tr>
<tr>
<td>2150402</td>
<td>284</td>
<td>1633.45</td>
<td>1630.69</td>
<td>2.76</td>
<td>1</td>
</tr>
<tr>
<td>2150403</td>
<td>5</td>
<td>1630.69</td>
<td>1628.27</td>
<td>2.42</td>
<td>1</td>
</tr>
<tr>
<td>2150403</td>
<td>6</td>
<td>1629.33</td>
<td>1628.05</td>
<td>1.28</td>
<td>1</td>
</tr>
<tr>
<td>2150403</td>
<td>8</td>
<td>1623.55</td>
<td>1624.73</td>
<td>-1.18</td>
<td>1</td>
</tr>
<tr>
<td>2150403</td>
<td>9</td>
<td>1624.82</td>
<td>1627.25</td>
<td>-2.43</td>
<td>1</td>
</tr>
<tr>
<td>2150403</td>
<td>11</td>
<td>1623.53</td>
<td>1625.8</td>
<td>-2.27</td>
<td>1</td>
</tr>
<tr>
<td>2150403</td>
<td>12</td>
<td>1623.42</td>
<td>1626.43</td>
<td>-3.01</td>
<td>1</td>
</tr>
<tr>
<td>2150404</td>
<td>11</td>
<td>1622.7</td>
<td>1628.9</td>
<td>-6.2</td>
<td>1</td>
</tr>
<tr>
<td>2150404</td>
<td>12</td>
<td>1622.58</td>
<td>1629.12</td>
<td>-6.54</td>
<td>1</td>
</tr>
<tr>
<td>2150405</td>
<td>8</td>
<td>1622.36</td>
<td>1623.6</td>
<td>-1.24</td>
<td>1</td>
</tr>
<tr>
<td>2150405</td>
<td>11</td>
<td>1622.02</td>
<td>1624.67</td>
<td>-2.65</td>
<td>1</td>
</tr>
<tr>
<td>2150405</td>
<td>12</td>
<td>1621.01</td>
<td>1625.3</td>
<td>-4.29</td>
<td>1</td>
</tr>
<tr>
<td>2150406</td>
<td>8</td>
<td>1628.8</td>
<td>1635.43</td>
<td>-6.63</td>
<td>1</td>
</tr>
<tr>
<td>2150409</td>
<td>8</td>
<td>1638.3</td>
<td>1637.85</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td>2150410</td>
<td>8</td>
<td>1627.6</td>
<td>1632.02</td>
<td>-4.42</td>
<td>1</td>
</tr>
<tr>
<td>2150411</td>
<td>202</td>
<td>1645.2</td>
<td>1645.12</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>2150412</td>
<td>8</td>
<td>1624.9</td>
<td>1627.53</td>
<td>-2.63</td>
<td>1</td>
</tr>
<tr>
<td>2150412</td>
<td>28</td>
<td>1634.6</td>
<td>1634.37</td>
<td>0.23</td>
<td>1</td>
</tr>
<tr>
<td>2150413</td>
<td>8</td>
<td>1626.5</td>
<td>1631.05</td>
<td>-4.55</td>
<td>1</td>
</tr>
<tr>
<td>2150414</td>
<td>8</td>
<td>1619.3</td>
<td>1622.3</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>2150414</td>
<td>28</td>
<td>1630.3</td>
<td>1626.65</td>
<td>3.65</td>
<td>1</td>
</tr>
<tr>
<td>2150415</td>
<td>28</td>
<td>1660.2</td>
<td>1648.87</td>
<td>11.33</td>
<td>0</td>
</tr>
<tr>
<td>2150416</td>
<td>8</td>
<td>1622.9</td>
<td>1627.83</td>
<td>-4.93</td>
<td>1</td>
</tr>
<tr>
<td>2150417</td>
<td>8</td>
<td>1634.4</td>
<td>1632.95</td>
<td>1.45</td>
<td>1</td>
</tr>
<tr>
<td>2150417</td>
<td>28</td>
<td>1641.5</td>
<td>1638.47</td>
<td>3.03</td>
<td>1</td>
</tr>
<tr>
<td>2150419</td>
<td>8</td>
<td>1619.6</td>
<td>1626.2</td>
<td>-6.6</td>
<td>1</td>
</tr>
<tr>
<td>2150420</td>
<td>8</td>
<td>1619.7</td>
<td>1625.16</td>
<td>-5.46</td>
<td>1</td>
</tr>
<tr>
<td>2150421</td>
<td>8</td>
<td>1619.3</td>
<td>1624.29</td>
<td>-4.99</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2150422</td>
<td>8</td>
<td>1618</td>
<td>1622.3</td>
<td>-4.3</td>
<td>1</td>
</tr>
<tr>
<td>2150423</td>
<td>8</td>
<td>1629.9</td>
<td>1634.68</td>
<td>-4.78</td>
<td>1</td>
</tr>
<tr>
<td>2150423</td>
<td>28</td>
<td>1639.1</td>
<td>1640.03</td>
<td>-0.93</td>
<td>1</td>
</tr>
<tr>
<td>2150424</td>
<td>8</td>
<td>1632.3</td>
<td>1635.9</td>
<td>-3.6</td>
<td>1</td>
</tr>
<tr>
<td>2150424</td>
<td>28</td>
<td>1642.7</td>
<td>1641.24</td>
<td>1.46</td>
<td>1</td>
</tr>
<tr>
<td>2150425</td>
<td>7</td>
<td>1625.6</td>
<td>1627.03</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2150426</td>
<td>28</td>
<td>1651.2</td>
<td>1644.72</td>
<td>6.48</td>
<td>1</td>
</tr>
<tr>
<td>2150427</td>
<td>8</td>
<td>1637.1</td>
<td>1639.01</td>
<td>-1.91</td>
<td>1</td>
</tr>
<tr>
<td>2150428</td>
<td>8</td>
<td>1636.8</td>
<td>1638.52</td>
<td>-1.72</td>
<td>1</td>
</tr>
<tr>
<td>2150429</td>
<td>8</td>
<td>1637.2</td>
<td>1637.89</td>
<td>-0.69</td>
<td>1</td>
</tr>
<tr>
<td>2150429</td>
<td>28</td>
<td>1646.2</td>
<td>1643.28</td>
<td>2.92</td>
<td>1</td>
</tr>
<tr>
<td>2150430</td>
<td>8</td>
<td>1636</td>
<td>1636.76</td>
<td>-0.76</td>
<td>1</td>
</tr>
<tr>
<td>2150430</td>
<td>28</td>
<td>1644.6</td>
<td>1642.2</td>
<td>2.4</td>
<td>1</td>
</tr>
<tr>
<td>2150431</td>
<td>8</td>
<td>1636.4</td>
<td>1635.86</td>
<td>0.54</td>
<td>1</td>
</tr>
<tr>
<td>2150432</td>
<td>8</td>
<td>1634.1</td>
<td>1636.19</td>
<td>-2.09</td>
<td>1</td>
</tr>
<tr>
<td>2150433</td>
<td>8</td>
<td>1632.6</td>
<td>1635.27</td>
<td>-2.67</td>
<td>1</td>
</tr>
<tr>
<td>2150434</td>
<td>8</td>
<td>1633.4</td>
<td>1634.92</td>
<td>-1.52</td>
<td>1</td>
</tr>
<tr>
<td>2150435</td>
<td>8</td>
<td>1631.6</td>
<td>1636.12</td>
<td>-4.52</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>8</td>
<td>1631.4</td>
<td>1633.64</td>
<td>-2.24</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>249</td>
<td>1645</td>
<td>1640.38</td>
