

Prepared for:

Texas Water Development Board P.O. Box 13231, Capitol Station Austin, Texas 78711-3231

Editors
Neil E. Deeds, Ph.D., P.E.
Marius Jigmond
INTERA Incorporated

This page is intentionally blank.

Geoscientist and Engineer Seals

This report documents the work of the following Licensed Texas Professional Engineer:

Neil E. Deeds, P.E.		STATEOFTE
Dr. Deeds was the Project Manager responsible for development of the r		NEILE, DEEDS
Me Double	2015/8/27	CENSED CONTRACTOR
Signature	Date	

This page intentionally left blank.

Table of Contents

Exec	cutive	Summai	ry	ES-1
1.0	Intro	duction	and Purpose of Model	1_1
1.0	1.1		uction	
	1.2		se of the Model	
	1.2	1 dipos		
2.0	Mode	el Overv	view and Packages	2-1
	2.1	Basic 1	Package	2-3
	2.2	Name	File	2-12
	2.3	Discre	tization Package	2-12
		2.3.1	Model Grid Specifications	2-12
		2.3.2	Stress Period Setup	
	2.4	Upstre	eam Weighting Flow Package	2-19
		2.4.1	External Files	
		2.4.2	Property Zones	
	2.5	Well P	Package	
		2.5.1	Treatment of Minimum Saturated Thickness	
		2.5.2	Data Sources	
		2.5.3	Initial Construction and Well Assignment	
		2.5.4	Addition of Pumping Locations	
		2.5.5	Modification of Pre-1980 Pumping Totals	
	2.6		Package	
	2.7	-	transpiration Package	
	2.8		rge Package	
		2.8.1	\mathcal{E}	
		2.8.2	Transient Recharge	
	2.9		Package	
		2.9.1	Streams	
		2.9.2	Reservoirs	
		2.9.3	Head-Dependent Flow Boundaries	
	2.10		t Control File	
	2.11	Solver		2-41
3.0	Mode	al Caliba	ration and Results	2 1
5.0	3.1		ation Procedure	
	5.1	3.1.1	Targets	
		3.1.2	Calibration Metrics	
		3.1.3	Calibration of Hydraulic Properties	
		3.1.4	Calibration of Recharge	
		3.1.5	Calibration of Head Boundary Conductances	
		3.1.6	Reduction in Pumping	
	3.2		Simulated Versus Measured Heads	
	5.4	3.2.1	Summary Statistics and Crossplots	
		3.2.1	Residual Distributions	
		3.2.3	Simulated Water Levels	

		3.2.4	Dry and Flooded Cells	3-34
	3.3	Model	Simulated Fluxes	
		3.3.1	Rivers and Springs	3-93
		3.3.2	Cross-Formational Flow	
	3.4	Model	Simulated Water Budgets	3-113
		3.4.1	Steady-State Water Budget	3-113
		3.4.2	Transient Water Budget	
4.0	Sensiti	ivity A	nalysis	4-1
	4.1	Sensiti	ivity Analysis Procedure	4-1
	4.2	Sensiti	ivity Analysis Results	4-4
		4.2.1	Steady-State Sensitivities	4-5
		4.2.2	Transient Sensitivities	4-50
5.0			ations	
			ations of Supporting Data	
			sment of Assumptions	
	5.3	Limita	ations of Model Applicability	5-3
6.0	Summ	ary and	d Conclusions	6-1
7.0			ovements	
	7.1	Additi	onal Supporting Data or Studies	7-1
	7.2	Future	Model Implementation Improvements	7-1
8.0	Ackno	wledge	ements	8-1
9.0	Refere	nces		9-1
List	t of Ap	pend	ices	
App	endix A	Wat	ter Budgets by County, Groundwater Conservation District,	and Aquifer
App	endix B	Obs	served and Simulated Hydrographs	
App	endix C	Tota	al Pumping by County and Stress Period	
App	endix D	Cor	mments and Responses	

List of Figures

Figure 1.0.1	Location of major aquifers in Texas (TWDB, 2006a)	1-3
Figure 1.0.2	Location of minor aquifers in Texas (TWDB, 2006b).	
Figure 1.0.3	Aquifers included in the High Plains Aquifer System groundwater	
C	availability model	1-5
Figure 2.1.1	Layer 1 active/inactive model cells.	
Figure 2.1.2	Layer 2 active/inactive model cells	
Figure 2.1.3	Layer 3 active/inactive model cells	
Figure 2.1.4	Layer 4 active/inactive model cells.	
Figure 2.1.5a	Uppermost active layer model cell types in the northern portion of the	
8	study area.	2-10
Figure 2.1.5b	•	
8	study area.	2-11
Figure 2.3.1	Example of model grid scale shown for Randall County.	
Figure 2.3.2a	West-east cross section for row 140 showing model grid plotted from	
8	Discretization package (100x vertical exaggeration).	2-17
Figure 2.3.2b	West-east cross section for row 514 showing model grid structure	= 17
1 18410 2.5.20	plotted from Discretization package (100x vertical exaggeration)	2-18
Figure 2.4.1	Locations of pilot points for property calibration zonation in the	2 10
1 18410 2. 1.1	Ogallala Aquifer	2-21
Figure 2.4.2	Property calibration zonation in the Rita Blanca and Edwards-Trinity	2 21
1 1gui C 2.4.2	(High Plains) aquifers.	2-22
Figure 2.4.3	Property calibration zonation in the upper Dockum Group	
Figure 2.4.4	Property calibration zonation in the lower Dockum Group	
Figure 2.4.5	Santa Rosa/Ogallala influence fraction	
Figure 2.4.6	Specific yield calibration zone.	
Figure 2.5.1	Locations of irrigated fields from High Plains Water District and	2 20
1 15010 2.5.1	Panhandle Groundwater Conservation District.	2-33
Figure 2.5.2	Irrigation well distribution used to allocate irrigation pumping.	
Figure 2.8.1	Locations of pilot points for recharge zones.	
Figure 3.1.1	Calibrated horizontal hydraulic conductivity in feet per day in the	2-30
1 iguic 5.1.1	Ogallala Aquifer	3-12
Figure 3.1.2	Calibrated horizontal hydraulic conductivity in feet per day in the Rita	5 12
1 iguic 5.1.2	Blanca and Edwards-Trinity (High Plains) aquifers	3_13
Figure 3.1.3	Calibrated horizontal hydraulic conductivity in feet per day in the	5-13
riguic 5.1.5	upper Dockum Aquifer	3 1/1
Figure 3.1.4	Calibrated horizontal hydraulic conductivity in feet per day in the	5-14
1 iguic 5.1.4	lower Dockum Aquifer	3_15
Figure 3.1.5	Calibrated vertical hydraulic conductivity in feet per day in the	3-13
riguic 5.1.5	Ogallala Aquifer	2 16
Figure 3.1.6	Calibrated vertical hydraulic conductivity in feet per day in the Rita	3-10
riguic 3.1.0	Blanca and Edwards-Trinity (High Plains) aquifers	2 17
Figure 3.1.7	Calibrated vertical hydraulic conductivity in feet per day in the upper	3-1/
riguic 3.1./		2 10
	Dockum Aquifer.	3-18

Figure 3.1.8	Calibrated vertical hydraulic conductivity in feet per day in the lower	
	Dockum Aquifer.	3-19
Figure 3.1.9	Calibrated specific yield in the Ogallala Aquifer.	3-20
Figure 3.1.10	Calibrated storativity in the Rita Blanca and Edwards-Trinity (High	
_	Plains) aquifers	3-21
Figure 3.1.11	Calibrated storativity in the upper Dockum Aquifer.	3-22
Figure 3.1.12	· · · · · · · · · · · · · · · · · · ·	3-23
Figure 3.1.13	Calibrated predevelopment (steady-state stress period) recharge	
C	distribution.	3-24
Figure 3.1.14		
8	84)	3-25
Figure 3.2.1	Scatter plot of simulated versus observed hydraulic head in the	
118010 0.2.1	Ogallala Aquifer in feet above mean sea level for the steady-state	
	stress period.	3-37
Figure 3.2.2	Scatter plot of simulated versus observed hydraulic head in the Rita	5 5 7
1 1guie 3.2.2	Blanca and Edwards-Trinity (High Plains) aquifers in feet above mean	
	sea level for the steady-state stress period.	3-38
Figure 3.2.3	Scatter plot of simulated versus observed hydraulic head in the	5-50
11guic 5.2.5	Dockum Aquifer in feet above mean sea level for the steady-state	
	stress period.	3-39
Figure 2 2 4	Scatter plot of simulated versus observed hydraulic head in the	3-33
Figure 3.2.4		2 40
Eigung 2 2 5	Ogallala Aquifer in feet above mean sea level for years 1980 to 2012	3-40
Figure 3.2.5	Scatter plot of simulated versus observed hydraulic head in the Rita	
	Blanca and Edwards-Trinity (High Plains) aquifers for years 1981 to	2 41
E. 2.2.6	2012	3-41
Figure 3.2.6	Scatter plot of simulated versus observed hydraulic head in the	2 40
F: 2.2.5	Dockum Aquifer in feet above mean sea level for years 1981 to 2012	3-42
Figure 3.2.7	Histogram of hydraulic head residuals in the Ogallala Aquifer for	2.40
7	years 1980 to 2012	3-43
Figure 3.2.8	Histogram of hydraulic head residuals in feet in the Rita Blanca and	
	Edwards-Trinity (High Plains) aquifers for years 1980 to 2012	3-44
Figure 3.2.9	Histogram of hydraulic head residuals in feet in the upper and lower	
	1 ,	3-45
Figure 3.2.10a	Spatial distribution of head residuals in feet in the Ogallala Aquifer for	
	the pre-development (steady-state) stress period in the northern portion	
	of the study area.	3-46
Figure 3.2.10b	Spatial distribution of head residuals in feet in the Ogallala Aquifer for	
	the pre-development (steady-state) stress period in the southern portion	
	of the study area.	3-47
Figure 3.2.11	Spatial distribution of head residuals in feet in the Rita Blanca and	
_	Edwards-Trinity (High Plains) aquifers for the pre-development	
	(steady-state) stress period.	3-48
Figure 3.2.12		
Č	the pre-development (steady-state) stress period	3-49

Figure 3.2.13a	Spatial distribution of average head residuals in feet in the Ogallala Aquifer for years 1980 to 2012 in the northern portion of the study area.	3-50
Figure 3.2.13b	Spatial distribution of average head residuals in feet in the Ogallala	3-30
	Aquifer for years 1980 to 2012 in the southern portion of the study area.	3-51
Figure 3.2.14	1	
F: 2.2.15	and Edwards-Trinity (High Plains) aquifers for years 1980 to 2012	3-52
Figure 3.2.15	Spatial distribution of average head residuals in feet in the Dockum Aquifer for years 1980 to 2012.	3-53
Figure 3.2.16	Simulated water-level elevations (hydraulic heads) in feet above mean	5 55
	sea level in the Ogallala Aquifer for the pre-development (steady-	
	state) stress period.	3-54
Figure 3.2.17	Simulated water-level elevations (hydraulic heads) in feet above mean	
	sea level in the Rita Blanca and Edwards-Trinity (High Plains)	2.55
E: 2.2.10	aquifers for the pre-development (steady-state) stress period.	3-55
Figure 3.2.18	Simulated water-level elevations (hydraulic heads) in feet above mean	
	sea level in the upper Dockum Aquifer for the pre-development	3-56
Figure 3.2.19	(steady-state) stress period	3-30
11guic 3.2.17	sea level in the lower Dockum Aquifer for the pre-development	
	(steady-state) stress period	3-57
Figure 3.2.20	Simulated saturated thickness in feet above mean sea level in the	
C	Ogallala Aquifer in the pre-development (steady-state) stress period	3-58
Figure 3.2.21a	Simulated water-level elevations (hydraulic heads) in feet above mean	
	sea level in the Ogallala Aquifer in 1950 (stress period 22)	3-59
Figure 3.2.21b	Simulated water-level elevations (hydraulic heads) in feet above mean	
	sea level in the Ogallala Aquifer in 1980 (stress period 52)	3-60
Figure 3.2.21c	Simulated water-level elevations (hydraulic heads) in feet above mean	2 (1
F: 0.000	sea level in the Ogallala Aquifer in 2010 (stress period 82)	3-61
Figure 3.2.22a	Simulated water-level elevations (hydraulic heads) in feet above mean	
	sea level in the Rita Blanca and Edwards-Trinity (High Plains)	2 (2
Figure 2 2 22h	aquifers in 1950 (stress period 22).	3-62
Figure 5.2.220	Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Rita Blanca and Edwards-Trinity (High Plains)	
	aquifers in 1980 (stress period 52)(1980)	3-63
Figure 3 2 22c	Simulated water-level elevations (hydraulic heads) in feet above mean	5 05
1 18410 3.2.220	sea level in the Rita Blanca and Edwards-Trinity (High Plains)	
	aquifers in 2010 (stress period 82).	3-64
Figure 3.2.23a	Simulated water-level elevations (hydraulic heads) in feet above mean	
_	sea level in the upper Dockum Aquifer in 1950 (stress period 22)	3-65
Figure 3.2.23b	Simulated water-level elevations (hydraulic heads) in feet above mean	
	sea level in the upper Dockum Aquifer in 1980 (stress period 52)	3-66
Figure 3.2.23c	Simulated water-level elevations (hydraulic heads) in feet above mean	
	sea level in the upper Dockum Aquifer in 2010 (stress period 82)	3-67

Figure 3.2.24a	a Simulated water-level elevations (hydraulic heads) in feet above mean	
	sea level in the lower Dockum Aquifer in 1950 (stress period 22)	3-68
Figure 3.2.24b	Simulated water-level elevations (hydraulic heads) in feet above mean	
C	sea level in the lower Dockum Aquifer in 1980 (stress period 52)	3-69
Figure 3.2.24c	e Simulated water-level elevations (hydraulic heads) in feet above mean	
C	sea level in the lower Dockum Aquifer in 2010 (stress period 82)	3-70
Figure 3.2.25	Simulated drawdown in feet in the Ogallala Aquifer from the pre-	
	development (steady-state) stress period to 2010 (stress period 82)	3-71
Figure 3.2.26	Simulated drawdown in feet in the Rita Blanca and Edwards-Trinity	
	(High Plains) aquifers from the pre-development (steady-state) stress	
	period to 2010 (stress period 82).	3-72
Figure 3.2.27	Simulated drawdown in feet in the upper Dockum Aquifer from the	
_	pre-development (steady-state) stress period to 2010 (stress period 82)	3-73
Figure 3.2.28	Simulated drawdown in feet in the lower Dockum Aquifer from the	
_	pre-development (steady-state) stress period to 2010 (stress period 82)	3-74
Figure 3.2.29	Simulated saturated thickness in feet in the Ogallala Aquifer in 1980	
	(stress period 52)	3-75
Figure 3.2.30	Simulated saturated thickness in feet in the Ogallala Aquifer in 2010	
	(stress period 82)	3-76
Figure 3.2.31	Select hydrographs (group 1) for wells completed in the Ogallala	
	Aquifer in the northern part of the study area.	3-77
Figure 3.2.32	Select hydrographs (group 2) for wells completed in the Ogallala	
	Aquifer in the northern part of the study area.	3-78
Figure 3.2.33	Select hydrographs (group 3) for wells completed in the Ogallala	
	Aquifer in the northern part of the study area.	3-79
Figure 3.2.34	Select hydrographs for wells completed in the Ogallala Aquifer in the	
	north and central parts of the study area.	3-80
Figure 3.2.35	Select hydrographs for wells completed in the Ogallala Aquifer in the	
	central part of the study area.	3-81
Figure 3.2.36	Select hydrographs (group 1) for wells completed in the Ogallala	
	Aquifer in the south-central part of the study area.	3-82
Figure 3.2.37	Select hydrographs (group 2) for wells completed in the Ogallala	
	Aquifer in the south-central part of the study area.	3-83
_	Select hydrographs for wells completed in the Rita Blanca Aquifer	3-84
Figure 3.2.39	Select hydrographs (group 1) for wells completed in the Edwards-	
	Trinity (High Plains) Aquifer	3-85
Figure 3.2.40	Select hydrographs (group 2) for wells completed in the Edwards-	
	Trinity (High Plains) Aquifer	
Figure 3.2.41		3-87
Figure 3.2.42		
	in the northern part of the study area.	3-88
Figure 3.2.43		
	in the northern and central portions of the study area	3-89
Figure 3.2.44	Select hydrographs for wells completed in the lower Dockum Aquifer	
	in the southern portion of the study area	
Figure 3.2.45	Dry and flooded cells in the steady-state model.	3-91

Figure 3.2.46	Dry and flooded cells in the transient model in 2012.	3-92
Figure 3.3.1a	Spatial distribution of flux in and out of rivers in acre-feet per year in	
	the pre-development (steady-state) stress period in the northern portion	
	of the study area.	3-97
Figure 3.3.1b	Spatial distribution of flux in and out of rivers in acre-feet per year in	
\mathcal{E}	the pre-development (steady-state) stress period in the southern portion	
	of the study area.	3-98
Figure 3.3.2a	Spatial distribution of flux in and out of rivers in acre-feet per year in	
1 15410 3.3.24	2012 (stress period 84) in the northern portion of the study area	3-99
Figure 3.3.2b	Spatial distribution of flux in and out of rivers in acre-feet per year in	5))
1 iguic 5.5.20	2012 (stress period 84) in the southern portion of the study area	3-100
Figure 3.3.3a		3-100
riguie 5.5.5a		
	pre-development (steady-state) stress period in the northern portion of	2 101
E: 2.2.21	the study area.	3-101
Figure 3.3.3b	Spatial distribution of flux out of springs in acre-feet per year in the	
	pre-development (steady-state) stress period in the southern portion of	2 102
	the study area.	3-102
Figure 3.3.4a	Spatial distribution of flux out of springs in acre-feet per year in 2012	
	(stress period 84) in the northern portion of the study area	3-103
Figure 3.3.4b	Spatial distribution of flux out of springs in acre-feet per year in 2012	
	(stress period 84) in the southern portion of the study area	3-104
Figure 3.3.5	Spatial distribution of flux across the bottom of the Ogallala Aquifer in	
	the pre-development (steady-state) stress period.	3-105
Figure 3.3.6	Spatial distribution of flux across the top of the Rita Blanca and	
· ·	Edwards-Trinity (High Plains) aquifers in the pre-development	
	(steady-state) stress period.	3-106
Figure 3.3.7	Spatial distribution of flux across the top of the upper Dockum Aquifer	
8	in the pre-development (steady-state) stress period.	3-107
Figure 3.3.8	Spatial distribution of flux across the top of the lower Dockum Aquifer	5 107
1 1gui 0 3.3.0	in the pre-development (steady-state) stress period	3-108
Figure 3.3.9	Spatial distribution of flux across the bottom of the Ogallala Aquifer in	5 100
riguic 3.3.7	2012 (stress period 84)	3-109
Eigura 2 2 10	\ 1 /	J - 109
rigule 3.3.10	Spatial distribution of flux across the top of the Rita Blanca and	2 110
E: 2 2 11	Edwards-Trinity (High Plains) aquifers in 2012 (stress period 84)	3-110
Figure 3.3.11	1 11 1	2 111
F: 0.0.10	in 2012 (stress period 84)	3-111
Figure 3.3.12	1	2 1 1 2
	in 2012 (stress period 84).	3-112
Figure 3.4.1	Water budget in acre-feet per year in the Ogallala Aquifer for the	
	steady-state model	3-121
Figure 3.4.2	Water budget in acre-feet per year in the Rita Blanca Aquifer for the	
	steady-state model	3-122
Figure 3.4.3	Water budget in acre-feet per year in the Edwards-Trinity (High	
	Plains) Aquifer for the steady-state model	3-123
Figure 3.4.4	Water budget in acre-feet per year in the upper Dockum Aquifer for	
_	the steady-state model	3-124

Figure 3.4.5	Water budget in acre-feet per year in the lower Dockum Aquifer for	
_	the steady-state model.	3-125
Figure 3.4.6a	Water budget in acre-feet per year in the Ogallala Aquifer for the	
_	transient model.	3-126
Figure 3.4.6b	Water budget in acre-feet per year in the Ogallala Aquifer for the	
C	transient model with zoomed y-axis scale to show smaller components	3-127
Figure 3.4.7	Water budget in acre-feet per year in the Rita Blanca Aquifer for the	
C	transient model.	3-128
Figure 3.4.8	Water budget in acre-feet per year in the Edwards-Trinity (High	
C	Plains) Aquifer for the transient model.	3-129
Figure 3.4.9	Water budget in acre-feet per year in the upper Dockum Aquifer for	
C	the transient model.	3-130
Figure 3.4.10	Water budget in acre-feet per year in the lower Dockum Aquifer for	
C	the transient model.	3-131
Figure 4.2.1	Hydraulic head sensitivity in feet for the steady-state model to changes	
C	in horizontal hydraulic conductivity (Kh) of the Ogallala Aquifer	4-10
Figure 4.2.2	Hydraulic head sensitivity in feet for the steady-state model to changes	
S	in horizontal hydraulic conductivity (Kh) of the Rita Blanca Aquifer	4-11
Figure 4.2.3	Hydraulic head sensitivity in feet for the steady-state model to changes	
8	in horizontal hydraulic conductivity (Kh) of the Edwards-Trinity (High	
	Plains) Aquifer.	4-12
Figure 4.2.4	Hydraulic head sensitivity in feet for the steady-state model to changes	
8	in horizontal hydraulic conductivity (Kh) of the upper Dockum	
	Aquifer.	4-13
Figure 4.2.5	Hydraulic head sensitivity in feet for the steady-state model to changes	
118410 1.2.0	in horizontal hydraulic conductivity (Kh) of the lower Dockum	
	Aquifer.	4-14
Figure 4.2.6	Hydraulic head sensitivity in feet for the steady-state model to changes	
118410 1.2.0	in vertical hydraulic conductivity (Kv) of the Ogallala Aquifer	4-15
Figure 4.2.7	Hydraulic head sensitivity in feet for the steady-state model to changes	1 10
118010	in vertical hydraulic conductivity (Kv) of the Rita Blanca Aquifer	4-16
Figure 4.2.8	Hydraulic head sensitivity in feet for the steady-state model to changes	1 10
118410 1.2.0	in vertical hydraulic conductivity (Kv) of the Edwards-Trinity (High	
	Plains) Aquifer	4-17
Figure 4.2.9	Hydraulic head sensitivity in feet for the steady-state model to changes	1 1 /
115010 1.2.9	in vertical hydraulic conductivity (Kv) of the upper Dockum Aquifer	4-18
Figure 4 2 10	Hydraulic head sensitivity in feet for the steady-state model to changes	1 10
118410 1.2.10	in vertical hydraulic conductivity of the lower Dockum Aquifer	4-19
Figure 4.2.11		1 17
1 1guic 4.2.11	in recharge in the Ogallala Aquifer	4-20
Figure 4.2.12	Hydraulic head sensitivity in feet for the steady-state model to changes	1 20
1 1guic 4.2.12	in recharge in the Rita Blanca Aquifer.	4-21
Figure 4 2 13	Hydraulic head sensitivity in feet for the steady-state model to changes	च−∠1
1 15u1C 7.2.13	in recharge in the upper Dockum Aquifer.	4-22
Figure 4.2.14	Hydraulic head sensitivity in feet for the steady-state model to changes	7-42
1 1guic 4.2.14	in recharge in the lower Dockum Aquifer.	1 22
	m recharge in the lower bockum Aquiter	4-43

Figure 4.2.15	Hydraulic head sensitivity in feet for the steady-state model to changes	
	in river boundary conductance.	4-24
Figure 4.2.16	Hydraulic head sensitivity in feet for the steady-state model to changes	
	in river boundary conductance, representing river boundaries as	
	general-head boundaries (GHB).	4-25
Figure 4.2.17	Hydraulic head sensitivity in feet for the steady-state model to changes	
	in drain boundary conductance, representing ephemeral streams	4-26
Figure 4.2.18	Hydraulic head sensitivity in feet for the steady-state model to changes	
	in drain boundary conductance, representing springs	4-27
Figure 4.2.19	Hydraulic head sensitivity in feet for the steady-state model to changes	
	in maximum evapotranspiration rate.	4-28
Figure 4.2.20	Hydraulic head sensitivity in feet for the steady-state model to changes	
	in evapotranspiration extinction depth.	4-29
Figure 4.2.21	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in horizontal hydraulic conductivity (Kh) of the Ogallala	
	Aquifer	4-30
Figure 4.2.22	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in horizontal hydraulic conductivity (Kh) of the Rita Blanca	
	Aquifer	4-31
Figure 4.2.23	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in horizontal hydraulic conductivity (Kh) of the Edwards-	
	Trinity (High Plains) Aquifer	4-32
Figure 4.2.24	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in horizontal hydraulic conductivity (Kh) of the upper	
	Dockum Aquifer.	4-33
Figure 4.2.25		
	changes in horizontal hydraulic conductivity (Kh) of the lower	
	Dockum Aquifer.	4-34
Figure 4.2.26	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in vertical hydraulic conductivity (Kv) of the Ogallala	
	Aquifer	4-35
Figure 4.2.27	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in vertical hydraulic conductivity (Kv) of the Rita Blanca	
	Aquifer	4-36
Figure 4.2.28	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in vertical hydraulic conductivity (Kv) of the Edwards-Trinity	
	(High Plains) Aquifer	4-37
Figure 4.2.29	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in vertical hydraulic conductivity (Kv) of the upper Dockum	
	Aquifer	4-38
Figure 4.2.30	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in vertical hydraulic conductivity (Kv) of the lower Dockum	
	Aquifer	4-39
Figure 4.2.31	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in recharge in the Ogallala Aquifer	4-40

Figure 4.2.32	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in recharge in the Rita Blanca Aquifer	4-4]
Figure 4.2.33	Flow sensitivity in acre-feet per year for the steady-state model to	
_	changes in recharge in the upper Dockum Aquifer.	4-42
Figure 4.2.34	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in recharge in the lower Dockum Aquifer.	4-43
Figure 4.2.35		
	changes in river boundary conductance.	4-44
Figure 4.2.36	<i>,</i>	
	changes in river boundary conductance, representing river boundaries	
	as general-head boundaries.	4-45
Figure 4.2.37	Flow sensitivity in acre-feet per year for the steady-state model to	
	changes in drain boundary conductance, representing ephemeral	
	streams.	4-46
Figure 4.2.38	Flow sensitivity in acre-feet per year for the steady-state model to	
C	changes in drain boundary conductance, representing springs	4-47
Figure 4.2.39		
C	changes in maximum evapotranspiration rate	4-48
Figure 4.2.40	· · ·	
C	changes in evapotranspiration extinction depth.	4-49
Figure 4.2.41	Hydraulic head sensitivity in feet for the transient model to changes in	
C	horizontal hydraulic conductivity (Kh) of the Ogallala Aquifer	4-54
Figure 4.2.42	• • • • • • • • • • • • • • • • • • • •	
C	horizontal hydraulic conductivity (Kh) of the Rita Blanca Aquifer	4-55
Figure 4.2.43	Hydraulic head sensitivity in feet for the transient model to changes in	
C	horizontal hydraulic conductivity (Kh) of the Edwards-Trinity (High	
	Plains) Aquifer.	4-5 6
Figure 4.2.44	/ 1	
C	horizontal hydraulic conductivity (Kh) of the upper Dockum Aquifer	4-57
Figure 4.2.45	Hydraulic head sensitivity in feet for the transient model to changes in	
C	horizontal hydraulic conductivity (Kh) of the lower Dockum Aquifer	4-58
Figure 4.2.46		
S	vertical hydraulic conductivity (Kv) of the Ogallala Aquifer	4-59
Figure 4.2.47		
C	vertical hydraulic conductivity (Kv) of the Rita Blanca Aquifer	4-60
Figure 4.2.48	Hydraulic head sensitivity in feet for the transient model to changes in	
S	vertical hydraulic conductivity (Kv) of the Edwards-Trinity (High	
	Plains) Aquifer.	4-61
Figure 4.2.49	Hydraulic head sensitivity in feet for the transient model to changes in	
S	vertical hydraulic conductivity (Kv) of the upper Dockum Aquifer	4-62
Figure 4.2.50		
2	vertical hydraulic conductivity (Kv) of the lower Dockum Aquifer	4-63
Figure 4.2.51		
5	specific yield (Sy) of the Ogallala Aquifer.	4-64
Figure 4.2.52	- · · · · · · · · · · · · · · · · · · ·	-
S	specific storage (Ss) of the Rita Blanca Aquifer	4-65

Figure 4.2.53	Hydraulic head sensitivity in feet for the transient model to changes in	
	specific storage (Ss) of the Edwards-Trinity (High Plains) Aquifer	4-66
Figure 4.2.54		
	specific storage (Ss) of the upper Dockum Aquifer	4-67
Figure 4.2.55		
S	specific storage (Ss) of the lower Dockum Aquifer	4-68
Figure 4.2.56	Hydraulic head sensitivity in feet for the transient model to changes in	
8	recharge in the Ogallala Aquifer.	4-69
Figure 4.2.57	Hydraulic head sensitivity in feet for the transient model to changes in	
118010	recharge in the Rita Blanca Aquifer	4-70
Figure 4 2 58	Hydraulic head sensitivity in feet for the transient model to changes in	
1180110	recharge in the upper Dockum Aquifer.	4-71
Figure 4.2.59	e e e e e e e e e e e e e e e e e e e	, 1
118410 1.2.09	recharge in the lower Dockum Aquifer.	4-72
Figure 4.2.60		, _
1180110=.00	river boundary conductance (GHB).	4-73
Figure 4.2.61		
8	river boundary conductance, representing river boundaries as general-	
	head boundaries.	4-74
Figure 4.2.62		
8	drain boundary conductance, representing ephemeral streams	4-75
Figure 4.2.63	Hydraulic head sensitivity in feet for the transient model to changes in	
8	drain boundary conductance, representing springs	4-76
Figure 4.2.64		
S	maximum evapotranspiration rate	4-77
Figure 4.2.65	Hydraulic head sensitivity in feet for the transient model to changes in	
C	evapotranspiration extinction depth	4-78
Figure 4.2.66	Hydraulic head sensitivity in feet for the transient model to changes in	
C	well boundary discharge.	4-79
Figure 4.2.67	Hydraulic head sensitivity in feet for the transient model to changes in	
	drain boundary conductance, representing reservoirs	4-80
Figure 4.2.68	Flow sensitivity in acre-feet per year for the transient model to	
	changes in horizontal hydraulic conductivity (Kh) of the Ogallala	
	Aquifer	4-81
Figure 4.2.69	Flow sensitivity in acre-feet per year for the transient model to	
	changes in horizontal hydraulic conductivity (Kh) of the Rita Blanca	
	Aquifer	4-82
Figure 4.2.70	Flow sensitivity in acre-feet per year for the transient model to	
_	changes in horizontal hydraulic conductivity (Kh) of the Edwards-	
	Trinity (High Plains) Aquifer	4-83
Figure 4.2.71	Flow sensitivity in acre-feet per year for the transient model to	
	changes in horizontal hydraulic conductivity (Kh) of the upper	
	Dockum Aquifer.	4-84
Figure 4.2.72	Flow sensitivity in acre-feet per year for the transient model to	
	changes in horizontal hydraulic conductivity (Kh) of the lower	
	Dockum Aquifer.	4-85

Figure 4.2.73	Flow sensitivity in acre-feet per year for the transient model to changes in vertical hydraulic conductivity (Kv) of the Ogallala	4.06
Figure 4.2.74	Aquifer	4-86
C	changes in vertical hydraulic conductivity (Kv) of the Rita Blanca Aquifer	4-87
Figure 4.2.75	Flow sensitivity in acre-feet per year for the transient model to	
	changes in vertical hydraulic conductivity (Kv) of the Edwards-Trinity (High Plains) Aquifer	4-88
Figure 4.2.76	· ·	4-00
8	changes in vertical hydraulic conductivity (Kv) of the upper Dockum	
F: 40.77	Aquifer.	4-89
Figure 4.2.77	1 1	
	changes in vertical hydraulic conductivity (Kv) of the lower Dockum Aquifer	4-90
Figure 4.2.78	Flow sensitivity in acre-feet per year for the transient model to	1 70
C	changes in specific yield (Sy) of the Ogallala Aquifer	4-91
Figure 4.2.79	Flow sensitivity in acre-feet per year for the transient model to	
	changes in recharge in the Ogallala Aquifer	4-92
Figure 4.2.80	J 1 J	
	changes in recharge in the Rita Blanca Aquifer	4-93
Figure 4.2.81	1 0	
E: 4.2.02	changes in recharge in the upper Dockum Aquifer.	4-94
Figure 4.2.82	Flow sensitivity in acre-feet per year for the transient model to	4-95
Figure 4.2.83	changes in recharge in the lower Dockum Aquifer	4-93
11guic 4.2.63	changes in river boundary conductance	4-96
Figure 4.2.84		1 70
118410 1.2.01	changes in river boundary conductance, representing river boundaries	
	as general-head boundaries.	4-97
Figure 4.2.85	_	
_	changes in drain boundary conductance, representing ephemeral	
	streams.	4-98
Figure 4.2.86	Flow sensitivity in acre-feet per year for the transient model to	
	changes in drain boundary conductance, representing springs	4-99
Figure 4.2.87	Flow sensitivity in acre-feet per year for the transient model to	4 400
F: 4.2.00	changes in maximum evapotranspiration rate.	4-100
Figure 4.2.88	Flow sensitivity in acre-feet per year for the transient model to	4 101
Eigura 4 2 90	changes in evapotranspiration extinction depth.	4-101
Figure 4.2.89	Flow sensitivity in acre-feet per year for the transient model to changes in well boundary discharge.	4 102
Figure 4 2 90	Flow sensitivity in acre-feet per year for the transient model to	4-102
1 15010 7.2.70	changes in River package boundary conductance, representing	
	reservoirs	4-103
Figure 4.2.91	Example hydrographs showing sensitivity of heads (feet above mean	
S	sea level) to change in the vertical conductance (Kv) between the	

	Ogallala Aquifer and the region of the lower Dockum Aquifer, where	4 10 4
F: 4.0.00	the Santa Rosa Formation is in contact with the Ogallala Aquifer	4-104
Figure 4.2.92		
	sea level) to changes in the horizontal hydraulic conductivity (Kh)	4-105
Figure 4.2.93	Example hydrographs showing sensitivity of heads (feet above mean	
	sea level) to changes in specific yield (Sy).	4-106
Figure 4.2.94	Example hydrographs showing sensitivity of upper Dockum Aquifer	
	heads (feet above mean sea level) to changes in vertical hydraulic	
	conductivity (Kv).	4-107
Figure 4.2.95		
	sea level) to changes in recharge (rch)	4-108
List of Tab	les	
Table 2.0.1	Summary of model input packages and filenames.	2-2
Table 2.0.2	Summary of model output packages and filenames.	
Table 2.1.1	Model stratigraphy and layering.	
Table 2.1.2	Summary of IBOUND values in the Basic package	
Table 2.3.1	Table of stress period times and durations.	
Table 2.4.1	Table of aquifer properties defined in the Upstream Weighting	
	package and filenames containing matrix of each property value	2-20
Table 3.1.1	Table of initial and calibrated statistics for hydraulic properties	
Table 3.1.2	Fraction of initial pre-1980 Ogallala Aquifer pumping by county	
Table 3.2.1	Calibration statistics for steady-state, 1930 to 1980, and 1980 to 2012	
Table 3.4.1	Steady-state water budget.	
Table 3.4.2	Steady-state water budget components expressed as a percentage of	
-	total inflow and outflow.	3-118
Table 3.4.3	Transient Water Budget for 1980.	
Table 3.4.4	Transient Water Budget for 2012.	

This page intentionally left blank

Executive Summary

This report documents the construction and calibration of the numerical groundwater availability model for the High Plains Aquifer System, and is targeted primarily to those with experience constructing and/or using groundwater models. The numerical model was developed as part of the Texas Water Development Board's groundwater availability model program. The purpose of the High Plains Aquifer System model is to provide a tool for managing the groundwater resources in the study area.

The High Plains Aquifer System in Texas consists of the southern and northern portions of the major Ogallala Aquifer (including the minor Rita Blanca Aquifer), the minor Edwards-Trinity (High Plains) Aquifer, and the minor Dockum Aquifer. In the south, the Dockum Aquifer is overlain by portions of the Pecos Valley and Edwards-Trinity (Plateau) aquifers. The Pecos Valley and Edwards-Trinity (Plateau) aquifers are not explicitly modeled as part of the High Plains Aquifer System.

The code used to implement the numerical model was MODFLOW-NWT. The model consists of four layers, and the model grid is composed of uniformly spaced half-mile square grid cells. The model simulates the time period from 1930 to 2012, with an initial steady-state stress period that represents pre-development conditions. The model was primarily calibrated to observed heads in the four aquifers. It was calibrated to both steady-state and transient conditions. Both the steady-state and transient calibration statistics are well within acceptable ranges.

In the steady-state calibration, recharge is the major source of inflow to the Ogallala Aquifer, and discharge to rivers is the largest source of outflow. In the transient model, by 1940 pumping has become the largest outflow component, and by 1942 removal of water from storage has become the largest inflow component. Discharge to rivers decreases from over 500,000 acre-feet per year to less than 300,000 acre-feet per year over the course of the transient simulation. Although recharge increases through time due to agricultural activity, this does not significantly offset the increased production. Cross-formational flow is not a significant component of the Ogallala Aquifer water budget.

In contrast, cross-formational flow is a significant component of the minor aquifer water budgets. Cross-formational flow from the Ogallala Aquifer is the largest inflow component for

both the Rita Blanca and Edwards-Trinity (High Plains) aquifers, both pre- and post-development. Removal of water from storage is the largest inflow component of the upper and lower Dockum Aquifer water budgets post-development, although it is nearly matched by recharge in the lower Dockum Aquifer.

A sensitivity analysis was performed, which indicated the horizontal hydraulic conductivity was an important parameter for all of the aquifers except the upper Dockum Aquifer, which was more sensitive to vertical hydraulic conductivity. Heads in the unconfined Ogallala Aquifer were sensitive to pumping rate and specific yield in places where significant pumping has occurred. Drawdown in the minor aquifers was more sensitive to hydraulic conductivity. Steady-state heads in the Ogallala Aquifer are sensitive to recharge rate.

All groundwater models have limitations with respect to data support, scale, and the assumptions used in their development. However, the development documented in this report resulted in a well-calibrated model of the High Plains Aquifer System in Texas that can be used to support water availability planning at a regional scale.

1.0 Introduction and Purpose of Model

1.1 Introduction

The Texas Water Development Board (TWDB) has identified the major and minor aquifers in Texas on the basis of regional extent and amount of water produced. The major and minor aquifers are shown in Figures 1.0.1 and 1.0.2, respectively. General discussion of the major and minor aquifers is given in Ashworth and Hopkins (1995). Aquifers that supply large quantities of water over large areas of the state are defined as major aquifers and those that supply relatively small quantities of water over large areas of the state or supply large quantities of water over small areas of the state are defined as minor aquifers.

The boundaries of the aquifers comprising the High Plains Aquifer System are shown in Figure 1.0.3. The High Plains Aquifer System in Texas consists of the southern and northern portions of the major Ogallala Aquifer (including the minor Rita Blanca Aquifer), the minor Edwards-Trinity (High Plains) Aquifer, and the minor Dockum Aquifer. In the south, the Dockum Aquifer is overlain by portions of the Pecos Valley and Edwards-Trinity (Plateau) aquifers. The Pecos Valley and Edwards-Trinity (Plateau) aquifers are not explicitly modeled as part of the High Plains Aquifer System.

This report documents the construction and calibration of the numerical groundwater availability model for the High Plains Aquifer System. A previous report (Deeds and others, 2015) documented the conceptual model development for the High Plains Aquifer System groundwater availability model. While the conceptual model report is written in a style that should be accessible to most interested stakeholders, this numerical model report is targeted primarily to those with experience constructing and/or using groundwater models.

1.2 Purpose of the Model

The Texas Water Code codified the requirement for generation of a State Water Plan that allows for the development, management, and conservation of water resources and the preparation and response to drought, while maintaining sufficient water available for the citizens of Texas (TWDB, 2007). Senate Bill 1 (75th Texas Legislative Session, 1997) and subsequent legislation directed the TWDB to coordinate regional water planning with a process based upon public participation. Also, as a result of Senate Bill 1, the approach to water planning in the state of

Texas has shifted from a water-demand based allocation approach to an availability-based approach.

Groundwater models provide a tool to estimate groundwater availability for various water use strategies and to determine the cumulative effects of increased water use and drought. A groundwater model is a numerical representation of the aquifer system capable of simulating historical conditions and predicting future aquifer conditions. Inherent to the groundwater model are a set of equations that are developed and applied to describe the primary or dominant physical processes considered to be controlling groundwater flow in the aquifer system. Groundwater models are essential for performing complex analyses and making informed predictions and related decisions (Anderson and Woessner, 1992).

Development of groundwater availability models for the major and minor Texas aquifers is integral to the state water planning process. The purpose of the groundwater availability model program is to provide a tool that can be used to develop reliable and timely information on groundwater availability for the citizens of Texas and to ensure adequate supplies or recognize inadequate supplies over a 50-year planning period. The groundwater availability models also serve as an integral part of the process of determining modeled available groundwater based on desired future conditions, as required by House Bill 1763 (79th Texas Legislative Session, 2005). The High Plains Aquifer System groundwater availability model will thus serve as a critical tool for groundwater planning in the state.

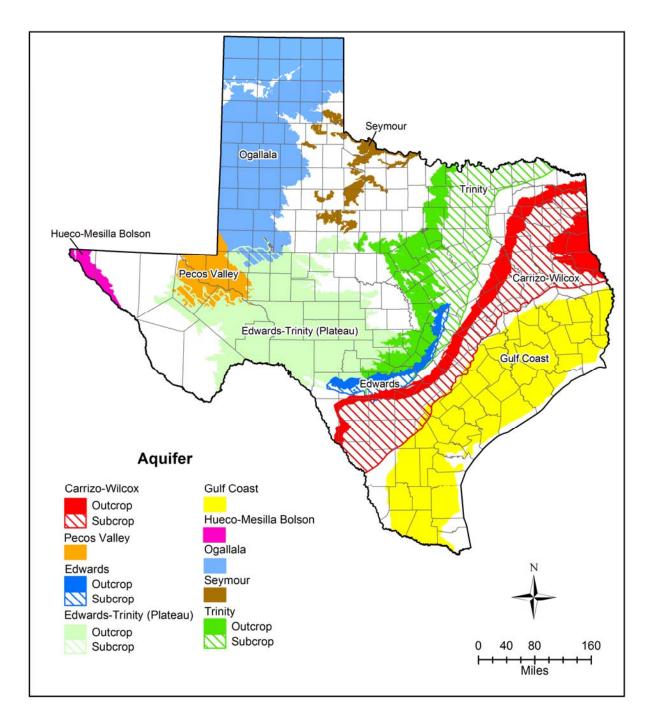


Figure 1.0.1 Location of major aquifers in Texas (TWDB, 2006a).

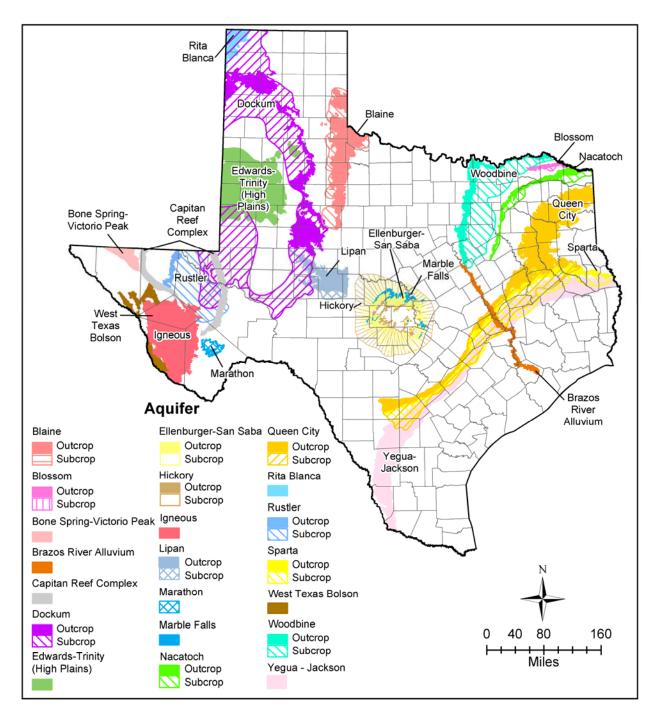


Figure 1.0.2 Location of minor aquifers in Texas (TWDB, 2006b).

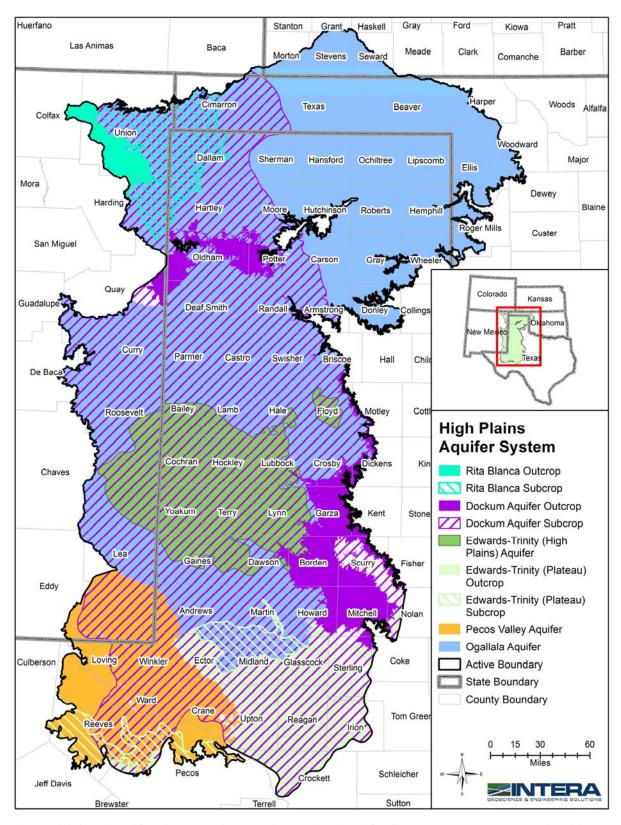


Figure 1.0.3 Aquifers included in the High Plains Aquifer System groundwater availability model.

This page intentionally left blank

2.0 Model Overview and Packages

The code selected for the groundwater model is MODFLOW-NWT (Niswonger and others, 2011). MODFLOW is a three-dimensional finite difference groundwater flow code which is supported by boundary condition packages to handle recharge, evapotranspiration, streams, springs and reservoirs. MODFLOW-NWT is an enhanced version of the MODFLOW family of codes developed and supported by the United States Geological Survey. The benefits of using MODFLOW for the current effort include: 1) MODFLOW incorporates the necessary physics of groundwater flow, 2) MODFLOW is the most widely accepted groundwater flow code in use today, 3) MODFLOW was written and is supported by the United States Geological Survey and is public domain, 4) MODFLOW is well documented (McDonald and Harbaugh, 1988; Harbaugh and McDonald, 1996; Harbaugh and others, 2000; Harbaugh, 2005; Niswonger and others, 2011), and 5) MODFLOW has a large user group. Additionally, there are numerous graphical user interfaces that can be used to develop MODFLOW models and process model results.

The graphical user interface chosen in this case is Groundwater Vistas Version 6.1. The model was developed outside of the graphical user interface and then imported to Groundwater Vistas after calibration was complete, so the workflow for model creation did not necessarily follow any workflow prescribed by the use of that graphical user interface.

A MODFLOW model consists of grouping of input text files (also called "packages") that describe various components of the groundwater flow system. The input packages and their corresponding filenames are shown in Table 2.0.1 below. The output files written by MODFLOW contain water levels (HDS), drawdown (DDN), water budget information (CBB) and a listing of the characteristics of the run (LST) as shown in Table 2.0.2. A description of the contents and changes to each of the input packages shown in Table 2.0.1 are included in the sections that follow.

Table 2.0.1 Summary of model input packages and filenames.

File Type Abbreviation	File Type	Input File Name
BAS6	Basic Package	hpas.bas
DIS	Discretization File	hpas.dis
DRN	Drain Package	hpas.drn
EVT	Evapotranspiration Package	hpas.evt
NWT	Newton Solver Package	hpas.nwt
OC	Output Control Option	hpas.oc
RCH	Recharge Package	hpas.rch
RIV	River Package	hpas.riv
UPW	Upstream-Weighting Package	hpas.upw
WEL	Well Package	hpas.wel

Table 2.0.2 Summary of model output packages and filenames.

File Type	Output File Name
Binary flow file	hpas.cbb
Binary drawdown file	hpas.ddn
Binary head file	hpas.hds
List file	hpas.lst

2.1 Basic Package

The MODFLOW Basic (suffix BAS) package is used to 1) specify which cells in each model layer are active or inactive, and 2) specify the starting water levels in the aquifers for the simulation. The Basic package can also be used to specify constant head cells.

The groundwater model of the High Plains Aquifer System in Texas represents the major Ogallala Aquifer, the minor Rita Blanca Aquifer, the minor Edwards-Trinity (High Plains) Aquifer, and the minor Dockum Aquifer. In the southern portion of the model domain, the Dockum Aquifer is overlain by portions of the Pecos Valley and Edwards-Trinity (Plateau) aquifers. The model has four layers: the Ogallala Aquifer and the Pecos Valley Aquifer compose layer 1, the Rita Blanca Aquifer, the Edwards-Trinity (High Plains) Aquifer and the Edwards-Trinity (Plateau) Aquifer compose layer 2, the upper Dockum Group is represented by layer 3, and the lower Dockum Group is represented by layer 4.

The active and inactive model cells for each of the four layers are shown in Figure 2.1.1 through Figure 2.1.4. Active model cells are indicated with a positive value of the variable IBOUND, an input to the Basic package. Additional information about what each model cell represents was specified using the IBOUND values in Table 2.1.1. For example, the outcrop portion of an aquifer is indicated with a "1" in the second digit of the IBOUND value, and the downdip portion of an aquifer is indicated with a "2" in the second digit of the IBOUND value. Pass throughs were required where the Ogallala Aquifer (layer 1) directly overlays upper (layer 3) or lower Dockum Group (layer 4). Pass throughs are vertically thin model layers with little storage potential that allow for aquifer continuity where layers pinch out. Pass throughs by model layer are noted with a value of "3" or "4" in the second digit of the IBOUND value.

Grid cells were associated with each aquifer using the aquifer outlines and by selecting the grid centroids that fell within the aquifer outline. For any aquifer, cells that were connected through corner connections and small clusters of cells along the edges of the active model boundary were removed to enhance model convergence and improve stability of the model. Also, to improve model stability, starting heads for the steady-state model were set to land surface elevation to allow all model grid cells to start wet.

The types of model cells are shown in Figure 2.1.5a and Figure 2.1.5b. Model cell types include springs, escarpments, and draws represented with the drain package; rivers and general head

boundaries represented with the river package; and evapotranspiration. All of these model cell types are forms of head-dependent flow boundaries, and are each discussed in the sections that follow. The bottom of the model represents the top of Permian, and is a no-flow boundary.

Table 2.1.1 Model stratigraphy and layering.

System	Formation		Aquifer	Model Layer			
System	Formatio	11	Aquilei	North	Central	South	
Quaternary	Pecos Valley Alluvium		Pecos Valley			1(1)	
Tertiary	Ogallala		Ogallala	1	1		
	Duck Creek (2)	Boracho ⁽³⁾					
	Kiamichi (2)						
Cretaceous	Edwards (2)	Finlay ⁽³⁾	Edwards –		$2^{(2)}$	2 (1, 3)	
Cicuccous	Comanche Peak (2)	Timay	Trinity		2		
	Walnut (2)						
	Antlers						
Jurassic	Morrison		Rita Blanca	2			
Julassic	Exeter			2			
	Cooper Can	yon	Upper		3	3	
Triassic	Trujillo		Dockum		3	3	
	Tecovas		Lower	Lower		4	4
	Santa Ros	a	Dockum			'	
Permian	Dewey Lal	ке		No Flow			
_ ********	Rustler		Rustler		110 110 11		

⁽¹⁾ While represented by model layers, the Edwards-Trinity (Plateau) and Pecos Valley aquifers contain head boundaries in all cells, and thus are not explicitly simulated in the model.

⁽²⁾ Edwards-Trinity (High Plains) Aquifer is represented by layer 2 in the central portion of the domain.

⁽³⁾ Edwards-Trinity (Plateau) Aquifer is represented by layer 2 in the southern portion of the domain.

Table 2.1.2 Summary of IBOUND values in the Basic package.

IBOUND Value	Model Layer	Aquifer	Subset of Aquifer	Comment
11	1	Ogallala	-	
21	1	Pecos Valley	-	Head boundary
31	2	Rita Blanca	Outcrop	
32	2	Rita Blanca	Downdip	
42	2	Edwards-Trinity (High Plains)	-	
51	2	Edwards-Trinity (Plateau)	Outcrop	Head boundary
52	2	Edwards-Trinity (Plateau)	Downdip	Head boundary
13	2	-	-	Pass throughs
14	2	-	-	Pass throughs
61	3	Upper Dockum	Outcrop	
62	3	Upper Dockum	Downdip	
24	3	-	-	Pass throughs
14	3	-	-	Pass throughs
71	4	Lower Dockum	Outcrop	
72	4	Lower Dockum	Downdip	

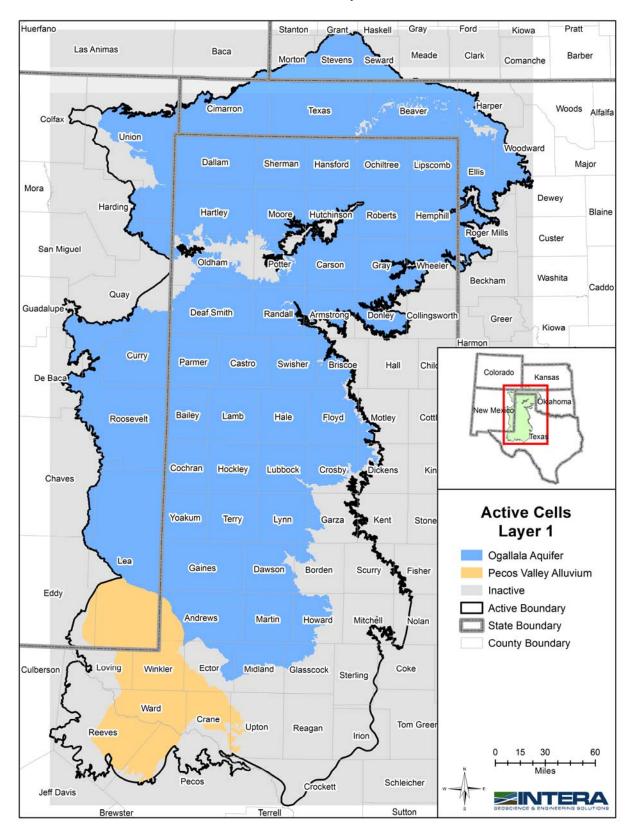


Figure 2.1.1 Layer 1 active/inactive model cells.

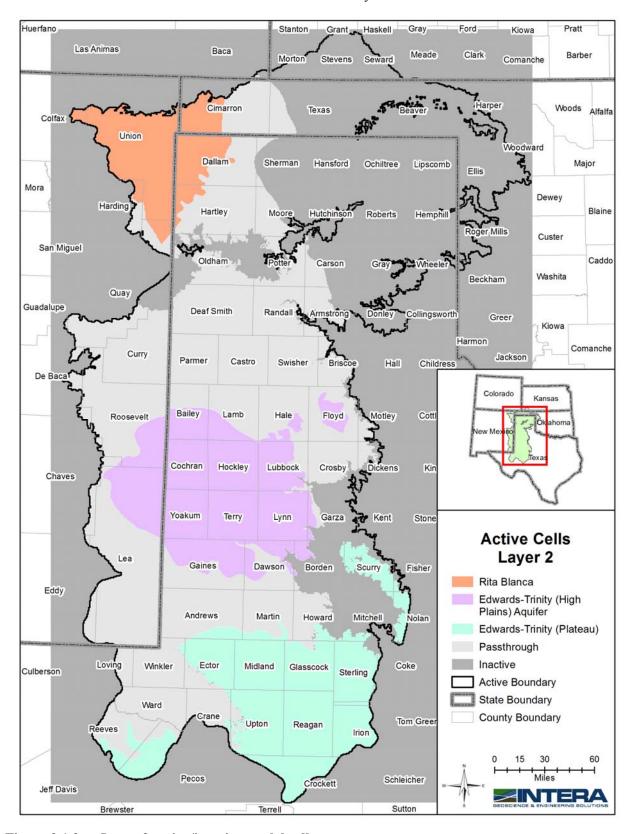


Figure 2.1.2 Layer 2 active/inactive model cells.

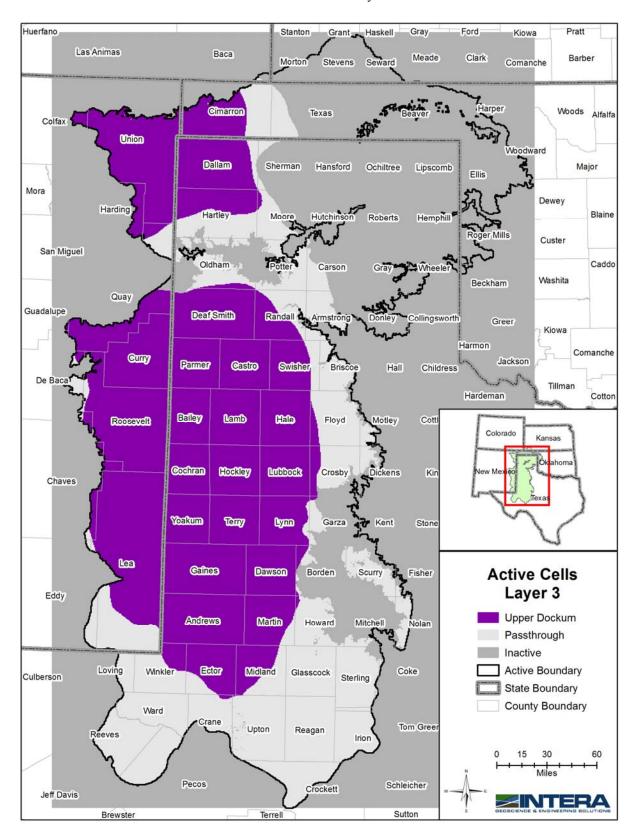


Figure 2.1.3 Layer 3 active/inactive model cells.

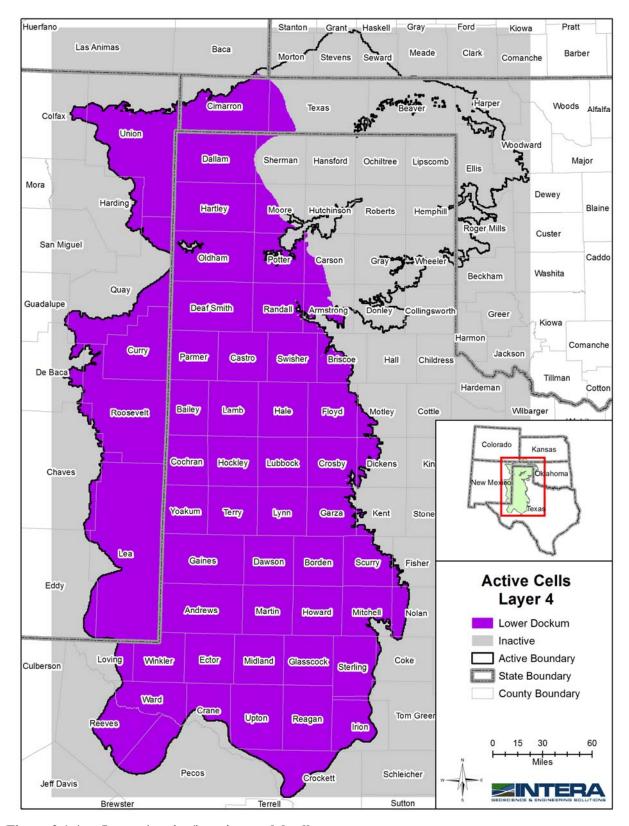


Figure 2.1.4 Layer 4 active/inactive model cells.

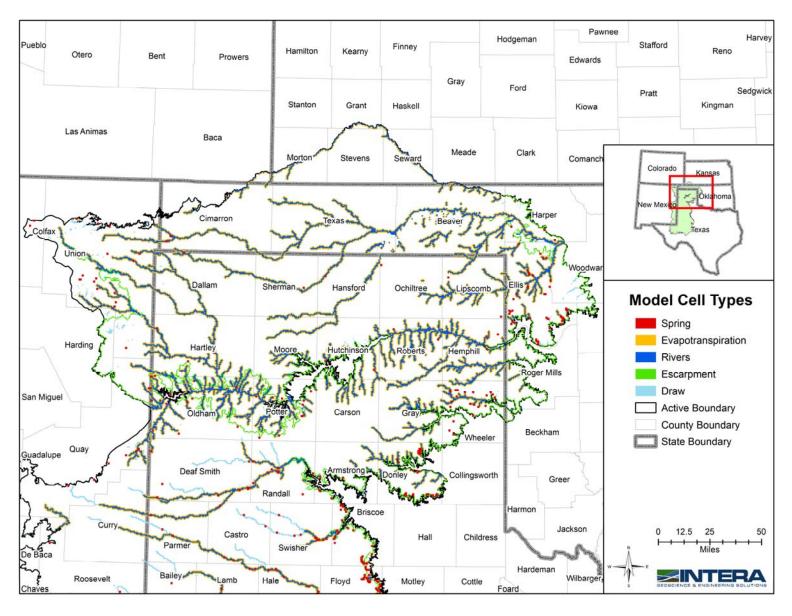


Figure 2.1.5a Uppermost active layer model cell types in the northern portion of the study area.

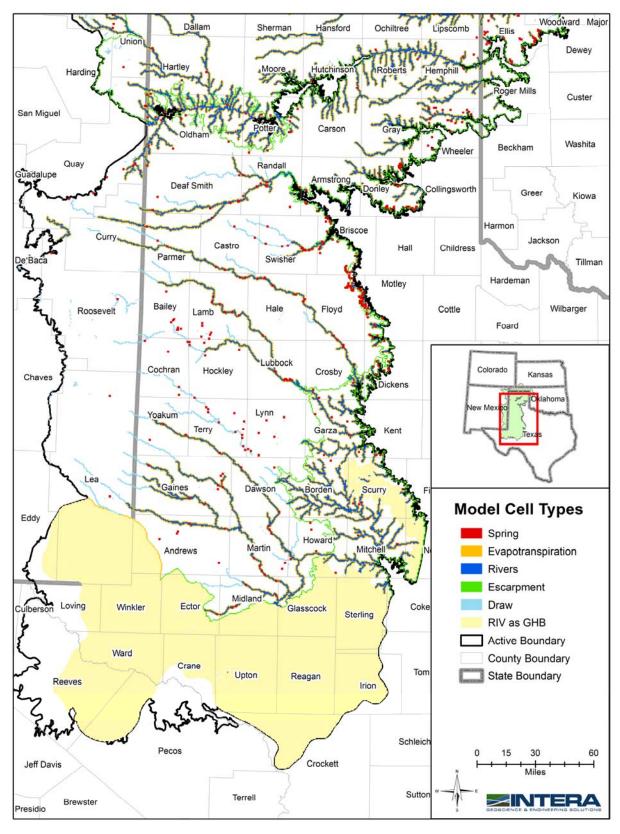


Figure 2.1.5b Uppermost active layer model cell types in the southern portion of the study area.

2.2 Name File

The name file simply contains the names and unit numbers of the input and output files that comprise the numerical model, shown previously in Tables 2.0.1 and 2.0.2.

2.3 Discretization Package

The MODFLOW discretization (suffix DIS) package contains the model grid dimensions, the cell-by-cell elevations of the model layers, and a definition of the model stress periods.

2.3.1 Model Grid Specifications

The High Plains Aquifer System groundwater availability model grid contains 4 layers, 932 rows, and 580 columns. The grid is uniform, with cells that are 2640 feet square. Figure 2.3.1 shows an example of the model grid at a county scale. The grid cell dimension is similar in scale to a quarter-section, which is the area covered by a typical center pivot irrigation system.

The grid is oriented directly north-south in the TWDB's designated coordinate system for groundwater availability models described in Anaya (2001). The cells are aligned with the previous southern Ogallala Aquifer groundwater availability model (Blandford and others, 2008) and the previous Dockum Aquifer groundwater availability model (Ewing and others, 2008), with four of the new model grid cells fitting inside one of the previous model one-mile-square grid cells. The lower left corner of the grid is positioned at groundwater availability model coordinate system coordinates 3628793.0 easting, 19479909.0 northing, and has no rotation.

Layer elevations were sampled from the surfaces created during the conceptual model development. Because the grid is uniform and oriented directly north-south, the conceptual model surfaces were created at a raster orientation and resolution that exactly coincided with the model grid cells, therefore no resampling was required. Minimum cell thicknesses were enforced during grid creation. For cells representing an aquifer, the minimum was 30 feet, whereas the thickness was set to 1 foot for cells representing pass-throughs. The top of the model represents land surface. When minimum thicknesses were enforced, elevations were pushed down from above, since land surface elevation has more certainty than the structural bottoms of the aquifers. Figure 2.3.2a and Figure 2.3.2b show representative cross sections of the model grid, for west-east sections in the northern and southern portions of the model.

In some areas of the model, especially along the escarpment to the east, large elevation changes in land surface occur in adjoining grid cells. No smoothing of these offsets was implemented, so some model cross sections may reflect these large offsets, with the appearance of "gaps." In some cases, the assignment of an aquifer to a cell, based on the aquifer outline, was inconsistent with the variation in land surface elevation. The cell elevations and aquifer assignments were examined, and the aquifer assignments were modified from their initial values, when such inconsistencies were identified.

2.3.2 Stress Period Setup

The High Plains Aquifer System groundwater availability model has 84 stress periods, starting with a steady-state stress period that represents predevelopment conditions. The second, and all subsequent stress periods are transient. The second stress period represents year 1930, with all transient stress periods lasting one year until stress period 84, which represents year 2012. Table 2.3.1 shows the stress period types, times, and durations. Note that leap years were considered in the stress period setup, so transient stress periods may be either 365 or 366 days long.

Table 2.3.1 Table of stress period times and durations.

Stress Period	Stress Period Length (Days)	Stress Period Represents	Steady-State (SS)/Transient (TR) Stress Period	Stress Period	Stress Period Length (Days)	Stress Period Represents	Steady-State (SS)/Transient (TR) Stress Period
1	1	Pre- Development	SS	43	365	1971	TR
2	365	1930	TR	44	366	1972	TR
3	365	1931	TR	45	365	1973	TR
4	366	1932	TR	46	365	1974	TR
5	365	1933	TR	47	365	1975	TR
6	365	1934	TR	48	366	1976	TR
7	365	1935	TR	49	365	1977	TR
8	366	1936	TR	50	365	1978	TR
9	365	1937	TR	51	365	1979	TR
10	365	1938	TR	52	366	1980	TR
11	365	1939	TR	53	365	1981	TR
12	366	1940	TR	54	365	1982	TR
13	365	1941	TR	55	365	1983	TR
14	365	1942	TR	56	366	1984	TR
15	365	1943	TR	57	365	1985	TR
16	366	1944	TR	58	365	1986	TR
17	365	1945	TR	59	365	1987	TR
18	365	1946	TR	60	366	1988	TR
19	365	1947	TR	61	365	1989	TR
20	366	1948	TR	62	365	1990	TR
21	365	1949	TR	63	365	1991	TR
22	365	1950	TR	64	366	1992	TR
23	365	1951	TR	65	365	1993	TR
24	366	1952	TR	66	365	1994	TR
25	365	1953	TR	67	365	1995	TR
26	365	1954	TR	68	366	1996	TR
27	365	1955	TR	69	365	1997	TR
28	366	1956	TR	70	365	1998	TR
29	365	1957	TR	71	365	1999	TR
30	365	1958	TR	72	366	2000	TR
31	365	1959	TR	73	365	2001	TR
32	366	1960	TR	74	365	2002	TR
33	365	1961	TR	75	365	2003	TR
34	365	1962	TR	76	366	2004	TR

Table 2.3.1, continued

Stress Period	Stress Period Length (Days)	Stress Period Represents	Steady-State (SS)/Transient (TR) Stress Period	Stress Period	Stress Period Length (Days)	Stress Period Represents	Steady-State (SS)/Transient (TR) Stress Period
35	365	1963	TR	77	365	2005	TR
36	366	1964	TR	78	365	2006	TR
37	365	1965	TR	79	365	2007	TR
38	365	1966	TR	80	366	2008	TR
39	365	1967	TR	81	365	2009	TR
40	366	1968	TR	82	365	2010	TR
41	365	1969	TR	83	365	2011	TR
42	365	1970	TR	84	366	2012	TR

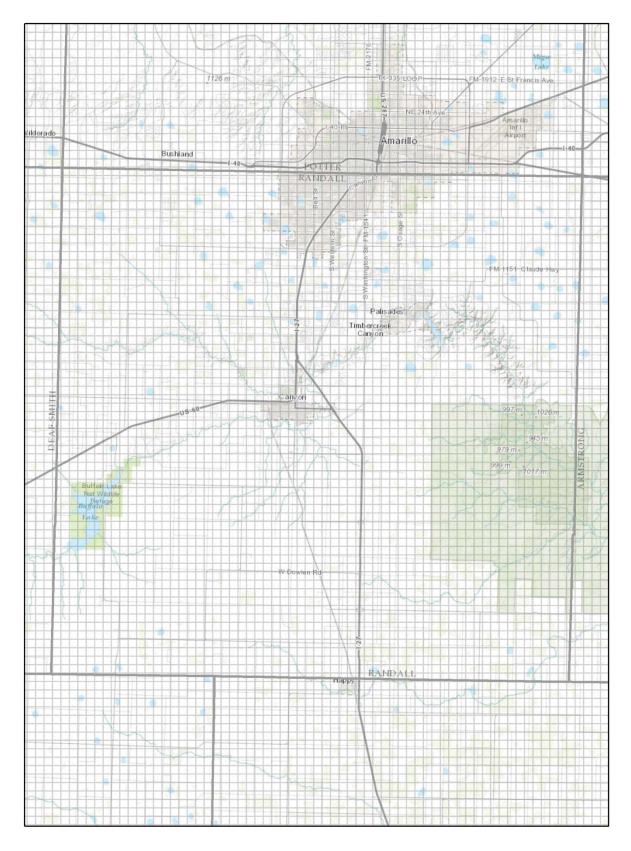


Figure 2.3.1 Example of model grid scale shown for Randall County.

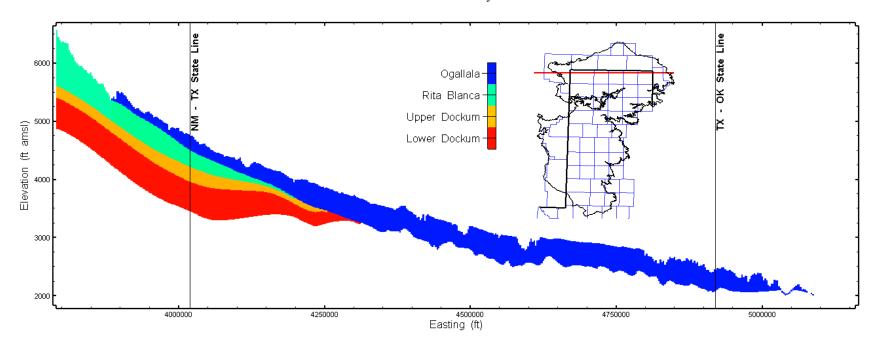


Figure 2.3.2a West-east cross section for row 140 showing model grid plotted from Discretization package (100x vertical exaggeration).

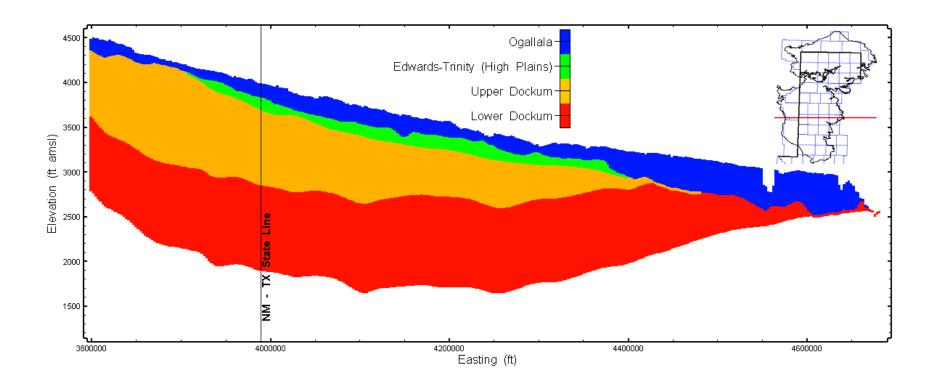


Figure 2.3.2b West-east cross section for row 514 showing model grid structure plotted from Discretization package (100x vertical exaggeration).

2.4 Upstream Weighting Flow Package

The Upstream Weighting (suffix UPW) package is used to specify hydraulic properties for MODFLOW-NWT. These properties control how easily groundwater can flow through the aquifer and how it responds to pumping. These properties include hydraulic conductivity (both horizontal and vertical), specific yield, and specific storage.

2.4.1 External Files

For the High Plains Aquifer System groundwater availability model, property matrices for each layer were created as external files, with one file for each property/layer combination. These external files, which are stored in a subdirectory called "UPWref", are then referenced in the UPW file.

2.4.2 Property Zones

During model calibration (Section 3.1), some of the hydraulic properties were adjusted. For the Ogallala Aquifer, pilot points were used to create a multiplier matrix that was applied to the initial hydraulic conductivity field during parameter estimation. "Pilot points" are locations where, during parameter estimation, point values are varied from their initial estimates. The multiplier matrix is generated by kriging the values at the pilot points. This multiplier matrix is then multiplied by the initial hydraulic conductivity field on a cell-by-cell basis to result in a calibrated hydraulic conductivity field. Figure 2.4.1 shows the location of the pilot points used to generate the multiplier matrix that was applied to the Ogallala Aquifer horizontal hydraulic conductivity. Because each pilot point represents a parameter, and each parameter requires a forward simulation during the calculation of the Jacobian matrix (an outer iteration in PEST), the modeler must try to achieve a balance between pilot point density (higher densities allow more refinement of the property field) and parameter estimation run times. In general, we placed pilot points on an approximate county-level density, with a few areas receiving more pilot points, where warranted by calibration.

For the non-Ogallala aquifers, and the rest of the hydraulic properties, property zones were primarily coincident with each active aquifer outline. That is, the initial hydraulic property field for each aquifer was modified using a single multiplier for the entire aquifer. Figures 2.4.2 through 2.4.4 show the property zones as they correspond to each aquifer outline. In addition, a depth decay multiplier was used to modify horizontal and vertical hydraulic conductivity in the

confined portions of the aquifers. This multiplier does not apply to the Ogallala Aquifer, which is not confined. The multiplier was calculated as a function of depth following the exponential decay model of Louis (1974):

$$multiplier = e^{-A (Depth - D_0)}$$
 (2.4.1)

where A is a calibration parameter and D_0 is the depth beyond which the multiplier takes on a value less than unity. A value of 150 feet was used for D_0 for all of the aquifers to which the multiplier was applied.

Two additional property zones were used in calibration. The first, shown in Figure 2.4.5, is a zone that defines the approximate region where the Ogallala Aquifer is in direct contact with the underlying Santa Rosa formation, as described in Deeds and others (2015), Section 4.6. The second was a zone used to modify the specific yield of the Ogallala Aquifer. The zone is shown in Figure 2.4.6. This zone corresponded with an area where simulated water level declines were too rapid compared to measured declines at initial estimates of specific yield, as discussed in Section 3.1.3. Summary statistics for hydraulic properties can be found in Section 3.1.

Table 2.4.1 Table of aquifer properties defined in the Upstream Weighting package and filenames containing matrix of each property value.

File Name	Property
Kh1.ref	Horizontal hydraulic conductivity for layer 1
Kv1.ref	Vertical hydraulic conductivity for layer 1
Ss1.ref	Specific storage for layer 1
Sy1.ref	Specific yield for layer 1
Kh2.ref	Horizontal hydraulic conductivity for layer 2
Kv2.ref	Vertical hydraulic conductivity for layer 2
Ss2.ref	Specific storage for layer 2
Sy2.ref	Specific yield for layer 2
Kh3.ref	Horizontal hydraulic conductivity for layer 3
Kv3.ref	Vertical hydraulic conductivity for layer 3
Ss3.ref	Specific storage for layer 3
Sy3.ref	Specific yield for layer 3
Kh4.ref	Horizontal hydraulic conductivity for layer 4
Kv4.ref	Vertical hydraulic conductivity for layer 4
Ss4.ref	Specific storage for layer 4
Sy4.ref	Specific yield for layer 4

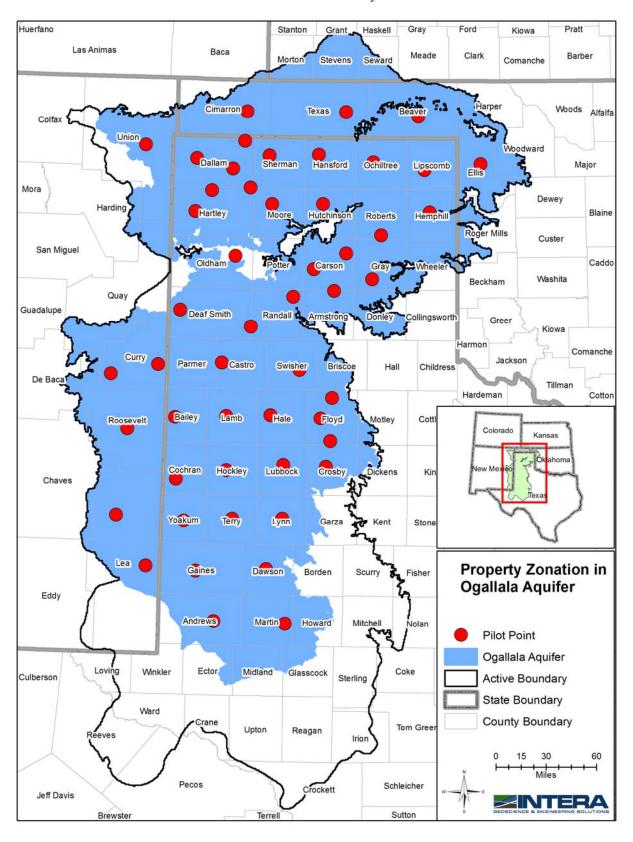


Figure 2.4.1 Locations of pilot points for property calibration zonation in the Ogallala Aquifer.

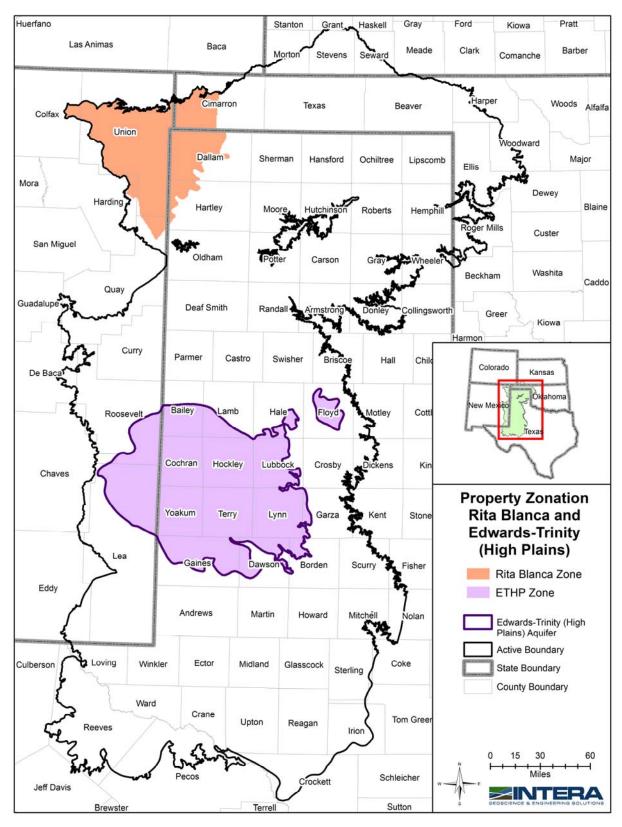


Figure 2.4.2 Property calibration zonation in the Rita Blanca and Edwards-Trinity (High Plains) aquifers.

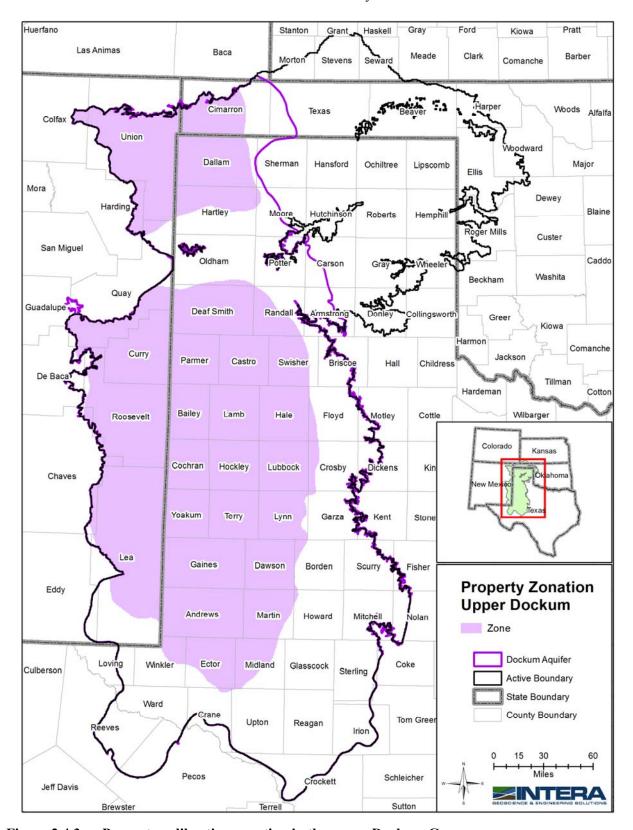


Figure 2.4.3 Property calibration zonation in the upper Dockum Group.

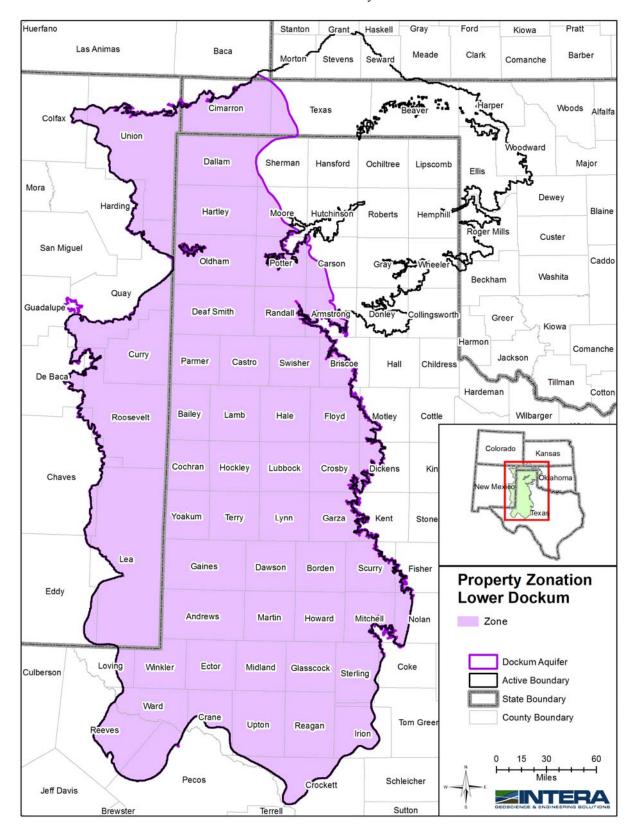


Figure 2.4.4 Property calibration zonation in the lower Dockum Group.

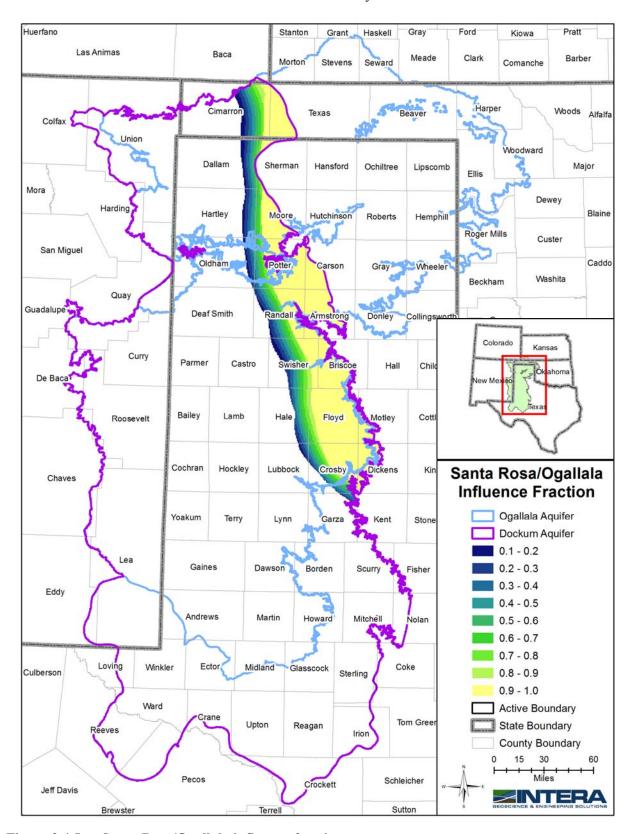


Figure 2.4.5 Santa Rosa/Ogallala influence fraction.

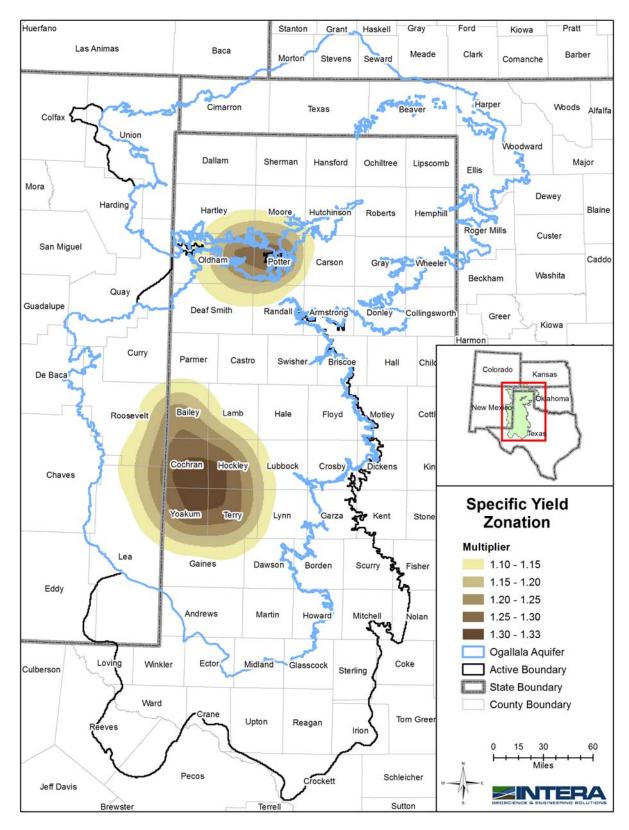


Figure 2.4.6 Specific yield calibration zone.

2.5 Well Package

The MODFLOW Well (suffix WEL) package was used to simulate groundwater production. The Well package requires specification of a model cell location and a prescribed flow for each stress period.

2.5.1 Treatment of Minimum Saturated Thickness

One feature of MODFLOW-NWT that is different from previous versions of MODFLOW is the ability for the user to specify a minimum layer thickness fraction at which production in a cell will be automatically scaled back. This simulates a decline in production that occurs in many cases when saturated thickness declines.

A minor modification was made to the source code for the Well package to change the way that this minimum thickness fraction is specified. In the original code, the minimum thickness fraction is specified as a fraction of the cell thickness. This means that for a given specified fraction, very thick cells will be curtailed sooner in absolute terms than thinner cells. For example, take two cells, one that is 500 feet thick, and one that is 50 feet thick. If the minimum fraction is set to 0.1, then pumping in the first cell will be curtailed when saturated thickness reaches 50 feet, while in the second cell pumping will be curtailed when saturated thickness reaches 5 feet, a physically unreasonable thickness for production.

The modification to the code simply allows the user to enter an absolute minimum thickness, in feet, at which pumping will be curtailed. The same variable PHIRAMP is used to represent this minimum thickness in the Well file. However, if PHIRAMP is greater than 1.0 (the maximum value for PHIRAMP in the original source code), then PHIRAMP is treated as an absolute thickness in length units, rather than as a fraction of cell thickness. If PHIRAMP is between 0 and 1, then it is treated identically as it was in the original code.

PHIRAMP was initially set to 30 feet, consistent with the estimate of when irrigation production is likely to decline significantly as stated in Brune (1969).

2.5.2 Data Sources

Two primary data sources were used in the creation of the pumping distribution. The first is a well dataset, which allows the assignment of pumping to a reported well location. The second is pumping volume estimates by water use category. These estimates were available at the county

level, as determined during the development of the conceptual model (Deeds and others, 2015). In addition, the TWDB water use survey contains a further breakdown by survey name.

The master list of well locations used in the model was created by combining all available well datasets for the study area and, as much as possible, identifying and removing duplicate well records. Wells lacking depth information were excluded since they could not be assigned to an aquifer. In addition to using any available identifying information (for example, state well number) to identify duplicates, a well could also be identified as a duplicate record if it fell within a certain distance of another well and had a similar total well depth. The additional metric requiring a matching depth means that this method likely leaves behind many duplicate well records. However, given the uncertainty in location data (some wells are only given approximate locations in drilling logs), it seemed unwise to rely completely on spatial proximity to determine duplicates.

In Texas, the following datasets were analyzed and incorporated, as appropriate, into the master well list:

- 1. Texas Water Development Board groundwater database (TWDB, 2014a). This dataset yielded 25,517 unique wells.
- 2. Submitted Drillers Reports database (TWDB, 2014b). If a well fell within 20 feet of a well in (1) and the well depth matched (within +/- 10 feet), the well was removed as a duplicate. This dataset yielded 77,815 additional unique wells.
- 3. Texas Commission on Environmental Quality Public Water Supply Database. If a well had the same state well number as a well in (1), the well was removed as a duplicate. Of the remaining wells, if one fell within 20 feet of a well in (1) or (2) and well depth matched (within +/- 10 feet), the well was also removed as a duplicate. This dataset yielded 1,440 additional unique wells.
- 4. Data received from groundwater conservation districts for the current model
 - a. High Plains Water District: If a well had the same state well number as a well in (1), the well was removed as a duplicate. Of the remaining wells, if one fell within 20 feet of a well in (1), (2), or (3) and well depth matched (within +/- 10 feet), the well was also removed as a duplicate. This dataset yielded 1,167 additional unique wells.

- b. North Plains Groundwater Conservation District: If a well had the same state well number as a well in (1), the same log number as a well in (2), or the same well number as a well in (3), the well was removed as a duplicate. Of the remaining wells, if one fell within 20 feet of a well in (1), (2), or (3) and well depth matched (within +/- 10 feet), the well was also removed as a duplicate. This dataset yielded 414 additional unique wells.
- c. Hemphill County Underground Water Conservation District: If a well fell within 20 feet of a well in (1), (2), or (3) and well depth matched (within +/- 10 feet), the well was also removed as a duplicate. This dataset yielded 367 additional unique wells.
- d. South Plains Underground Water Conservation District: If a well fell within 20 feet of a well in (1), (2), or (3) and well depth matched (within +/- 10 feet), the well was also removed as a duplicate. This dataset yielded 158 additional unique wells.
- e. Panhandle Groundwater Conservation District: If a well had the same state well number as a well in (1), the well was removed as a duplicate. Of the remaining wells, if one fell within 20 feet of a well in (1), (2), or (3) and well depth matched (within +/- 10 feet), the well was also removed as a duplicate. This dataset yielded 4,184 additional unique wells.

Outside of Texas, the following datasets were analyzed and incorporated, as appropriate, into the master well list:

- 1. United States Geological Survey National Water Information System (United States Geological Survey, 2013). This dataset yielded 9,758 additional unique wells.
- 2. Oklahoma Water Resources Board Groundwater database (Oklahoma Water Resources Board Groundwater, 2014). If a well fell within 20 feet of a well in (1) and well depth matched (within +/- 10 feet), the well was removed as a duplicate. This dataset yielded 9,666 additional unique wells.
- 3. New Mexico Office of the State Engineer wells dataset (New Mexico Office of the State Engineer, 2014). If a well fell within 20 feet of a well in (1) and well depth matched (within +/- 10 feet), the well was removed as a duplicate. This dataset yielded 18,267 additional unique wells.

Wells were assigned to aquifers based on their depth and known screen information. If no screen information was known, screen information of nearby wells of similar type was used to estimate the screen length. When screens intersected multiple aquifers, the potential production from each aquifer for that well was distributed based on transmissivity weighting.

2.5.3 Initial Construction and Well Assignment

The assignment of pumping to wells followed a basic hierarchy, as follows:

- 1. Wells with meter data were assigned the metered values. The majority of metered data was in Roberts County, where the Canadian River Municipal Water Authority has metered wells. While North Plains Groundwater Conservation District has a groundwater metering program that provides good estimates of total pumping per county, they do not record per-well metering that could be used for direct assignment.
- 2. Where possible, water use survey records with survey names were matched to similar owner names in the well database. When this assignment was made, if the well had a reported water use category it was given priority for matching with a similar water use survey water use category. Many wells did not have primary water use categories, and were assigned based on owner name only. The well owner name and water use survey name matching process was aided using a fuzzy string matching algorithm. Per-well production limits were established by aquifer, so that a single well would not be assigned more production than was plausible at the grid-cell scale. Production limits for the Ogallala Aquifer were estimated based on Hecox and others (2002), which relates initial saturated thickness to well yield. Production limits for the minor aquifers were set to 750 gallons per minute, based on records of large well productivity for the Dockum Aquifer. The number of records for wells completed only in the Rita Blanca or Edwards-Trinity (High Plains) aquifers was not sufficient for a good population sample, so the 750 gallons per minute limit was assumed adequate unless we found a reason to change it during calibration.
- 3. Reported pumping that could not be assigned to wells based on owner or survey name was considered to be "unallocated". This remaining pumping was assigned to remaining wells based on use category, when available. Wells without use categories were used to assign any remaining pumping.

Because irrigation pumping constitutes most of the pumping in the region, and the TWDB water use survey does not contain records for irrigation pumping, all of it was assigned using the "unallocated" strategy of #3. That is, irrigation pumping was assigned to wells with an irrigation use category. However, even with the large well dataset, some pumping totals exceeded the number of wells for a county available in the well database, under the estimated maximum production rates per well. When that occurred, additional locations for pumping were identified as discussed in the following section.

2.5.4 Addition of Pumping Locations

Additional pumping locations were assigned based on two strategies. First, the High Plains Water District and the Panhandle Groundwater Conservation District had both hand-digitized irrigated lands in their districts. These combined coverages are shown in Figure 2.5.1. The model grid was intersected with these coverages, and those intersected cells that did not already have allocated groundwater production were identified as potential production locations.

After the initial allocation, some wells had production rates that proved to exceed the capacity of the aquifer (that is, the saturated thickness was reduced to the minimum (30 feet) prior to the end of the simulation). For these cases, pumping was reallocated to other wells of the same category that had excess production capacity at specific wells. For a few cases, no existing well locations remained at which to apply the excess production capacity, and additional locations were identified based on remaining saturated thickness. The presence of focused groundwater production in high-yielding areas with large saturated thickness, such as the paleovalleys, is a well-established phenomenon (Scanlon and others, 2010) and the basis of this strategy.

2.5.5 Modification of Pre-1980 Pumping Totals

During the development of the conceptual model, several counties were identified where pre-1980 pumping totals appeared to significantly exceed the estimated change in volume in the aquifer, when considering specific yield and recharge. The approach to reducing pre-1980 totals was to scale all well rates by a factor. This factor was constant between 1930 and 1970, and then linearly increased from 1970 to 1980, so that the transition to 1980 volumes would be somewhat smooth. Discussion of the how the value of this factor was estimated for each of the affected counties is contained in Section 3.1.

Well package totals by county and aquifer are provided as part of the electronic submittal that accompanies this report in *geodatabase/xlsx/well_file_totals.xlsx*.

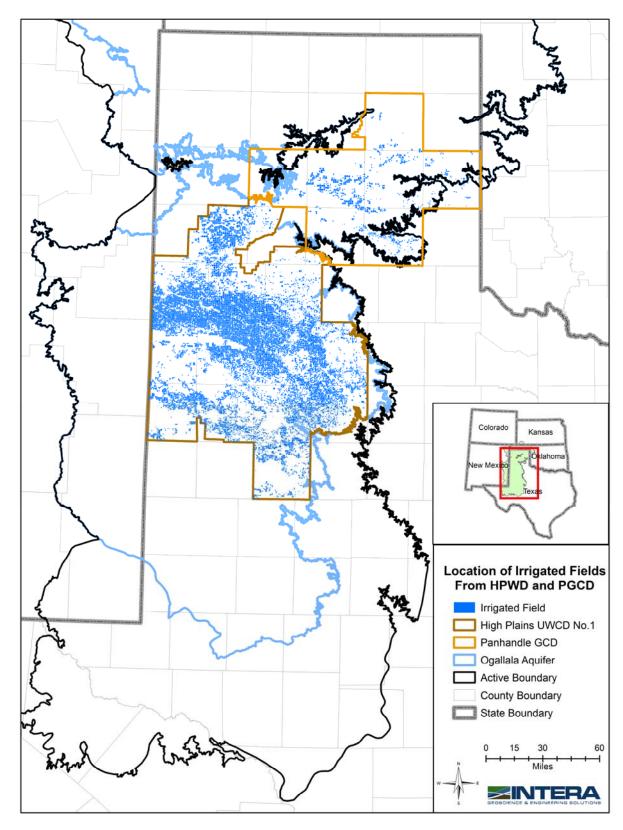


Figure 2.5.1 Locations of irrigated fields from High Plains Water District and Panhandle Groundwater Conservation District.

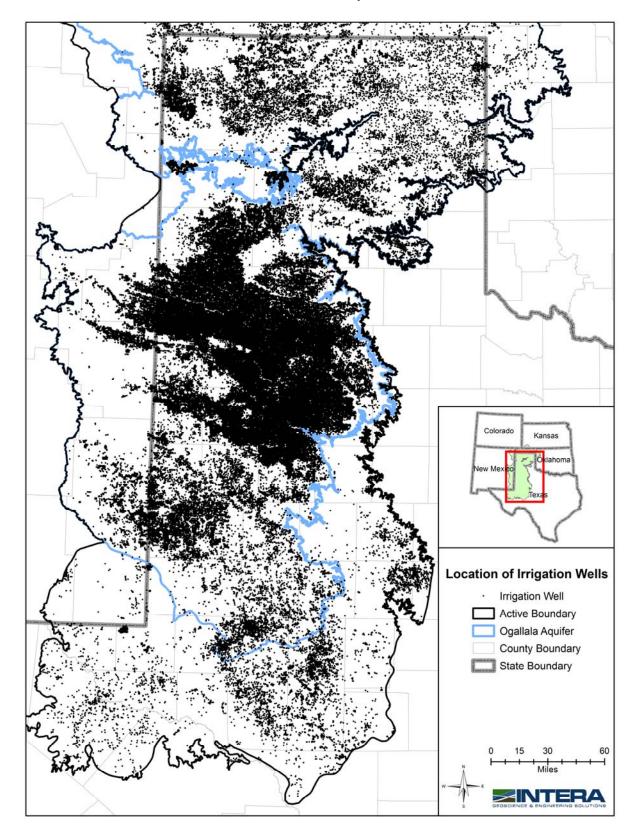


Figure 2.5.2 Irrigation well distribution used to allocate irrigation pumping.

2.6 Drain Package

The MODFLOW Drain (suffix DRN) package was used to simulate outflow from aquifer outcrops to springs, seeps, and draws. Perennial rivers and reservoirs were simulated separately using the River Package (Section 2.9). Drain cells throughout the model are shown in Figure 2.1.5. Locations of spring and draw drain cells were based on documented spring and draw locations (Deeds and others, 2015). In the case of springs, a drain cell was added in the cell that contained the estimated location of the spring. For draws, grid cells were selected based on their intersection with the polyline coverage that represented the estimated draw locations.

In addition to the springs and draws, drains cells were added along the escarpments to represent potential seepage face conditions. This approach is consistent with previous models of the Ogallala Aquifer (Blandford and others, 2008; Dutton and others, 2001). A few drain cells were also added during calibration to represent seepage in low-lying areas, as described in Section 3.1. In the Drain package file, "hpas.drn," annotation at the end of each line in the file indicates whether the drain cell represents a spring, draw, escarpment, or seepage in low-lying areas.

Outflow to drains occurs whenever the water level elevation in the aquifer is higher than the elevation of the drain, which represents the stage of the spring, seep, or draw. Elevations of the drains were based on the minimum elevation from the digital elevation model raster values contained in the model grid cell corresponding to the drain. In addition, drain elevations were constrained such that all drain elevations were a minimum of 10 feet above the bottom of the model layer in which the drains were placed. The value of 10 feet was used because it was found to be the approximate minimum that would not cause stability issues with respect to dry cells.

The resistance to the outflow to a drain can be controlled by the drain conductance. The drain conductances were initially set to 1,000 feet squared per day for all drains. This conductance is high enough that the underlying aquifer properties will provide the limiting factor for outflow. Drain location, elevation, and conductance remained constant for all stress periods.

2.7 Evapotranspiration Package

The MODFLOW Evapotranspiration (suffix EVT) package was used to simulate groundwater evapotranspiration from the model. Note the distinction between overall evapotranspiration, that may occur either in the vadose or saturated zone, and groundwater evapotranspiration, the portion that occurs in the saturated zone. Groundwater evapotranspiration occurs primarily in riparian areas. To simulate evapotranspiration that may occur in riparian areas, evapotranspiration cells were added adjacent to cells representing perennial streams (Section 2.9). Evapotranspiration cells were not added to cells that contained drain boundaries, due to the presence of a spring or draw.

The Evapotranspiration package as implemented required specification of the elevation of the evapotranspiration surface, the maximum evapotranspiration rate, and the extinction depth. If the elevation of the water table exceeds the elevation of the evapotranspiration surface, evapotranspiration occurs at the maximum rate. As the water table drops below the elevation of the evapotranspiration surface, the rate decreases linearly until the extinction depth is reached, at which point the rate is zero.

The evapotranspiration surface was set to the average ground surface elevation in a model grid cell, which is coincident with the top of the uppermost active model layer. The maximum evapotranspiration rate in the Texas portion of the model was based on the coverage provided in the TWDB study (Scanlon and others, 2005). Outside of Texas, the maximum evapotranspiration rate was based on the potential evapotranspiration from Borelli and others (1998) multiplied by the "Shrubland" vegetation coefficient of 0.44. The extinction depth was set to 14 feet, which is the rooting depth for the "Shrubland" vegetation type, common to the region. The model was only minimally sensitive to rooting depth (Section 4).

2.8 Recharge Package

The MODFLOW Recharge (suffix RCH) package was used so simulate recharge to groundwater in the model. Recharge was applied in the outcrops of the Ogallala, Rita Blanca, and Dockum aquifers. The option was used to apply recharge in the uppermost active layer. Because MODFLOW-NWT does not inactivate cells where the head falls below the layer bottom, the layer to which recharge was applied does not vary during the course of a simulation.

2.8.1 Steady-State Recharge

Steady-state recharge was based on the predevelopment distribution from Deeds and others (2015) and modified during calibration using a pilot point multiplier approach. The pilot point locations are shown in Figure 2.8.1. Recharge was set to zero in river cells (Section 2.9). Under gaining conditions, rivers represent a discharge boundary. Under losing conditions, the river package provides recharge. So adding recharge flux to these cells was not warranted.

2.8.2 Transient Recharge

Transient recharge was based primarily on the post-development recharge estimate from Deeds and others (2015). In the southern portion of the model, transient recharge increases through time due to changes in soil conditions from agricultural activities, and irrigation return flow. The transition from steady-state recharge to "present-day" recharge was based on the estimated breakthrough years shown in Figure 4.4.15 of Deeds and others (2015).

The breakthrough years were county-based, but using county boundaries to define variation in recharge was not desirable because of the abrupt (and unnatural) transition that would occur across the boundaries. Instead, a coverage of point values for the breakthrough years located at county centers was created. When year ranges were indicated in the source data, the midpoint value of the range was used in the coverage. The point coverage was then interpolated onto the model grid, and masked to include only the portion of the southern area where recharge changed from predevelopment. The resulting matrix was then used as a cell-by-cell indicator for when the transition from steady-state recharge to "present-day" recharge would occur. The transition was linearly interpolated in time over a ten-year period, starting with the breakthrough year.

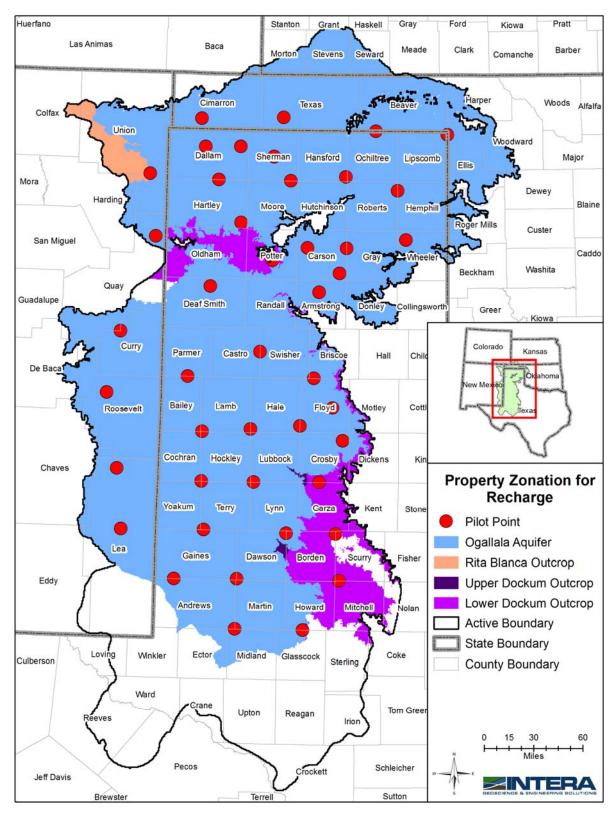


Figure 2.8.1 Locations of pilot points for recharge zones.

2.9 River Package

The MODFLOW River (suffix RIV) package was used to simulate the interaction of the aquifers with perennial streams and reservoirs. In addition, the River package was used as a general-head boundary condition in the cells representing portions of the Pecos Valley and Edwards-Trinity (Plateau) aquifers. In the River package file, "hpas.riv", annotation on each line indicates whether the cell represents a river, reservoir, or general-head boundary.

2.9.1 Streams

River cells were selected based on the intersection of the model grid with the polyline feature class representing streams from Deeds and others (2015). River cells were placed only in outcrop cells. The stage was set based on the minimum land surface elevation in the grid cell, determined from the 10-meter digital elevation model. The stage was further constrained such that the height between the stage and the model cell bottom was a minimum of 10 feet. As with the drains, the 10 foot minimum was used to improve model stability with respect to cells drying out. The river bottom was set at 5 feet below the river stage. The 5 foot difference between the river stage and the river bottom was an approximation of river depth, and is used by MODFLOW in the calculation of river leakage rate to the aquifer when aquifer heads drop below the river bottom.

The conductance for each river cell was scaled by the length of the polyline feature that intersected the cell. For example, a cell with only a small corner intersected by the polyline feature would have a lower conductance than a cell where the polyline runs diagonally from corner to corner, because the smaller intersection indicates that the cell represents less river length and therefore should have less interaction with the aquifer. The initial riverbed conductance was set based on a hydraulic conductivity of 1.0 feet per day multiplied by the intersecting length. The overall conductance was adjusted during calibration.

2.9.2 Reservoirs

River cells representing reservoirs were selected by intersecting the model grid with the polygon feature class representing reservoirs from Deeds and others (2015). River cells representing reservoirs were placed only in outcrop cells. The stage of the reservoirs was based on reported elevations, when available, and on 10-meter digital elevation model, when the stage was not available. Because the number of reservoirs in the model area increased throughout the transient

period, each reservoir was made active in the reported year of impoundment. The conductance of each river cell representing a reservoir was initially set to 1,000 feet squared per day.

2.9.3 Head-Dependent Flow Boundaries

As noted previously, while portions of the Pecos Valley and Edwards-Trinity (Plateau) aquifers are represented in the model, the model is not intended to be used as a planning tool for these aquifers. An existing Edwards-Trinity (Plateau) and Pecos Valley aquifers groundwater availability model (Hutchinson and others, 2011) was used to estimate head elevations through time that were then applied as a stage to the River package in those cells. The difference between the river stage and river bottom was set to 5 feet. Because these cells are not actually coincident with rivers, the 5 foot value does not have physical meaning, but is used by MODFLOW in the calculation of flow to the aquifer when aquifer heads drop below the river bottom. The conductance in these cells was set to 100 feet squared per day. Examination of cross formational flow during calibration indicated that vertical conductance limited the flux between the Dockum Aquifer and the Edwards-Trinity (Plateau) and Pecos Valley aquifers.

The River package was used rather than the General-Head-Boundary package (Harbaugh and others, 2000) to limit the magnitude of simulated inflow from this boundary that could occur as water levels decrease due to pumping in underlying aquifers. While the General-Head-Boundary package limits flow based on conductance, it does not limit flow based on increased downward gradients. In previous models, this has led to difficulties in simulating the effects of maximized pumping in these underlying aquifers. In contrast to the General-Head-Boundary package, the River package limits the downward gradient while also limiting flow via the conductance. This approach avoids increased flow due to increased gradients when maximal pumping is applied to the underlying aquifers.

2.10 Output Control File

The MODFLOW Output Control file specifies when, during the simulation, water level, drawdown, and water budget information are saved to disk. The Output Control file was set up to save these results at the end of each stress period (that is, at the end of the pre-development period and annually between 1930 and 2012).

2.11 Solver

The MODFLOW-NWT Newton-Raphson solver parameters are entered in the NWT file. The head closure criteria was set to 0.01 feet, and the flux closure criteria was set to 1,000 feet cubed per day. Trial-and-error showed that convergence was most likely achieved when the COMPLEX option was specified, which triggers the use of a set of parameters defined by the code authors for highly nonlinear problems. Convergence was also somewhat sensitive to the value of MINTHICK, which was eventually set to 0.00001.

This page intentionally left blank

3.0 Model Calibration and Results

Once a model has been designed and constructed, it is usually calibrated to match observed characteristics of the aquifer. Typically these calibration targets consist of observed water levels in wells, but can also include discharge to surface water or other processes. The calibration process involves adjusting the hydraulic properties and flux boundaries of the model, within predefined constraints, in order that simulated output metrics better match observed metrics. This section describes that process of calibration, and presents the simulated results in terms of heads and fluxes. In addition, the simulated water budgets, which account for all of the water flowing in and out of an aquifer, are presented.

3.1 Calibration Procedure

3.1.1 Targets

The steady-state model represents the condition prior to significant development of the aquifer system, which was considered to be prior to 1930. Selection of water-level measurements representative of predevelopment conditions is a challenge for most groundwater modeling studies and was discussed in Section 4.3 of the conceptual model (Deeds and others, 2015). There were 1,097 steady-state targets for all of the aquifers combined. These totals are in contrast to the 16,214 well locations and 183,266 measurements in the transient target dataset. However, because the steady-state simulation sets the starting heads for the transient simulation, early time transient targets have a strong influence on the steady-state calibration, which adds additional constraint to the steady-state calibration. The locations of the targets in the various aquifers are presented in Section 3.2, when discussing the average head residuals.

Some estimates of spring flow and stream gain/loss were available from the conceptual model development. However, because these measurements were over very short time periods (the spring flow measurements were single estimates, and the stream gain/loss estimates were from synoptic studies of 1 or 2 days), they were not considered to be quantitative targets for transient calibration, but rather qualitative indicators of the presence of recharge or discharge at surface locations.

3.1.2 Calibration Metrics

Traditional calibration measures (Anderson and Woessner, 1992), such as the mean error and the mean absolute error, quantify the average error in the calibration process. The mean error is the mean of the differences between measured hydraulic heads and simulated hydraulic heads:

$$meanerror = \frac{1}{n} \sum_{i=1}^{n} (h_m - h_s)_i$$
 (3.1.1)

where

 h_m = measured hydraulic head (feet above mean sea level)

 h_s = simulated hydraulic head (feet above mean sea level)

n = number of calibration measurements

The mean absolute error is the mean of the absolute value of the differences between simulated hydraulic heads and measured hydraulic heads:

$$mean absolute error = \frac{1}{n} \sum_{i=1}^{n} \left| (h_m - h_s)_i \right|$$
 (3.1.2)

The difference between a measured hydraulic head and a simulated hydraulic head is termed a residual.

The mean absolute error was used as the basic calibration metric for hydraulic heads. A typical calibration criterion for hydraulic heads is a mean absolute error that is less than or equal to 10 percent of the observed hydraulic head range in the aquifer being simulated. However, because of the wide variation in topography in the active model area and the corresponding large vertical range over which measured heads vary, this relative criterion was not considered to be sufficient for this modeling effort. The mean absolute errors from previous groundwater availability models of the aquifers were also reviewed to provide an approximate criterion during calibration.

The mean absolute error is useful for describing model error on an average basis but, as a single measure, does not provide insight into spatial trends in the distribution of residuals. Examination of the distribution of residuals is necessary to determine if they are randomly distributed over the model grid and not spatially biased. Post plots of hydraulic head residuals for both the steady-state and transient portions of the model were used to check for spatial bias. These plots indicate the magnitude and direction of the differences between observed and simulated hydraulic heads.

Finally, crossplots of simulated versus observed hydraulic heads and residual versus observed hydraulic heads were used to determine if bias varies with the magnitude of the observed hydraulic heads.

3.1.3 Calibration of Hydraulic Properties

Section 2.4 includes a description of the zones used when adjusting hydraulic properties during calibration. The parameter estimation software, PEST, was used to assist in the calibration of hydraulic properties. Of the 51 pilot point multipliers used in adjusting the Ogallala Aquifer horizontal hydraulic conductivity, 47 were constrained to vary within a range from 0.3 to 3, and 4 were constrained to a range from 0.3 to 10. The increase in the range for four of the pilot points was to help lower steady-state water levels in a portion of Dallam and Sherman counties. The initial value of every pilot point was 1.0, so if PEST did not adjust the pilot point value, then the resulting conductivity field near that pilot point would be identical to the initial conductivity field created during conceptual model development.

The remaining conductivities were adjusted through the aquifer-wide multipliers and depth-decay coefficients. Table 3.1.1 shows a summary of the initial and calibrated hydraulic properties for each of the aquifers. The overall trend for adjustment of conductivities was one of decrease from initial, with the exception of an increase for the Ogallala Aquifer horizontal hydraulic conductivity. Figures 3.1.1 through 3.1.4 show the calibrated horizontal hydraulic conductivities for the aquifers represented by the four model layers. The average horizontal conductivity in the Ogallala Aquifer was increased from 18 to 33 feet per day during calibration. However, because a multiplier matrix was constrained within a reasonable range, the relative distribution of hydraulic conductivity, with the expression of the paleochannels and other features, was maintained.

The Rita Blanca Aquifer horizontal hydraulic conductivity was decreased significantly from the initial estimate. This decrease was due to the original estimate being based on the Ogallala Aquifer hydraulic conductivity. Calibration indicated that the higher clay percentage of the Rita Blanca Aquifer contributes to a lower horizontal hydraulic conductivity in that unit. In fact, a higher horizontal hydraulic conductivity in the Rita Blanca Aquifer was found to cause dewatering of the overlying Ogallala Aquifer. The horizontal hydraulic conductivity in the Edwards-Trinity (High Plains) Aquifer was also decreased from the initial estimate during

calibration. As with the Rita Blanca Aquifer, this decrease was necessary to sustain adequate heads in the Ogallala Aquifer in the western part of the model. Similar to the previous Dockum Aquifer modeling effort (Ewing and others, 2008), the upper and lower Dockum Aquifer horizontal hydraulic conductivities were decreased in calibration. For the lower Dockum Aquifer, the conductivities were only decreased in the deeper areas based on the depth decay approach, that is, the conductivities in the shallower areas are nearly identical to the initial estimated Dockum Aquifer hydraulic conductivity. The final calibrated distribution for the lower Dockum Aquifer shows the expected decreasing trend in conductivity in the center of the basin, where water quality degrades significantly.

Figures 3.1.5 through 3.1.8 show the calibrated vertical hydraulic conductivities for the aquifers represented by the four model layers. The vertical conductivity of the Ogallala Aquifer was not sensitive in calibration, since the vertical conductivities of the underlying units were all significantly lower. Because the overall vertical conductance between two layers is typically calculated as a harmonic mean, the lower of the two values will tend to dominate the calculation. While the Rita Blanca Aquifer vertical hydraulic conductivity remained at its initial value, the Edwards-Trinity (High Plains) Aquifer vertical conductivity was decreased somewhat, as were the upper and lower Dockum Aquifer vertical conductivities. In all cases, a reasonable overall vertical to horizontal anisotropy ratio was maintained, of between 0.01 and 0.0001.

Section 2.4.2 discussed the property zone for the estimated region where the Ogallala Aquifer is in close contact with the Santa Rosa Formation sandstone that exists at the bottom of the Dockum Aquifer. Sensitivity analyses were performed with the vertical conductivity of this zone, to determine whether calibration could be improved by increasing the vertical conductivity. Section 3.4 shows some of the results of this sensitivity analysis. The results of this analysis indicated that no special approach was required for parameterizing the vertical conductivity of this zone. The basic approach for estimating the vertical conductivity of the lower Dockum Aquifer was driven by clay percentage in the unit and depth of burial. The conductance term calculated by MODFLOW between two layers is dependent on vertical conductivity of the two layers and layer thickness. Because the lower Dockum Aquifer in this zone is relatively sandy, is shallow, and thin compared to areas more basinward, the vertical connection calculated from the

basic approach results in a vertical conductance that creates satisfactory calibration to heads in the area.

Changes in specific storage from initial estimates were not found to improve calibration results significantly, so the calibrated specific storage values are identical to the initial estimates. The specific yield of the Ogallala Aquifer was increased in an area the size of approximately six counties, mostly in Potter County in the north, and Bailey, Cochran, Hockley, Yoakum and Terry counties in the south. The specific yield was increased in order to help maintain saturated thickness in those counties in the transient simulation. The final distribution of specific yield, as shown in Figure 3.1.9, remained similar in appearance to the initial distribution, with a slight increase in the mean from 0.163 to 0.171. Figures 3.1.10 through 3.1.12 show the calibrated storativity for the Rita Blanca and Edwards-Trinity (High Plains) aquifers, the upper Dockum Aquifer, and the lower Dockum Aquifer respectively.

3.1.4 Calibration of Recharge

Section 2.8 describes the distribution of pilot points used in generating the multiplier matrix for calibrating recharge. The multiplier pilot points were constrained to a range of 0.3 to 3. Figure 3.1.13 shows the calibrated steady-state recharge distribution. The mean steady-state recharge increased slightly from 0.25 inches per year to 0.30 inches per year. The calibrated recharge distribution shows an increase in recharge to the northeast, which is consistent with higher precipitation and an increased number of surface water features common to counties such as Hemphill. The calibrated steady-state recharge was propagated through the transient period. In other words, the initial variation in recharge from steady-state to transient was maintained for the calibrated case. Figure 3.1.14 shows the calibrated transient recharge distribution for year 2012. The model sensitivity to recharge was dominated by the steady-state stress period, where heads at the end of the steady-state stress period were very sensitive to the recharge rate. The model was much less sensitive to changes in recharge during the transient stress periods.

The decrease in horizontal and vertical conductivity in the upper Dockum Aquifer outcrop resulted in significant flooding (outcrop heads far above layer top) at the initial recharge rate. The calibrated upper Dockum Aquifer recharge rate was decreased by a factor of 0.1. The calibrated lower Dockum Aquifer recharge rate was kept at the initial rate.

A final change to recharge included addition of focused recharge near the City of Lubbock. The rate and location was based on the approach in Blandford and others (2008). The only change from their approach was to add the flux to the Recharge package, rather than the Well package, and to continue the final rate of approximately 12,000 acre-feet per year through year 2012. The 12,000 acre-feet per year rate was based on an earlier study (Daniel B. Stephens & Associates, 2007). The additional recharge does improve simulation of some of the rising hydrographs near the City of Lubbock.

3.1.5 Calibration of Head Boundary Conductances

The conductances of the head boundaries, including those in the Drain and River packages were not changed from initial to final calibration. As discussed in Section 3.1.1, the spring and stream gain/loss estimates were not considered to be quantitative targets, so conductances were not adjusted locally to attempt to match simulated values to the estimates. For the steady-state model, recharge is balanced by discharge to rivers, drains, and evapotranspiration. We did compare the spring flows in steady-state to the range of measured rates for springs in the region, to ensure that none of the rates were unrealistic. For example, if many springs were simulated to flow at a constant 10,000 gallons per minute, this would be considered high compared to the range of recorded values (Deeds and others, 2015: Table 4.5.5), where the very highest reported flows (not average, but maximum) are in the 1,000 to 2,000 gallons per minute range. The highest simulated springflows were about 1,000 gallons per minute, so we considered that to be within the realistic range.

The other component of discharge with a conductance parameter was rivers. For rivers, we compared the fraction of discharge to rivers to the fraction of discharge to evapotranspiration and drains (springs, draws, and seepage in low-lying areas). The following values are expressed as a percent of recharge in the Ogallala Aquifer. For the steady-state model, 33 percent of net discharge was to rivers, while drains were 31 percent and evapotranspiration accounted for 32 percent. While we did not have good prior estimates of what these percents should be, their relatively similar magnitude was considered reasonable, since each of these components is recognized in the conceptual model as an important component of discharge in the system.

In the transient model, we checked to make sure that as reservoirs came online, they did not constitute a large portion of the water balance, since reservoirs represent a small relative area

compared to other surface water components. For example, in 1980 reservoirs contribute less than 1 percent of net inflow to the water balance.

3.1.6 Reduction in Pumping

The approach for reduction of pre-1980 pumping in the Ogallala Aquifer is discussed in Section 2.5.5. This reduction was only applied to the Ogallala Aquifer, not to the minor aquifers. Pre-1980 pumping was reduced from initial estimates based both on the results of the volume change analysis from the conceptual model development, and the response of the model during calibration. The total annual pumping values by county and aquifer are included in Appendix C.

Two characteristics of model performance were used as indicators of excessive pumping in a county. The first indicator was a large difference between the amount of pumping that was in the WEL file and the amount of pumping that was actually occurring in the model. When the NWT Well package curtailed a significant amount of the pumping compared to the input quantity, the pumping in the county was further analyzed. This mismatch will be termed "deficit pumping" for the purposes of this discussion.

As was described in Section 2.5.5, iterative attempts were made to redistribute deficit pumping from these wells that had reached the saturated thickness limit. For some counties, this redistribution was sufficient so that the deficit pumping was reduced to some small fraction of the county total. The initial goal was that post-1980 deficit pumping be less than 10 percent of post-1980 pumping overall. After that goal was achieved, the deficit pumping in individual years was verified to be less than approximately 10 percent of the total. This was achieved for most individual years in the Texas counties, with the exception of a few years where pumping estimates spike dramatically before returning to typical levels in the following year. Outside Texas, where the pumping estimates are more uncertain, the 10 percent constraint was relaxed somewhat. No Texas counties with significant pumping in the Ogallala (that is, over 10,000 acre-feet per year) had post-1980 deficit pumping that exceeded 10 percent of the total. The deficit pumping in all counties for all years is provided as part of the electronic submission that accompanies this report, and can be found at *geodatabase/xlsx/deficit pumping.xlsx*.

After deficit pumping was managed through reduction in pre-1980 pumping and spatial reallocation, the mean error for affected counties was examined. A large positive mean error (where simulated heads are much lower than measured heads) that increased through time was

the second indicator of excess pumping. Mean error was examined through time, starting in the 1940s (if measurements were available), to ensure that the large positive mean error was not due to early time calibration (that is, that steady-state heads were far too low).

This process was not completed for every county to try to achieve a perfect statistical result at the local scale, but was rather completed for those few counties that stood out with large, late-time bias in heads, that would affect the model's use as a planning tool.

Table 3.1.2 shows the fraction of initial pumping that was used for counties where pumping was adjusted. The maximum reduction involved a pre-1980 factor of 30 percent for Bailey County. Bailey still showed a mean error of more than 30 feet in the last decade, even with this decrease in pre-1980 pumping. Therefore, Bailey County was the one county where post-1980 pumping was also decreased in the input files (not just curtailed by NWT as deficit pumping). The decrease was 10 percent, which is identical to the reduction that was applied to all counties for later years in the previous Southern Ogallala Aquifer groundwater availability model (Blandford and others, 2008). The decrease in pumping and increase in specific yield in Bailey County described in Section 2.4 reduced the mean error in Bailey County from over 50 feet to between 20 and 30 feet.

After pumping rates were generally established, and sufficient statistical model calibration had been achieved through parameter estimation, hydrograph trends were examined versus observed trends. In some cases, especially in the minor aquifers, obvious spatial mismatches occurred between the location of drawdown trends and the location of pumping within a county. The hydrograph trends were used in some cases to guide the location of pumping within a county, while still maintaining county totals by use category. The goal of this exercise was not to create perfect hydrograph fits in all cases, but rather to provide a check of whether hydrograph trends could be improved under the existing hydraulic property calibration, with the stated constraint that pumping totals by county and category be maintained.

 Table 3.1.1
 Table of initial and calibrated statistics for hydraulic properties.

Parameter	Aquifer	Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
		Min	Min	Max	Max	Mean	Mean	Geometric Mean	Geometric Mean	Median	Median
Kh	Ogallala Aquifer	1.00E+00	4.22E-01	5.27E+02	5.50E+02	1.83E+01	3.31E+01	1.07E+01	1.96E+01	1.03E+01	2.03E+01
Kh	Rita Blanca	1.00E+00	2.45E-02	5.36E+01	1.31E+00	1.56E+01	3.82E-01	1.31E+01	3.22E-01	1.30E+01	3.19E-01
Kh	Edwards-Trinity (High Plains)	1.17E-01	2.55E-01	1.06E+01	2.30E+01	5.57E+00	1.21E+01	4.79E+00	1.04E+01	4.66E+00	1.01E+01
Kh	Edwards-Trinity (Plateau)	9.41E+00	9.41E-01	8.11E+01	8.11E+00	4.16E+01	4.16E+00	3.78E+01	3.78E+00	3.83E+01	3.83E+00
Kh	Upper Dockum	2.47E-01	1.00E-03	5.51E+00	3.43E-02	1.47E+00	7.11E-03	1.37E+00	6.03E-03	1.40E+00	6.05E-03
Kh	Lower Dockum	6.74E-02	1.00E-03	2.23E+01	2.23E+01	1.97E+00	4.45E-01	1.26E+00	3.95E-02	1.34E+00	4.24E-02
Kv	Ogallala Aquifer	6.47E-04	6.47E-04	9.98E-03	9.98E-03	1.72E-03	1.72E-03	1.44E-03	1.44E-03	1.25E-03	1.25E-03
Kv	Rita Blanca	5.87E-04	5.87E-04	1.05E-03	1.05E-03	7.53E-04	7.53E-04	7.47E-04	7.47E-04	7.31E-04	7.31E-04
Kv	Edwards-Trinity (High Plains)	1.12E-03	1.17E-05	1.00E-01	1.04E-03	3.39E-02	3.54E-04	6.70E-03	7.00E-05	2.04E-03	2.13E-05
Kv	Edwards-Trinity (Plateau)	9.41E-03	9.41E-05	8.11E-02	8.11E-04	4.16E-02	4.16E-04	3.78E-02	3.78E-04	3.83E-02	3.83E-04
Kv	Upper Dockum	5.09E-04	1.00E-05	1.03E-03	7.94E-05	6.62E-04	4.09E-05	6.56E-04	4.03E-05	6.27E-04	3.99E-05
Kv	Lower Dockum	5.12E-04	3.14E-05	2.17E-03	1.74E-04	7.45E-04	5.59E-05	7.25E-04	5.37E-05	6.88E-04	5.08E-05
Ss	Ogallala Aquifer	9.57E-06	9.57E-06	3.33E-04	3.33E-04	7.00E-05	7.00E-05	5.15E-05	5.15E-05	4.93E-05	4.93E-05
Ss	Rita Blanca Outcrop	5.14E-06	5.14E-06	6.65E-06	6.65E-06	5.76E-06	5.76E-06	5.74E-06	5.74E-06	5.66E-06	5.66E-06
Ss	Rita Blanca Downdip	5.18E-06	5.18E-06	6.83E-06	6.83E-06	6.10E-06	6.10E-06	6.09E-06	6.09E-06	6.12E-06	6.12E-06
Ss	Edwards-Trinity (High Plains)	3.00E-06	3.00E-06	3.00E-06	3.00E-06						
Ss	Edwards-Trinity (Plateau) Outcrop	5.03E-07	5.03E-07	2.40E-03	2.40E-03	1.32E-04	1.32E-04	7.99E-05	7.99E-05	6.89E-05	6.89E-05
Ss	Edwards-Trinity (Plateau) Downdip	6.85E-06	6.85E-06	9.03E-04	9.03E-04	8.12E-05	8.12E-05	4.73E-05	4.73E-05	3.29E-05	3.29E-05
Ss	Upper Dockum Outcrop	5.62E-06	5.62E-06	7.25E-06	7.25E-06	6.75E-06	6.75E-06	6.74E-06	6.74E-06	6.80E-06	6.80E-06

Table 3.1.1, continued

		Initial	Final	Initial	Final	Initial	Final	Initial	Final	Initial	Final
Parameter	Aquifer	Min	Min	Max	Max	Mean	Mean	Geometric Mean	Geometric Mean	Median	Median
Ss	Upper Dockum Downdip	5.18E-06	5.18E-06	7.42E-06	7.42E-06	6.45E-06	6.45E-06	6.44E-06	6.44E-06	6.58E-06	6.58E-06
Ss	Lower Dockum Outcrop	4.49E-06	4.49E-06	6.87E-06	6.87E-06	6.38E-06	6.38E-06	6.37E-06	6.37E-06	6.40E-06	6.40E-06
Sy	Ogallala Aquifer	0.03	0.03	0.27	0.27	0.17	0.17	0.16	0.17	0.16	0.17
Sy	Rita Blanca Outcrop	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Sy	Rita Blanca Downdip	0.05	0.05	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Sy	Edwards-Trinity (High Plains)	0.05	0.05	0.14	0.14	0.09	0.09	0.09	0.09	0.09	0.09
Sy	Edwards-Trinity (Plateau) Outcrop	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Sy	Edwards-Trinity (Plateau) Downdip	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
Sy	Upper Dockum Outcrop	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Sy	Upper Dockum Downdip	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Sy	Lower Dockum Outcrop	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15

Shading indicates that values were not changed from their initial estimates during calibration.

Kh = horizontal hydraulic conductivity Kv = vertical hydraulic conductivity

Ss = specific storage

Sy = specific yield

Table 3.1.2 Fraction of initial pre-1980 Ogallala Aquifer pumping by county.

County	Pre-1980 Fraction	Percent Reduction
Bailey	0.30	70%
Briscoe	0.75	25%
Castro	0.39	61%
Cochran	0.36	64%
Crosby	0.55	45%
Deaf Smith	0.43	57%
Hale	0.42	58%
Hockley	0.33	67%
Lamb	0.37	63%
Lubbock	0.40	60%
Midland	0.83	17%
Moore	0.80	20%
Oldham	0.48	52%
Parmer	0.38	62%
Potter	0.66	34%
Randall	0.56	44%
Swisher	0.43	57%
Terry	0.38	62%
Yoakum	0.42	58%

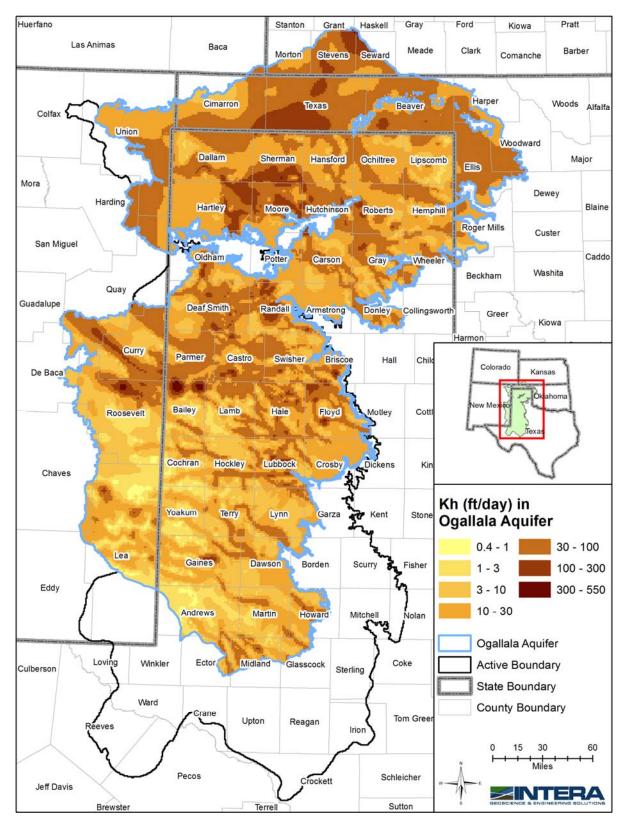


Figure 3.1.1 Calibrated horizontal hydraulic conductivity in feet per day in the Ogallala Aquifer.

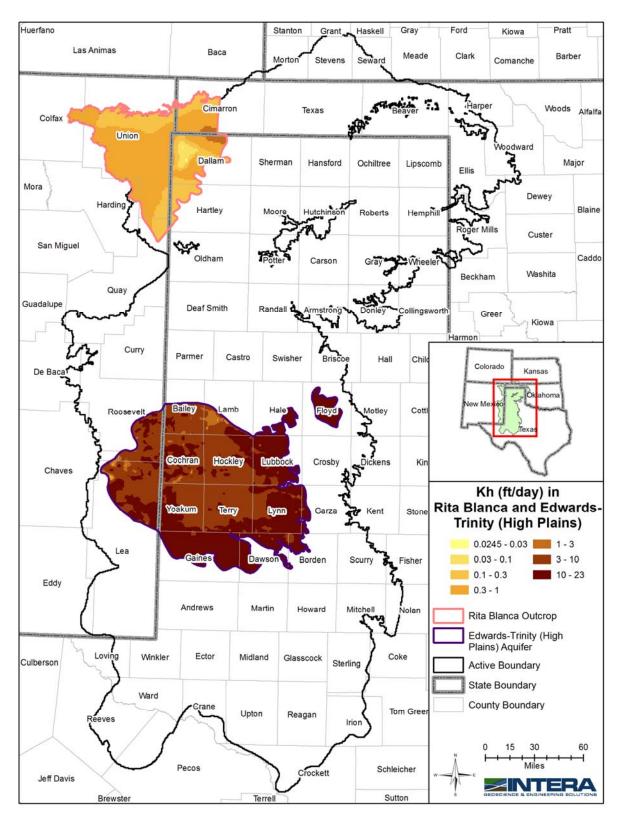


Figure 3.1.2 Calibrated horizontal hydraulic conductivity in feet per day in the Rita Blanca and Edwards-Trinity (High Plains) aquifers.

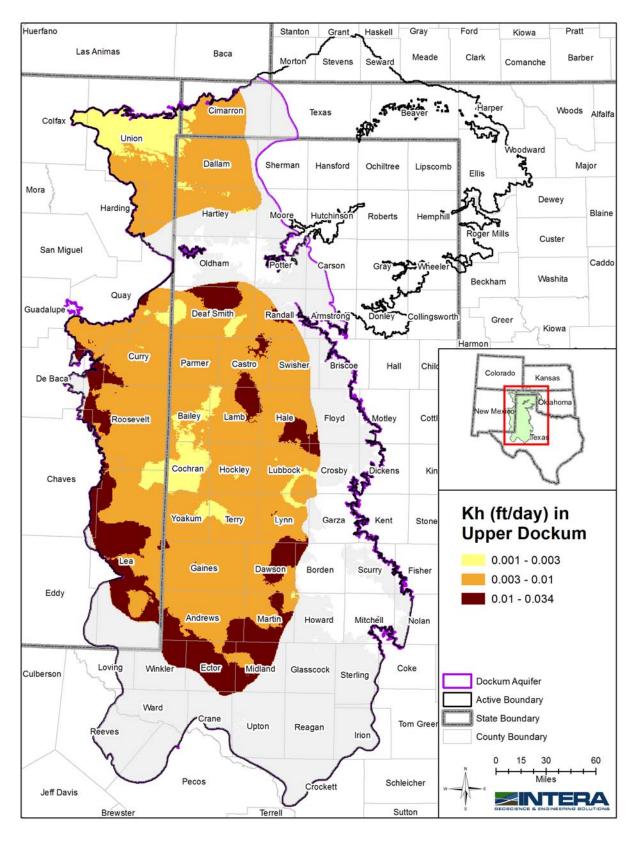


Figure 3.1.3 Calibrated horizontal hydraulic conductivity in feet per day in the upper Dockum Aquifer.

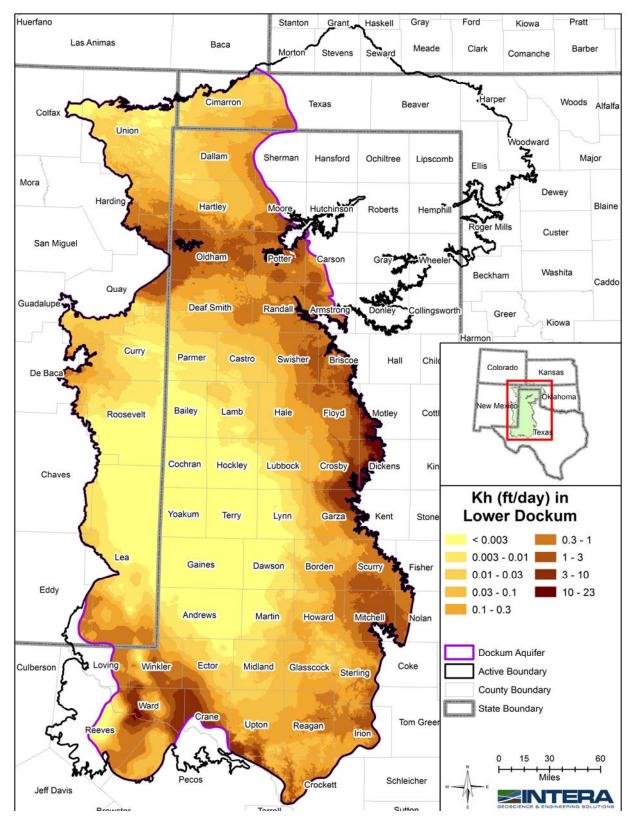


Figure 3.1.4 Calibrated horizontal hydraulic conductivity in feet per day in the lower Dockum Aquifer.

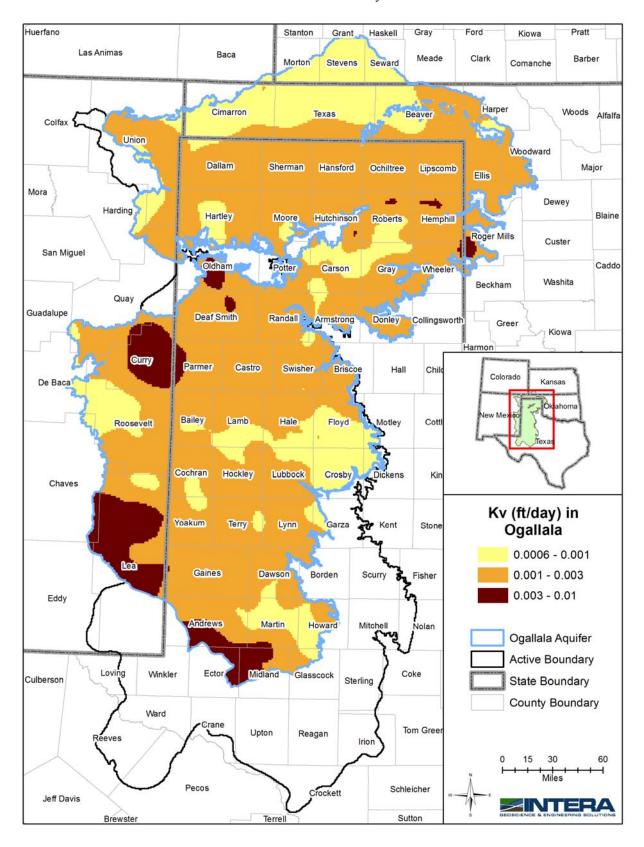


Figure 3.1.5 Calibrated vertical hydraulic conductivity in feet per day in the Ogallala Aquifer.

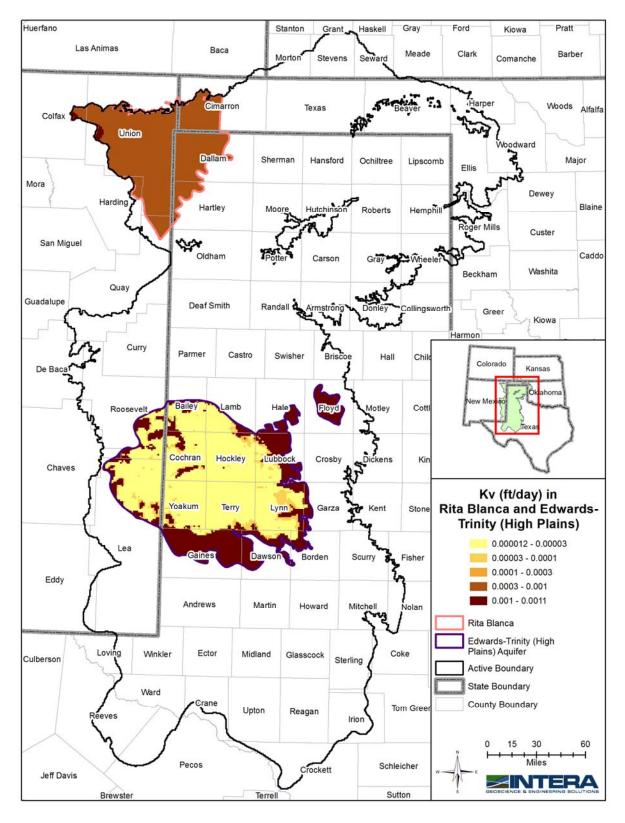


Figure 3.1.6 Calibrated vertical hydraulic conductivity in feet per day in the Rita Blanca and Edwards-Trinity (High Plains) aquifers.

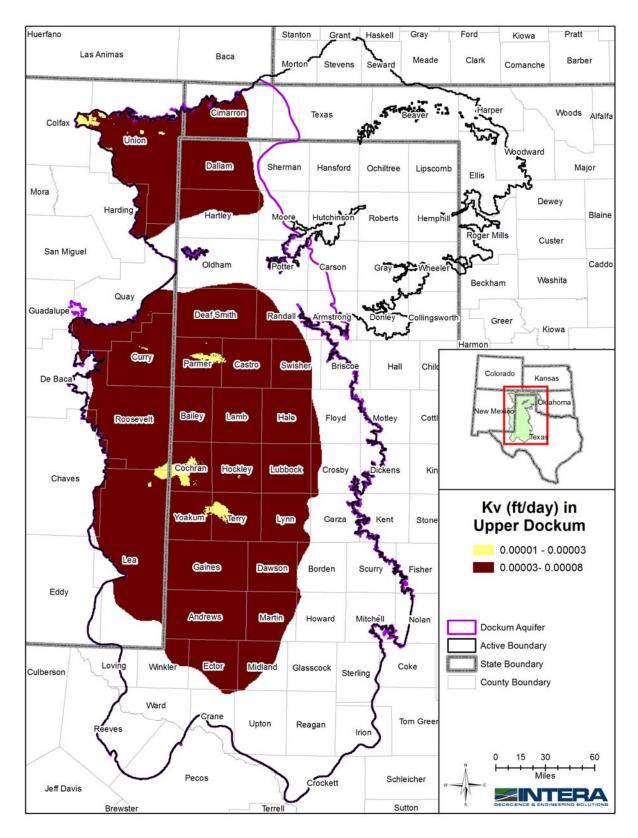


Figure 3.1.7 Calibrated vertical hydraulic conductivity in feet per day in the upper Dockum Aquifer.

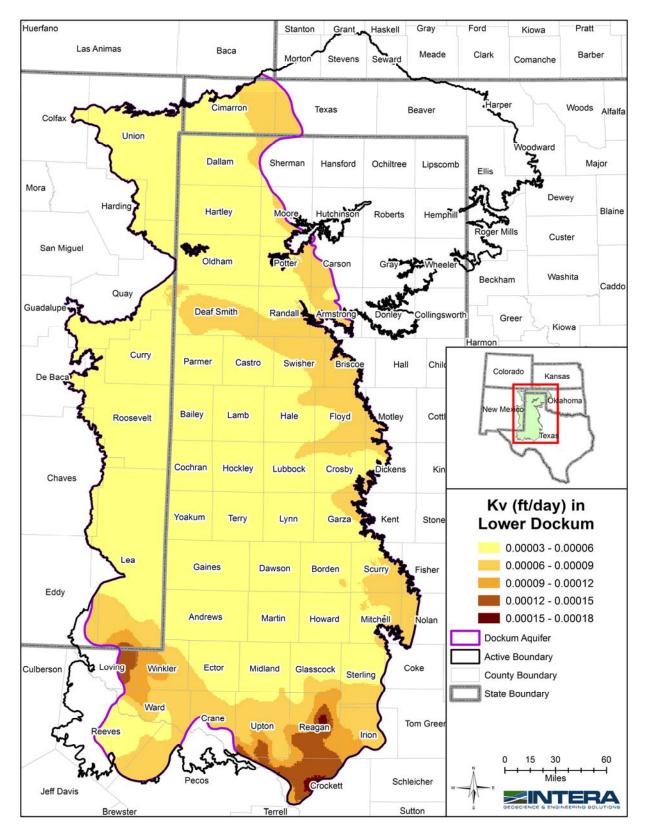


Figure 3.1.8 Calibrated vertical hydraulic conductivity in feet per day in the lower Dockum Aquifer.

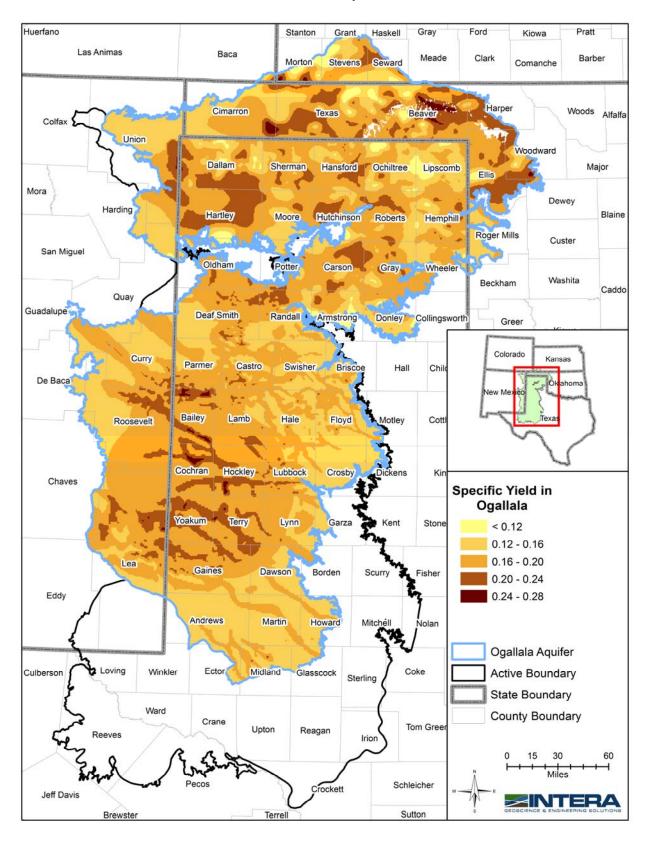


Figure 3.1.9 Calibrated specific yield in the Ogallala Aquifer.

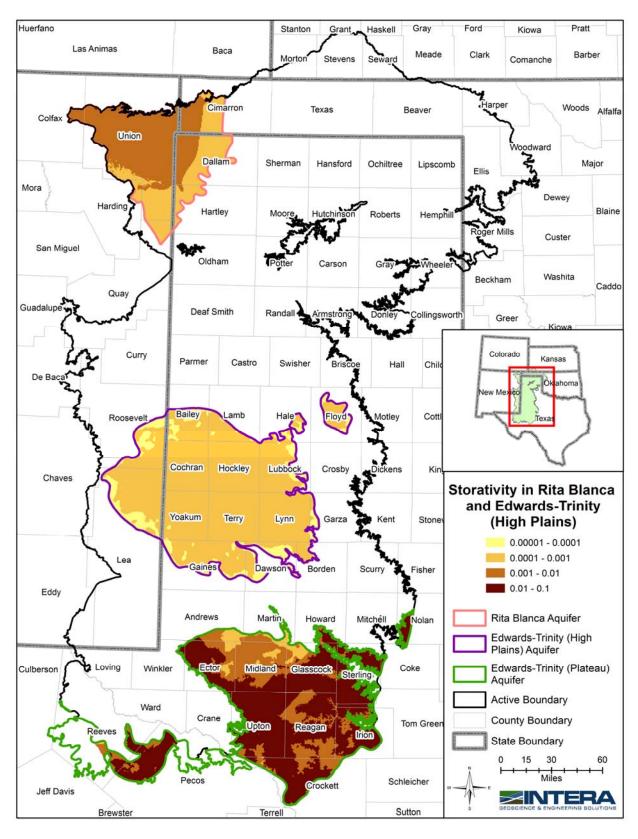


Figure 3.1.10 Calibrated storativity in the Rita Blanca and Edwards-Trinity (High Plains) aquifers.

Figure 3.1.11 Calibrated storativity in the upper Dockum Aquifer.

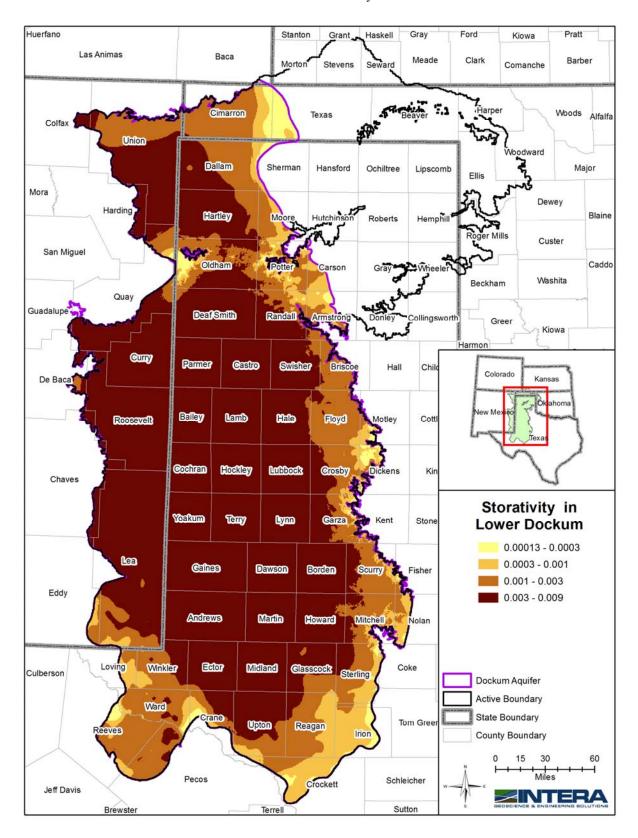


Figure 3.1.12 Calibrated storativity in the lower Dockum Aquifer.

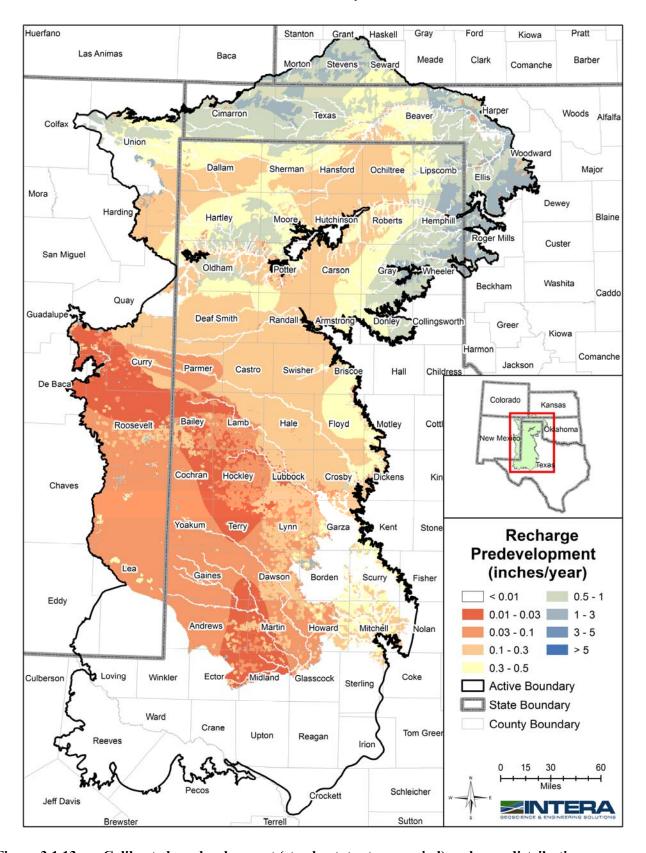


Figure 3.1.13 Calibrated predevelopment (steady-state stress period) recharge distribution.

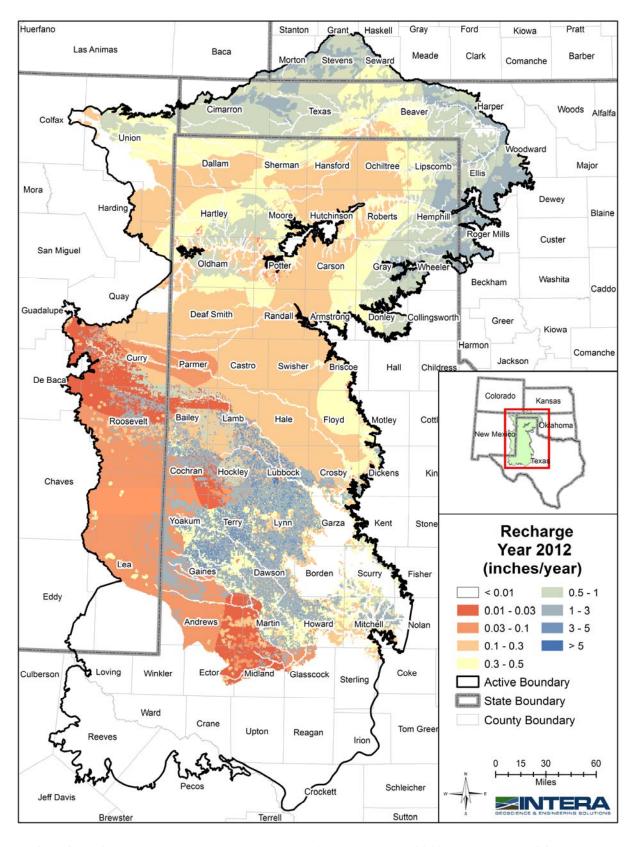


Figure 3.1.14 Calibrated transient recharge distribution in year 2012 (stress period 84).

This page intentionally left blank.

3.2 Model Simulated Versus Measured Heads

This section describes the results of the model calibration to observed heads, both spatially and temporally. The calibration will be discussed first in terms of summary statistics and crossplots, followed by a discussion of trends in head residuals, both distribution about the mean and spatial distribution. This will be followed by a presentation of simulated head surfaces, simulated drawdown, and change in saturated thickness, where appropriate.

3.2.1 Summary Statistics and Crossplots

Table 3.2.1 shows the head calibration statistics by aquifer for the steady-state stress period (representing predevelopment), and two transient time ranges, 1930 to 1979, and 1980 to 2012. The two transient periods differ in length (50 years versus 33 years), but have similar magnitudes of samples, with the latter period having more as the result of sampling density increasing with time for the study area. The summary statistics can be considered along with Figures 3.2.1 through 3.2.6, which show crossplots for each aquifer for the steady-state (Figures 3.2.1 through 3.2.3) and the last 33 years (1980 to 2012).

The Ogallala Aquifer has a small positive mean error in steady-state, indicating that the model simulates slightly low on average compared to estimated water levels. This bias is not strongly indicated in the crossplot in Figure 3.2.1, although there are points consistently below the line from 4,000 to 5,000 feet above mean sea level. The mean absolute error is less than 30 feet, which is a result comparable to previous Ogallala Aquifer groundwater availability models. The relative error (mean absolute error divided by the range) is less than 1 percent, due to the large range compared to mean absolute error. As noted in Section 2, while standard practice is to calibrate to a relative error of less than 10 percent, the large range for all of the aquifers in this model led to setting more absolute goals for the mean absolute error. Given the calibration of the previous groundwater availability models, the goals were approximately 30 feet mean absolute error for the Ogallala Aquifer, and approximately 50 feet for the minor aquifers.

The Rita Blanca and Edwards-Trinity (High Plains) aquifers both had negative mean errors, indicating that simulated heads were somewhat higher on average than measured heads. However, these mean errors are within acceptable range, especially considering the uncertainty in, and general lack of, steady-state targets for these aquifers. The mean absolute error for the

Rita Blanca Aquifer was higher than the initial goal of 50 feet, but with the small number of samples this was still considered an acceptable calibration for steady-state. The crossplot shown in Figure 3.2.2 shows the slight bias in simulated heads, with more points falling above the line than below. The overall scatter around the line however, is consistent with an acceptable calibration.

The upper Dockum Aquifer also had a mean error indicating that simulated heads were higher than estimated for predevelopment. However, given the general lack of samples, and uncertainty in the predevelopment estimates, the mean error is acceptable. The lower Dockum Aquifer has a small positive mean error. Both the upper and lower Dockum aquifers had an acceptable mean absolute error near 50 feet. The Dockum Aquifer calibration exhibits the broadest scatter (Figure 3.2.3) around the 1:1 line, but still shows a good distribution around that line. Overall, the steady-state calibration for all aquifers is acceptable, based on the summary statistics and crossplots.

The magnitude of mean error for the Ogallala Aquifer decreases through time, and the mean error for the last 30 years is very small, at less than 2 feet. The mean absolute error is less than 30 feet for both time periods, again indicating an acceptable calibration. The crossplot shown in Figure 3.2.4 shows good clustering around the 1:1 line, with only a handful of points outside the main cluster. Even at very high elevations, the points are close to the line, although a slight positive bias (model simulating too low) can be seen at around the 5,000 feet above mean sea level elevation.

The negative mean error for the Rita Blanca Aquifer becomes less negative in the transient period, but still simulates heads approximately 20 feet higher on average than observed heads. The negative mean error in the Edwards-Trinity (High Plains) Aquifer becomes more negative in the early transient period, but gets less negative in the late transient period, indicating that less bias occurs later in the simulation. The mean absolute error for both the Rita Blanca and Edwards-Trinity (High Plains) aquifers stay within an acceptable range for both early and late transient periods. The crossplot shown in Figure 3.2.5 shows more scatter around the 1:1 line for the Rita Blanca Aquifer at higher elevations, but still has a good distribution around the line.

The mean error for the upper Dockum Aquifer becomes less negative in transient, indicating that simulated heads are decreasing somewhat relative to observed heads. The lower Dockum

Aquifer mean error goes from small positive to small negative from steady-state to transient. The mean absolute error for both the upper and lower Dockum aquifers stays within an acceptable range throughout the transient period. Figure 3.2.6 shows that, as with steady-state, the Dockum Aquifer calibration exhibits the most scatter around the 1:1 line. There are a handful of points where the simulated head is well above the 1:1 line, that is, where simulated heads are much higher than observed. A review of these points indicates that they represent single measurements of head, typically when the well was drilled. Because of the low productivity of the Dockum Aquifer in some areas, if the water level was not allowed sufficient time to recover after drilling, the measurements will typically be biased low. Because of the small number of points exhibiting this characteristics, they did not affect calibration, and were left as part of the target dataset.

3.2.2 Residual Distributions

Figures 3.2.7 through 3.2.9 show histograms of the head residuals for the late transient calibration period, 1980 to 2012. Perfectly normally distributed histograms will exhibit the classic symmetric bell shape centered on zero. Residual datasets with a nonzero mean error will be shifted away from zero by approximately the magnitude of the mean error. The head residual histograms behave as expected, showing good symmetry in most cases, and are shifted from zero the amount of the mean error. The Ogallala Aquifer residuals in Figure 3.2.7 have very little mean error, and thus the histogram centers near zero. In Figure 3.2.8, the Rita Blanca Aquifer residual histogram exhibits a shift of approximately 25 feet, and the Edwards-Trinity (High Plains) Aquifer histogram exhibits a shift of less than 20 feet, and both are relatively symmetric about the mean. The upper and lower Dockum Aquifer histograms shown in Figures 3.2.9 and 3.2.10, respectively, show similar characteristics, with good symmetry and a slight shift. In general, all of the histograms show residual distributions that are acceptable for a calibrated model.

Figures 3.2.10 through 3.2.13 show spatial plots of residuals for the steady-state calibration period. As noted previously, negative residuals indicate that the model is simulating high compared to estimated steady-state water levels, while positive residuals indicate that the model is simulating low in comparison. Figure 3.2.10a shows the residuals in the Ogallala Aquifer in the northern portion of the study area. In general, most residuals are within 50 feet of zero, with

a scattering of both positive and negative residuals in some places. Figure 3.2.10b shows the residuals in the Ogallala Aquifer for the southern portion of the study area. Again, most of the residuals are small. There is some slight negative bias in New Mexico to the southwest, which is generally consistent with the difficulty that was encountered during calibration in keeping the Ogallala Aquifer layer saturated at the high elevations to the west.

Figure 3.2.11 shows the residuals for the Rita Blanca and Edwards-Trinity (High Plains) aguifers. The majority of residuals are within the 50 foot range, with the Rita Blanca Aguifer having more positive residuals (simulating low) at the higher elevations to the west and more negative residuals (simulating high) moving downdip to the east. This trend in residuals is typical when modeling a strongly dipping aquifer with a single layer, because the intra-aquifer vertical resistance to flow cannot be captured in a single layer. The Edwards-Trinity (High Plains) Aguifer has more negative residuals, which is expected given the mean error of less than -30 feet. As discussed previously, the slight negative residual bias in the Edwards-Trinity (High Plains) Aquifer steady-state calibration was partially due to the difficulty in keeping the Ogallala Aguifer saturated to the west. If heads were allowed to drop significantly in the Edwards-Trinity (High Plains) Aquifer, more dry cells occurred in the Ogallala Aquifer, even when varying properties (that is, reducing the horizontal and vertical hydraulic conductivity) to the limits of their acceptable range. In the end, the slight negative bias was accepted in the Edwards-Trinity (High Plains) Aquifer, as it was not outside the range for a typical regional model calibration. Figure 3.2.12 shows the steady-state residuals for the upper and lower Dockum aquifers combined. The majority of residuals are in the 50 foot range, with a mixture of positive and negative residuals in most areas.

Figures 3.2.13 through 3.2.15 show spatial plots of residuals for the transient calibration period from 1980 to 2012. The northern portion of the Ogallala Aquifer, shown in Figure 3.2.13a, shows the vast majority of residuals falling the 50 foot range, with a mix of positive and negative residuals in some areas. Special attention was required in Dallam County to improve negative residuals that occurred after the initial calibration. As discussed in Section 2.4, additional pilot points were added in this area to allow finer adjustment of recharge and horizontal hydraulic conductivity. The end result still has some large residuals in Dallam County, but a mix of both positive and negative residuals exists, rather than most of the residuals being negative.

Figure 3.2.13b shows the residuals for the Ogallala Aquifer in the southern portion of the study area. The only areas where some bias appears are in New Mexico, where more positive residuals than negative residuals exists. This trend is the same as has been previously discussed, where simulated heads are difficult to sustain at the higher elevations in the Ogallala Aquifer. The majority of the residuals in these areas are within the 50-foot range, and the calibration is considered acceptable.

Figure 3.2.14 shows the residuals for the Rita Blanca and Edwards-Trinity (High Plains) aquifers. The residuals are well distributed for the Rita Blanca Aquifer, and the negative bias has been reduced in the Edwards-Trinity (High Plains) Aquifer residuals, with some positive residuals appearing. Figure 3.2.15 shows the residuals for the Dockum Aquifer. In most areas the residuals are distributed both positively and negatively, although there is a spot in New Mexico where a cluster of positive residuals exists. This area is near the upper Dockum Aquifer outcrop, but increased recharge in the upper Dockum Aquifer resulted in increased flooding in the outcrop, with little effect on the residuals. The large negative residuals that mostly occur deep in the confined section of the Dockum Aquifer are from the same targets discussed in Section 3.2.1, where a driller measurement of a single water level shortly after drilling may be underestimated. Overall, the transient residual plots show an acceptable level of residual distribution for the calibrated model.

3.2.3 Simulated Water Levels

In this section the model simulated water levels, drawdown from steady-state, and saturated thickness are presented. Figures 3.2.16 through 3.2.19 show the simulated heads in each of the modeled aquifers for the steady-state stress period. The overall trend in heads for all aquifers in the High Plains Aquifer System is one of west to east gradient, generally following regional topographic trends. Figure 3.2.20 shows the saturated thickness in the Ogallala Aquifer for the steady-state stress period. Saturated thickness is generally larger in the northern part of the study area than in the south, although saturated thickness over 300 feet occurs in the large paleochannel running primarily through Parmer, Castro, Lamb, and Hale counties.

Figures 3.2.21 through 3.2.24 show the simulated heads in each of the aquifers for 1950, 1980, and 2010 for the transient simulation. The general east-west trend is still evident in all cases. The Ogallala Aquifer head contours by 2010 (Figure 3.2.21c) begin to show the impacts of some

of the water level declines that have occurred during the historical period. The minor aquifers mostly show localized effects, with the Rita Blanca Aquifer (Figure 3.2.22c) showing a few areas of bent or closed contours in Dallam and Union counties and the lower Dockum Aquifer (Figure 3.2.24c) showing evidence of drawdown in several locations.

Figures 3.2.25 through 3.2.28 show simulated drawdown from the steady-state stress period representing predevelopment, to year 2010. Figure 3.2.25 shows drawdown in the Ogallala Aguifer, the most widespread of which occurs in the paleochannel in the southern portion of the study area where the greatest initial saturated thickness (south of the Canadian River) existed prior to development. In the northern portion of the study area, over 100 feet of drawdown has occurred in a small region contained by Moore and Sherman counties. Figure 3.2.26 shows that some localized drawdown has occurred in the Rita Blanca Aquifer, and the Edwards-Trinity (High Plains) Aguifer shows one area of drawdown in northern Gaines County that exceeds the drawdown in the overlying Ogallala Aquifer. The other areas of drawdown in the Edwards-Trinity (High Plains) Aquifer are attributable to, or at least correlated with, drawdown in the overlying Ogallala Aquifer. The drawdown in the upper Dockum Aquifer (Figure 3.2.27) directly correlates with the drawdown in the overlying Ogallala Aquifer. Because the storativity and horizontal conductivity in the upper Dockum Aguifer are low, only a small rate of crossformational flux needs to occur in order to create large drawdowns. The rate of flux between aguifers is discussed in more detail in Sections 3.3 and 3.4. The lower Dockum Aguifer (Figure 3.3.28) shows areas of localized drawdown, with the largest in spatial extent occurring in conjunction with drawdown in the overlying Ogallala Aquifer. The drawdown along the eastern boundary of the Dockum Aquifer corresponds with the area where the Ogallala Aquifer and Santa Rosa sandstone (in the Dockum Aquifer) are in direct contact.

Figures 3.2.29 and 3.2.30 show the simulated saturated thickness in the Ogallala Aquifer in years 1980 and 2010. The areas where the most significant drawdown has occurred still have significant saturated thickness, since initial saturated thickness is a good indicator for where wells are most productive and therefore where the greatest amount of production has occurred [see Section 5 of Deeds and others (2015)].

Figures 3.2.31 through 3.2.49 show selected simulated versus observed water level hydrographs. These hydrographs are meant to demonstrate some of the basic trends in water levels through

time, and how the simulated water levels follow these trends. Appendix B contains over 2,500 more hydrographs, sorted by county name.

Figure 3.2.31 shows hydrographs for wells completed in the Ogallala Aquifer in the northern part of the study area. General trends are downward both in observed and simulated water levels, with the exception of a hydrograph in Lipscomb County, which is relatively flat. Similarly, Figure 3.2.32 shows downward trends of varying slopes. Two hydrographs in Dallam County show a relatively well-matched simulated water level in later time (well 234803), and another (well 236601) where an initial offset separates the observed and simulated curves by about 100 feet. Hydrographs further east (Figure 3.2.33), such as in Hemphill and Roberts counties, show relatively flat trends, which are well-represented in the simulated heads. Roberts County has not had much development outside of the Canadian River Municipal Water Authority well fields. Figure 3.2.34 shows mixed trends, even within a single county, with a reasonable simulated match in most of the cases. In Figure 3.2.35 the well locations are further south, and exhibit water levels dominantly trending downward, with the exception of a hydrograph in Cochran County. These trends are generally followed in the simulated water levels as well. Figure 3.2.36 shows more wells from the southern portion of the study area. The well in Dawson County shows that the model is able to duplicate the sometimes rising water levels that occur in several of the southern counties. Figure 3.2.37, which contains hydrographs in the southern portion of the study area, shows a similar hydrograph in Lynn County that shows historical fluctuation, including a short period of recovery in the late 1980s and early 1990s that is matched somewhat by the model.

Figure 3.2.38 shows hydrographs from the Rita Blanca Aquifer in Dallam and Union counties. The trends are mostly downward both in the measured and simulated water levels. Figure 3.2.39 shows hydrographs from the Edwards-Trinity (High Plains) Aquifer. Most of the trends are either flat or have both upward and downward trends in the same time series. The simulated trends are mostly flat, and do not follow the variations exactly. Figure 3.2.40 show similar trends for the Edwards-Trinity (High Plains) Aquifer. The simulated heads follow the trends well in some cases (Gaines County) but are offset in other cases.

Figure 3.2.41 shows hydrographs from the upper Dockum Aquifer. Trends are mixed, with some downward trends (Deaf Smith County) but more flat trends. The simulated water levels match

the trends relatively well in most of the cases. Figure 3.2.42 shows hydrographs from the lower Dockum Aquifer in the northern portion of the study area. Most of the trends are flat, with the exception of a well in Hartley County that shows a downward trend that is only partially matched by the simulated water level. Figure 3.2.43 shows additional lower Dockum Aquifer hydrographs from the northern and central portions of the study area. In these wells, trends are again mixed, with the simulated trends typically better matching the flatter observed trends. Figure 3.2.44 shows hydrographs from the lower Dockum Aquifer in near the southeast outcrop area. Two of the hydrographs in Martin and Dawson counties show downward trends in the observed data that are not matched by the simulated water levels, due to either missing or mislocated pumping in the model. As discussed in Section 3.1.6, the location of pumping within a county was guided by the drawdown trends, but the objective was not to fit every hydrograph, but rather match the majority of county trends where possible.

3.2.4 Dry and Flooded Cells

MODFLOW-NWT does not allow cells to go dry, but does allow head to drop below cell bottom (and then restricts hydraulic conductivity so the cell becomes minimally active), which will be called "dry" for the purposes of this discussion. Cells where head is above the top of the cell are typically called "flooded" cells. Due to the high topographic relief, especially in the western portion of the model, dry cells were monitored closely during model construction and calibration. Adding the minor aquifers to the bottom of the Ogallala Aquifer increased the potential for dry cell issues in areas with the potential for high vertical gradients.

Large variation in local topography also increases the chances of flooded cells. A small amount of flooding, within the mean absolute error of the model, is considered normal, but a model should not have large areas with heads consistently far above land surface. For the most part, the boundary conditions representing springs, rivers, and draws controlled flooding.

The calibrated model was assessed for dry cells and flooding in the model outcrops. This included the active outcrops for the Ogallala Aquifer (the whole active area), the Rita Blanca Aquifer, and the upper and lower Dockum aquifers. The cells with head boundaries representing portions of the Edwards-Trinity (Plateau) and Pecos Valley aquifers were not considered. Of the 242,200 outcrop cells, 961 cells were dry in steady-state, and 395 were flooded (Figure 3.2.45). The tolerance for flooding was set at 40 feet, the approximate mean absolute error among the

various aquifers. The maximum flood value for the steady-state heads was 60 feet above tolerance. At the end of the simulation in 2012, 1965 cells were dry and 400 cells were flooded, with a maximum flood height above tolerance of 60 feet (Figure 3.2.46). In all, the total flooded and dry cells represented less than 1 percent of the outcrop cells.

Table 3.2.1 Calibration statistics for steady-state, 1930 to 1980, and 1980 to 2012.

V D	A*6	Mean	Mean	D	Mean	NII
Year Range	Aquifer	Error (feet)	Absolute Error (feet)	Range	Absolute Error/Range	Number
	Ogallala	15.3	27.3	2,752	0.010	436
	Rita Blanca	-30.3	61.7	3,014	0.020	87
Duo donolou un out	Edwards-Trinity					
Predevelopment	(High Plains)	-35.3	42.9	1,415	0.030	257
	Upper Dockum	-39.0	47.4	2,119	0.022	84
	Lower Dockum	10.3	52.0	3,050	0.017	233
	Ogallala	-3.8	25.2	3,091	0.008	78,063
	Rita Blanca	-20.3	32.9	746	0.044	301
1930-1979	Edwards-Trinity					
1930-1979	(High Plains)	-45.1	49.0	1,430	0.034	1,113
	Upper Dockum	-27.9	30.9	1,912	0.016	326
	Lower Dockum	-14.3	45.1	3,145	0.014	3,220
	Ogallala	1.5	28.4	3,529	0.008	91,805
	Rita Blanca	-24.0	42.6	2,841	0.015	1,078
1980-2012	Edwards-Trinity					
1700-2012	(High Plains)	-19.4	29.7	1,327	0.022	1,945
	Upper Dockum	-27.4	33.2	2,125	0.016	671
	Lower Dockum	-15.6	53.3	3,465	0.015	4,744

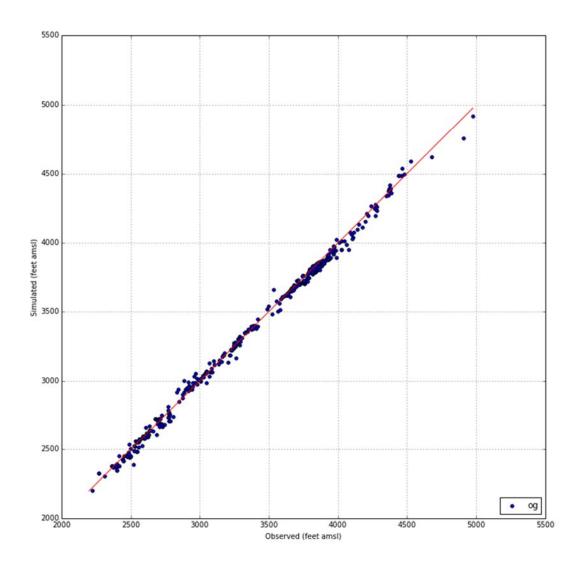


Figure 3.2.1 Scatter plot of simulated versus observed hydraulic head in the Ogallala Aquifer in feet above mean sea level for the steady-state stress period. (Abbreviation key: og = Ogallala Aquifer)

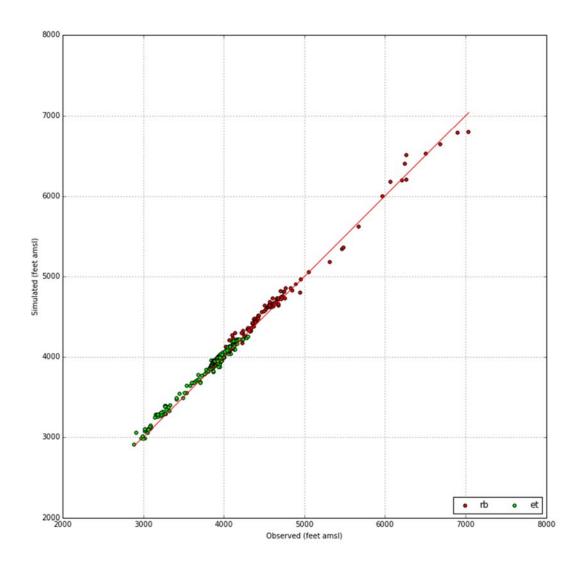


Figure 3.2.2 Scatter plot of simulated versus observed hydraulic head in the Rita Blanca and Edwards-Trinity (High Plains) aquifers in feet above mean sea level for the steady-state stress period. (Abbreviation key: rb = Rita Blanca Aquifer, et = Edwards-Trinity (High Plains) Aquifer)

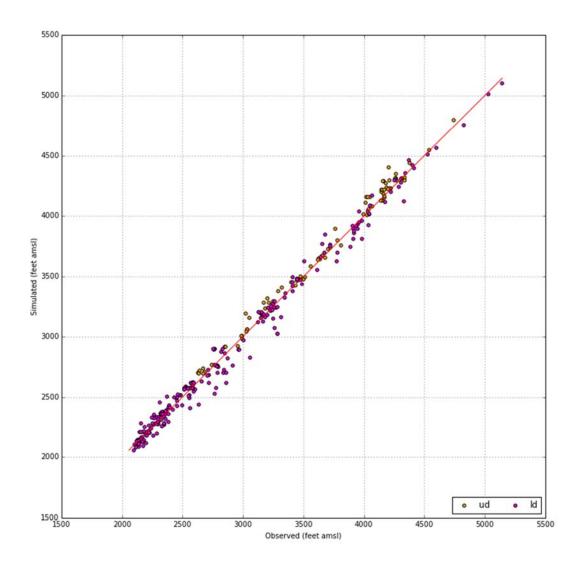


Figure 3.2.3 Scatter plot of simulated versus observed hydraulic head in the Dockum Aquifer in feet above mean sea level for the steady-state stress period. (Abbreviation key: ud = upper Dockum Aquifer, ld = lower Dockum Aquifer)

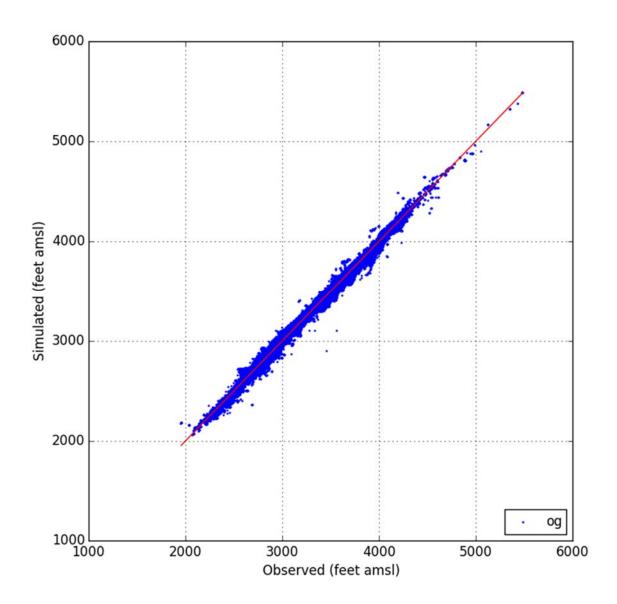


Figure 3.2.4 Scatter plot of simulated versus observed hydraulic head in the Ogallala Aquifer in feet above mean sea level for years 1980 to 2012. (Abbreviation key: og = Ogallala Aquifer)

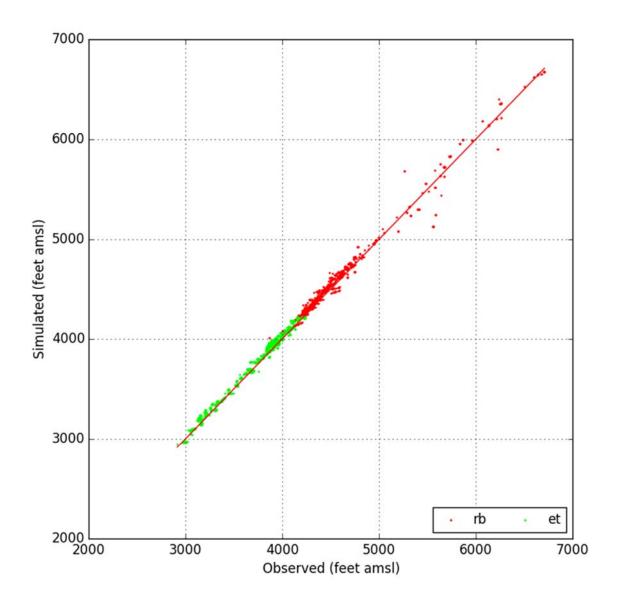


Figure 3.2.5 Scatter plot of simulated versus observed hydraulic head in the Rita Blanca and Edwards-Trinity (High Plains) aquifers for years 1981 to 2012. (Abbreviation key: rb = Rita Blanca Aquifer, et = Edwards-Trinity (High Plains) Aquifer)

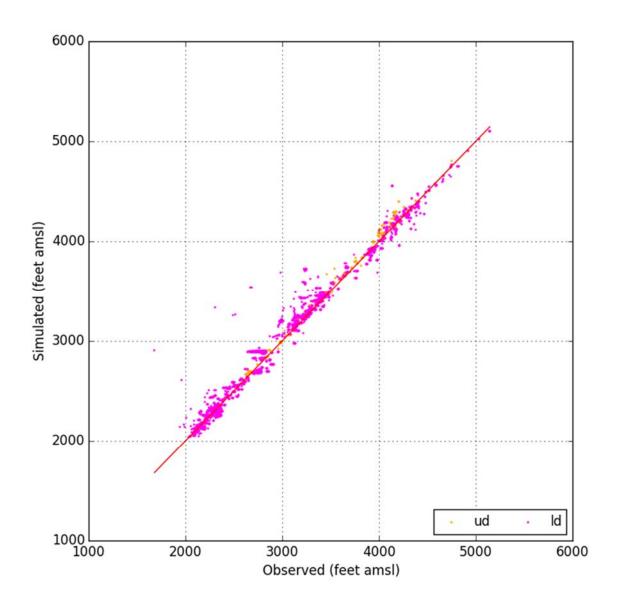


Figure 3.2.6 Scatter plot of simulated versus observed hydraulic head in the Dockum Aquifer in feet above mean sea level for years 1981 to 2012. (Abbreviation key: ud = upper Dockum Aquifer, ld = lower Dockum Aquifer)

Figure 3.2.7 Histogram of hydraulic head residuals in the Ogallala Aquifer for years 1980 to 2012.

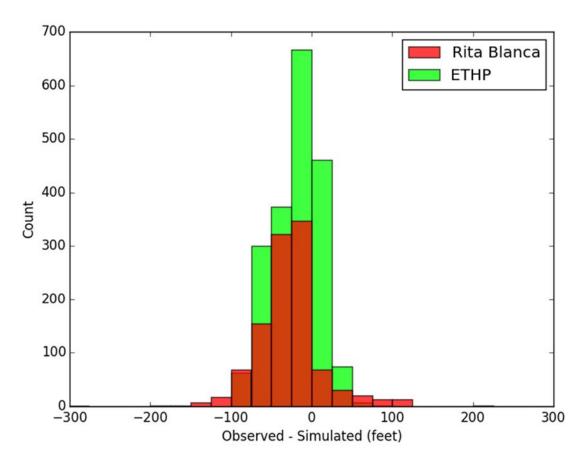


Figure 3.2.8 Histogram of hydraulic head residuals in feet in the Rita Blanca and Edwards-Trinity (High Plains) aquifers for years 1980 to 2012. (Abbreviation key: ETHP = Edwards-Trinity (High Plains) Aquifer)

Figure 3.2.9 Histogram of hydraulic head residuals in feet in the upper and lower Dockum Aquifer for years 1980 to 2012.

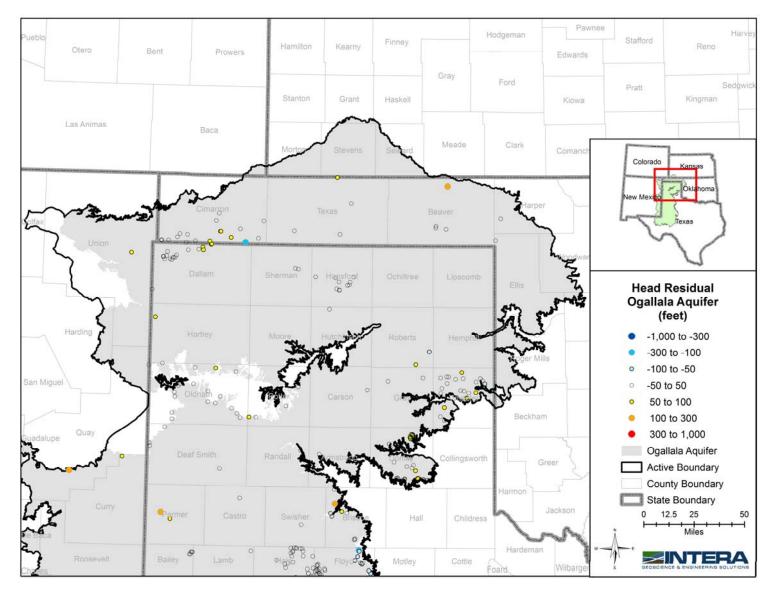


Figure 3.2.10a Spatial distribution of head residuals in feet in the Ogallala Aquifer for the pre-development (steady-state) stress period in the northern portion of the study area.

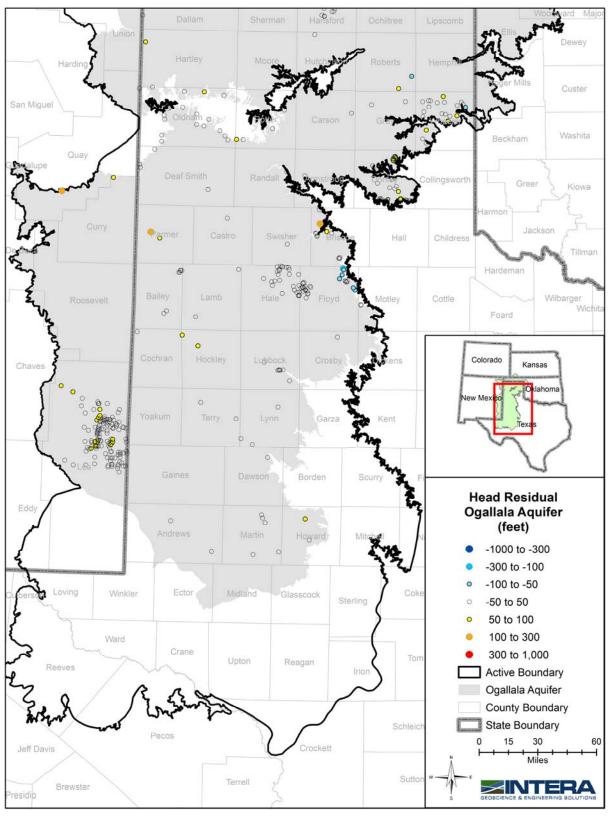


Figure 3.2.10b Spatial distribution of head residuals in feet in the Ogallala Aquifer for the predevelopment (steady-state) stress period in the southern portion of the study area.

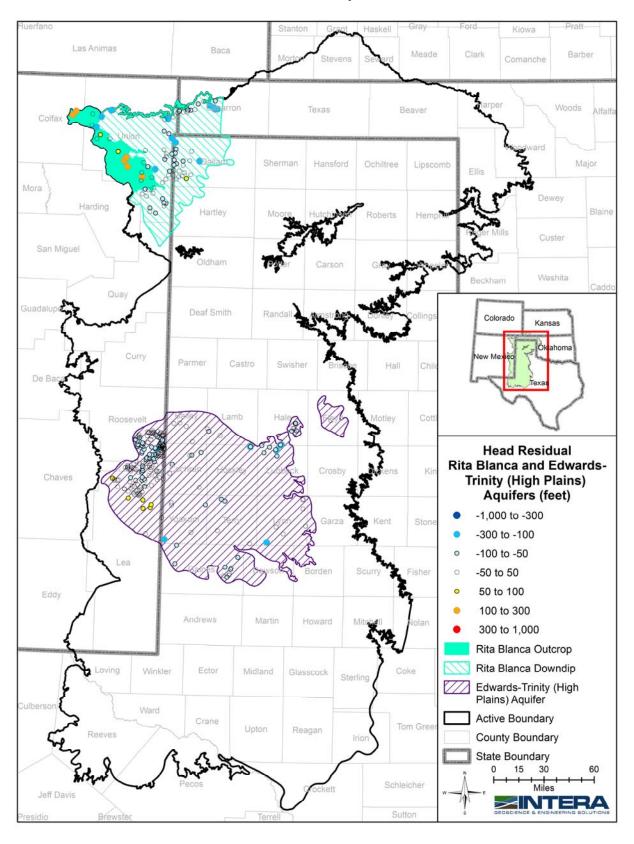


Figure 3.2.11 Spatial distribution of head residuals in feet in the Rita Blanca and Edwards-Trinity (High Plains) aquifers for the pre-development (steady-state) stress period.