<td>4.62</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>261</td>
<td>1643</td>
<td>1638.36</td>
<td>4.64</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>274</td>
<td>1641.42</td>
<td>1637.51</td>
<td>3.91</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>287</td>
<td>1639.17</td>
<td>1636.96</td>
<td>2.21</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>298</td>
<td>1638.79</td>
<td>1636.63</td>
<td>2.16</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>310</td>
<td>1639.42</td>
<td>1636.85</td>
<td>2.57</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>321</td>
<td>1638.33</td>
<td>1636.12</td>
<td>2.21</td>
<td>1</td>
</tr>
<tr>
<td>2150436</td>
<td>334</td>
<td>1639.08</td>
<td>1636.88</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>2150437</td>
<td>8</td>
<td>1630</td>
<td>1633.98</td>
<td>-3.98</td>
<td>1</td>
</tr>
<tr>
<td>2150438</td>
<td>8</td>
<td>1625.7</td>
<td>1628.29</td>
<td>-2.59</td>
<td>1</td>
</tr>
<tr>
<td>2150439</td>
<td>8</td>
<td>1625.2</td>
<td>1631.62</td>
<td>-6.42</td>
<td>1</td>
</tr>
<tr>
<td>2150440</td>
<td>8</td>
<td>1641.5</td>
<td>1638.97</td>
<td>2.53</td>
<td>1</td>
</tr>
<tr>
<td>2150441</td>
<td>28</td>
<td>1647</td>
<td>1643.59</td>
<td>3.41</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2150443</td>
<td>28</td>
<td>1644.4</td>
<td>1642.46</td>
<td>1.94</td>
<td>0</td>
</tr>
<tr>
<td>2150445</td>
<td>5</td>
<td>1631.96</td>
<td>1628.85</td>
<td>3.11</td>
<td>1</td>
</tr>
<tr>
<td>2150445</td>
<td>6</td>
<td>1630.34</td>
<td>1628.43</td>
<td>1.91</td>
<td>1</td>
</tr>
<tr>
<td>2150445</td>
<td>7</td>
<td>1628.73</td>
<td>1627.81</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2150445</td>
<td>8</td>
<td>1624.75</td>
<td>1625.54</td>
<td>-0.79</td>
<td>1</td>
</tr>
<tr>
<td>2150445</td>
<td>9</td>
<td>1625.65</td>
<td>1627.37</td>
<td>-1.72</td>
<td>1</td>
</tr>
<tr>
<td>2150445</td>
<td>11</td>
<td>1624.38</td>
<td>1626.77</td>
<td>-2.39</td>
<td>1</td>
</tr>
<tr>
<td>2150445</td>
<td>12</td>
<td>1624.31</td>
<td>1627.01</td>
<td>-2.7</td>
<td>1</td>
</tr>
<tr>
<td>2150506</td>
<td>5</td>
<td>1623.24</td>
<td>1620.93</td>
<td>2.31</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>6</td>
<td>1622.42</td>
<td>1620.28</td>
<td>2.14</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>7</td>
<td>1620.25</td>
<td>1619.94</td>
<td>0.31</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>11</td>
<td>1617.94</td>
<td>1619.24</td>
<td>-1.3</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>12</td>
<td>1617.63</td>
<td>1619.42</td>
<td>-1.79</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>14</td>
<td>1619.07</td>
<td>1620.61</td>
<td>-1.54</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>15</td>
<td>1619.79</td>
<td>1620.23</td>
<td>-0.44</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>16</td>
<td>1620.6</td>
<td>1619.87</td>
<td>0.73</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>17</td>
<td>1620.17</td>
<td>1619.64</td>
<td>0.53</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>18</td>
<td>1620.86</td>
<td>1620.32</td>
<td>0.54</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>19</td>
<td>1619.62</td>
<td>1620.21</td>
<td>-0.59</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>20</td>
<td>1622</td>
<td>1621.09</td>
<td>0.91</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>21</td>
<td>1623.55</td>
<td>1622.08</td>
<td>1.47</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>22</td>
<td>1622.52</td>
<td>1621.04</td>
<td>1.48</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>23</td>
<td>1622.92</td>
<td>1621.82</td>
<td>1.1</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>24</td>
<td>1623.7</td>
<td>1622.47</td>
<td>1.23</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>25</td>
<td>1626.75</td>
<td>1622.74</td>
<td>4.01</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>26</td>
<td>1625</td>
<td>1622.63</td>
<td>2.37</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>27</td>
<td>1626.96</td>
<td>1623.12</td>
<td>3.84</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>28</td>
<td>1626.03</td>
<td>1623.15</td>
<td>2.88</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>29</td>
<td>1625.92</td>
<td>1622.45</td>
<td>3.47</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>30</td>
<td>1625.34</td>
<td>1622.7</td>
<td>2.64</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>42</td>
<td>1624.73</td>
<td>1622.13</td>
<td>2.6</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>54</td>
<td>1626.17</td>
<td>1622.28</td>
<td>3.89</td>
<td>0</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2150506</td>
<td>64</td>
<td>1626.87</td>
<td>1623.06</td>
<td>3.81</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>93</td>
<td>1628.65</td>