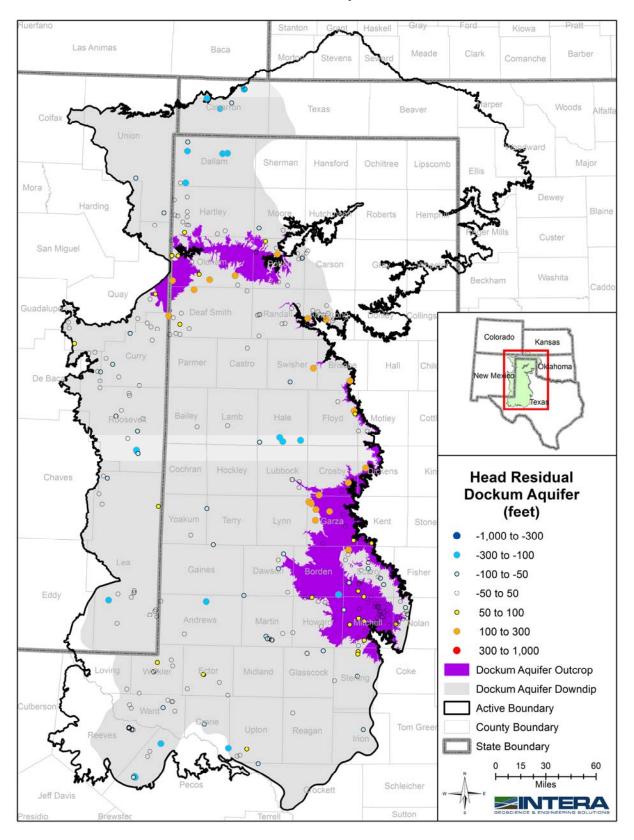


Figure 3.2.12 Spatial distribution of head residuals in feet in the Dockum Aquifer in the predevelopment (steady-state) stress period

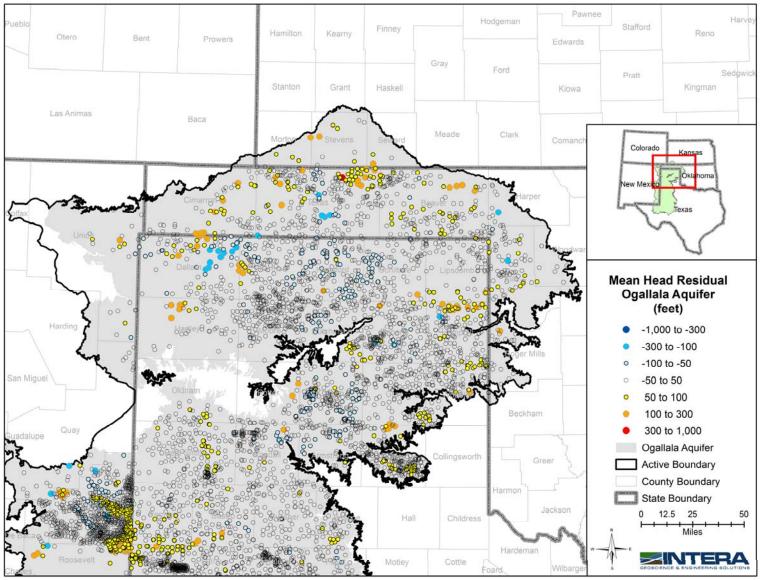


Figure 3.2.13a Spatial distribution of average head residuals in feet in the Ogallala Aquifer for years 1980 to 2012 in the northern portion of the study area.

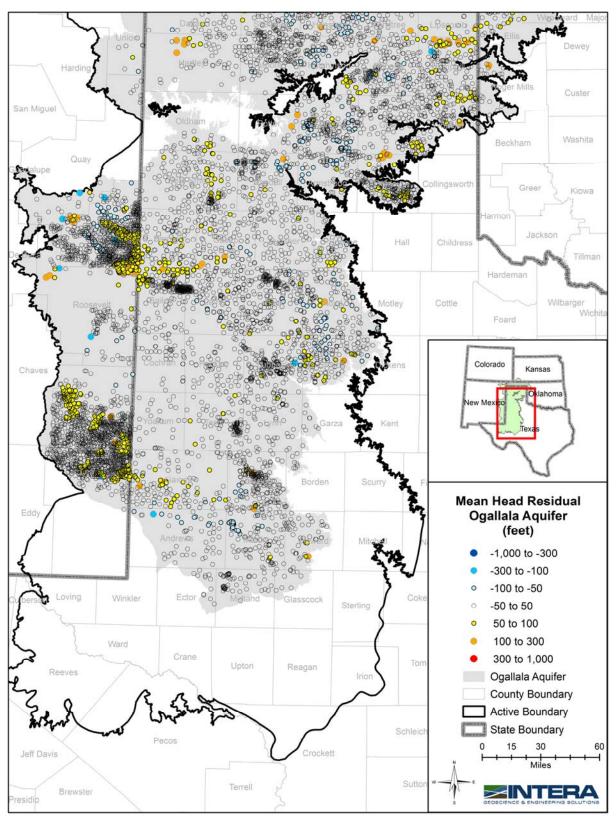


Figure 3.2.13b Spatial distribution of average head residuals in feet in the Ogallala Aquifer for years 1980 to 2012 in the southern portion of the study area.

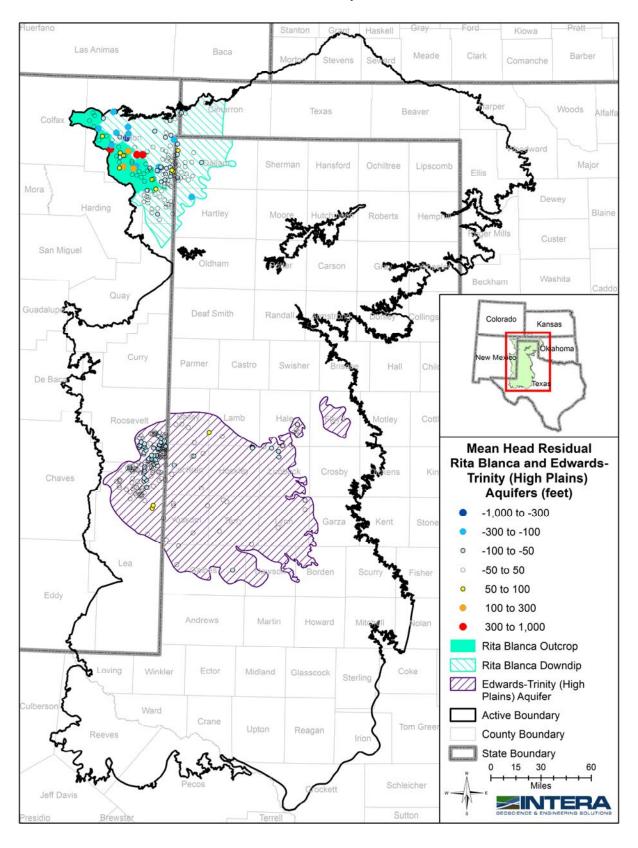


Figure 3.2.14 Spatial distribution of average head residuals in feet in the Rita Blanca and Edwards-Trinity (High Plains) aquifers for years 1980 to 2012.

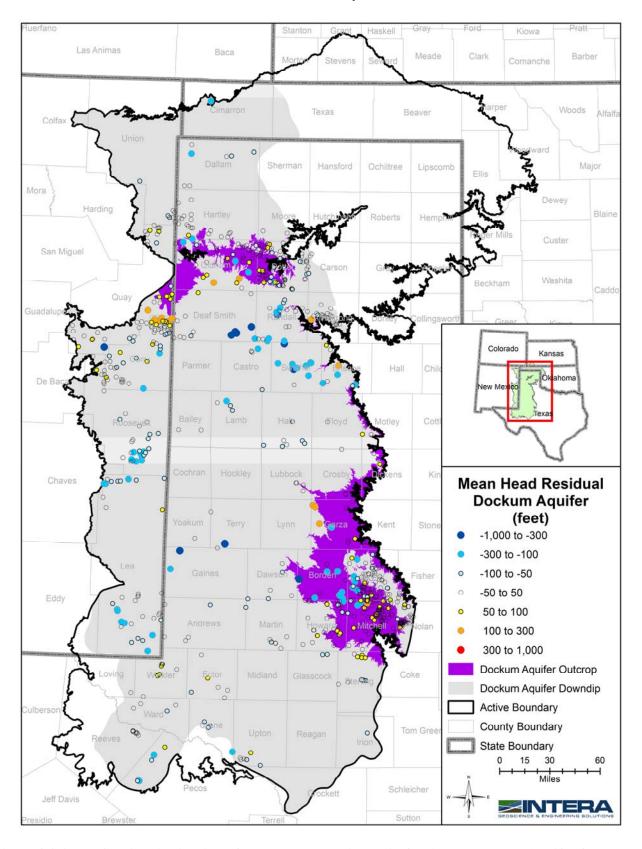


Figure 3.2.15 Spatial distribution of average head residuals in feet in the Dockum Aquifer for years 1980 to 2012.

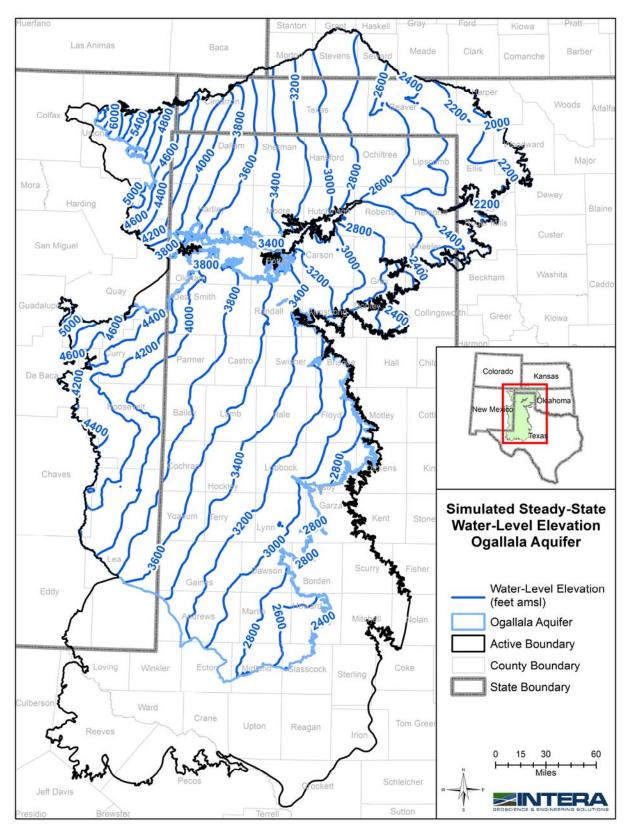


Figure 3.2.16 Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Ogallala Aquifer for the pre-development (steady-state) stress period.

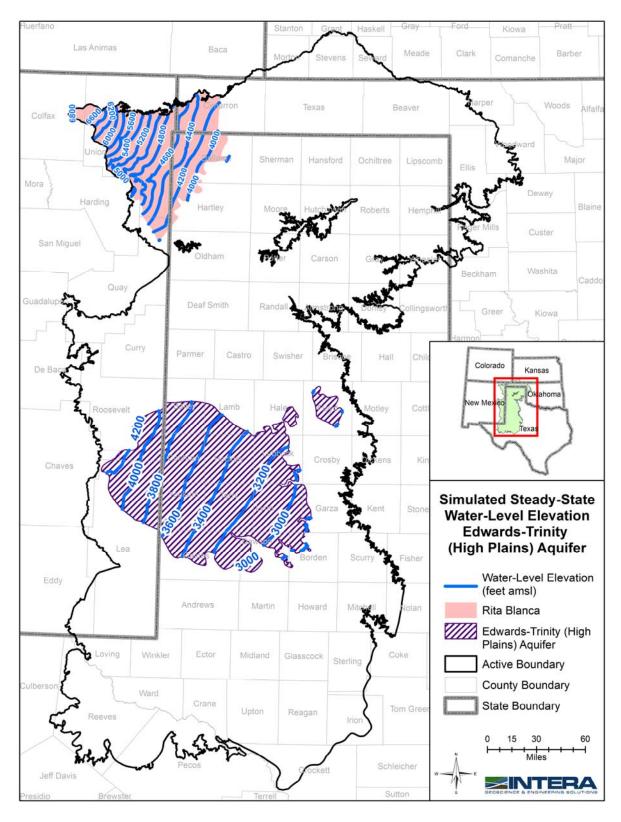


Figure 3.2.17 Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Rita Blanca and Edwards-Trinity (High Plains) aquifers for the predevelopment (steady-state) stress period.

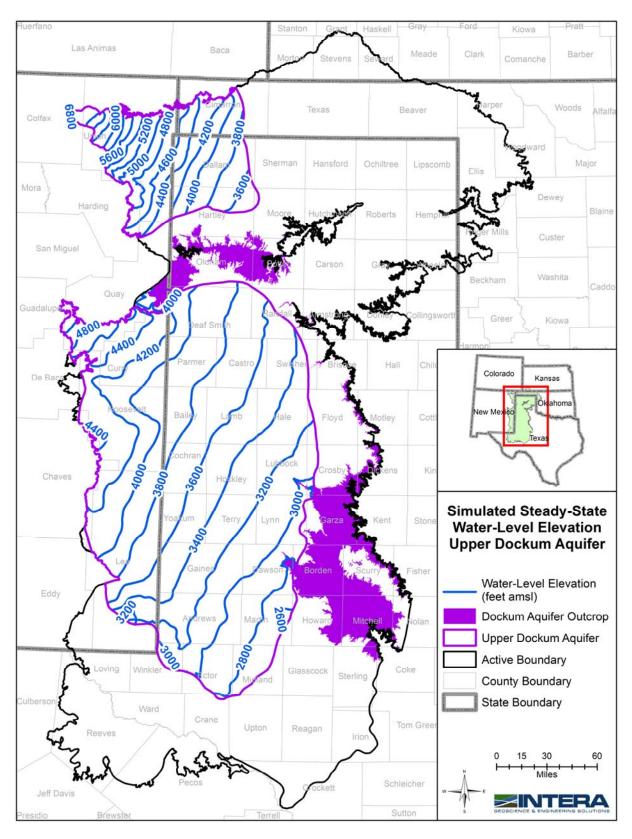


Figure 3.2.18 Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the upper Dockum Aquifer for the pre-development (steady-state) stress period.

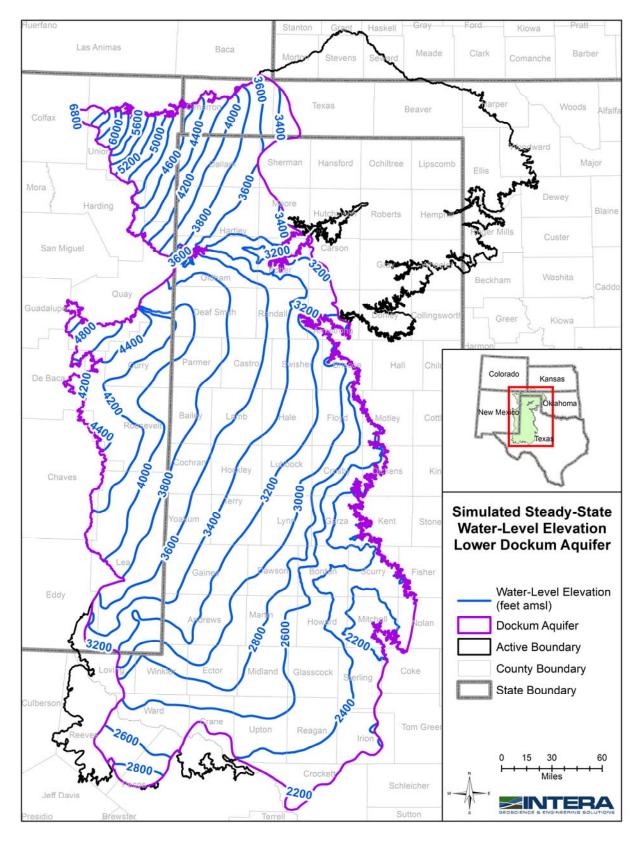


Figure 3.2.19 Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the lower Dockum Aquifer for the pre-development (steady-state) stress period.

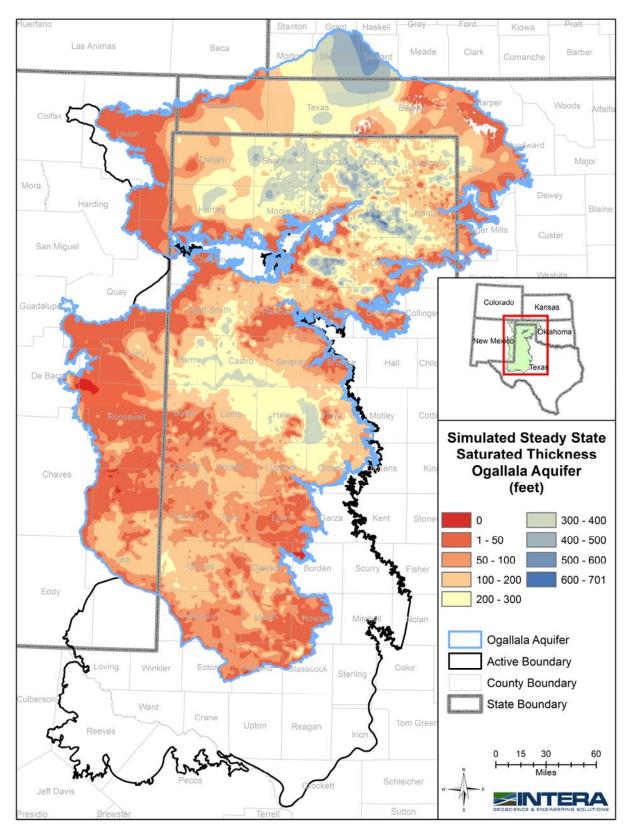


Figure 3.2.20 Simulated saturated thickness in feet above mean sea level in the Ogallala Aquifer in the pre-development (steady-state) stress period.

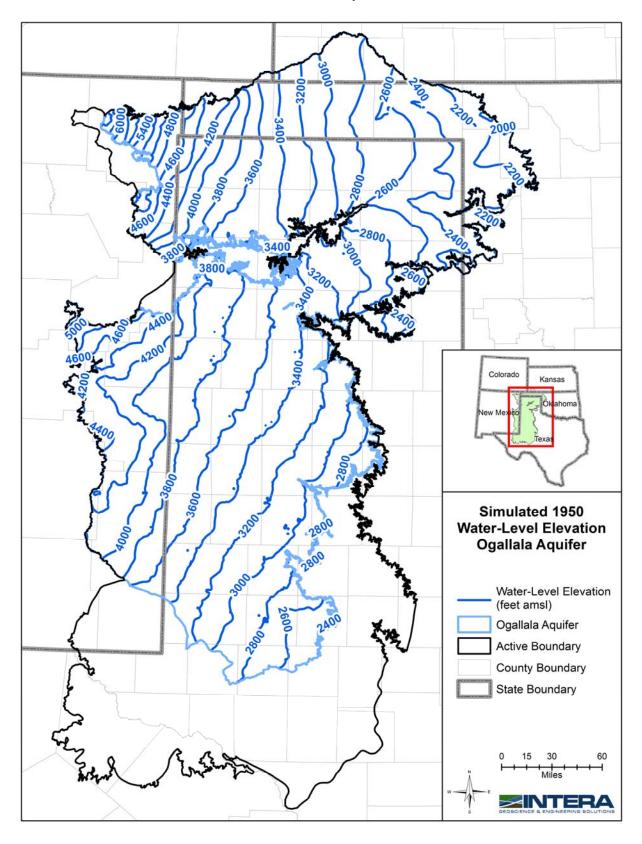


Figure 3.2.21a Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Ogallala Aquifer in 1950 (stress period 22).

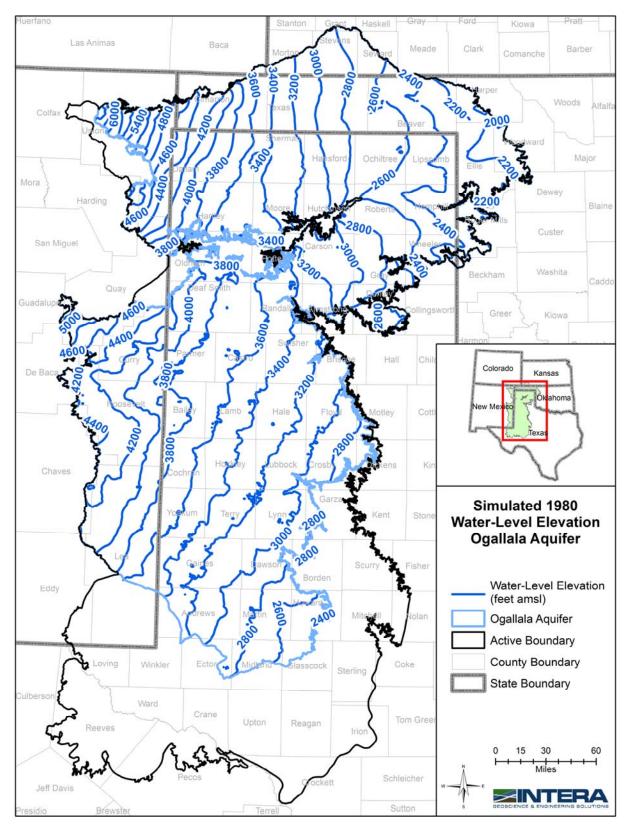


Figure 3.2.21b Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Ogallala Aquifer in 1980 (stress period 52).

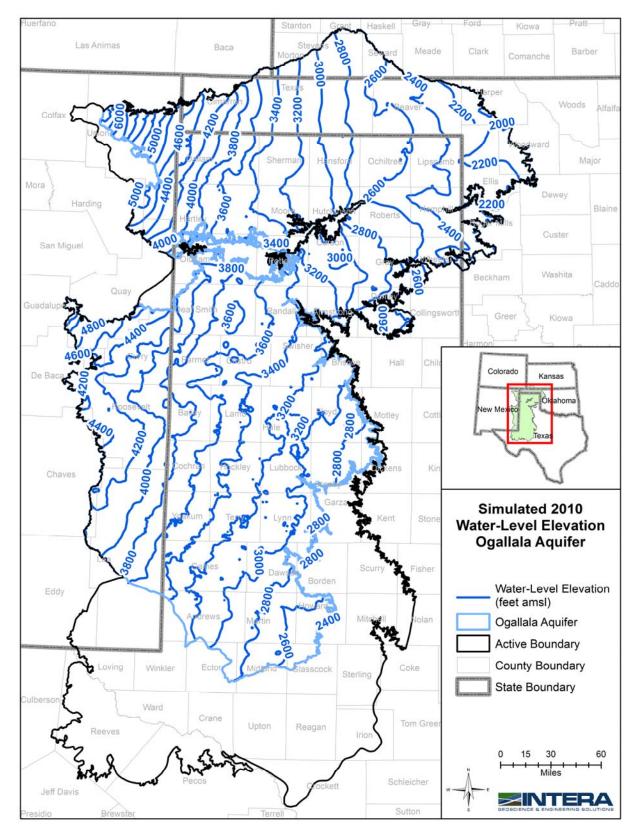


Figure 3.2.21c Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Ogallala Aquifer in 2010 (stress period 82).

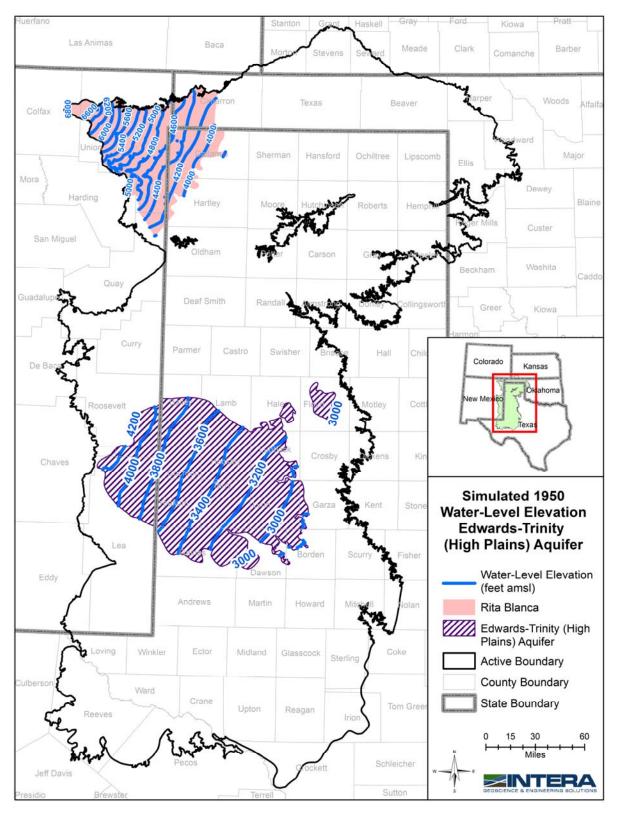


Figure 3.2.22a Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Rita Blanca and Edwards-Trinity (High Plains) aquifers in 1950 (stress period 22).

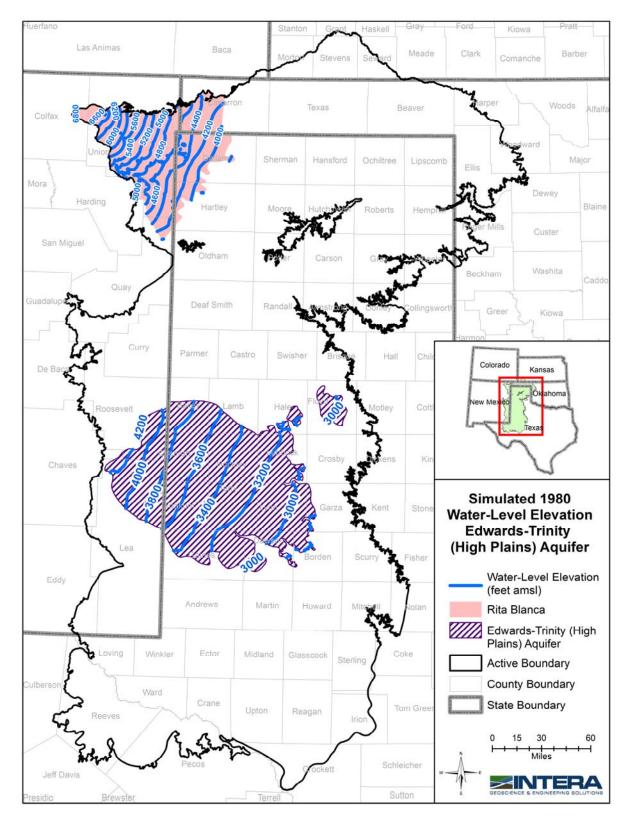


Figure 3.2.22b Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Rita Blanca and Edwards-Trinity (High Plains) aquifers in 1980 (stress period 52).

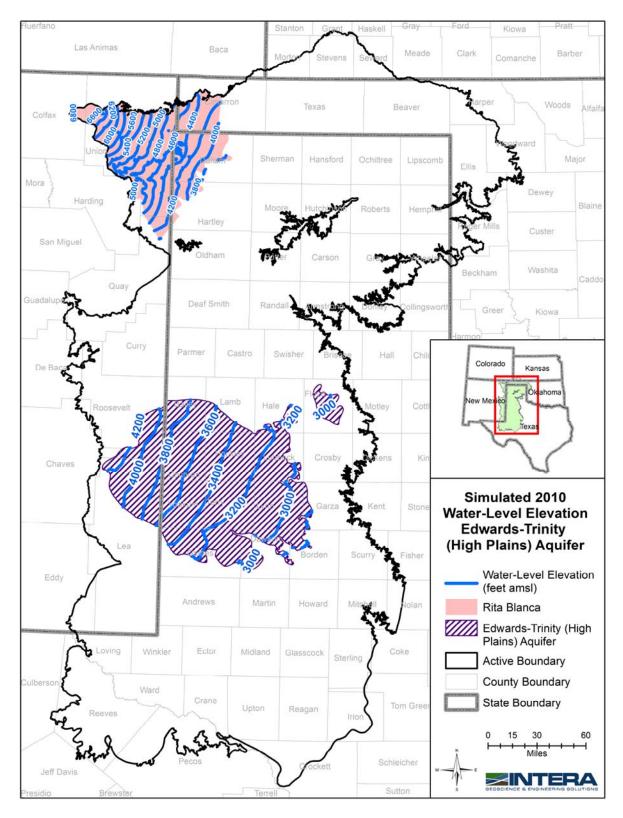


Figure 3.2.22c Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the Rita Blanca and Edwards-Trinity (High Plains) aquifers in 2010 (stress period 82).

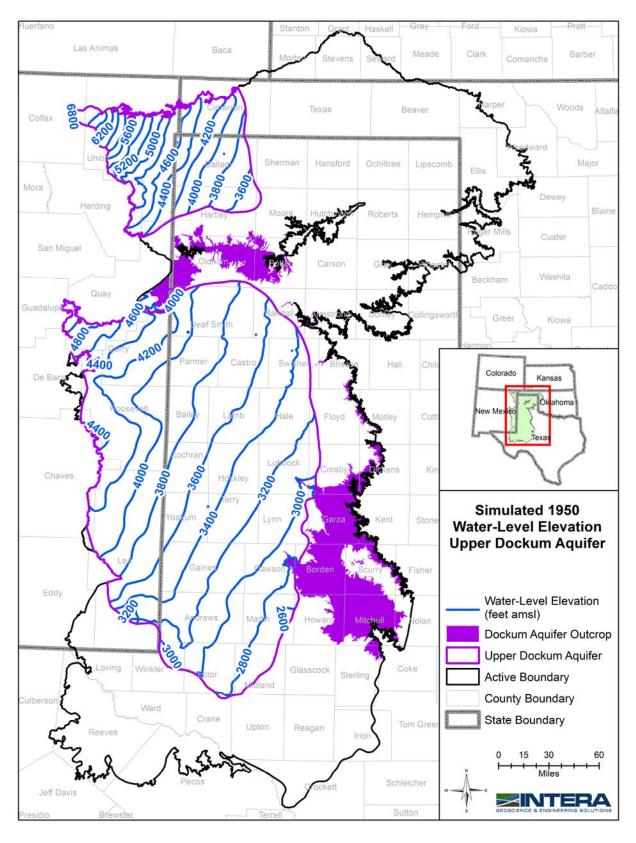


Figure 3.2.23a Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the upper Dockum Aquifer in 1950 (stress period 22).

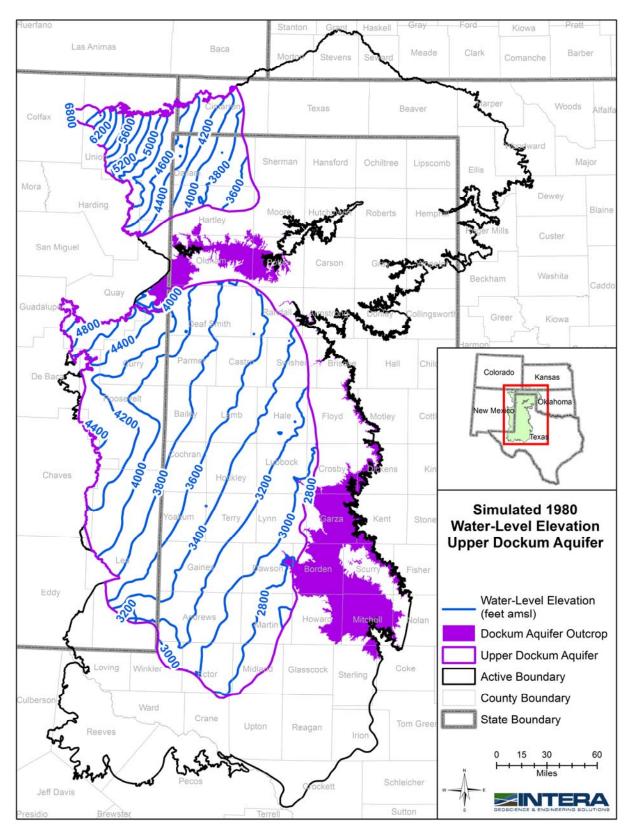


Figure 3.2.23b Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the upper Dockum Aquifer in 1980 (stress period 52).

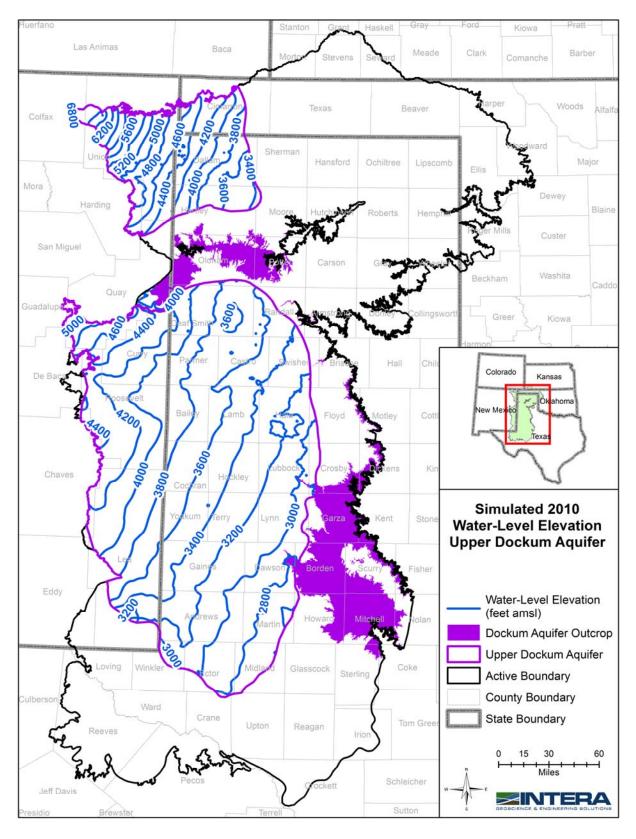


Figure 3.2.23c Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the upper Dockum Aquifer in 2010 (stress period 82).

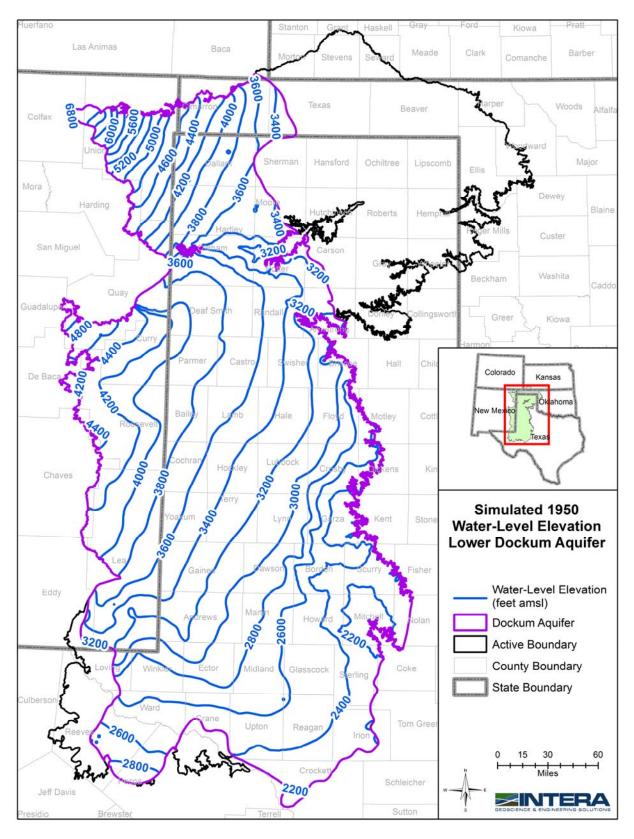


Figure 3.2.24a Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the lower Dockum Aquifer in 1950 (stress period 22).

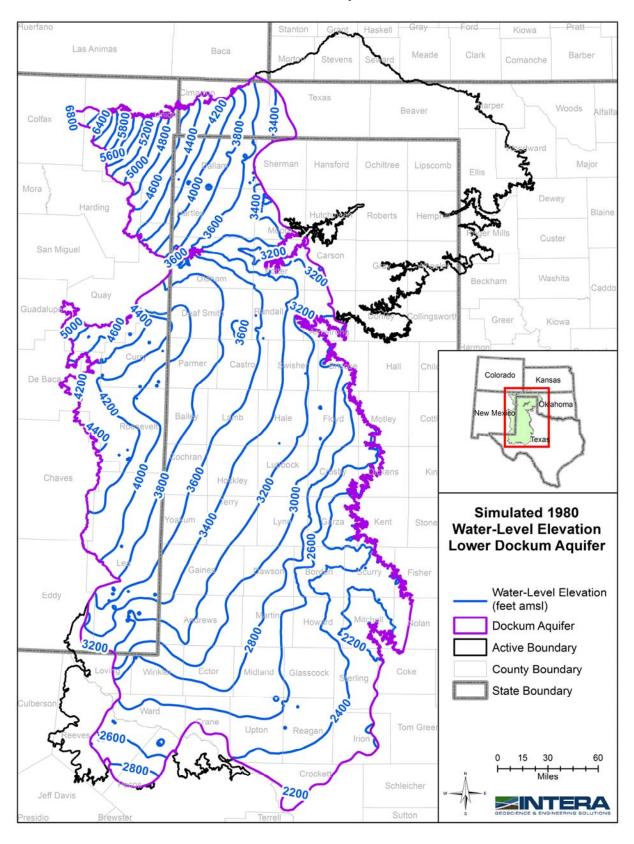


Figure 3.2.24b Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the lower Dockum Aquifer in 1980 (stress period 52).

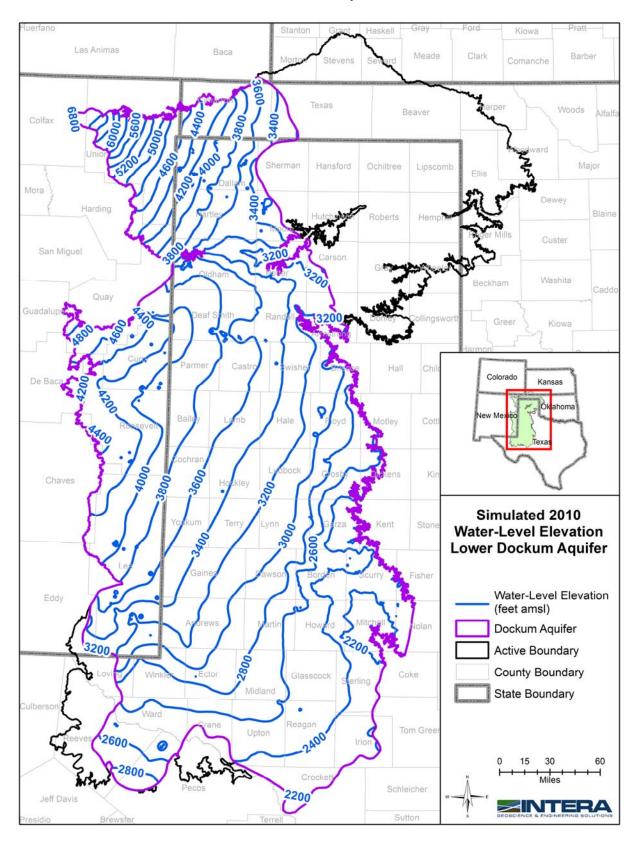


Figure 3.2.24c Simulated water-level elevations (hydraulic heads) in feet above mean sea level in the lower Dockum Aquifer in 2010 (stress period 82).

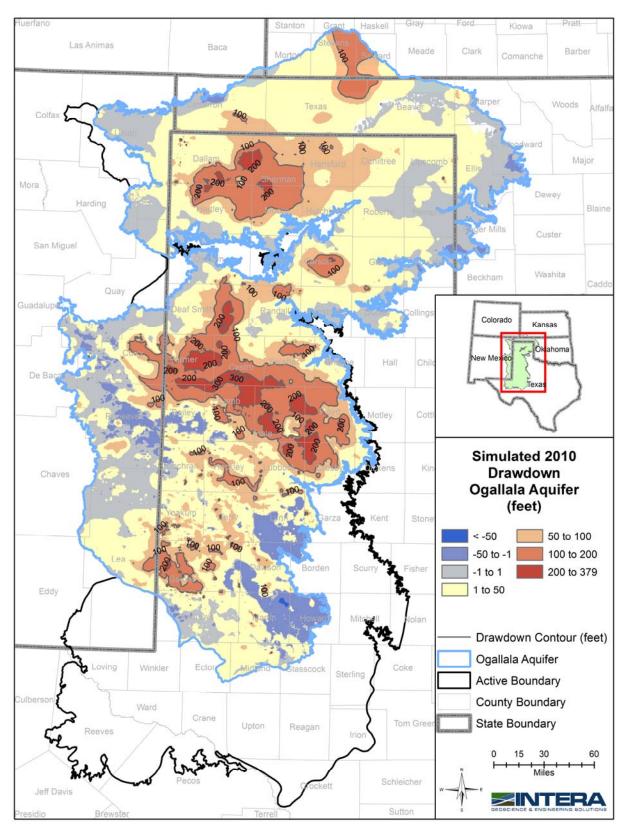


Figure 3.2.25 Simulated drawdown in feet in the Ogallala Aquifer from the pre-development (steady-state) stress period to 2010 (stress period 82).

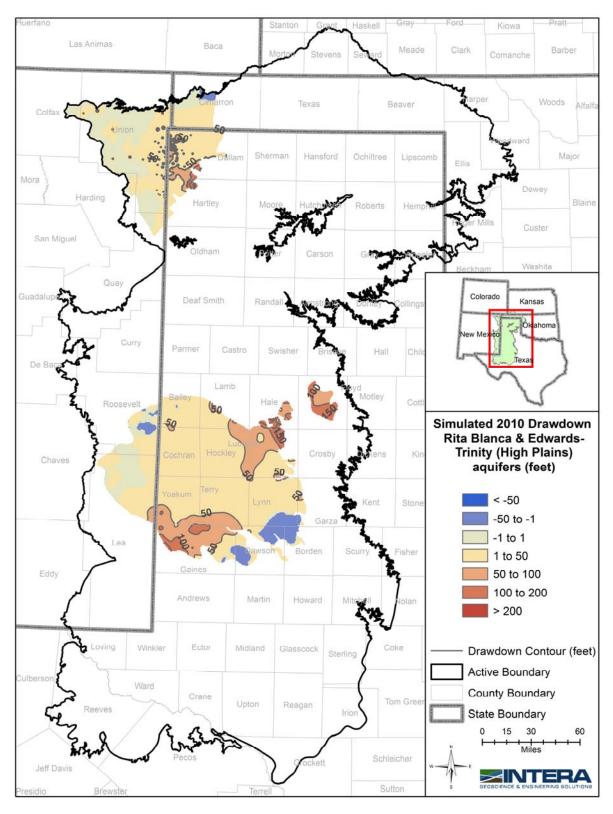


Figure 3.2.26 Simulated drawdown in feet in the Rita Blanca and Edwards-Trinity (High Plains) aquifers from the pre-development (steady-state) stress period to 2010 (stress period 82).

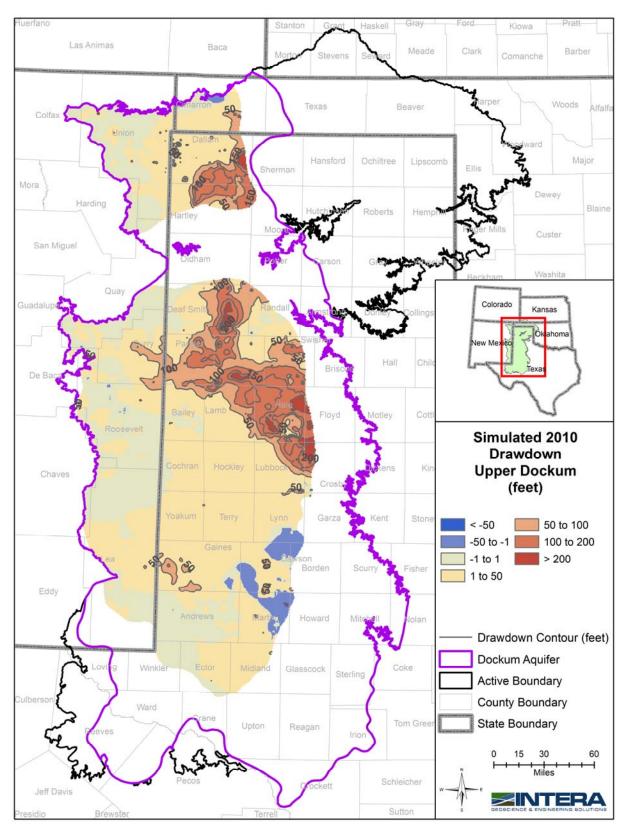


Figure 3.2.27 Simulated drawdown in feet in the upper Dockum Aquifer from the predevelopment (steady-state) stress period to 2010 (stress period 82).

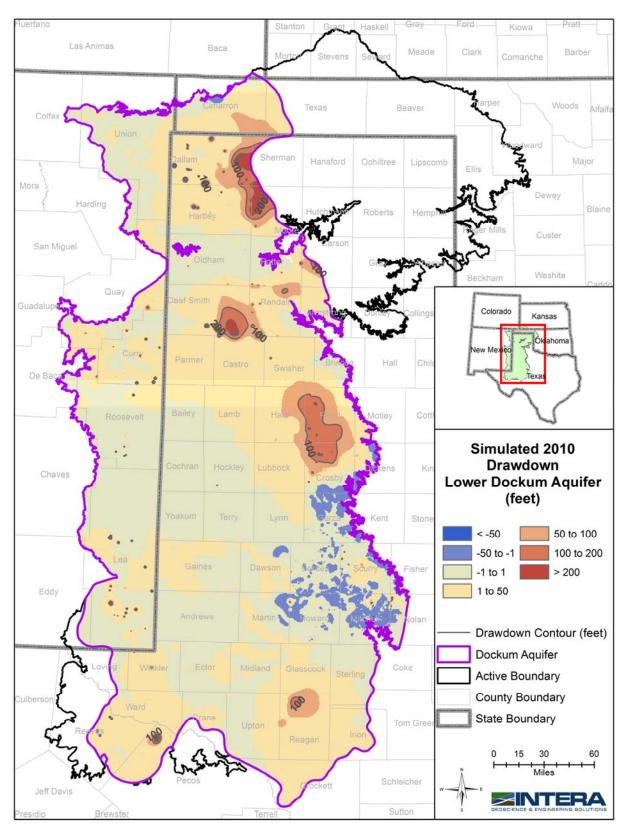


Figure 3.2.28 Simulated drawdown in feet in the lower Dockum Aquifer from the predevelopment (steady-state) stress period to 2010 (stress period 82).

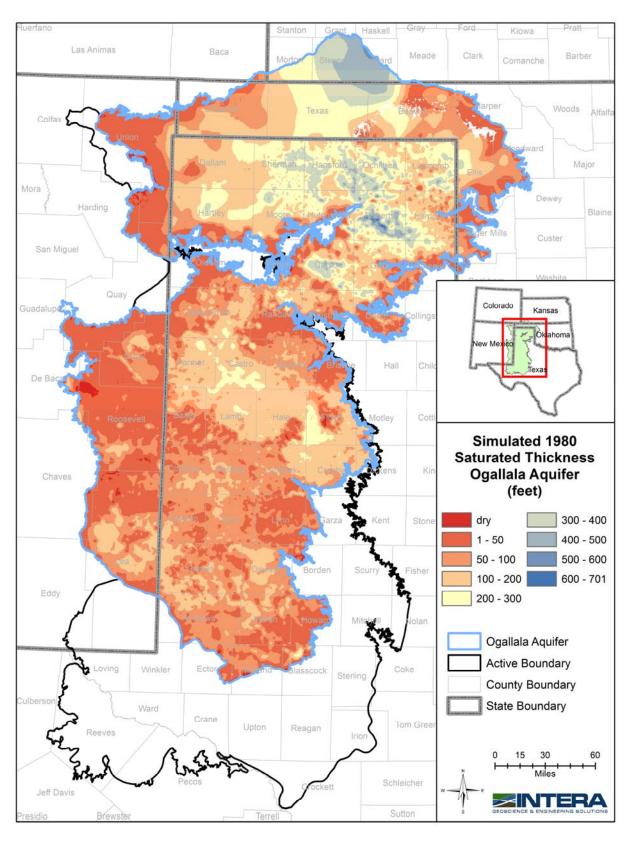


Figure 3.2.29 Simulated saturated thickness in feet in the Ogallala Aquifer in 1980 (stress period 52).

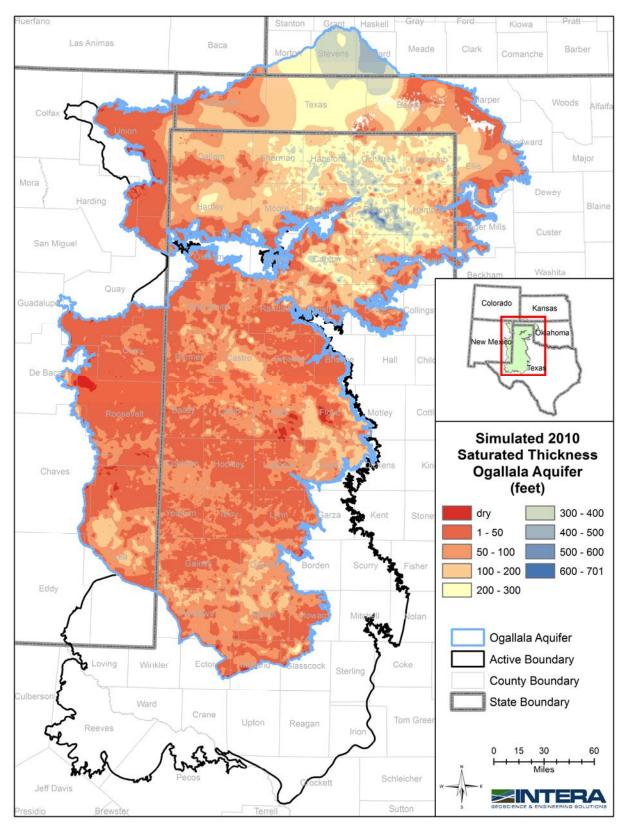


Figure 3.2.30 Simulated saturated thickness in feet in the Ogallala Aquifer in 2010 (stress period 82).

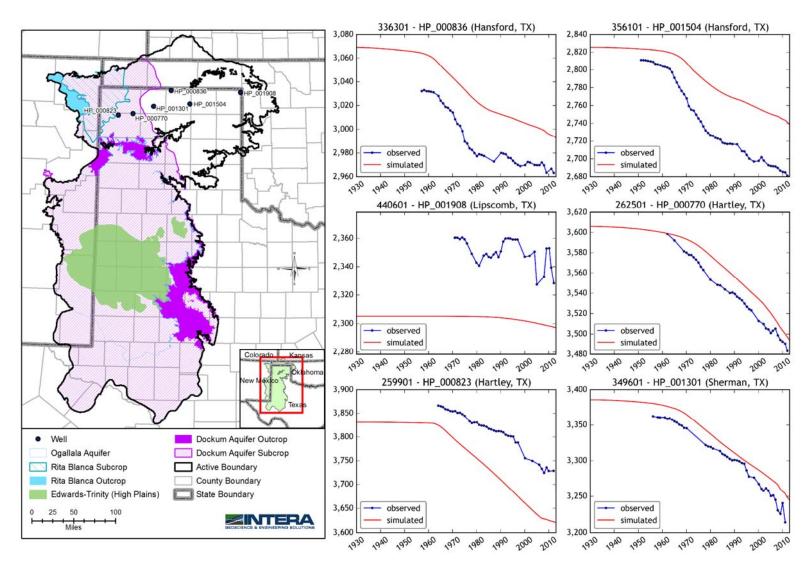


Figure 3.2.31 Select hydrographs (group 1) for wells completed in the Ogallala Aquifer in the northern part of the study area.

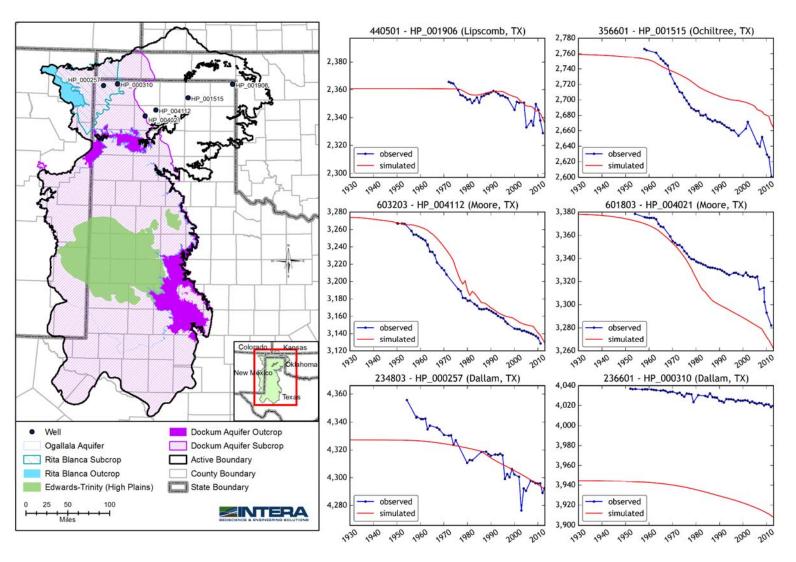


Figure 3.2.32 Select hydrographs (group 2) for wells completed in the Ogallala Aquifer in the northern part of the study area.

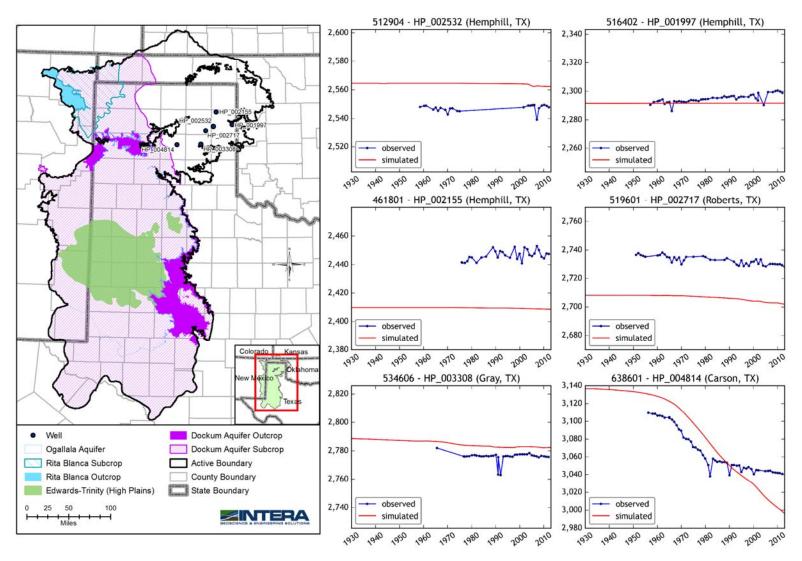


Figure 3.2.33 Select hydrographs (group 3) for wells completed in the Ogallala Aquifer in the northern part of the study area.

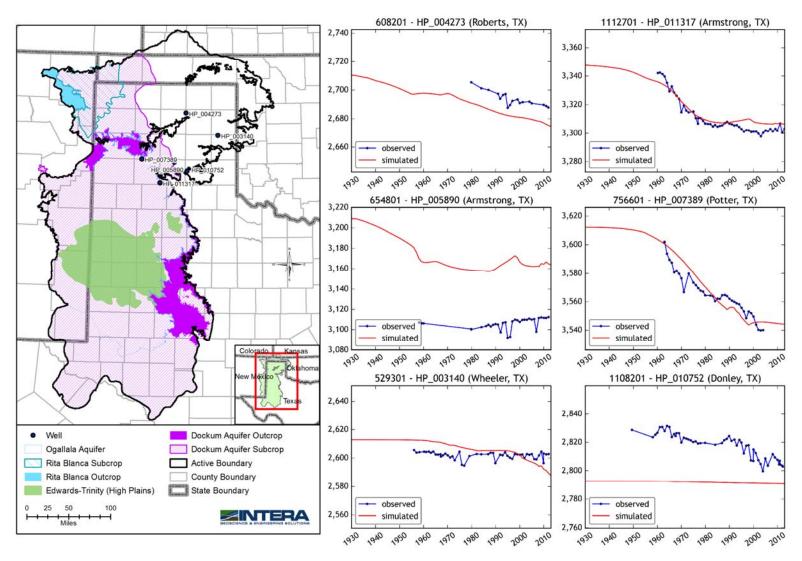


Figure 3.2.34 Select hydrographs for wells completed in the Ogallala Aquifer in the north and central parts of the study area.

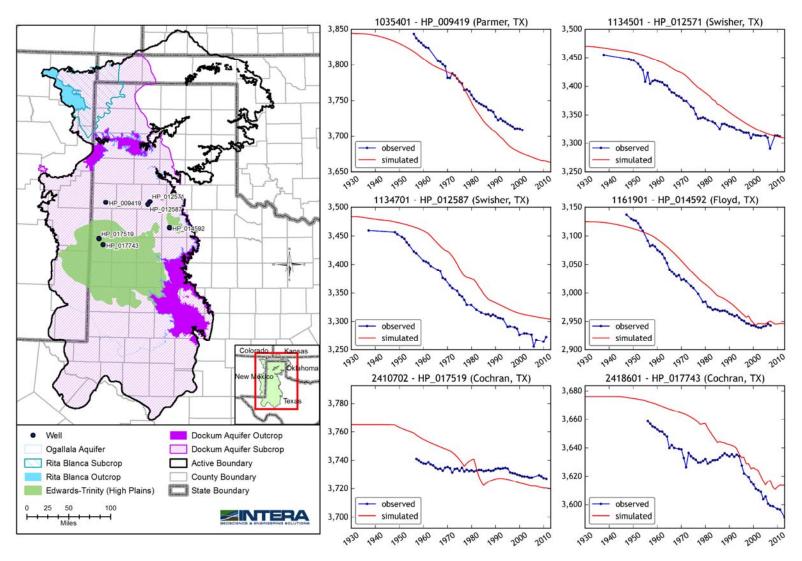


Figure 3.2.35 Select hydrographs for wells completed in the Ogallala Aquifer in the central part of the study area.

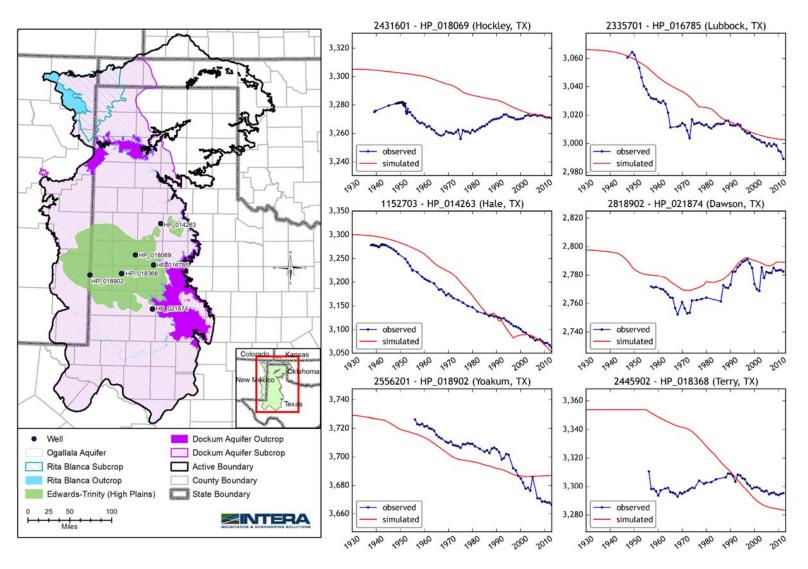


Figure 3.2.36 Select hydrographs (group 1) for wells completed in the Ogallala Aquifer in the south-central part of the study area.

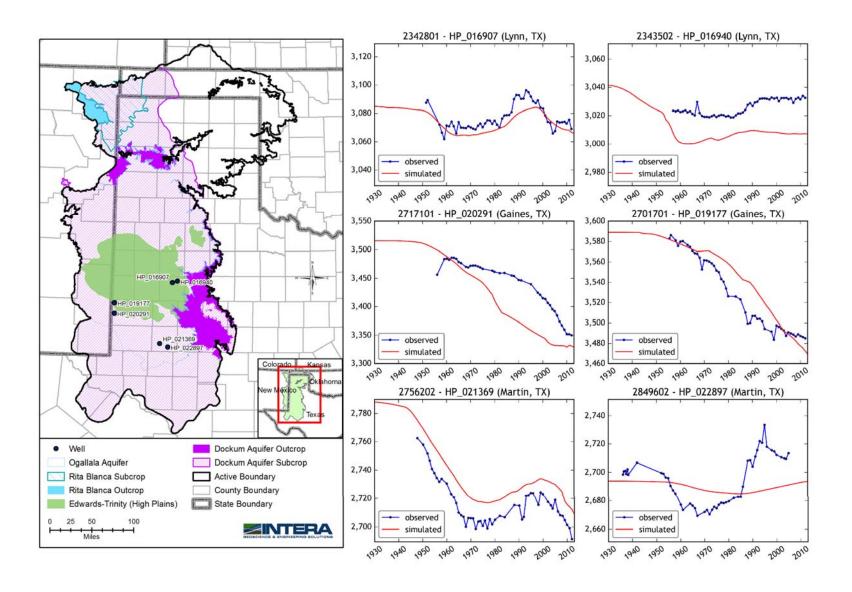


Figure 3.2.37 Select hydrographs (group 2) for wells completed in the Ogallala Aquifer in the south-central part of the study area.

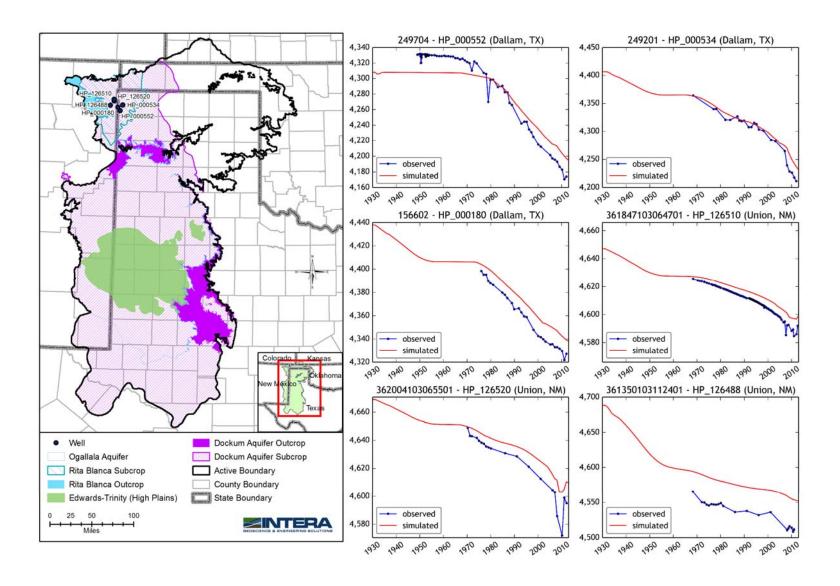


Figure 3.2.38 Select hydrographs for wells completed in the Rita Blanca Aquifer.

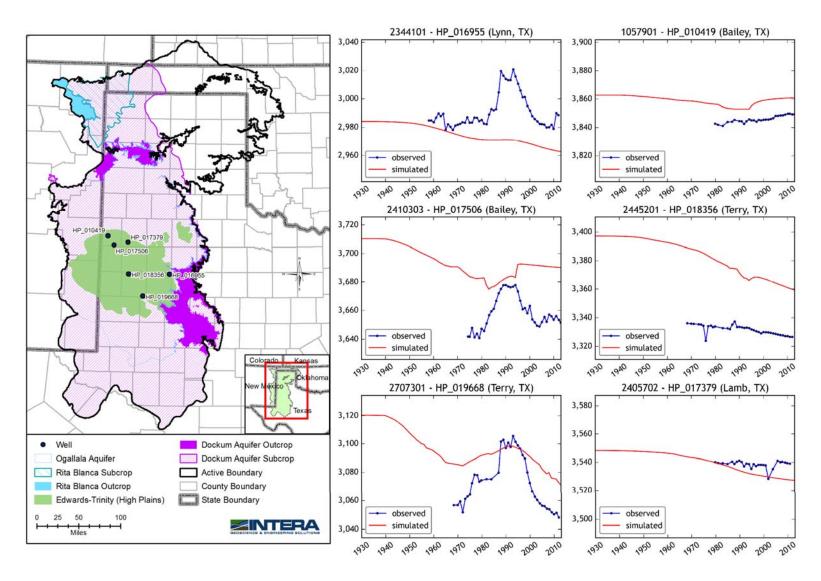


Figure 3.2.39 Select hydrographs (group 1) for wells completed in the Edwards-Trinity (High Plains) Aquifer.

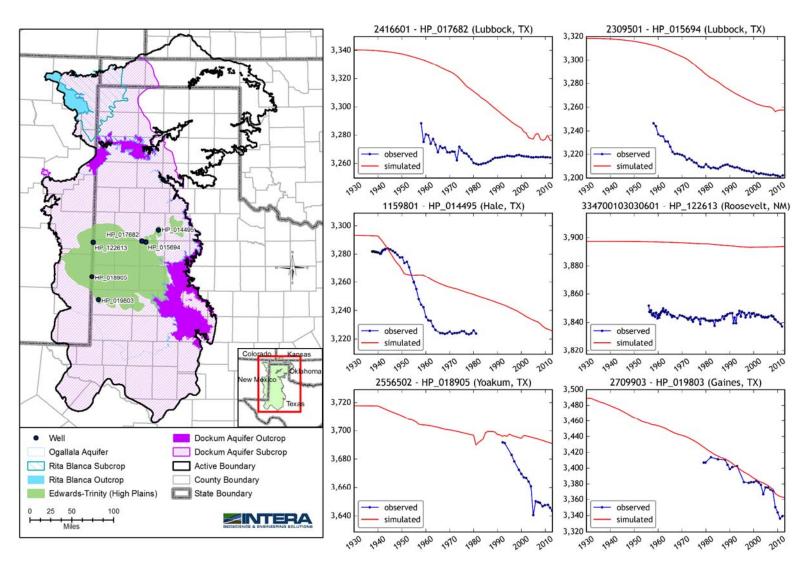


Figure 3.2.40 Select hydrographs (group 2) for wells completed in the Edwards-Trinity (High Plains) Aquifer.

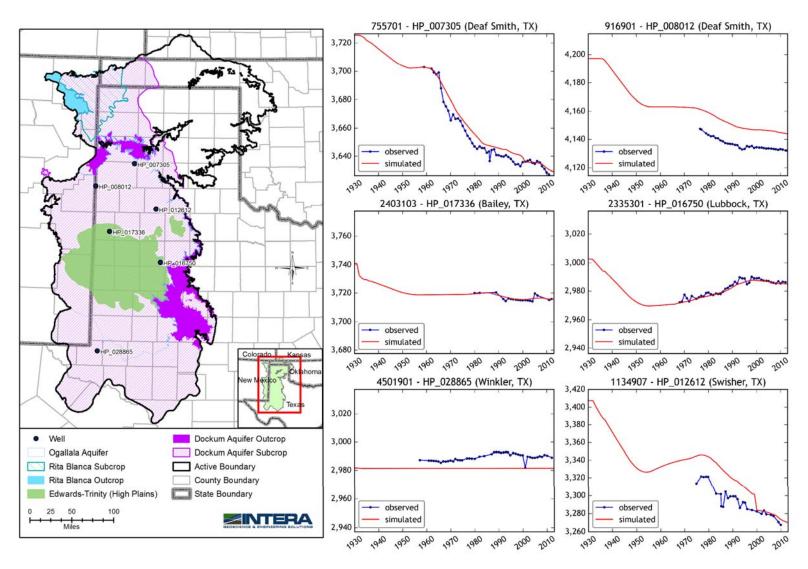


Figure 3.2.41 Select hydrographs for wells completed in the upper Dockum Aquifer.

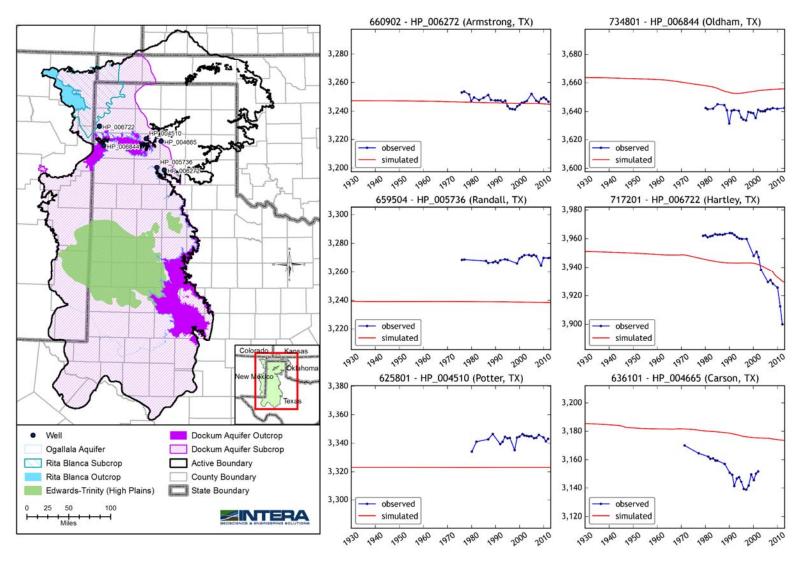


Figure 3.2.42 Select hydrographs for wells completed in the lower Dockum Aquifer in the northern part of the study area.

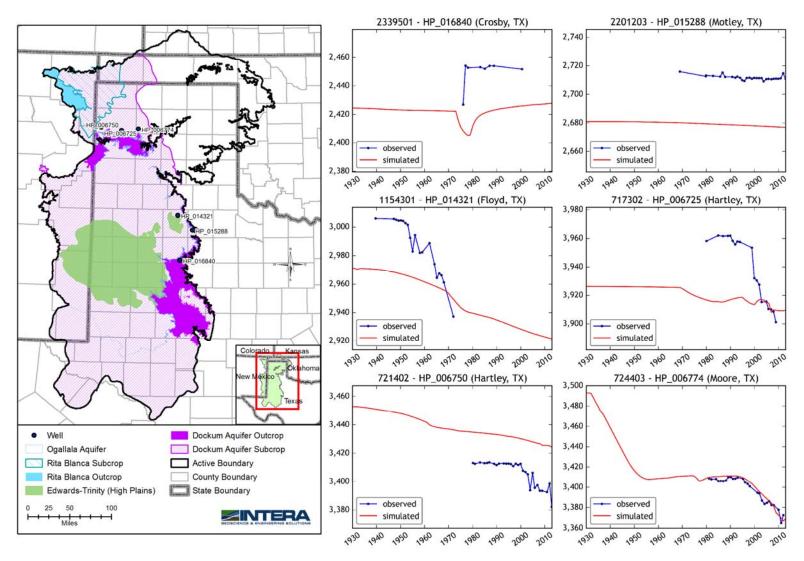


Figure 3.2.43 Select hydrographs for wells completed in the lower Dockum Aquifer in the northern and central portions of the study area.

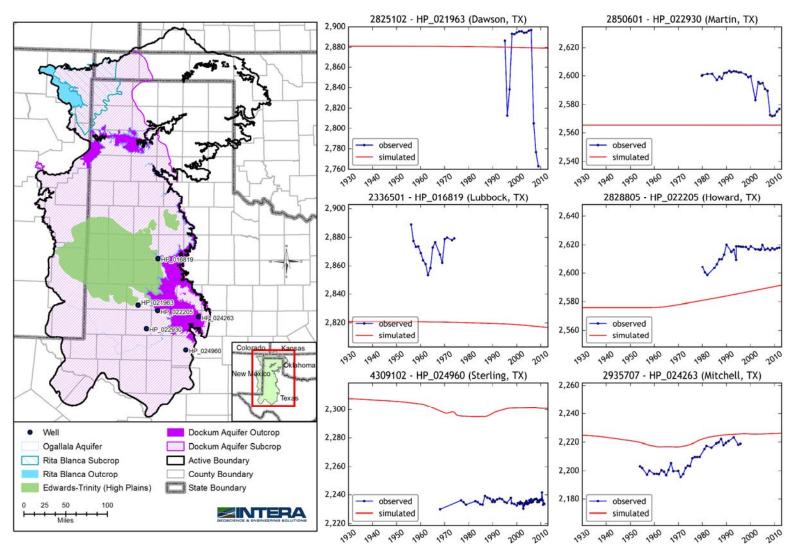


Figure 3.2.44 Select hydrographs for wells completed in the lower Dockum Aquifer in the southern portion of the study area.

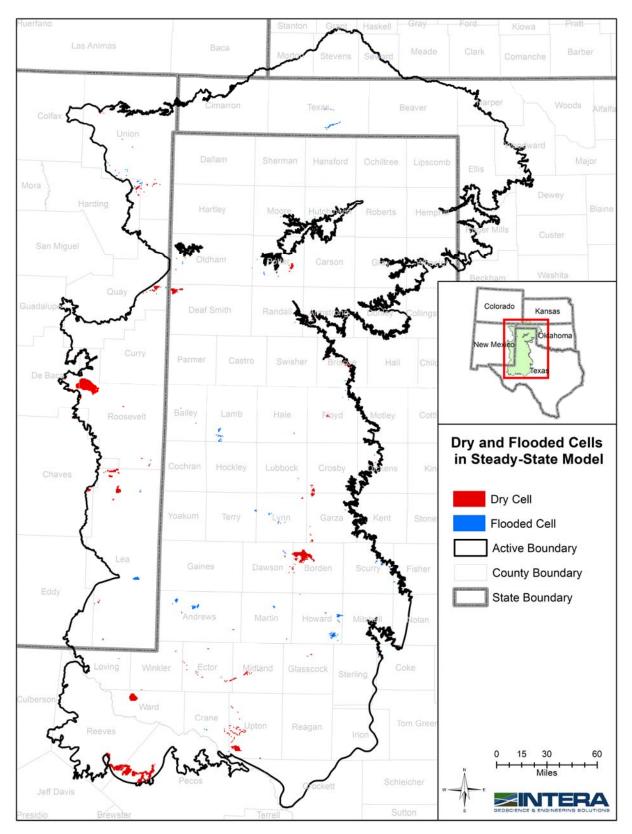


Figure 3.2.45 Dry and flooded cells in the steady-state model.

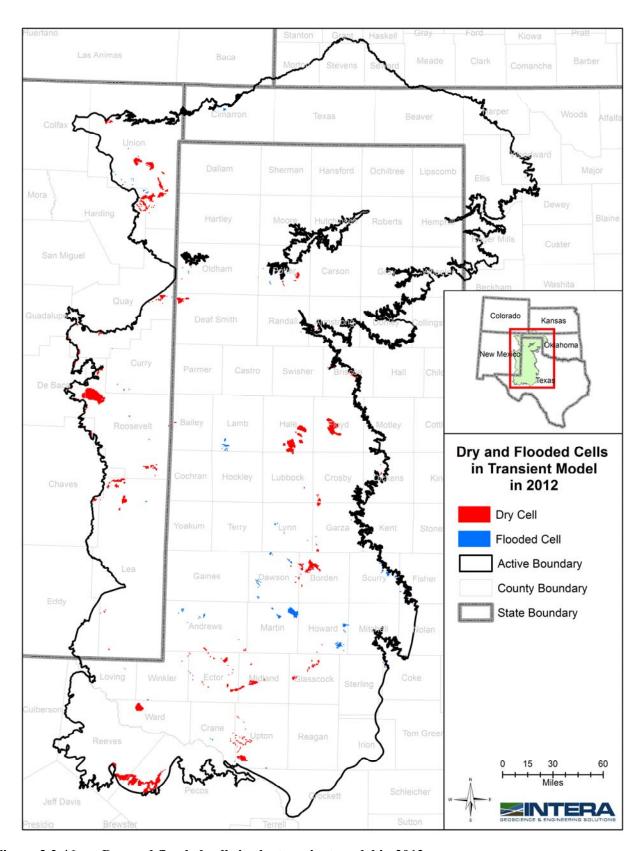


Figure 3.2.46 Dry and flooded cells in the transient model in 2012.

3.3 Model Simulated Fluxes

In this section, the model simulated fluxes are discussed, including recharge/discharge from the rivers, discharge to springs, and cross-formational flows between the aquifers. The results discussed in this section cover components of the overall water budget, which is further discussed in Section 3.4.

3.3.1 Rivers and Springs

As discussed in Section 3.1, the available river gain/loss and springflow estimates, which are synoptic (1 or 2 days of measurements over the entire historical period) were not considered to be quantitative targets for calibration. However, the simulated fluxes were monitored during calibration and compared to ranges established by the observed estimates and previous modeling studies.

Figure 3.3.1 shows the spatial distribution of simulated flux in and out of rivers in the model for the predevelopment stress period. In the northern region (Figure 3.3.1a), the tributaries are typically slightly losing, while the larger, main channels are gaining. The rate of gain tends to increase from west to east, following the distribution of recharge (and precipitation). In steady-state, the rivers are a larger source of discharge than recharge. The southern region (Figure 3.3.1b) shows a similar pattern, with tributaries typically losing in the higher, western elevations, and the larger channels gaining in the lower, eastern region. Rivers comprise the largest discharge component in steady-state.

Figure 3.3.2 shows the spatial distribution of simulated flux in and out of the rivers in the model for the last year of the simulation, 2012. In the northern region (Figure 3.3.2a), there is a clear decrease in the number of gaining reaches due to the decrease in water levels. A similar trend is seen in Figure 3.3.2b which shows the southern region. Comparison to Figure 3.2.25 shows that wherever drawdown has occurred since steady-state, discharge to rivers has decreased. Where drawdown has not occurred, such as in Martin and Howard counties, the discharge in 2012 is similar to that in steady-state. This overall decline in discharge to rivers is evident in the transient water budget, discussed in Section 3.4.2.

Figure 3.3.3 shows the simulated flux at spring locations for the steady-state stress period. In the northern portion of the study area (Figure 3.3.3a), most of the springs occur along the eastern

escarpment, while in the southern portion of the study area (Figure 3.3.3b), many large springs also occur in more central areas where the water table is shallow, such as in Lubbock and Lynn counties. Figure 3.3.4 shows the simulated flux at spring locations in 2012. Spring flows have decreased slightly along the escarpment in the north (Figure 3.3.4a), but have decreased more dramatically in the southern area (Figure 3.3.4b) where historical declines in the water table are more pronounced.

3.3.2 Cross-Formational Flow

One of the opportunities created by modeling all of the aquifers in the High Plains Aquifer System in a single model is the ability to analyze cross-formational flow under predevelopment and post-development conditions. Figure 3.3.5 shows the simulated flux through the bottom of the Ogallala Aquifer in predevelopment. The figure uses the MODFLOW sign convention of "positive down", so downward flux through the bottom is expressed as a positive number. In the northeast portion of the model where Ogallala Aquifer overlies Permian, the no-flow boundary prevents any flux through the bottom of the layer. Flux rates tend to be less than 0.1 inches per year, with isolated areas that exceed that rate. The higher rates occur along the escarpment, where water moves down into the shallow Dockum Aquifer from the Ogallala Aquifer and then discharges in the outcrop. In addition, higher rates both downward and upward occur where the Edward-Trinity (High Plains) Aquifer does not contain shale (Figure 3.1.6 shows the impact of shale on the estimated vertical conductivity). The Ogallala and Edwards-Trinity (High Plains) aguifers are well-connected vertically in those non-shale areas, typically where the latter is thinning along the edges. A pattern of alternating upward and downward flow is evident between the Ogallala Aquifer and Edwards-Trinity (High Plains) Aquifer in Gaines and Dawson counties to the south and Lubbock County to the northeast. The Edwards-Trinity (High Plains) Aquifer is thinning in these areas, so connection is good with the Ogallala Aquifer. In addition, stream channels are cutting through the exposed Ogallala Aquifer, so in areas where groundwater is discharging to these streams, the head in the Ogallala Aquifer is at its lowest, and vertical flow tends to be upward from the Edwards-Trinity (High Plains) Aquifer. In the interstream areas, vertical flow tends to be downward to the Edwards-Trinity (High Plains) Aquifer as is more common in the thicker parts of the aquifer.

Figure 3.3.6 shows the simulated flux through the top of the Rita Blanca Aquifer and Edwards-Trinity (High Plains) Aquifer, which is identical to the flux through the bottom of the Ogallala Aquifer where overlap occurs. No cross-formational flux can occur in the Rita Blanca Aquifer outcrop, since it represents the top of the model in that area. Higher rates occur where the Rita Blanca Aquifer transitions from outcrop to subcrop, where vertical gradients are significant, and discharge can occur in rivers and draws crossing the outcrop. Figure 3.3.7 shows simulated flux through the top of the upper Dockum Aquifer in steady-state. Because of low vertical conductivity, most of the fluxes are less than 0.1 inches per year. No clear imprint of the Edwards-Trinity (High Plains) Aquifer is seen in the flux pattern, indicating that the Edwards-Trinity (High Plains) Aquifer interacts far more with the overlying Ogallala Aquifer than the underlying upper Dockum Aquifer. More mixed (upward/downward) flux occurs in the west, where topography is highest, and more consistently downward flux occurs in the east, where the lower Dockum Aquifer outcrop provides a topographically lower elevation discharge boundary.

Figure 3.3.8 shows the simulated flux through the top of the lower Dockum Aquifer in steady-state. Rates are higher in the lower Dockum Aquifer than in the upper Dockum Aquifer, since the lower Dockum Aquifer is more transmissive, both horizontally and vertically. Higher rates of downward flux are evident along the eastern boundary, near the escarpment, where water moves down from the Ogallala Aquifer and discharges in springs and seeps in the outcrop and along the escarpment. Downward flux from the Ogallala Aquifer to the lower Dockum Aquifer also occurs on the edges of where outcrop transitions to subcrop, especially in the northern outcrop near the Canadian River. Low rates of both downward and upward flux occur where the lower Dockum Aquifer is overlain by Pecos Valley Aquifer or the Edwards-Trinity (Plateau) Aquifer.

Figure 3.3.9 shows the simulated flux through the bottom of the Ogallala Aquifer for year 2012. Again, the convention is positive downward, so flux from the Ogallala Aquifer to an underlying unit is positive and the reverse is negative. The most visible change between steady-state and year 2012 is the dominance of flux upward into the Ogallala Aquifer in 2012 in areas where significant drawdown has occurred. In many cases the upward flux is small, less than 0.1 inches per year, especially where the Ogallala Aquifer overlies the upper Dockum Aquifer. The alternating pattern of upward and downward flux between the Ogallala Aquifer and the Edwards-

Trinity (High Plains) Aquifer is still evident in 2012, indicating that the head gradients between the two aquifers in Gaines, Dawson, and Lubbock counties, still have the same general spatial variation.

Figure 3.3.10 shows the simulated flux through the top of Rita Blanca and Edwards-Trinity (High Plains) aquifers for year 2012. On the southern edge of the Edwards-Trinity (High Plains) Aquifer, where some drawdown has occurred, downward flux from the Ogallala Aquifer has increased. This effect has occurred in the Rita Blanca Aquifer, as well, where some of the localized drawdown has induced downward flow from the Ogallala Aquifer.

Figure 3.3.11 shows the simulated flux through the top of the upper Dockum Aquifer for year 2012. As noted in Section 3.2, because little pumping exists in the upper Dockum Aquifer, most of the drawdown in the upper Dockum Aquifer from steady-state has occurred due to influence from the overlying Ogallala Aquifer or underlying lower Dockum Aquifer. The influence of drawdown in the Ogallala Aquifer can be seen in the dominance of upward flux in the center of the area. The flux rates are small, typically less than 0.1 inches per year. Figure 3.3.12 shows the simulated flux through the top of the lower Dockum Aquifer for year 2012. The flux from the Ogallala Aquifer to the lower Dockum Aquifer along the eastern boundary is still present, but has decreased in rate. Where the Rita Blanca Aquifer overlies the lower Dockum Aquifer, upward flow from the lower Dockum Aquifer to the Rita Blanca Aquifer has increased due to drawdown in the Rita Blanca Aquifer. Finally, in the southeast where the Edwards-Trinity (Plateau) Aquifer overlies the lower Dockum Aquifer, there is evidence of increased upward flow from the lower Dockum Aquifer due to drawdown in the Edwards-Trinity (Plateau) Aquifer.

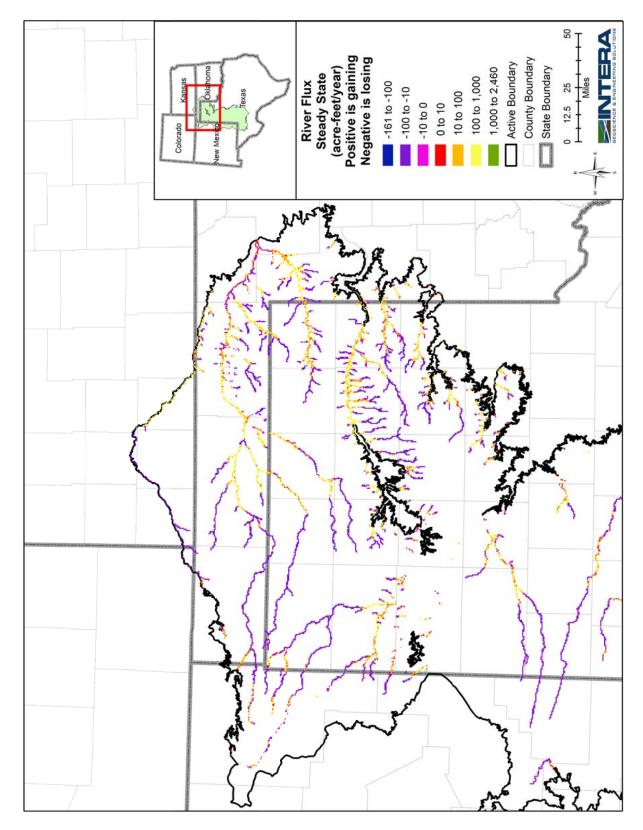


Figure 3.3.1a Spatial distribution of flux in and out of rivers in acre-feet per year in the predevelopment (steady-state) stress period in the northern portion of the study area.

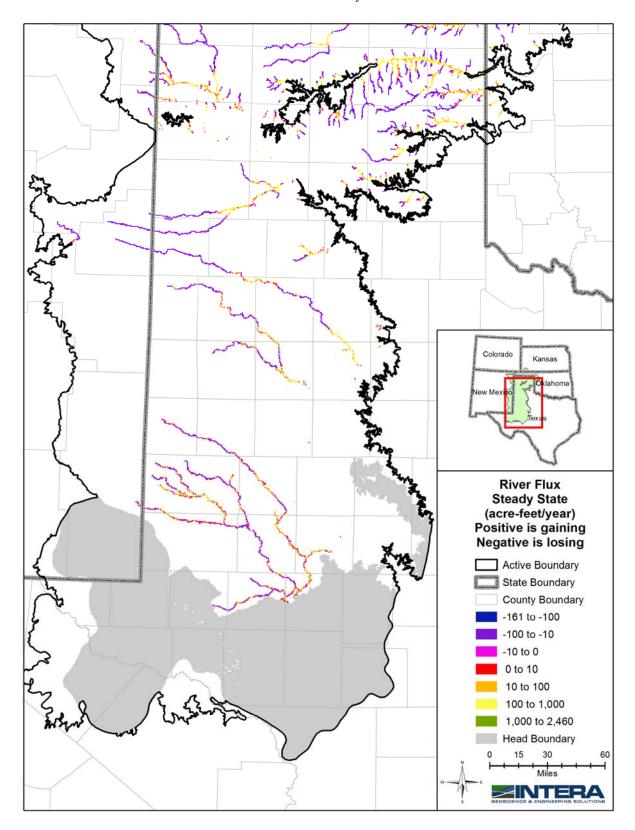


Figure 3.3.1b Spatial distribution of flux in and out of rivers in acre-feet per year in the predevelopment (steady-state) stress period in the southern portion of the study area.

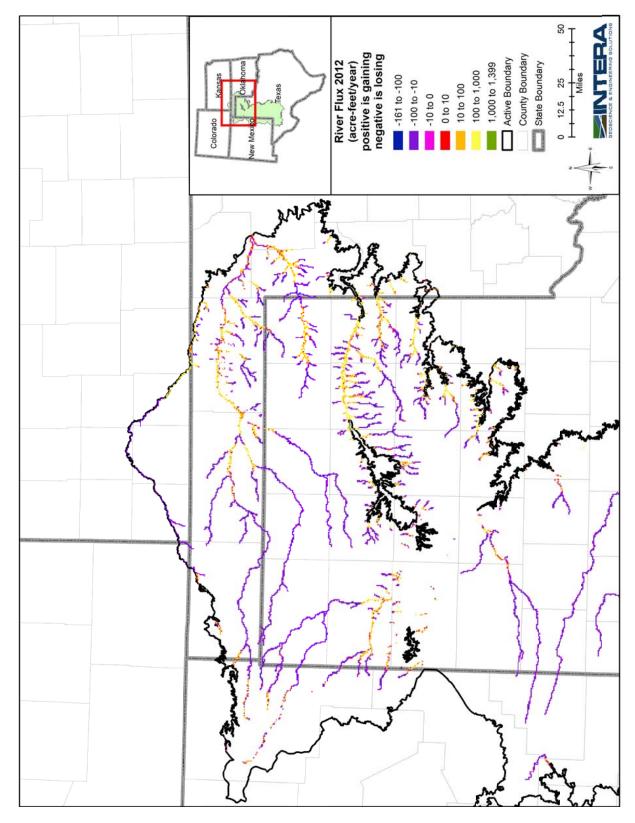


Figure 3.3.2a Spatial distribution of flux in and out of rivers in acre-feet per year in 2012 (stress period 84) in the northern portion of the study area.

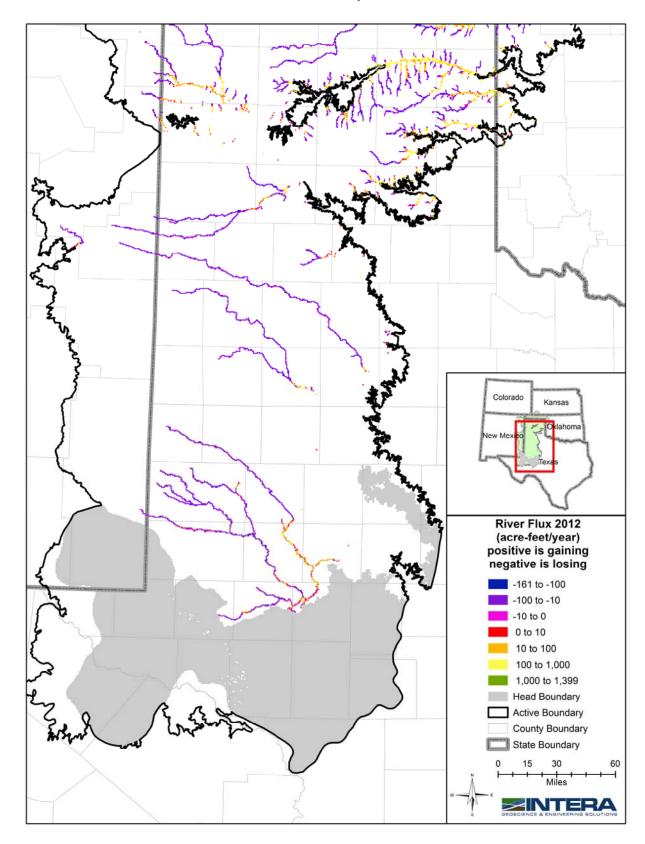


Figure 3.3.2b Spatial distribution of flux in and out of rivers in acre-feet per year in 2012 (stress period 84) in the southern portion of the study area.

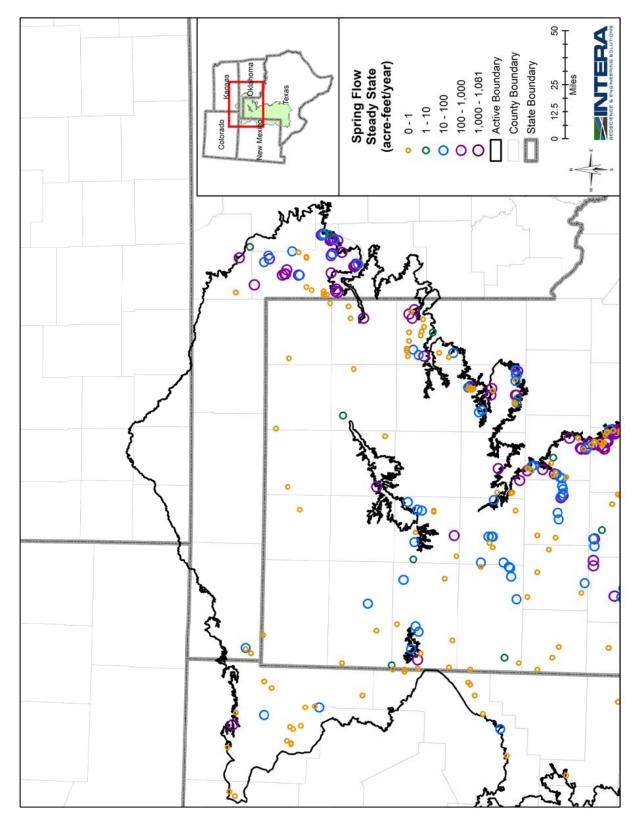


Figure 3.3.3a Spatial distribution of flux out of springs in acre-feet per year in the predevelopment (steady-state) stress period in the northern portion of the study area.

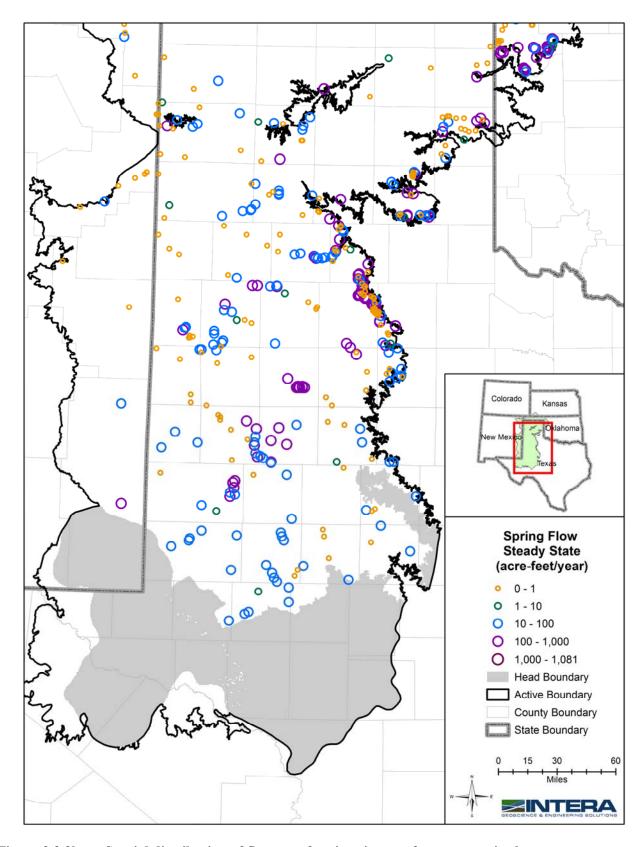


Figure 3.3.3b Spatial distribution of flux out of springs in acre-feet per year in the predevelopment (steady-state) stress period in the southern portion of the study area.