<td>1622.64</td>
<td>6.01</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>113</td>
<td>1629.27</td>
<td>1624.18</td>
<td>5.09</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>125</td>
<td>1638.9</td>
<td>1624.5</td>
<td>14.4</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>137</td>
<td>1634.02</td>
<td>1623.98</td>
<td>10.04</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>149</td>
<td>1633.7</td>
<td>1623.61</td>
<td>10.09</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>161</td>
<td>1633.93</td>
<td>1624.57</td>
<td>9.36</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>173</td>
<td>1638.78</td>
<td>1625.05</td>
<td>13.73</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>185</td>
<td>1638.49</td>
<td>1625.65</td>
<td>12.84</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>199</td>
<td>1636.62</td>
<td>1625.65</td>
<td>10.97</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>213</td>
<td>1634.61</td>
<td>1624.42</td>
<td>10.19</td>
<td>0</td>
</tr>
<tr>
<td>2150506</td>
<td>224</td>
<td>1629.46</td>
<td>1624.53</td>
<td>4.93</td>
<td>0</td>
</tr>
<tr>
<td>2150507</td>
<td>5</td>
<td>1627.9</td>
<td>1623.03</td>
<td>4.87</td>
<td>1</td>
</tr>
<tr>
<td>2150507</td>
<td>8</td>
<td>1619.39</td>
<td>1620.12</td>
<td>-0.73</td>
<td>1</td>
</tr>
<tr>
<td>2150507</td>
<td>11</td>
<td>1619.24</td>
<td>1621.31</td>
<td>-2.07</td>
<td>1</td>
</tr>
<tr>
<td>2150507</td>
<td>12</td>
<td>1619.01</td>
<td>1621.5</td>
<td>-2.49</td>
<td>1</td>
</tr>
<tr>
<td>2150507</td>
<td>14</td>
<td>1620.69</td>
<td>1622.7</td>
<td>-2.01</td>
<td>1</td>
</tr>
<tr>
<td>2150508</td>
<td>5</td>
<td>1626.43</td>
<td>1622.62</td>
<td>3.81</td>
<td>1</td>
</tr>
<tr>
<td>2150508</td>
<td>8</td>
<td>1620.76</td>
<td>1619.79</td>
<td>0.97</td>
<td>1</td>
</tr>
<tr>
<td>2150508</td>
<td>12</td>
<td>1619.34</td>
<td>1621.16</td>
<td>-1.82</td>
<td>1</td>
</tr>
<tr>
<td>2150511</td>
<td>28</td>
<td>1623</td>
<td>1627.65</td>
<td>-4.65</td>
<td>1</td>
</tr>
<tr>
<td>2150513</td>
<td>8</td>
<td>1605.9</td>
<td>1607.66</td>
<td>-1.76</td>
<td>1</td>
</tr>
<tr>
<td>2150514</td>
<td>28</td>
<td>1620.6</td>
<td>1615.57</td>
<td>5.03</td>
<td>0</td>
</tr>
<tr>
<td>2150517</td>
<td>8</td>
<td>1606</td>
<td>1608.57</td>
<td>-2.57</td>
<td>1</td>
</tr>
<tr>
<td>2150517</td>
<td>28</td>
<td>1613.6</td>
<td>1613.45</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>2150518</td>
<td>8</td>
<td>1609.8</td>
<td>1609.35</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td>2150520</td>
<td>8</td>
<td>1604.2</td>
<td>1606.98</td>
<td>-2.78</td>
<td>1</td>
</tr>
<tr>
<td>2150521</td>
<td>8</td>
<td>1604.2</td>
<td>1606.55</td>
<td>-2.35</td>
<td>1</td>
</tr>
<tr>
<td>2150522</td>
<td>8</td>
<td>1603.4</td>
<td>1605.8</td>
<td>-2.4</td>
<td>1</td>
</tr>
<tr>
<td>2150522</td>
<td>28</td>
<td>1616</td>
<td>1610.54</td>
<td>5.46</td>
<td>1</td>
</tr>
<tr>
<td>2150523</td>
<td>8</td>
<td>1604.9</td>
<td>1606.1</td>
<td>-1.2</td>
<td>1</td>
</tr>
<tr>
<td>2150525</td>
<td>8</td>
<td>1624.4</td>
<td>1620.92</td>
<td>3.48</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2150525</td>
<td>28</td>
<td>1628.1</td>
<td>1625.42</td>
<td>2.68</td>
<td>1</td>
</tr>
<tr>
<td>2150526</td>
<td>8</td>
<td>1620.5</td>
<td>1620.92</td>
<td>-0.42</td>
<td>1</td>
</tr>
<tr>
<td>2150527</td>
<td>8</td>
<td>1617</td>
<td>1618.29</td>
<td>-1.29</td>
<td>1</td>
</tr>
<tr>
<td>2150527</td>
<td>28</td>
<td>1623.8</td>
<td>1622.65</td>
<td>1.15</td>
<td>1</td>
</tr>
<tr>
<td>2150528</td>
<td>8</td>
<td>1615.9</td>
<td>1618.38</td>
<td>-2.48</td>
<td>1</td>
</tr>
<tr>
<td>2150529</td>
<td>8</td>
<td>1616.2</td>
<td>1617.91</td>
<td>-1.71</td>
<td>1</td>
</tr>
<tr>
<td>2150529</td>
<td>28</td>
<td>1623.2</td>
<td>1622.2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2150537</td>
<td>28</td>
<td>1626.6</td>
<td>1622.2</td>
<td>4.4</td>
<td>1</td>
</tr>
<tr>
<td>2150540</td>
<td>8</td>
<td>1617.2</td>
<td>1619.69</td>
<td>-2.49</td>
<td>1</td>
</tr>
<tr>
<td>2150541</td>
<td>8</td>
<td>1616.1</td>
<td>1619.79</td>
<td>-3.69</td>
<td>1</td>
</tr>
<tr>
<td>2150541</td>
<td>28</td>
<td>1626.9</td>
<td>1623.91</td>
<td>2.99</td>
<td>1</td>
</tr>
<tr>
<td>2150543</td>
<td>8</td>
<td>1621.8</td>
<td>1620.94</td>
<td>0.86</td>
<td>1</td>
</tr>
<tr>
<td>2150544</td>
<td>8</td>
<td>1622.6</td>
<td>1620.93</td>
<td>1.67</td>
<td>1</td>
</tr>
<tr>
<td>2150544</td>
<td>28</td>
<td>1630.6</td>
<td>1626.32</td>
<td>4.28</td>
<td>1</td>
</tr>
<tr>
<td>2150545</td>
<td>8</td>
<td>1621.8</td>
<td>1620.08</td>
<td>1.72</td>
<td>1</td>
</tr>
<tr>
<td>2150546</td>
<td>8</td>
<td>1602.6</td>
<td>1603.82</td>
<td>-1.22</td>
<td>1</td>
</tr>
<tr>
<td>2150548</td>
<td>8</td>
<td>1620.9</td>
<td>1620.76</td>
<td>0.14</td>
<td>1</td>
</tr>
<tr>
<td>2150548</td>
<td>28</td>
<td>1628.8</td>
<td>1625.71</td>
<td>3.09</td>
<td>1</td>
</tr>
<tr>
<td>2150551</td>
<td>8</td>
<td>1620.5</td>
<td>1619.37</td>
<td>1.13</td>
<td>1</td>
</tr>
<tr>
<td>2150552</td>
<td>8</td>
<td>1616.8</td>
<td>1618.83</td>
<td>-2.03</td>
<td>1</td>
</tr>
<tr>
<td>2150553</td>
<td>8</td>
<td>1616.1</td>
<td>1618.65</td>
<td>-2.55</td>
<td>1</td>
</tr>
<tr>
<td>2150554</td>
<td>8</td>
<td>1616.9</td>
<td>1618.04</td>
<td>-1.14</td>
<td>1</td>
</tr>
<tr>
<td>2150559</td>
<td>28</td>
<td>1618</td>
<td>1620.92</td>
<td>-2.92</td>
<td>0</td>
</tr>
<tr>
<td>2150601</td>
<td>8</td>
<td>1585.47</td>
<td>1588.77</td>
<td>-3.3</td>
<td>1</td>
</tr>
<tr>
<td>2150601</td>
<td>28</td>
<td>1596.4</td>
<td>1591.89</td>
<td>4.51</td>
<td>1</td>
</tr>
<tr>
<td>2150604</td>
<td>8</td>
<td>1580.1</td>
<td>1581.37</td>
<td>-1.27</td>
<td>1</td>
</tr>
<tr>
<td>2150605</td>
<td>8</td>
<td>1584.8</td>
<td>1588.59</td>
<td>-3.79</td>
<td>1</td>
</tr>
<tr>
<td>2150606</td>
<td>8</td>
<td>1582.8</td>
<td>1587.68</td>
<td>-4.88</td>
<td>1</td>
</tr>
<tr>
<td>2150607</td>
<td>8</td>
<td>1582.9</td>
<td>1586.82</td>
<td>-3.92</td>
<td>1</td>
</tr>
<tr>
<td>2150607</td>
<td>28</td>
<td>1592.8</td>
<td>1589.75</td>
<td>3.05</td>
<td>1</td>
</tr>
<tr>
<td>2150608</td>
<td>8</td>
<td>1581</td>
<td>1585.54</td>
<td>-4.54</td>
<td>1</td>
</tr>
<tr>
<td>2150609</td>
<td>8</td>
<td>1579.9</td>
<td>1580.3</td>
<td>-0.4</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2150613</td>
<td>8</td>
<td>1576.9</td>
<td>1580.39</td>
<td>-3.49</td>
<td>1</td>
</tr>
<tr>
<td>2150616</td>
<td>8</td>
<td>1580.3</td>
<td>1582.51</td>
<td>-2.21</td>
<td>1</td>
</tr>
<tr>
<td>2150616</td>
<td>28</td>
<td>1589.6</td>
<td>1585.21</td>
<td>4.39</td>
<td>1</td>
</tr>
<tr>
<td>2150617</td>
<td>8</td>
<td>1588</td>
<td>1589.9</td>
<td>-1.9</td>
<td>1</td>
</tr>
<tr>
<td>2150618</td>
<td>8</td>
<td>1587.9</td>
<td>1590.72</td>
<td>-2.82</td>
<td>1</td>
</tr>
<tr>
<td>2150619</td>
<td>8</td>
<td>1587.5</td>
<td>1589.14</td>
<td>-1.64</td>
<td>1</td>
</tr>
<tr>
<td>2150620</td>
<td>8</td>
<td>1602.5</td>
<td>1602.42</td>
<td>0.08</td>
<td>1</td>
</tr>
<tr>
<td>2150620</td>
<td>28</td>
<td>1607.6</td>
<td>1606.41</td>
<td>1.19</td>
<td>1</td>
</tr>
<tr>
<td>2150621</td>
<td>8</td>
<td>1602.3</td>
<td>1602.11</td>
<td>0.19</td>
<td>1</td>
</tr>
<tr>
<td>2150621</td>
<td>28</td>
<td>1606.8</td>
<td>1605.88</td>
<td>0.92</td>
<td>1</td>
</tr>
<tr>
<td>2150622</td>
<td>8</td>
<td>1591.1</td>
<td>1592.78</td>
<td>-1.68</td>
<td>1</td>
</tr>
<tr>
<td>2150623</td>
<td>8</td>
<td>1604.3</td>
<td>1603.74</td>
<td>0.56</td>
<td>1</td>
</tr>
<tr>
<td>2150623</td>
<td>28</td>
<td>1610.6</td>
<td>1608.09</td>
<td>2.51</td>
<td>1</td>
</tr>
<tr>
<td>2150624</td>
<td>8</td>
<td>1591.3</td>
<td>1595.01</td>
<td>-3.71</td>
<td>1</td>
</tr>
<tr>
<td>2150624</td>
<td>28</td>
<td>1599.6</td>
<td>1598.73</td>
<td>0.87</td>
<td>1</td>
</tr>
<tr>
<td>2150625</td>
<td>28</td>
<td>1603.2</td>
<td>1604.39</td>
<td>-1.19</td>
<td>1</td>
</tr>
<tr>
<td>2150627</td>
<td>8</td>
<td>1583.8</td>
<td>1587.41</td>
<td>-3.61</td>
<td>1</td>
</tr>
<tr>
<td>2150627</td>
<td>28</td>
<td>1594.4</td>
<td>1590.44</td>
<td>3.96</td>
<td>1</td>
</tr>
<tr>
<td>2150629</td>
<td>8</td>
<td>1602.3</td>
<td>1602.42</td>
<td>-0.12</td>
<td>1</td>
</tr>
<tr>
<td>2150630</td>
<td>8</td>
<td>1602.4</td>
<td>1602.47</td>
<td>-0.07</td>
<td>1</td>
</tr>
<tr>
<td>2150631</td>
<td>8</td>
<td>1605</td>
<td>1603.46</td>
<td>1.54</td>
<td>1</td>
</tr>
<tr>
<td>2150632</td>
<td>8</td>
<td>1605.6</td>
<td>1603.64</td>
<td>1.96</td>
<td>1</td>
</tr>
<tr>
<td>2150633</td>
<td>8</td>
<td>1592.5</td>
<td>1593.28</td>
<td>-0.78</td>
<td>1</td>
</tr>
<tr>
<td>2150634</td>
<td>8</td>
<td>1592.8</td>
<td>1593.27</td>
<td>-0.47</td>
<td>1</td>
</tr>
<tr>
<td>2150635</td>
<td>8</td>
<td>1592.1</td>
<td>1592.76</td>
<td>-0.66</td>
<td>1</td>
</tr>
<tr>
<td>2150635</td>
<td>28</td>
<td>1600</td>
<td>1596.45</td>
<td>3.55</td>
<td>1</td>
</tr>
<tr>
<td>2150636</td>
<td>8</td>
<td>1603.6</td>
<td>1603.24</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>2150637</td>
<td>8</td>
<td>1601.5</td>
<td>1602.33</td>
<td>-0.83</td>
<td>1</td>
</tr>
<tr>
<td>2150638</td>
<td>8</td>
<td>1602.4</td>
<td>1602.33</td>
<td>0.07</td>
<td>1</td>
</tr>
<tr>
<td>2150640</td>
<td>8</td>
<td>1591.1</td>
<td>1594.36</td>
<td>-3.26</td>
<td>1</td>
</tr>
<tr>
<td>2150641</td>
<td>8</td>
<td>1591.2</td>
<td>1592.18</td>
<td>-0.98</td>
<td>1</td>
</tr>
<tr>
<td>2150642</td>
<td>8</td>
<td>1589.4</td>
<td>1591.52</td>
<td>-2.12</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2150643</td>
<td>8</td>
<td>1584.8</td>
<td>1589.29</td>
<td>-4.49</td>
<td>1</td>
</tr>
<tr>
<td>2150644</td>