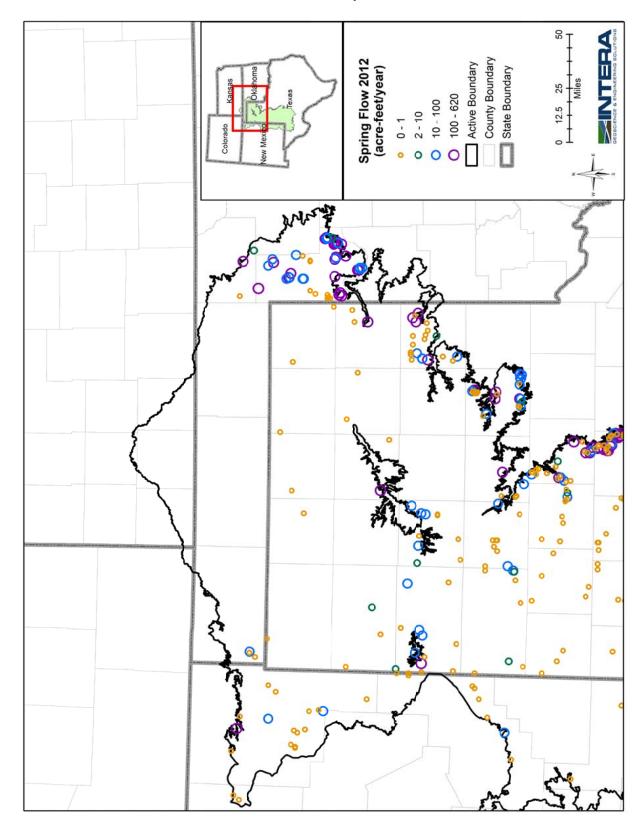


Figure 3.3.4a Spatial distribution of flux out of springs in acre-feet per year in 2012 (stress period 84) in the northern portion of the study area.

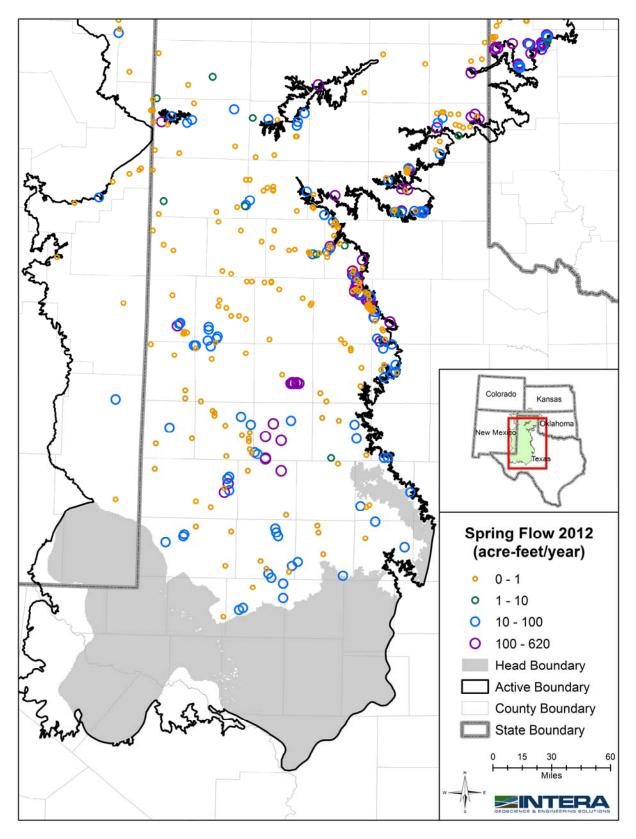


Figure 3.3.4b Spatial distribution of flux out of springs in acre-feet per year in 2012 (stress period 84) in the southern portion of the study area.

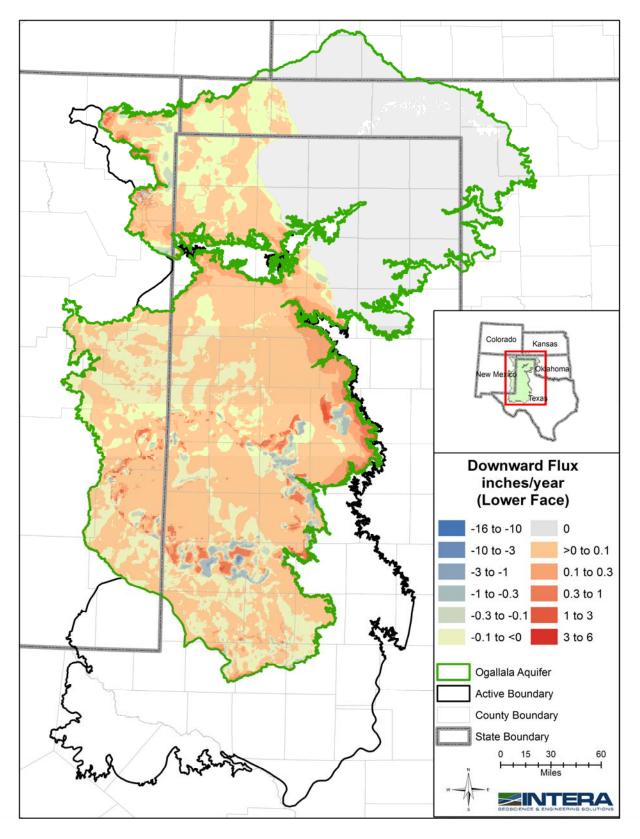


Figure 3.3.5 Spatial distribution of flux across the bottom of the Ogallala Aquifer in the predevelopment (steady-state) stress period.

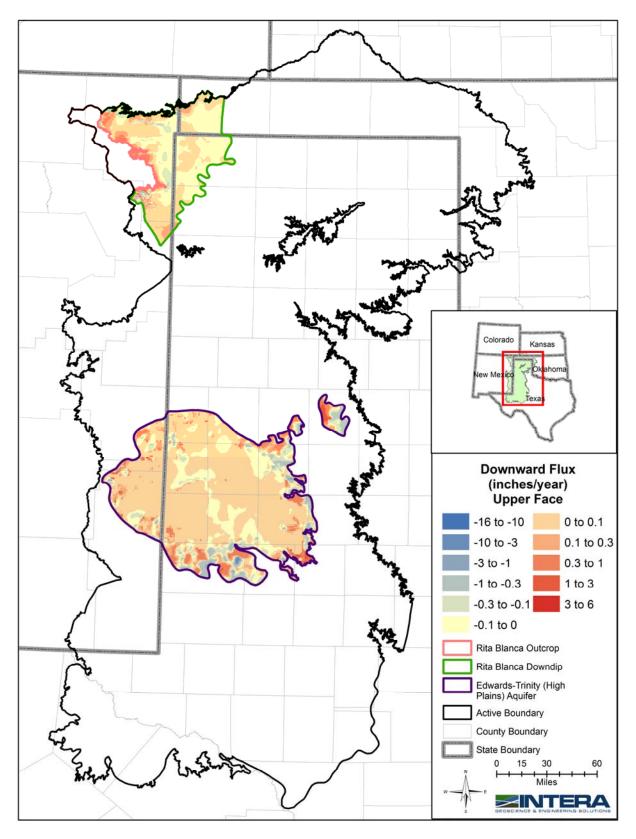


Figure 3.3.6 Spatial distribution of flux across the top of the Rita Blanca and Edwards-Trinity (High Plains) aquifers in the pre-development (steady-state) stress period.

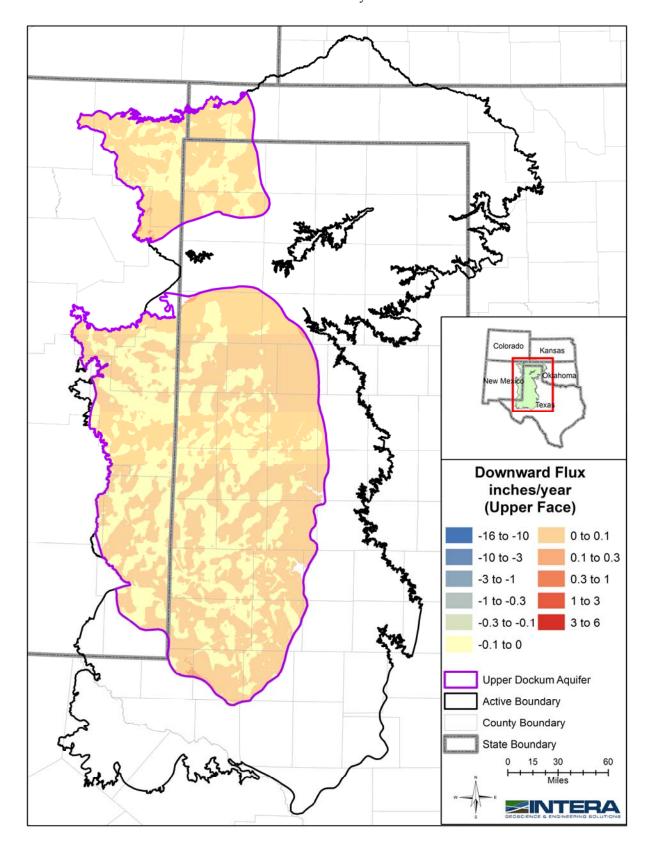


Figure 3.3.7 Spatial distribution of flux across the top of the upper Dockum Aquifer in the predevelopment (steady-state) stress period.

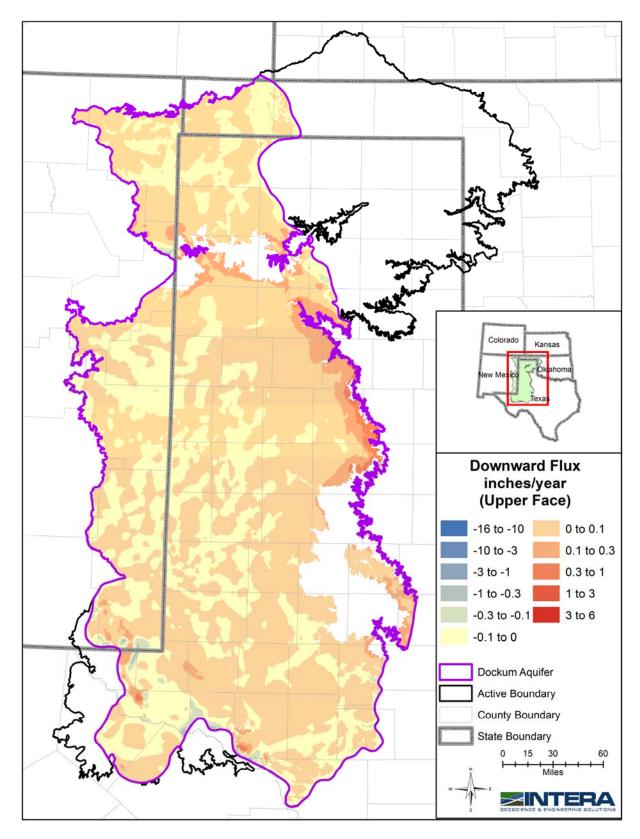


Figure 3.3.8 Spatial distribution of flux across the top of the lower Dockum Aquifer in the predevelopment (steady-state) stress period.

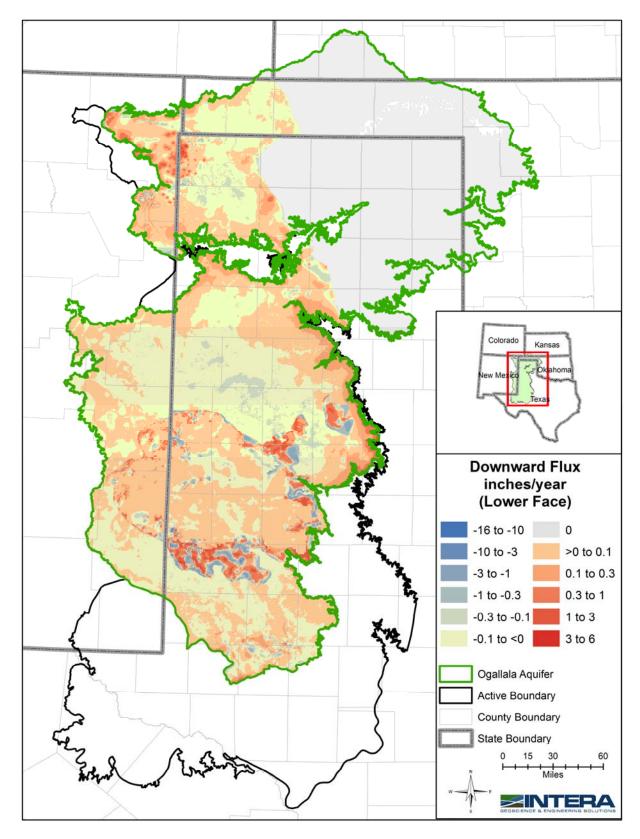


Figure 3.3.9 Spatial distribution of flux across the bottom of the Ogallala Aquifer in 2012 (stress period 84).

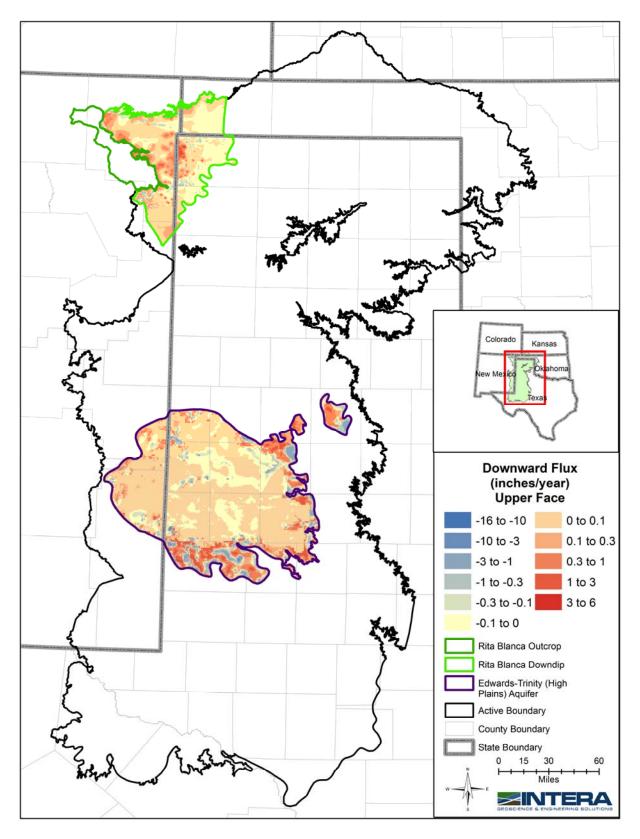


Figure 3.3.10 Spatial distribution of flux across the top of the Rita Blanca and Edwards-Trinity (High Plains) aquifers in 2012 (stress period 84).

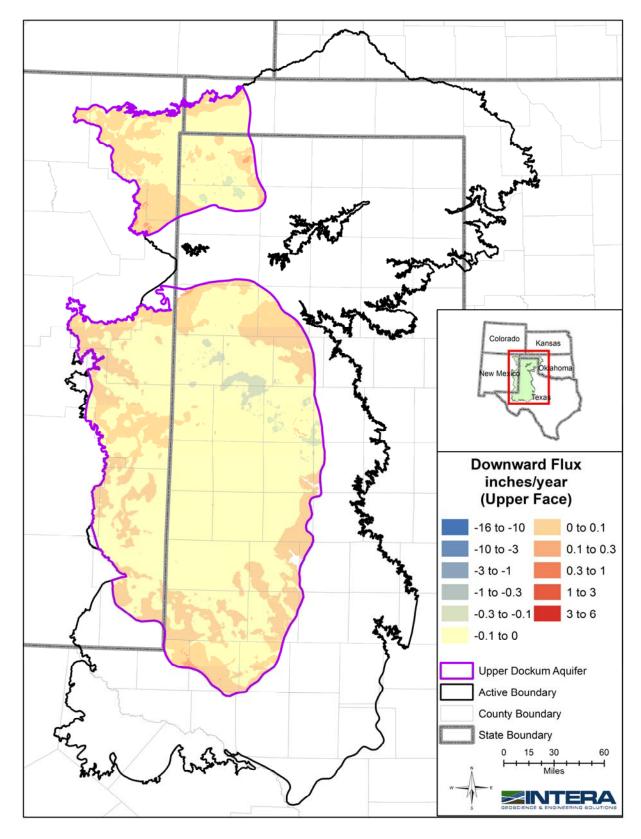


Figure 3.3.11 Spatial distribution of flux across the top of the upper Dockum Aquifer in 2012 (stress period 84).

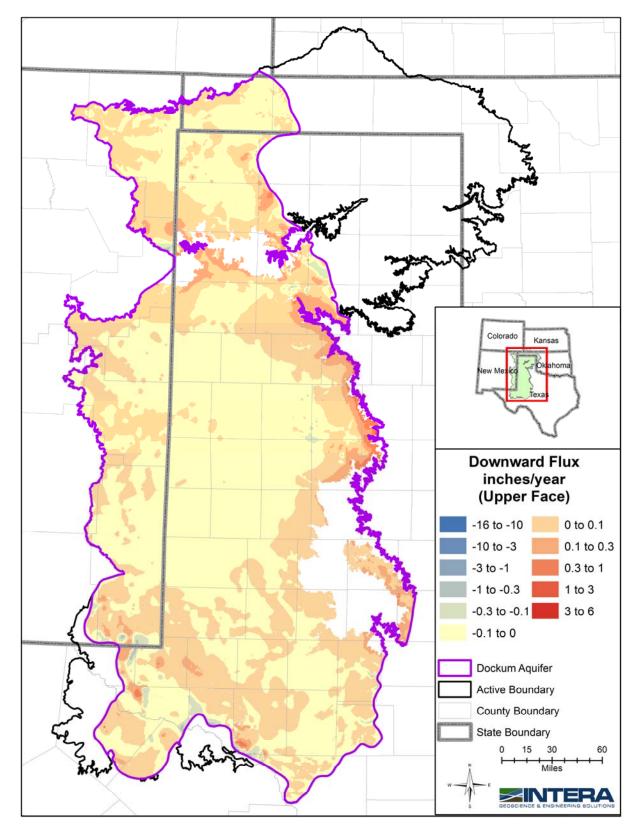


Figure 3.3.12 Spatial distribution of flux across the top of the lower Dockum Aquifer in 2012 (stress period 84).

3.4 Model Simulated Water Budgets

In this section, the simulated water budgets are discussed both for the steady-state and transient stress periods. The water budgets are one of the more important aspects of the High Plains Aquifer System groundwater availability model, since the model provides an opportunity to analyze flow between the aquifers that was not possible before. Previous models had simulated only one aquifer at a time (or in the case of the Southern Ogallala Aquifer groundwater availability model (Blandford and others, 2008), the southern Ogallala Aquifer and Edwards-Trinity (High Plains) Aquifer. In this section the water budget is discussed with respect to the overall aquifers. Appendix A contains the water budget summarized by county and groundwater conservation district, for all counties and groundwater conservation districts in the study area.

3.4.1 Steady-State Water Budget

One aspect of the water budget involves checking that unacceptable errors do not occur in the net balance. The calibrated model had an overall budget error of 0.00 percent for any stress period. As discussed in Section 2, one of the advantages of MODFLOW-NWT over previous MODFLOW versions, is the ability to constrain convergence based on cell flux, as well as head. This constraint helps to ensure that local mass balance errors do no occur undetected while the global balance appears acceptable.

Table 3.4.1 summarizes the water budget for the steady-state model in acre-feet per year. The water budget contains components of flow to and from other aquifers. Because the Ogallala Aquifer is the most productive in the system, flow to and from the Ogallala Aquifer is tracked separately, while interaction with other aquifers is combined into a single term, to help simplify the analysis. The cross-formational flow terms are shown to help understand the interactions among the aquifers. Note that the cross-formational flow into the Ogallala Aquifer from other aquifers (44,330 acre-feet per year) is the same number as the sum of cross-formational flow out from other aquifers to the Ogallala Aquifer (bottom row of the table, -44,330 acre-feet per year). Similarly, the sum of the cross-formational flow into other aquifers from the Ogallala Aquifer (last row of the IN table, 86,240 acre-feet per year) is identical in magnitude to the cross-formational flow (other) in the first row of the OUT table (-86,240 acre-feet per year). These are the types of comparisons that help to ensure that the budget components are being correctly accounted. The cross-formational flow (other aquifers) sum, for both input and output, does not

include the Ogallala Aquifer, so that the sum in the IN table can be compared exactly to the sum in the OUT table. Table 3.4.2 contains the model-wide water budget components for each aquifer as a percentage of total inflow and outflow. We will refer to some of the percentages in this table when discussing the per-aquifer water budgets next.

Figures 3.4.1 through 3.4.5 show bar charts of the steady-state water budgets for each aquifer. The discussion begins with the Ogallala Aquifer (Figure 3.4.1), which receives over 96 percent of the 903,000 acre-feet per year of areal recharge in the system. Recharge comprises 68 percent of the total inflow to the model in steady-state. The second large contributor to inflow to the Ogallala Aquifer is rivers, with more than 246,000 acre-feet per year inflow. A relatively small component of inflow to the Ogallala Aquifer comes from other aquifers, at about 44,000 acre-feet per year. A little less than half of the inflow discharges to the rivers, while the remaining discharge is about half groundwater evapotranspiration and half drain flow, which includes flow to draws, springs, and seeps along the escarpments. As with inflow, a relatively small component of the discharge goes to other aquifers, at about 86,000 acre-feet per year.

Figure 3.4.2 shows the steady-state water balance for the Rita Blanca Aquifer. All inflows to the Rita Blanca Aquifer total about 13,400 acre-feet per year. For the Rita Blanca Aquifer, the largest recharge mechanism is cross-formational flow from the Ogallala Aquifer, followed by areal recharge on the outcrop. The largest discharge components are cross-formational flow to the Ogallala Aquifer and discharge to rivers in the outcrop. Because the outcrop discharge components are roughly equal to the outcrop recharge components, little water is moving from the outcrop to the downdip section of the aquifer. The confined section is dominantly interacting through vertical flow with the Ogallala and Dockum aquifers.

Figure 3.4.3 shows the steady-state water balance for the Edwards-Trinity (High Plains) Aquifer. Because the Edwards-Trinity (High Plains) Aquifer is confined, all of the water budget consists of cross-formational flow (34,300 acre-feet per year), of which 99 percent is with the Ogallala Aquifer.

Figure 3.4.4 shows the steady-state water balance for the upper Dockum Aquifer. The upper Dockum Aquifer is also mostly confined, with a small outcrop that contributes minimally in terms of recharge and discharge. About 13,600 acre-feet per year passes into the upper Dockum Aquifer. This value compares favorably to the existing Dockum Aquifer groundwater

availability model (Ewing and others, 2008) which estimated 17,000 acre-feet per year of inflow. The largest inflow component is from the Ogallala Aquifer, while the most discharge occurs to other aquifers, predominantly downward to the lower Dockum Aquifer.

Figure 3.4.5 shows the steady-state water balance for the lower Dockum Aquifer. Inflows to the lower Dockum Aquifer account for 4.6 percent of the total inflows to the model. Total input to the lower Dockum Aquifer is about 116,000 acre-feet per year. This compares favorably (the values happen to be identical when rounded to the nearest 1,000) to the existing Dockum Aquifer groundwater availability model (Ewing and others, 2008) which also estimated 116,000 acre-feet per year input to the lower Dockum Aquifer. The existing Dockum Aquifer groundwater availability model has less input from recharge and rivers, and more input from cross-formational flow, but the total input came out the same as for the High Plains Aquifer System groundwater availability model. The primary discharge component is the rivers in the outcrop. Recall that the Dockum Aquifer outcrops are in regional lows, so the outcrops are areas of regional discharge, as well as areas where recharge occurs and discharges locally.

3.4.2 Transient Water Budget

Tables 3.4.3 and 3.4.4 show a summary of the transient water budget for years 1980 and 2012, respectively. As noted at the beginning of the section, Appendix A contains the water budget summarized by county and groundwater conservation district, for all counties and groundwater conservation districts in the study area for several years of the historical period. In this subsection, time series plots will be used as the basis for the discussion of the transient water balance for each of the aquifers in the system.

Figure 3.4.6a shows the water budget for the Ogallala Aquifer in the transient model. Pumping dominates outflow from the aquifer, and water from storage dominates inflow, which means that water is coming out of storage to balance the groundwater production, and water levels are declining in some portion of the area. Figure 3.4.6b shows the same plot with a zoomed y-axis, to allow focus outside of storage and pumping. One notable trend is the steady increase in recharge through time, which results from the "breakthrough" of agriculturally-enhanced recharge at various decades in the southern portion of the study area. Recharge increases from about 870,000 acre-feet per year to nearly 1.5 million acre-feet per year by the end of the transient period. Discharge to rivers decreases from over 500,000 acre-feet per year to less than

300,000 acre-feet per year. Flow to drains and evapotranspiration also is reduced somewhat over time as water levels decline. A slight increase can be seen in both flow to and from other zones, as both the Ogallala Aquifer and underlying aquifers experience the increased vertical gradients that result from drawdown.

Figure 3.4.7 shows the water budget for the Rita Blanca Aquifer in the transient model. As with the Ogallala Aquifer budget, the impact on storage can be seen to mirror the increase in production. However, a second part of the response, besides increasing water coming from storage, is the increase in water coming in from the Ogallala Aquifer, as vertical gradients increase due to drawdown in the Rita Blanca Aquifer.

Figure 3.4.8 shows the water budget for the Edwards-Trinity (High Plains) Aquifer in the transient model. The effect of production on storage is muted, although the long term increasing trend is the same. The oscillation of production is mirrored more closely by a change in the inflow from the Ogallala Aquifer. However, the bulk of the inflow from the Ogallala Aquifer returns as outflow to the Ogallala Aquifer.

Figure 3.4.9 shows the water budget for the upper Dockum Aquifer in the transient model. An increasing, but still small, amount of flow goes to the Ogallala Aquifer as drawdown increases in the Ogallala Aquifer through time. This is consistent with the imprint of Ogallala Aquifer drawdown seen in some portions of the underlying upper Dockum Aquifer. The flow going to and from other zones increases slightly through time.

Figure 3.4.10 shows the water budget for the lower Dockum Aquifer in the transient model. The mirror trends of storage and production are clearly seen, with production becoming the largest outflow component by the end of the transient period. Discharge to rivers is fairly steady through time, while recharge increases due to agriculturally enhanced percolation in some areas. The increase in recharge creates a slight rise in water levels in some portions of the aquifer, which is displayed in the slight negative increase in storage.

Table 3.4.1 Steady-state water budget.

IN										
Aquifer	Recharge	Rivers		GHB ¹	Cross- formational (Ogallala)	Cross- formational (Other)	Layer Total	Model ³ Total		
Ogallala	866,085	246,092				44,330	1,156,507	1,112,177		
Rita Blanca	3,141	495			9,355	452	13,443	3,636		
Edwards-Trinity (High Plains)	0	0			34,251	167	34,418	0		
Upper Dockum	301	62			8,109	5,201	13,673	363		
Lower Dockum	33,422	25,368			30,421	26,715	115,926	58,789		
Edwards-Trinity (Plateau) ²				43,849	3,220	5,674	52,744	43,849		
Pecos Valley ²				55,117	885	11,478	67,480	55,117		
Sum	902,949	272,017		98,967	86,240	49,6874		1,273,932		
			OUT							
Aquifer	ET ⁵		Drains							
Ogallala	-280,914	-528,193	-261,201			-86,240	-1,156,548	-1,070,307		
Rita Blanca	-679	-3,930	-1,175		-5,262	-2,397	-13,443	-5,784		
Edwards-Trinity (High Plains)	0	0	0		-32,357	-2,061	-34,418	0		
Upper Dockum	-25	-108	-39		-1,125	-12,377	-13,673	-171		
Lower Dockum	-15,876	-69,042	-17,113		-2,721	-11,174	-115,926	-102,031		
Edwards-Trinity (Plateau) ²				-38,017	-2,830	-11,896	-52,744	-38,017		
Pecos Valley ²				-57,663	-35	-9,782	-67,480	-57,663		
Sum	-297,493	-601,272	-279,528	-95,680	-44,330	-49,687 ⁴		-1,273,973		

¹GHB denotes general head boundary implemented using River package.
²Not part of the High Plains Aquifer System and treated as head boundaries.
³Model total does not include cross-formational flow, since cross-formational flow is internal to the overall model.

⁴Sum does not include Ogallala, to allow comparison of sums between IN and OUT.

⁵ET denotes evapotranspiration.

Table 3.4.2 Steady-state water budget components expressed as a percentage of total inflow and outflow.

Aquifer	Recharge	Rivers		GHB ¹	Model Total
Ogallala	68.0%	19.3%			87.3%
Rita Blanca	0.2%	0.0%			0.3%
Edwards-Trinity (High Plains)	0.0%	0.0%			0.0%
Upper Dockum	0.0%	0.0%			0.0%
Lower Dockum	2.6%	2.0%			4.6%
Edwards-Trinity (Plateau) ²				3.4%	3.4%
Pecos Valley ²				4.3%	4.3%
Sum	70.9%	21.4%		7.8%	100.0%
Aquifer	ET ³		Drains		
Ogallala	-22.1%	-41.5%	-20.5%		-84.0%
Rita Blanca	-0.1%	-0.3%	-0.1%		-0.5%
Edwards-Trinity (High Plains)	0.0%	0.0%	0.0%		0.0%
Upper Dockum	0.0%	0.0%	0.0%		0.0%
Lower Dockum	-1.2%	-5.4%	-1.3%		-8.0%
Edwards-Trinity (Plateau) ²				-3.0%	-3.0%
Pecos Valley ²				-4.5%	-4.5%
Sum	-23.4%	-47.2%	-21.9%	-7.5%	-100.0%

¹GHB denotes general head boundary implemented using River package. ²Not part of the High Plains Aquifer System and treated as head boundaries.

³ET denotes evapotranspiration.

Table 3.4.3 Transient Water Budget for 1980.

IN											
Aquifer	Recharge	Rivers		GHB ¹		Storage	Reservoirs	Cross- formational (Ogallala)	Cross- formational (Other)	Layer Total	Model ³ Total
Ogallala	1,062,294	312,041				6,182,166	1,496		71,315	7,629,313	7,557,997
Rita Blanca	3,101	543				7,137	0	14,087	1,188	26,055	10,780
Edwards-Trinity (High Plains)	0	0				11,062	0	56,922	3,211	71,195	11,062
Upper Dockum	301	63				16,576	0	5,691	10,074	32,705	16,940
Lower Dockum	58,730	24,540				53,735	1,486	30,804	25,515	194,811	138,491
Edwards-Trinity (Plateau) ²				30,257		68,292	0	2,779	6,339	107,666	98,549
Pecos Valley ²				50,221		35,200	0	460	12,294	98,174	85,421
Sum	1,124,426	337,186		80,478		6,374,169	2,982	110,742	58,6214		7,919,241
					OUT						
Aquifer	ET ⁵		Drains		Pumping						
Ogallala	-204,241	-370,508	-214,496		-6,526,538	-202,699	-42		-110,742	-7,629,267	-7,518,524
Rita Blanca	-648	-3,768	-1,117		-13,559	-18	0	-4,699	-2,245	-26,055	-19,111
Edwards-Trinity (High Plains)	0	0	0		-26,765	-523	0	-42,503	-1,405	-71,195	-27,288
Upper Dockum	-24	-106	-39		-96	-202	0	-17,556	-14,684	-32,707	-466
Lower Dockum	-16,857	-69,880	-17,535		-48,085	-22,348	-52	-3,326	-16,732	-194,815	-174,757
Edwards-Trinity (Plateau) ²				-91,001		-670	0	-3,173	-12,822	-107,667	-91,672
Pecos Valley ²				-86,277		-1,106	0	-59	-10,734	-98,175	-87,383
Sum	-221,771	-444,262	-233,187	-177,278	-6,615,043	-227,565	-94	-71,315	-58,6214		-7,919,201

¹GHB denotes general head boundary implemented using River package.

²Not part of the High Plains Aquifer System and treated as head boundaries.

³Model total does not include cross-formational flow, since cross-formational flow is internal to the overall model.

⁴Sum does not include Ogallala, to allow comparison of sums between IN and OUT.

⁵ET denotes evapotranspiration.

Table 3.4.4 Transient Water Budget for 2012.

IN											
Aquifer	Recharge	Rivers		GHB ¹		Storage	Reservoirs	Cross- formational (Ogallala)	Cross- formational (Other)	Layer Total	Model ³ Total
Ogallala	1,467,708	339,445				5,285,644	1,997		94,534	7,189,328	7,094,794
Rita Blanca	3,101	583				8,520	0	16,757	1,935	30,895	12,204
Edwards-Trinity (High Plains)	0	0				19,038	0	59,881	4,879	83,798	19,038
Upper Dockum	303	69				19,051	0	5,511	17,499	42,433	19,423
Lower Dockum	63,001	24,241				90,013	1,423	26,266	25,541	230,485	178,678
Edwards-Trinity (Plateau) ²				30,292		48,819	0	3,104	6,799	89,014	79,111
Pecos Valley ²				49,426		33,381	0	481	11,989	95,277	82,808
Sum	1,534,112	364,339		79,718		5,504,466	3,420	112,000	68,6414		7,486,056
					OUT						
Aquifer	ET ⁵		Drains		Pumping						
Ogallala	-169,746	-292,131	-188,847		-6,235,411	-190,951	-219		-112,000	-7,189,304	-7,077,305
Rita Blanca	-624	-3,692	-1,082		-15,978	-1,739	0	-5,522	-2,260	-30,897	-23,115
Edwards-Trinity (High Plains)	0	0	0		-24,754	-674	0	-56,977	-1,393	-83,798	-25,428
Upper Dockum	-23	-100	-37		-163	-254	0	-24,794	-17,064	-42,434	-577
Lower Dockum	-18,286	-72,551	-19,405		-66,939	-24,551	-335	-4,000	-24,414	-230,482	-202,067
Edwards-Trinity (Plateau) ²				-72,934		-344	0	-3,189	-12,547	-89,014	-73,278
Pecos Valley ²				-83,208		-1,053	0	-52	-10,963	-95,277	-84,262
Sum	-188,678	-368,474	-209,370	-156,143	-6,343,245	-219,566	-554	-94,534	-68,6414		-7,486,032

¹GHB denotes general head boundary implemented using River package.

²Not part of the High Plains Aquifer System and treated as head boundaries.

³Model total does not include cross-formational flow, since cross-formational flow is internal to the overall model.

⁴Sum does not include Ogallala, to allow comparison of sums between IN and OUT.

⁵ET denotes evapotranspiration.

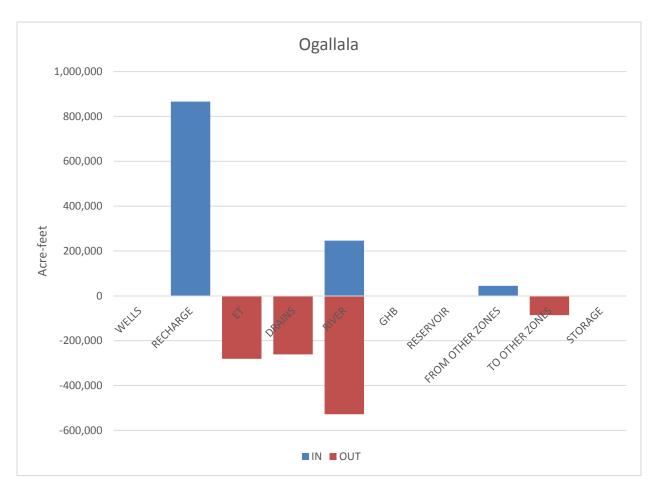


Figure 3.4.1 Water budget in acre-feet per year in the Ogallala Aquifer for the steady-state model. (Abbreviation key: ET = evapotranspiration, GHB = general head boundary)

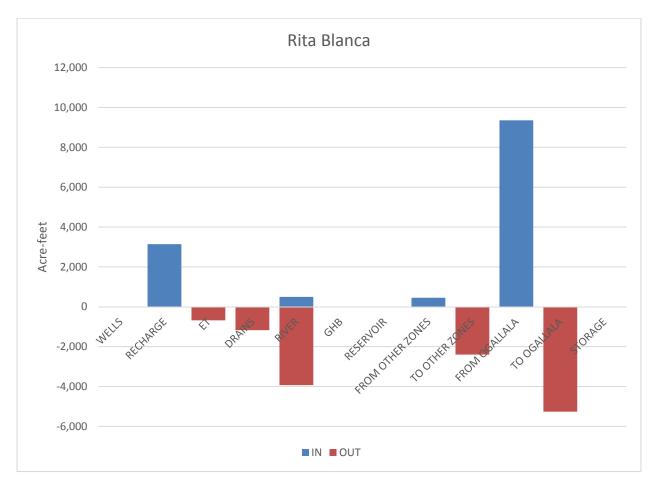


Figure 3.4.2 Water budget in acre-feet per year in the Rita Blanca Aquifer for the steady-state model. (Abbreviation key: ET = evapotranspiration, GHB = general head boundary)

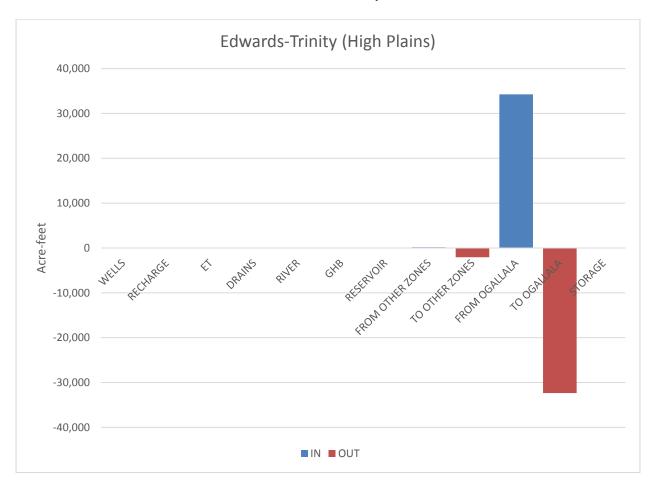


Figure 3.4.3 Water budget in acre-feet per year in the Edwards-Trinity (High Plains) Aquifer for the steady-state model. (Abbreviation key: ET = evapotranspiration, GHB = general head boundary)

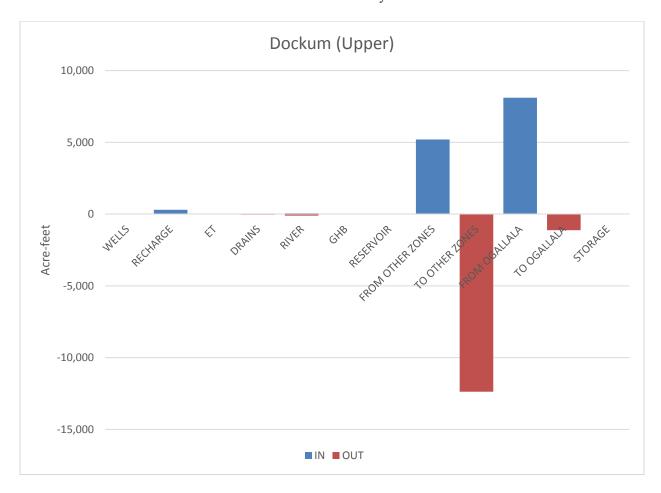


Figure 3.4.4 Water budget in acre-feet per year in the upper Dockum Aquifer for the steady-state model. (Abbreviation key: ET = evapotranspiration, GHB = general head boundary)

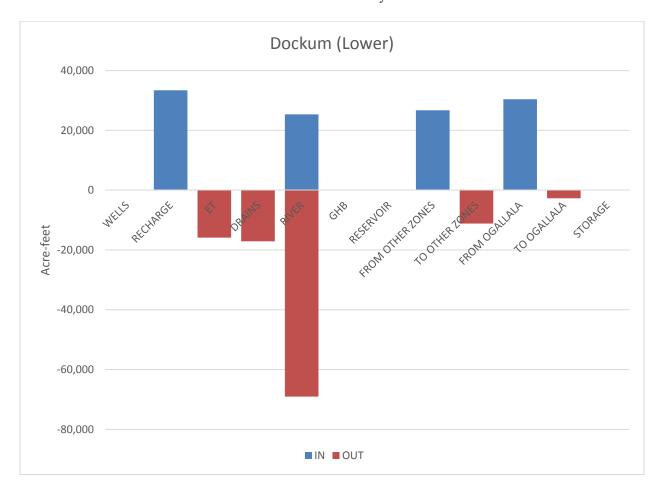


Figure 3.4.5 Water budget in acre-feet per year in the lower Dockum Aquifer for the steady-state model. (Abbreviation key: ET = evapotranspiration, GHB = general head boundary)

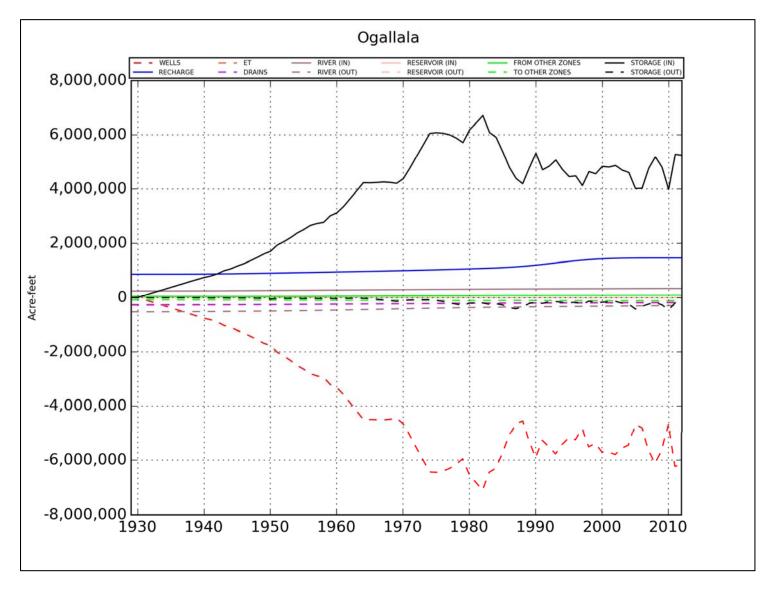


Figure 3.4.6a Water budget in acre-feet per year in the Ogallala Aquifer for the transient model. (Abbreviation key: ET = evapotranspiration)

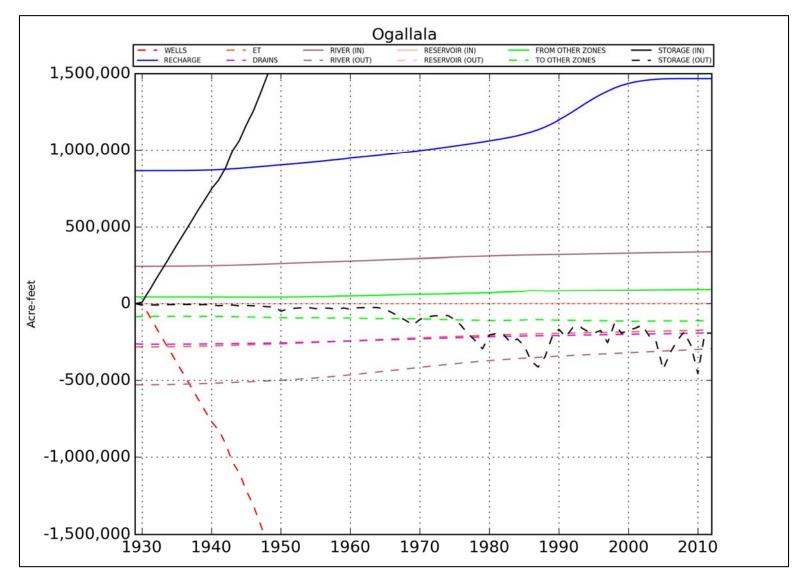


Figure 3.4.6b Water budget in acre-feet per year in the Ogallala Aquifer for the transient model with zoomed y-axis scale to show smaller components. (Abbreviation key: ET = evapotranspiration)

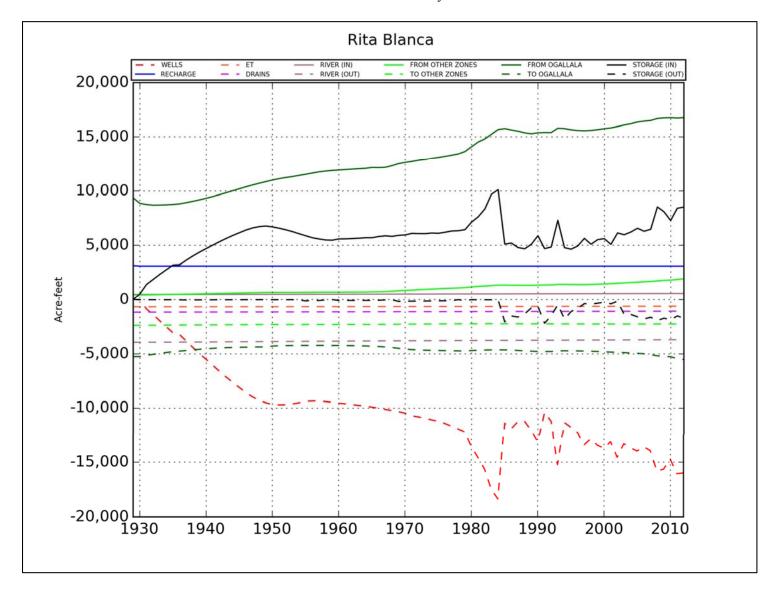


Figure 3.4.7 Water budget in acre-feet per year in the Rita Blanca Aquifer for the transient model. (Abbreviation key: ET = evapotranspiration)

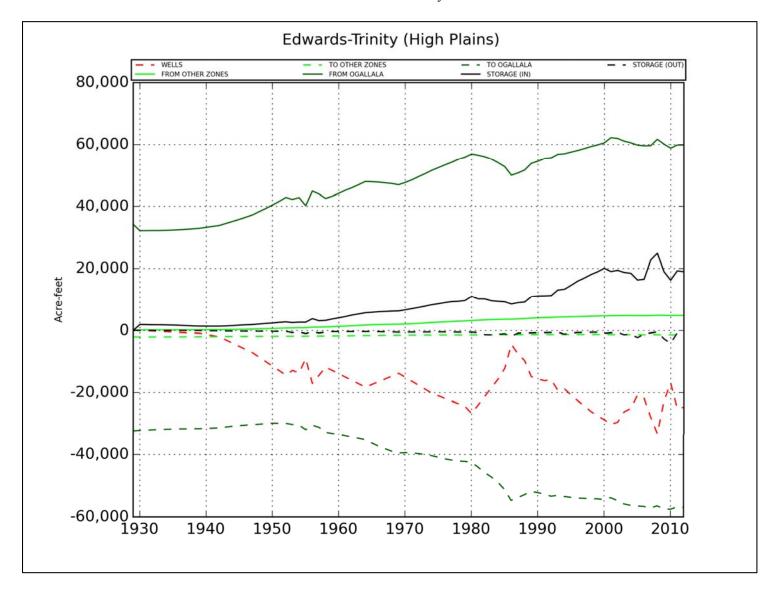


Figure 3.4.8 Water budget in acre-feet per year in the Edwards-Trinity (High Plains) Aquifer for the transient model. (Abbreviation key: ET = evapotranspiration)

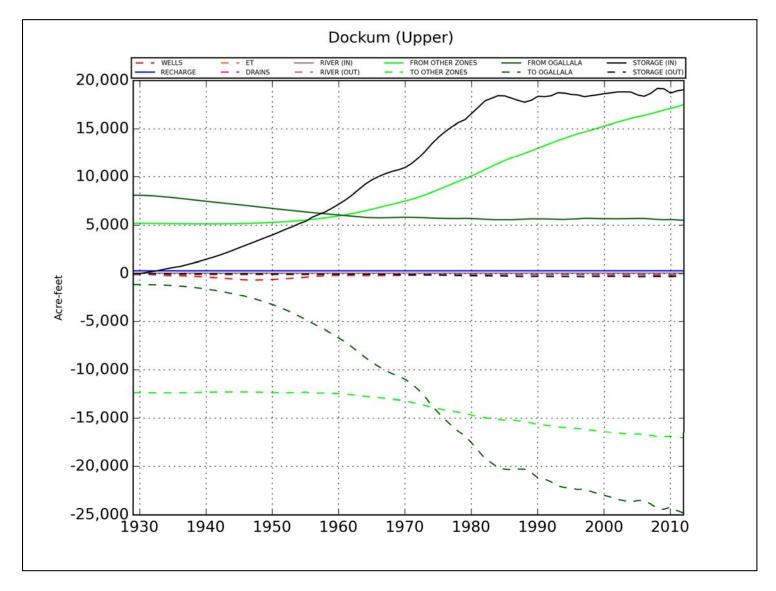


Figure 3.4.9 Water budget in acre-feet per year in the upper Dockum Aquifer for the transient model. (Abbreviation key: ET = evapotranspiration)

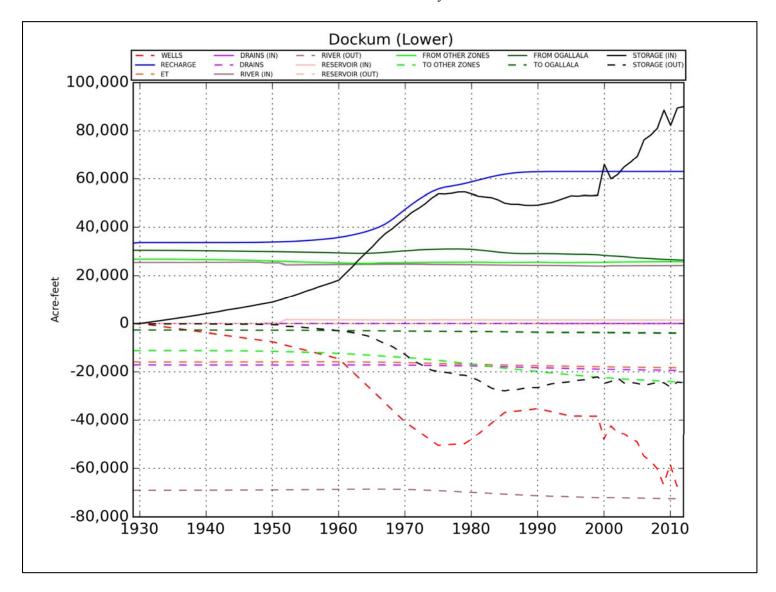


Figure 3.4.10 Water budget in acre-feet per year in the lower Dockum Aquifer for the transient model. (Abbreviation key: ET = evapotranspiration)

This page intentionally left blank.

4.0 Sensitivity Analysis

A sensitivity analysis was performed on the calibrated model to determine the impact of changes in calibrated parameters on the predictions of the calibrated model. A sensitivity analysis provides a means of formally describing the impact of varying specific parameters or groups of parameters on model outputs. In this sensitivity analysis, input parameters were systematically increased and decreased from their calibrated values while the change in hydraulic heads and flows was recorded. Informally, this is referred to as a standard "one-off" sensitivity analysis. This means that hydraulic parameters or stresses were adjusted from their calibrated "base case" values one at a time while all other hydraulic parameters remained unperturbed.

Section 4.1 describes the sensitivity analysis procedure. Section 4.2 contains a discussion of the results of the steady-state and transient sensitivity analyses, primarily presented using spider plots. In addition, the sensitivity of transient simulated hydrograph responses to several parameters is shown at the end of the section.

4.1 Sensitivity Analysis Procedure

Four simulations were completed for each parameter sensitivity, where the input parameters were varied either according to:

$$(new parameter) = (old parameter) * factor$$
 (4.1.1)

or

(new parameter) = (old parameter) *
$$10^{\text{(factor - 1)}}$$
 (4.1.2)

and the factors were 0.5, 0.9, 1.1, and 1.5. Parameters such as recharge were varied linearly using Equation 4.1.1. For parameters such as hydraulic conductivity, which are typically thought of as log-varying, Equation 4.1.2 was used. For the output variable, the mean difference between the calibrated simulated hydraulic head and the sensitivity simulated hydraulic head was calculated as:

$$MD = \frac{1}{n} \sum_{i=1}^{n} (h_{sens,i} - h_{cal,i})$$
 (4.1.3)

where

MD = mean difference

 $h_{sens,i}$ = sensitivity simulation hydraulic head at active grid cell i

 $h_{cal,i}$ = calibrated simulation hydraulic head at active grid cell i

n = number of active grid cells, or the number of target locations

Equation 4.1.3 was applied separately both model-wide (that is, in all active grid cells) and at target locations only. If the results are different between these two applications, it can be an indication that the targets are poorly distributed. However, if the results did not differ substantially, the second case will not be specifically discussed in this section.

Similarly, the mean difference in flows was calculated for flow boundaries as:

$$MD = \frac{1}{n} \sum_{i=1}^{n} (q_{sens,i} - q_{cal,i})$$
 (4.1.4)

where

MD = mean difference

 $q_{sens,i}$ = sensitivity simulation flow at active grid cell i

 $q_{cal,i}$ = calibrated simulation flow at active grid cell i

n = number of cells for flow boundary

For the steady-state sensitivity analysis, 41 combinations of input parameters and output metrics were investigated. Whether hydraulic head, flow, or both were considered are noted in parentheses in the list below.

- 1. Horizontal hydraulic conductivity of the Ogallala Aquifer, the Rita Blanca Aquifer, the Edwards-Trinity (High Plains) Aquifer, the upper Dockum Aquifer, and the lower Dockum Aquifer (hydraulic head, flow).
- 2. Vertical hydraulic conductivity of the Ogallala Aquifer, the Rita Blanca Aquifer, the Edwards-Trinity (High Plains) Aquifer, the upper Dockum Aquifer, and the lower Dockum Aquifer (hydraulic head, flow).
- 3. Recharge in of the Ogallala Aquifer, the Rita Blanca Aquifer, the upper Dockum Aquifer, and the lower Dockum Aquifer (hydraulic head, flow).
- 4. Conductance of the river boundaries representing rivers (hydraulic head, flow).
- 5. Conductance of the river boundaries as a proxy for general-head boundaries (hydraulic head, flow).

- 6. Conductance of the drain boundaries representing ephemeral streams (hydraulic head, flow).
- 7. Conductance of the drain boundaries representing springs (hydraulic head, flow).
- 8. Evapotranspiration rate of the evapotranspiration boundaries representing groundwater evapotranspiration (hydraulic head, flow).
- 9. Extinction depth of the evapotranspiration boundaries representing groundwater evapotranspiration (hydraulic head, flow).

Equation 4.1.1 was used for sensitivities 3, 8, and 9, while Equation 4.1.2 was used for the remaining sensitivities.

In addition to the sensitivities computed for the steady-state model, the transient model adds storage properties, reservoirs, and pumping sensitivities, for a total of 49 combinations of input parameters and output metrics:

- 1. Horizontal hydraulic conductivity of the Ogallala Aquifer, the Rita Blanca Aquifer, the Edwards-Trinity (High Plains) Aquifer, the upper Dockum Aquifer, and the lower Dockum Aquifer (hydraulic head, flow).
- 2. Vertical hydraulic conductivity of the Ogallala Aquifer, the Rita Blanca Aquifer, the Edwards-Trinity (High Plains) Aquifer, the upper Dockum Aquifer, and the lower Dockum Aquifer (hydraulic head, flow).
- 3. Recharge in of the Ogallala Aquifer, the Rita Blanca Aquifer, the upper Dockum Aquifer, and the lower Dockum Aquifer (hydraulic head, flow).
- 4. Conductance of the river boundaries representing rivers (hydraulic head, flow).
- 5. Conductance of the river boundaries as a proxy for general-head boundaries (hydraulic head, flow).
- 6. Conductance of the drain boundaries representing ephemeral streams (hydraulic head, flow).
- 7. Conductance of the drain boundaries representing springs (hydraulic head, flow).
- 8. Evapotranspiration rate of the evapotranspiration boundaries representing groundwater evapotranspiration (hydraulic head, flow).
- 9. Extinction depth of the evapotranspiration boundaries representing groundwater evapotranspiration (hydraulic head, flow).

- 10. Conductance of the river boundaries representing reservoirs (hydraulic head, flow)
- 11. Specific yield of the Ogallala Aquifer (hydraulic head, flow).
- 12. Specific storage of the Rita Blanca Aquifer, the Edwards-Trinity (High Plains) Aquifer, the upper Dockum Aquifer, and the lower Dockum Aquifer (hydraulic head).
- 13. Pumping (hydraulic head, flow)

Equation 4.1.1 was used for sensitivities 3, 8, 9, 11, and 13, while equation 4.1.2 was used for the remaining sensitivities.

4.2 Sensitivity Analysis Results

In the discussion of sensitivity analysis results, we consider head or flow as potential output metrics. In some cases, changing a particular parameter does not result in any significant change to heads or flows. We can judge the lower bound of significant change based on the head and flow convergence criteria used in the Model Solver package. The head convergence criteria was 0.01 foot, so any average changes in head that are approximately 0.01 foot or less are considered to be insignificant. Similarly, a typical flow convergence value was about 100 cubic feet per day, or approximately 0.8 acre foot per year (convergence was typically limited by head rather than flow, so we examined the maximum flux residual at head convergence to develop this range). As we discuss the sensitivity analysis results, we will keep these limits in mind, at which perturbations in head or flow are within the range of "noise" of the model.

For some cases, parameters were varied outside the range where the model was stable, so the model did not converge in steady-state. When non-convergence was severe (water balance significantly affected), the heads or flows that resulted were not valid for the purposes of evaluating sensitivity. For those cases, the results are not shown on the plot, so the absence of a particular parameter and factor combination indicates that this severe non-convergence occurred. This result occurred most often in cases where the heads in the Ogallala Aquifer were decreased significantly due to parameter changes, so that dry cells became pronounced in steady-state. One example is Figure 4.2.1, where increasing the horizontal hydraulic conductivity of the Ogallala Aquifer by a factor of 1.5 caused heads to drop 10s of feet, and dry cell issues caused severe non-convergence.

4.2.1 Steady-State Sensitivities

Figure 4.2.1 shows the sensitivity in hydraulic heads to changes in the horizontal hydraulic conductivity of the Ogallala Aquifer for the steady-state model. Decreasing horizontal hydraulic conductivity increases hydraulic heads in the Ogallala Aquifer which then propagate through the model to the other aquifers. Increasing the horizontal hydraulic conductivity of the Ogallala Aquifer has the reverse effect. Figure 4.2.2 shows the sensitivity to changes in the horizontal hydraulic conductivity of the Rita Blanca Aquifer with decreasing horizontal hydraulic conductivity increasing hydraulic heads in the Rita Blanca Aquifer which then propagate to a lesser degree through the model. Little change occurs in the hydraulic heads of the Ogallala Aquifer in response to variation in the horizontal hydraulic conductivity of the Rita Blanca Aquifer because the Rita Blanca Aquifer underlays the Ogallala Aquifer. Likewise, the Edwards-Trinity (High Plains) Aquifer shows little variation in hydraulic heads in response to changes in the horizontal hydraulic conductivity of the Rita Blanca Aquifer because these two aquifers are hydraulically disconnected by the Canadian River valley.

Figure 4.2.3 shows the sensitivity to changes in the horizontal hydraulic conductivity of the Edwards-Trinity (High Plains) Aquifer with decreasing horizontal hydraulic conductivity increasing hydraulic heads in the Edwards-Trinity (High Plains) Aquifer which propagate to a lesser degree through the model. The Rita Blanca Aquifer is insensitive to changes in the hydraulic conductivity of the Edwards-Trinity (High Plains) Aquifer because the two aquifers are hydraulically disconnected by the Canadian River valley. As shown in Figure 4.2.4, there is little sensitivity to changes in the horizontal hydraulic conductivity of the upper Dockum Aquifer to hydraulic heads as the absolute mean head difference is less than one foot for all parameter perturbations. Figure 4.2.5 shows the sensitivity to variation in the horizontal hydraulic conductivity of the lower Dockum Aquifer, with decreasing horizontal hydraulic conductivity increasing hydraulic heads in the lower Dockum Aquifer, which in turn propagate to the other aquifers. Increasing the horizontal hydraulic conductivity of the lower Dockum Aquifer has the opposite effect. Comparatively little sensitivity is shown between the horizontal hydraulic conductivity of the lower Dockum Aquifer and hydraulic heads in the Ogallala and Edwards-Trinity (High Plains) aquifers.

Figure 4.2.6 shows the hydraulic head sensitivity to changes in vertical hydraulic conductivity in the Ogallala Aquifer. Overall, the hydraulic heads have low sensitivity to the vertical hydraulic

conductivity of the Ogallala Aquifer as the absolute mean head difference is less than 0.8 feet for all parameter perturbations. Figure 4.2.7 depicts the hydraulic head sensitivity in response to changes in the vertical hydraulic conductivity in the Rita Blanca Aquifer, with increasing vertical hydraulic conductivity increasing hydraulic heads in the Rita Blanca Aquifer. Little hydraulic head sensitivity is observed in the other aquifers from changes in the vertical hydraulic conductivity of the Rita Blanca Aquifer. Figure 4.2.8 shows the hydraulic head sensitivity to changes in the vertical hydraulic conductivity of the Edwards-Trinity (High Plains) Aquifer with increasing vertical hydraulic conductivity increasing heads. The opposite trend occurs for the Ogallala Aquifer but the sensitivity is not pronounced, at less than 1 foot. Similar to the sensitivities for the horizontal hydraulic conductivity, varying the vertical hydraulic conductivity of the Edwards-Trinity (High Plains) Aquifer has very little impact on heads in the Rita Blanca Aquifer.

Figure 4.2.9 shows the hydraulic head response to changes in the vertical hydraulic conductivity of the upper Dockum Aquifer, with increasing vertical hydraulic conductivity increasing heads in the upper and lower Dockum Aquifer. The upper and lower Dockum Aquifer lines on the plot are so similar in magnitude they are almost overlain. The opposite trend is shown for the Rita Blanca Aquifer. Very little hydraulic head sensitivity is shown in the Ogallala or Edwards-Trinity (High Plains) aquifers. The larger sensitivity of hydraulic heads to changes in the vertical hydraulic conductivity compared with changes in the horizontal hydraulic conductivity indicate that flow may be primarily vertical in the upper Dockum Aquifer. Figure 4.2.10 shows the hydraulic head sensitivity to changes in the vertical hydraulic conductivity of the lower Dockum Aquifer, with decreasing hydraulic conductivity decreasing heads in the lower Dockum Aquifer while the other aquifers exhibit small sensitivities with the opposite trend.

Figure 4.2.11 depicts the expected response of hydraulic heads to changes in recharge in the Ogallala Aquifer with increasing recharge increasing hydraulic heads. The Edwards-Trinity (High Plains), Ogallala, and upper Dockum aquifers show more response in hydraulic heads to variations in recharge compared to head responses in the lower Dockum and Rita Blanca aquifers. The sensitivity of hydraulic heads to changes in recharge in the Rita Blanca Aquifer is depicted in Figure 4.2.12. While heads in the Rita Blanca Aquifer increase with increases in recharge in the Rita Blanca Aquifer, the heads in the other aquifers are comparatively insensitive. Given the relative small portions of the upper Dockum Aquifer outcropping, little sensitivity of

hydraulic head is observed for changes in the recharge to the upper Dockum Aquifer as shown in Figure 4.2.13. The lower Dockum Aquifer (Figure 4.2.14) has a larger outcrop, but the outcrop area is still only a fraction of the Ogallala Aquifer outcrop area, so the average heads vary in the lower Dockum Aquifer about 0.5 feet.

Figure 4.2.15 shows the sensitivity in hydraulic heads to the conductance of rivers and streams represented with the River package. For the Rita Blanca, upper Dockum, Ogallala, and lower Dockum aquifers, increasing river conductance increases hydraulic head. The Edwards-Trinity (High Plains) Aquifer shows little hydraulic head response to changes in river conductance. Figure 4.2.16 shows the sensitivity in hydraulic heads to the conductance of river cells that were applied to represent a general-head boundary in the Pecos Valley and Edwards-Trinity (Plateau) aquifers. Sensitivity of hydraulic heads to the conductance of these river is small (less than 2 feet) for all aquifers. Figure 4.2.17 shows the sensitivity in hydraulic heads to the conductance of the subset of drain cells that represent ephemeral streams. For the ephemeral streams, hydraulic heads in all aquifers decrease a small amount (less than 1 foot) with increasing drain conductance. Figure 4.2.18 shows the sensitivity in hydraulic heads to the conductance of the subset of drain cells that represent springs. Like the ephemeral streams, hydraulic heads decrease a small amount with an increase in the drain conductance of model cells representing springs.

Figure 4.2.19 depicts the sensitivity in hydraulic heads to the maximum evapotranspiration rate with increasing rate results in decreasing hydraulic heads. Figure 4.2.20 shows the sensitivity in hydraulic heads to the maximum evapotranspiration extinction depth with increasing extinction depth decreasing hydraulic heads by a small amount (less than 1 foot).

Figure 4.2.21 shows the sensitivity in boundary fluxes to the horizontal hydraulic conductivity of Ogallala Aquifer. The sensitivities in boundary fluxes are grouped into drain fluxes for springs and ephemeral streams (data series "Springs/Draws"), drain fluxes for the subset of drains that represent seeps along the escarpment (data series "Escarpment"), evapotranspiration fluxes (data series "EVT"), river fluxes, and the subset of river fluxes that function as proxies for general-head boundary fluxes (data series "GHB"). The sensitivity of fluxes is greatest for the drain fluxes that represent seeps along the escarpment and for rivers. Increases in the horizontal hydraulic conductivity of the Ogallala Aquifer decreases the river fluxes. The opposite trend

occurs for the escarpment seeps, and the springs and draws. Figure 4.2.22 shows the very small (less than 0.1 acre-feet per year) sensitivity in boundary fluxes to the horizontal hydraulic conductivity of the Rita Blanca Aquifer. Figure 4.2.23 depicts the sensitivity in boundary fluxes to the horizontal hydraulic conductivity of the Edwards-Trinity (High Plains) Aquifer with increasing horizontal hydraulic conductivity resulting in increasing fluxes for seeps along the escarpments and relatively little sensitivity in the other boundary fluxes. Figure 4.2.24 shows the very small (less than 0.1 acre-feet per year) sensitivity in boundary fluxes to the horizontal hydraulic conductivity of the upper Dockum Aquifer. Figure 4.2.25 shows the sensitivity in boundary fluxes to the horizontal hydraulic conductivity of the lower Dockum Aquifer, with increases in the horizontal hydraulic conductivity decreasing fluxes to springs/draws, escarpment drains, and general-head boundaries, while increasing fluxes to evapotranspiration and rivers.

Figures 4.2.26 through 4.2.30 illustrate the sensitivity in boundary fluxes to the vertical hydraulic conductivity of the Ogallala, Rita Blanca, Edwards-Trinity (High Plains), upper Dockum, and lower Dockum aquifers, respectively. With the exception of the lower Dockum Aquifer, little flux change (less than an absolute value of 0.1 acre-feet per year) is shown for changes in the vertical hydraulic conductivity, so boundary fluxes would be considered insensitive to these parameters. As shown in Figure 4.2.30, increases in the vertical hydraulic conductivity of the lower Dockum Aquifer decrease the flux of the springs/draws and seeps along the escarpments. The opposite trend is observed for the rivers.

Figures 4.2.31 through 4.2.34 depict the sensitivity of boundary fluxes to changes in recharge where increases in recharge result in increase to all boundary flows apart from the general-head boundaries which are insensitive to recharge. The sensitivity of boundary flows is vastly greater to the recharge in the Ogallala Aquifer (Figure 4.2.31) than to recharge in the other aquifers.

Figures 4.2.35 through 4.2.38 illustrate the sensitivity of boundary fluxes to changes in the boundary conductance. In general, increasing conductance to a boundary increases flow to that boundary, but then decreases overall heads, so flow decreases to the remaining boundaries. This is the case for rivers, ephemeral streams, and springs. All boundary flows are insensitive to changes in general-head boundary conductance (less than 0.1 acre-feet per year change).

Figures 4.2.39 and 4.2.40 illustrate the sensitivity of boundary fluxes to changes in maximum evapotranspiration rate and extinction depth. In both cases, increasing the parameter increases flow to evapotranspiration, and decreases flow to the other boundaries.

To summarize the relative sensitivity of boundary flows to changes in the parameters, recharge and hydraulic conductivity in the Ogallala Aquifer have the largest overall effect (up to 15 acrefeet per year change), while the conductance of ephemeral streams and maximum evapotranspiration rate have a similar magnitude effect (6 to 8 acre-feet per year change). The conductance of rivers, springs, and evapotranspiration extinction depth still show significant effect (3 to 4 acre-feet per year change). The horizontal conductivity of the lower Dockum and Edwards-Trinity (High Plains) aquifers have a smaller effect (1 to 2 acre-feet per year change). The remaining parameters have an insignificant effect on boundary flow (less than 0.1 acre-feet per year).

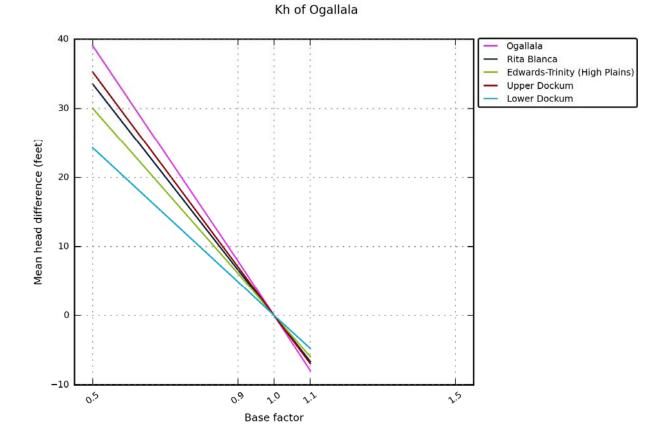


Figure 4.2.1 Hydraulic head sensitivity in feet for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the Ogallala Aquifer.

Kh of Rita Blanca

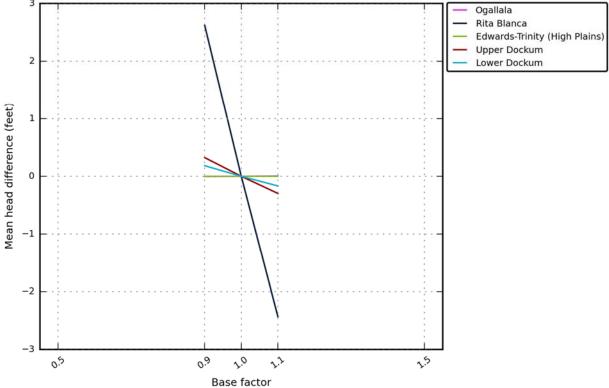


Figure 4.2.2 Hydraulic head sensitivity in feet for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the Rita Blanca Aquifer.

Kh of Edwards-Trinity (High Plains)

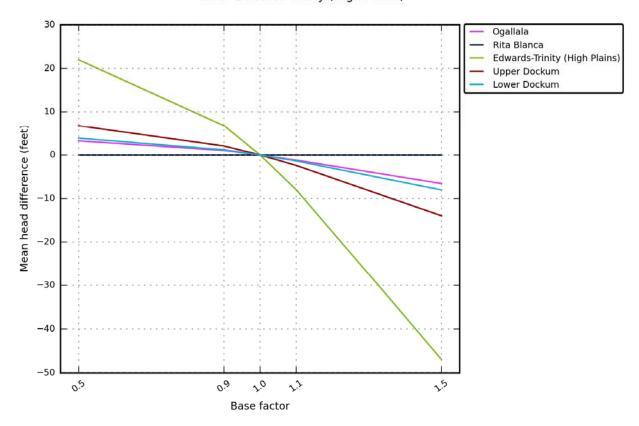


Figure 4.2.3 Hydraulic head sensitivity in feet for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the Edwards-Trinity (High Plains) Aquifer.

Kh of Upper Dockum

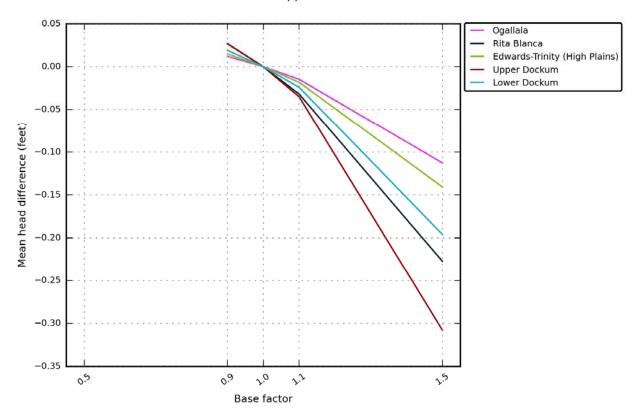


Figure 4.2.4 Hydraulic head sensitivity in feet for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the upper Dockum Aquifer.

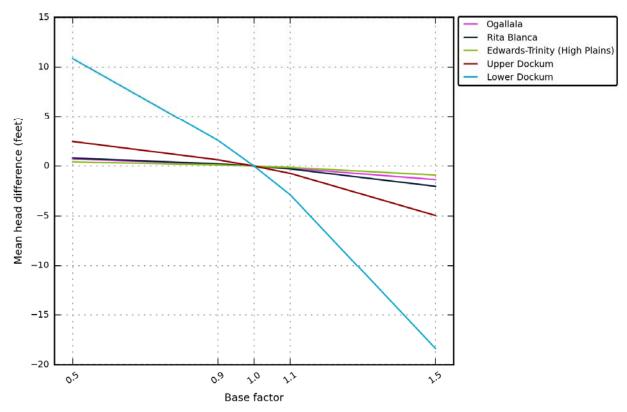


Figure 4.2.5 Hydraulic head sensitivity in feet for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the lower Dockum Aquifer.

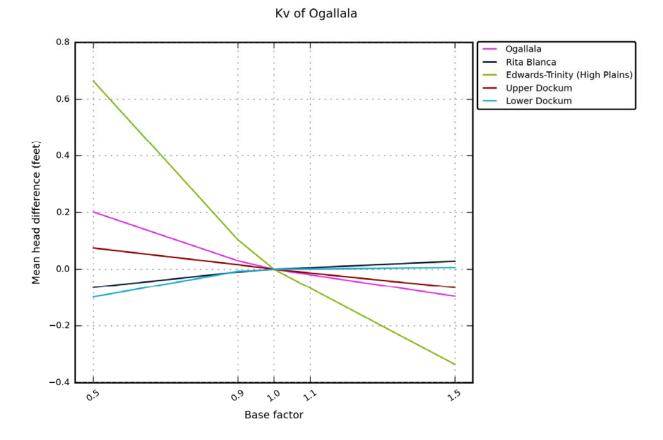


Figure 4.2.6 Hydraulic head sensitivity in feet for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the Ogallala Aquifer.

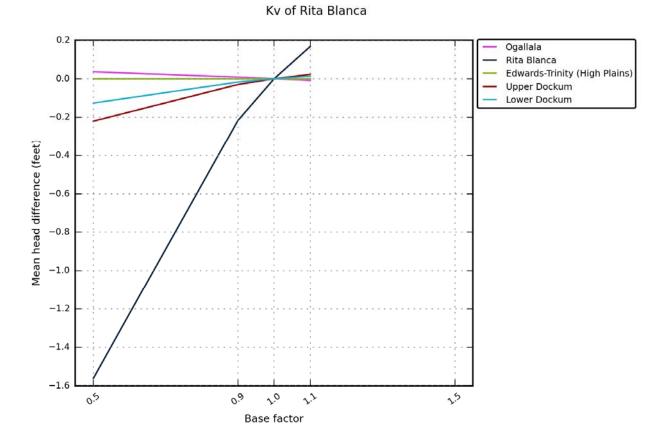


Figure 4.2.7 Hydraulic head sensitivity in feet for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the Rita Blanca Aquifer.

Final Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model

Kv of Edwards-Trinity (High Plains)

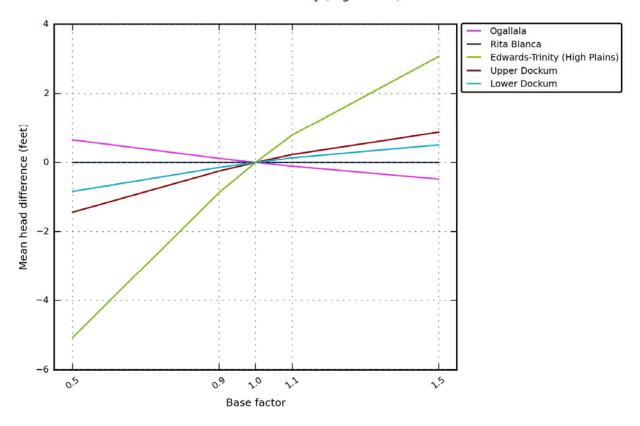


Figure 4.2.8 Hydraulic head sensitivity in feet for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the Edwards-Trinity (High Plains) Aquifer.

Kv of Upper Dockum

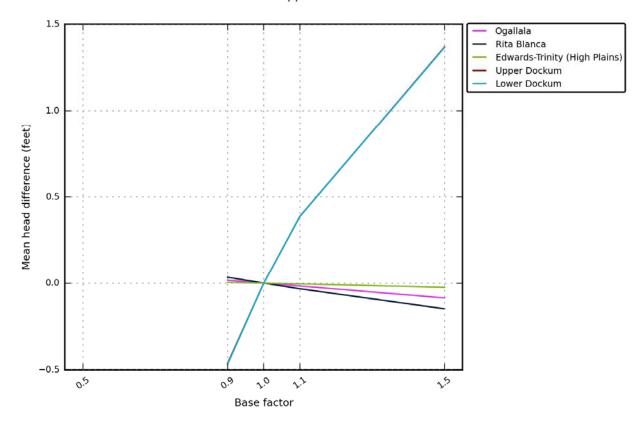


Figure 4.2.9 Hydraulic head sensitivity in feet for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the upper Dockum Aquifer.

Kv of Lower Dockum

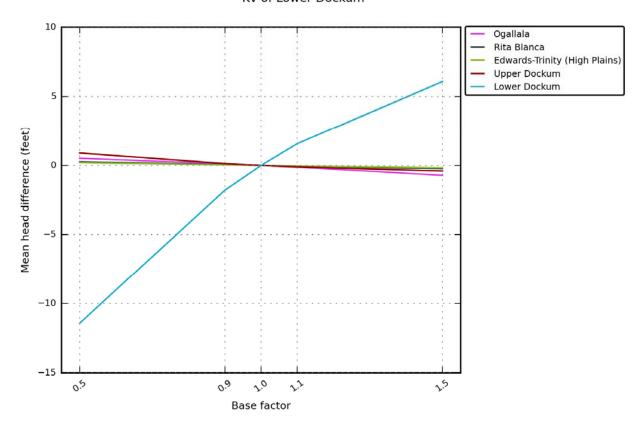


Figure 4.2.10 Hydraulic head sensitivity in feet for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the lower Dockum Aquifer.

Recharge of Ogallala

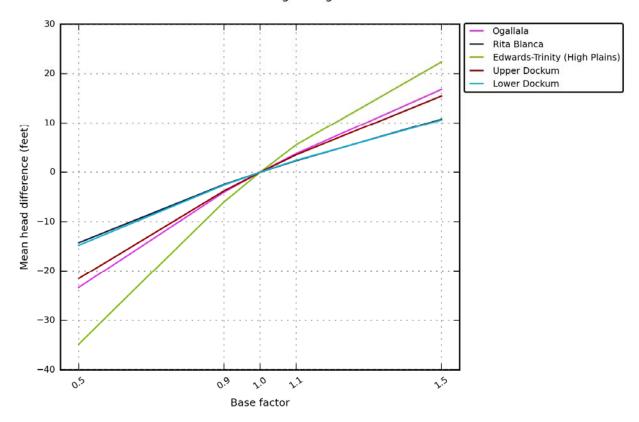


Figure 4.2.11 Hydraulic head sensitivity in feet for the steady-state model to changes in recharge in the Ogallala Aquifer.

Recharge of Rita Blanca

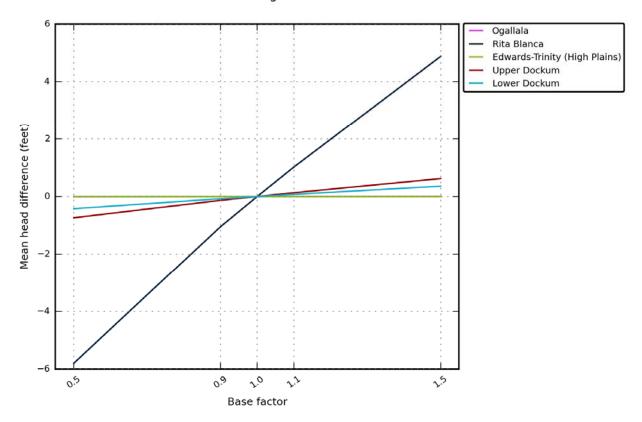


Figure 4.2.12 Hydraulic head sensitivity in feet for the steady-state model to changes in recharge in the Rita Blanca Aquifer.

Recharge of Upper Dockum

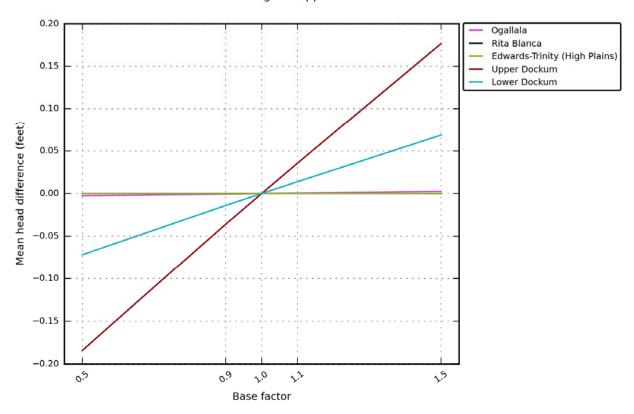


Figure 4.2.13 Hydraulic head sensitivity in feet for the steady-state model to changes in recharge in the upper Dockum Aquifer.

Recharge of Lower Dockum

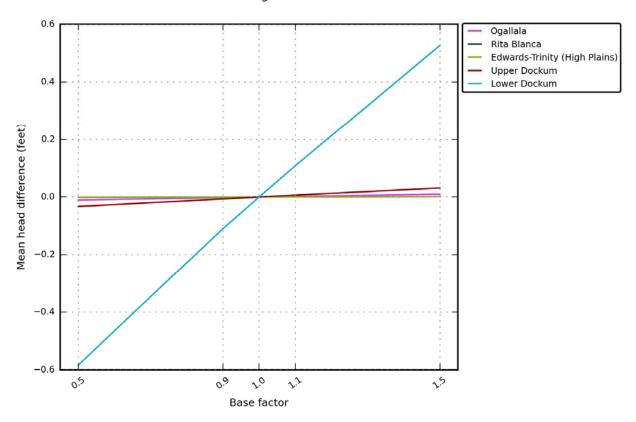


Figure 4.2.14 Hydraulic head sensitivity in feet for the steady-state model to changes in recharge in the lower Dockum Aquifer.

River conductance

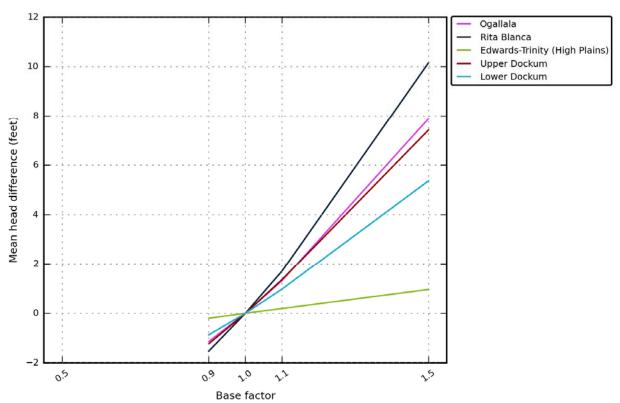


Figure 4.2.15 Hydraulic head sensitivity in feet for the steady-state model to changes in river boundary conductance.

GHB conductance

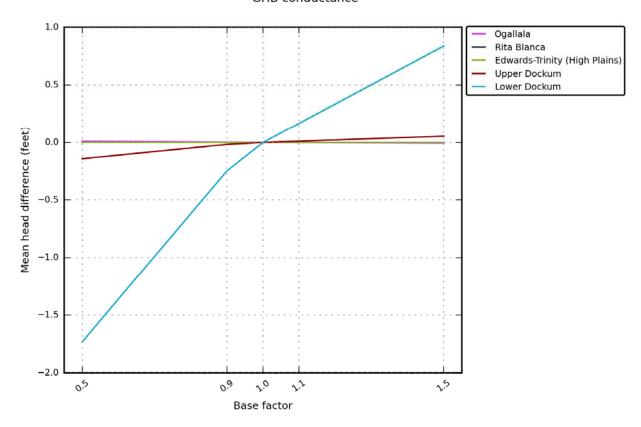


Figure 4.2.16 Hydraulic head sensitivity in feet for the steady-state model to changes in river boundary conductance, representing river boundaries as general-head boundaries (GHB).

Ephemeral stream conductance



Figure 4.2.17 Hydraulic head sensitivity in feet for the steady-state model to changes in drain boundary conductance, representing ephemeral streams.

Spring conductance 0.8 Ogallala Rita Blanca Edwards-Trinity (High Plains) 0.6 Upper Dockum Lower Dockum 0.4 Mean head difference (feet) 0.2 0.0 -0.2 -0.4-0.6-0.8

Figure 4.2.18 Hydraulic head sensitivity in feet for the steady-state model to changes in drain boundary conductance, representing springs.

0,9

Base factor

0.5

Evapotranspiration rate

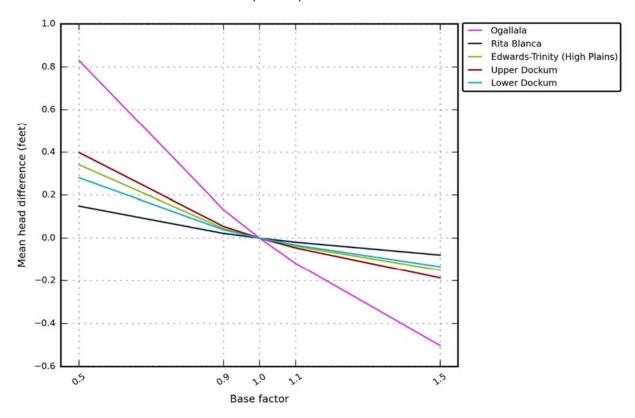


Figure 4.2.19 Hydraulic head sensitivity in feet for the steady-state model to changes in maximum evapotranspiration rate.

Extinction depth 0.6 Ogallala Rita Blanca Edwards-Trinity (High Plains) Upper Dockum 0.4 Lower Dockum 0.2 Mean head difference (feet) 0.0 -0.2 -0.4 -0.6 -0.8 0.5 0.9 20 2.2

Figure 4.2.20 Hydraulic head sensitivity in feet for the steady-state model to changes in evapotranspiration extinction depth.