<td>8</td>
<td>1589.4</td>
<td>1590.15</td>
<td>-0.75</td>
<td>1</td>
</tr>
<tr>
<td>2150646</td>
<td>8</td>
<td>1586.8</td>
<td>1589.61</td>
<td>-2.81</td>
<td>1</td>
</tr>
<tr>
<td>2150647</td>
<td>8</td>
<td>1587.8</td>
<td>1587.93</td>
<td>-0.13</td>
<td>1</td>
</tr>
<tr>
<td>2150648</td>
<td>28</td>
<td>1605.9</td>
<td>1604.88</td>
<td>1.02</td>
<td>1</td>
</tr>
<tr>
<td>2150654</td>
<td>28</td>
<td>1602.8</td>
<td>1601.67</td>
<td>1.13</td>
<td>0</td>
</tr>
<tr>
<td>2150701</td>
<td>28</td>
<td>1660.1</td>
<td>1657.89</td>
<td>2.21</td>
<td>1</td>
</tr>
<tr>
<td>2150703</td>
<td>28</td>
<td>1657.5</td>
<td>1637.55</td>
<td>19.95</td>
<td>0</td>
</tr>
<tr>
<td>2150807</td>
<td>28</td>
<td>1628.7</td>
<td>1622.54</td>
<td>6.16</td>
<td>1</td>
</tr>
<tr>
<td>2151401</td>
<td>6</td>
<td>1572.54</td>
<td>1573.14</td>
<td>-0.6</td>
<td>1</td>
</tr>
<tr>
<td>2151401</td>
<td>7</td>
<td>1571.73</td>
<td>1573.05</td>
<td>-1.32</td>
<td>1</td>
</tr>
<tr>
<td>2151402</td>
<td>4</td>
<td>1579.2</td>
<td>1575.93</td>
<td>3.27</td>
<td>1</td>
</tr>
<tr>
<td>2151402</td>
<td>6</td>
<td>1578.68</td>
<td>1575.69</td>
<td>2.99</td>
<td>1</td>
</tr>
<tr>
<td>2151402</td>
<td>7</td>
<td>1578.31</td>
<td>1575.58</td>
<td>2.73</td>
<td>1</td>
</tr>
<tr>
<td>2151402</td>
<td>8</td>
<td>1573.76</td>
<td>1574.74</td>
<td>-0.98</td>
<td>1</td>
</tr>
<tr>
<td>2151402</td>
<td>9</td>
<td>1575.05</td>
<td>1575.41</td>
<td>-0.36</td>
<td>1</td>
</tr>
<tr>
<td>2151412</td>
<td>28</td>
<td>1607.3</td>
<td>1588.87</td>
<td>18.43</td>
<td>1</td>
</tr>
<tr>
<td>2151412</td>
<td>202</td>
<td>1605</td>
<td>1590.42</td>
<td>14.58</td>
<td>1</td>
</tr>
<tr>
<td>2151413</td>
<td>28</td>
<td>1583.8</td>
<td>1584.84</td>
<td>-1.04</td>
<td>0</td>
</tr>
<tr>
<td>2151414</td>
<td>28</td>
<td>1578.9</td>
<td>1577.73</td>
<td>1.17</td>
<td>1</td>
</tr>
<tr>
<td>2151415</td>
<td>8</td>
<td>1576.8</td>
<td>1579.51</td>
<td>-2.71</td>
<td>1</td>
</tr>
<tr>
<td>2151416</td>
<td>28</td>
<td>1585.6</td>
<td>1581.45</td>
<td>4.15</td>
<td>1</td>
</tr>
<tr>
<td>2151417</td>
<td>8</td>
<td>1578.1</td>
<td>1580.31</td>
<td>-2.21</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>4</td>
<td>1570.09</td>
<td>1573.64</td>
<td>-3.55</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>5</td>
<td>1573.66</td>
<td>1573.67</td>
<td>-0.01</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>6</td>
<td>1572.64</td>
<td>1573.4</td>
<td>-0.76</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>7</td>
<td>1572.17</td>
<td>1573.31</td>
<td>-1.14</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>8</td>
<td>1570.15</td>
<td>1572.54</td>
<td>-2.39</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>9</td>
<td>1569.52</td>
<td>1573.15</td>
<td>-3.63</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>11</td>
<td>1569.82</td>
<td>1573.09</td>
<td>-3.27</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>12</td>
<td>1569.86</td>
<td>1573.16</td>
<td>-3.3</td>
<td>1</td>
</tr>
<tr>
<td>2151422</td>
<td>14</td>
<td>1573.09</td>
<td>1573.66</td>
<td>-0.57</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2151702</td>
<td>4</td>
<td>1562.66</td>
<td>1564.47</td>
<td>-1.81</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>5</td>
<td>1562.59</td>
<td>1564.53</td>
<td>-1.94</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>6</td>
<td>1564.92</td>
<td>1564.33</td>
<td>0.59</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>9</td>
<td>1561.22</td>
<td>1564.28</td>
<td>-3.06</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>11</td>
<td>1560.23</td>
<td>1564.27</td>
<td>-4.04</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>12</td>
<td>1560.03</td>
<td>1564.32</td>
<td>-4.29</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>14</td>
<td>1565.01</td>
<td>1564.67</td>
<td>0.34</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>15</td>
<td>1563.9</td>
<td>1564.48</td>
<td>-0.58</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>16</td>
<td>1565.16</td>
<td>1564.4</td>
<td>0.76</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>17</td>
<td>1564.01</td>
<td>1564.34</td>
<td>-0.33</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>18</td>
<td>1564.22</td>
<td>1564.44</td>
<td>-0.22</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>20</td>
<td>1563.68</td>
<td>1564.59</td>
<td>-0.91</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>21</td>
<td>1563.44</td>
<td>1564.86</td>
<td>-1.42</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>22</td>
<td>1563.82</td>
<td>1564.48</td>
<td>-0.66</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>23</td>
<td>1565.18</td>
<td>1564.7</td>
<td>0.48</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>24</td>
<td>1566.5</td>
<td>1564.86</td>