Base factor

Kh of Ogallala

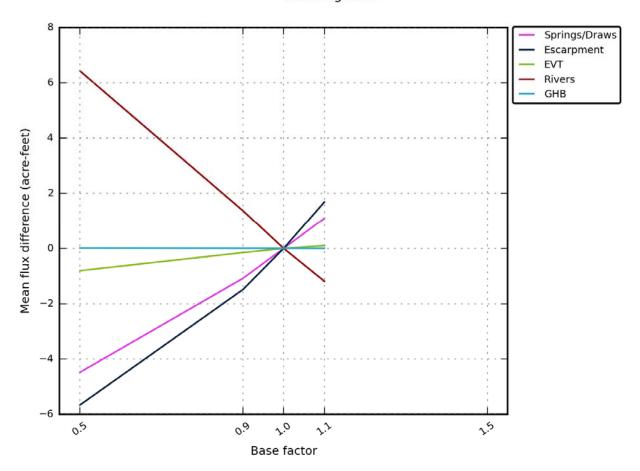


Figure 4.2.21 Flow sensitivity in acre-feet per year for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the Ogallala Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kh of Rita Blanca

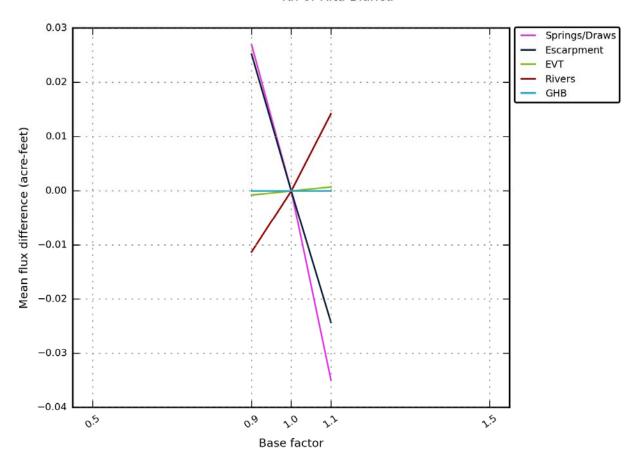


Figure 4.2.22 Flow sensitivity in acre-feet per year for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the Rita Blanca Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kh of Edwards-Trinity (High Plains)

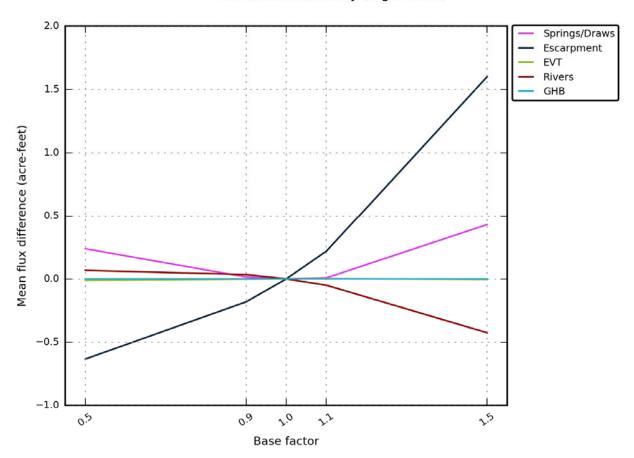


Figure 4.2.23 Flow sensitivity in acre-feet per year for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the Edwards-Trinity (High Plains)

Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kh of Upper Dockum

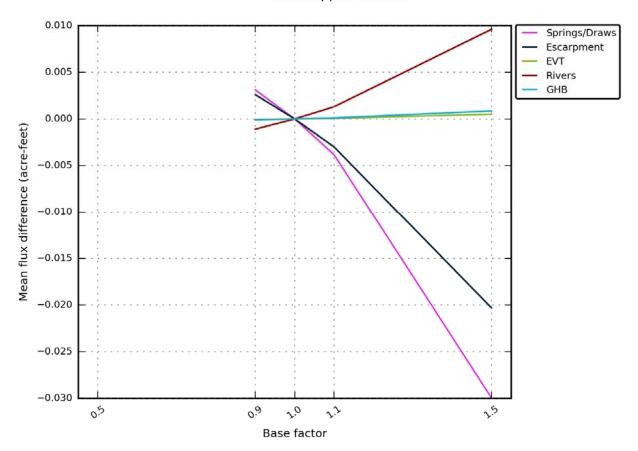


Figure 4.2.24 Flow sensitivity in acre-feet per year for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the upper Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kh of Lower Dockum

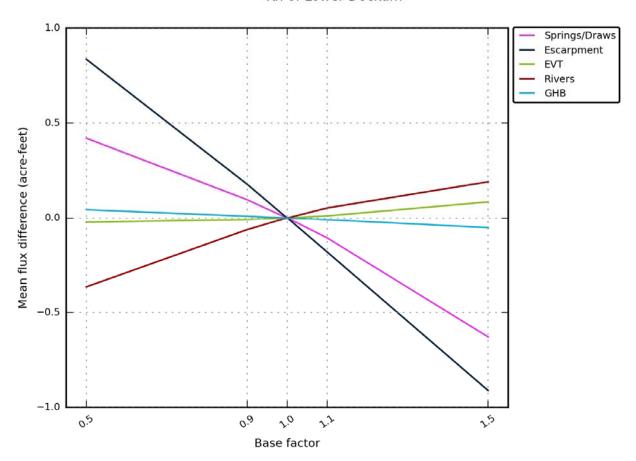


Figure 4.2.25 Flow sensitivity in acre-feet per year for the steady-state model to changes in horizontal hydraulic conductivity (Kh) of the lower Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

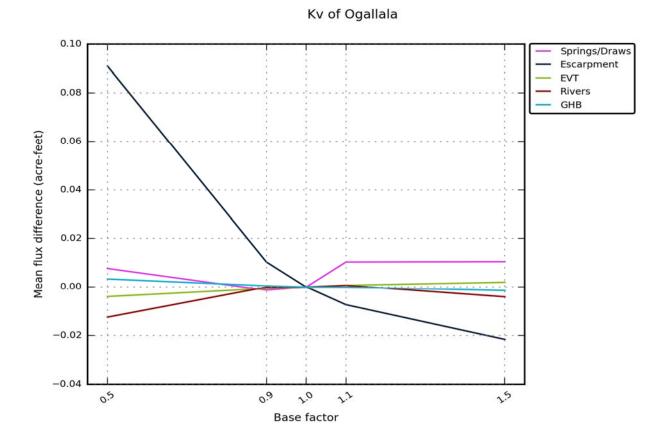


Figure 4.2.26 Flow sensitivity in acre-feet per year for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the Ogallala Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kv of Rita Blanca

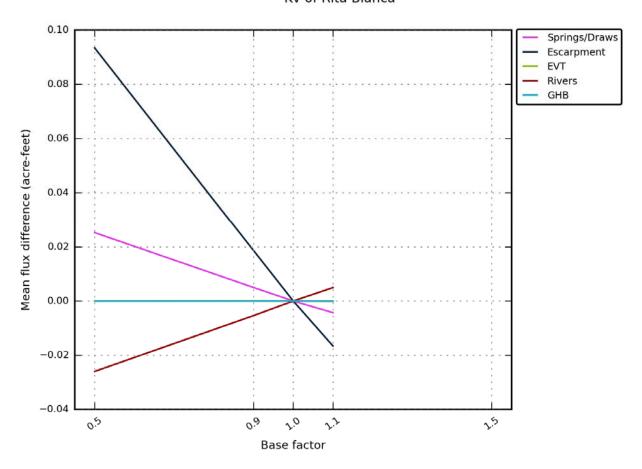


Figure 4.2.27 Flow sensitivity in acre-feet per year for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the Rita Blanca Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kv of Edwards-Trinity (High Plains)

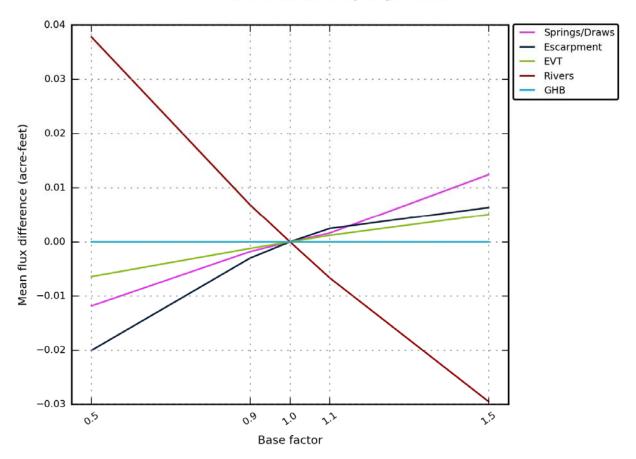


Figure 4.2.28 Flow sensitivity in acre-feet per year for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the Edwards-Trinity (High Plains) Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kv of Upper Dockum

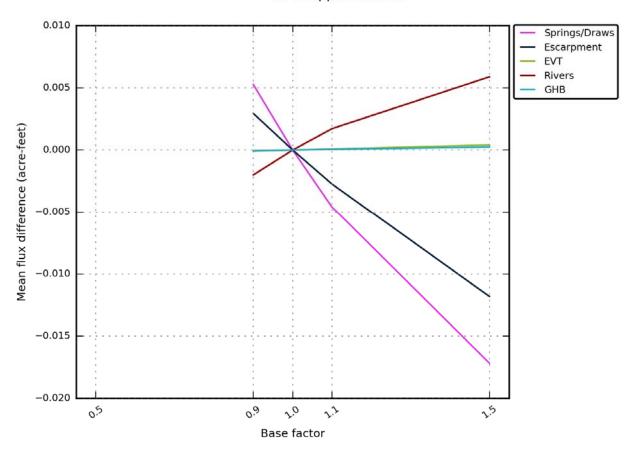


Figure 4.2.29 Flow sensitivity in acre-feet per year for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the upper Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kv of Lower Dockum

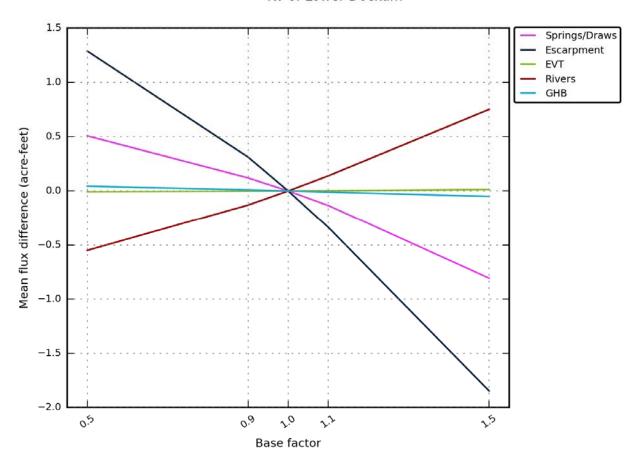


Figure 4.2.30 Flow sensitivity in acre-feet per year for the steady-state model to changes in vertical hydraulic conductivity (Kv) of the lower Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Recharge of Ogallala

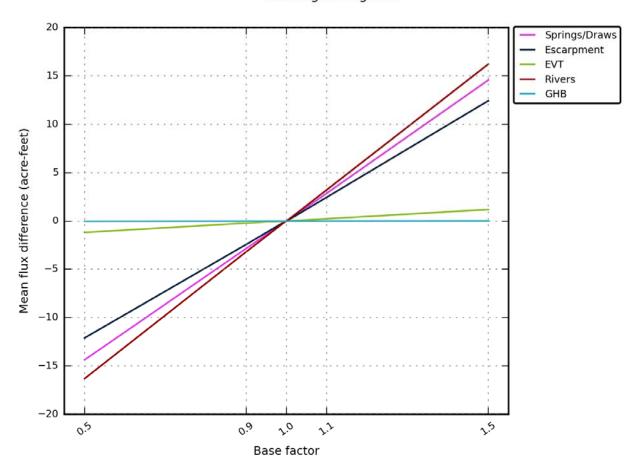


Figure 4.2.31 Flow sensitivity in acre-feet per year for the steady-state model to changes in recharge in the Ogallala Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Recharge of Rita Blanca

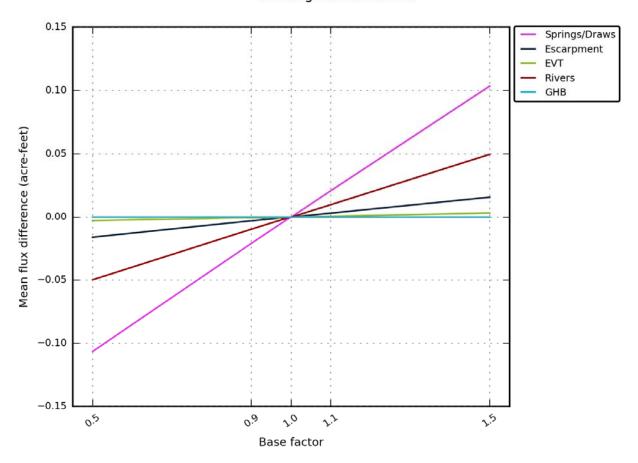


Figure 4.2.32 Flow sensitivity in acre-feet per year for the steady-state model to changes in recharge in the Rita Blanca Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Recharge of Upper Dockum

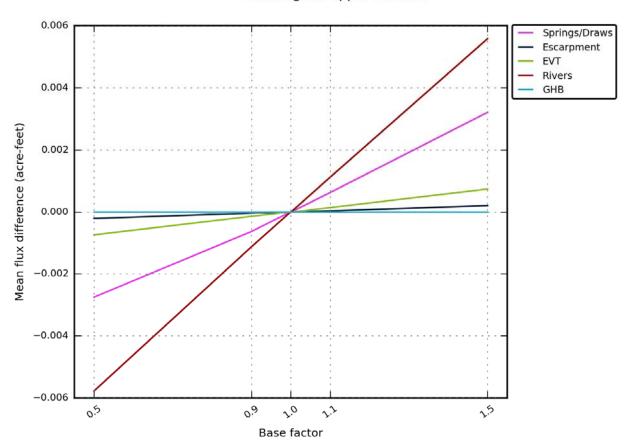


Figure 4.2.33 Flow sensitivity in acre-feet per year for the steady-state model to changes in recharge in the upper Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Recharge of Lower Dockum

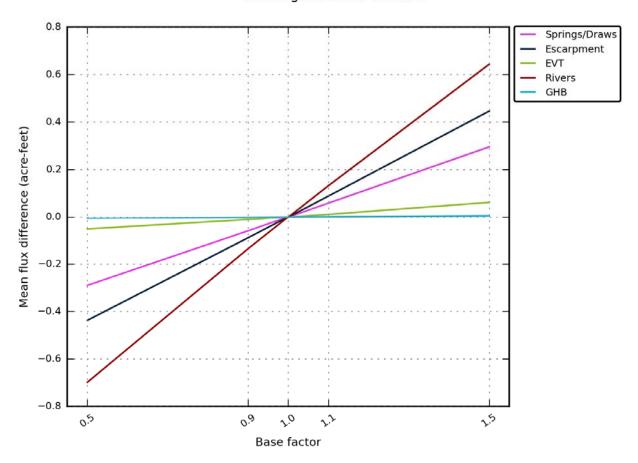


Figure 4.2.34 Flow sensitivity in acre-feet per year for the steady-state model to changes in recharge in the lower Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

River conductance

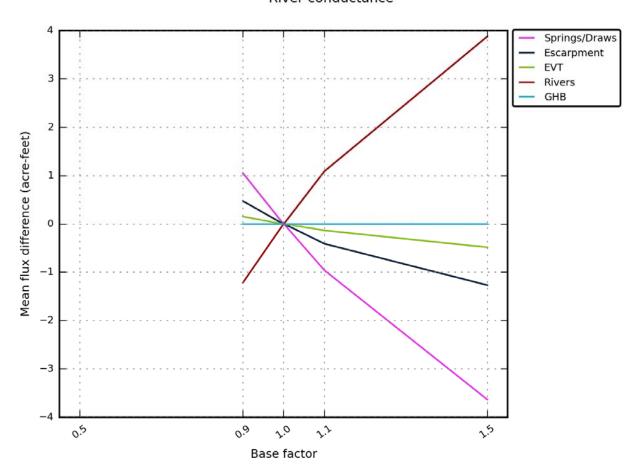


Figure 4.2.35 Flow sensitivity in acre-feet per year for the steady-state model to changes in river boundary conductance. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

GHB conductance

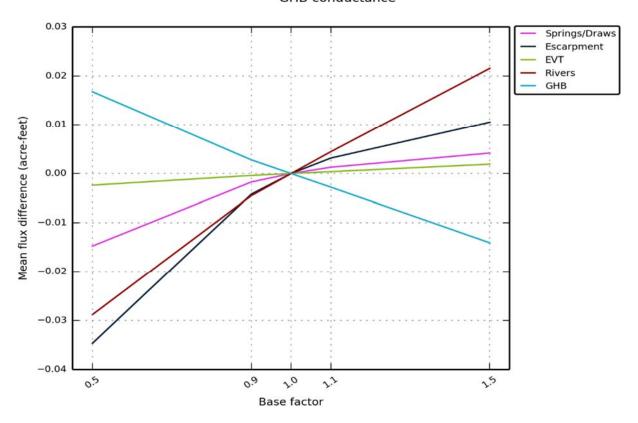


Figure 4.2.36 Flow sensitivity in acre-feet per year for the steady-state model to changes in river boundary conductance, representing river boundaries as general-head boundaries. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Ephemeral stream conductance

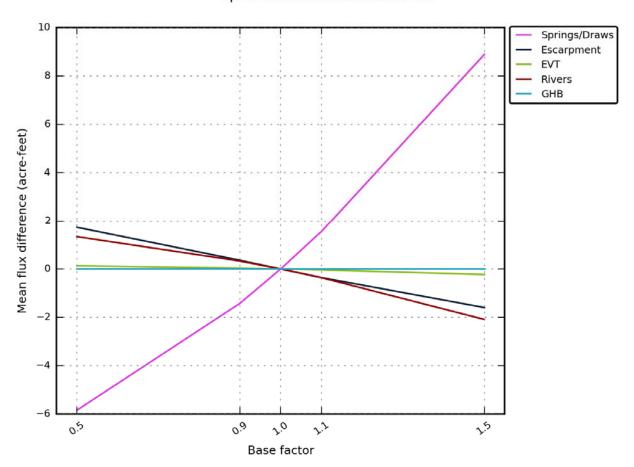


Figure 4.2.37 Flow sensitivity in acre-feet per year for the steady-state model to changes in drain boundary conductance, representing ephemeral streams. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Spring conductance

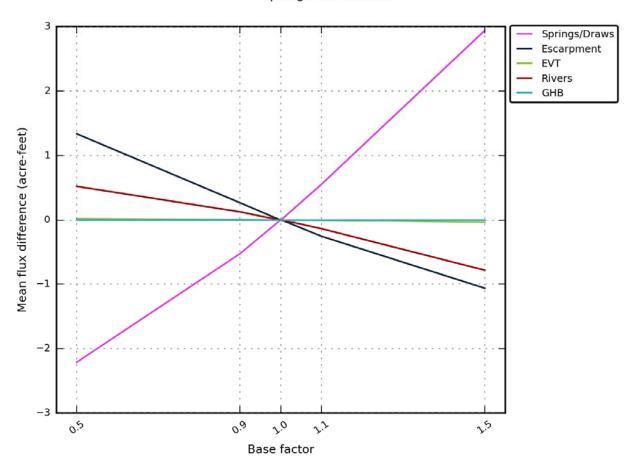


Figure 4.2.38 Flow sensitivity in acre-feet per year for the steady-state model to changes in drain boundary conductance, representing springs. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Evapotranspiration rate

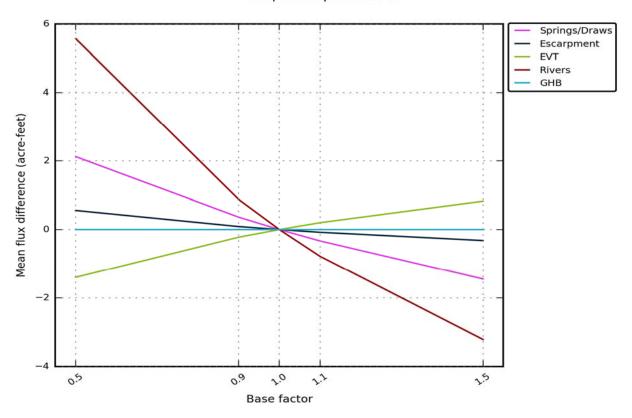


Figure 4.2.39 Flow sensitivity in acre-feet per year for the steady-state model to changes in maximum evapotranspiration rate. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Extinction depth

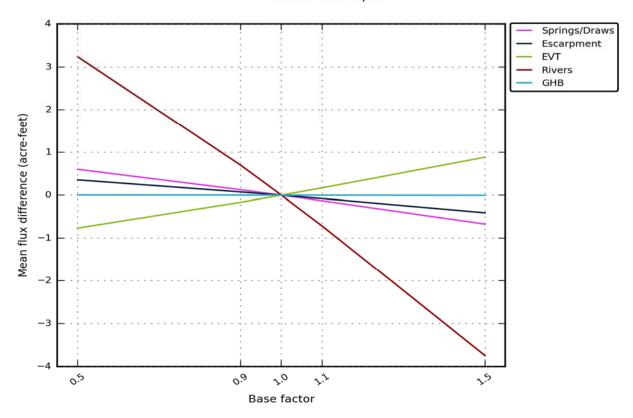


Figure 4.2.40 Flow sensitivity in acre-feet per year for the steady-state model to changes in evapotranspiration extinction depth. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Final Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model

4.2.2 Transient Sensitivities

In general, hydraulic head sensitivity responses for the transient model are nearly identical to the corresponding sensitivity responses for the steady-state model. Figures 4.2.41 through 4.2.48 for the transient model head sensitivity to horizontal vertical hydraulic conductivity are very similar to Figures 4.2.1 through 4.2.8 for the steady-state model. For the vertical conductivity of the upper Dockum Aquifer (Figure 4.2.49), the trend in the head response in the upper Dockum Aquifer changes from being positively correlated for steady-state to being negatively correlated for transient. This is due to the response to pumping in transient, where drawdown in the Ogallala Aquifer above the upper Dockum Aquifer causes corresponding drawdown in the upper Dockum Aquifer. Increasing the vertical connection between the Ogallala Aquifer and the upper Dockum Aquifer increases drawdown in the upper Dockum Aquifer, and so the negative change in upper Dockum Aquifer head occurs. Figure 4.2.50 shows a similar head response in transient to steady-state (Figure 4.1.10) where increasing the vertical conductivity of the lower Dockum Aquifer causes increasing head elevation in the lower Dockum Aquifer (several feet of change), but causes only a fraction of a foot in head change in any other unit.

In addition to the parameter sensitivities considered in the steady-state model, the transient model adds additional parameters for perturbation including storage properties, reservoirs, and pumping. Figure 4.2.51 shows the sensitivity in hydraulic heads to the specific yield of the Ogallala Aquifer with increases in specific yield resulting in increases in hydraulic heads for all aquifers. The increase in heads is due to the decrease in drawdown that occurs for a given amount of pumping in the aquifer. Because pumping is the dominant discharge mechanism, heads in the Ogallala Aquifer are sensitivity to specific yield. An increase in specific storage results in an increase in hydraulic heads as shown in Figure 4.2.52 for the specific storage of the Rita Blanca Aquifer, in Figure 4.2.53 for the Edwards-Trinity (High Plains) Aquifer, in Figure 4.2.54 for the upper Dockum Aquifer, and in Figure 4.2.55 for the lower Dockum Aquifer. Varying specific storage for the Rita Blanca Aquifer has the least effect on heads.

Figures 4.2.56 through 4.2.65 for the transient model head sensitivity to recharge and boundary conductance are very similar to Figures 4.2.11 through 4.2.20 for the steady-state model. Figure 4.2.66 illustrates the sensitivity of hydraulic heads to pumping, with increases in pumping resulting in decreases in hydraulic heads. Figure 4.2.67 shows almost no sensitivity of hydraulic

heads to the conductance of reservoirs, with the maximum change well below the previously noted convergence limitation of approximately 0.8 acre-feet per year.

Figures 4.2.68 through 4.2.77 for the transient model flow sensitivity to horizontal and vertical hydraulic conductivity are very similar to Figures 4.2.21 to 4.2.30 for the steady-state model. Figure 4.2.71 shows a different trend for change in flow to rivers than Figure 4.2.24, but in both cases the change in flow is well below a significant level of 0.8 acre-feet per year. Figure 4.2.72 shows that the change in boundary flow to reservoirs is the largest of any of the boundary flows when the horizontal hydraulic conductivity of the lower Dockum Aquifer is varied. Figure 4.2.73 shows that flows are basically insensitive to change in vertical conductivity of the Ogallala Aquifer.

Figure 4.2.78 shows the sensitivity of boundary flows to changes in the specific yield of the Ogallala Aquifer. River boundary flow is most sensitive, and all flows are positively correlated (general-head boundary flows are insensitive), where increasing the specific yield of the Ogallala Aquifer increases flows to the boundaries. This positive correlation occurs because drawdown is less (as discussed with Figure 4.2.51) with higher specific yield, and higher heads result in more outflow to boundaries.

Figures 4.2.79 through 4.2.88 for the transient model flow sensitivity to recharge and boundary conductance are similar in most cases to Figures 4.2.31 through 4.2.40 for the steady-state model. Figures 4.2.80 and 4.2.81 show that boundary flows are insensitive to recharge in the Rita Blanca and upper Dockum aquifers. Figure 4.2.84 shows that variation in general-head boundary conductance for the transient model has a larger effect on general-head boundary flows than in the steady-state model, although the overall change is still small, on the order of 0.8 feet. The change from steady-state is due to the simulated drawdown in the general-head boundary regions (Pecos Valley and Edwards-Trinity (Plateau) aquifers). The increased gradient caused by the decrease in boundary elevation increases the importance of the conductance term. Figures 4.2.87 and 4.2.88 show that river and reservoir flows are sensitive to changes in maximum evapotranspiration rate and rooting depth, and are negatively correlated in both cases (increasing maximum evapotranspiration rate or rooting depth decreases average heads and decreases flow to reservoirs and rivers.)

Figure 4.2.89 depicts the sensitivity of boundary flows to changes in pumping with increases in pumping resulting in decreases in boundary flows. Figure 4.2.90 shows the sensitivity of boundary flows to changes in reservoir conductance with increases in reservoir conductance resulting in increases in the rate of flow out of reservoirs. All other boundary flows are insensitive to reservoir conductance.

After reviewing the spider plots discussed to this point, sensitivity hydrographs were plotted for several key parameters. First, consider the sensitivity of Ogallala Aquifer and lower Dockum Aquifer heads to the vertical hydraulic conductivity of the region where the Ogallala Aquifer overlies the Santa Rosa Formation. The purpose was to determine whether a different parameterization in this zone (Figure 2.4.5) would result in a more effective simulation of the vertical connection between the two units, as judged by the head calibration. Wells were chosen in this region from the Ogallala and lower Dockum aquifers, and sample hydrographs are shown in Figure 4.2.91. In Moore County for the Ogallala Aquifer, little change in heads occurs due to the variation in vertical conductivity. In Armstrong County for the Ogallala Aquifer, heads change in steady-state by between 5 and 10 feet (lower heads with increased conductivity) while the transient variation does not change. The "base" (that is, calibrated model) appears to provide a fit that is as good, or better, than the 0.3 multiplier and 3.0 multiplier cases.

For the lower Dockum Aquifer hydrographs in Hartley and Carson counties, little sensitivity is evident. However, in Floyd and Armstrong counties, much larger variations in head occur with the variation in vertical conductivity. From the Floyd and Armstrong county plots, it appears that the vertical conductivity is reasonably well parameterized for this zone, so that a change in the value is not justified. This means that no special approach is required for parameterizing this zone versus the rest of the lower Dockum Aquifer. The basic approach for estimating the vertical conductivity of the lower Dockum Aquifer was driven by clay percentage in the unit and depth of burial. The conductance term calculated by MODFLOW between two layers is dependent on vertical conductivity of the two layers and layer thickness. Because the lower Dockum Aquifer in this zone is relatively sandy, is shallow, and thin compared to areas more basinward, the vertical connection calculated from the basic approach results in a vertical conductance that creates satisfactory calibration to heads in the area.

Figure 4.2.92 shows the sensitivity of hydrographs to changes in horizontal hydraulic conductivity. In general, decreasing horizontal hydraulic conductivity brings an increase in steady-state head. In the Ogallala Aquifer, where significant historical pumping occurs, the shape of the drawdown curves are similar, with the offset in heads from steady-state. Where relatively little pumping has occurred (Hemphill County), the curves are offset and flat. The rate of drawdown in the Ogallala Aquifer is sensitive to specific yield and pumping rate, but not as sensitive to horizontal hydraulic conductivity. The Rita Blanca Aquifer, which is confined, is less sensitive in steady-state, but the slope of the drawdown is sensitive in transient. The hydrographs for the Edwards-Trinity (High Plains) Aquifer show increased heads in steady-state with decreased horizontal conductivity, and increased drawdown in transient. The curve for the lowest hydraulic conductivity shows evidence of curtailment due to excessive drawdown from 1950 to 1990. The lower Dockum Aquifer hydrographs show a similar trend, again with the lowest hydraulic conductivity curve in the Moore County hydrograph showing signs of curtailment of pumping in 1950.

Figure 4.2.93 shows the sensitivity of hydrographs in the Ogallala Aquifer to changes in specific yield. Where pumping occurs, specific yield has a direct effect on the slope of the curve. Where little pumping occurs (Hemphill County), no effect is seen, since storage parameters have no effect on steady-state heads.

Figure 4.2.94 shows the sensitivity of upper Dockum Aquifer hydrographs to changes in vertical hydraulic conductivity. The upper Dockum Aquifer is impacted primarily through vertical communication with the formations above and below. When conductivity is decreased, heads decrease because less pressure support is communicated from the aquifer above and below. Similarly, under pumping conditions, decreased vertical hydraulic conductivity will increase drawdown somewhat, due to decreased pressure support.

Figure 4.2.95 shows the sensitivity of hydrographs to changes in recharge rate. Relative to the Ogallala Aquifer, the other aquifers with outcrops are not very sensitive to recharge, due to outcrop size. The Ogallala Aquifer is sensitive to recharge in steady-state, but not particularly sensitive in transient. The Edwards-Trinity (High Plains) Aquifer hydrograph was plotted to show sensitivity to recharge in the Ogallala Aquifer.

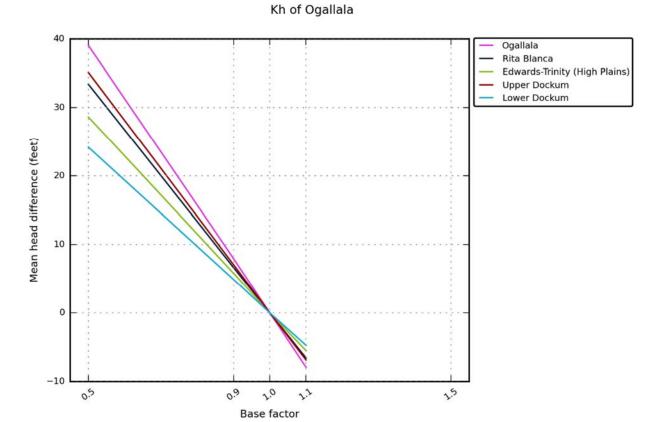


Figure 4.2.41 Hydraulic head sensitivity in feet for the transient model to changes in horizontal hydraulic conductivity (Kh) of the Ogallala Aquifer.

Kh of Rita Blanca

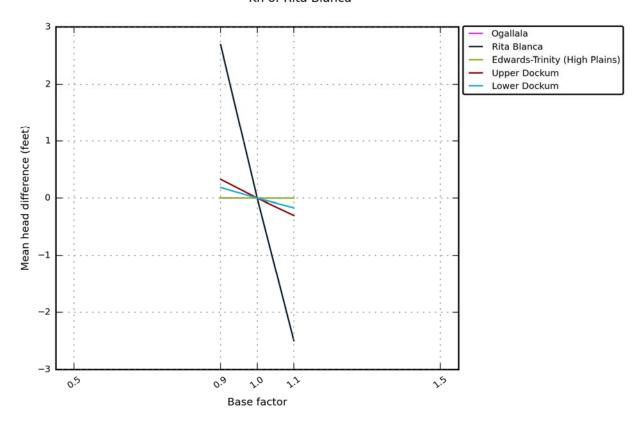


Figure 4.2.42 Hydraulic head sensitivity in feet for the transient model to changes in horizontal hydraulic conductivity (Kh) of the Rita Blanca Aquifer.

Kh of Edwards-Trinity (High Plains)

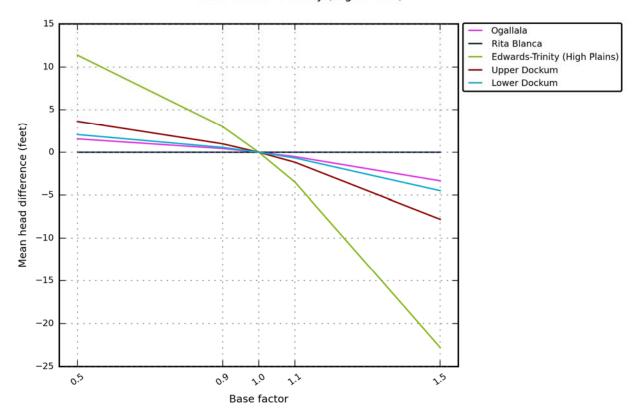


Figure 4.2.43 Hydraulic head sensitivity in feet for the transient model to changes in horizontal hydraulic conductivity (Kh) of the Edwards-Trinity (High Plains) Aquifer.

Kh of Upper Dockum

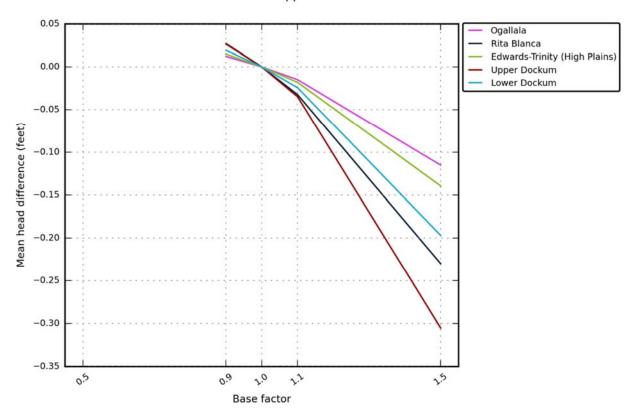


Figure 4.2.44 Hydraulic head sensitivity in feet for the transient model to changes in horizontal hydraulic conductivity (Kh) of the upper Dockum Aquifer.

Kh of Lower Dockum

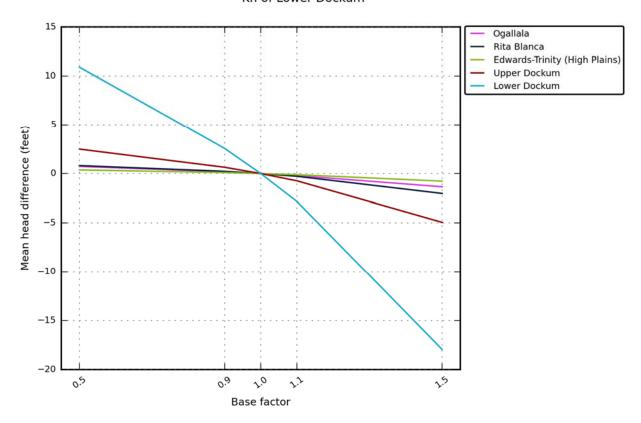


Figure 4.2.45 Hydraulic head sensitivity in feet for the transient model to changes in horizontal hydraulic conductivity (Kh) of the lower Dockum Aquifer.

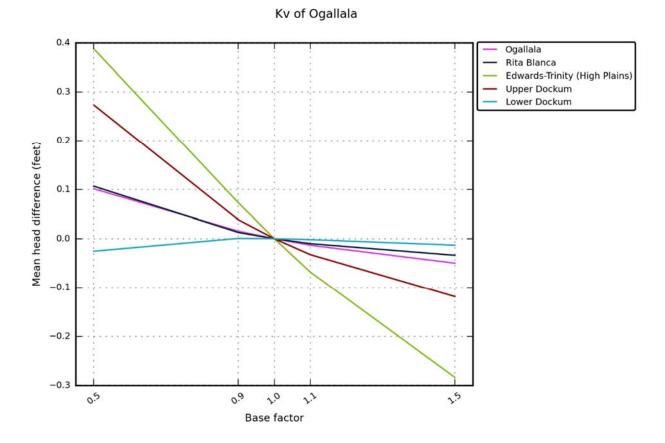


Figure 4.2.46 Hydraulic head sensitivity in feet for the transient model to changes in vertical hydraulic conductivity (Kv) of the Ogallala Aquifer.

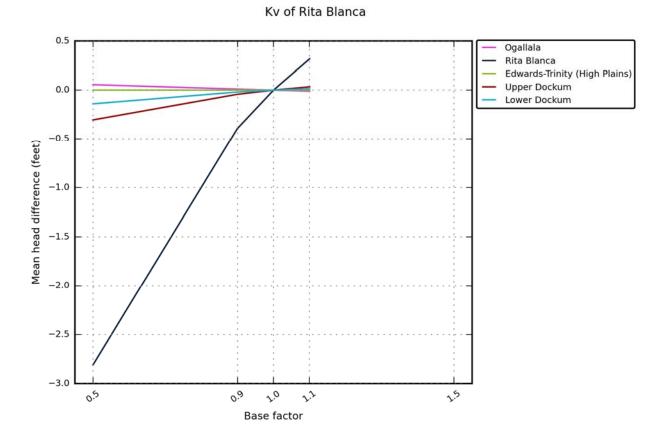


Figure 4.2.47 Hydraulic head sensitivity in feet for the transient model to changes in vertical hydraulic conductivity (Kv) of the Rita Blanca Aquifer.

Kv of Edwards-Trinity (High Plains)

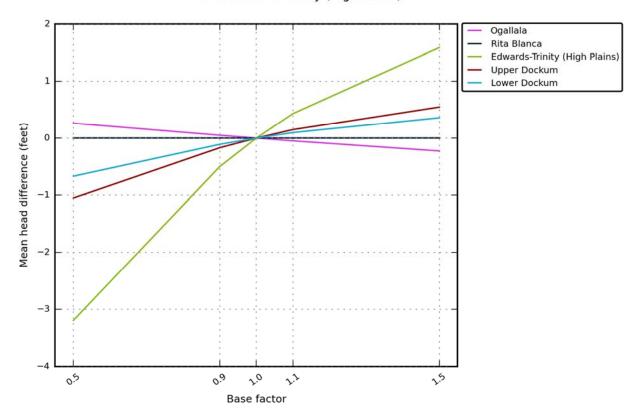


Figure 4.2.48 Hydraulic head sensitivity in feet for the transient model to changes in vertical hydraulic conductivity (Kv) of the Edwards-Trinity (High Plains) Aquifer.

Kv of Upper Dockum

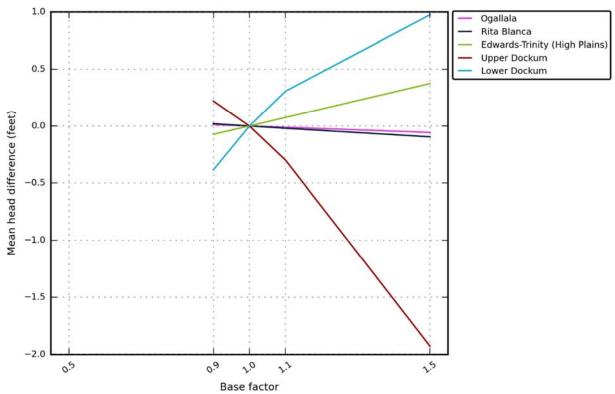


Figure 4.2.49 Hydraulic head sensitivity in feet for the transient model to changes in vertical hydraulic conductivity (Kv) of the upper Dockum Aquifer.

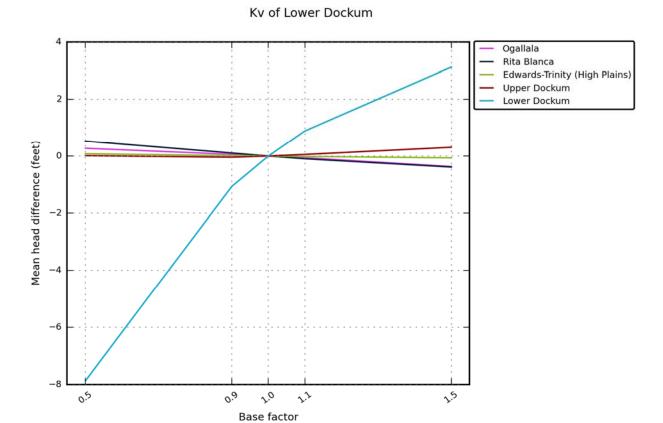


Figure 4.2.50 Hydraulic head sensitivity in feet for the transient model to changes in vertical hydraulic conductivity (Kv) of the lower Dockum Aquifer.

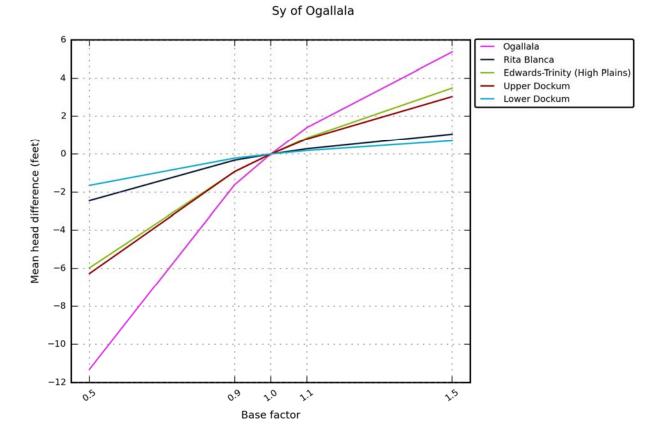


Figure 4.2.51 Hydraulic head sensitivity in feet for the transient model to changes in specific yield (Sy) of the Ogallala Aquifer.

Ss of Rita Blanca

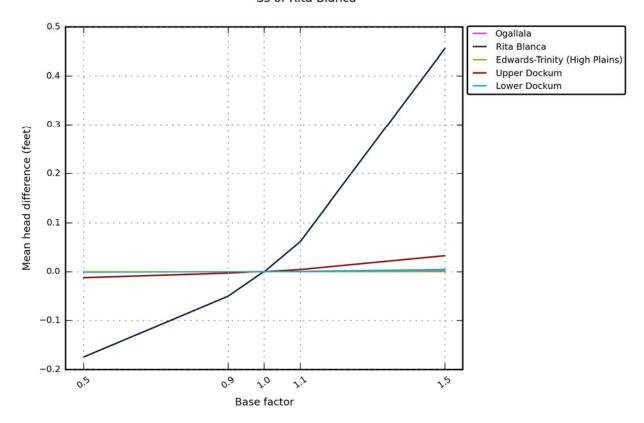


Figure 4.2.52 Hydraulic head sensitivity in feet for the transient model to changes in specific storage (Ss) of the Rita Blanca Aquifer.

Ss of Edwards-Trinity (High Plains)

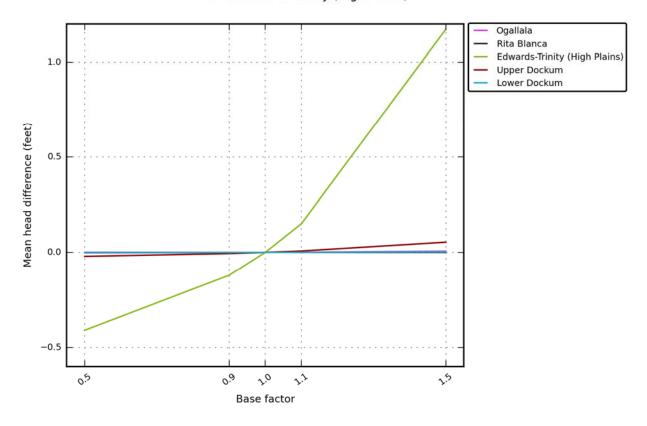


Figure 4.2.53 Hydraulic head sensitivity in feet for the transient model to changes in specific storage (Ss) of the Edwards-Trinity (High Plains) Aquifer.

Ss of Upper Dockum

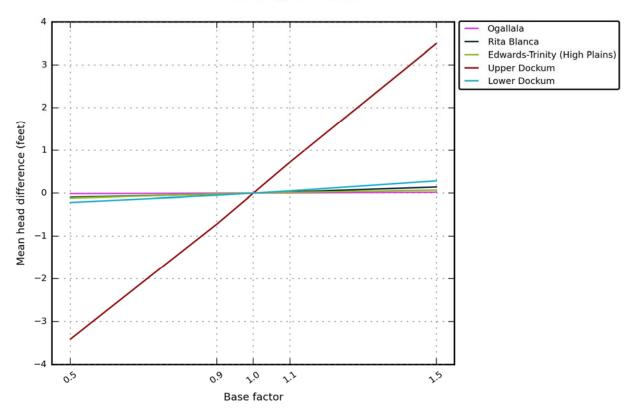


Figure 4.2.54 Hydraulic head sensitivity in feet for the transient model to changes in specific storage (Ss) of the upper Dockum Aquifer.

Ss of Lower Dockum

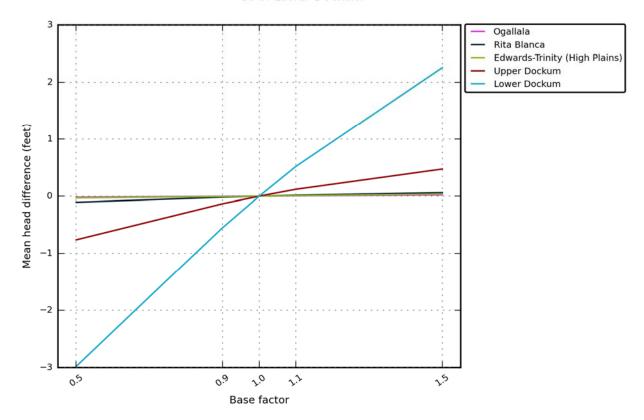


Figure 4.2.55 Hydraulic head sensitivity in feet for the transient model to changes in specific storage (Ss) of the lower Dockum Aquifer.

Recharge of Ogallala

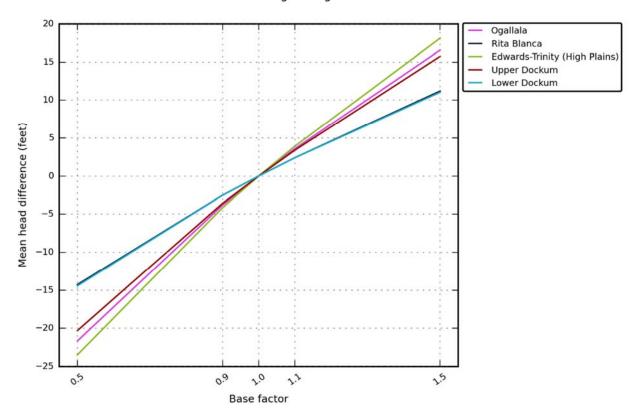


Figure 4.2.56 Hydraulic head sensitivity in feet for the transient model to changes in recharge in the Ogallala Aquifer.

Recharge of Rita Blanca

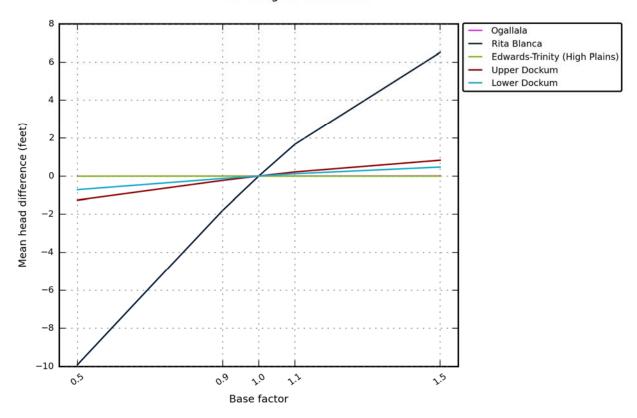


Figure 4.2.57 Hydraulic head sensitivity in feet for the transient model to changes in recharge in the Rita Blanca Aquifer.

Recharge of Upper Dockum

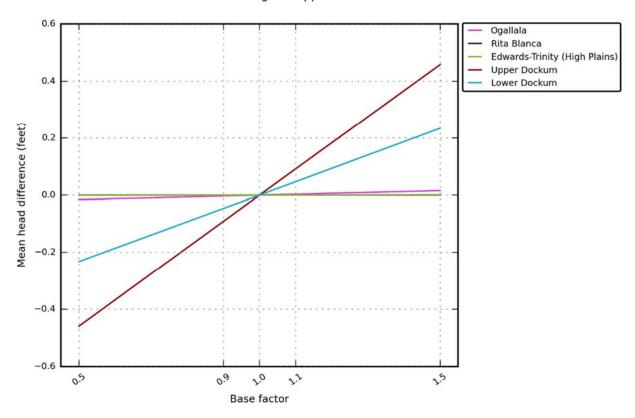


Figure 4.2.58 Hydraulic head sensitivity in feet for the transient model to changes in recharge in the upper Dockum Aquifer.

Recharge of Lower Dockum

Figure 4.2.59 Hydraulic head sensitivity in feet for the transient model to changes in recharge in the lower Dockum Aquifer.

River conductance

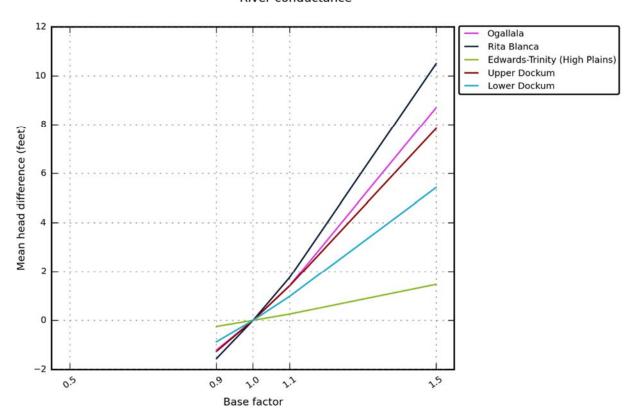


Figure 4.2.60 Hydraulic head sensitivity in feet for the transient model to changes in river boundary conductance.

GHB conductance

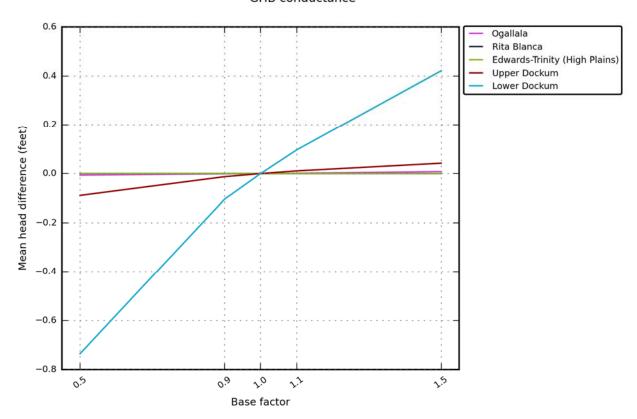


Figure 4.2.61 Hydraulic head sensitivity in feet for the transient model to changes in river boundary conductance, representing river boundaries as general-head boundaries (GHB).

Ephemeral stream conductance

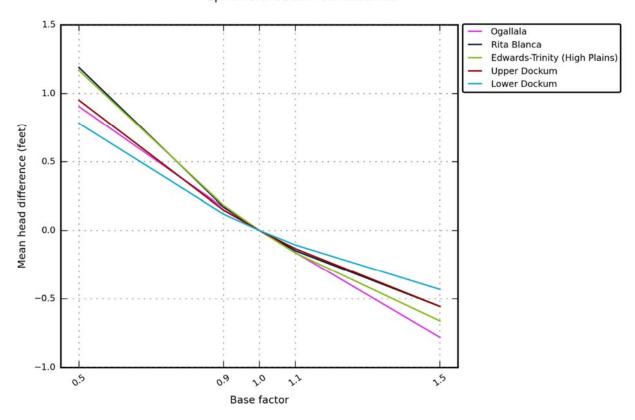


Figure 4.2.62 Hydraulic head sensitivity in feet for the transient model to changes in drain boundary conductance, representing ephemeral streams.

Figure 4.2.63 Hydraulic head sensitivity in feet for the transient model to changes in drain boundary conductance, representing springs.

2.2

0.9

20

Base factor

-0.6

0.5

Evapotranspiration rate

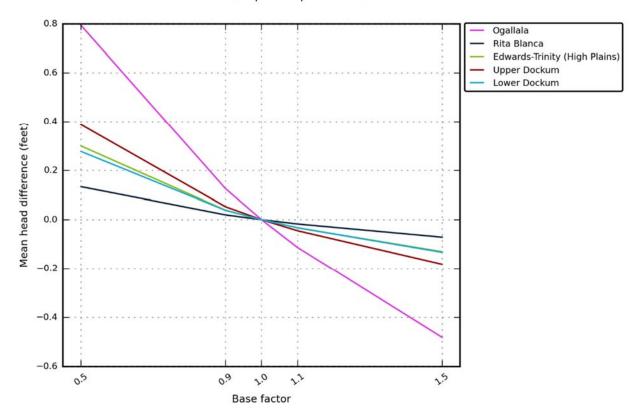


Figure 4.2.64 Hydraulic head sensitivity in feet for the transient model to changes in maximum evapotranspiration rate.

Extinction depth

0.6 Ogallala Rita Blanca Edwards-Trinity (High Plains) Upper Dockum 0.4 Lower Dockum 0.2 Mean head difference (feet) 0.0 -0.2 -0.4 -0.6 -0.8 0.5 0.9 20 2.2

Figure 4.2.65 Hydraulic head sensitivity in feet for the transient model to changes in evapotranspiration extinction depth.

Base factor

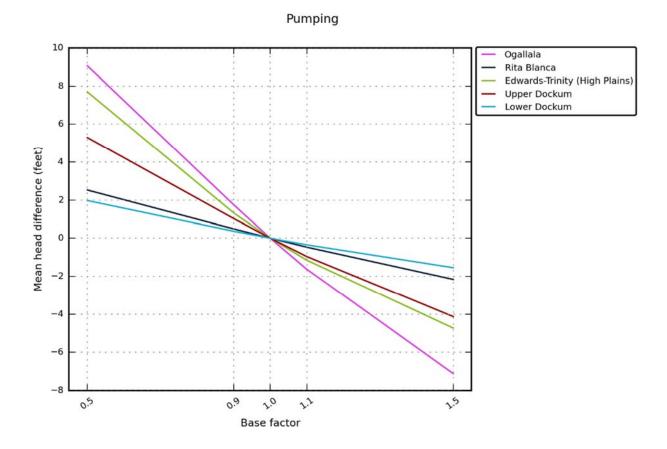


Figure 4.2.66 Hydraulic head sensitivity in feet for the transient model to changes in well boundary discharge.

Reservoir conductance

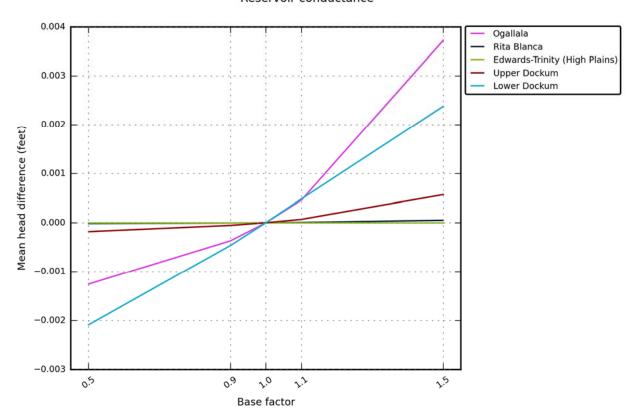


Figure 4.2.67 Hydraulic head sensitivity in feet for the transient model to changes in drain boundary conductance, representing reservoirs.

Kh of Ogallala

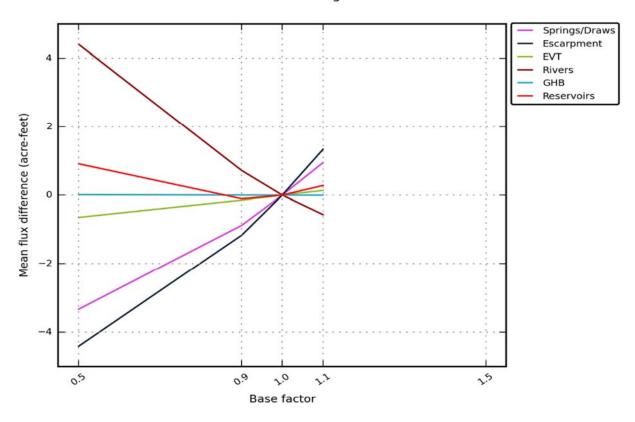


Figure 4.2.68 Flow sensitivity in acre-feet per year for the transient model to changes in horizontal hydraulic conductivity (Kh) of the Ogallala Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kh of Rita Blanca

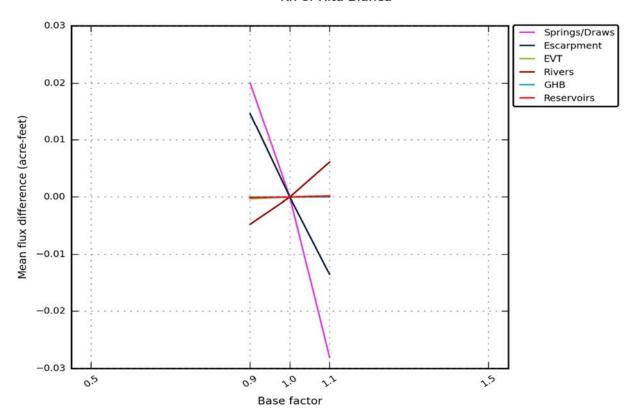


Figure 4.2.69 Flow sensitivity in acre-feet per year for the transient model to changes in horizontal hydraulic conductivity (Kh) of the Rita Blanca Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kh of Edwards-Trinity (High Plains)

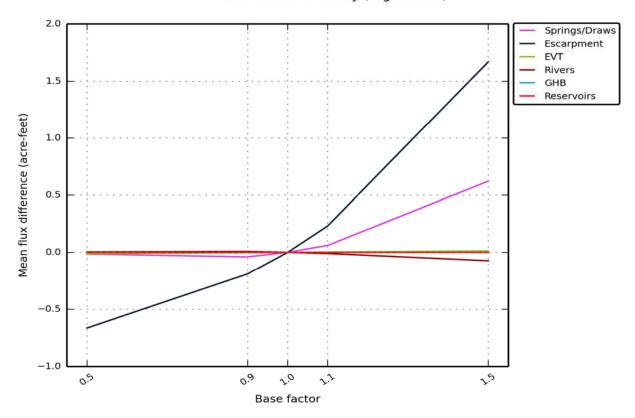


Figure 4.2.70 Flow sensitivity in acre-feet per year for the transient model to changes in horizontal hydraulic conductivity (Kh) of the Edwards-Trinity (High Plains)

Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kh of Upper Dockum

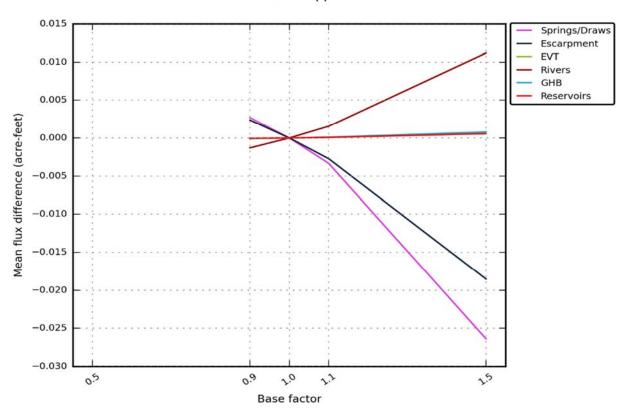


Figure 4.2.71 Flow sensitivity in acre-feet per year for the transient model to changes in horizontal hydraulic conductivity (Kh) of the upper Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kh of Lower Dockum

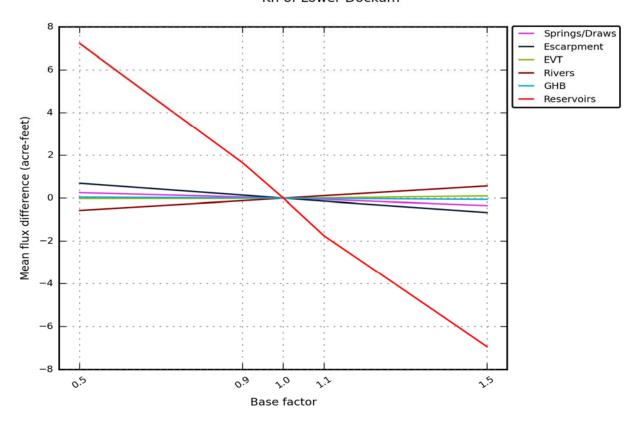


Figure 4.2.72 Flow sensitivity in acre-feet per year for the transient model to changes in horizontal hydraulic conductivity (Kh) of the lower Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

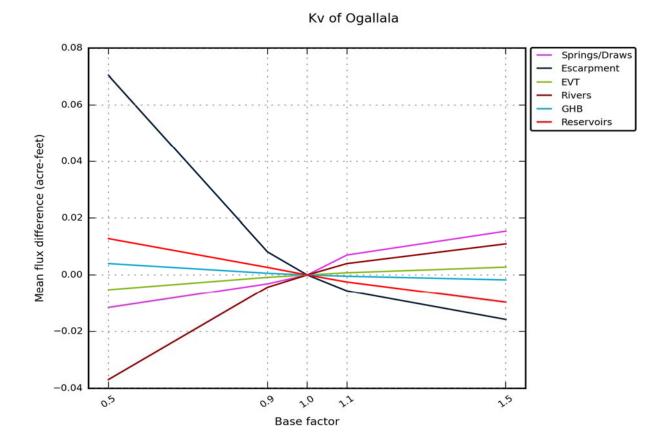


Figure 4.2.73 Flow sensitivity in acre-feet per year for the transient model to changes in vertical hydraulic conductivity (Kv) of the Ogallala Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kv of Rita Blanca

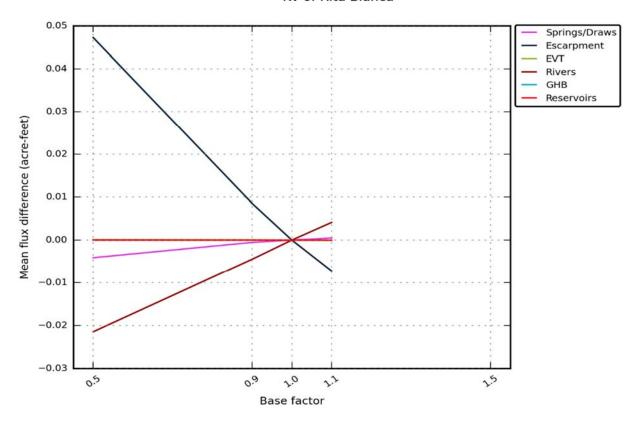


Figure 4.2.74 Flow sensitivity in acre-feet per year for the transient model to changes in vertical hydraulic conductivity (Kv) of the Rita Blanca Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kv of Edwards-Trinity (High Plains)

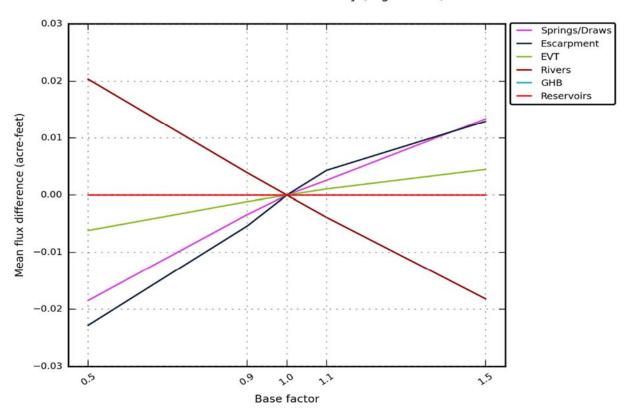


Figure 4.2.75 Flow sensitivity in acre-feet per year for the transient model to changes in vertical hydraulic conductivity (Kv) of the Edwards-Trinity (High Plains) Aquifer.

(Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kv of Upper Dockum

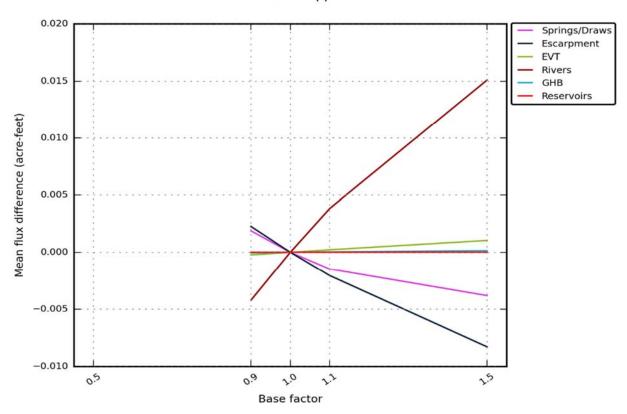


Figure 4.2.76 Flow sensitivity in acre-feet per year for the transient model to changes in vertical hydraulic conductivity (Kv) of the upper Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Kv of Lower Dockum

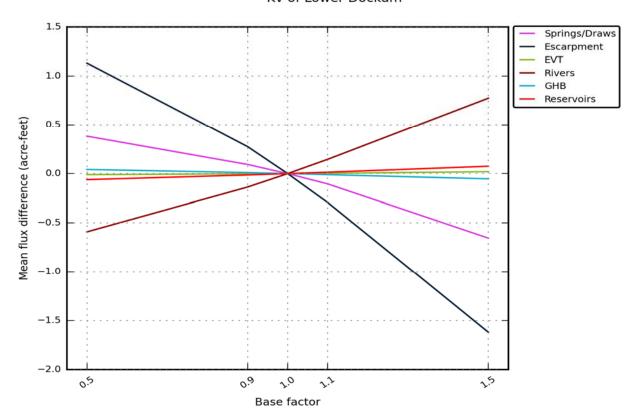


Figure 4.2.77 Flow sensitivity in acre-feet per year for the transient model to changes in vertical hydraulic conductivity (Kv) of the lower Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Sy of Ogallala 2 1 1 Springs/Draws Escarpment EVT Rivers GHB Reservoirs

Figure 4.2.78 Flow sensitivity in acre-feet per year for the transient model to changes in specific yield (Sy) of the Ogallala Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

2.5

0.9

Base factor

0.5

Recharge of Ogallala

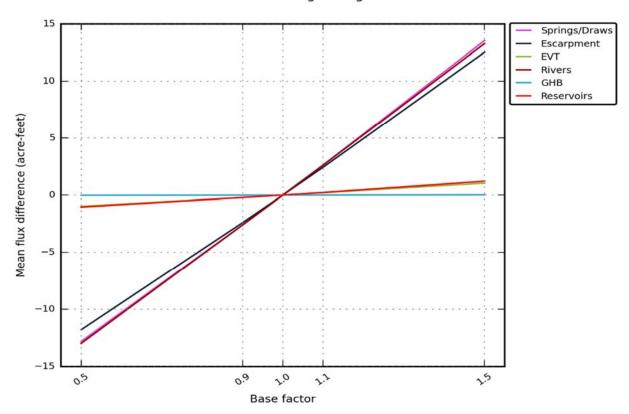


Figure 4.2.79 Flow sensitivity in acre-feet per year for the transient model to changes in recharge in the Ogallala Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Recharge of Rita Blanca

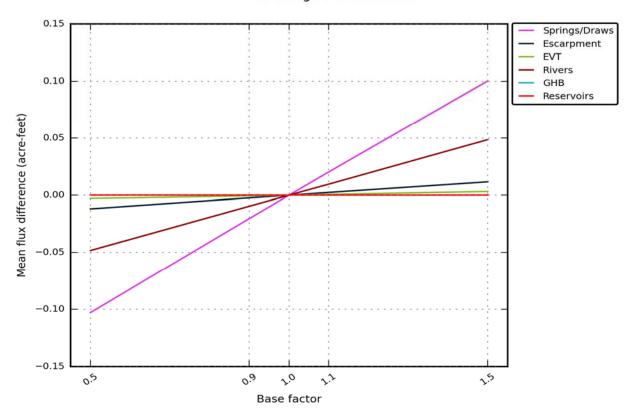


Figure 4.2.80 Flow sensitivity in acre-feet per year for the transient model to changes in recharge in the Rita Blanca Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Recharge of Upper Dockum

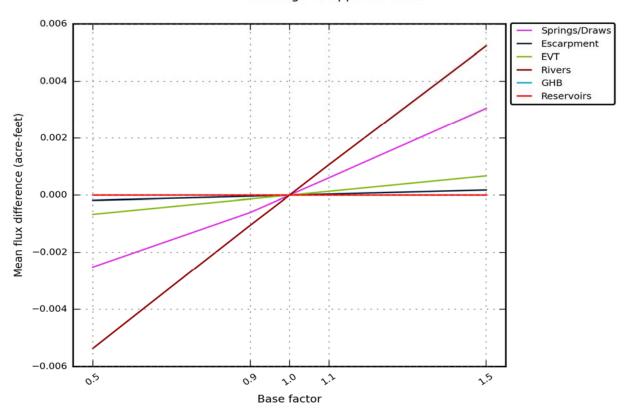


Figure 4.2.81 Flow sensitivity in acre-feet per year for the transient model to changes in recharge in the upper Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Recharge of Lower Dockum

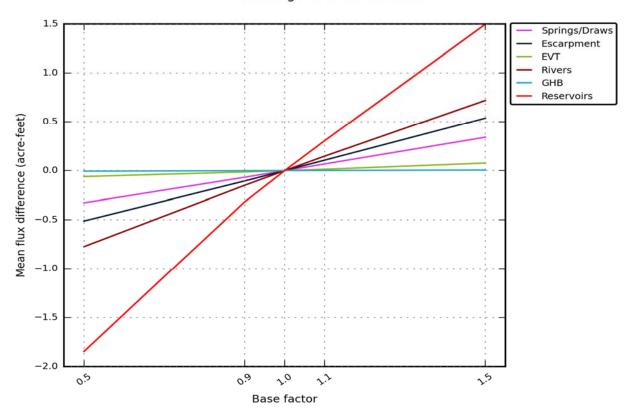


Figure 4.2.82 Flow sensitivity in acre-feet per year for the transient model to changes in recharge in the lower Dockum Aquifer. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

River conductance

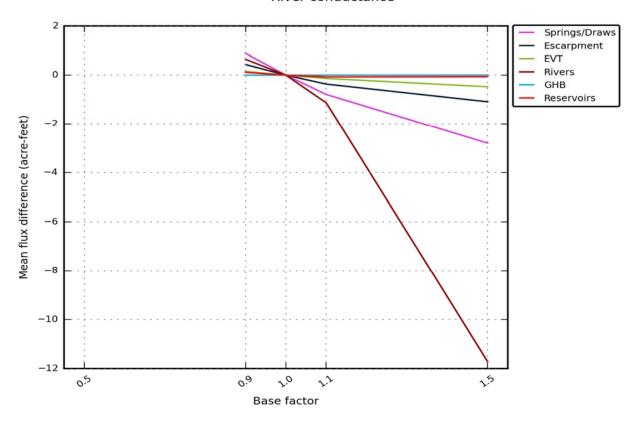


Figure 4.2.83 Flow sensitivity in acre-feet per year for the transient model to changes in river boundary conductance. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

GHB conductance

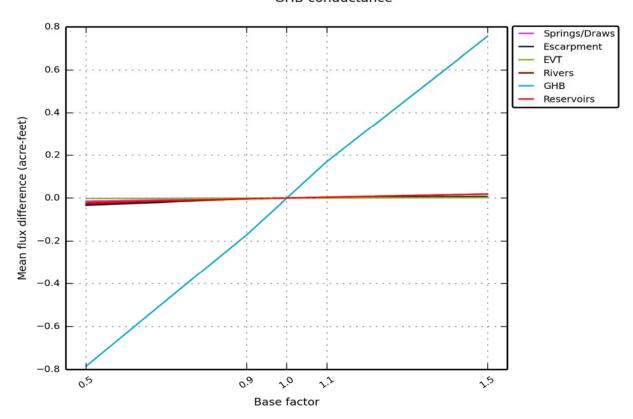


Figure 4.2.84 Flow sensitivity in acre-feet per year for the transient model to changes in river boundary conductance, representing river boundaries as general-head boundaries. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Ephemeral stream conductance

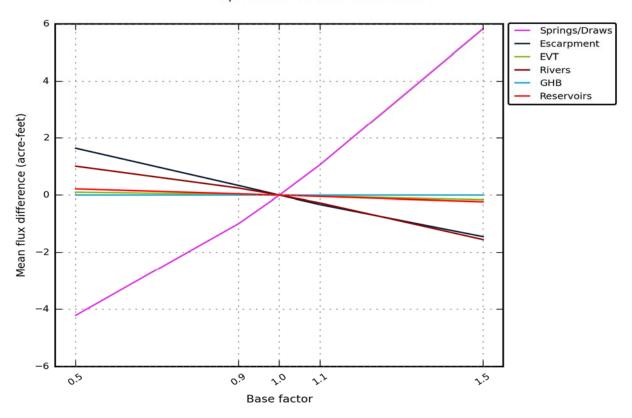


Figure 4.2.85 Flow sensitivity in acre-feet per year for the transient model to changes in drain boundary conductance, representing ephemeral streams. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Spring conductance

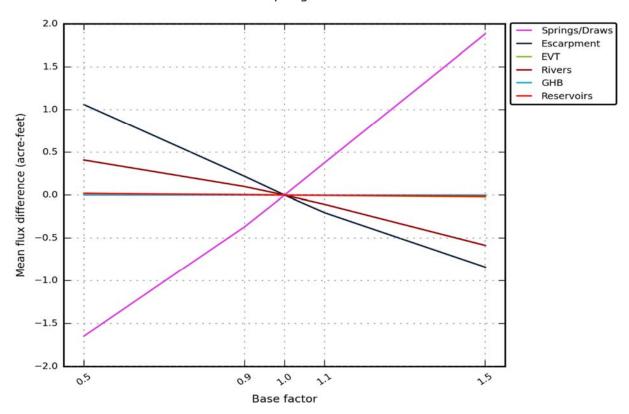


Figure 4.2.86 Flow sensitivity in acre-feet per year for the transient model to changes in drain boundary conductance, representing springs. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Evapotranspiration rate

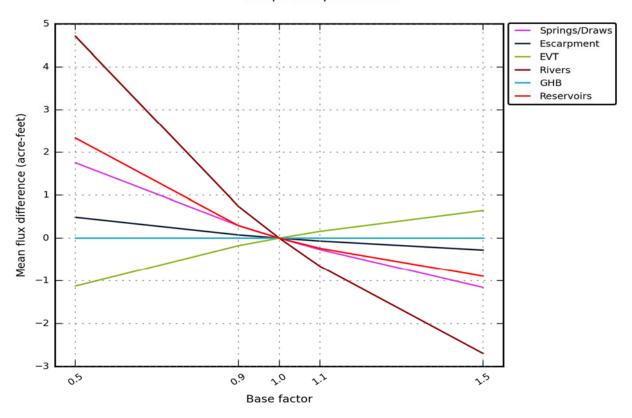


Figure 4.2.87 Flow sensitivity in acre-feet per year for the transient model to changes in maximum evapotranspiration rate. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Extinction depth

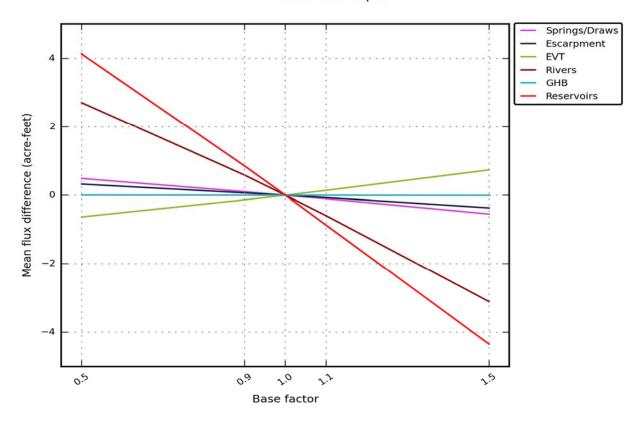


Figure 4.2.88 Flow sensitivity in acre-feet per year for the transient model to changes in evapotranspiration extinction depth. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

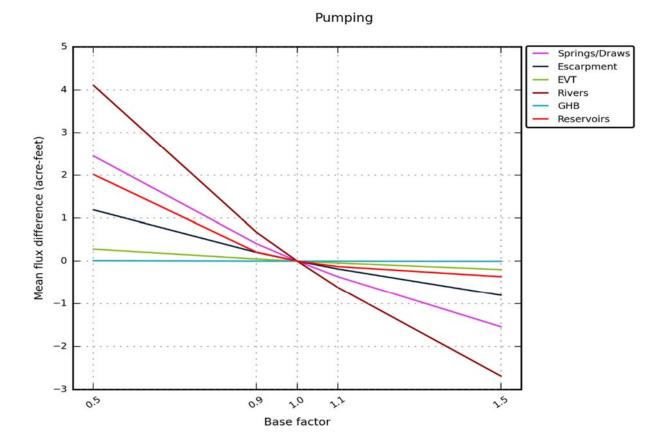


Figure 4.2.89 Flow sensitivity in acre-feet per year for the transient model to changes in well boundary discharge. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

Reservoir conductance

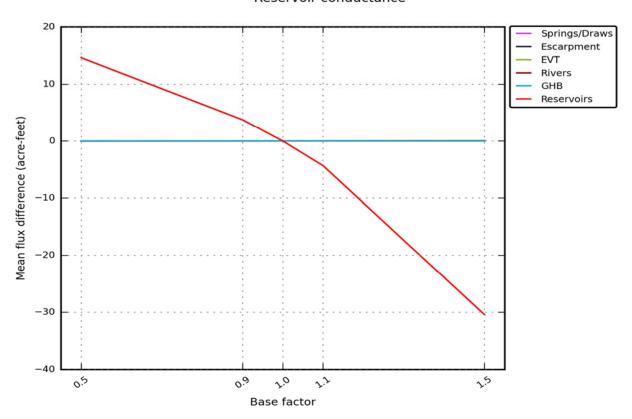


Figure 4.2.90 Flow sensitivity in acre-feet per year for the transient model to changes in River package boundary conductance, representing reservoirs. (Abbreviation key: EVT = evapotranspiration fluxes, GHB = general-head boundary fluxes.)

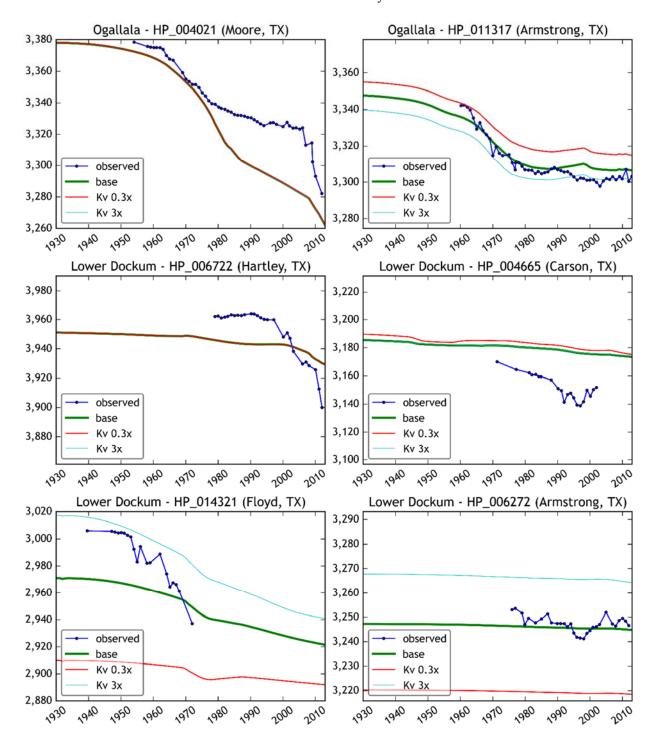


Figure 4.2.91 Example hydrographs showing sensitivity of heads (feet above mean sea level) to change in the vertical conductance (Kv) between the Ogallala Aquifer and the region of the lower Dockum Aquifer where the Santa Rosa Formation is in contact with the Ogallala Aquifer.

Figure 4.2.92 Example hydrographs showing sensitivity of heads (feet above mean sea level) to changes in the horizontal hydraulic conductivity (Kh).

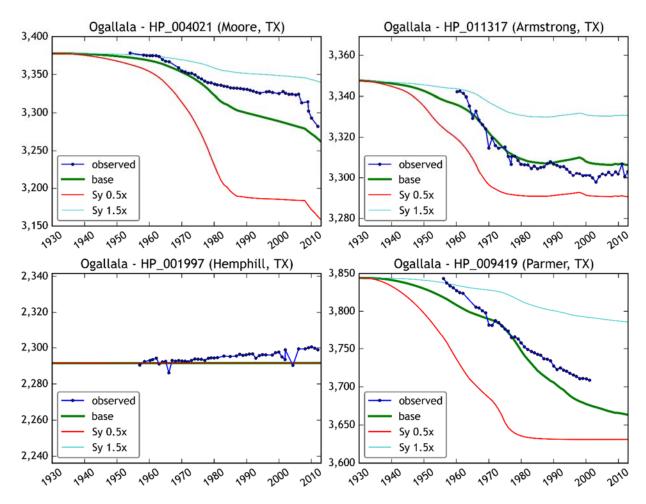


Figure 4.2.93 Example hydrographs showing sensitivity of heads (feet above mean sea level) to changes in specific yield (Sy).

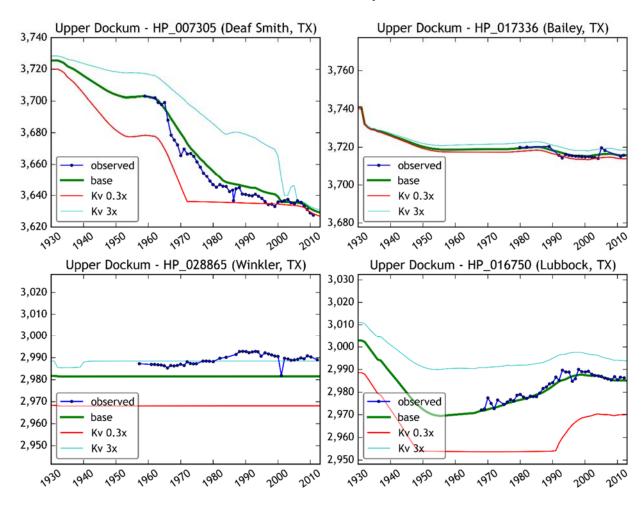


Figure 4.2.94 Example hydrographs showing sensitivity of upper Dockum Aquifer heads (feet above mean sea level) to changes in vertical hydraulic conductivity (Kv).

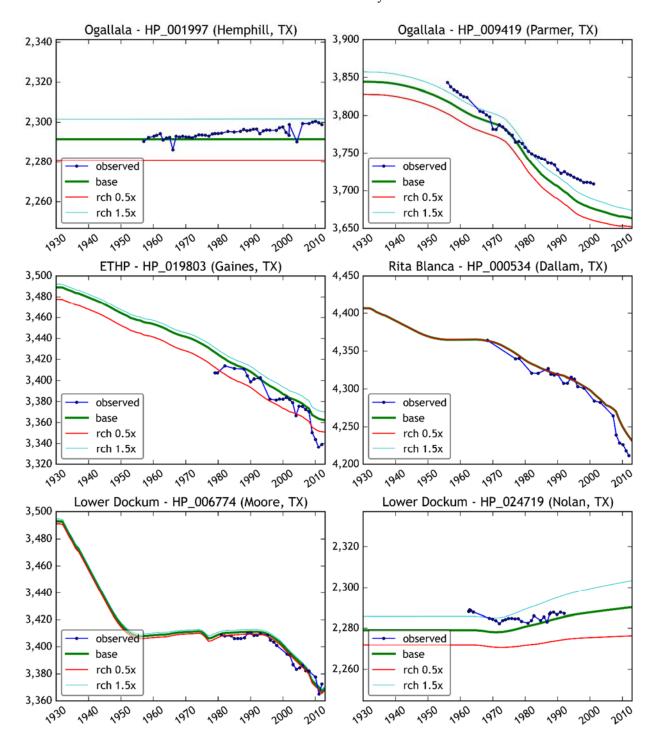


Figure 4.2.95 Example hydrographs showing sensitivity of heads (feet above mean sea level) to changes in recharge (rch). For the Edwards-Trinity (High Plains) Aquifer, the response is to changes in the Ogallala Aquifer recharge. In the five other cases, the recharge has been varied only in the outcrop of the stated aquifer.

5.0 Model Limitations

A model can be defined as a representation of reality that attempts to explain the behavior of some aspect of it, but is always less complex than the real system it represents (Domenico, 1972). As a result, limitations are intrinsic to models. Model limitations can be grouped into several categories including: (1) limitations in the data supporting a model, (2) limitations in the implementation of a model which may include assumptions inherent to the model application, and (3) limitations regarding model applicability. The limitations of this modeling study are discussed in the following paragraphs consistent with the groupings above.

5.1 Limitations of Supporting Data

Development of the supporting data for a regional model of the size and complexity of the High Plains Aquifer System groundwater availability model is a challenge. The primary limitations in supporting data for the model are:

- Limited hydraulic head targets spatially and temporally in the minor aquifers,
- Limited applicability of stream gain/loss estimates
- Limited hydraulic conductivity data for the minor aquifers
- Limited data quantifying cross-formational flow between the aquifers,
- Uncertain estimates of pumping in the Ogallala Aquifer.

Each of these data limitations is discussed briefly below.

The primary type of calibration target used in most models, including this groundwater availability model, is hydraulic head. Wells in the Rita Blanca and Edwards-Trinity (High Plains) aquifers are often screened at least partially in the Ogallala Aquifer, which may impact the applicability of water level measurements in describing actual water levels in those aquifers. Although development of the Dockum Aquifer is increasing, the available head data in many areas is sparse or has little temporal consistency.

No long-term stream gain/loss estimates or spring flow estimates were available. One or twoday measurement periods for gain/loss estimates, which yield gaining and losing results at different times do not provide information that can be used to assess model performance, which

is judged on annual stress periods. The spring flow estimates are typically only taken once, and are often uncertain due to crude measurement methods.

The same difficulty with water levels in the minor aquifers applies to estimates of hydraulic conductivity. High quality pump test information is unavailable in the Rita Blanca and Edwards-Trinity (High Plains) aquifers, and the spatial coverage in the Dockum Aquifer are confined to localized areas, making upscaling difficult.

Cross-formational flow, which can have serious implications both for water quality and availability in the system, is difficult to measure at the local scale and nearly impossible to measure at the regional scale. While the model predicts that cross-formational flow is small compared to the overall water budget, it can be important to the individual minor aquifers when considering water availability, and important to the Ogallala Aquifer in terms of water quality. The lack of empirical verification of the model estimates of cross-formational flow is, therefore, a limitation to the model.

Pumping, which is by far the largest source of discharge from the model, is uncertain because estimates of pumping are dependent on secondary sources, such as crop areas and application rates, which are themselves uncertain. Although some metering or more direct use reporting has occurred in recent years (for example, North Plains Groundwater Conservation District), the lack of historical data results in the pumping being revised during calibration. This occurred both in previous modeling efforts for the Ogallala Aquifer and in the current study. While change in storage calculations are helpful in estimating long term pumping rates in an area, they also carry uncertainty due to the uncertainty both in regional water level surfaces and specific yield of the aquifer.

5.2 Assessment of Assumptions

Many small assumptions are made about the hydrogeologic system during construction and calibration of a groundwater model. However, two assumptions stood out during construction and calibration of the model, that may impact the predictions made by the model.

- Hydraulic conductivity is constant when water levels change
- Irrigation return flow can be aggregated with overall recharge

Because the Ogallala Aquifer is modeled as a single layer, the hydraulic conductivity is considered to be constant throughout the vertical profile of the layer. In reality, the hydraulic conductivity varies vertically within the aquifer profile. If there are significant trends in the hydraulic conductivity (for example, if materials are far coarser-grained at the bottom of the aquifer), they are not being captured in the model. Under these example conditions, if water levels decline significantly, these coarser materials will have a higher effective conductivity than when the water was flowing throughout the entire vertical profile.

The conceptualization of recharge for the model included estimates of pre-development recharge rates, and post-development recharge rates. The increase in recharge in some areas is due to agricultural activity, which can both change vegetative and soil characteristics (make percolation more likely from precipitation) and increase the availability of percolation water because of irrigation return flow. The study also included estimates, based on evolution of water quality spatially and temporally, of approximately when this increased recharge "broke through" and encountered the water table.

The approach implemented in the numerical model assumed that the post-development recharge rates represented the current condition, post-breakthrough, in those areas where breakthrough was detected. This approach is appropriate for calibrating the model in the historical period. However, this increased recharge cannot, with the current evidence, be divided between enhanced natural recharge from precipitation, and irrigation return flow. If it is primarily irrigation return flow, then it will decrease over time since agricultural practices have become much more efficient from the 1940s to current day. If it is primarily enhanced recharge from precipitation, then it will continue into the future unless land-use practices change.

In addition, some areas show no evidence of enhanced recharge having occurred, but may show such evidence in the future. If a predictive simulation is run decades into the future, then either this eventual breakthrough must be estimated or assumed, or conservatively left out of the calculation. This topic has further discussion in Section 7.0 where model improvements are discussed.

5.3 Limitations of Model Applicability

The purpose of the TWDB groundwater availability model program is the development of models to determine how regional water availability is effected on a large scale by water

resource development. While the current model uses a half-mile square grid, its applicability is representative at a larger scale, such as tens of miles. The model should not be used to predict drawdown at a particular well. The model may be applicable at the scale of a large wellfield, depending on the data support that was available in that area of the model.

The mean absolute error for calibration of the model to observed heads ranged from approximately 30 to 50 feet. This means that, on average, simulated heads deviate from observed heads by this amount. However, the model performs better in some areas and worse in others, so care must be taken in using the model to estimate absolute head elevation. As a predictive tool, the model will be better at predicting changes in heads due to changes in stresses than absolute head values.

During calibration, pumping estimates for some counties were revised downward prior to 1980, based on calculations of storage change using head measurements and estimates of specific yield. Because the model is calibrated to these same head measurements, that built-in correlation has the potential to reduce calibration constraint for those years, which has the potential to reduce certainty in model predictions. However, because pumping from 1980 to 2012 was not based on storage change estimates, there is over 30 years of calibration where this reduced constraint is not applicable. Given the overall uncertainty in pumping estimates prior to 1980, we are confident that the approach that was taken provides the most reliable predictive tool under the given data limitations.

While the overall mean error of the model for the Ogallala Aquifer was only a few feet, the mean error for a given county at the end of the historical period may be tens of feet. Because the Ogallala Aquifer is unconfined, these tens of feet can translate to large volumes of water when estimating future availability. Predictive simulations with the model may want to include at least a partial accounting of mean errors in starting head surfaces.

The High Plains Aquifer System groundwater availability model should be used to estimate water availability for the Ogallala Aquifer, the Rita Blanca Aquifer, the Edwards-Trinity (High Plains) Aquifer, and the portion of the Dockum Aquifer that is represented in the model. Do not use the High Plains Aquifer System groundwater availability model for estimating water availability in the Pecos Valley or Edwards-Trinity (Plateau) aquifers. Portions of the Pecos Valley and Edwards-Trinity (Plateau) aquifers are represented as layers in the model. Although

they are represented as layers, head-dependent flow boundary conditions were placed in the layers to emulate the historical response of these aquifers. Because realistic fixed flux boundaries (recharge and pumping, for example) were not used, the model is not appropriate for simulating water availability in the portions of these two aquifers represented in the model.

MODFLOW-NWT does not account for density-dependent flow. Therefore, the higher density of the groundwater in the high total dissolved solids portion of the Dockum Aquifer and, to a lesser extent, the other portions of the aquifer which exhibit relatively high total dissolved solids concentrations are not accounted for in the governing flow equations of the model. Currently, little recharge and pumping occurs within this region of the aquifer and therefore, this shortcoming likely has little impact. However, potential future predictive simulations involving development of the high total dissolved solids portions of the Dockum Aquifer could be impacted by this limitation.

This page intentionally left blank.

6.0 Summary and Conclusions

This report documents the development of a numerical groundwater model of the High Plains Aquifer System, which consists of the Ogallala Aquifer, the Rita Blanca Aquifer, the Edwards-Trinity (High Plains) Aquifer, and the Dockum Aquifer. The High Plains Aquifer System groundwater availability model combines aquifers that were treated separately in three current groundwater availability models. While the calibration of the aquifers modeled in the High Plains Aquifer System groundwater availability model is similar statistically to the three current groundwater availability models, the numerical model of the High Plains Aquifer System groundwater availability model represents an advance in four areas:

- 1. The Rita Blanca Aquifer is simulated separately from the Ogallala Aquifer.
- 2. A uniform approach to the implementation of input parameters, such as conductivity and recharge, is used.
- 3. No "overlap areas" exist where two models give conflicting results.
- 4. Simulation of cross-formational flow between the various aquifers that comprise the system is explicitly accounted for. Simulations supporting water planning will have this interaction "built-in".

Development of a numerical model includes model design and construction, model calibration, and sensitivity analyses. The development of the numerical model documented in this report was based on the conceptual model development documented in Deeds and others (2015). The purpose of the model is to provide a tool for groundwater planning in the State of Texas.

The code used to implement the numerical model was MODFLOW-NWT. The model consists of four layers, with the Ogallala Aquifer as layer 1, the Rita Blanca and Edwards-Trinity (High Plains) aquifers, which do not overlap spatially, as layer 2, and the upper and lower Dockum Aquifers as layers 3 and 4, respectively. The model grid is composed of uniformly spaced half-mile square grid cells. The model simulates the time period from 1930 to 2012, with an initial steady-state stress period that represents pre-development conditions.

The model was primarily calibrated to observed heads in the four aquifers. It was calibrated to both steady-state and transient conditions. Both the steady-state and transient calibration statistics are well within acceptable ranges. The primary parameters modified during calibration

were horizontal and vertical conductivities, as well as recharge. The steady-state calibration was far more sensitive to recharge than the transient calibration. Uncertainty in historical pumping estimates for the Ogallala Aquifer provided a significant challenge during transient calibration. Estimated pumping rates prior to 1980 were reduced for some counties, in order to allow acceptable reproduction of water-level trends in those counties.

In the steady-state calibration, recharge is the major source of inflow to the Ogallala Aquifer, and discharge to rivers is the largest source of outflow. In the transient model, by 1940 pumping has become the largest outflow component, and by 1942 removal of water from storage has become the largest inflow component. Discharge to rivers decreases from over 500,000 acre-feet per year to less than 300,000 acre-feet per year over the course of the transient simulation. Although recharge increases through time due to agricultural activity, this does not significantly offset the increased production. Cross-formational flow is not a significant component of the Ogallala Aquifer water budget.

In contrast, cross-formational flow is a significant component of the minor aquifer water budgets. Cross-formational flow from the Ogallala Aquifer is the largest inflow component for both the Rita Blanca and Edwards-Trinity (High Plains) aquifers. Removal of water from storage is the largest component of the upper and lower Dockum Aquifers' water budgets.

A sensitivity analysis was performed, which indicated the horizontal hydraulic conductivity was an important parameter for all of the aquifers except the upper Dockum Aquifer, which was more sensitive to vertical hydraulic conductivity. Heads in the unconfined Ogallala Aquifer were sensitive to pumping rate and specific yield in places where significant pumping has occurred. Drawdown in the minor aquifers was more sensitive to hydraulic conductivity. Steady-state heads in the Ogallala Aquifer are sensitive to recharge rate.

7.0 Future Improvements

To use models to predict future conditions requires a commitment to improve the model as new data become available or when modeling assumptions or implementation issues change. This groundwater availability model is no different. Through the modeling process, one generally learns what can be done to improve the model's performance or what data would help better constrain the model calibration. Future improvements to the model, beyond the scope of the current groundwater availability model, are discussed below.

7.1 Additional Supporting Data or Studies

Several types of data could be collected to better support future enhancement of the High Plains Aquifer System groundwater availability model. These data limitations have been discussed in Section 5.1. Any studies that help to improve the quality and availability of these data could be used to provide additional constraint for future model updates.

Improving estimates of pumping data would be especially helpful. Although older historical pumping estimates cannot be easily revised, decades of remote-sensing data are now available that could help refine both earlier estimates of irrigated acreages and application rates. Recent advances in cloud-based Landsat image processing have made this type of analysis practical on a large scale with far fewer resources than previously required.

An additional study that attempts to answer some of the questions about agriculturally-enhanced recharge could both help constrain recharge estimates for future model updates, and allow better techniques for predicting future recharge. The current model has generated estimates of where and when agriculturally enhanced recharge has occurred. The next step would be to perform large-scale vadose zone flow and transport modeling to help evaluate the processes that drive the timing and occurrence of this recharge. The predictive estimates from this vadose zone flow and transport model could then be used as input for predictive estimates of water availability.

7.2 Future Model Implementation Improvements

As water levels decline, producers respond to decreasing per-well production by drilling additional wells, or increasing activity in areas where saturated thickness is more favorable. During model calibration, this process was emulated by iteratively distributing pumping to other wells in a county when MODFLOW-NWT limited the well production due to small saturated

thickness. Iteratively meant running and rerunning the model multiple times. A relatively simple improvement would be to change the well package so that after each stress period, the code would assess which wells were going to be limited in pumping due to saturated thickness limits, and reallocate that pumping to other wells with better capacity. This would greatly streamline the calibration process.

Analysis of the model water budget indicated that a relatively small rate of flux occurs between the Ogallala Aquifer and the minor aquifers it overlays. However, in the case of the upper Dockum Aquifer and portions of the Edwards-Trinity (High Plains) and lower Dockum aquifers, even this small amount of flux could bring highly saline water into water lying at the base of the Ogallala Aquifer. Performing some basic transport calculations and estimating the impact on Ogallala Aquifer water quality would help constrain the model estimated flux rates.

A large portion of the modeled Dockum Group exhibits total dissolved solids concentrations in excess of 5,000 milligrams per liter. The greater density of this water is not accounted for in the governing equations of groundwater flow used in MODFLOW. If predictive simulations are going to include development of the aquifer within the high total dissolved solids region, use of a simulator with the capability of simulating density-dependent flow (for example, SEAWAT) may be warranted. It would be useful just to use SEAWAT with the current model to perform sensitivity analyses and answer the question of whether density dependence is even important for availability in the Dockum Aquifer.

8.0 Acknowledgements

We would like to acknowledge several organizations and individuals who contributed to the development of the conceptual model for the High Plains Aquifer System groundwater availability model, which provided the sound basis for development of the numerical model. The North Plains Groundwater Conservation District, Panhandle Groundwater Conservation District, and High Plains Underground Water Conservation District No. 1 all contributed financially to this project. These Districts, as well as the Hemphill County Underground Water Conservation District, Mesa Underground Water Conservation District, Permian Basin Underground Water Conservation District, South Plains Underground Water Conservation District, and Llano Estacado Underground Water Conservation District, provided valuable data and other support. Local knowledge from these Districts proved especially valuable in development of the conceptual model.

We would like to thank the cities of Amarillo, Lubbock, Canyon, and Morton, as well as the Canadian River Municipal Water Authority and the Red River Authority of Texas, for the data and support they provided.

We would like to thank the Mesa Underground Water Conservation District, city of Amarillo, High Plains Underground Water Conservation District, and the Panhandle Regional Planning Commission for hosting Stakeholder Advisory Forums.

This page intentionally left blank.

9.0 References

- Anaya, R., 2001, Using GIS Projection Parameters for GAM: TWDB groundwater availability model technical memo 01-01.
- Anderson, M.P., and Woessner, W.W., 1992, Applied groundwater modeling, simulation of flow and advective transport: New York, Academic Press, 381 p.
- Ashworth, J.B., and Hopkins, J., 1995, Aquifers of Texas: TWDB, Report 345, website http://www.cctexas.com/Assets/Departments/Water/Files/TWDB%20Aquifer%20Report.pdf.
- Blandford, T.N., Kuchanur, M., Standen, A., Ruggiero, R., Calhoun, K.C., Kirby, P., and Shah, G., 2008, Groundwater availability model of the Edwards-Trinity (High Plains) Aquifer in Texas and New Mexico: Groundwater availability model report prepared for the TWDB.
- Borrelli, J., Fedler, C.B., and Gregory, J.M., 1998, Mean crop consumptive use and free-water evaporation for Texas: TWDB, contractor report, Grant No. 95-483-137.
- Brune, G., 1969, How much underground water storage capacity does Texas have?: Presented at the 5th Annual American Water Resources Association Conference and the 14th Water for Texas Converence, San Antonio, Texas.
- Deeds, N.E., Harding, J.J., Jones, T.L., and Singh, A., 2015, Final conceptual model report for the High Plains Aquifer System groundwater availability model: Groundwater availability model report prepared for the TWDB.
- Daniel B. Stephens & Associates, Inc., 2007, City of Lubbock groundwater utilization study: contract report to the City of Lubbock, Texas.
- Domenico, P.A., 1972, Concepts and models in groundwater hydrology: McGraw-Hill, New York, NY.
- Dutton, A.R., Reedy, R.C., and Mace, R.E., 2001, Saturated thickness in the Ogallala Aquifer in the Panhandle Water Planning Area-Simulation of 2000 through 2050 withdrawal projections: Final Contract Report to the Panhandle Water Planning Group, Panhandle Regional Planning Commission, under contract no. UTA01-462, 61 p. plus appendices.

- Ewing, J.E., Jones, T.L., Yan, T., Vreugdenhil, A.M., Fryar, D.G., Pickens, J.F., Gordon, K., Nicot, J-P., Scanlon, B.R., Ashworth, J.B., and Beach, J., 2008, Groundwater availability model for the Dockum Aquifer: Groundwater availability model report prepared for the TWDB.
- Harbaugh, A.W., and McDonald, M.G., 1996, User's documentation for MODFLOW-96, An update to the U.S. Geological Survey modular finite-difference ground-water flow model: United States Geological Survey, Open-File Report 96-485.
- Harbaugh, A.W., Banta, E.R., Hill, M.C., and McDonald, M.G., 2000, MODFLOW-2000, The U.S. Geological Survey modular ground-water model - User guide to modularization concepts and the ground-water flow process: United States Geological Survey, Open-File Report 00-92.
- Harbaugh, A.W., 2005, MODFLOW-2005, the U.S. Geological Survey modular ground-water model the ground-water flow process: United States Geological Survey, Techniques and Methods 6-A16.
- Hecox, G. R., Macfarlane, P. A., and Wilson, B. B., 2002, Calculation of yield for high plains wells: Relationship between saturated thickness and well yield: Kansas Geological Survey, Open File Report, 2002-25C.
- Hutchinson, W.R., Jones, I., and Anaya, R., 2011, Update of the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers of Texas: TWDB, 61 pp.
- Louis, C., 1974, Rock hydraulics: in Muller, L., ed., Rock Mechanics, Springer, Vienna, Austria.
- McDonald, M.G., and Harbaugh, A.W., 1988, A modular three-dimensional finite-difference ground-water flow model: United States Geological Survey, Techniques of Water-Resources Investigations, Book 6, chapter A1.
- Niswonger, R.G., Panday, S., and Ibaraki, M., 2011, MODFLOW-NWT, a Newton formulation for MODFLOW-2005: United States Geological Survey, Techniques and Methods 6-A37, 44 p.
- New Mexico Office of the State Engineer, 2014, OSE well data shapefile: website http://www.ose.state.nm.us/water info data.html, accessed August, 2014.

- Oklahoma Water Resources Board, 2014, Oklahoma water well records, digital database: website http://www.owrb.ok.gov/wd/search/search.php, accessed August, 2014.
- Scanlon, B., Keese, K., Bonal, N., Deeds, N., Kelley, V., and Litvak, M., 2005, Evapotranspiration estimates with emphasis on groundwater evapotranspiration in Texas: report prepared for the TWDB.
- Scanlon, B.R., Reedy, R.C., and Gates, J.B., 2010, Effects of irrigated agroecosystems:

 1. Quantity of soil water and groundwater in the southern High Plains, Texas: Water Resources Research, v. 46, W09537, doi:10/1029/2009WR008427.
- TWDB, 2006a, Maps & GIS data, GIS data, Major aquifers: website http://www.twdb.state.tx.us/mapping/gisdata.asp.
- TWDB, 2006b, Maps & GIS data, GIS data, Minor aquifers: website http://www.twdb.state.tx.us/mapping/gisdata.asp.
- TWDB, 2007, Water for Texas 2007: TWDB.
- TWDB, 2014a, TWDB groundwater database: website http://www.twdb.state.tx.us/groundwater/data/gwdbrpt.asp, accessed March, 2014.
- TWDB, 2014b. TWDB submitted driller's reports database, digital dataset: website http://www.twdb.state.tx.us/ groundwater/data/drillersdb.asp, accessed September 2014.
- United States Geological Survey, 2013, National Water Information System data, water data for the Nation: website http://waterdata.usgs.gov/nwis/sw, accessed October, 2013.

This page intentionally left blank.

Appendix A

Water Budgets by County, Groundwater Conservation District, and Aquifer

This page intentionally left blank.

The tables of this appendix summarize the water budget in terms of volume in acre-feet per year for the steady-state model, for the stress period representing 1980 in the transient model, and for the stress period representing 2012 in the transient model. Water budgets are presented by aquifer and broken into counties and groundwater conservation districts. All values are reported in acre-feet per year. Negative numbers indicate flow out of the county or groundwater conservation district. In all tables, the abbreviation ET is evapotranspiration. In Tables A.4.1 through A.6.5, the abbreviation UWCD is underground water conservation district, GCD is groundwater conservation district, and WCD is water conservation district.

This page intentionally left blank.

Table A.1.1 Water budget for the Ogallala Aquifer by county for the steady-state model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross- Formational
Andrews	3,127	-320	-278	-635	-86	-11	-1,341	-456
Armstrong	9,499	-28	-227	-4,313	0	-2,822	127	-2,235
Baca	2,354	0	0	862	0	0	-3,217	1
Bailey	3,034	-9,254	-200	1,070	-308	0	6,208	-549
Beaver	47,454	-40,224	0	-31,915	-3,770	-123	28,578	0
Beckham	1,513	-9	0	-222	0	-1,258	-24	0
Borden	2,922	0	0	0	-334	-3,788	433	767
Briscoe	6,173	-549	-2,379	-1,857	0	-2,670	5,111	-3,828
Carson	12,471	-583	0	4,018	0	-206	-15,986	287
Castro	7,341	0	-53	2,796	0	0	-9,924	-160
Chaves	1,237	0	0	0	-628	0	-527	-82
Cimarron	48,926	-1,113	-73	7,000	-1,673	0	-53,233	167
Cochran	1,576	0	-82	0	-46	0	-1,230	-217
Collingsworth	647	0	0	0	0	-697	49	0
Crosby	8,634	-596	-115	-9,766	-445	-8,479	14,038	-3,272
Curry	6,217	0	0	6,244	0	0	-12,323	-138
Dallam	24,489	-2,416	0	11,778	-389	0	-33,912	451
Dawson	5,347	-1,620	-52	-1,073	-1,407	-3,220	867	1,159
De Baca	444	0	0	0	-985	0	399	141
Deaf Smith	17,381	-1,977	-238	-2,972	-390	0	-10,542	-1,263
Dewey	1,795	0	0	0	-111	-1,343	-341	0
Dickens	2,163	-98	0	-665	-47	-456	1,523	-2,421
Donley	17,217	-2,417	-1,567	-15,735	-129	-7,035	9,666	0
Ector	1,042	-171	-10	402	0	-45	-927	-290
Eddy	55	0	0	0	0	0	-55	0
Ellis	48,138	-22,581	-5,491	-22,619	-3,321	-11,653	17,528	0
Floyd	14,485	-217	-9,408	-3,557	0	-3,753	7,317	-4,867
Gaines	3,464	-6,846	-910	-1,147	-1,952	0	4,434	2,957
Garza	2,054	0	0	0	-1,021	-5,951	2,556	2,363
Glasscock	946	-464	0	-746	0	-164	-3	430
Grant	646	0	0	1,141	0	0	-1,787	0
Gray	26,145	-1,094	0	-4,840	0	-6,305	-13,907	0
Guadalupe	26	0	0	0	-5	0	-11	-9
Hale	9,967	-680	-228	-339	-556	0	-6,688	-1,476
Hansford	11,525	-4,540	0	-13,446	-133	0	6,594	0
Harding	3,327	0	0	0	-991	-454	-835	-1,047
Harper	14,584	-13,318	-107	-1,081	-438	-4,095	4,455	0
Hartley	29,125	-7,346	-69	-14,320	0	-1,825	-4,325	-1,240
Haskell	67	0	0	-368	0	0	301	0
Hemphill	33,925	-24,895	-196	-21,966	-112	-3,600	16,844	0

Table A.1.1, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross- Formational
Hockley	3,034	-2,726	-66	1,240	-293	0	-412	-777
Howard	3,213	-651	-16	-1,730	-1,833	-942	1,788	172
Hutchinson	6,962	-5,977	-426	-18,842	-3,728	-12,165	34,176	0
Lamb	4,877	-8,340	-771	709	-512	0	4,397	-360
Lea	11,549	-86	-135	106	-1,985	0	-5,396	-4,053
Lipscomb	29,600	-8,292	0	-3,849	0	0	-17,459	0
Lubbock	5,838	-903	-1,997	-5,536	-100	-2,631	2,749	2,581
Lynn	6,523	-632	-836	7	-1,730	-892	-2,060	-380
Martin	2,839	-3,865	-312	252	-908	0	2,109	-115
Meade	201	-2,506	0	-7,943	-805	0	11,054	0
Midland	1,415	-3,184	-154	1,142	-9	-377	1,871	-705
Moore	17,353	-1,054	0	-3,600	-1,056	-3,809	-7,535	-298
Morton	14,140	0	0	3,435	0	0	-17,575	0
Motley	1,749	0	-624	-1,731	0	-3,464	6,704	-2,634
Ochiltree	12,379	-487	0	1,938	0	0	-13,830	0
Oldham	18,225	-867	-262	-9,361	-1,183	-8,967	6,244	-3,830
Parmer	4,875	0	0	9,814	0	0	-14,686	-3
Potter	7,110	-577	-199	-184	-263	-2,874	-1,311	-1,703
Quay	8,761	-674	-97	3,134	-430	-3,061	-6,998	-635
Randall	10,140	-1,784	-346	-10,779	-1,070	-1,524	8,607	-3,243
Roberts	13,084	-29,422	-4	-18,220	-3,014	-2,785	40,361	0
Roger Mills	24,055	-1,785	0	-8,822	-1,284	-13,609	1,445	0
Roosevelt	7,662	0	0	-174	-3,975	0	-560	-2,952
Seward	12,373	-15,044	0	-34,941	-10,884	0	48,497	0
Sherman	17,547	-406	0	5,975	0	0	-23,170	54
Stevens	27,088	0	0	968	0	0	-28,056	0
Swisher	9,861	-161	-667	-3,979	-2,135	-121	66	-2,864
Terry	1,833	-81	-717	1,318	-757	0	-1,566	-29
Texas	67,101	-39,336	0	-58,145	-10,173	0	40,528	25
Union	34,293	-728	-148	3,231	-4,207	-637	-28,254	-3,550
Wheeler	28,093	-4,020	-1,194	-9,592	-2,223	-12,521	1,458	0
Winkler	60	-5	0	0	0	-4	25	-77
Woodward	18,768	-3,931	0	-247	-7,024	-9,254	1,688	0
Yoakum	2,039	-29	-91	578	0	0	-790	-1,707

Table A.1.2 Water budget for the Rita Blanca Aquifer by county for the steady-state model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross- Formational
Cimarron	0	0	0	0	0	0	198	-198
Colfax	371	0	0	0	0	0	-369	-2
Dallam	0	0	0	0	0	0	500	-500
Harding	133	-18	0	-29	-114	0	-201	230
Hartley	0	0	0	0	0	0	65	-65
Quay	0	0	0	0	0	0	9	-9
Union	2,637	-661	-13	-3,406	-1,048	0	-202	2,692

Table A.1.3 Water budget for the Edwards-Trinity (High Plains) Aquifer by county for the steady-state model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross- Formational
Bailey	0	0	0	0	0	0	-548	548
Borden	0	0	0	0	0	0	985	-985
Chaves	0	0	0	0	0	0	-71	71
Cochran	0	0	0	0	0	0	-222	222
Dawson	0	0	0	0	0	0	1,312	-1,312
Floyd	0	0	0	0	0	0	0	0
Gaines	0	0	0	0	0	0	2,943	-2,943
Garza	0	0	0	0	0	0	2,983	-2,983
Hale	0	0	0	0	0	0	-989	989
Hockley	0	0	0	0	0	0	-780	780
Lamb	0	0	0	0	0	0	-340	340
Lea	0	0	0	0	0	0	-3,401	3,401
Lubbock	0	0	0	0	0	0	2,798	-2,798
Lynn	0	0	0	0	0	0	-53	53
Roosevelt	0	0	0	0	0	0	-2,888	2,888
Terry	0	0	0	0	0	0	-26	26
Yoakum	0	0	0	0	0	0	-1,705	1,705

Table A.1.4 Water budget for the upper Dockum Group by county for the steady-state model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross- Formational
Andrews	0	0	0	0	0	0	-17	17
Bailey	0	0	0	0	0	0	3	-3
Borden	0	-6	0	-4	0	0	2	9
Castro	0	0	0	0	0	0	-1	1
Chaves	0	0	0	0	0	0	-5	5
Cimarron	0	0	0	0	0	0	1	-1
Cochran	0	0	0	0	0	0	4	-4
Colfax	0	0	0	0	0	0	0	0
Crane	0	0	0	0	0	0	4	-4
Crosby	2	0	0	1	0	0	0	-3
Curry	0	0	0	0	0	0	-25	25
Dallam	0	0	0	0	0	0	3	-3
Dawson	1	-7	0	-51	-22	0	1	78
De Baca	0	0	0	0	0	0	2	-2
Deaf Smith	54	0	0	22	0	0	-4	-72
Ector	0	0	0	0	0	0	-1	1
Floyd	0	0	0	0	0	0	1	-1
Gaines	0	0	0	0	0	0	11	-11
Garza	0	0	0	0	0	0	0	0
Guadalupe	0	0	0	0	0	0	-3	3
Hale	0	0	0	0	0	0	3	-3
Harding	0	0	0	0	0	0	-19	19
Hartley	0	0	0	0	0	0	4	-4
Hockley	0	0	0	0	0	0	1	-1
Howard	0	0	0	0	0	0	0	0
Lamb	0	0	0	0	0	0	-2	2
Lea	0	0	0	0	0	0	-11	11
Lubbock	0	-5	0	-33	0	0	6	31
Lynn	0	0	0	0	0	0	3	-3
Martin	0	0	0	0	0	0	17	-17
Midland	0	0	0	0	0	0	7	-7
Moore	0	0	0	0	0	0	0	0
Oldham	0	0	0	0	0	0	-1	1
Parmer	0	0	0	0	0	0	3	-3
Potter	0	0	0	0	0	0	0	0
Quay	243	-7	0	19	-16	0	12	-252
Randall	0	0	0	0	0	0	0	0
Roosevelt	0	0	0	0	0	0	-11	11
Sherman	0	0	0	0	0	0	0	0
Swisher	0	0	0	0	0	0	3	-3

Table A.1.4, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross- Formational
Terry	0	0	0	0	0	0	-2	2
Union	0	0	0	0	0	0	11	-11
Upton	0	0	0	0	0	0	0	0
Winkler	0	0	0	0	0	0	3	-3
Yoakum	0	0	0	0	0	0	-1	1

Table A.1.5 Water budget for the lower Dockum Group by county for the steady-state model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross- Formational
Andrews	0	0	0	0	0	0	-99	99
Armstrong	226	0	-295	-509	-2,276	0	619	2,235
Baca	0	0	0	0	0	0	1	-1
Bailey	0	0	0	0	0	0	-1	1
Borden	914	-1,350	0	38	0	0	121	277
Briscoe	279	-261	-698	-4,368	-1,858	0	3,079	3,828
Carson	0	0	0	0	0	0	287	-287
Castro	0	0	0	0	0	0	-159	159
Chaves	0	0	0	0	0	0	-6	6
Cimarron	0	0	0	0	0	0	-32	32
Cochran	0	0	0	0	0	0	0	0
Coke	133	-11	0	-24	0	-292	90	104
Colfax	0	0	0	0	0	0	-1	1
Crane	0	0	0	0	0	0	1,072	-1,072
Crockett	0	0	0	0	0	0	503	-503
Crosby	1,024	-241	0	-1,759	0	-635	-1,665	3,275
Curry	0	0	0	0	0	0	-113	113
Dallam	0	0	0	0	0	0	-51	51
Dawson	0	0	0	0	0	0	-75	75
De Baca	0	0	0	0	0	0	140	-140
Deaf Smith	145	0	0	61	0	0	-1,541	1,335
Dickens	1,057	0	-416	-959	0	-1,825	-278	2,421
Ector	0	0	0	0	0	0	-1,427	1,427
Eddy	0	0	0	0	0	0	327	-327
Fisher	478	-86	0	-136	0	-512	137	119
Floyd	309	-48	-294	-2,869	0	0	-1,966	4,868
Gaines	0	0	0	0	0	0	2	-2
Garza	2,034	-2,945	-41	-2,020	0	-681	3,027	626
Glasscock	2	0	0	0	0	0	-28	26
Guadalupe	0	0	0	0	0	0	-6	6
Hale	0	0	0	0	0	0	-490	490
Harding	0	0	0	0	0	0	-798	798
Hartley	205	-314	0	969	0	0	-2,170	1,310
Hockley	0	0	0	0	0	0	1	-1
Howard	3,022	-1,146	-16	-1,111	0	0	-1,167	418
Hutchinson	0	0	0	0	0	0	0	0
Irion	0	0	0	0	0	0	151	-151
Kent	1,048	-16	-112	-660	0	-508	248	0
Lamb	0	0	0	0	0	0	-18	18
Lea	0	0	0	0	0	0	-543	543

Table A.1.5, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross- Formational
Loving	0	0	0	0	0	0	-169	169
Lubbock	0	0	0	0	0	0	-185	185
Lynn	1	0	0	-46	0	0	-281	326
Martin	0	0	0	0	0	0	-53	53
Midland	0	0	0	0	0	0	-76	76
Mitchell	8,249	-3,435	-112	-6,914	0	-876	2,648	441
Moore	64	0	0	-65	0	0	-298	298
Motley	335	0	-171	-2,043	0	-2,555	1,800	2,634
Nolan	505	-79	0	-518	0	-743	-741	1,576
Oldham	5,786	-3,674	-120	-10,130	0	0	4,310	3,828
Parmer	0	0	0	0	0	0	-5	5
Pecos	0	0	0	0	0	0	-82	82
Potter	2,211	-1,106	-22	-3,561	-395	0	1,171	1,703
Quay	276	-182	0	-838	0	0	-152	896
Randall	80	0	0	-2,557	-748	0	-18	3,243
Reagan	0	0	0	0	0	0	-111	111
Reeves	0	0	0	0	0	0	80	-80
Roosevelt	0	0	0	0	0	0	-55	55
Scurry	4,584	-716	-91	-3,362	0	-818	-1,169	1,572
Sherman	0	0	0	0	0	0	53	-53
Sterling	457	-267	0	-284	0	0	-507	601
Swisher	0	0	0	-19	0	0	-2,848	2,867
Terry	0	0	0	0	0	0	0	0
Texas	0	0	0	0	0	0	25	-25
Tom Green	0	0	0	0	0	0	25	-25
Union	0	0	0	0	0	0	-869	869
Upton	0	0	0	8	0	0	-676	668
Ward	0	0	0	0	0	0	1,388	-1,388
Winkler	0	0	0	0	0	0	-374	374
Yoakum	0	0	0	0	0	0	-1	1

Table A.2.1 Water budget for the Ogallala Aquifer by county for year 1980 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Andrews	3,248	-173	-226	823	-85	0	0	-15,725	15,915	-3,413	-363
Armstrong	9,535	-21	-80	-2,196	0	-2,585	0	-11,601	11,894	-2,775	-2,170
Baca	2,354	0	0	862	0	0	0	0	16	-3,233	1
Bailey	4,409	0	-204	1,978	0	0	0	-144,724	162,119	-23,932	354
Beaver	48,118	-38,768	0	-27,850	-3,061	-116	0	-40,979	37,476	25,180	0
Beckham	1,559	-11	0	-222	0	-1,299	0	0	0	-26	0
Borden	5,343	0	0	0	-298	-3,322	0	-657	-1,642	81	495
Briscoe	6,184	-270	-1,947	-1,573	0	-2,253	0	-47,568	40,115	10,545	-3,232
Carson	12,471	-477	0	4,704	0	-184	0	-130,462	125,886	-12,183	245
Castro	7,341	0	0	4,107	0	0	0	-442,605	455,047	-26,009	2,119
Chaves	1,053	0	0	0	-621	0	0	0	602	-951	-82
Cimarron	49,430	-1,112	-36	7,681	-1,792	0	0	-90,581	65,172	-29,537	774
Cochran	1,576	0	-70	0	-31	0	0	-63,186	60,174	1,677	-141
Collingsworth	647	0	0	0	0	-678	0	0	9	22	0
Crosby	8,701	0	0	-1,634	-311	-6,536	0	-70,063	60,343	13,023	-3,524
Curry	5,942	0	0	6,307	0	0	0	-110,581	84,423	12,934	975
Dallam	24,600	-568	0	17,463	-133	0	0	-240,273	254,537	-53,776	-1,851
Dawson	54,728	-1,009	-100	4,653	-1,675	-3,756	0	-22,197	-31,574	70	860
De Baca	219	0	0	0	-815	0	0	-1,360	1,219	591	145
Deaf Smith	17,411	-481	-122	7,696	-63	0	0	-329,851	319,055	-14,106	461
Dewey	1,888	0	0	0	-119	-1,415	0	0	-17	-337	0
Dickens	2,168	-53	0	-524	0	-322	0	-3,036	2,254	1,862	-2,349
Donley	17,361	-2,052	-1,322	-13,937	-118	-6,958	0	-12,369	7,216	12,178	0
Ector	456	-18	0	843	0	-16	0	-3,658	2,163	249	-19
Eddy	55	0	0	0	0	0	0	0	103	-158	1
Ellis	49,811	-19,264	-5,287	-16,884	-3,296	-11,899	0	-24,216	12,991	18,043	0
Floyd	14,459	0	-4,780	3,861	0	-1,789	0	-225,157	217,336	-2,764	-1,166

Table A.2.1, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Gaines	17,287	-4,115	-713	13,947	-1,072	0	0	-410,515	388,865	2,596	-6,279
Garza	8,377	0	0	0	-786	-4,571	0	-9,335	-344	3,543	3,116
Glasscock	2,261	-407	0	351	0	-123	0	-4,184	1,185	367	550
Grant	646	0	0	1,141	0	0	0	0	6,505	-8,292	0
Gray	26,409	-876	0	-3,867	0	-6,403	0	-17,010	19,494	-17,748	0
Guadalupe	26	0	0	0	-5	0	0	0	0	-11	-9
Hale	9,969	0	0	8,437	0	0	0	-399,677	370,122	12,347	-1,197
Hansford	11,531	-1,259	0	6,513	-57	0	0	-185,400	164,777	3,894	0
Harding	2,751	0	0	0	-891	-431	0	0	34	-668	-795
Harper	15,416	-10,717	-107	-556	-278	-3,795	0	-11,422	6,461	4,997	0
Hartley	29,186	-5,641	-55	-11,245	0	-1,797	42	-254,606	252,128	-7,569	-442
Haskell	67	0	0	229	0	0	0	0	899	-1,194	0
Hemphill	34,367	-24,568	-198	-21,502	-101	-3,671	0	-2,333	3,620	14,385	0
Hockley	3,033	-635	-62	2,873	-248	0	0	-116,093	117,283	-5,344	-807
Howard	22,950	-691	-19	-1,771	-2,809	-1,302	0	-5,234	-12,703	1,438	141
Hutchinson	7,082	-3,484	-328	-11,145	-2,040	-9,275	0	-89,854	77,866	31,178	0
Lamb	4,827	-25	-322	7,003	-304	0	0	-363,730	346,816	4,108	1,626
Lea	10,746	-31	-35	429	-948	0	0	-112,843	100,791	3,813	-1,921
Lipscomb	29,621	-7,694	0	-2,334	0	0	0	-22,180	20,362	-17,775	0
Lubbock	18,791	-117	-1,476	323	-60	-2,019	0	-109,902	106,325	-13,501	1,635
Lynn	61,944	-690	-885	6	-1,606	-892	0	-37,024	-17,865	-2,214	-774
Martin	23,247	-2,699	-235	3,682	-986	0	0	-14,754	-10,181	1,881	44
Meade	282	-2,448	0	-7,695	-716	0	0	0	50	10,527	0
Midland	886	-1,633	-135	2,734	0	-319	0	-9,368	6,811	1,334	-310
Moore	17,436	-403	0	757	-485	-2,817	0	-250,594	238,494	508	-2,897
Morton	14,140	0	0	3,435	0	0	0	-10,136	6,109	-13,548	0
Motley	1,787	0	-479	-839	0	-2,784	0	-352	3,065	2,047	-2,446
Ochiltree	12,379	-310	0	3,022	0	0	126	-109,713	100,872	-6,376	0
Oldham	18,476	-844	-260	-8,908	-1,167	-8,645	0	-21,643	22,513	4,178	-3,701

Table A.2.1, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Parmer	4,875	0	0	9,814	0	0	0	-544,313	516,538	10,834	2,252
Potter	7,090	0	-103	210	-268	-1,977	0	-25,443	24,439	-2,475	-1,473
Quay	7,704	-672	-96	3,549	-194	-2,586	0	-6,557	4,178	-4,764	-562
Randall	10,169	-1,048	-166	-3,285	-343	-1,327	0	-93,838	78,029	14,414	-2,606
Roberts	13,328	-28,523	0	-16,414	-2,835	-2,426	0	-6,372	10,180	33,062	0
Roger Mills	25,028	-1,815	0	-8,845	-1,411	-14,138	0	-85	-192	1,459	0
Roosevelt	5,901	0	0	-135	-546	0	0	-64,699	58,928	2,714	-2,161
Seward	12,911	-9,315	0	-19,536	-5,170	0	0	-39,118	67,169	-6,941	0
Sherman	17,550	0	0	9,682	0	0	0	-323,195	293,807	2,309	-153
Stevens	27,088	0	0	968	0	0	0	-149,510	113,418	8,036	0
Swisher	9,870	0	-196	1,495	0	-113	0	-211,979	200,677	1,268	-1,023
Terry	12,980	0	-408	2,219	-450	0	0	-79,655	71,548	-5,108	-1,126
Texas	67,653	-20,592	0	-15,827	-2,911	0	1,154	-243,485	178,572	35,393	44
Union	32,555	-680	-154	4,224	-4,342	-453	0	-13,374	14,245	-25,159	-6,862
Wheeler	28,976	-4,028	-1,212	-9,218	-2,291	-12,868	0	-5,849	4,590	1,900	0
Winkler	7	0	0	0	0	0	0	0	25	6	-38
Woodward	19,761	-3,993	0	-350	-7,367	-9,685	132	0	-127	1,629	0
Yoakum	1,889	-16	-27	1,802	0	0	0	-120,354	120,227	-732	-2,788

Table A.2.2 Water budget for the Rita Blanca Aquifer by county for year 1980 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Cimarron	0	0	0	0	0	0	0	0	44	246	-290
Colfax	371	0	0	0	0	0	0	0	30	-400	-1
Dallam	0	0	0	0	0	0	0	-6,131	2,703	926	2,502
Harding	114	-18	0	-29	-99	0	0	0	223	-180	-11
Hartley	0	0	0	0	0	0	0	0	41	56	-97
Quay	0	0	0	0	0	0	0	0	2	12	-14
Union	2,616	-631	-13	-3,196	-1,005	0	0	-7,429	4,076	-660	6,242

Table A.2.3 Water budget for the Edwards-Trinity (High Plains) Aquifer by county for year 1980 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Bailey	0	0	0	0	0	0	0	-264	706	-645	203
Borden	0	0	0	0	0	0	0	-5	-313	1,031	-713
Chaves	0	0	0	0	0	0	0	0	0	-77	77
Cochran	0	0	0	0	0	0	0	-347	203	-114	257
Dawson	0	0	0	0	0	0	0	-340	-53	1,276	-883
Floyd	0	0	0	0	0	0	0	-1,883	3,317	0	-1,434
Gaines	0	0	0	0	0	0	0	-13,536	334	5,171	8,032
Garza	0	0	0	0	0	0	0	-15	-3	3,697	-3,679
Hale	0	0	0	0	0	0	0	-6,271	1,581	773	3,917
Hockley	0	0	0	0	0	0	0	-93	379	-1,381	1,095
Lamb	0	0	0	0	0	0	0	-299	144	221	-66
Lea	0	0	0	0	0	0	0	0	1,007	-3,587	2,580
Lubbock	0	0	0	0	0	0	0	-365	153	1,179	-966
Lynn	0	0	0	0	0	0	0	-402	884	-1,117	634
Roosevelt	0	0	0	0	0	0	0	0	312	-3,020	2,708
Terry	0	0	0	0	0	0	0	-766	555	-1,204	1,415
Yoakum	0	0	0	0	0	0	0	-2,179	1,334	-2,203	3,048

Table A.2.4 Water budget for the upper Dockum Group by county for year 1980 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Andrews	0	0	0	0	0	0	0	0	86	-23	-63
Bailey	0	0	0	0	0	0	0	-3	520	-1	-517
Borden	1	-6	0	-4	0	0	0	0	-2	2	10
Castro	0	0	0	0	0	0	0	-5	1,806	-4	-1,797
Chaves	0	0	0	0	0	0	0	0	5	-5	1
Cimarron	0	0	0	0	0	0	0	0	175	1	-176
Cochran	0	0	0	0	0	0	0	0	107	4	-111
Colfax	0	0	0	0	0	0	0	0	0	0	0
Crane	0	0	0	0	0	0	0	0	0	4	-4
Crosby	1	0	0	1	0	0	0	0	50	1	-52
Curry	0	0	0	0	0	0	0	0	1,013	-22	-992
Dallam	0	0	0	0	0	0	0	-14	668	3	-657
Dawson	2	-7	0	-51	-22	0	0	0	47	1	30
De Baca	0	0	0	0	0	0	0	0	6	2	-7
Deaf Smith	54	0	0	22	0	0	0	-13	1,060	-3	-1,120
Ector	0	0	0	0	0	0	0	-9	54	0	-45
Floyd	0	0	0	0	0	0	0	0	24	1	-25
Gaines	0	0	0	0	0	0	0	0	1,611	13	-1,624
Garza	0	0	0	0	0	0	0	0	0	0	-1
Guadalupe	0	0	0	0	0	0	0	0	0	-3	3
Hale	0	0	0	0	0	0	0	-9	1,572	5	-1,568
Harding	0	0	0	0	0	0	0	0	10	-19	9
Hartley	0	0	0	0	0	0	0	-3	440	4	-441
Hockley	0	0	0	0	0	0	0	0	263	1	-264
Howard	0	0	0	0	0	0	0	0	-2	0	2
Lamb	0	0	0	0	0	0	0	-7	1,327	-1	-1,319
Lea	0	0	0	0	0	0	0	0	778	-6	-773

Table A.2.4, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Lubbock	0	-5	0	-31	0	0	0	-1	495	4	-462
Lynn	0	0	0	0	0	0	0	0	107	3	-111
Martin	0	0	0	0	0	0	0	-8	125	17	-133
Midland	0	0	0	0	0	0	0	0	30	6	-37
Moore	0	0	0	0	0	0	0	0	12	0	-12
Oldham	0	0	0	0	0	0	0	-2	15	-2	-11
Parmer	0	0	0	0	0	0	0	0	1,887	1	-1,889
Potter	0	0	0	0	0	0	0	0	0	0	0
Quay	243	-6	0	20	-16	0	0	0	59	12	-313
Randall	0	0	0	0	0	0	0	-19	160	0	-141
Roosevelt	0	0	0	0	0	0	0	0	558	-9	-549
Sherman	0	0	0	0	0	0	0	0	0	0	0
Swisher	0	0	0	0	0	0	0	-1	645	4	-648
Terry	0	0	0	0	0	0	0	0	275	-4	-270
Union	0	0	0	0	0	0	0	0	136	10	-145
Upton	0	0	0	0	0	0	0	0	0	0	0
Winkler	0	0	0	0	0	0	0	0	3	3	-6
Yoakum	0	0	0	0	0	0	0	-2	248	-1	-245

Table A.2.5 Water budget for the lower Dockum Group by county for year 1980 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Andrews	0	0	0	0	0	0	0	-1	10	-99	90
Armstrong	228	0	-295	-509	-2,273	0	0	-117	156	641	2,170
Baca	0	0	0	0	0	0	0	0	0	1	-1
Bailey	0	0	0	0	0	0	0	0	45	-2	-43
Borden	4,000	-1,606	0	-657	0	0	408	-65	-2,548	193	275
Briscoe	282	-261	-697	-4,440	-1,858	0	84	-16	779	2,896	3,232
Carson	0	0	0	0	0	0	0	-348	271	322	-245
Castro	0	0	0	0	0	0	0	0	892	-569	-322
Chaves	0	0	0	0	0	0	0	0	3	-7	5
Cimarron	0	0	0	0	0	0	0	0	335	-28	-306
Cochran	0	0	0	0	0	0	0	0	5	0	-5
Coke	133	-11	0	-24	0	-292	0	0	0	90	104
Colfax	0	0	0	0	0	0	0	0	0	-1	1
Crane	0	0	0	0	0	0	0	-42	22	1,084	-1,064
Crockett	0	0	0	0	0	0	0	-3	21	503	-521
Crosby	1,533	-236	0	-1,547	0	-648	0	-3,588	2,110	-1,200	3,576
Curry	0	0	0	0	0	0	0	-545	633	-105	17
Dallam	0	0	0	0	0	0	0	-1,743	1,765	-23	1
Dawson	0	0	0	0	0	0	0	-1	82	-74	-7
De Baca	0	0	0	0	0	0	0	-24	22	140	-138
Deaf Smith	147	0	0	61	0	0	0	-3,099	3,555	-1,323	659
Dickens	1,592	0	-413	-890	0	-1,855	0	-12	-380	-391	2,349
Ector	0	0	0	0	0	0	0	-98	151	-1,436	1,382
Eddy	0	0	0	0	0	0	0	-3	1	328	-327
Fisher	734	-111	0	-137	0	-599	0	-17	-123	137	116
Floyd	313	-49	-293	-2,844	0	0	0	-1,628	3,374	-1,499	2,626

Table A.2.5, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Gaines	0	0	0	0	0	0	0	0	129	2	-132
Garza	6,145	-2,997	-43	-2,312	0	-712	0	-79	-3,591	3,018	569
Glasscock	2	0	0	0	0	0	0	0	273	-57	-218
Guadalupe	0	0	0	0	0	0	0	0	0	-6	6
Hale	0	0	0	0	0	0	0	-243	2,039	-643	-1,153
Harding	0	0	0	0	0	0	0	0	157	-954	797
Hartley	205	-314	0	973	0	0	0	-1,399	2,230	-2,678	983
Hockley	0	0	0	0	0	0	0	0	23	1	-23
Howard	5,236	-1,171	-16	-1,169	0	0	0	-28	-2,094	-1,213	455
Hutchinson	0	0	0	0	0	0	0	0	0	0	0
Irion	0	0	0	0	0	0	0	0	17	145	-162
Kent	1,297	-17	-112	-673	0	-529	0	-3	-209	245	0
Lamb	0	0	0	0	0	0	0	0	259	-19	-241
Lea	0	0	0	0	0	0	0	-2,902	2,889	-550	563
Loving	0	0	0	0	0	0	0	-8	18	-181	171
Lubbock	0	0	0	0	0	0	0	-2	448	-219	-227
Lynn	1	0	0	-46	0	0	0	0	65	-285	265
Martin	0	0	0	0	0	0	0	0	62	-53	-9
Midland	0	0	0	0	0	0	0	0	111	-133	22
Mitchell	18,103	-3,838	-122	-7,705	0	-908	227	-3,423	-5,259	2,485	440
Moore	64	0	0	-59	0	0	0	-4,315	1,226	175	2,909
Motley	403	0	-168	-1,955	0	-2,515	0	-10	277	1,522	2,446
Nolan	1,759	-136	0	-522	0	-749	0	-820	-425	-682	1,576
Oldham	5,906	-3,725	-120	-10,133	0	0	0	-458	567	4,251	3,712
Parmer	0	0	0	0	0	0	0	0	371	-8	-363
Pecos	0	0	0	0	0	0	0	-955	905	53	-3
Potter	2,217	-1,097	-22	-3,479	-395	0	0	-717	966	1,054	1,473
Quay	276	-152	0	-785	0	0	0	-5,050	4,752	71	888

Table A.2.5, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Randall	86	0	0	-2,512	-748	0	0	-1,060	1,283	205	2,746
Reagan	0	0	0	0	0	0	0	-749	863	33	-148
Reeves	0	0	0	0	0	0	0	-1,345	840	208	298
Roosevelt	0	0	0	0	0	0	0	-221	271	-56	6
Scurry	7,610	-868	-109	-3,682	0	-1,044	715	-8,917	5,622	-1,089	1,761
Sherman	0	0	0	0	0	0	0	-562	226	183	153
Sterling	457	-267	0	-284	0	0	0	-20	38	-514	589
Swisher	0	0	0	-19	0	0	0	-219	1,576	-3,008	1,670
Terry	0	0	0	0	0	0	0	0	19	0	-19
Texas	0	0	0	0	0	0	0	0	23	21	-44
Tom Green	0	0	0	0	0	0	0	0	3	25	-27
Union	0	0	0	0	0	0	0	0	207	-972	765
Upton	0	0	0	8	0	0	0	-282	346	-745	674
Ward	0	0	0	0	0	0	0	-114	431	982	-1,299
Winkler	0	0	0	0	0	0	0	-2,833	2,239	-190	784
Yoakum	0	0	0	0	0	0	0	0	16	-1	-15

Table A.3.1 Water budget for the Ogallala Aquifer by county for year 2012 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Andrews	7,361	-103	-198	2,993	-84	0	0	-18,918	12,921	-3,682	-290
Armstrong	9,535	0	-39	-1,227	0	-2,339	0	-8,805	11,286	-6,262	-2,150
Baca	2,354	0	0	862	0	0	0	0	27	-3,244	1
Bailey	24,897	0	-225	1,978	0	0	0	-79,667	57,308	-5,154	863
Beaver	48,118	-35,738	0	-23,080	-1,901	-114	0	-44,966	43,680	14,000	0
Beckham	1,559	-11	0	-222	0	-1,300	0	0	0	-26	0
Borden	5,343	0	0	0	-324	-3,419	0	-4,999	2,258	592	549
Briscoe	6,184	-20	-796	-796	0	-1,281	0	-27,149	20,156	6,509	-2,807
Carson	12,471	-367	0	5,470	0	-143	0	-129,816	124,865	-12,826	347
Castro	7,341	0	0	4,107	0	0	0	-203,291	202,812	-13,919	2,951
Chaves	1,053	0	0	0	-520	0	0	0	1,078	-1,534	-77
Cimarron	49,430	-1,069	-19	7,954	-1,821	0	0	-91,135	73,520	-37,576	716
Cochran	26,528	0	-46	0	-12	0	0	-67,076	38,115	1,421	1,071
Collingsworth	647	0	0	0	0	-664	0	0	8	9	0
Crosby	14,786	0	0	1,105	-249	-4,722	0	-125,768	106,982	10,391	-2,525
Curry	13,011	0	0	6,379	0	0	0	-101,306	78,505	2,346	1,066
Dallam	24,600	-61	0	19,836	0	0	0	-429,574	379,136	7,428	-1,365
Dawson	54,728	-983	-118	5,528	-1,850	-4,031	0	-120,554	73,573	-5,456	-838
De Baca	219	0	0	0	-650	0	0	-189	516	-49	153
Deaf Smith	17,411	-97	-61	9,047	0	0	0	-164,560	144,035	-6,266	492
Dewey	1,888	0	0	0	-120	-1,421	0	0	-10	-338	0
Dickens	2,168	-8	0	-425	0	-180	0	-3,395	3,759	200	-2,119
Donley	17,361	-1,688	-1,286	-11,948	-35	-6,715	0	-39,308	26,676	16,943	0
Ector	503	0	0	881	0	-15	0	-157	-1,020	-100	-91
Eddy	55	0	0	0	0	0	0	0	102	-155	-2
Ellis	49,811	-13,221	-5,065	-8,680	-3,045	-11,684	0	-48,475	22,106	18,252	0

Table A.3.1, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Floyd	14,459	0	-2,720	3,961	0	-776	0	-124,703	119,929	-10,979	830
Gaines	84,951	-2,610	-498	19,560	-733	0	0	-253,549	144,985	8,037	-144
Garza	8,522	0	0	0	-771	-4,261	0	-14,718	4,954	3,177	3,098
Glasscock	3,295	-399	0	475	0	-99	0	-5,350	1,186	541	351
Grant	646	0	0	1,141	0	0	0	0	7,610	-9,397	0
Gray	26,409	-764	0	-2,979	0	-6,240	0	-41,569	40,077	-14,934	0
Guadalupe	26	0	0	0	-5	0	0	0	0	-11	-9
Hale	12,376	0	0	8,437	0	0	0	-275,388	254,119	939	-482
Hansford	11,531	-483	0	10,052	0	0	419	-242,130	217,629	2,981	0
Harding	2,751	0	0	0	-872	-428	0	0	23	-643	-832
Harper	15,416	-9,898	-107	-176	-162	-3,522	0	-12,231	3,950	6,729	0
Hartley	29,186	-3,213	-2	-5,377	0	-1,636	42	-488,903	486,978	-17,996	920
Haskell	67	0	0	229	0	0	0	0	917	-1,213	0
Hemphill	34,367	-24,400	-198	-20,587	-101	-3,673	0	-21,951	21,931	14,614	0
Hockley	42,932	-309	-44	3,222	-97	0	0	-145,756	101,659	-1,593	-14
Howard	23,087	-1,104	-26	-2,288	-3,834	-2,438	-212	-12,685	-2,599	2,058	41
Hutchinson	7,082	-2,367	-185	-4,744	-798	-6,860	0	-85,118	82,617	10,373	0
Lamb	32,714	0	-294	7,060	-302	0	0	-244,161	196,168	5,115	3,699
Lea	17,873	-29	-15	418	-846	0	0	-58,689	46,851	-3,171	-2,391
Lipscomb	29,621	-5,733	0	1,567	0	0	0	-56,294	47,145	-16,307	0
Lubbock	74,766	0	-1,116	2,765	-22	-1,779	0	-130,551	50,590	2,558	2,790
Lynn	68,028	-717	-992	5	-1,402	-890	0	-80,395	23,791	-6,181	-1,246
Martin	29,730	-4,132	-315	2,481	-1,308	0	0	-42,275	16,499	-477	-203
Meade	282	-2,225	0	-7,149	-513	0	0	0	73	9,533	0
Midland	3,857	-1,123	-137	3,462	0	-269	0	-14,840	7,750	1,526	-225
Moore	17,436	0	0	5,266	-164	-1,730	0	-282,841	256,336	7,024	-1,326
Morton	14,140	0	0	3,435	0	0	0	-11,577	7,504	-13,502	0
Motley	1,787	0	-340	-174	0	-2,291	0	-273	2,585	971	-2,266

Table A.3.1, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Ochiltree	12,379	-170	0	3,738	0	0	126	-113,704	100,672	-3,040	0
Oldham	18,476	-758	-258	-8,550	-1,015	-7,868	0	-14,397	11,621	6,315	-3,567
Parmer	5,378	0	0	9,814	0	0	0	-150,240	129,843	1,958	3,248
Potter	7,090	0	-64	597	-267	-1,655	0	-8,573	12,040	-7,587	-1,580
Quay	10,665	-745	-97	3,460	-245	-2,587	0	-1,159	-2,464	-6,162	-666
Randall	10,169	-559	-104	-45	-231	-991	0	-44,304	30,515	7,810	-2,258
Roberts	13,328	-26,681	0	-13,211	-2,354	-2,103	0	-79,392	84,930	25,483	0
Roger Mills	25,028	-1,825	0	-8,863	-1,419	-14,201	0	-98	-85	1,463	0
Roosevelt	33,679	0	0	-107	-254	0	0	-48,712	17,493	452	-2,551
Seward	12,911	-4,540	0	-6,585	-1,072	0	0	-53,762	87,729	-34,679	0
Sherman	17,550	0	0	9,682	0	0	0	-397,598	370,112	246	9
Stevens	27,088	0	0	968	0	0	0	-204,512	158,088	18,368	0
Swisher	9,870	0	-35	2,492	0	-82	0	-119,415	98,092	9,399	-321
Terry	73,870	0	-134	2,927	-173	0	0	-204,762	127,914	-41	397
Texas	67,653	-12,972	0	2,354	-1,067	0	1,271	-280,410	184,592	38,533	46
Union	32,555	-663	-153	4,809	-4,279	-430	0	-13,429	17,458	-27,352	-8,517
Wheeler	28,976	-3,969	-1,184	-8,133	-2,274	-12,809	0	-13,605	8,623	4,376	0
Winkler	7	0	0	0	0	0	0	0	15	3	-24
Woodward	19,761	-3,993	0	-349	-7,402	-9,716	132	0	-52	1,621	0
Yoakum	34,562	0	-17	2,496	0	0	0	-132,277	93,892	1,557	-214

Table A.3.2 Water budget for the Rita Blanca Aquifer by county for year 2012 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Cimarron	0	0	0	0	0	0	0	0	64	122	-187
Colfax	371	0	0	0	0	0	0	0	48	-417	-1
Dallam	0	0	0	0	0	0	0	-6,202	2,054	945	3,203
Harding	114	-18	0	-29	-95	0	0	0	172	-172	26
Hartley	0	0	0	0	0	0	0	0	92	1	-93
Quay	0	0	0	0	0	0	0	0	0	10	-10
Union	2,616	-606	-13	-3,080	-975	0	0	-9,775	4,350	-489	7,971

Table A.3.3 Water budget for the Edwards-Trinity (High Plains) Aquifer by county for year 2012 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Bailey	0	0	0	0	0	0	0	0	688	-727	39
Borden	0	0	0	0	0	0	0	-15	-254	1,034	-764
Chaves	0	0	0	0	0	0	0	0	1	-79	78
Cochran	0	0	0	0	0	0	0	-20	281	527	-788
Dawson	0	0	0	0	0	0	0	-2,147	5	1,117	1,025
Floyd	0	0	0	0	0	0	0	0	2,640	0	-2,640
Gaines	0	0	0	0	0	0	0	-12,225	2,356	7,227	2,641
Garza	0	0	0	0	0	0	0	-184	1	3,828	-3,645
Hale	0	0	0	0	0	0	0	-7,923	2,869	991	4,064
Hockley	0	0	0	0	0	0	0	-84	948	-1,485	621
Lamb	0	0	0	0	0	0	0	0	314	515	-829
Lea	0	0	0	0	0	0	0	0	1,106	-4,157	3,051
Lubbock	0	0	0	0	0	0	0	-972	529	1,841	-1,398
Lynn	0	0	0	0	0	0	0	-1,137	2,541	-2,448	1,044
Roosevelt	0	0	0	0	0	0	0	0	206	-3,280	3,074
Terry	0	0	0	0	0	0	0	-42	1,550	-1,643	135
Yoakum	0	0	0	0	0	0	0	-6	2,586	-3,261	681

Table A.3.4 Water budget for the upper Dockum Group by county for year 2012 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Andrews	0	0	0	0	0	0	0	0	170	-28	-142
Bailey	0	0	0	0	0	0	0	-7	760	-3	-749
Borden	1	-6	0	-4	0	0	0	0	-1	2	9
Castro	0	0	0	0	0	0	0	0	1,721	-2	-1,720
Chaves	0	0	0	0	0	0	0	0	9	-7	-1
Cimarron	0	0	0	0	0	0	0	0	169	0	-169
Cochran	0	0	0	0	0	0	0	0	256	4	-261
Colfax	0	0	0	0	0	0	0	0	0	0	0
Crane	0	0	0	0	0	0	0	0	0	4	-4
Crosby	2	0	0	1	0	0	0	0	26	1	-30
Curry	0	0	0	0	0	0	0	0	935	-19	-917
Dallam	0	0	0	0	0	0	0	-23	1,131	5	-1,113
Dawson	2	-7	0	-50	-23	0	0	0	241	-2	-161
De Baca	0	0	0	0	0	0	0	0	8	1	-9
Deaf Smith	54	0	0	22	0	0	0	-56	802	-4	-818
Ector	0	0	0	0	0	0	0	-7	11	0	-4
Floyd	0	0	0	0	0	0	0	0	74	1	-75
Gaines	0	0	0	0	0	0	0	0	2,041	28	-2,068
Garza	1	0	0	0	0	0	0	0	1	0	-2
Guadalupe	0	0	0	0	0	0	0	0	0	-3	3
Hale	0	0	0	0	0	0	0	-5	1,216	3	-1,215
Harding	0	0	0	0	0	0	0	0	12	-19	6
Hartley	0	0	0	0	0	0	0	-2	706	4	-708
Hockley	0	0	0	0	0	0	0	0	513	-1	-512
Howard	0	0	0	0	0	0	0	0	1	1	-1
Lamb	0	0	0	0	0	0	0	-4	2,020	0	-2,016

Table, A.3.4, continued

County	Recharge	ET	Springs	Rivers	Draws	Escar	oments	Reservoirs	Wells Storage	Lateral	Cross- Formational
Lea	0	0	0	0	0	0	0	0	715	-9	-707
Lubbock	0	-4	0	-30	0	0	0	0	535	7	-508
Lynn	0	0	0	0	0	0	0	0	141	1	-142
Martin	0	0	0	0	0	0	0	-6	45	16	-55
Midland	0	0	0	0	0	0	0	0	27	7	-34
Moore	0	0	0	0	0	0	0	0	14	0	-14
Oldham	0	0	0	0	0	0	0	-1	7	-2	-4
Parmer	0	0	0	0	0	0	0	0	2,199	3	-2,202
Potter	0	0	0	0	0	0	0	0	0	0	0
Quay	243	-5	0	30	-14	0	0	0	128	12	-395
Randall	0	0	0	0	0	0	0	-22	240	-1	-218
Roosevelt	0	0	0	0	0	0	0	0	441	-10	-431
Sherman	0	0	0	0	0	0	0	0	0	0	0
Swisher	0	0	0	0	0	0	0	-21	417	6	-402
Terry	0	0	0	0	0	0	0	0	475	-7	-468
Union	0	0	0	0	0	0	0	0	158	9	-166
Upton	0	0	0	0	0	0	0	0	0	0	0
Winkler	0	0	0	0	0	0	0	0	5	3	-8
Yoakum	0	0	0	0	0	0	0	-9	426	-2	-415

Table A.3.5 Water budget for the lower Dockum Group by county for year 2012 of the transient model.

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Andrews	0	0	0	0	0	0	0	-4	38	-100	66
Armstrong	228	0	-295	-509	-2,261	0	0	-173	274	586	2,150
Baca	0	0	0	0	0	0	0	0	0	1	-1
Bailey	0	0	0	0	0	0	0	0	161	-3	-159
Borden	4,000	-1,781	0	-1,048	0	0	376	-114	-1,977	271	273
Briscoe	282	-260	-689	-4,421	-1,853	0	84	-76	1,465	2,662	2,807
Carson	0	0	0	0	0	0	0	-138	310	174	-347
Castro	0	0	0	0	0	0	0	-323	2,206	-653	-1,231
Chaves	0	0	0	0	0	0	0	0	14	-14	0
Cimarron	0	0	0	0	0	0	0	0	406	-49	-357
Cochran	0	0	0	0	0	0	0	0	22	0	-22
Coke	133	-11	0	-24	0	-293	0	0	0	90	105
Colfax	0	0	0	0	0	0	0	0	0	-1	1
Crane	0	0	0	0	0	0	0	-158	44	1,069	-954
Crockett	0	0	0	0	0	0	0	-4	36	499	-530
Crosby	2,988	-245	0	-1,622	0	-926	0	-2,931	1,650	-1,470	2,555
Curry	0	0	0	0	0	0	0	-549	822	-124	-148
Dallam	0	0	0	0	0	0	0	-2,757	3,466	22	-731
Dawson	0	0	0	0	0	0	0	-2	101	-73	-26
De Baca	0	0	0	0	0	0	0	-17	19	141	-143
Deaf Smith	147	0	0	61	0	0	0	-2,100	2,728	-1,162	326
Dickens	3,604	-17	-494	-1,023	0	-3,109	0	-93	-587	-400	2,119
Ector	0	0	0	0	0	0	0	-492	558	-1,437	1,371
Eddy	0	0	0	0	0	0	0	-51	41	334	-324
Fisher	734	-124	0	-139	0	-635	0	-53	-30	130	116
Floyd	313	-48	-289	-2,733	0	0	0	-2,451	4,186	-862	1,886

Table A.3.5, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Gaines	0	0	0	0	0	0	0	0	427	3	-430
Garza	6,947	-3,364	-50	-3,480	0	-788	-95	-190	-2,696	3,167	554
Glasscock	2	0	0	0	0	0	0	0	502	-111	-393
Guadalupe	0	0	0	0	0	0	0	0	0	-6	6
Hale	0	0	0	0	0	0	0	-130	3,184	-687	-2,367
Harding	0	0	0	0	0	0	0	0	124	-923	799
Hartley	205	-313	0	985	0	0	0	-2,022	3,826	-2,566	-115
Hockley	0	0	0	0	0	0	0	-28	123	0	-95
Howard	5,236	-1,202	-16	-1,288	0	0	-39	-414	-1,493	-1,330	547
Hutchinson	0	0	0	0	0	0	0	0	0	0	0
Irion	0	0	0	0	0	0	0	0	20	126	-146
Kent	1,299	-20	-112	-706	0	-544	0	-19	-143	245	0
Lamb	0	0	0	0	0	0	0	0	873	-20	-853
Lea	0	0	0	0	0	0	0	-2,975	2,950	-561	587
Loving	0	0	0	0	0	0	0	-19	41	-194	173
Lubbock	0	0	0	0	0	0	0	-3	1,047	-263	-781
Lynn	1	0	0	-46	0	0	0	-81	195	-306	237
Martin	0	0	0	0	0	0	0	-323	323	-42	42
Midland	0	0	0	0	0	0	0	0	140	-93	-47
Mitchell	18,103	-4,485	-146	-8,837	0	-952	75	-11,470	5,552	1,714	444
Moore	64	0	0	-55	0	0	0	-1,605	222	34	1,340
Motley	403	0	-161	-1,823	0	-2,413	0	-62	398	1,393	2,266
Nolan	1,759	-256	0	-726	0	-754	0	-11,660	9,688	254	1,695
Oldham	5,906	-3,719	-120	-9,813	0	0	0	-1,129	1,112	4,192	3,571
Parmer	0	0	0	0	0	0	0	0	1,057	-11	-1,046
Pecos	0	0	0	0	0	0	0	-777	639	83	55
Potter	2,217	-1,078	-22	-3,392	-395	0	0	-1,472	1,443	1,120	1,580
Quay	276	-141	0	-766	0	0	0	-3,997	3,477	82	1,070

Table A.3.5, continued

County	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Randall	86	0	0	-2,328	-747	0	0	-2,634	2,811	336	2,476
Reagan	0	0	0	0	0	0	0	-71	243	63	-235
Reeves	0	0	0	0	0	0	0	-1,204	717	283	204
Roosevelt	0	0	0	0	0	0	0	-204	352	-61	-87
Scurry	7,610	-956	-130	-4,283	0	-1,212	686	-7,803	5,502	-1,219	1,804
Sherman	0	0	0	0	0	0	0	-485	252	241	-8
Sterling	457	-267	0	-284	0	0	0	-18	48	-526	590
Swisher	0	0	0	-17	0	0	0	-1,177	3,550	-3,077	722
Terry	0	0	0	0	0	0	0	0	65	0	-64
Texas	0	0	0	0	0	0	0	0	30	16	-46
Tom Green	0	0	0	0	0	0	0	0	3	23	-27
Union	0	0	0	0	0	0	0	0	294	-1,007	712
Upton	0	0	0	8	0	0	0	-308	440	-714	575
Ward	0	0	0	0	0	0	0	-116	564	1,003	-1,451
Winkler	0	0	0	0	0	0	0	-2,057	1,559	-286	784
Yoakum	0	0	0	0	0	0	0	0	53	-1	-52

Table A.4.1 Water budget for the Ogallala Aquifer by groundwater conservation district for the steady-state model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross-Formational
Garza County UWCD	2,044	0	0	0	-1,021	-5,951	2,568	2,360
Gateway GCD	1,749	0	-624	-1,731	0	-3,464	6,704	-2,634
Glasscock GCD	945	-464	0	-746	0	-164	-5	434
High Plains UWCD No.1	96,837	-25,448	-14,852	-13,000	-6,647	-13,316	-8,835	-14,740
Llano Estacado UWCD	3,460	-6,846	-910	-1,147	-1,952	0	4,445	2,950
Mesa UWCD	5,346	-1,620	-52	-1,073	-1,407	-3,220	867	1,159
North Plains GCD	136,985	-23,119	-69	-3,149	-1,450	-179	-108,714	-305
Panhandle GCD	112,392	-37,564	-2,964	-48,748	-5,629	-34,729	20,042	-2,799
Permian Basin UWCD	5,898	-4,278	-328	-1,190	-2,742	-942	3,751	-169
Sandy Land UWCD	2,035	-29	-91	578	0	0	-795	-1,698
South Plains UWCD	1,904	-81	-717	1,318	-757	0	-1,616	-50
Hemphill County UWCD	34,037	-24,895	-196	-21,966	-112	-3,600	16,732	0
Mesquite GCD	647	0	0	0	0	-697	49	0

Table A.4.2 Water budget for the Rita Blanca Aquifer by groundwater conservation district for the steady-state model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross-Formational
North Plains GCD	0	0	0	0	0	0	560	-560

Table A.4.3 Water budget for the Edwards-Trinity (High Plains) Aquifer by groundwater conservation district for the steady-state model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross-Formational
Garza County UWCD	0	0	0	0	0	0	2,979	-2,979
High Plains UWCD No.1	0	0	0	0	0	0	-95	95
Llano Estacado UWCD	0	0	0	0	0	0	2,935	-2,935
Mesa UWCD	0	0	0	0	0	0	1,312	-1,312
Sandy Land UWCD	0	0	0	0	0	0	-1,696	1,696
South Plains UWCD	0	0	0	0	0	0	-47	47

Table A.4.4 Water budget for the upper Dockum Group by groundwater conservation district for the steady-state model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross-Formational
Garza County UWCD	0	0	0	0	0	0	0	0
High Plains UWCD No.1	0	-5	0	-33	0	0	19	18
Llano Estacado UWCD	0	0	0	0	0	0	12	-12
Mesa UWCD	1	-7	0	-51	-22	0	1	78
North Plains GCD	0	0	0	0	0	0	7	-7
Permian Basin UWCD	0	0	0	0	0	0	17	-17
Sandy Land UWCD	0	0	0	0	0	0	-1	1
South Plains UWCD	0	0	0	0	0	0	-2	2

Table A.4.5 Water budget for the lower Dockum Group by groundwater conservation district for the steady-state model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Lateral	Cross-Formational
Clear Fork GCD	478	-86	0	-136	0	-512	137	119
Coke County UWCD	129	-11	0	-24	0	-261	62	104
Crockett County GCD	0	0	0	0	0	0	492	-492
Garza County UWCD	2,055	-2,945	-41	-2,020	0	-681	3,008	624
Gateway GCD	335	0	-171	-2,043	0	-2,555	1,800	2,634
Glasscock GCD	2	0	0	0	0	0	-61	60
High Plains UWCD No.1	271	0	0	43	-184	0	-14,749	14,619
Irion County WCD	0	0	0	0	0	0	148	-148
Llano Estacado UWCD	0	0	0	0	0	0	2	-2
Lone Wolf GCD	8,249	-3,435	-112	-6,892	0	-907	2,655	443
Mesa UWCD	0	0	0	0	0	0	-75	75
Middle Pecos GCD	0	0	0	0	0	0	-85	85
North Plains GCD	49	0	0	189	0	0	-1,110	872
Panhandle GCD	2,325	-1,106	-318	-4,150	-2,487	0	2,936	2,799
Permian Basin UWCD	3,024	-1,167	-16	-1,111	0	0	-1,183	453
Sandy Land UWCD	0	0	0	0	0	0	-1	1
Santa Rita UWCD	0	0	0	0	0	0	-78	78
South Plains UWCD	0	0	0	0	0	0	0	0
Sterling County UWCD	457	-267	0	-284	0	0	-494	587
Wes-Tex GCD	505	-79	0	-518	0	-743	-739	1,574

Table A.5.1 Water budget for the Ogallala Aquifer by groundwater conservation district for year 1980 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Garza County UWCD	8,354	0	0	0	-786	-4,571	0	-9,004	-356	3,296	3,068
Gateway GCD	1,787	0	-479	-839	0	-2,784	0	-352	3,065	2,047	-2,446
Glasscock GCD	2,241	-407	0	351	0	-123	0	-4,071	1,151	303	554
High Plains UWCD No.1	166,630	-1,635	-8,101	48,003	-2,657	-9,420	0	-3,124,756	2,958,995	-26,320	-739
Llano Estacado UWCD	17,246	-4,115	-713	13,947	-1,072	0	0	-410,413	388,364	3,036	-6,280
Mesa UWCD	54,724	-1,009	-100	4,653	-1,675	-3,756	0	-22,197	-31,573	74	860
North Plains GCD	137,167	-14,796	-55	35,924	-541	-63	168	-1,467,159	1,378,519	-64,557	-4,607
Panhandle GCD	113,935	-35,976	-2,636	-40,747	-5,512	-33,692	0	-193,656	189,713	11,252	-2,679
Permian Basin UWCD	45,855	-3,137	-255	2,251	-3,795	-1,302	0	-19,965	-22,714	3,109	-48
Sandy Land UWCD	1,886	-16	-27	1,802	0	0	0	-119,556	119,703	-1,005	-2,786
South Plains UWCD	13,056	0	-408	2,219	-450	0	0	-80,068	72,215	-5,402	-1,162
Hemphill County UWCD	34,479	-24,568	-198	-21,502	-101	-3,671	0	-2,333	3,621	14,273	0
Mesquite GCD	647	0	0	0	0	-678	0	0	9	22	0

Table A.5.2 Water budget for the Rita Blanca Aquifer by groundwater conservation district for year 1980 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
North Plains GCD	0	0	0	0	0	0	0	-6,131	2,744	978	2,409

Table A.5.3 Water budget for the Edwards-Trinity (High Plains) Aquifer by groundwater conservation district for year 1980 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Garza County UWCD	0	0	0	0	0	0	0	-15	-3	3,647	-3,629
High Plains UWCD No.1	0	0	0	0	0	0	0	-9,916	7,338	-932	3,509
Llano Estacado UWCD	0	0	0	0	0	0	0	-13,536	334	5,172	8,031
Mesa UWCD	0	0	0	0	0	0	0	-340	-53	1,276	-883
Sandy Land UWCD	0	0	0	0	0	0	0	-2,179	1,333	-2,200	3,045
South Plains UWCD	0	0	0	0	0	0	0	-766	562	-1,251	1,455

Table A.5.4 Water budget for the upper Dockum Group by groundwater conservation district for year 1980 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Garza County UWCD	0	0	0	0	0	0	0	0	0	0	-1
High Plains UWCD No.1	0	-5	0	-31	0	0	0	-37	9,867	17	-9,811
Llano Estacado UWCD	0	0	0	0	0	0	0	0	1,609	14	-1,622
Mesa UWCD	2	-7	0	-51	-22	0	0	0	47	1	29
North Plains GCD	0	0	0	0	0	0	0	-17	1,120	7	-1,110
Permian Basin UWCD	0	0	0	0	0	0	0	-8	123	17	-132
Sandy Land UWCD	0	0	0	0	0	0	0	-2	247	-1	-244
South Plains UWCD	0	0	0	0	0	0	0	0	279	-4	-275

Table A.5.5 Water budget for the lower Dockum Group by groundwater conservation district for year 1980 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Clear Fork GCD	734	-111	0	-137	0	-599	0	-17	-123	137	116
Coke County UWCD	129	-11	0	-24	0	-261	0	0	0	62	104
Crockett County GCD	0	0	0	0	0	0	0	-3	21	491	-509
Garza County UWCD	6,166	-2,997	-43	-2,312	0	-712	0	-79	-3,591	2,999	568
Gateway GCD	403	0	-168	-1,955	0	-2,515	0	-10	277	1,522	2,446
Glasscock GCD	2	0	0	0	0	0	0	-389	518	63	-194
High Plains UWCD No.1	271	0	0	43	-184	0	0	-9,354	15,620	-13,428	7,033
Irion County WCD	0	0	0	0	0	0	0	0	19	141	-160
Llano Estacado UWCD	0	0	0	0	0	0	0	0	129	2	-131
Lone Wolf GCD	18,104	-3,838	-122	-7,677	0	-939	227	-3,423	-5,257	2,483	442
Mesa UWCD	0	0	0	0	0	0	0	-1	82	-74	-7
Middle Pecos GCD	0	0	0	0	0	0	0	-955	905	49	2
North Plains GCD	49	0	0	194	0	0	0	-7,868	5,117	-796	3,305
Panhandle GCD	2,333	-1,097	-318	-4,068	-2,484	0	0	-752	959	2,746	2,679
Permian Basin UWCD	5,249	-1,212	-16	-1,169	0	0	0	-27	-2,034	-1,220	427
Sandy Land UWCD	0	0	0	0	0	0	0	0	16	-1	-15
Santa Rita UWCD	0	0	0	0	0	0	0	-359	617	-85	-173
South Plains UWCD	0	0	0	0	0	0	0	0	19	0	-19
Sterling County UWCD	457	-267	0	-284	0	0	0	-20	38	-500	576
Wes-Tex GCD	1,759	-136	0	-522	0	-749	0	-820	-427	-679	1,574

Table A.6.1 Water budget for the Ogallala Aquifer by groundwater conservation district for year 2012 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
Garza County UWCD	8,498	0	0	0	-771	-4,261	0	-14,466	4,931	3,028	3,040
Gateway GCD	1,787	0	-340	-174	0	-2,291	0	-273	2,585	971	-2,266
Glasscock GCD	3,240	-399	0	475	0	-99	0	-5,236	1,202	462	356
High Plains UWCD No.1	349,939	-1,026	-5,512	56,240	-2,097	-6,779	0	-1,903,166	1,503,728	-2,108	10,781
Llano Estacado UWCD	84,920	-2,610	-498	19,560	-733	0	0	-253,504	144,743	8,265	-143
Mesa UWCD	54,724	-983	-118	5,528	-1,850	-4,031	0	-120,554	73,572	-5,450	-838
North Plains GCD	137,167	-8,782	-2	54,089	-34	0	587	-2,085,798	1,909,608	-5,782	-1,053
Panhandle GCD	113,935	-33,469	-2,534	-31,468	-4,931	-32,430	0	-319,899	308,730	4,792	-2,725
Permian Basin UWCD	52,461	-4,939	-341	723	-5,143	-2,438	-212	-54,609	13,963	917	-384
Sandy Land UWCD	34,477	0	-17	2,496	0	0	0	-131,538	93,795	1,025	-237
South Plains UWCD	74,236	0	-134	2,927	-173	0	0	-209,619	132,400	-5	368
Hemphill County UWCD	34,479	-24,400	-198	-20,587	-101	-3,673	0	-21,951	21,930	14,503	0
Mesquite GCD	647	0	0	0	0	-664	0	0	8	9	0

Table A.6.2 Water budget for the Rita Blanca Aquifer by groundwater conservation district for year 2012 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross- Formational
North Plains GCD	0	0	0	0	0	0	0	-6,202	2,147	941	3,114

Table A.6.3 Water budget for the Edwards-Trinity (High Plains) Aquifer by groundwater conservation district for year 2012 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storage	Lateral	Cross-Formational
Garza County UWCD	0	0	0	0	0	0	0	-184	1	3,769	-3,586
High Plains UWCD No.1	0	0	0	0	0	0	0	-10,131	10,793	-654	-8
Llano Estacado UWCD	0	0	0	0	0	0	0	-12,225	2,356	7,231	2,638
Mesa UWCD	0	0	0	0	0	0	0	-2,147	5	1,117	1,025
Sandy Land UWCD	0	0	0	0	0	0	0	-6	2,586	-3,283	703
South Plains UWCD	0	0	0	0	0	0	0	-42	1,553	-1,684	173

Table A.6.4 Water budget for the upper Dockum Group by groundwater conservation district for year 2012 of the transient model.

Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storag e	Lateral	Cross-Formational
Garza County UWCD	1	0	0	0	0	0	0	0	1	0	-2
High Plains UWCD No.1	0	-4	0	-30	0	0	0	-66	10,578	20	-10,499
Llano Estacado UWCD	0	0	0	0	0	0	0	0	2,038	28	-2,065
Mesa UWCD	2	-7	0	-50	-23	0	0	0	241	-2	-161
North Plains GCD	0	0	0	0	0	0	0	-26	1,851	9	-1,835
Permian Basin UWCD	0	0	0	0	0	0	0	-6	46	17	-56
Sandy Land UWCD	0	0	0	0	0	0	0	-9	425	-2	-414
South Plains UWCD	0	0	0	0	0	0	0	0	483	-7	-476

Table A.6.5 Water budget for the lower Dockum Group by groundwater conservation district for year 2012 of the transient model.

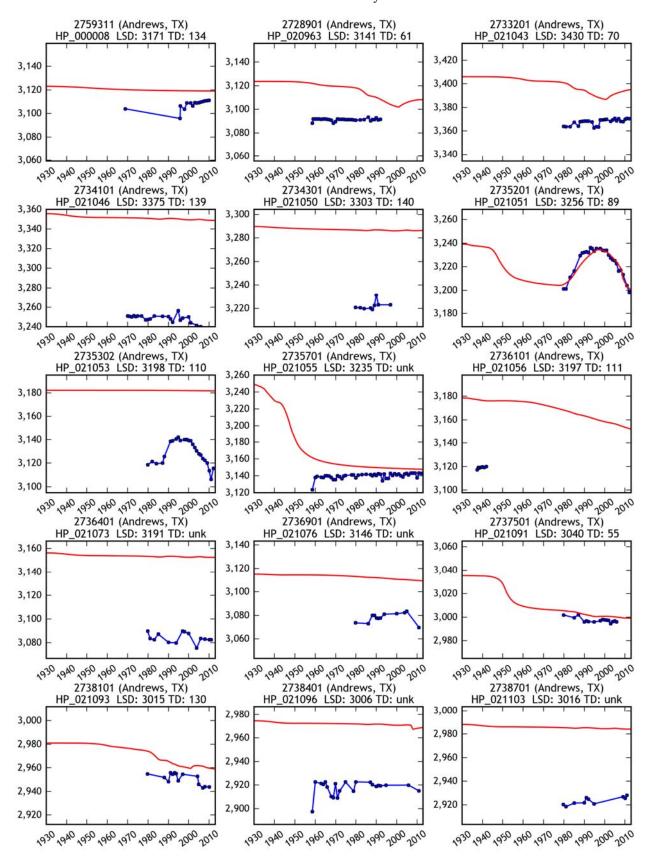
Groundwater Conservation District	Recharge	ET	Springs	Rivers	Draws	Escarpments	Reservoirs	Wells	Storag e	Lateral	Cross-Formational
Clear Fork GCD	734	-124	0	-139	0	-635	0	-53	-30	130	116
Coke County UWCD	129	-11	0	-24	0	-262	0	0	0	62	105
Crockett County GCD	0	0	0	0	0	0	0	-4	36	487	-518
Garza County UWCD	6,968	-3,364	-50	-3,480	0	-788	-95	-113	-2,734	3,108	553
Gateway GCD	403	0	-161	-1,823	0	-2,413	0	-62	398	1,393	2,266
Glasscock GCD	2	0	0	0	0	0	0	-68	408	31	-373
High Plains UWCD No.1	274	0	0	45	-183	0	0	-11,368	23,997	-12,479	-284
Irion County WCD	0	0	0	0	0	0	0	0	22	121	-143
Llano Estacado UWCD	0	0	0	0	0	0	0	0	426	3	-429
Lone Wolf GCD	18,104	-4,485	-146	-8,802	0	-982	75	-11,470	5,656	1,603	447
Mesa UWCD	0	0	0	0	0	0	0	-2	101	-73	-26
Middle Pecos GCD	0	0	0	0	0	0	0	-777	642	76	59
North Plains GCD	49	0	0	194	0	0	0	-6,642	7,214	-585	-228
Panhandle GCD	2,333	-1,078	-317	-3,981	-2,473	0	0	-1,342	1,582	2,552	2,725
Permian Basin UWCD	5,249	-1,260	-16	-1,288	0	0	-39	-736	-1,164	-1,314	569
Sandy Land UWCD	0	0	0	0	0	0	0	0	53	-1	-52
Santa Rita UWCD	0	0	0	0	0	0	0	-3	337	-78	-255
South Plains UWCD	0	0	0	0	0	0	0	0	66	0	-65
Sterling County UWCD	457	-267	0	-284	0	0	0	-18	48	-513	577
Wes-Tex GCD	1,759	-256	0	-726	0	-754	0	-11,660	9,583	361	1,693

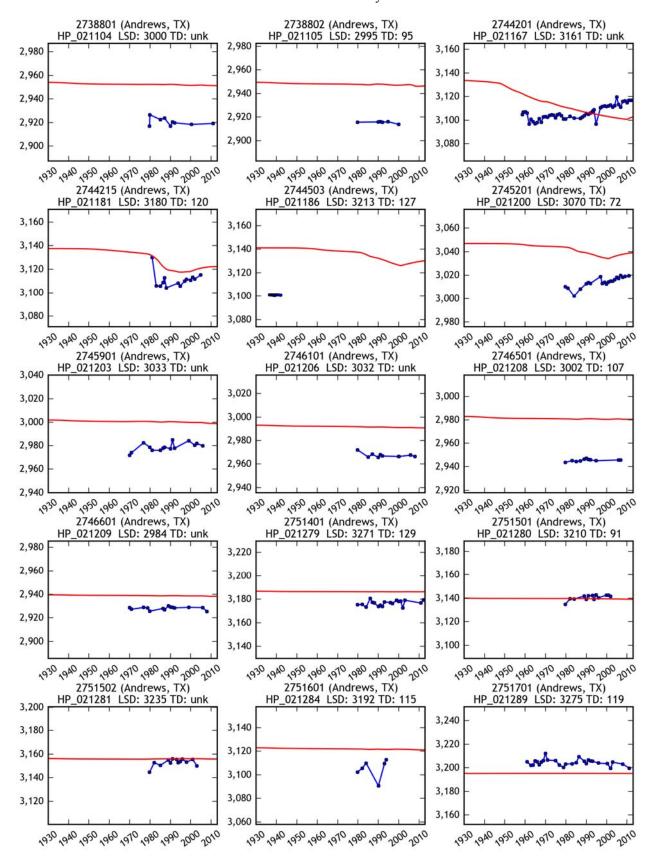
Appendix B

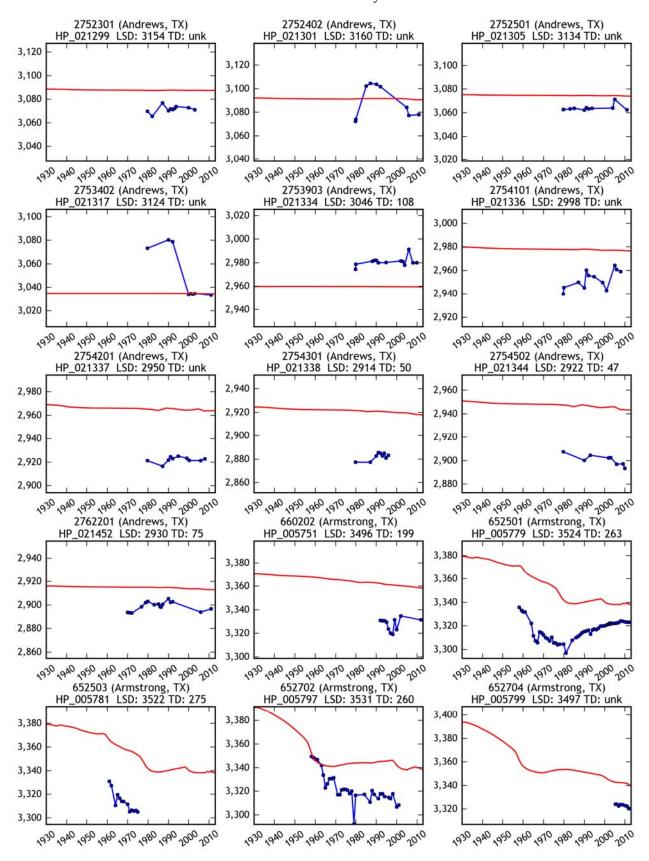
Observed and Simulated Hydrographs

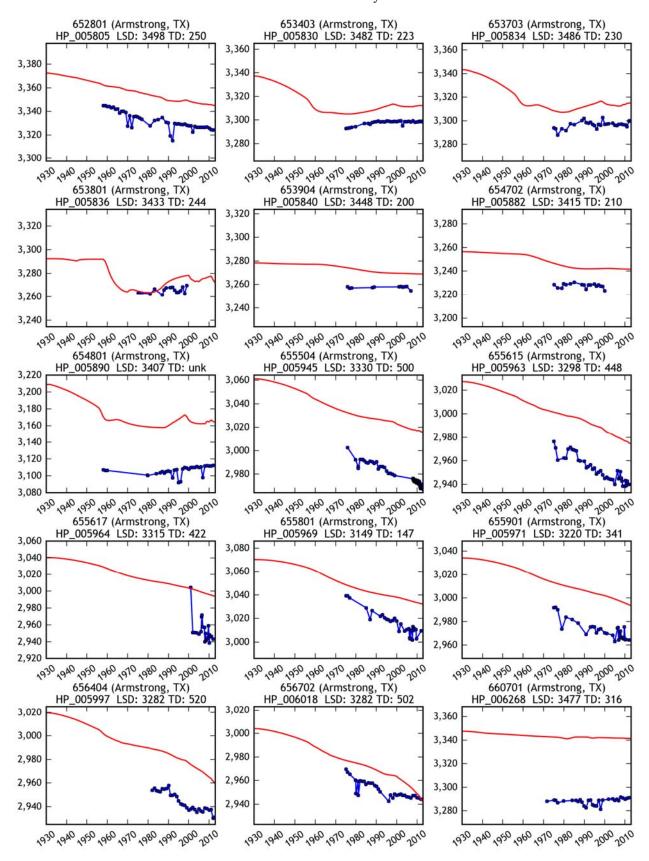
This page intentionally left blank.

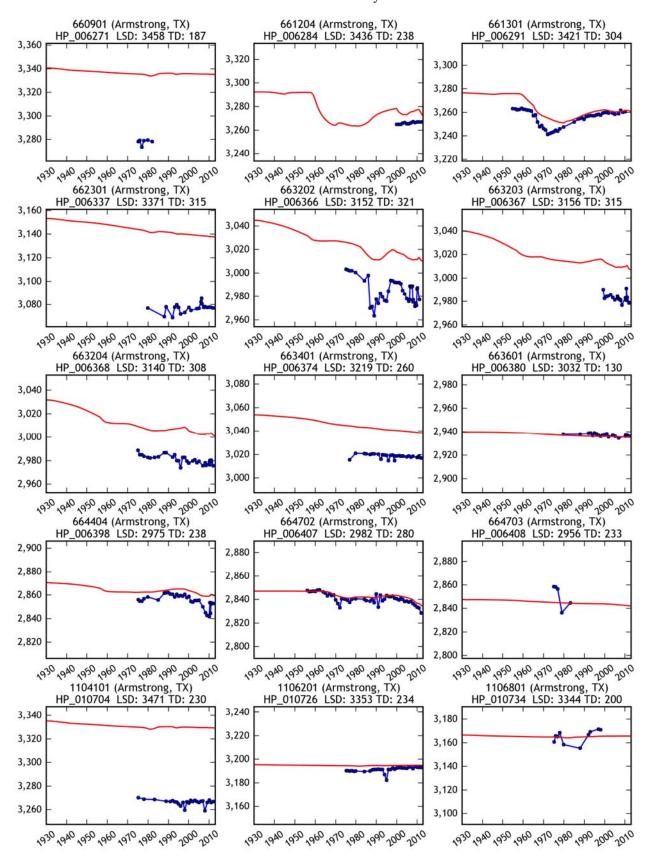
Due to the large volume of transient hydraulic head data available for wells in the study area, all observed and simulated hydrographs could not be presented in the main body of this report. Therefore, this appendix was created to show additional hydrographs. The hydrographs included here show observed and simulated water-level (hydraulic head) data for wells identified as being completed in an aquifer or formation. Not all of the transient hydraulic head data available for wells in the study area were plotted as hydrographs and included here. Data for wells with fewer than five measurements were not included. Due to the larger number of wells (more than 6,000), only a subset of the hydrographs are included by limiting the maximum number of hydrographs to 45 per county. All hydrographs presented in the Final Conceptual Model Report (Deeds and Others, 2015) are included in the appendix. Hydrographs are grouped by aquifer and sorted alphabetically by county.

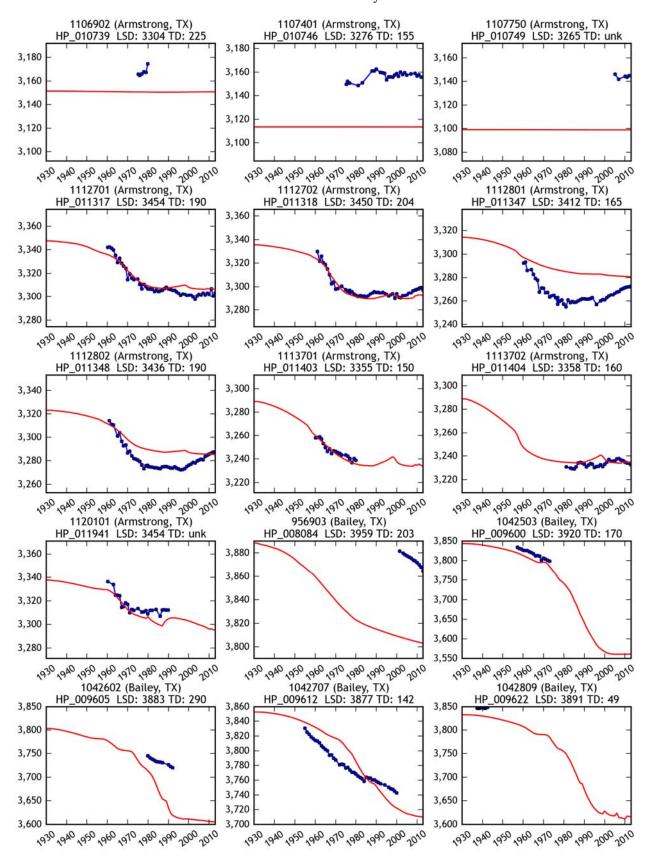

Each hydrograph includes a title that consists of a well identifier, the depth of the well, and the county in which the well is located. For wells with a Texas state well number, the well identifier is the state well number. For wells without a state well number, a well identifier was developed to associate the well with the data source (such as a groundwater conservation district) or with the identification number from an agency (such as the United States Geological Survey or the Oklahoma Water Resources Board). In some cases, an internal identification was given to a well, which can be cross-referenced with the master well database included as part of the electronic delivery with this work.

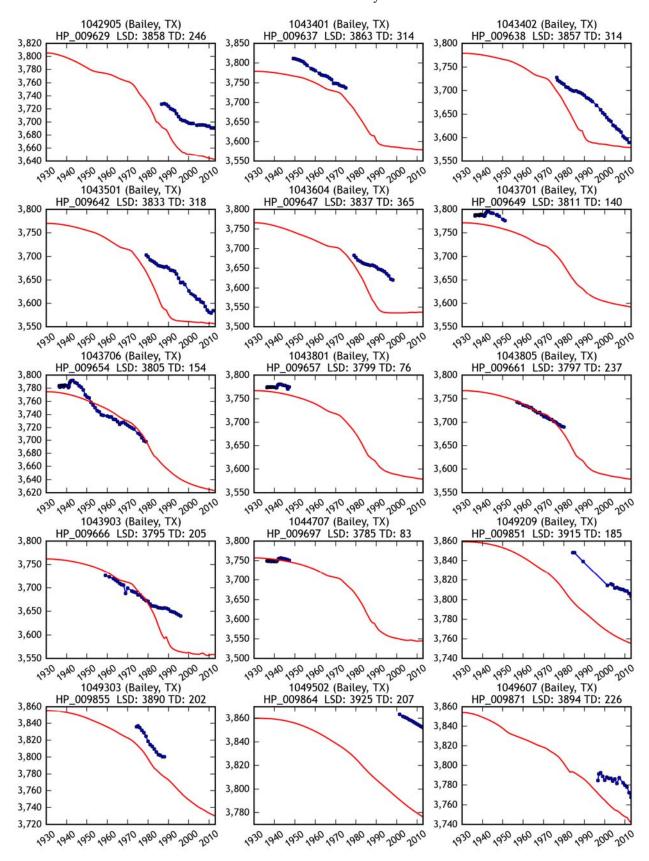

This page intentionally left blank.

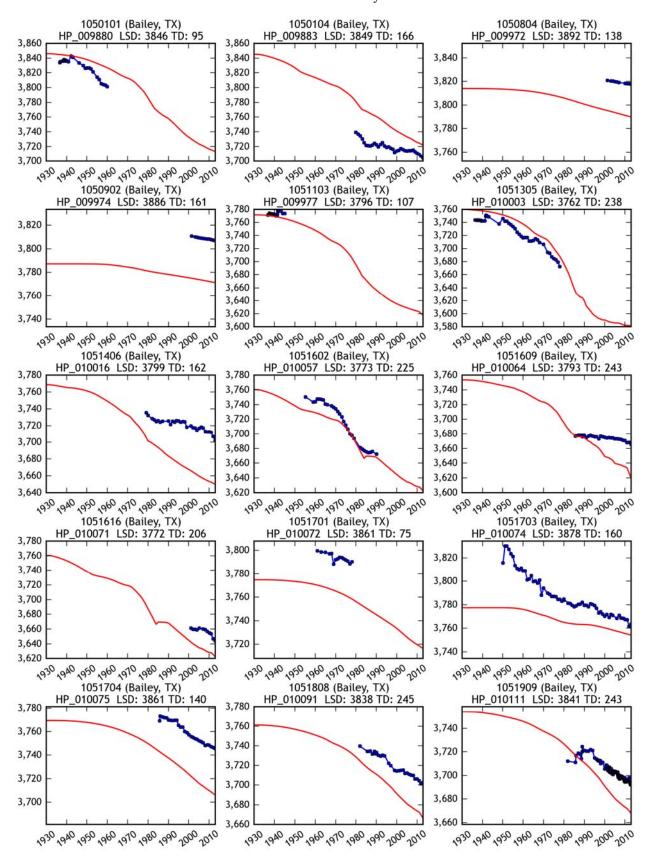

B.1 Ogallala Aquifer Hydrographs

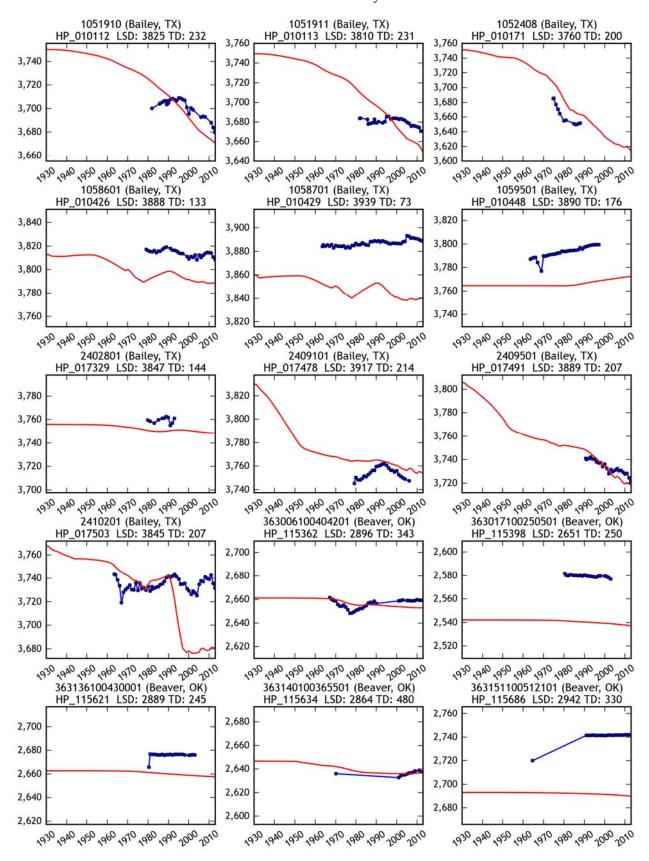

This section contains the observed and simulated hydrographs for the Ogallala Aquifer.

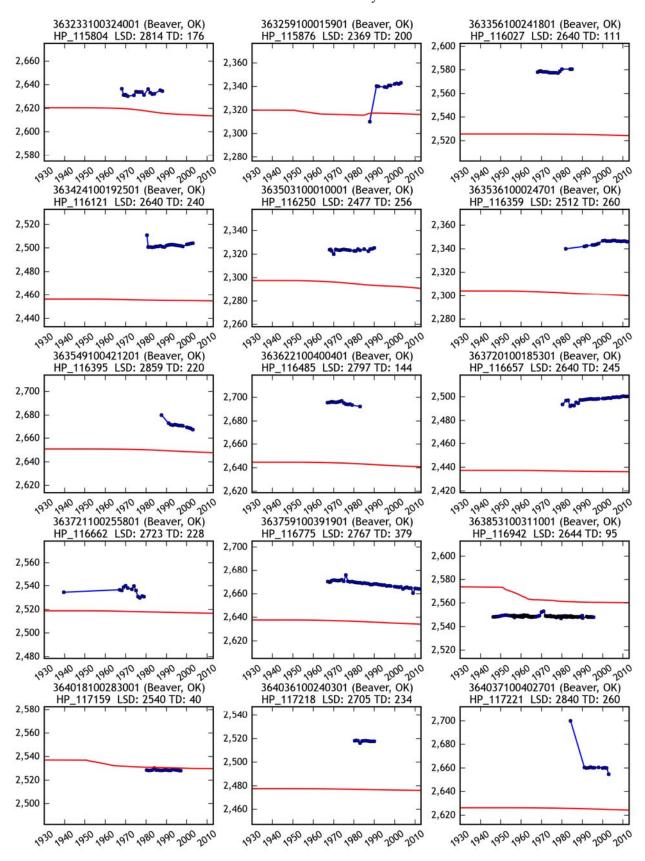

This page intentionally left blank.