<td>1.64</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>25</td>
<td>1566.5</td>
<td>1564.89</td>
<td>1.61</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>26</td>
<td>1561.82</td>
<td>1564.86</td>
<td>-3.04</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>27</td>
<td>1563.83</td>
<td>1564.98</td>
<td>-1.15</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>29</td>
<td>1561.95</td>
<td>1564.73</td>
<td>-2.78</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>30</td>
<td>1561.7</td>
<td>1564.85</td>
<td>-3.15</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>42</td>
<td>1566.74</td>
<td>1564.83</td>
<td>1.91</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>54</td>
<td>1566.1</td>
<td>1564.84</td>
<td>1.26</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>64</td>
<td>1567.74</td>
<td>1565.14</td>
<td>2.6</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>93</td>
<td>1568.95</td>
<td>1564.86</td>
<td>4.09</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>125</td>
<td>1567.35</td>
<td>1565.38</td>
<td>1.97</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>137</td>
<td>1567.4</td>
<td>1565.22</td>
<td>2.18</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>149</td>
<td>1566.59</td>
<td>1565.15</td>
<td>1.44</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>161</td>
<td>1567.45</td>
<td>1565.49</td>
<td>1.96</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>173</td>
<td>1568.02</td>
<td>1565.65</td>
<td>2.37</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>185</td>
<td>1569.21</td>
<td>1565.71</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>213</td>
<td>1567.21</td>
<td>1565.25</td>
<td>1.96</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2151702</td>
<td>224</td>
<td>1566.65</td>
<td>1565.42</td>
<td>1.23</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>236</td>
<td>1566.4</td>
<td>1565.22</td>
<td>1.18</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>248</td>
<td>1566.76</td>
<td>1565.46</td>
<td>1.3</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>259</td>
<td>1565.73</td>
<td>1564.94</td>
<td>0.79</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>270</td>
<td>1565.2</td>
<td>1564.85</td>
<td>0.35</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>284</td>
<td>1565.9</td>
<td>1564.8</td>
<td>1.1</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>295</td>
<td>1565.73</td>
<td>1564.67</td>
<td>1.06</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>307</td>
<td>1566.34</td>
<td>1565.02</td>
<td>1.32</td>
<td>1</td>
</tr>
<tr>
<td>2151702</td>
<td>319</td>
<td>1565.65</td>
<td>1564.48</td>
<td>1.17</td>
<td>1</td>
</tr>
<tr>
<td>2151703</td>
<td>5</td>
<td>1562.6</td>
<td>1560.21</td>
<td>2.39</td>
<td>1</td>
</tr>
<tr>
<td>2151703</td>
<td>7</td>
<td>1565.48</td>
<td>1560.08</td>
<td>5.4</td>
<td>1</td>
</tr>
<tr>
<td>2151703</td>
<td>8</td>
<td>1559.86</td>
<td>1559.71</td>
<td>0.15</td>
<td>1</td>
</tr>
<tr>
<td>2151703</td>
<td>9</td>
<td>1562.63</td>
<td>1560.07</td>
<td>2.56</td>
<td>1</td>
</tr>
<tr>
<td>2151703</td>
<td>11</td>
<td>1560.25</td>
<td>1560.07</td>
<td>0.18</td>
<td>1</td>
</tr>
<tr>
<td>2151703</td>
<td>12</td>
<td>1563.69</td>
<td>1560.11</td>
<td>3.58</td>
<td>1</td>
</tr>
<tr>
<td>2151703</td>
<td>14</td>
<td>1563.82</td>
<td>1560.37</td>
<td>3.45</td>
<td>1</td>
</tr>
<tr>
<td>2151704</td>
<td>5</td>
<td>1561.81</td>
<td>1562.32</td>
<td>-0.51</td>
<td>1</td>
</tr>
<tr>
<td>2151704</td>
<td>6</td>
<td>1562.78</td>
<td>1562.15</td>
<td>0.63</td>
<td>1</td>
</tr>
<tr>
<td>2151704</td>
<td>7</td>
<td>1564.33</td>
<td>1562.15</td>
<td>2.18</td>
<td>1</td>
</tr>
<tr>
<td>2151704</td>
<td>8</td>
<td>1565.02</td>
<td>1561.71</td>
<td>3.31</td>
<td>1</td>
</tr>
<tr>
<td>2151704</td>
<td>9</td>
<td>1561.46</td>
<td>1562.13</td>
<td>-0.67</td>
<td>1</td>
</tr>
<tr>
<td>2151704</td>
<td>12</td>
<td>1562.83</td>
<td>1562.17</td>
<td>0.66</td>
<td>1</td>
</tr>
<tr>
<td>2151705</td>
<td>4</td>
<td>1562.97</td>
<td>1561.97</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2151705</td>
<td>6</td>
<td>1562.86</td>
<td>1561.87</td>
<td>0.99</td>
<td>1</td>
</tr>
<tr>
<td>2151705</td>
<td>7</td>
<td>1562.82</td>
<td>1561.89</td>
<td>0.93</td>
<td>1</td>
</tr>
<tr>
<td>2151705</td>
<td>8</td>
<td>1558.99</td>
<td>1561.38</td>
<td>-2.39</td>
<td>1</td>
</tr>
<tr>
<td>2151705</td>
<td>9</td>
<td>1559.91</td>
<td>1561.89</td>
<td>-1.98</td>
<td>1</td>
</tr>
<tr>
<td>2151705</td>
<td>11</td>
<td>1559.5</td>
<td>1561.88</td>
<td>-2.38</td>
<td>1</td>
</tr>
<tr>
<td>2151705</td>
<td>12</td>
<td>1558.99</td>
<td>1561.95</td>
<td>-2.96</td>
<td>1</td>
</tr>
<tr>
<td>2151707</td>
<td>4</td>
<td>1562.1</td>
<td>1564.47</td>
<td>-2.37</td>
<td>1</td>
</tr>
<tr>
<td>2151707</td>