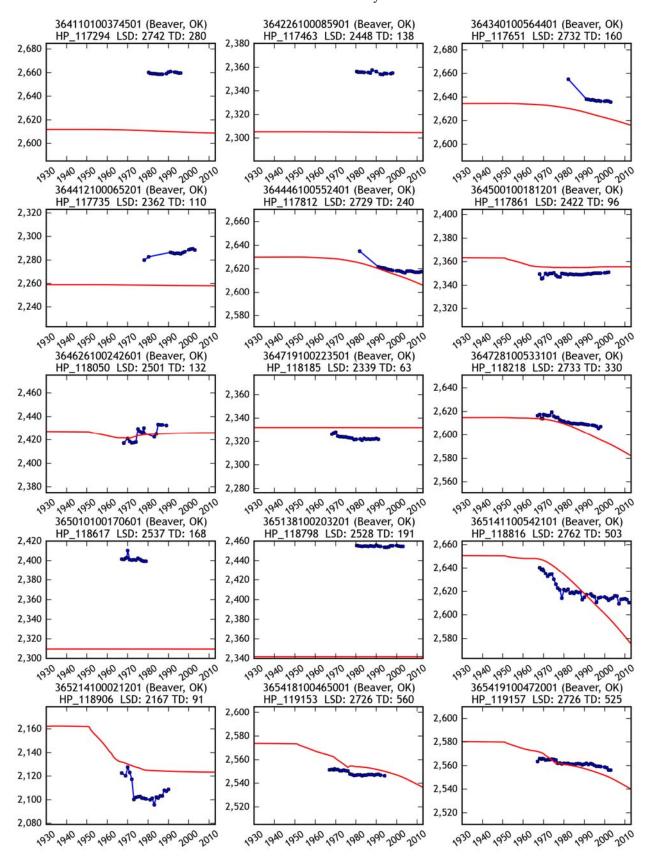


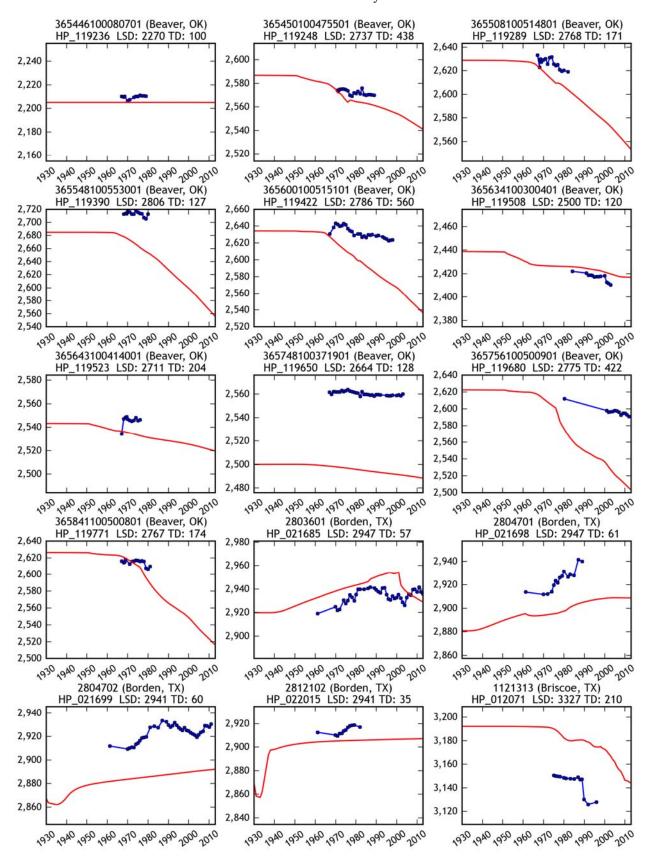


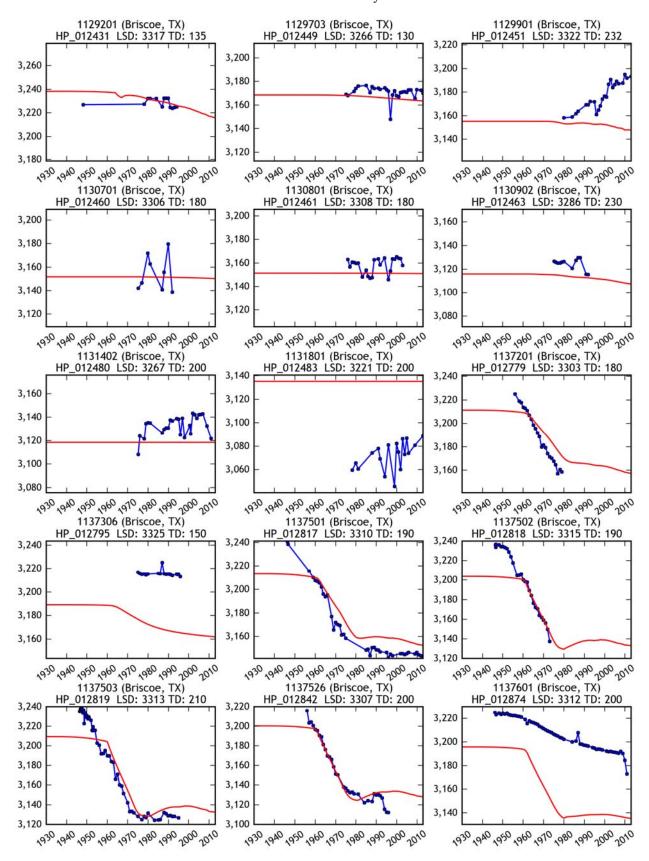


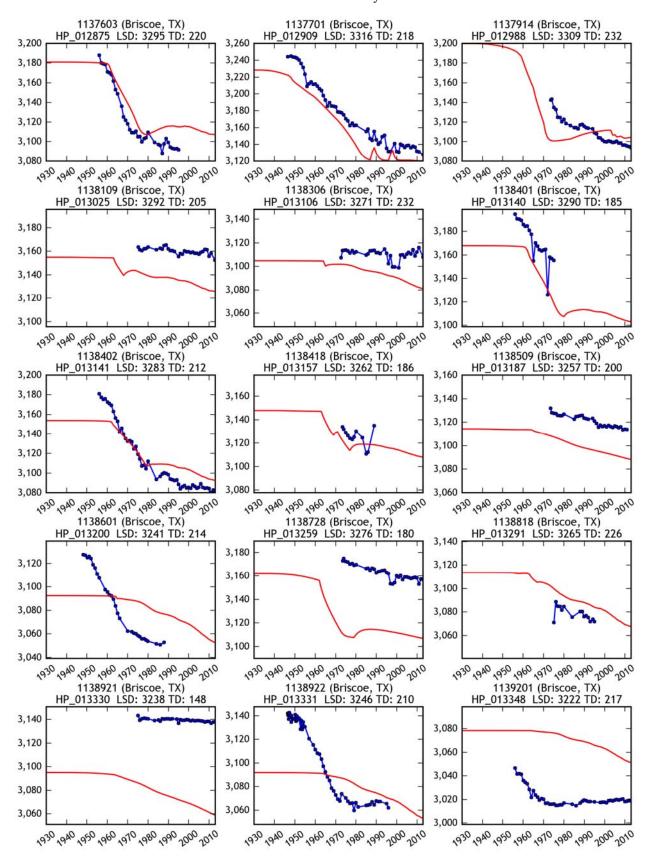


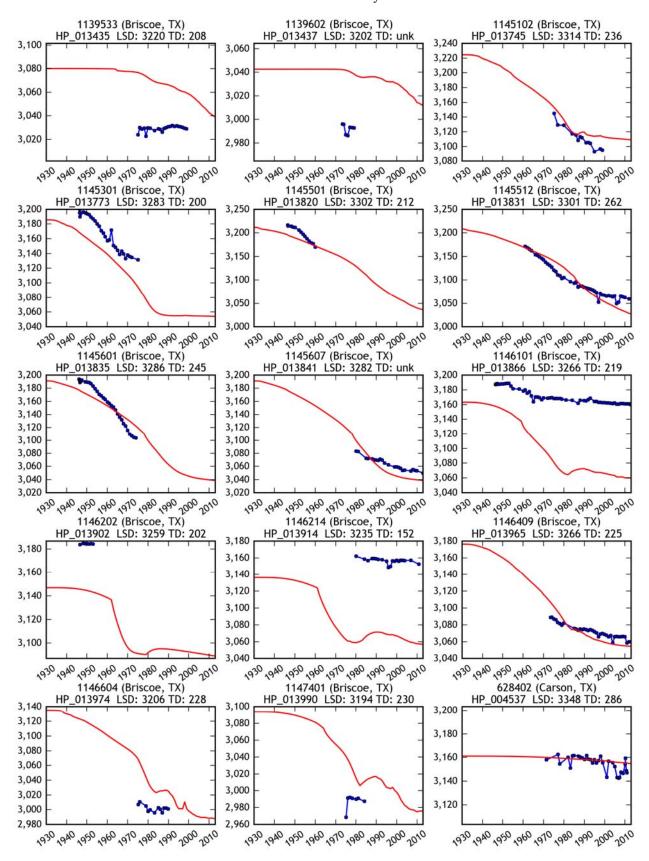


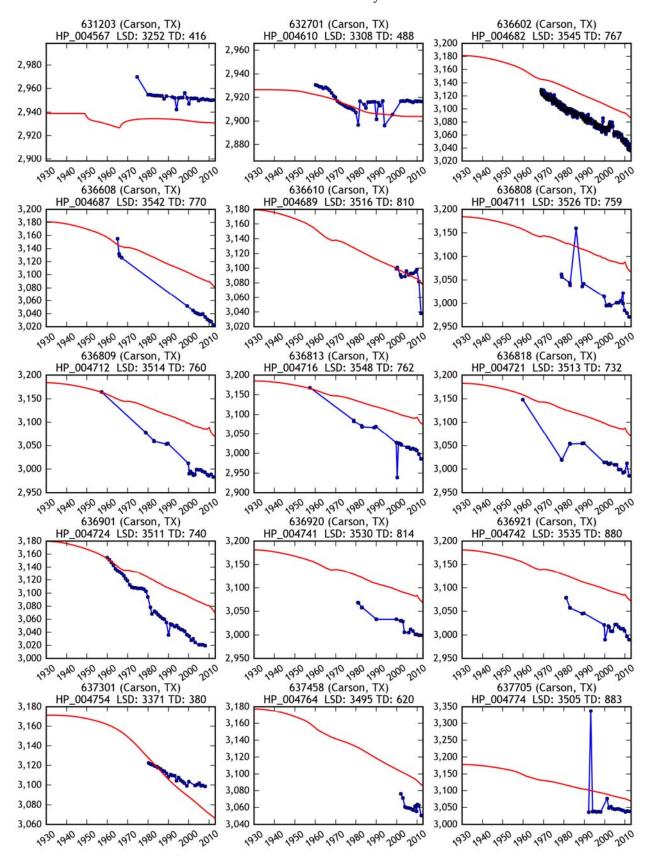


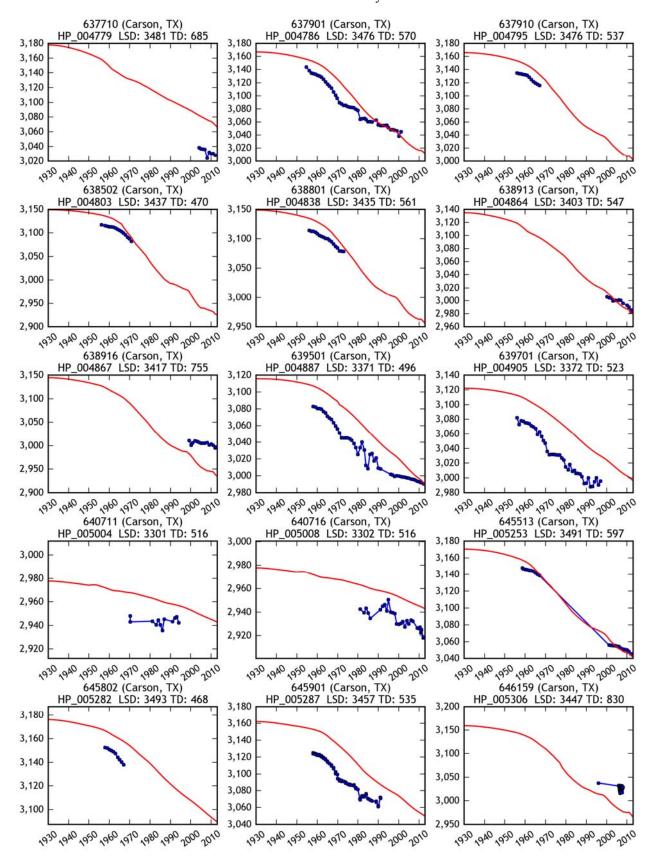


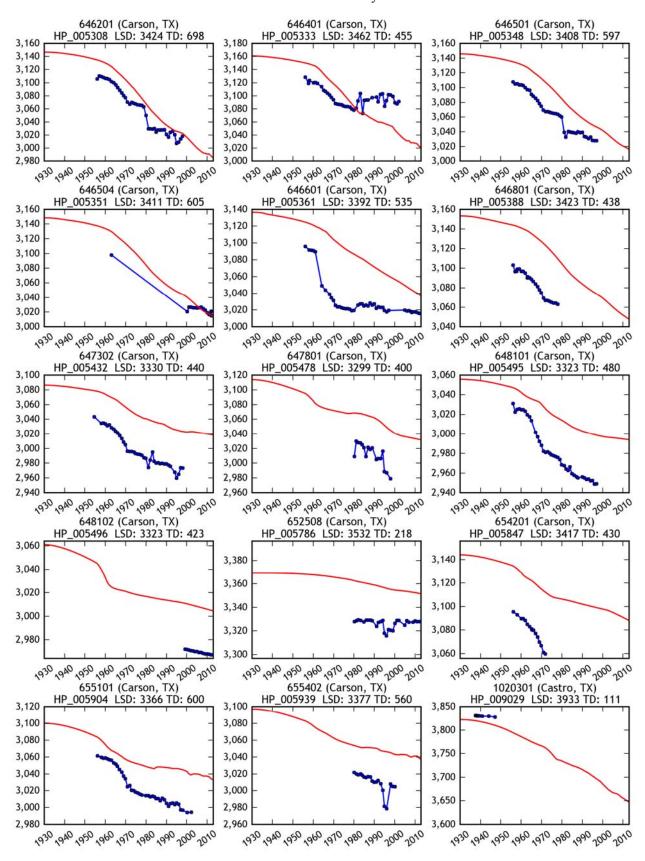


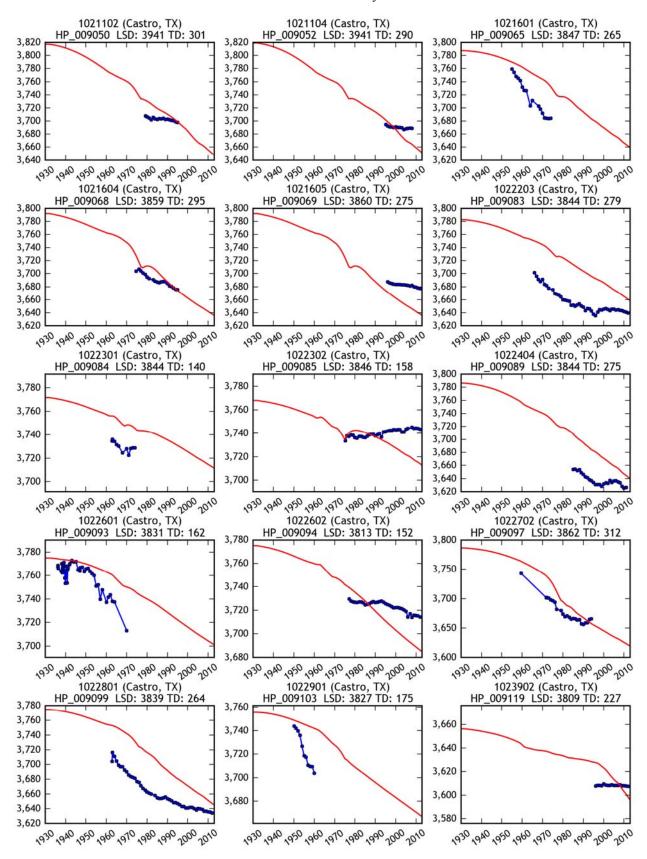


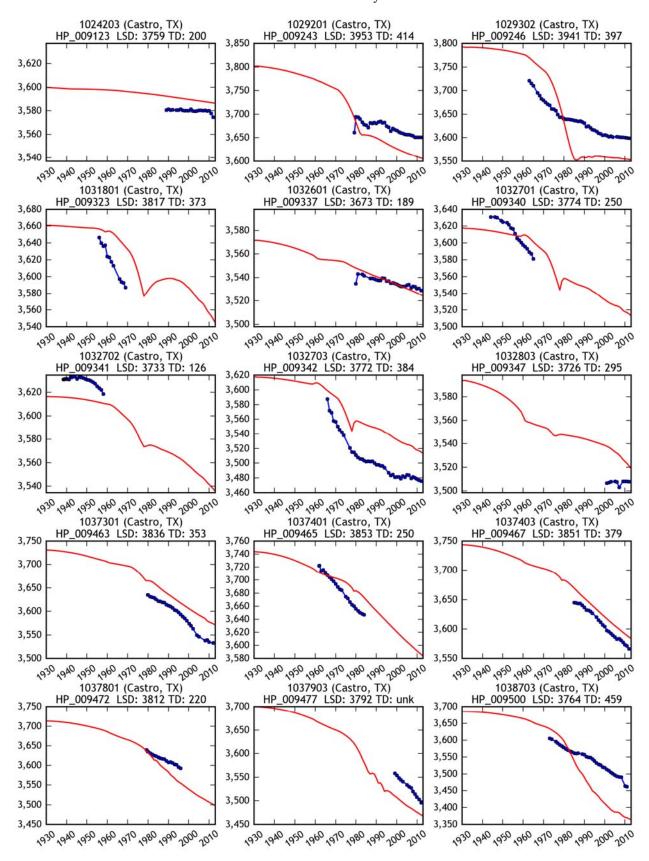


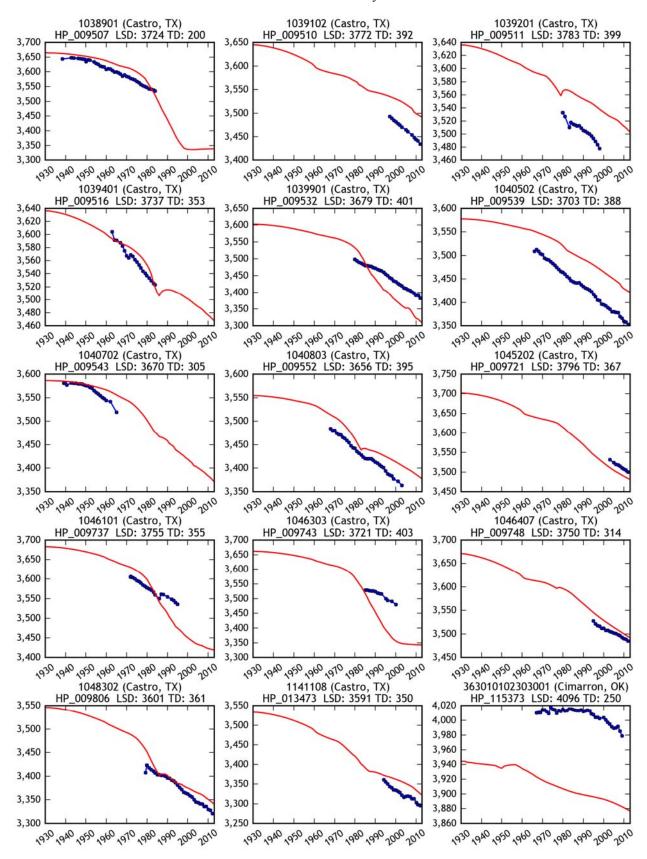


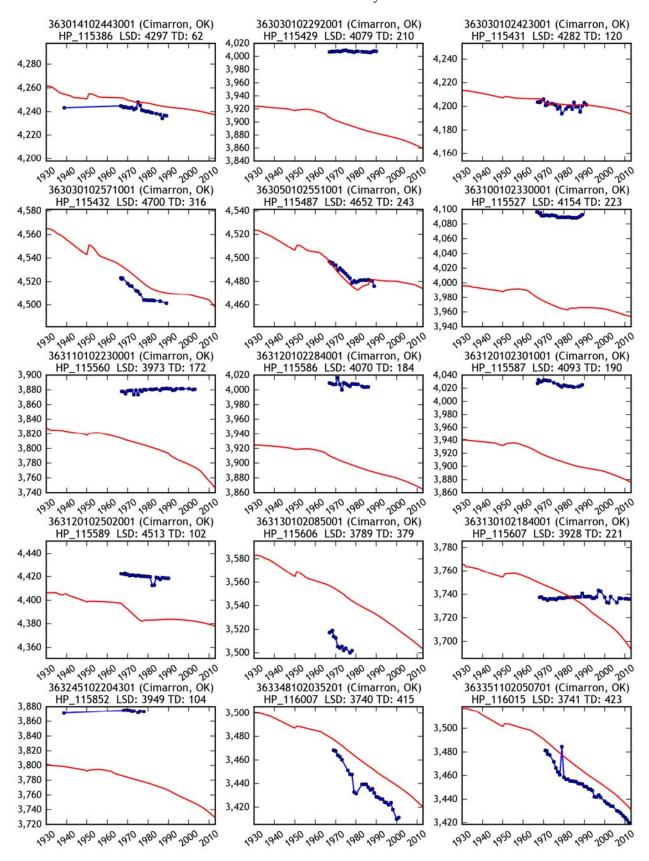


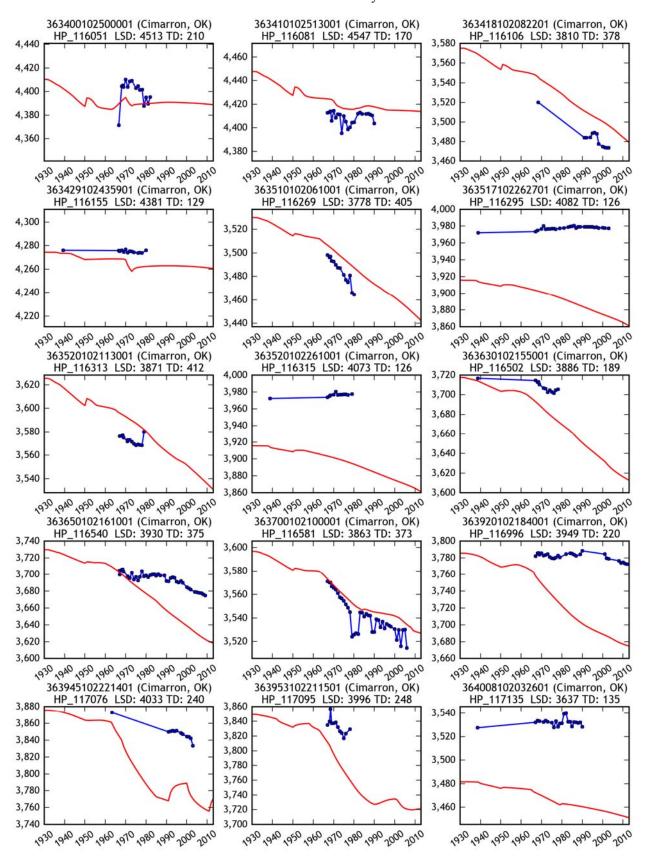


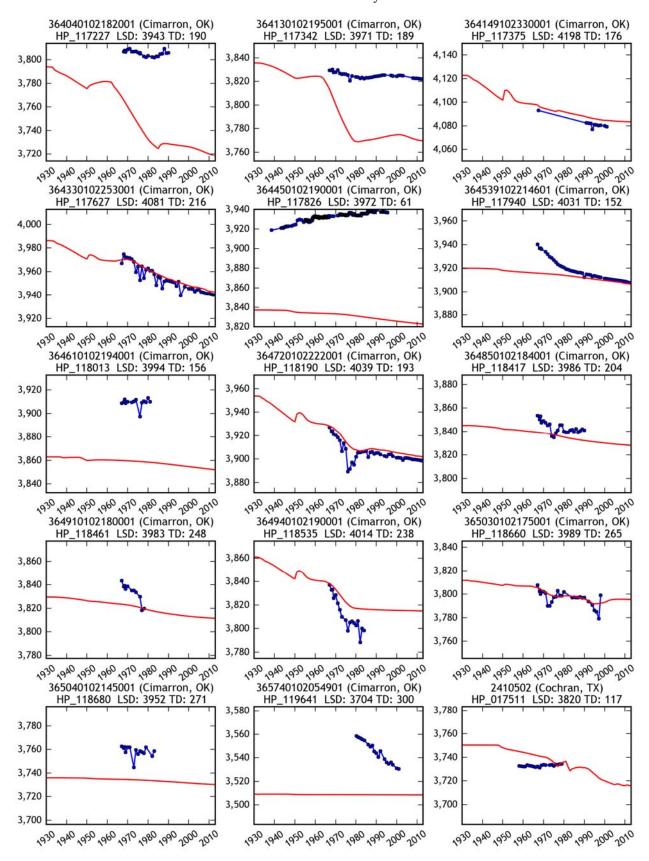


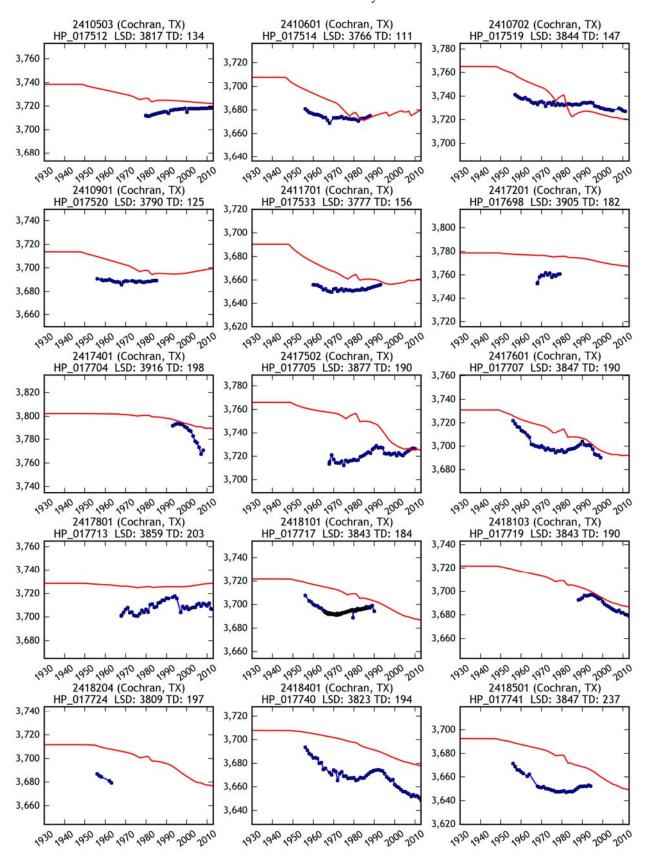


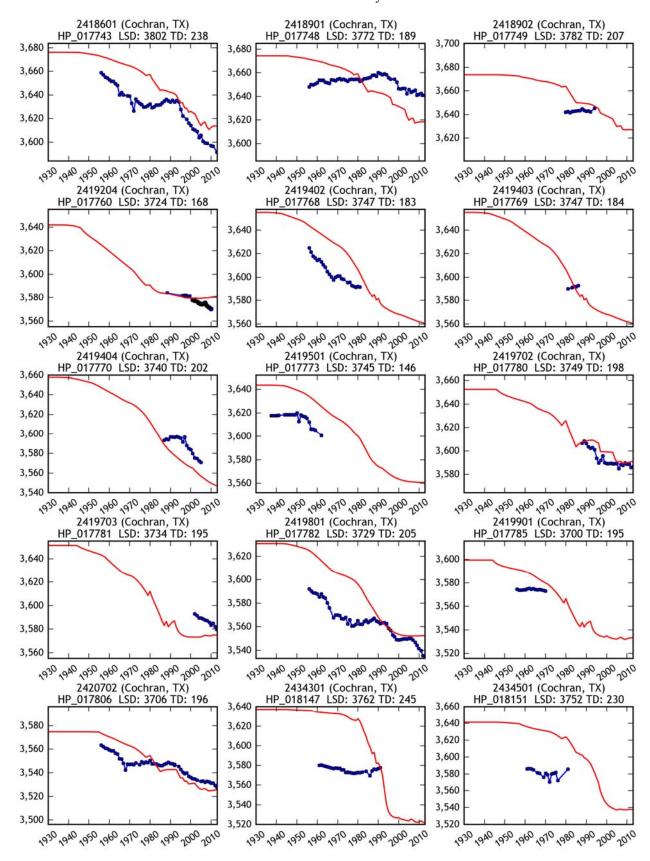


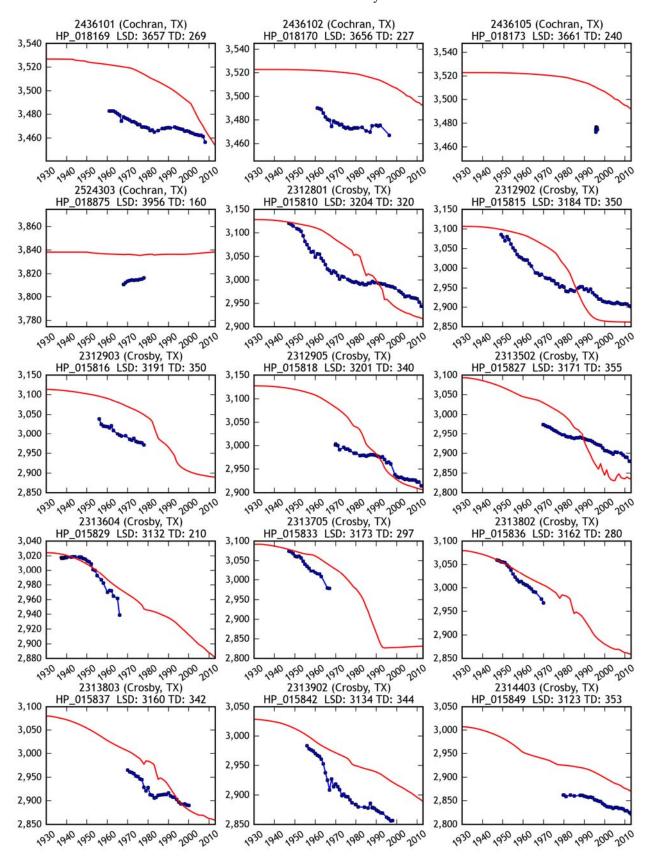


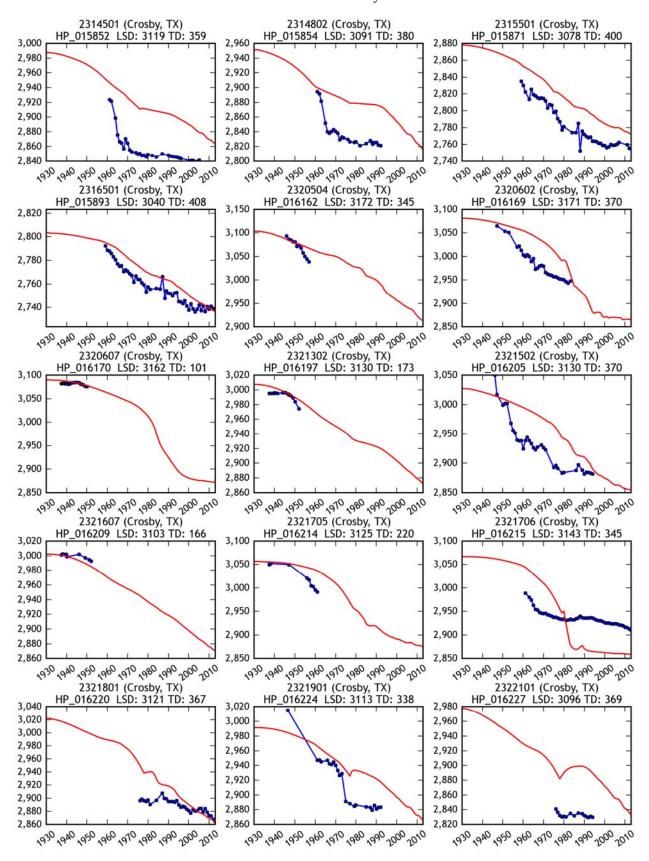


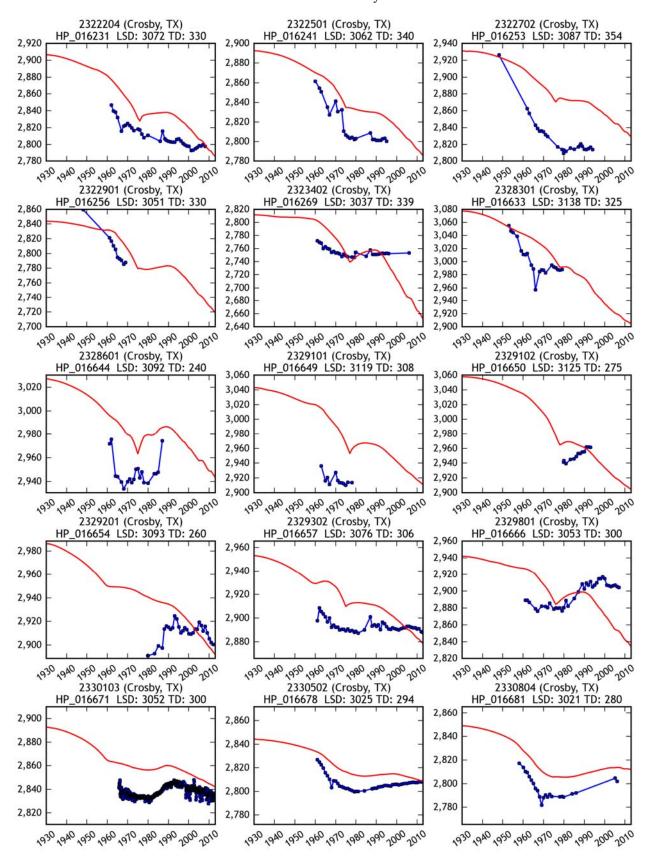


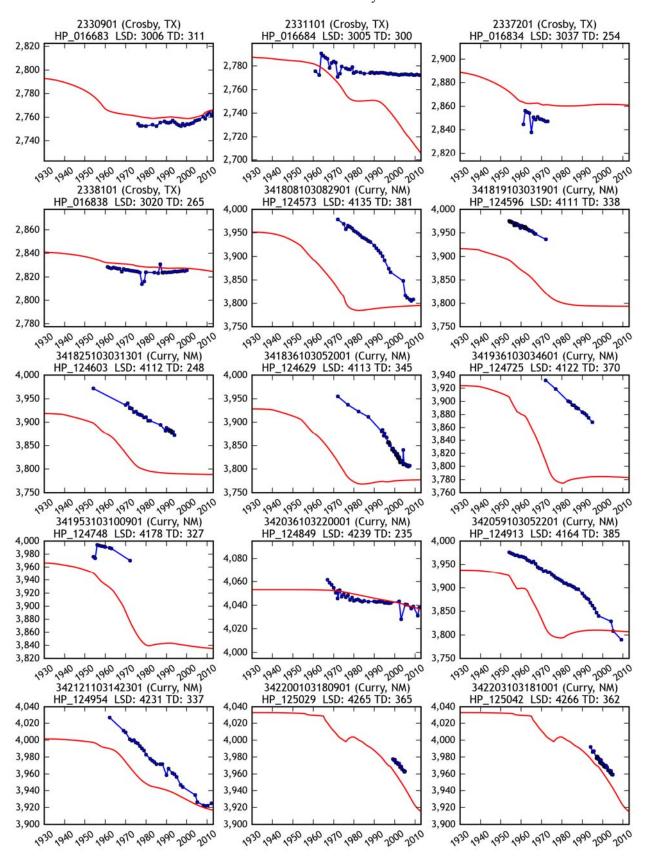


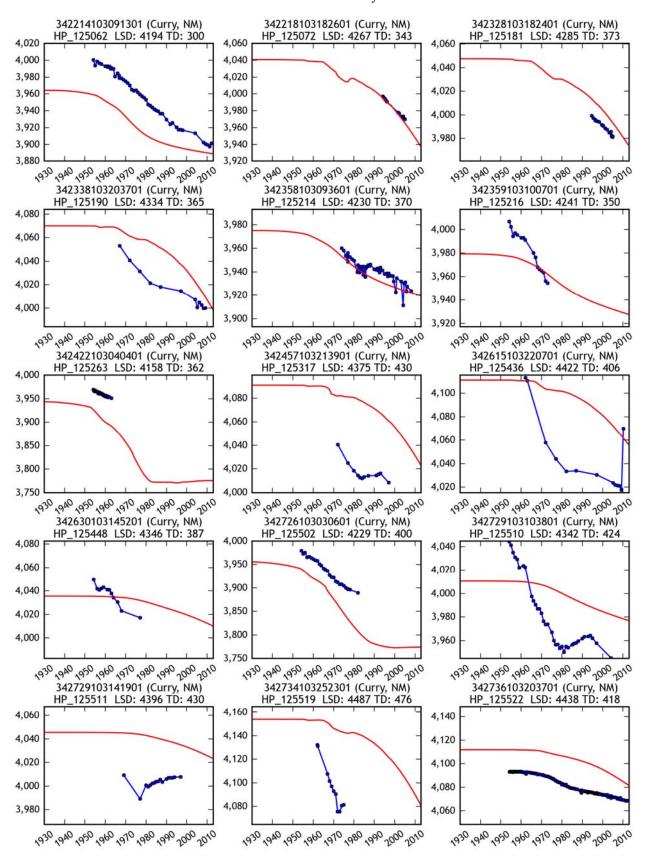


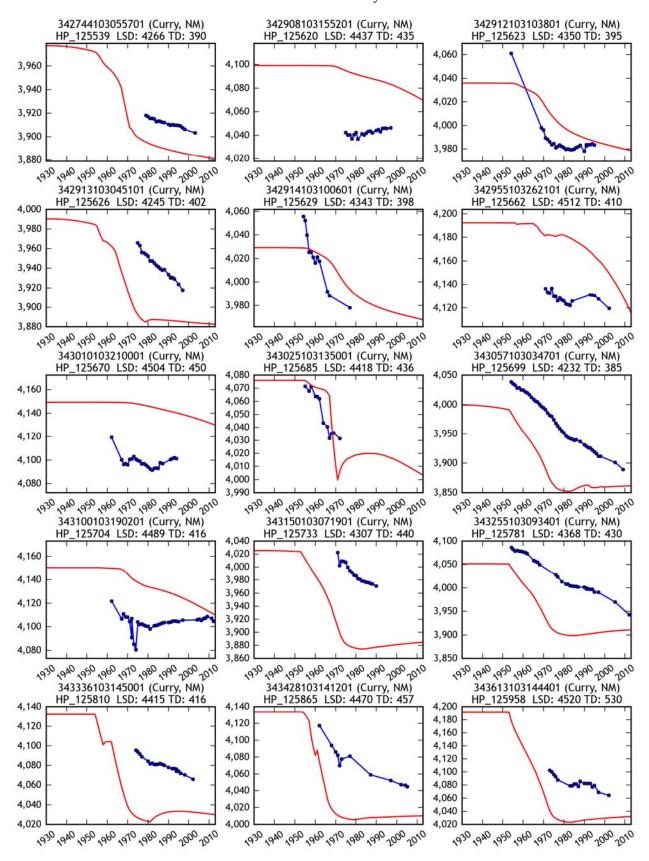


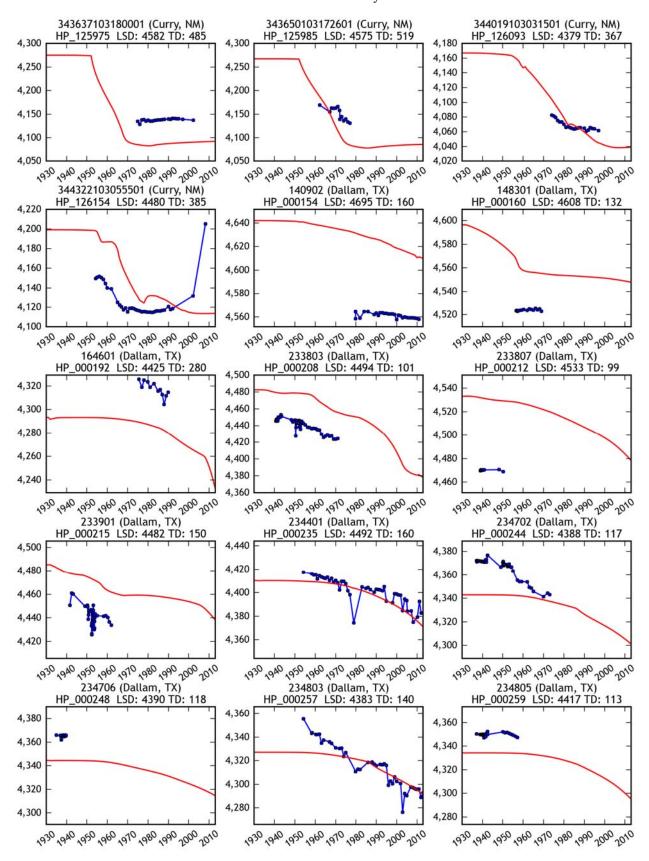


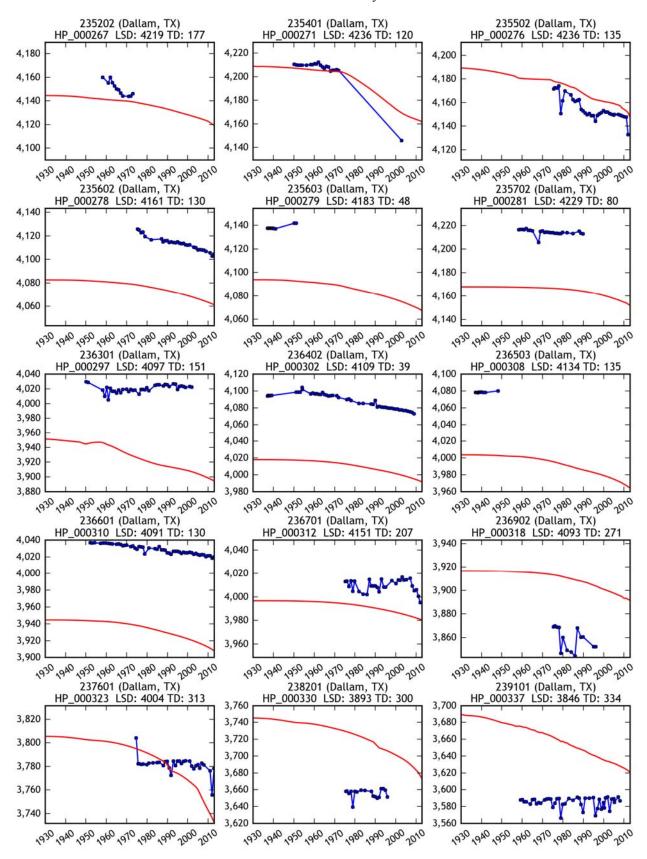


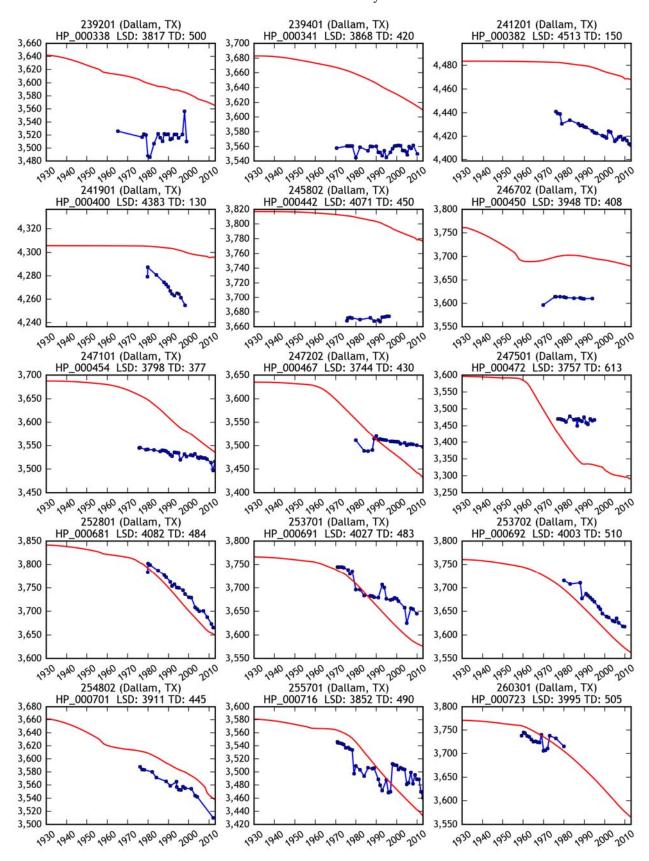


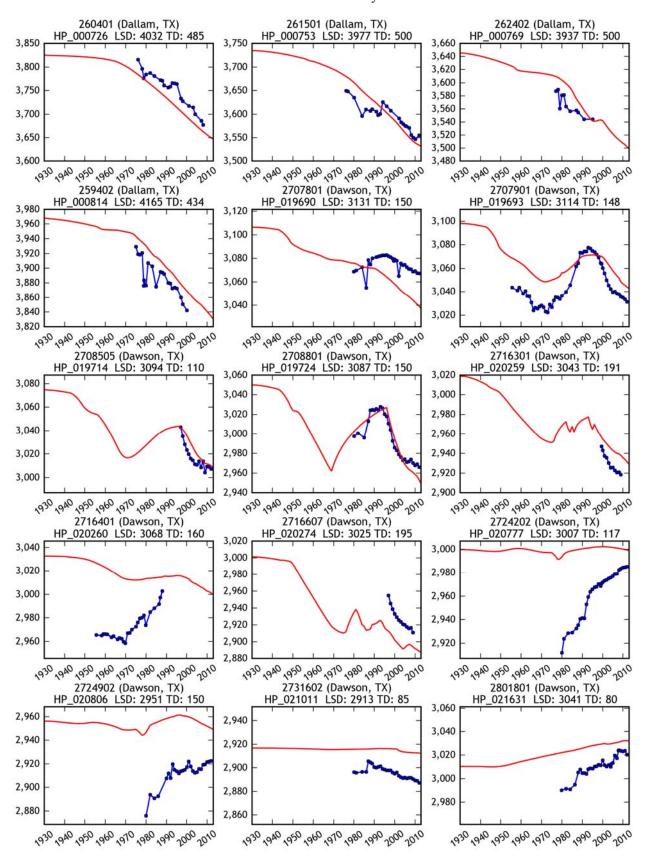


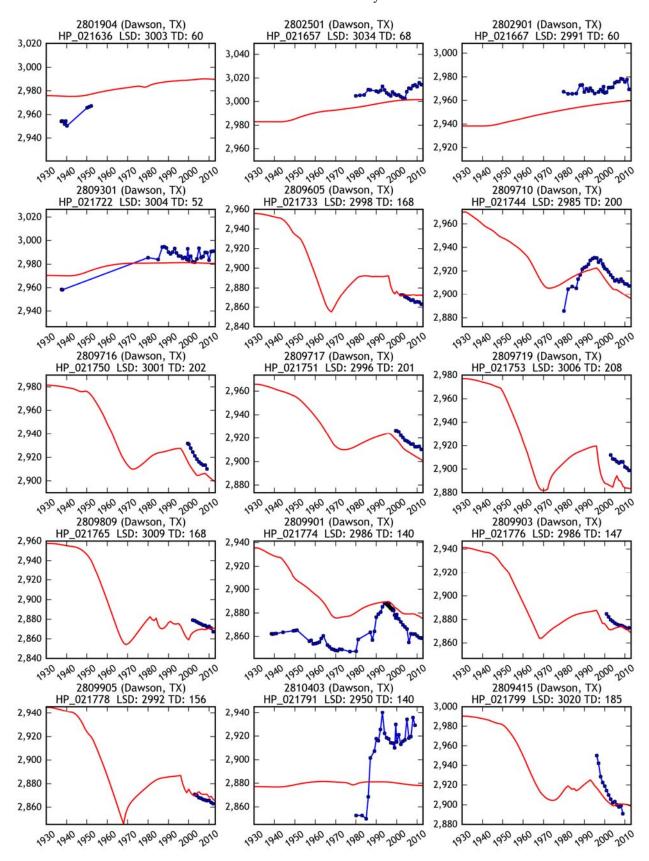


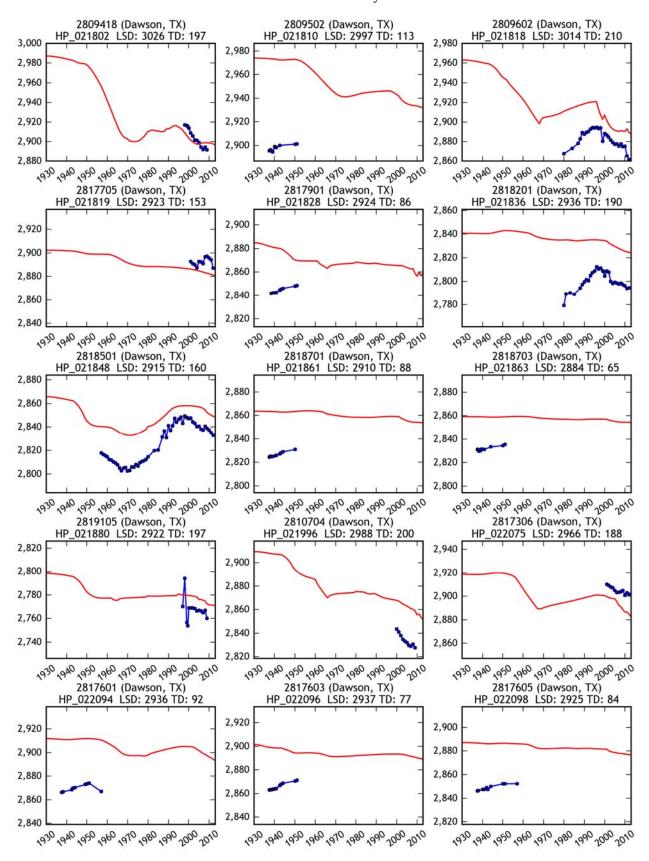


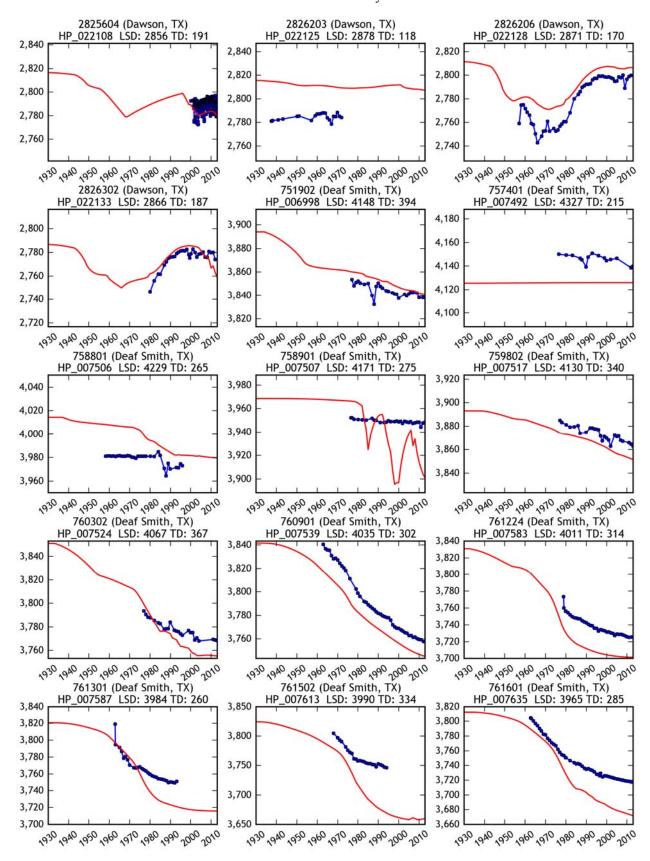


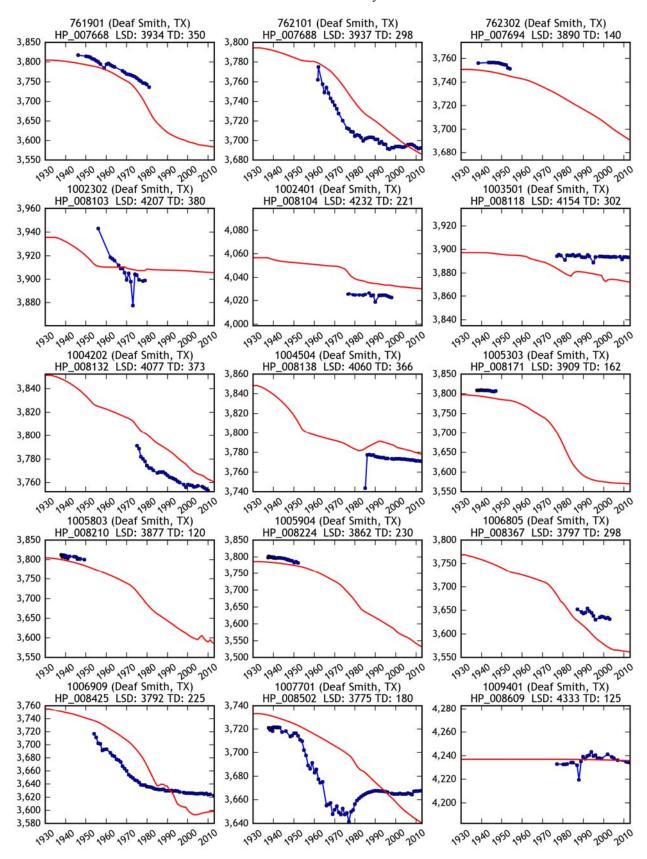


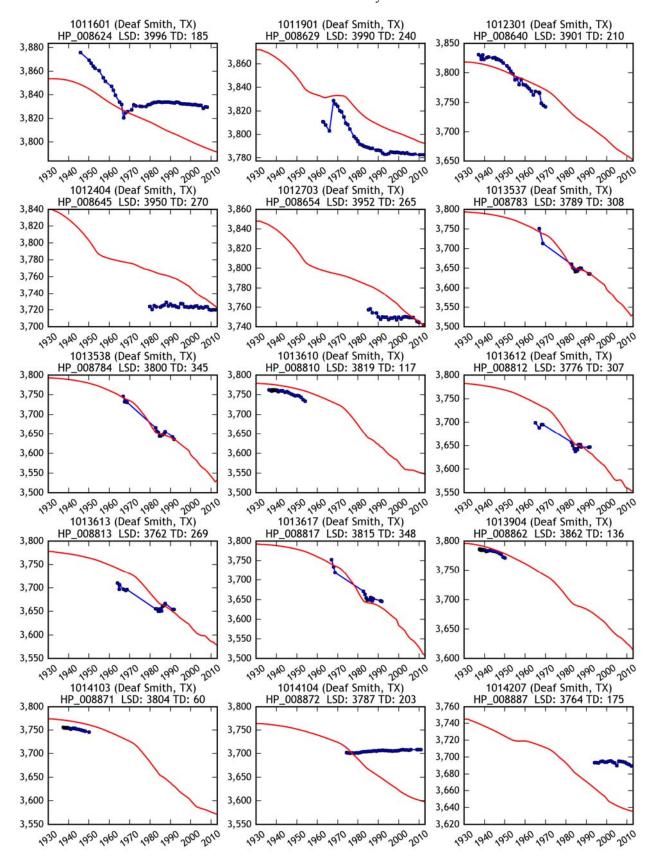


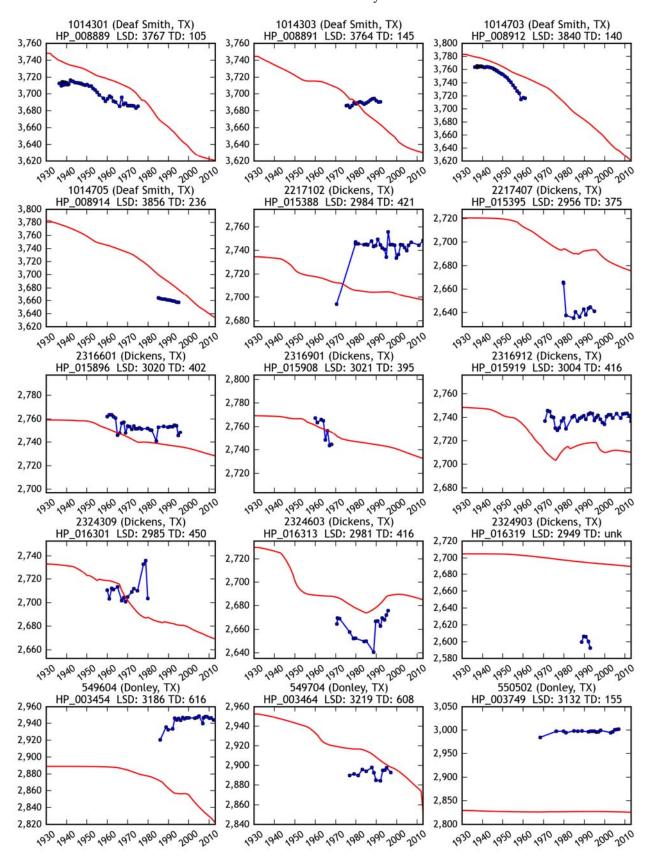


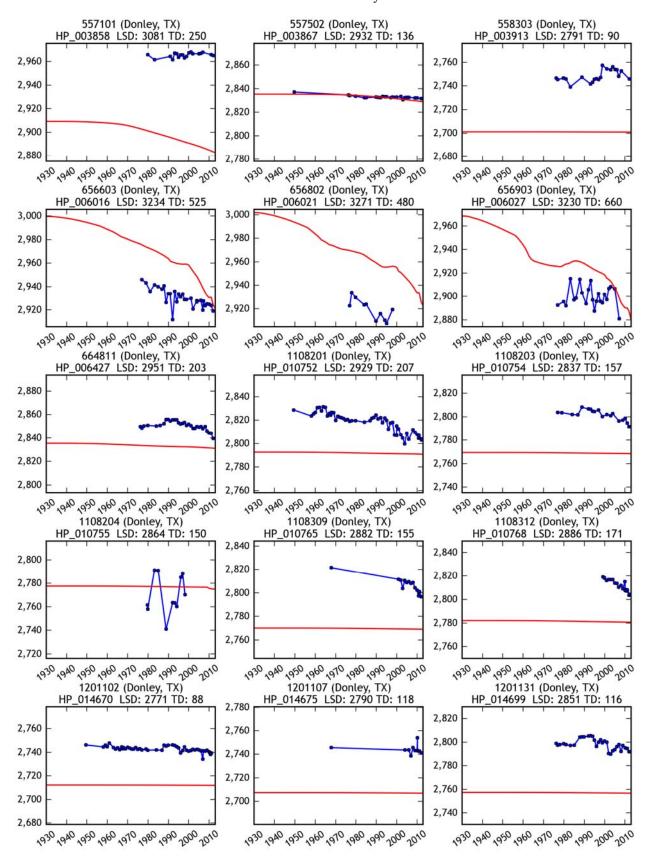


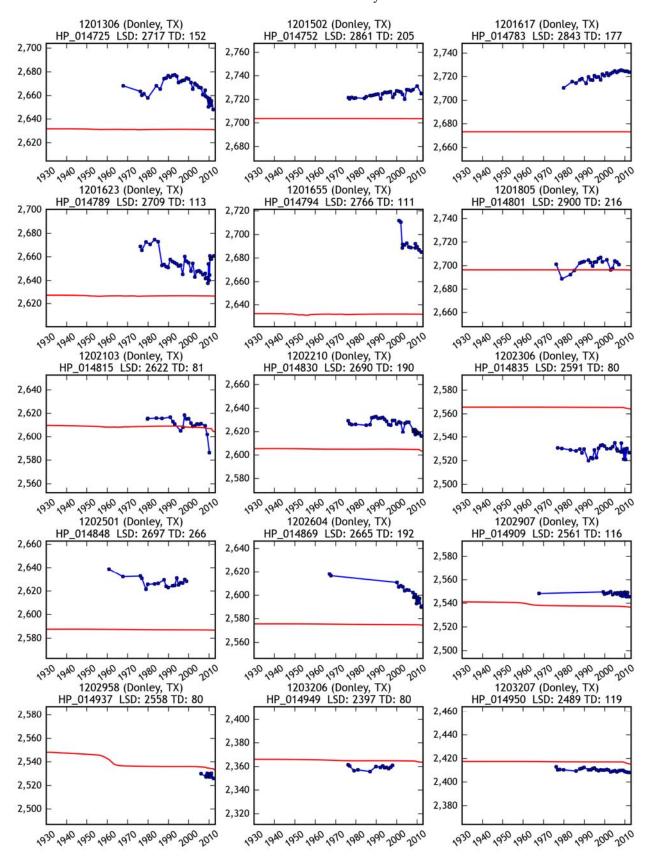


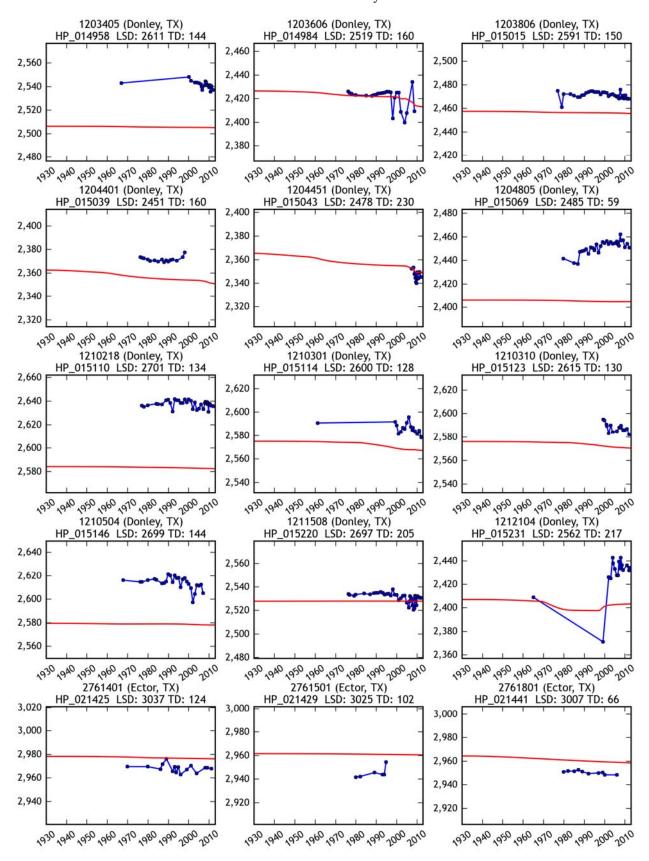


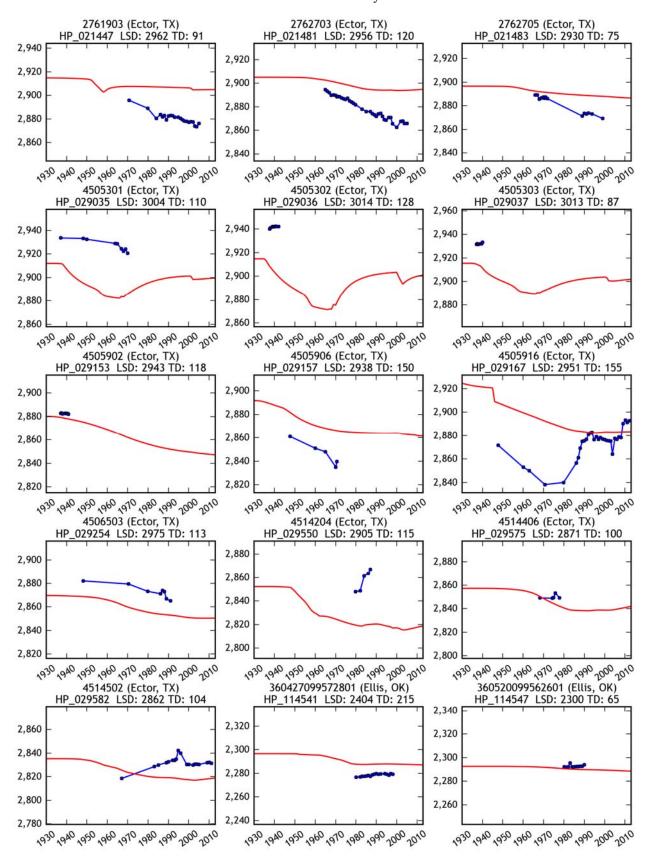


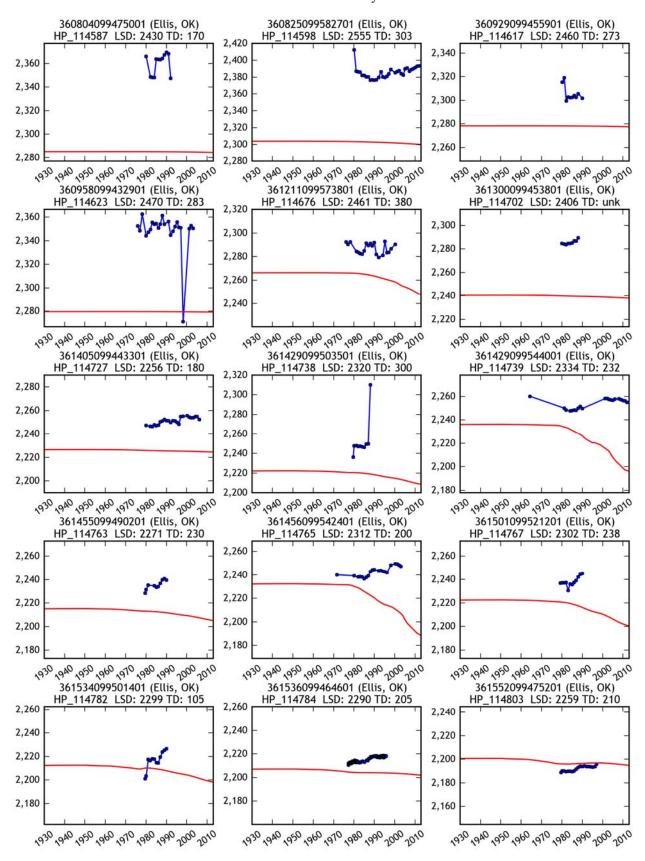


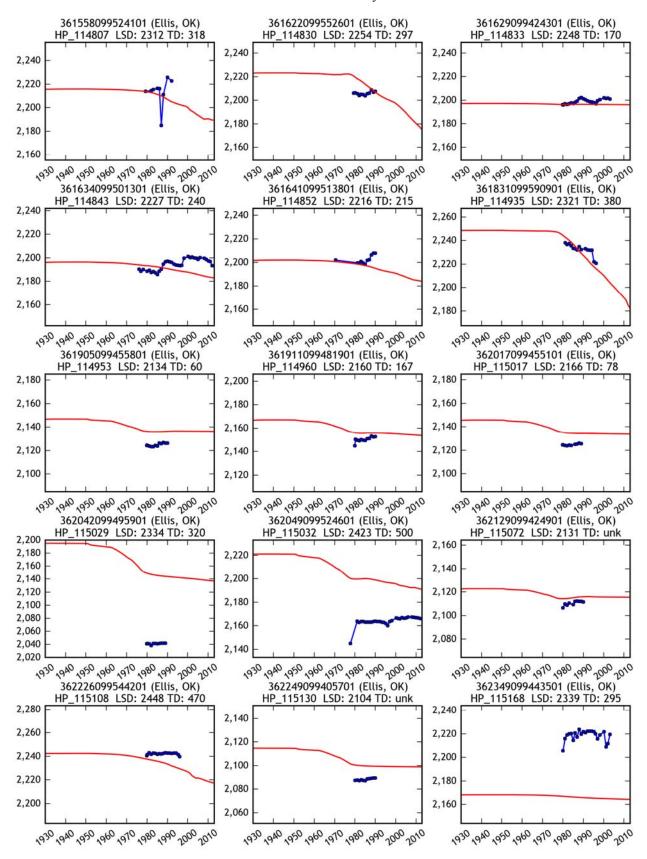


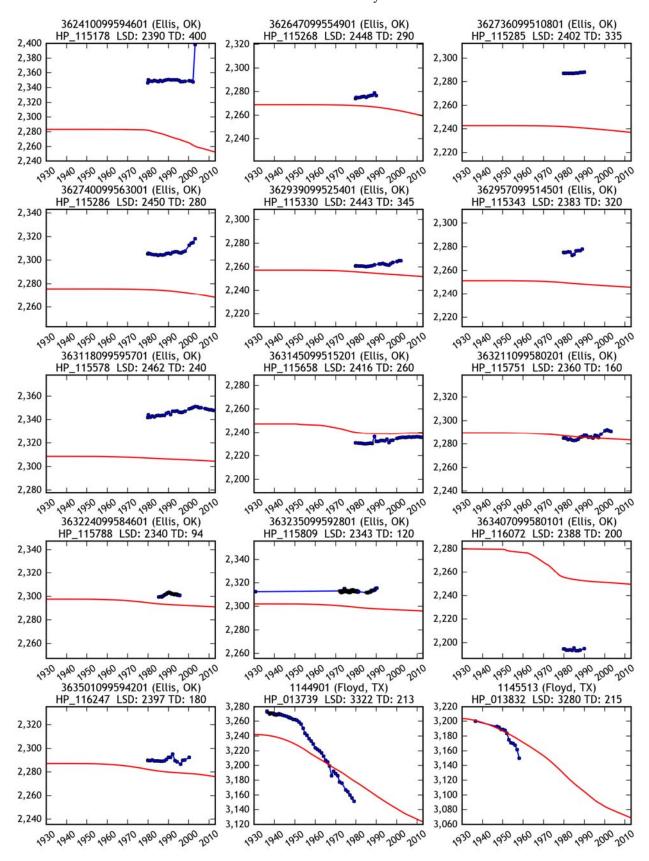


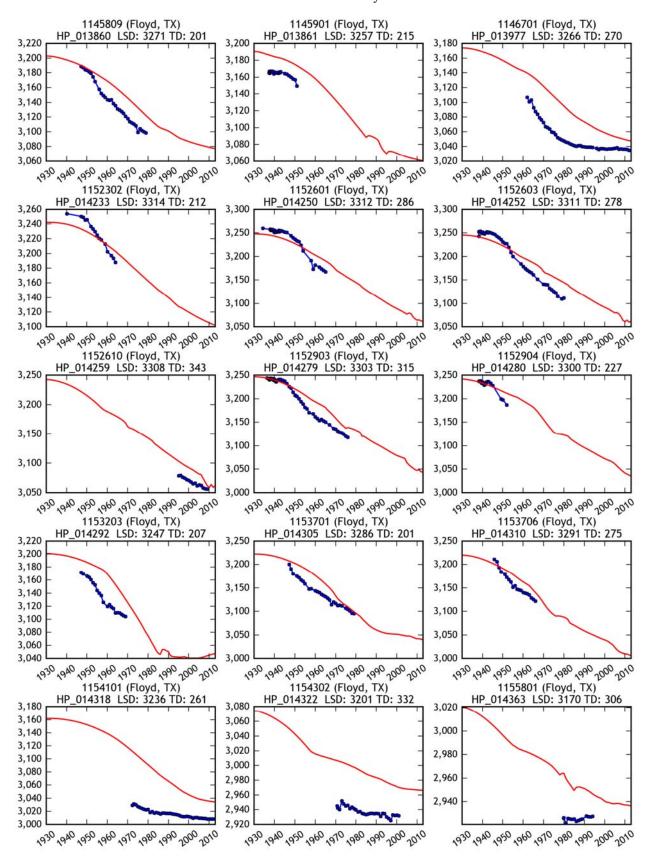


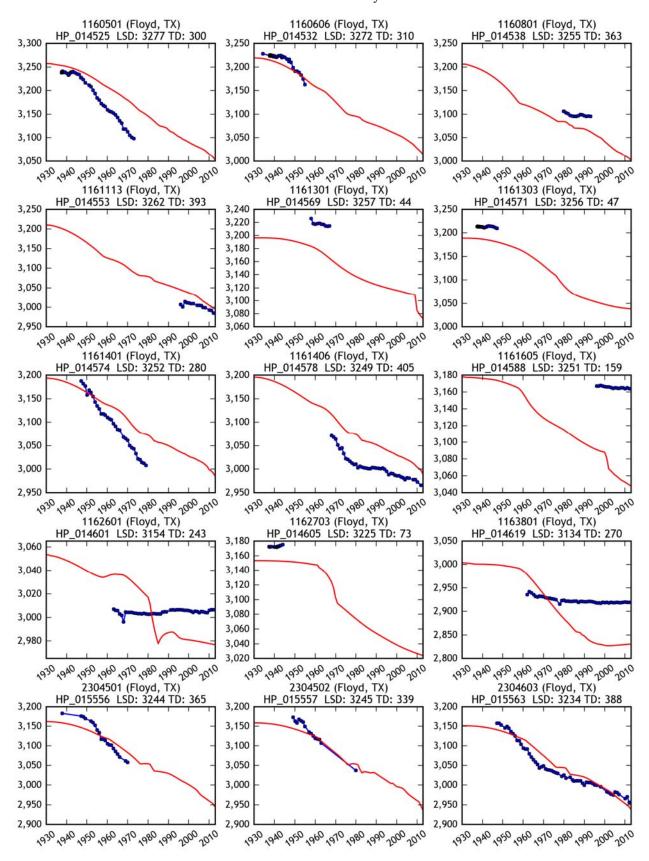


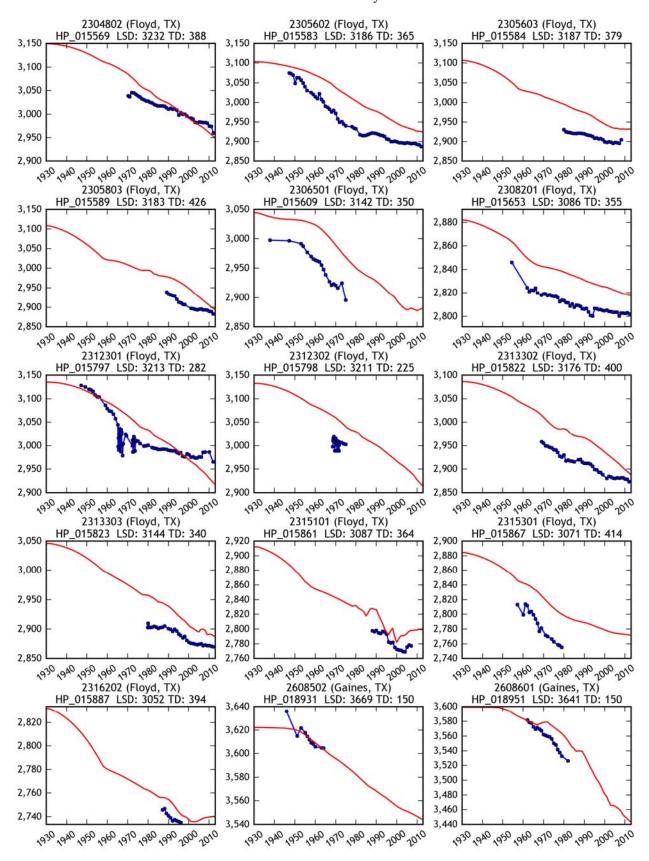


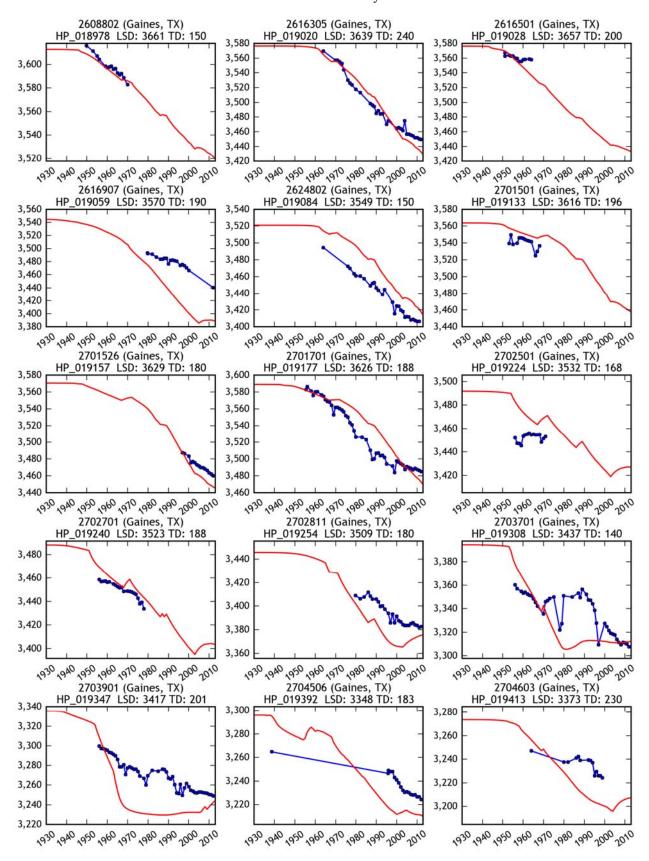


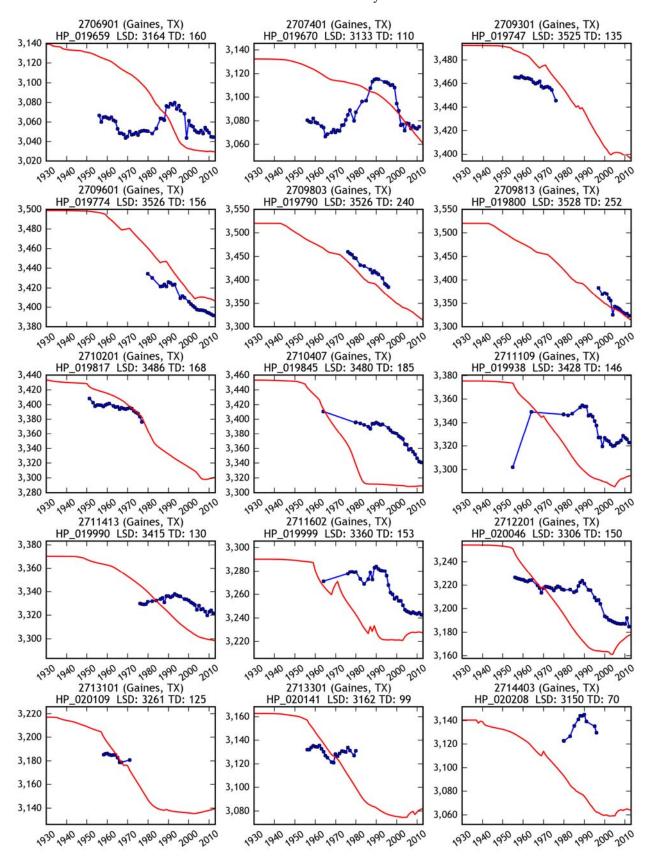


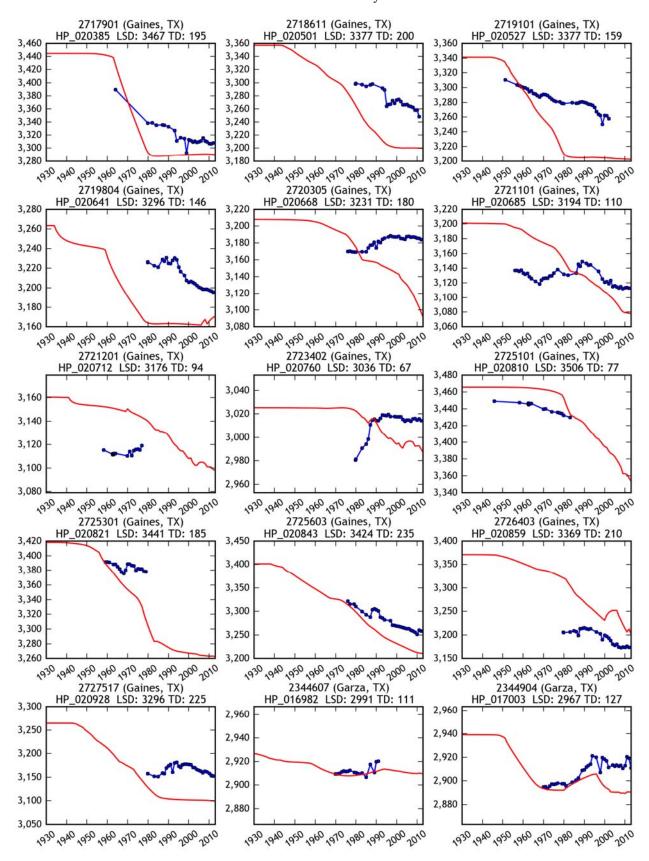


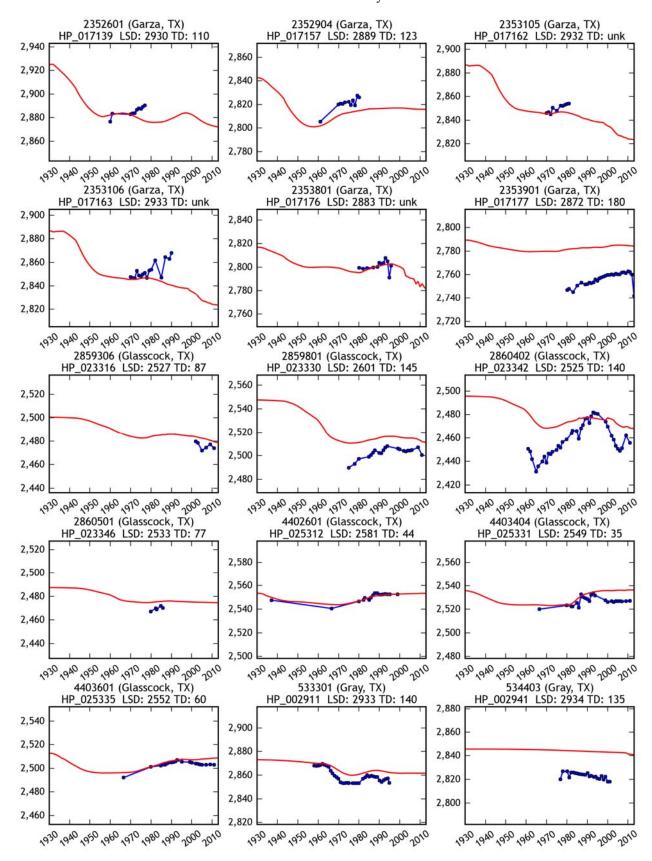


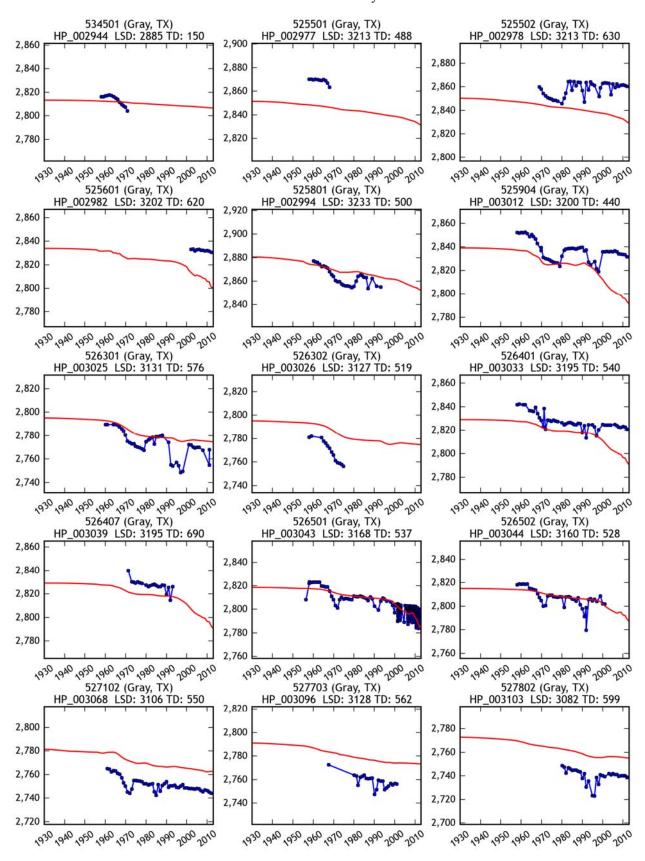


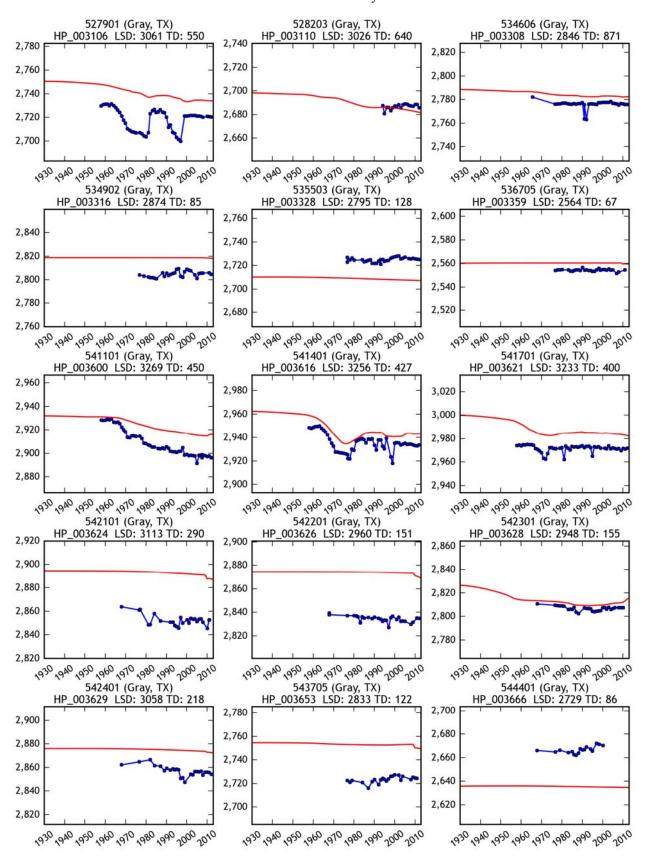


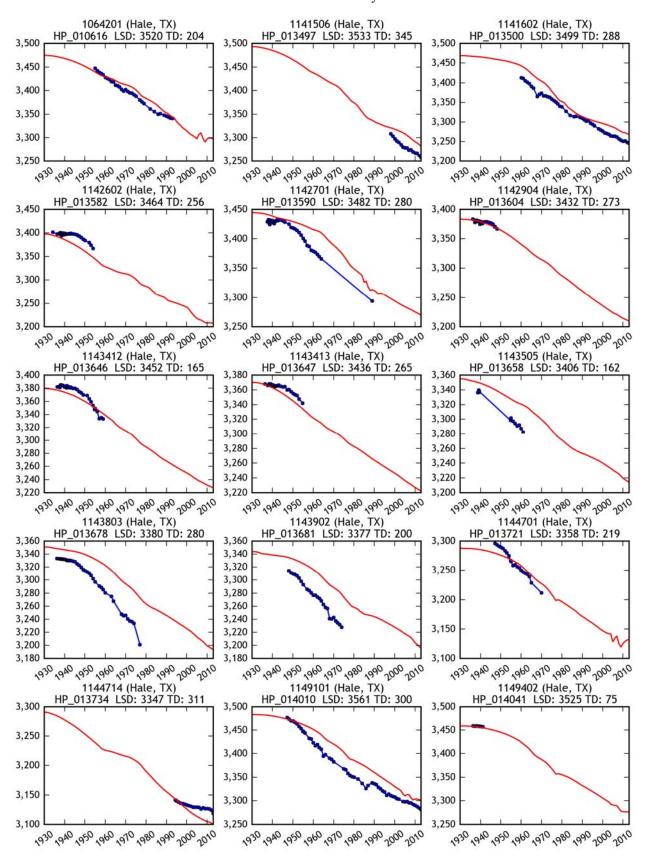


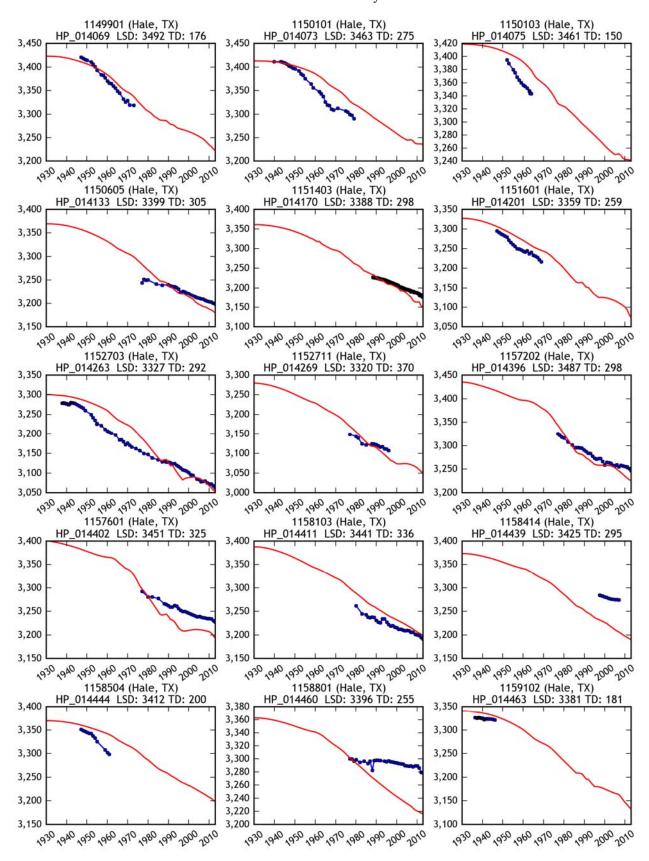


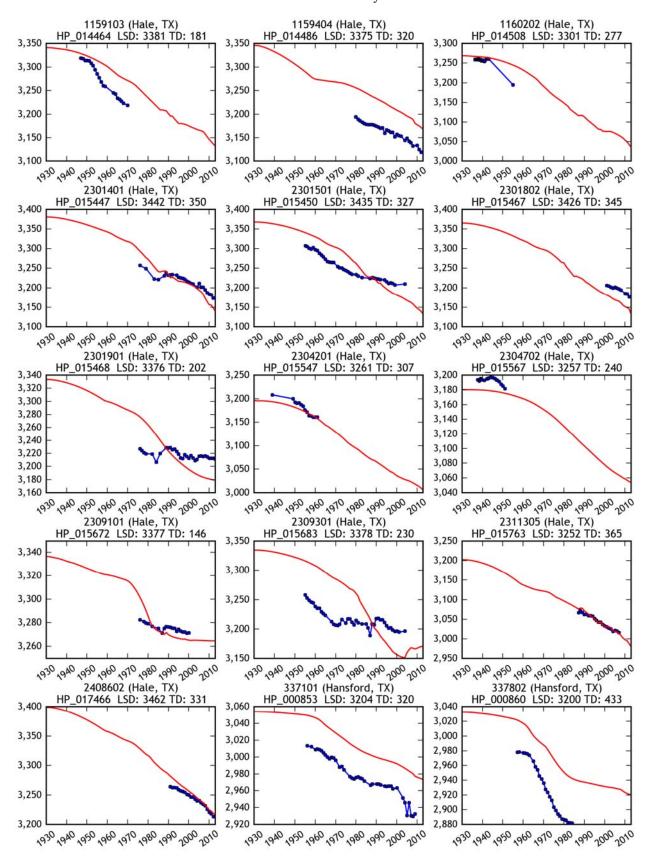


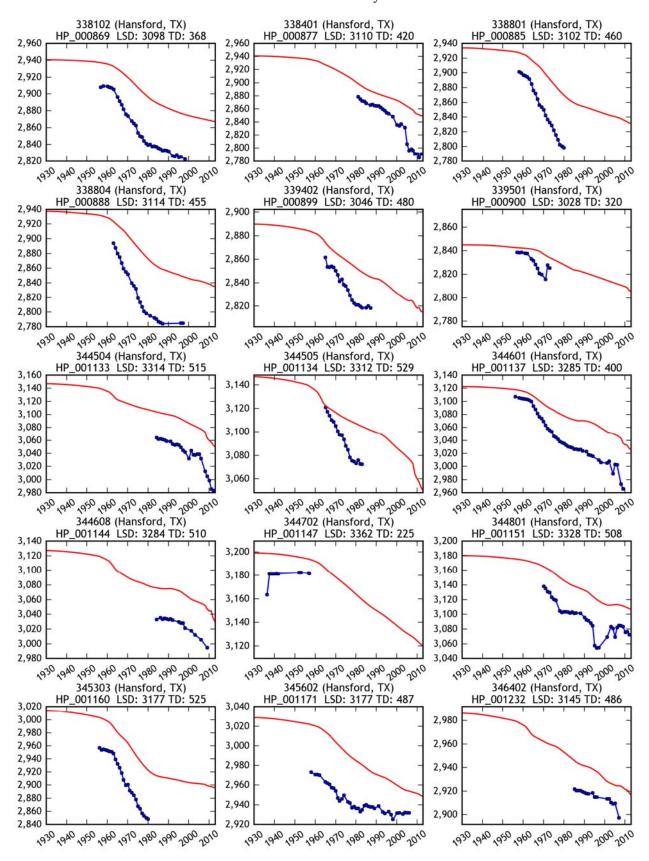


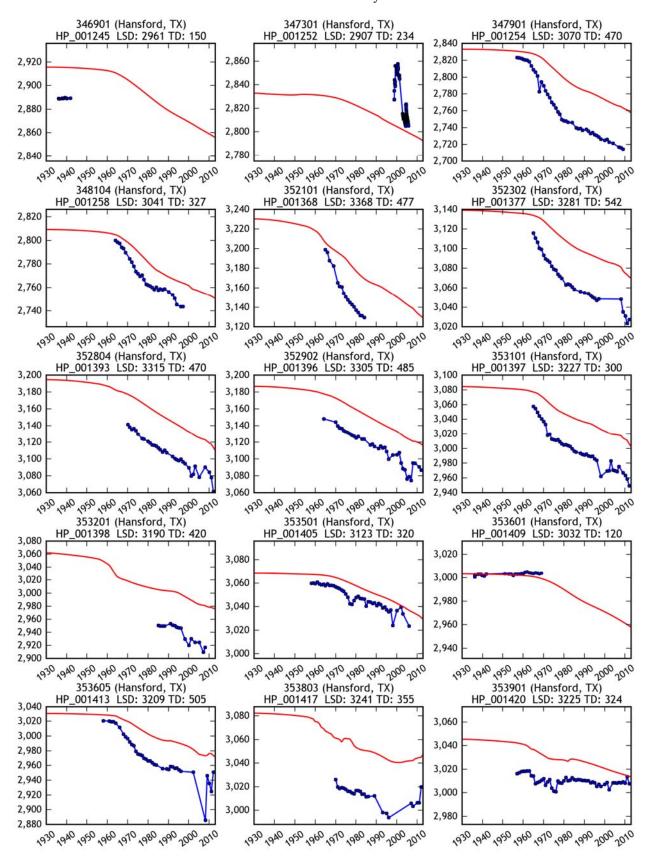


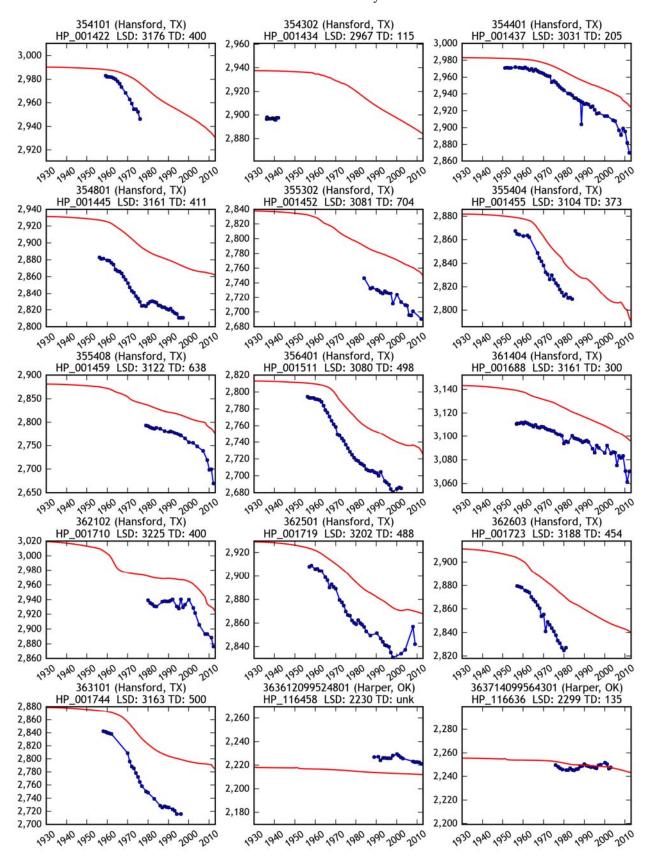


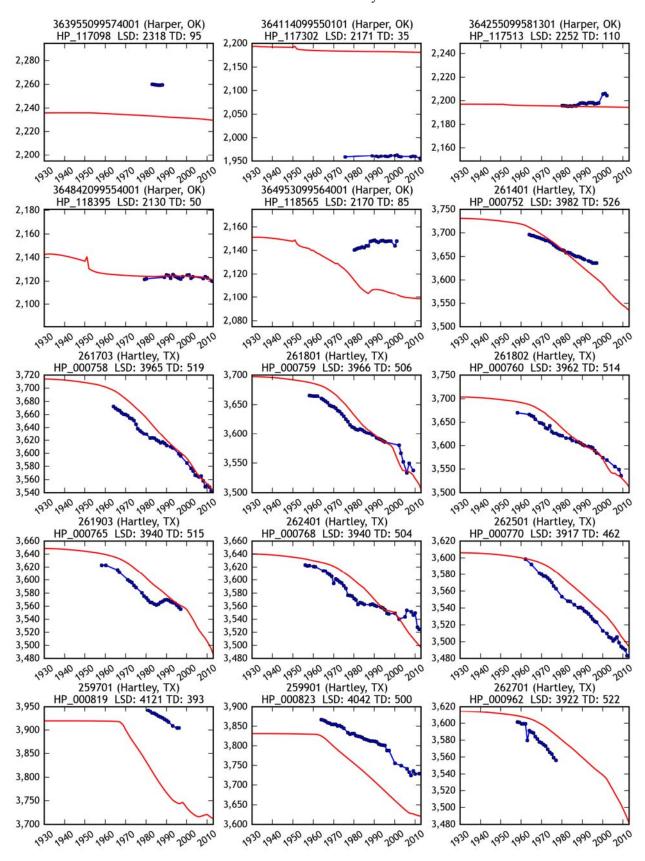