<td>5</td>
<td>1563.66</td>
<td>1564.53</td>
<td>-0.87</td>
<td>1</td>
</tr>
<tr>
<td>2151707</td>
<td>6</td>
<td>1563.13</td>
<td>1564.33</td>
<td>-1.2</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2151707</td>
<td>9</td>
<td>1560.47</td>
<td>1564.28</td>
<td>-3.81</td>
<td>1</td>
</tr>
<tr>
<td>2151707</td>
<td>11</td>
<td>1559.77</td>
<td>1564.27</td>
<td>-4.5</td>
<td>1</td>
</tr>
<tr>
<td>2151707</td>
<td>12</td>
<td>1559.8</td>
<td>1564.32</td>
<td>-4.52</td>
<td>1</td>
</tr>
<tr>
<td>2151709</td>
<td>8</td>
<td>1565.95</td>
<td>1567.92</td>
<td>-1.97</td>
<td>1</td>
</tr>
<tr>
<td>2151709</td>
<td>9</td>
<td>1566.19</td>
<td>1568.45</td>
<td>-2.26</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>4</td>
<td>1570.04</td>
<td>1572.31</td>
<td>-2.27</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>5</td>
<td>1570.29</td>
<td>1572.34</td>
<td>-2.05</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>15</td>
<td>1570.88</td>
<td>1572.14</td>
<td>-1.26</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>16</td>
<td>1570.24</td>
<td>1572.01</td>
<td>-1.77</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>18</td>
<td>1571.4</td>
<td>1572.12</td>
<td>-0.72</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>19</td>
<td>1570.86</td>
<td>1572.03</td>
<td>-1.17</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>20</td>
<td>1571.02</td>
<td>1572.36</td>
<td>-1.34</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>21</td>
<td>1572.52</td>
<td>1572.76</td>
<td>-0.24</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>23</td>
<td>1572.14</td>
<td>1572.59</td>
<td>-0.45</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>25</td>
<td>1572.38</td>
<td>1572.9</td>
<td>-0.52</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>26</td>
<td>1571.86</td>
<td>1572.86</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>27</td>
<td>1572.31</td>
<td>1573.04</td>
<td>-0.73</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>28</td>
<td>1572.17</td>
<td>1573.04</td>
<td>-0.87</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>29</td>
<td>1571.8</td>
<td>1572.74</td>
<td>-0.94</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>30</td>
<td>1572.57</td>
<td>1572.88</td>
<td>-0.31</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>42</td>
<td>1573.34</td>
<td>1572.76</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>64</td>
<td>1575.99</td>
<td>1573.18</td>
<td>2.81</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>77</td>
<td>1575.32</td>
<td>1573.19</td>
<td>2.13</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>101</td>
<td>1576.15</td>
<td>1573.29</td>
<td>2.86</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>113</td>
<td>1577.24</td>
<td>1573.69</td>
<td>3.55</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>125</td>
<td>1576.9</td>
<td>1573.65</td>
<td>3.25</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>137</td>
<td>1575.76</td>
<td>1573.42</td>
<td>2.34</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>149</td>
<td>1574.25</td>
<td>1573.31</td>
<td>0.94</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>161</td>
<td>1575.52</td>
<td>1573.76</td>
<td>1.76</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>173</td>
<td>1576.12</td>
<td>1573.97</td>
<td>2.15</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>185</td>
<td>1576.97</td>
<td>1574.14</td>
<td>2.83</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>199</td>
<td>1575.76</td>
<td>1574.05</td>
<td>1.71</td>
<td>1</td>
</tr>
<tr>
<td>State Well Number</td>
<td>Stress Period</td>
<td>Measured Water Level</td>
<td>Simulated Water Level</td>
<td>Residual</td>
<td>Calibration Weight</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2151710</td>
<td>213</td>
<td>1574.74</td>
<td>1573.57</td>
<td>1.17</td>
<td>1</td>
</tr>
<tr>
<td>2151710</td>
<td>224</td>
<td>1575.98</td>
<td>1573.72</td>
<td>2.26</td>
<td>1</td>
</tr>
<tr>
<td>2151713</td>
<td>5</td>
<td>1569.45</td>
<td>1570.82</td>
<td>-1.37</td>
<td>1</td>
</tr>
<tr>
<td>2151713</td>
<td>6</td>
<td>1567.64</td>
<td>1570.56</td>
<td>-2.92</td>
<td>1</td>
</tr>
<tr>
<td>2151713</td>
<td>7</td>
<td>1567.25</td>
<td>1570.51</td>
<td>-3.26</td>
<td>1</td>
</tr>
<tr>
<td>2151713</td>
<td>11</td>
<td>1565.3</td>
<td>1570.34</td>
<td>-5.04</td>
<td>1</td>
</tr>
<tr>
<td>2151713</td>
<td>12</td>
<td>1565.98</td>
<td>1570.4</td>
<td>-4.42</td>
<td>1</td>
</tr>
<tr>
<td>2151713</td>
<td>14</td>
<td>1569.41</td>
<td>1570.84</td>
<td>-1.43</td>
<td>1</td>
</tr>
<tr>
<td>2151733</td>
<td>28</td>
<td>1563.2</td>
<td>1556.67</td>
<td>6.53</td>
<td>0</td>
</tr>
<tr>
<td>2151738</td>
<td>28</td>
<td>1578.2</td>
<td>1572.4</td>
<td>5.8</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix B:

Select Hydrographs for Wells with 30 or More Measurements
Final Report: Groundwater Availability Model of the Seymour Aquifer in Haskell, Knox, and Baylor Counties
February 14, 2014
Page 151 of 185
Figure 1: Time Series of Water Level for State Well 2130204 in Baylor County

- **1950 - 1979 Annual Stress Periods**
- **1980 - 2005 Monthly Stress Periods**

Water level is measured in feet above mean sea level.
State well number 2135702 (Haskell County) — Simulated water level

1950 - 1979
Annual Stress Periods

1980 - 2005
Monthly Stress Periods
Final Report: Groundwater Availability Model of the Seymour Aquifer in Haskell, Knox, and Baylor Counties
February 14, 2014
Page 165 of 185

- State well number 2142701 (Haskell County)
- Simulated water level

1950 - 1979
Annual Stress Periods

Water level (feet above mean sea level)

1980 - 2005
Monthly Stress Periods

Water level (feet above mean sea level)

1950 - 1979
Annual Stress Periods

1980 - 2005
Monthly Stress Periods
State well number 2150401 (Haskell County) | Simulated water level

1950 - 1979
Annual Stress Periods

1980 - 2005
Monthly Stress Periods
State well number 2151702 (Haskell County) — Simulated water level

1950 - 1979
Annual Stress Periods

Water level (feet above mean sea level)

Year

1980 - 2005
Monthly Stress Periods

Water level (feet above mean sea level)

Year

1950 - 1979
Annual Stress Periods

1980 - 2005
Monthly Stress Periods
State well number 2127801 (Knox County) — Simulated water level

1950 - 1979
Annual Stress Periods

Water level (feet above mean sea level)

1980 - 2005
Monthly Stress Periods

Water level (feet above mean sea level)
State well number 2129102 (Knox County) Simulated water level

1950 - 1979
Annual Stress Periods

1980 - 2005
Monthly Stress Periods
State well number 2135301 (Knox County) — Simulated water level

1950 - 1979
Annual Stress Periods

1980 - 2005
Monthly Stress Periods

Year

Water level (feet above mean sea level)