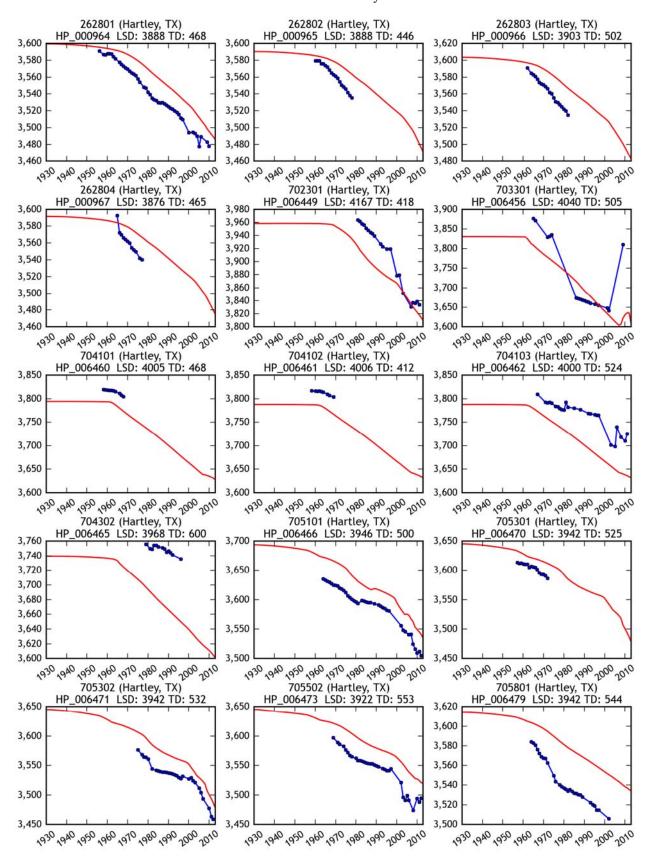


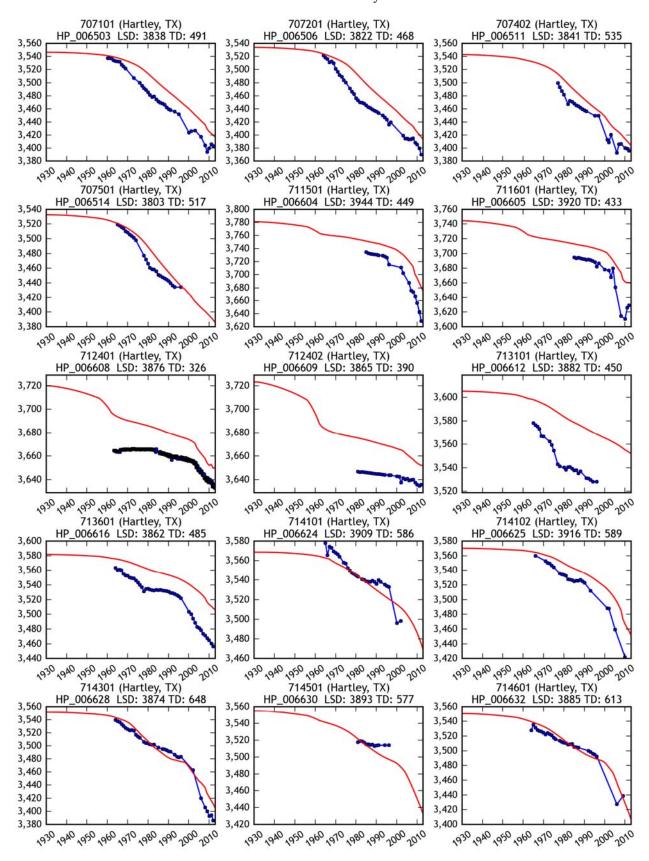


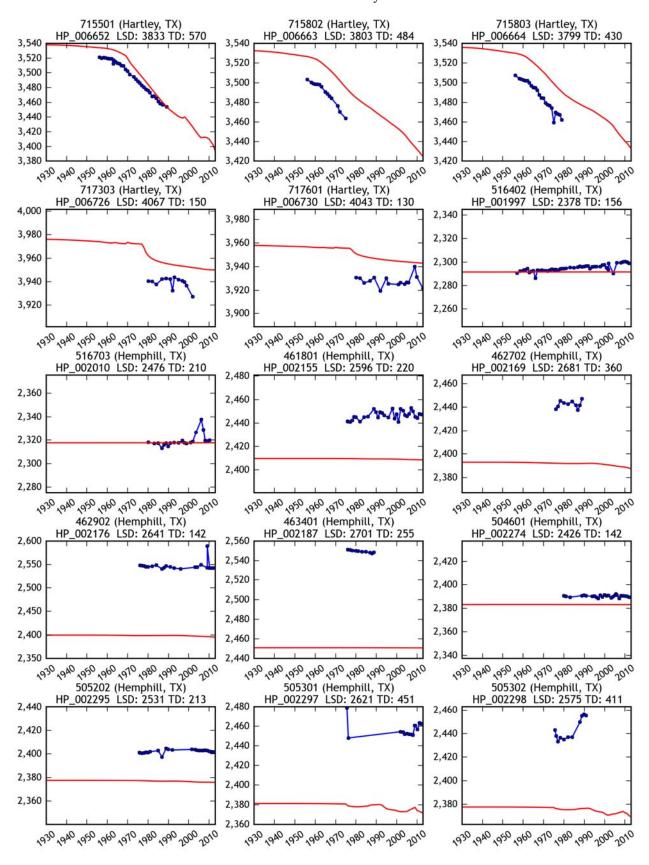


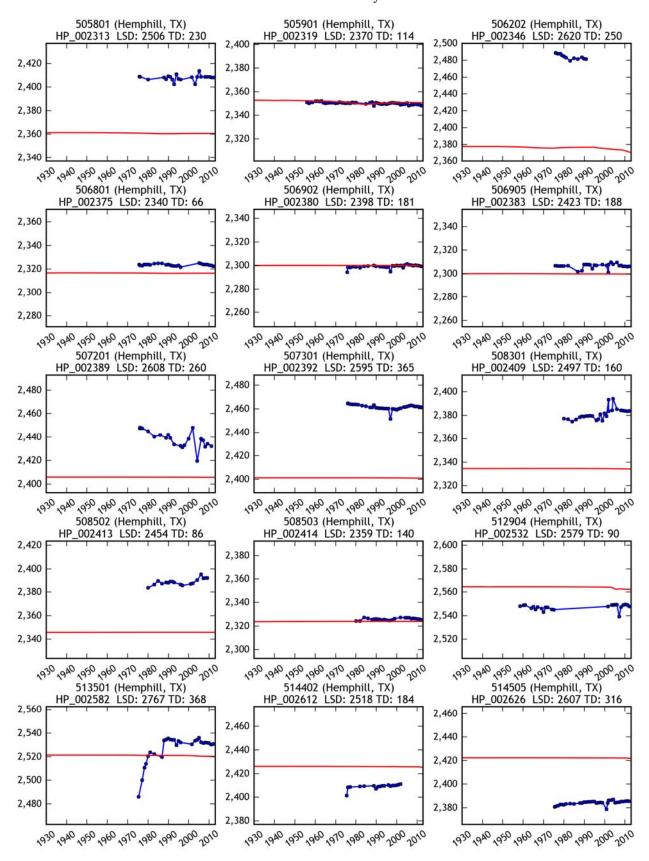


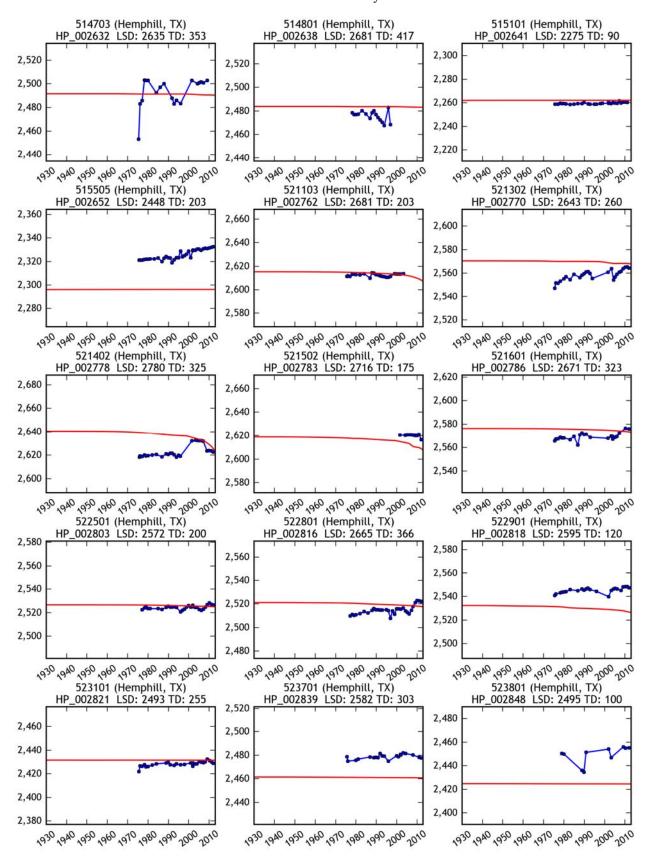


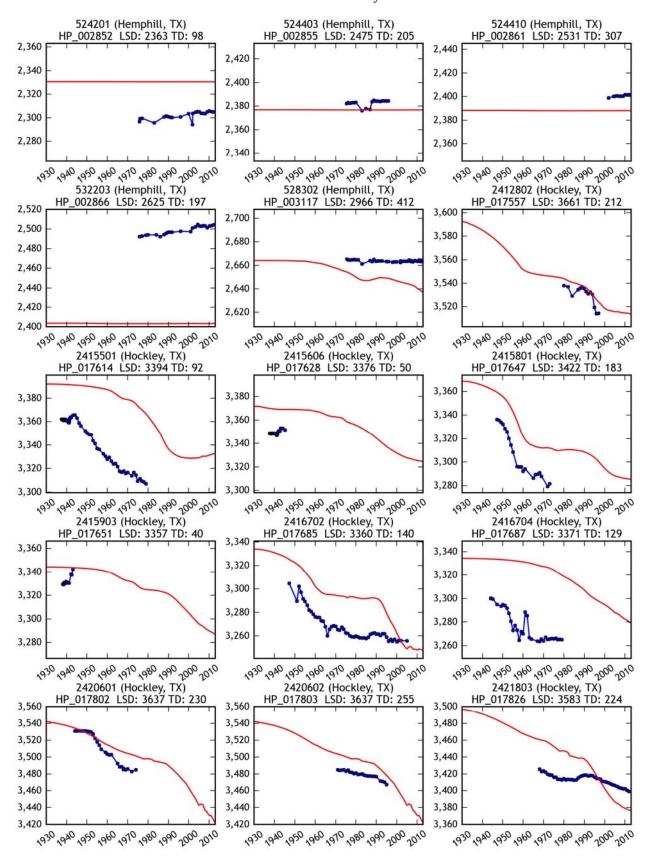


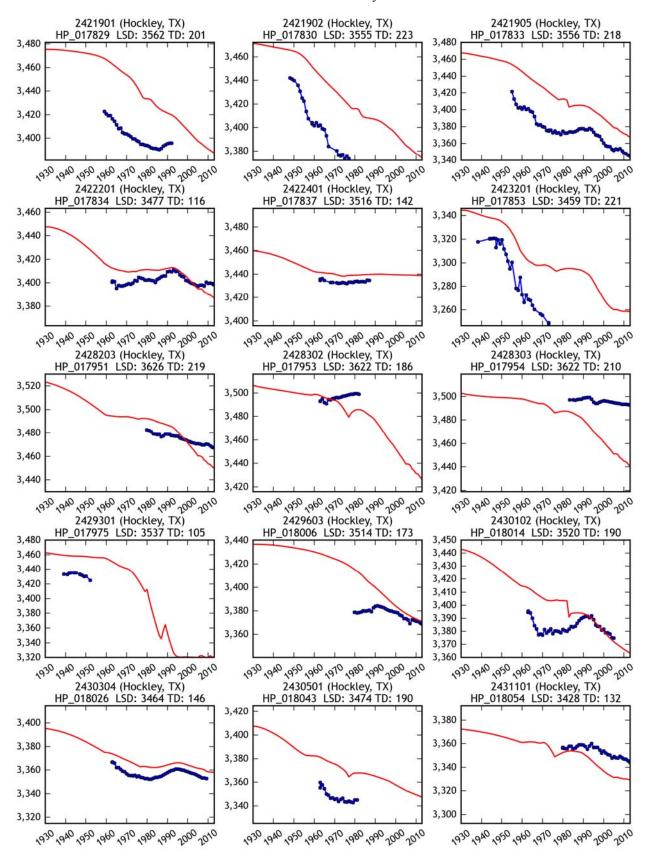


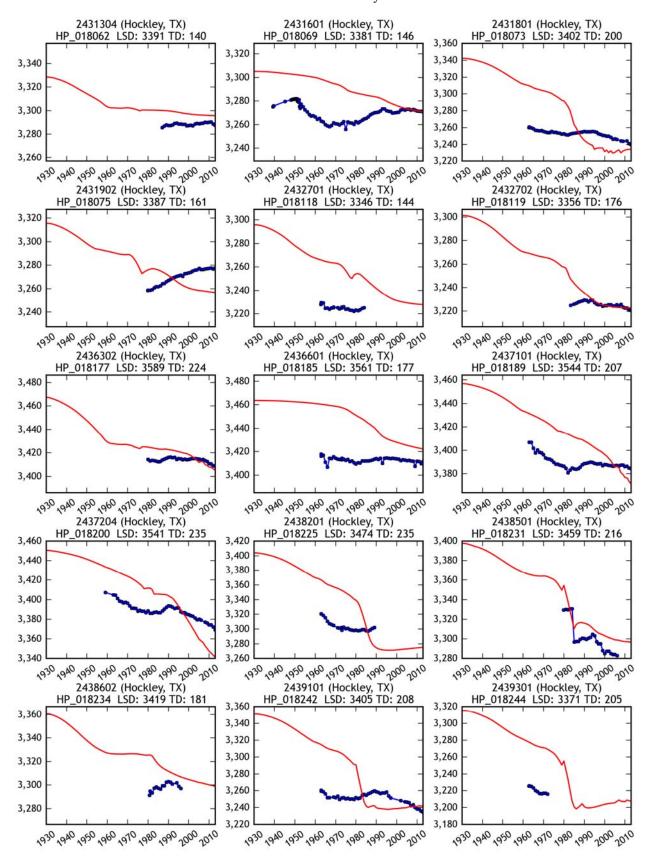


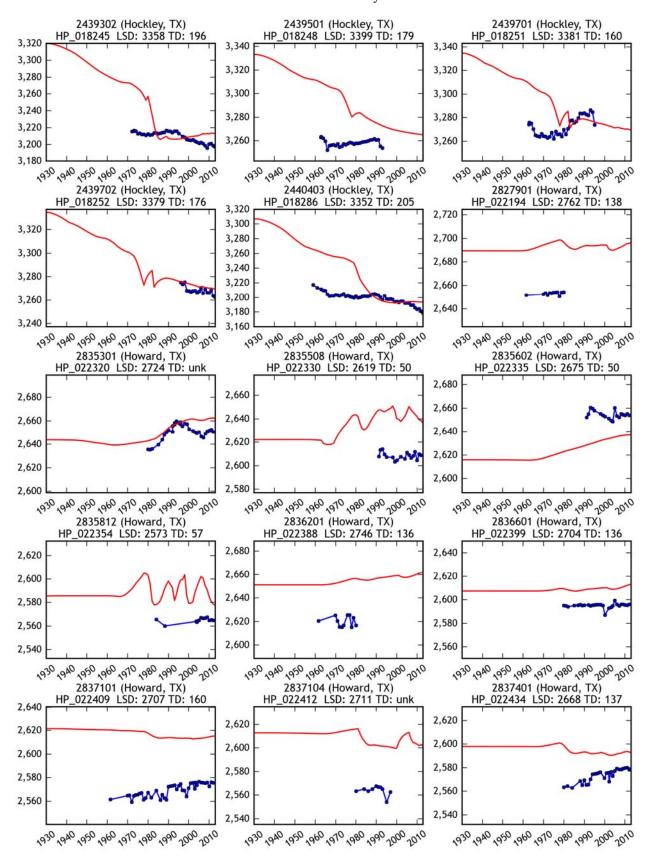


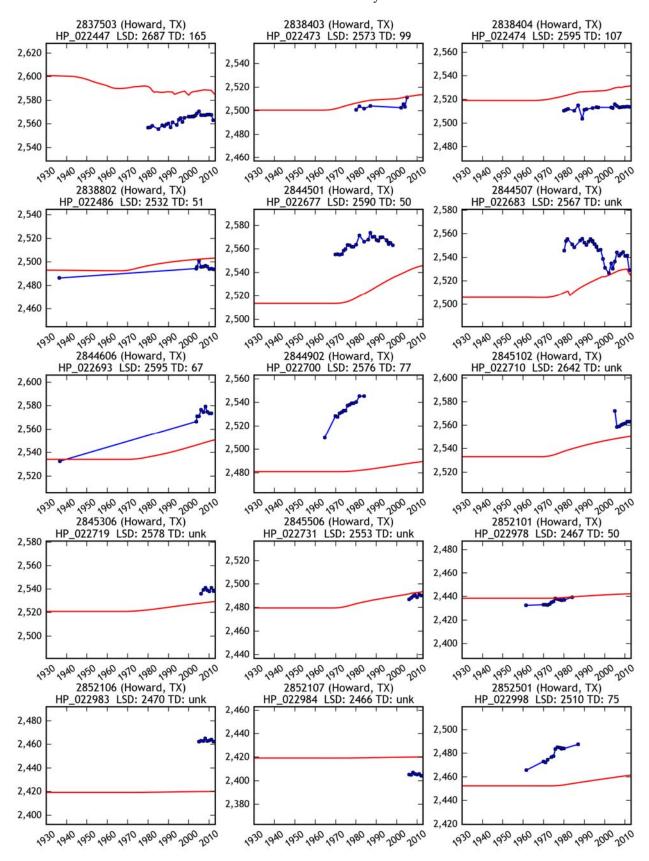


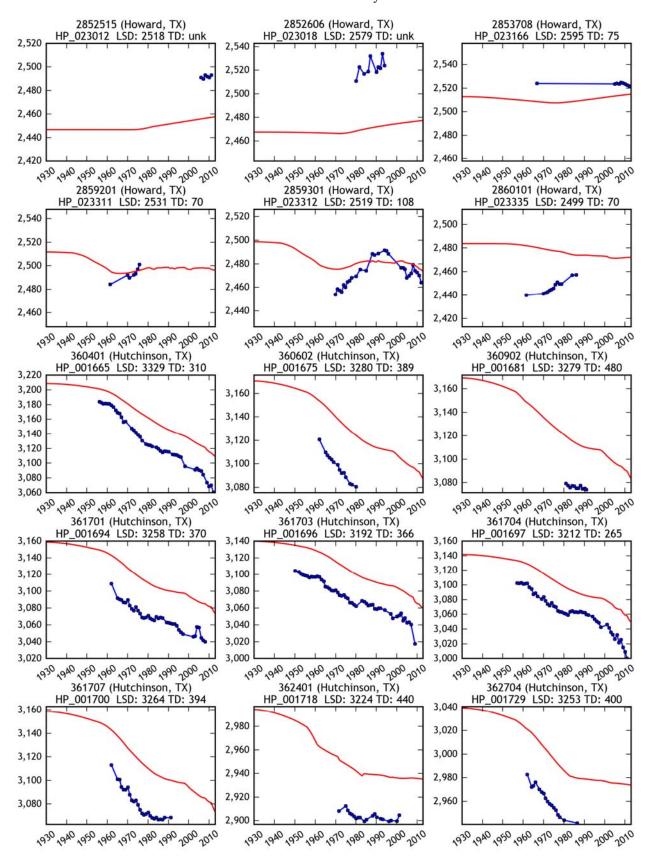


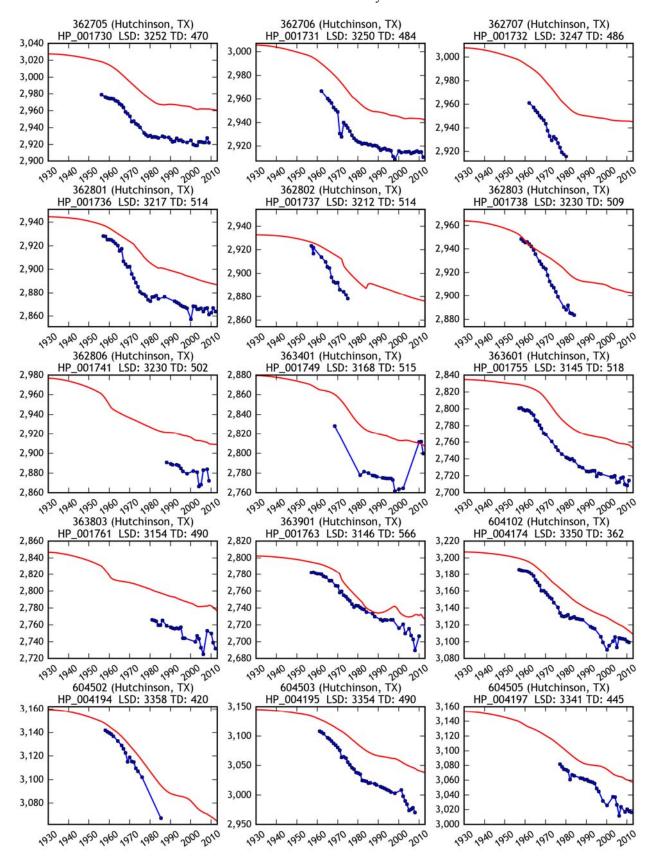


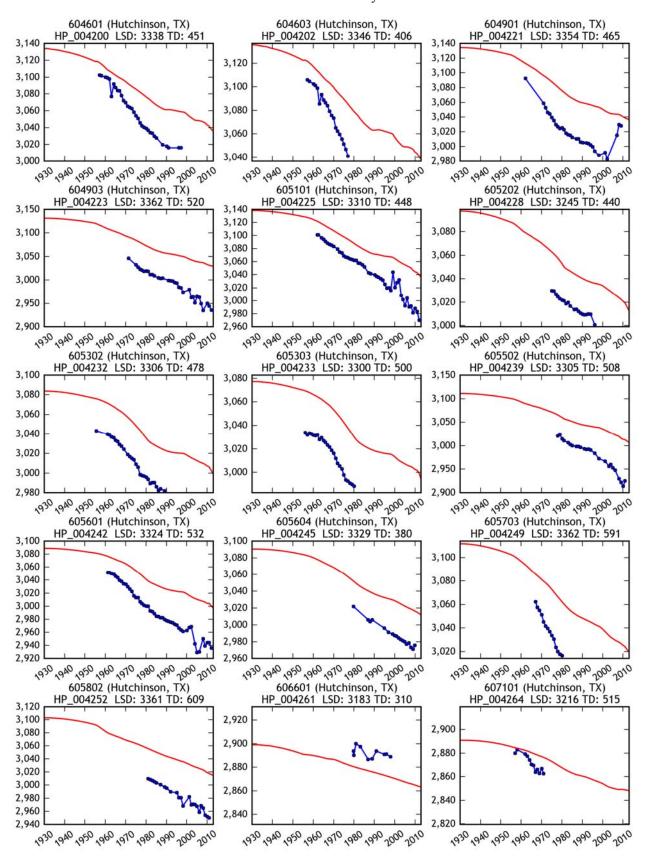


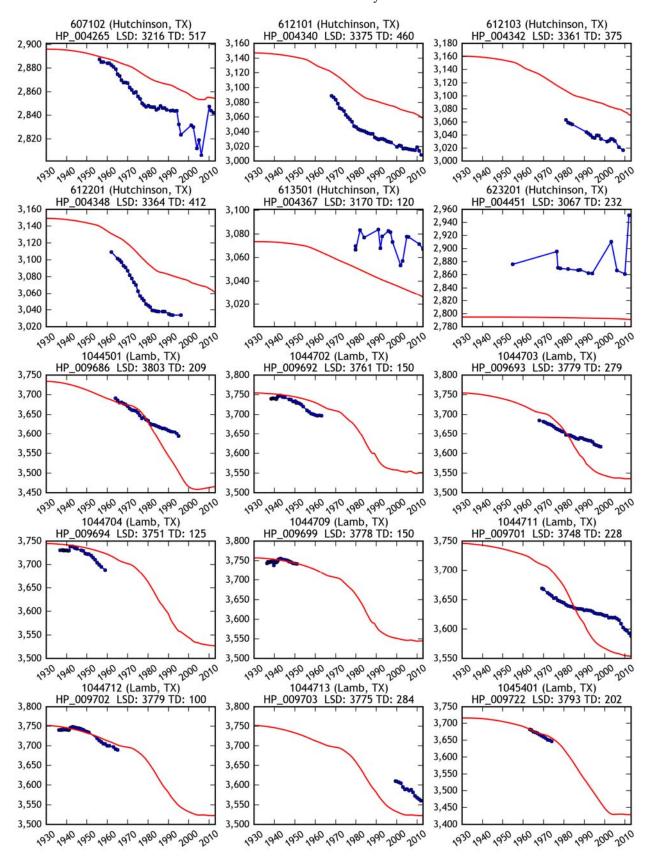


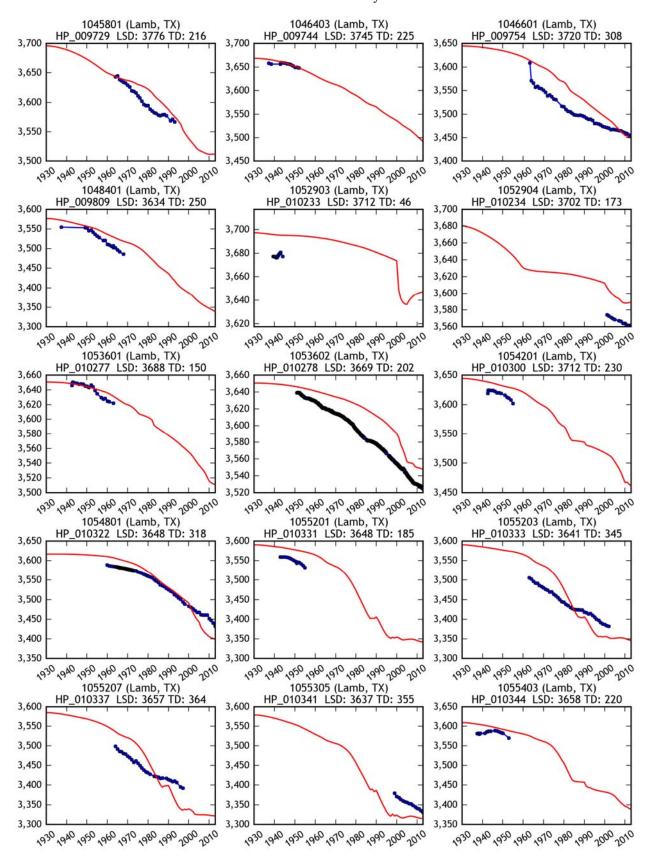


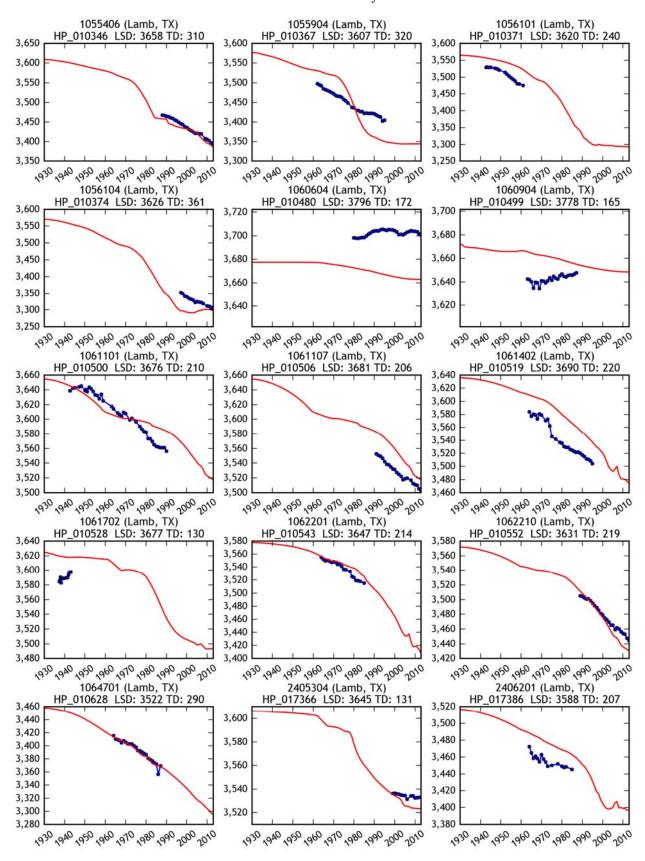


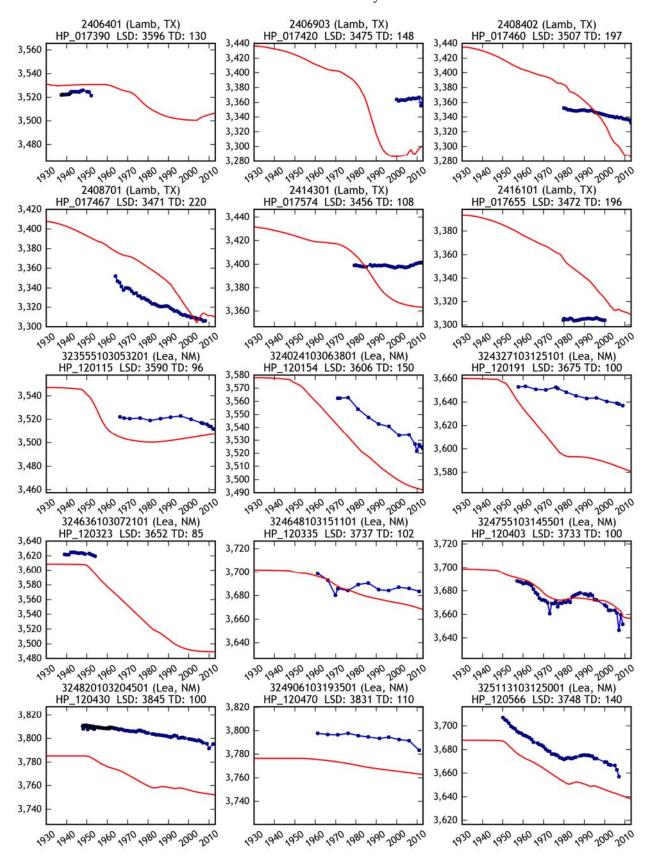


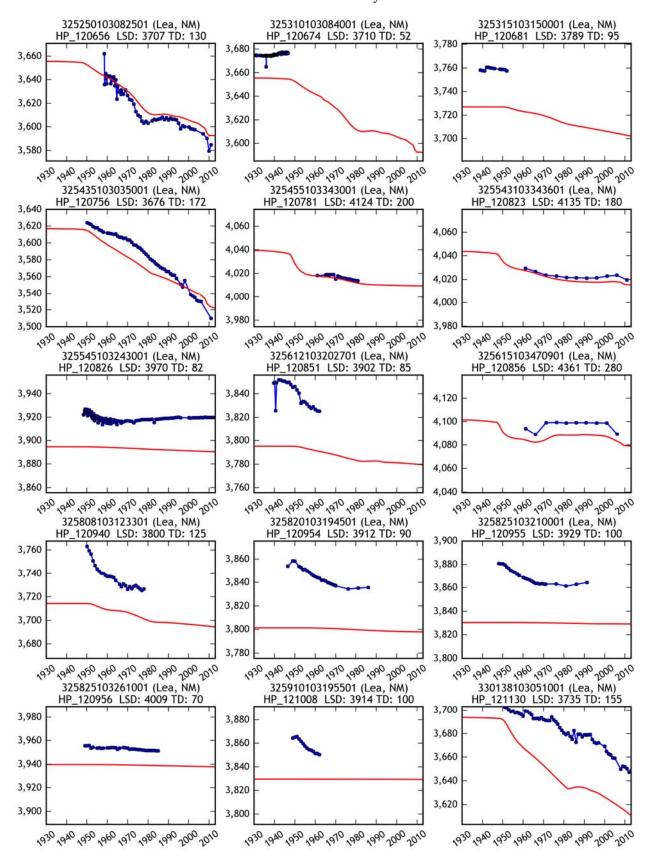


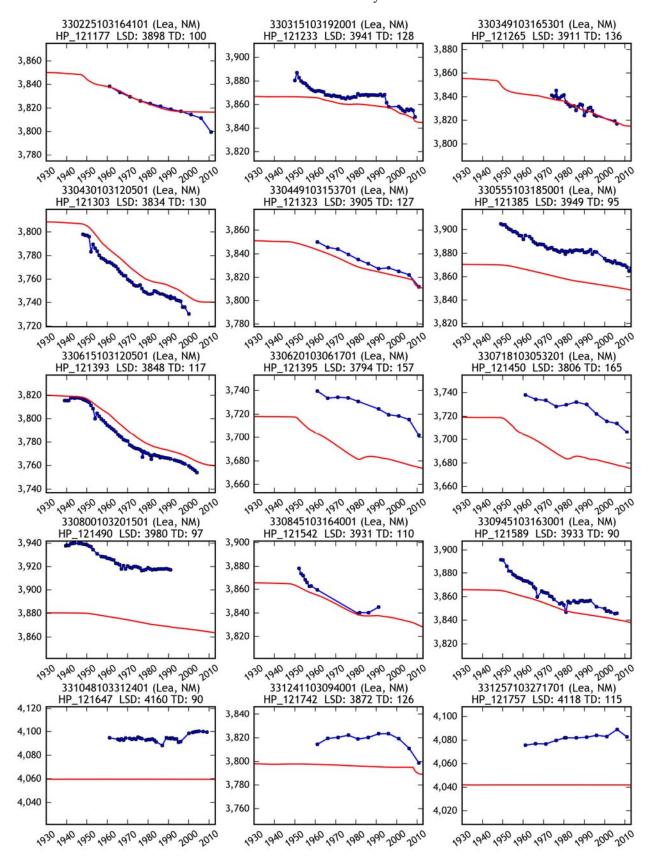


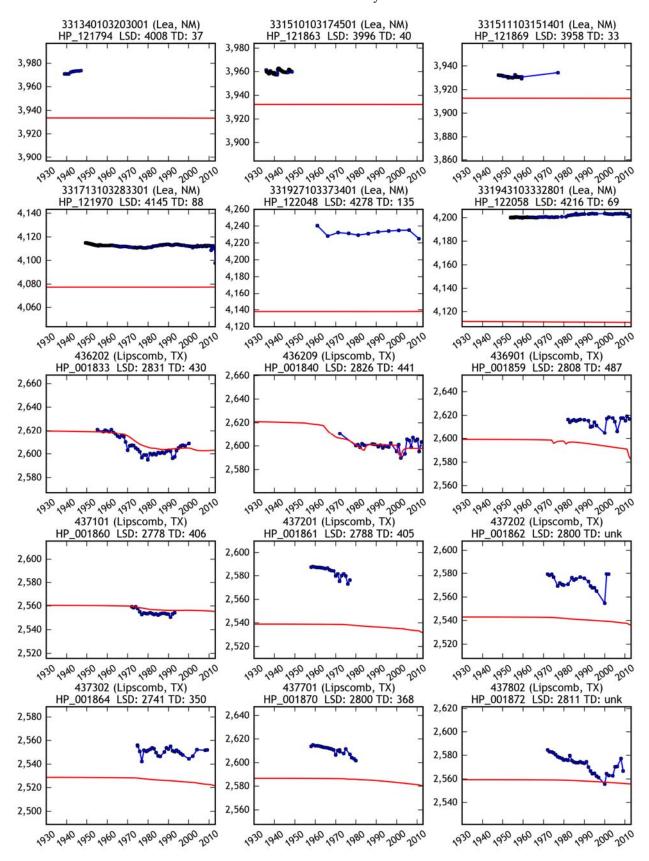


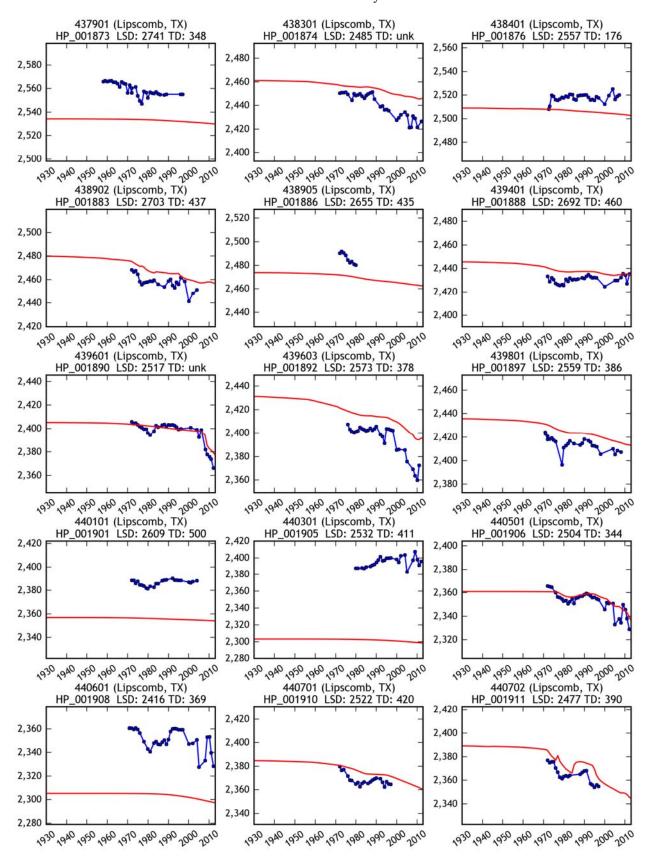


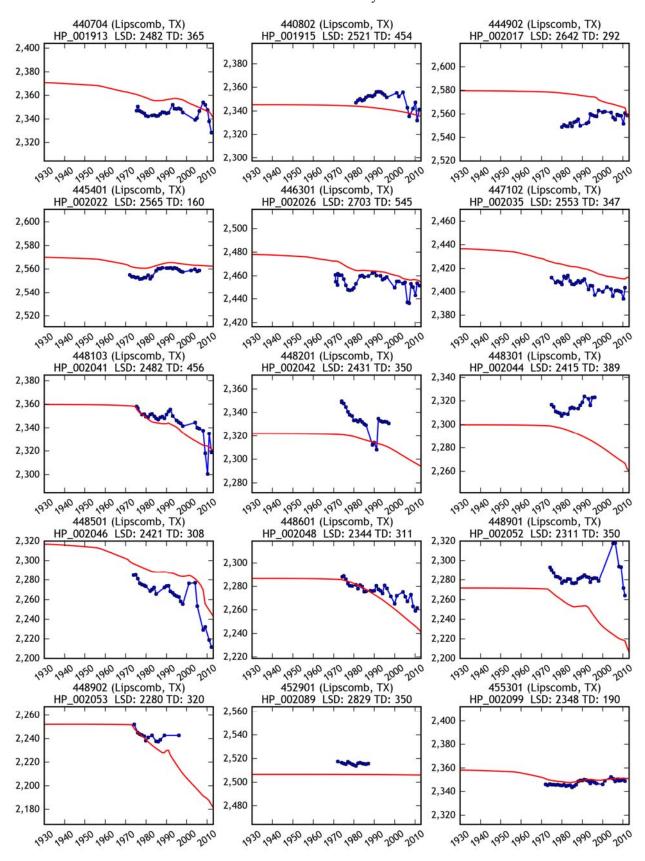


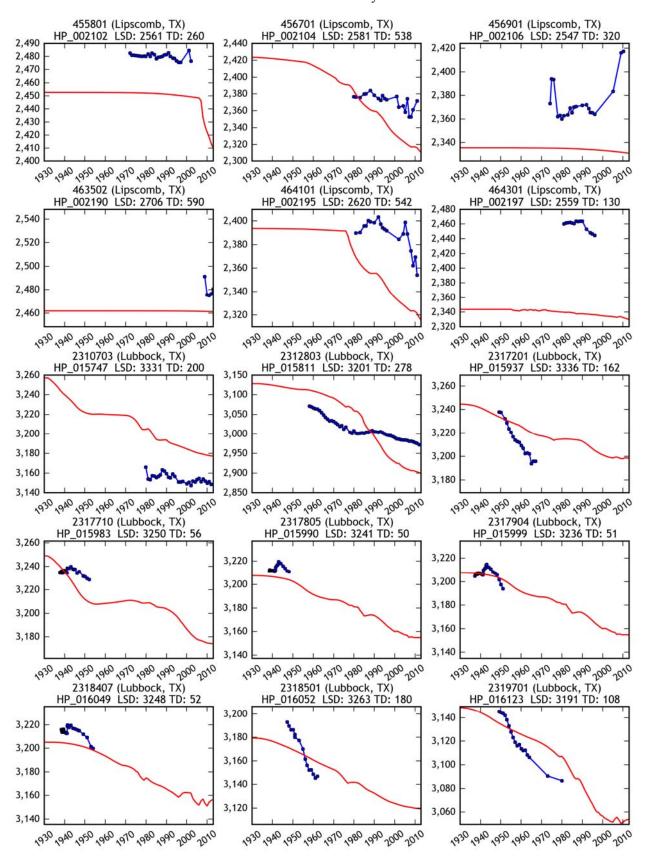


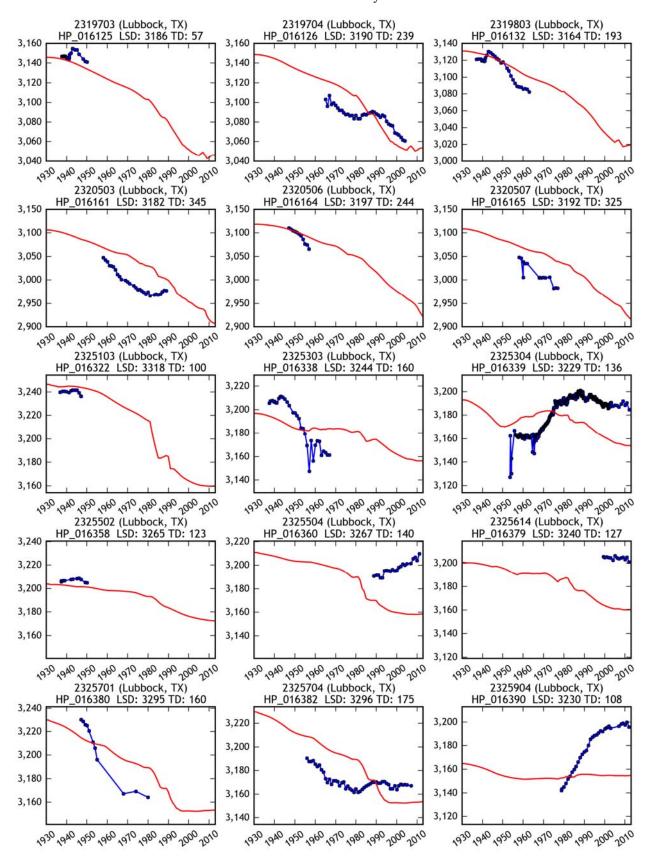


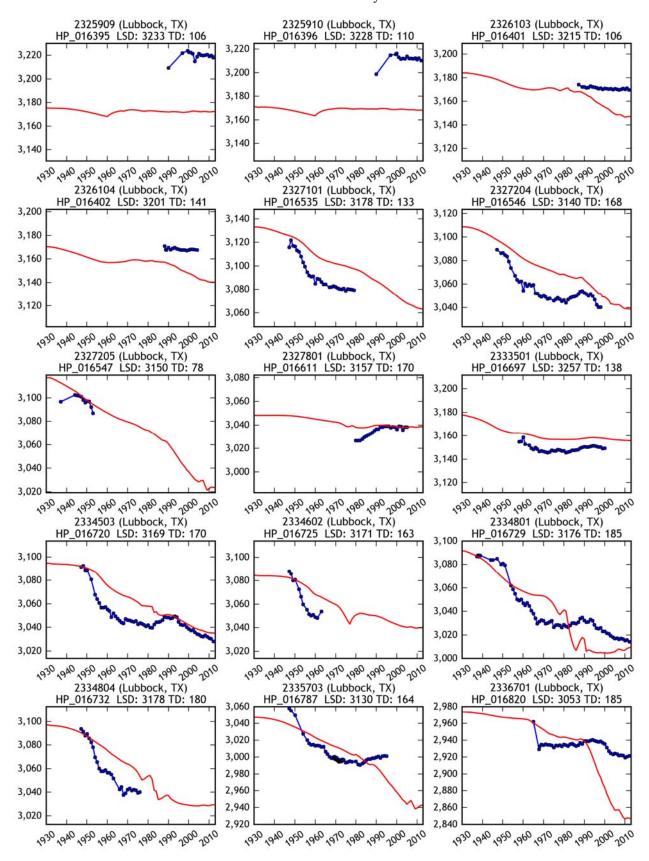


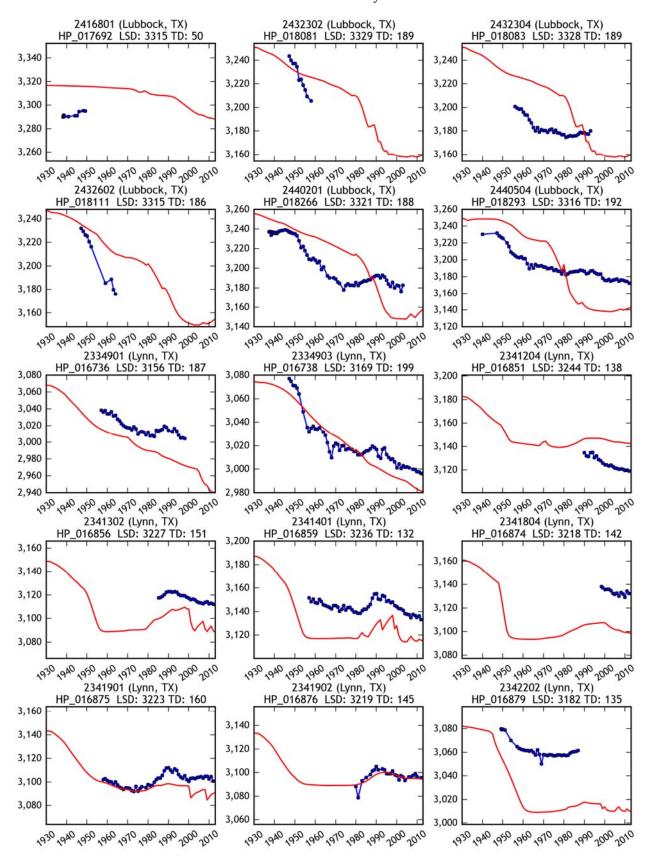


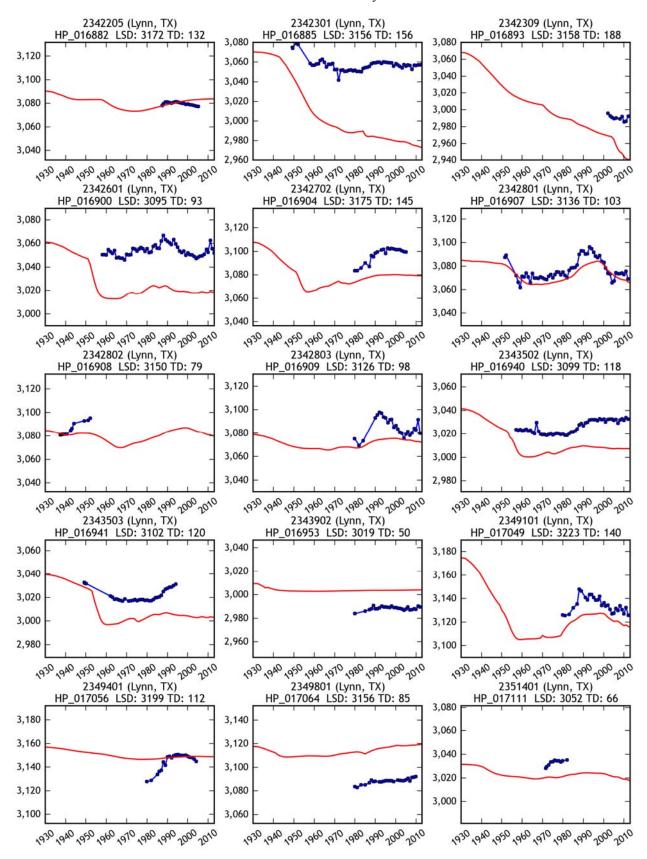


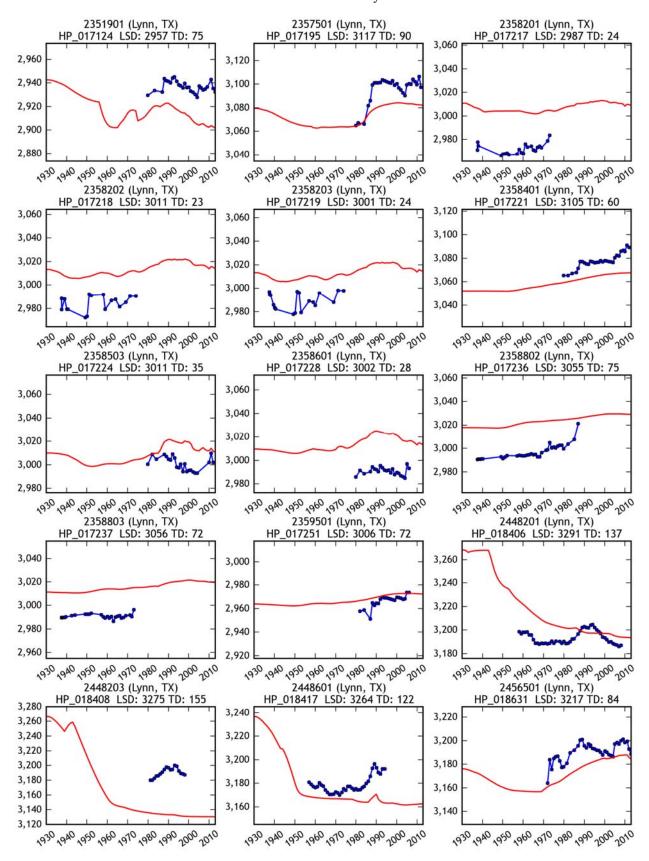


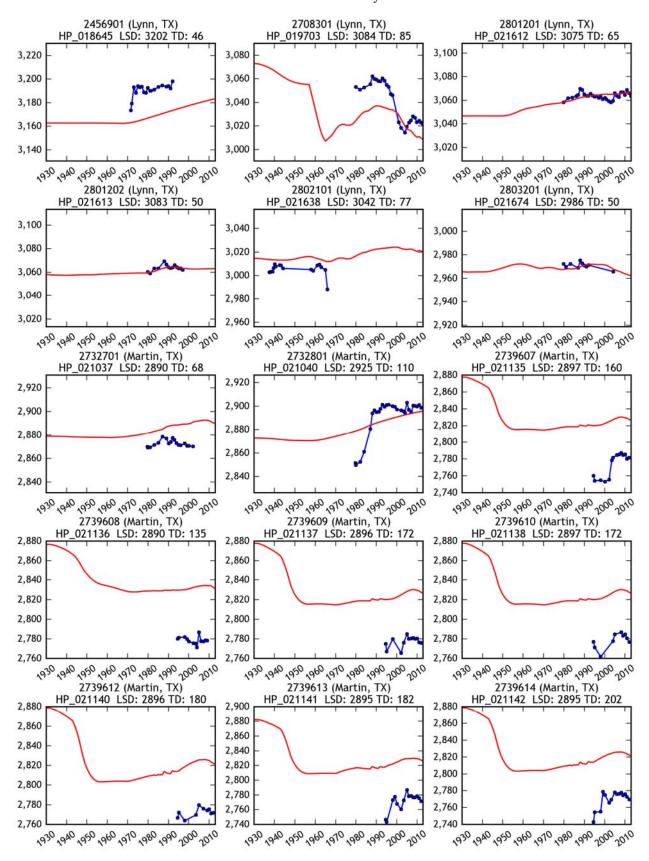


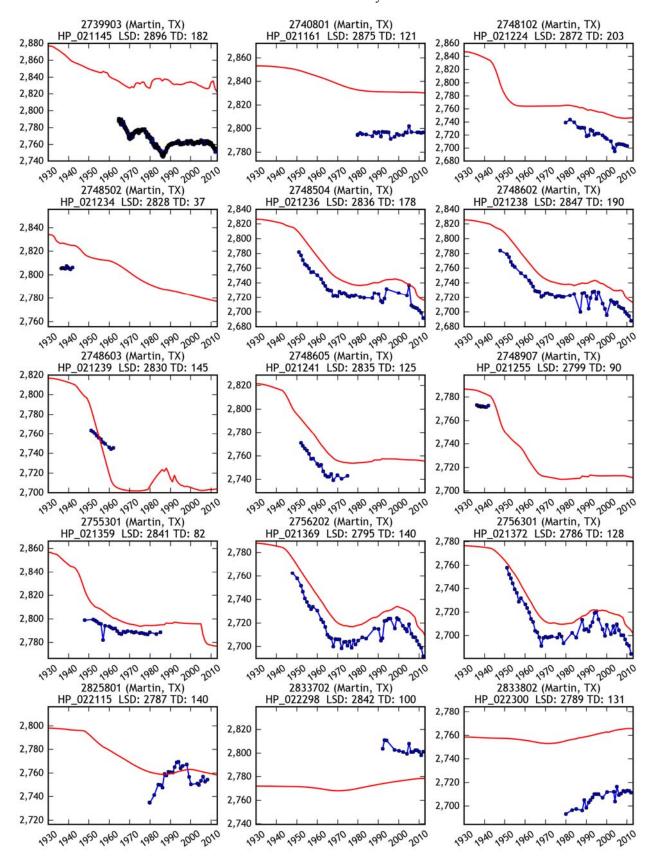


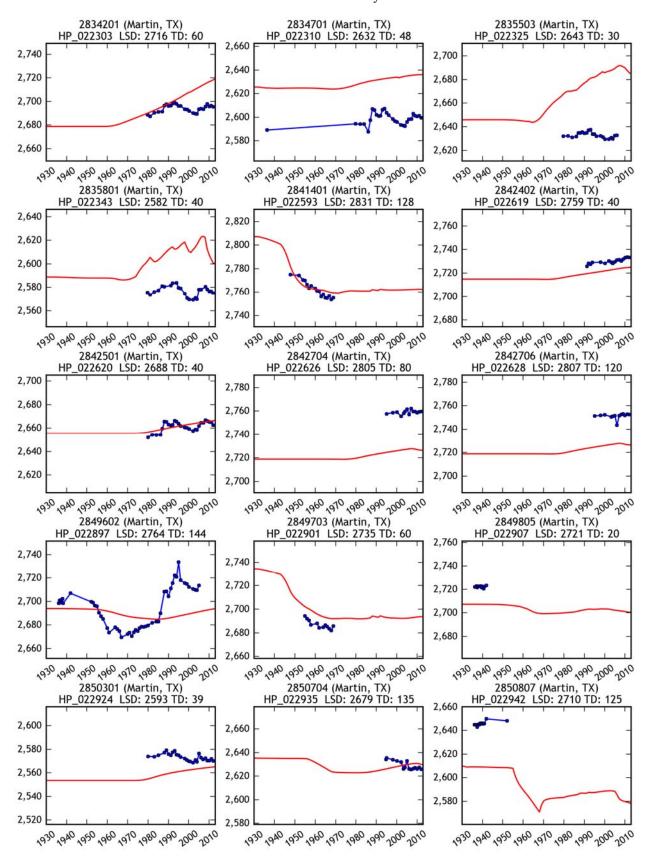


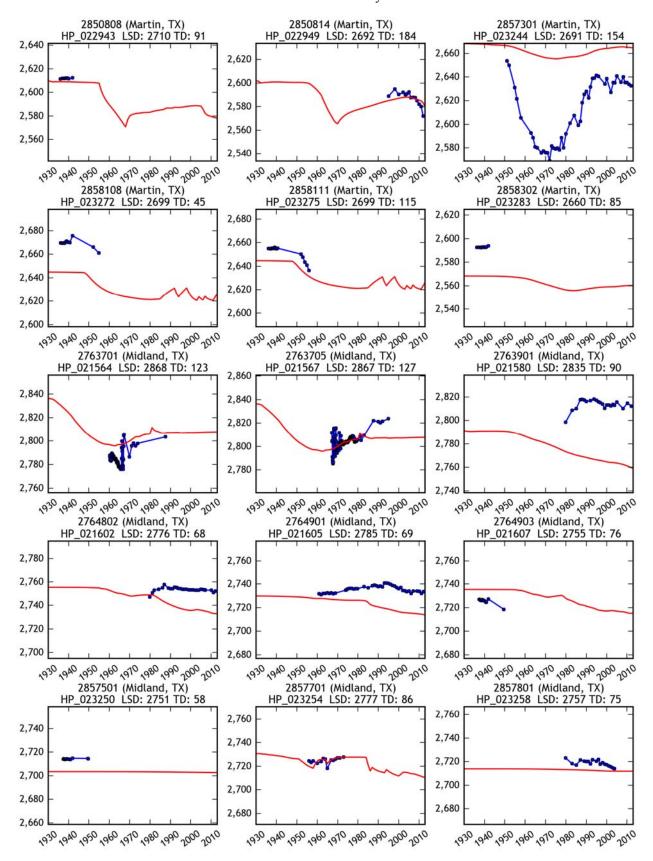


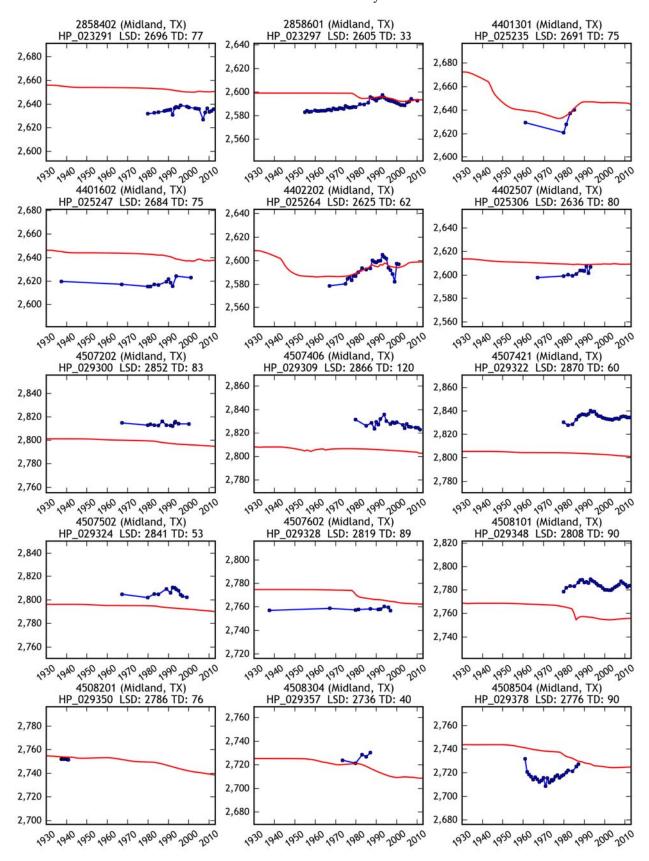


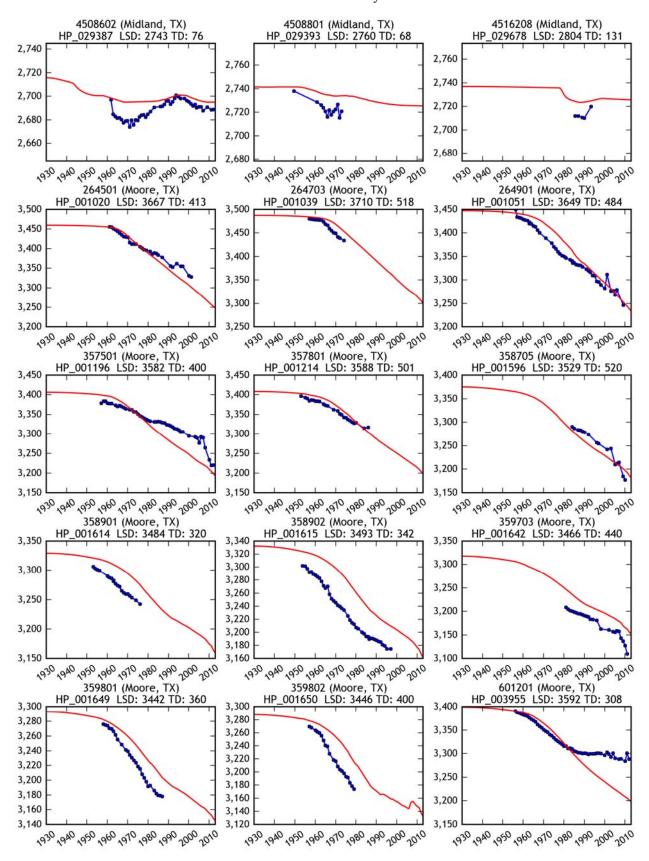


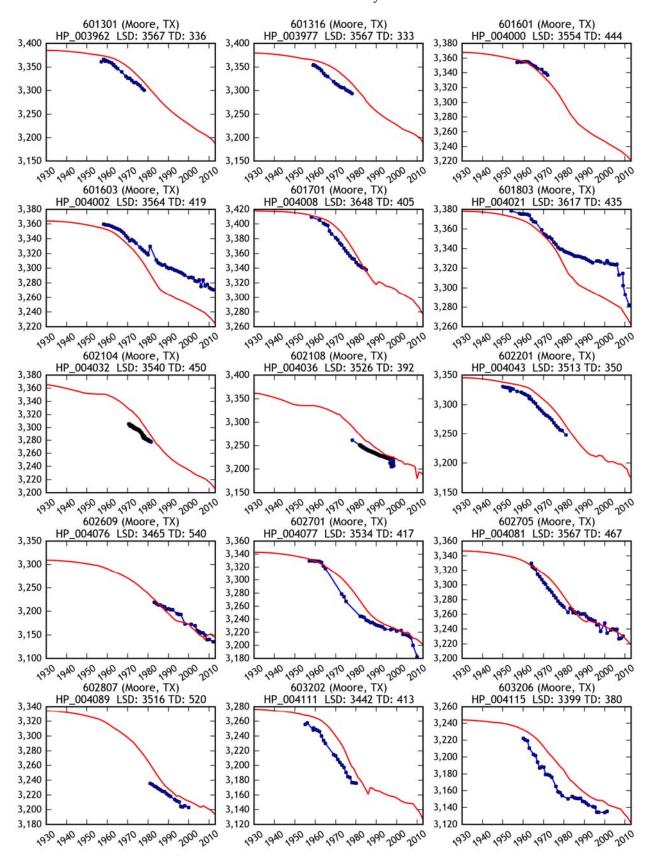


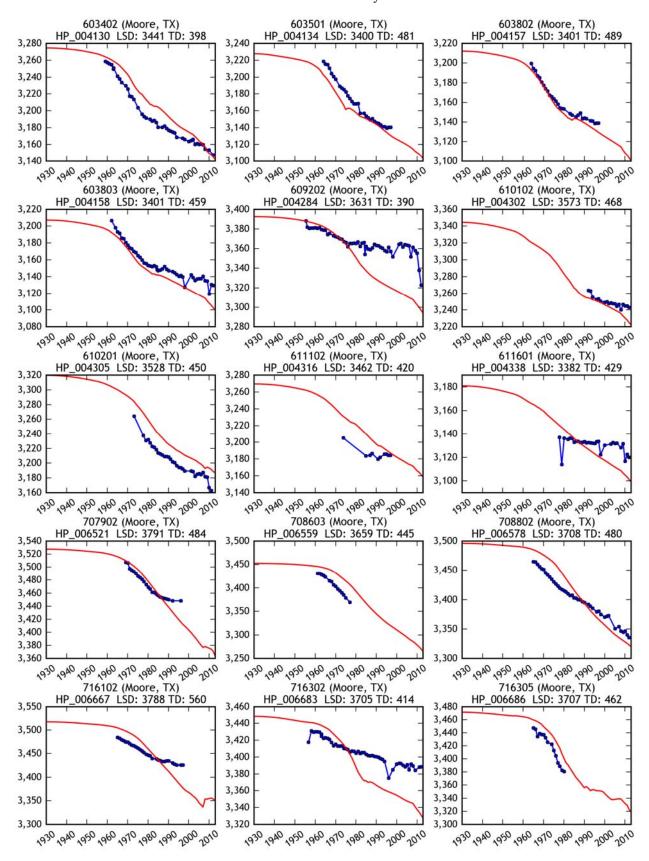


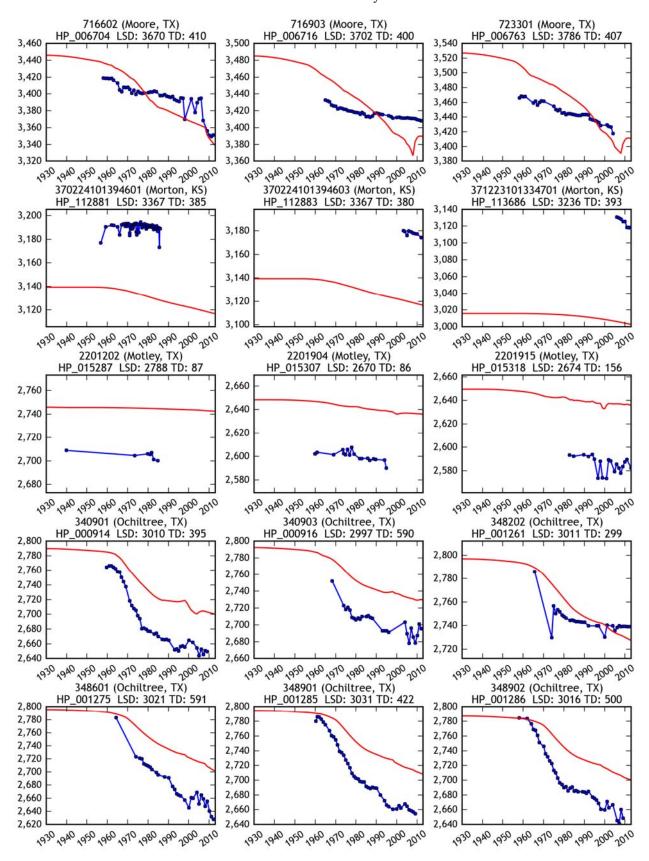


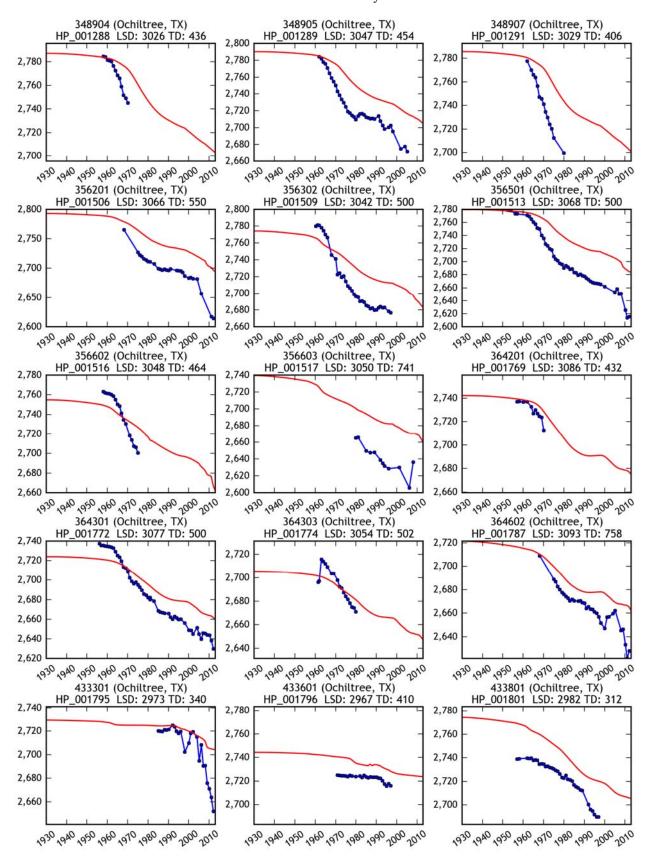


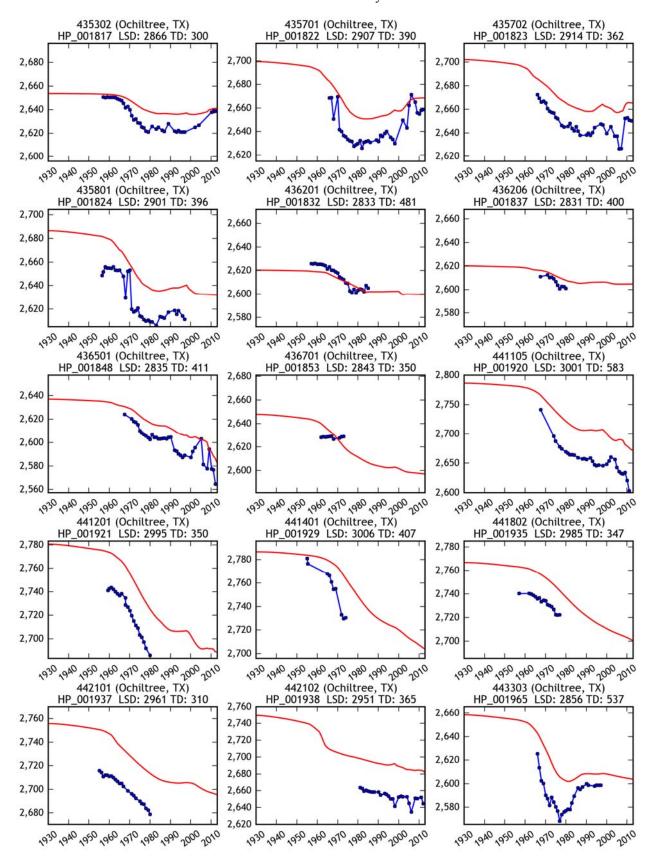


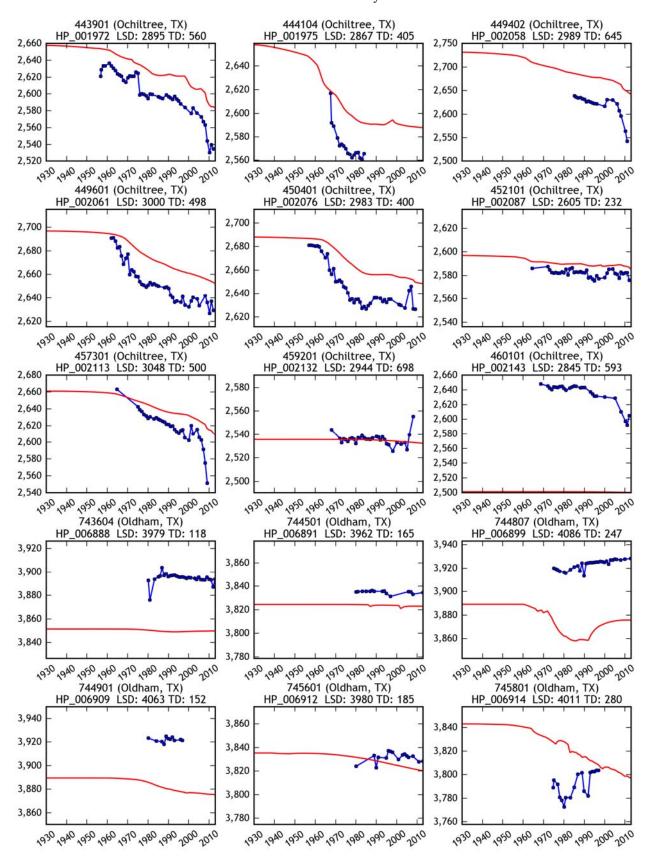


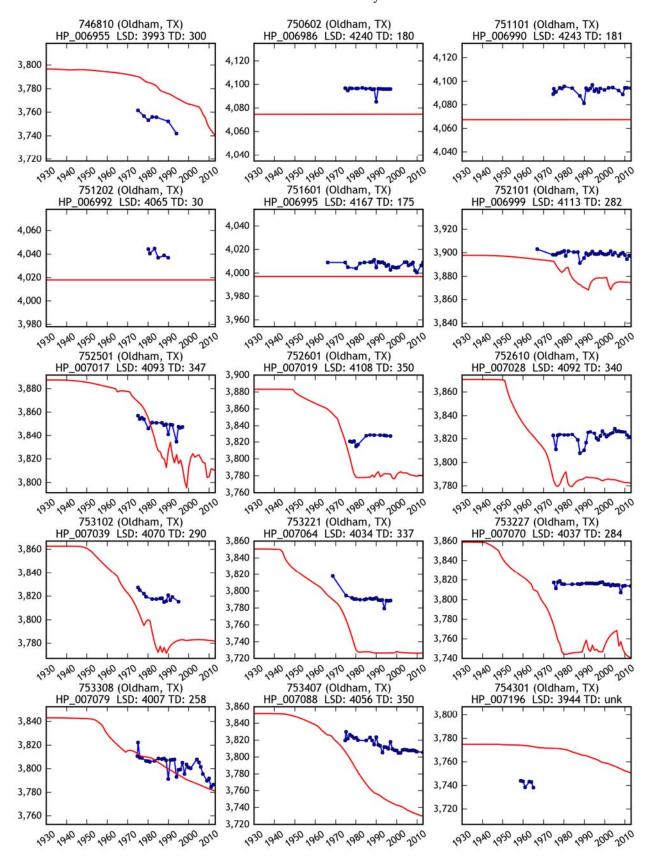


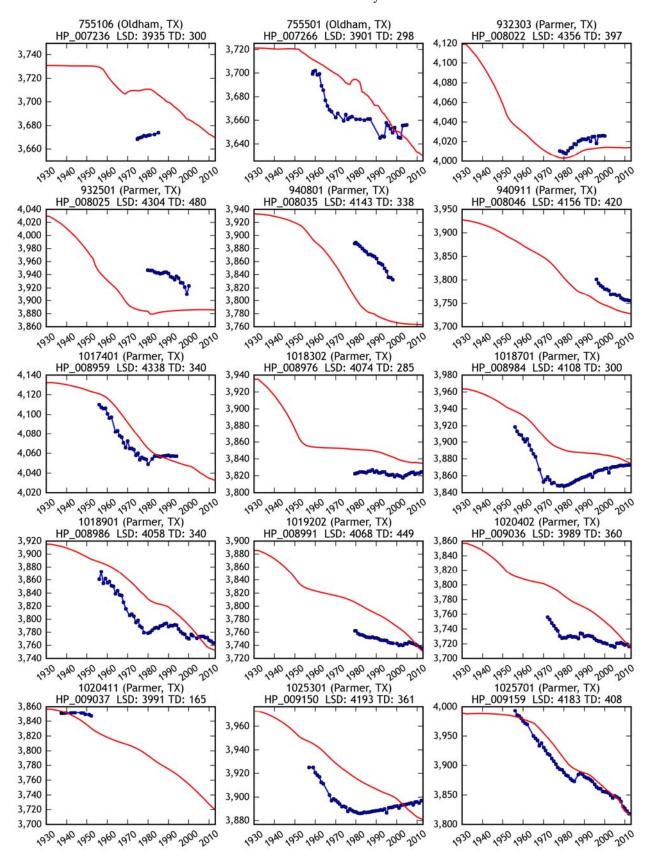


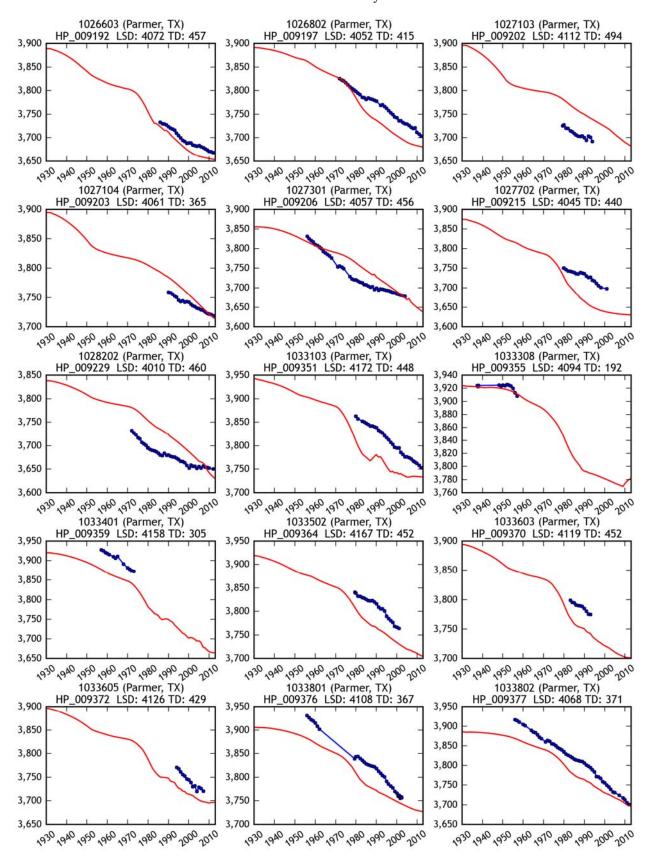


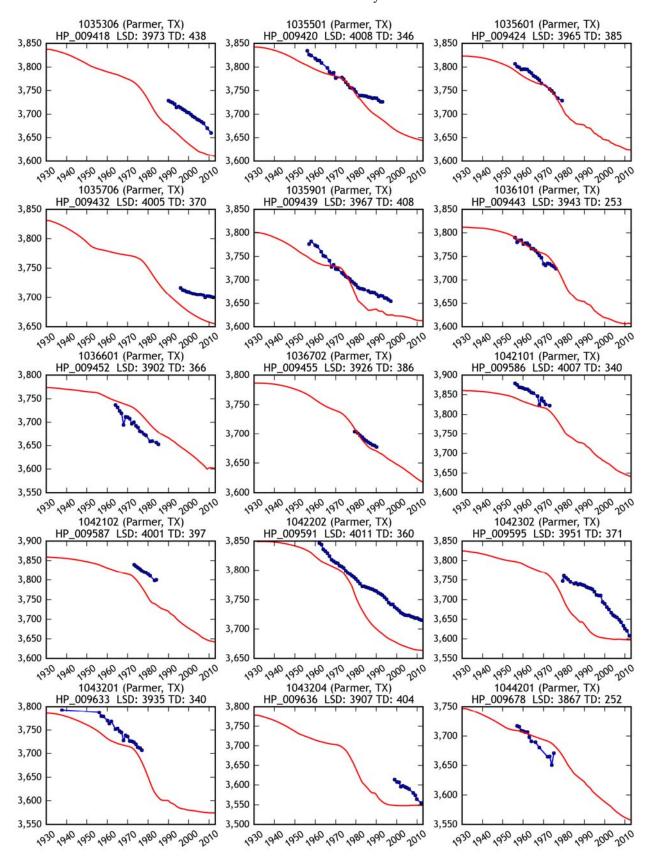


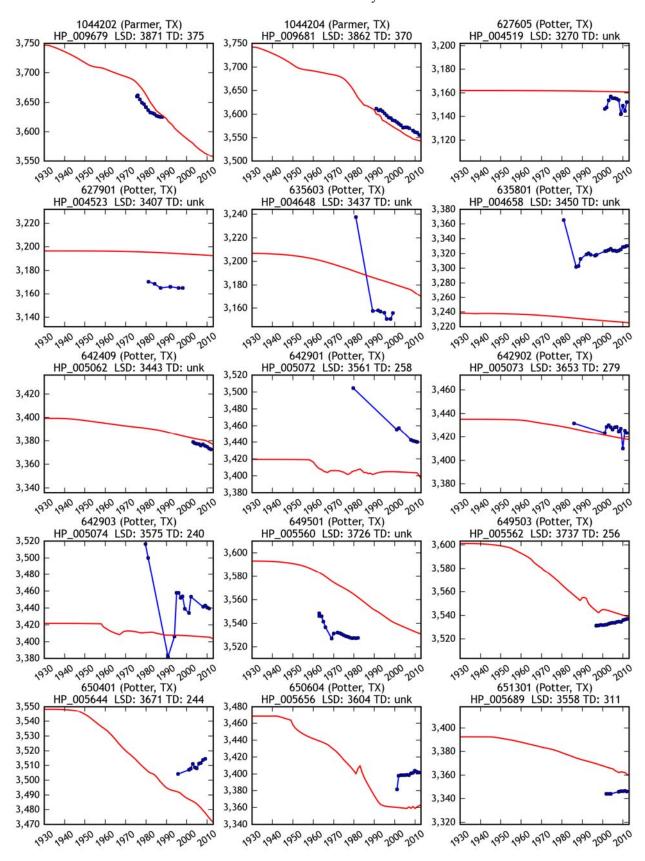


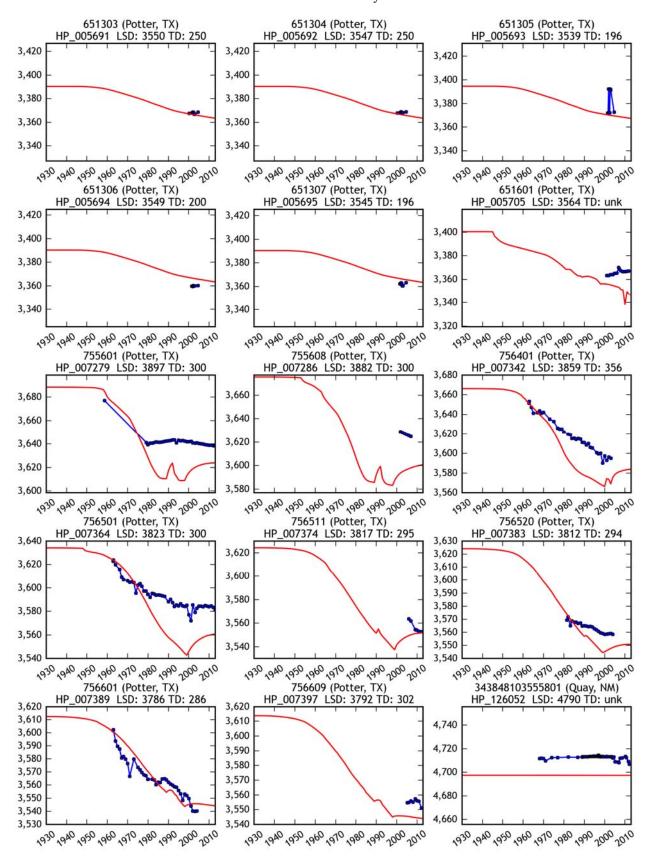


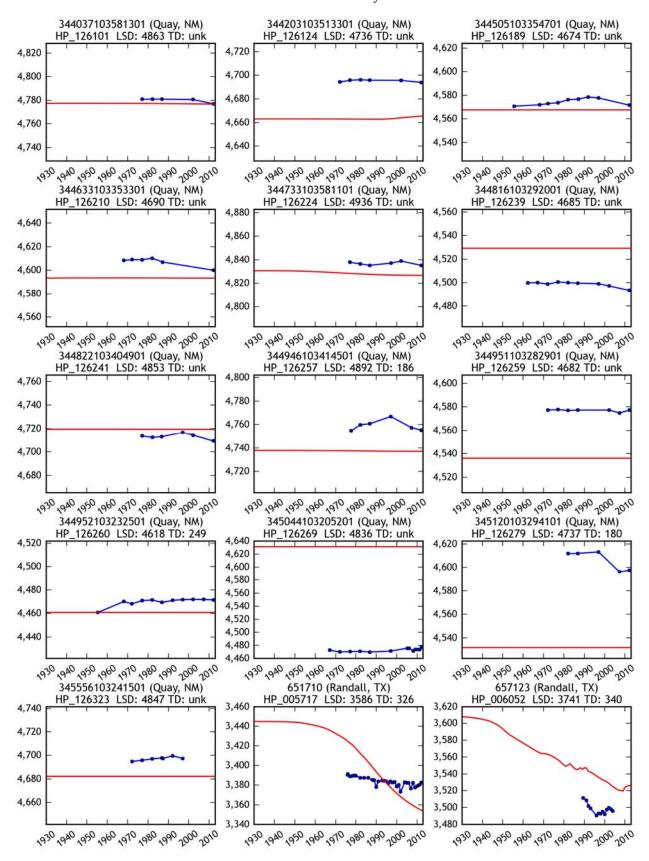


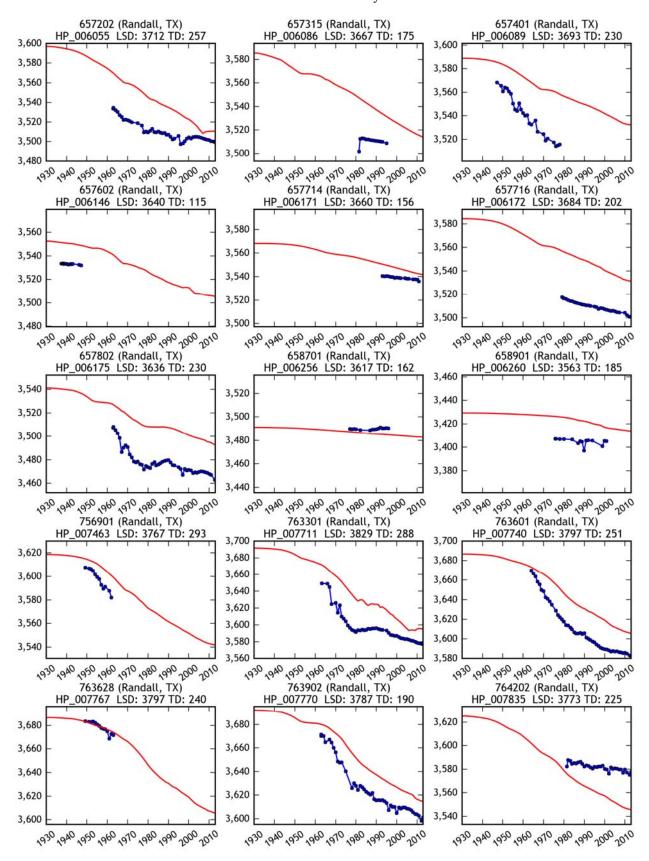


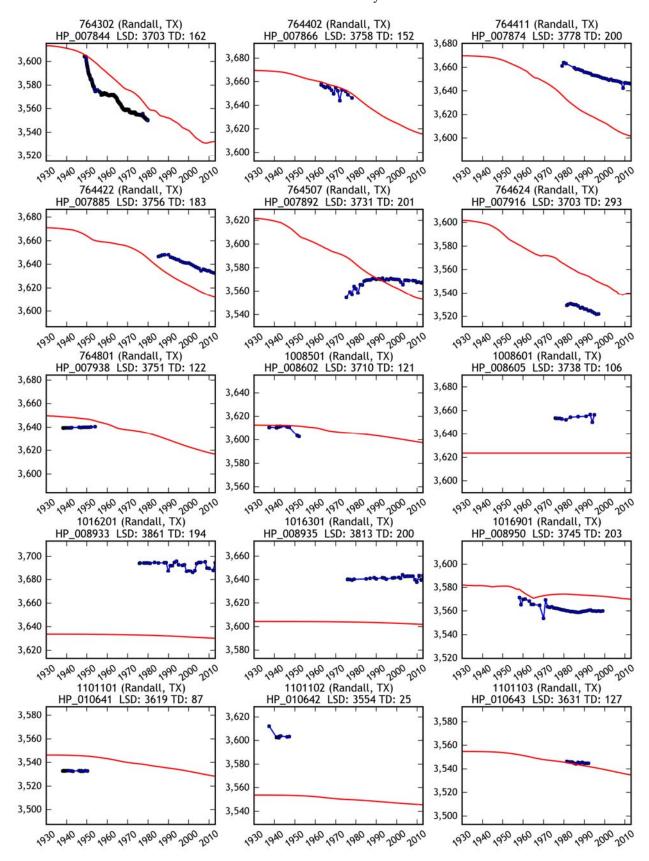


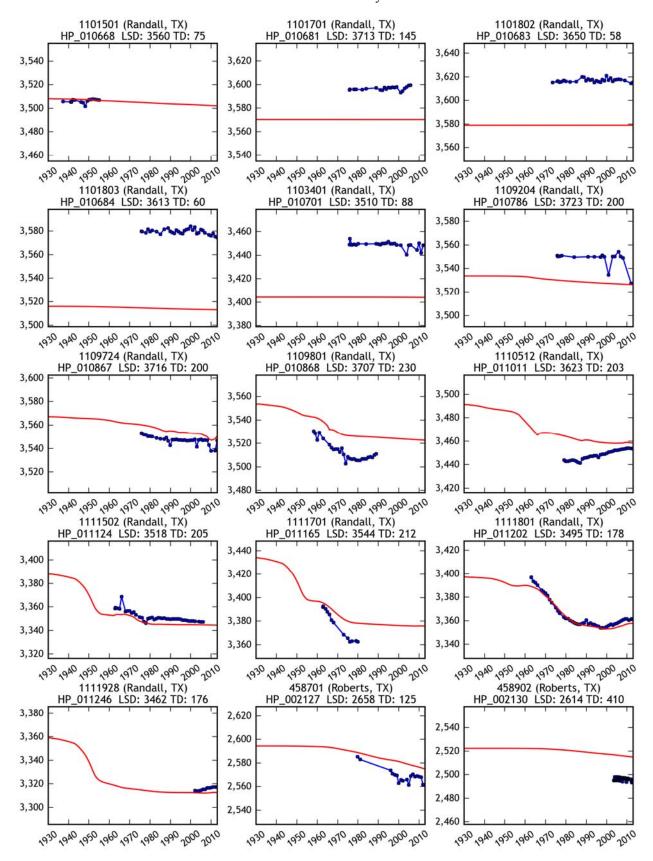


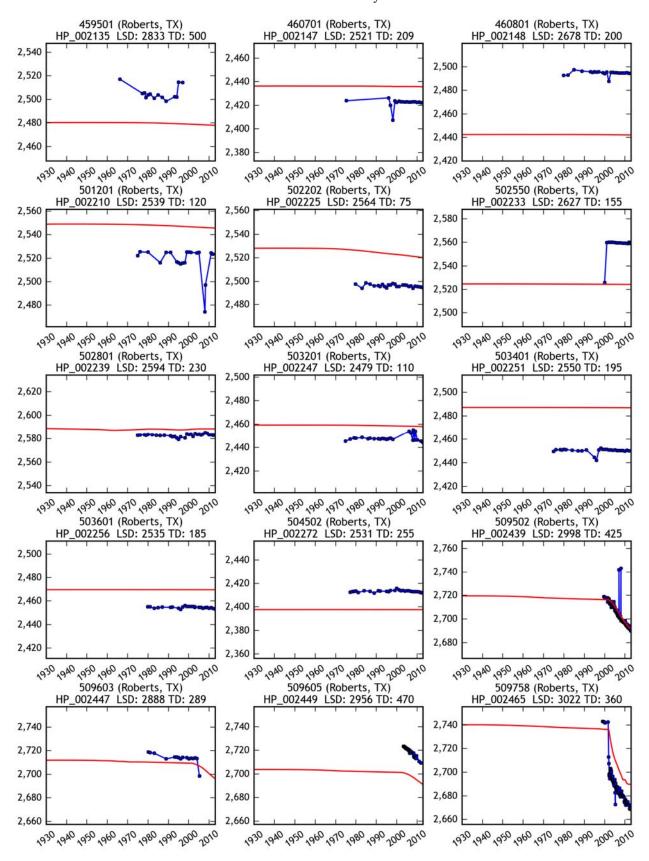


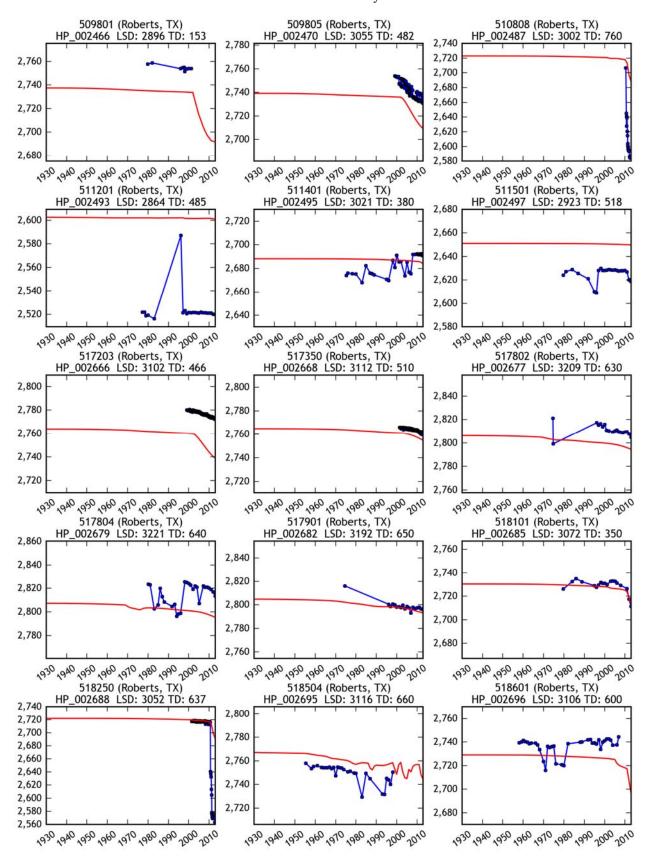


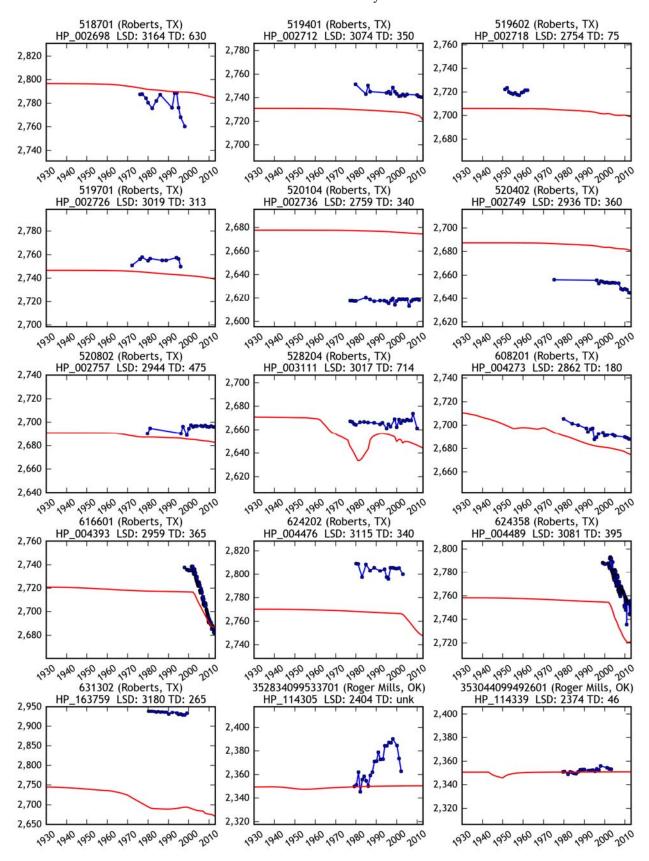


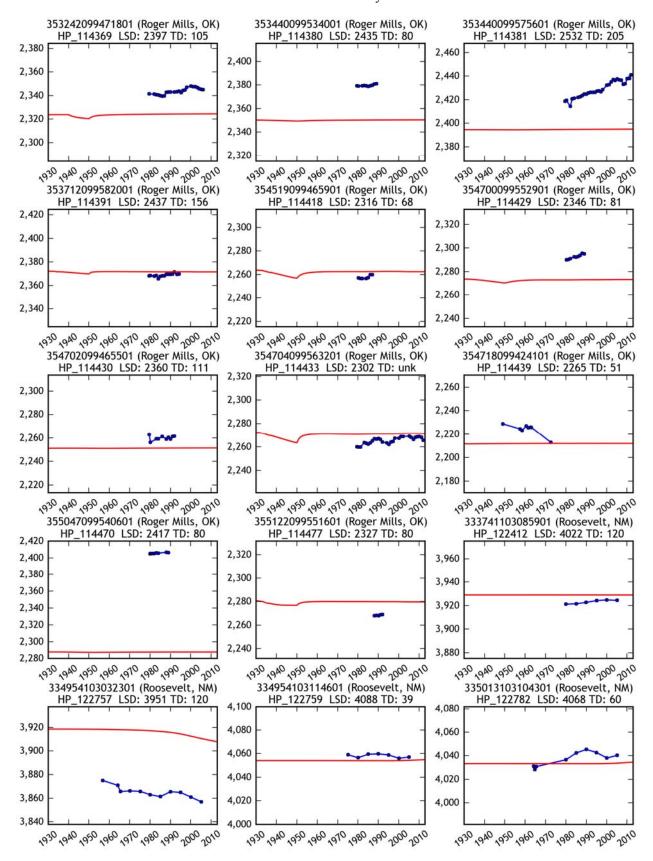


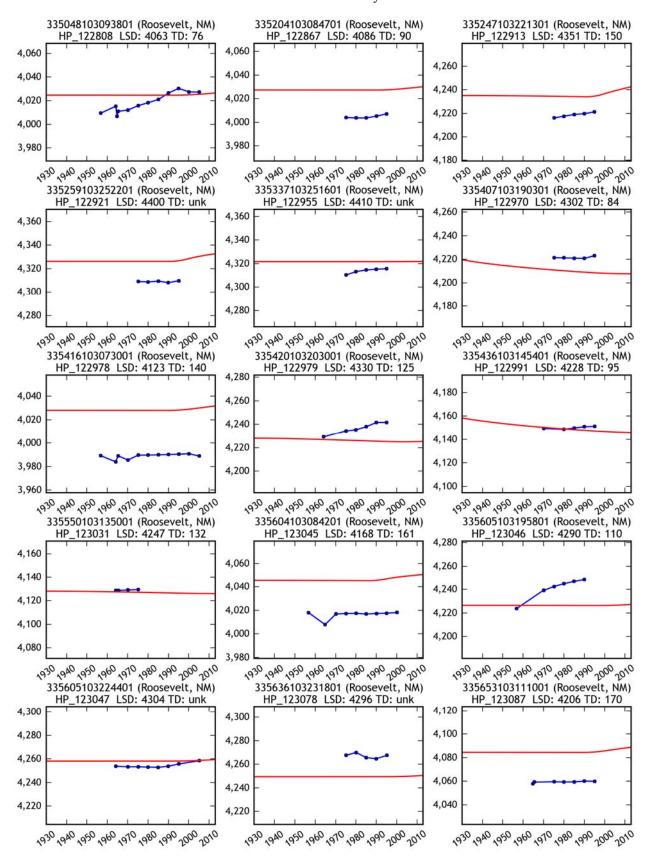


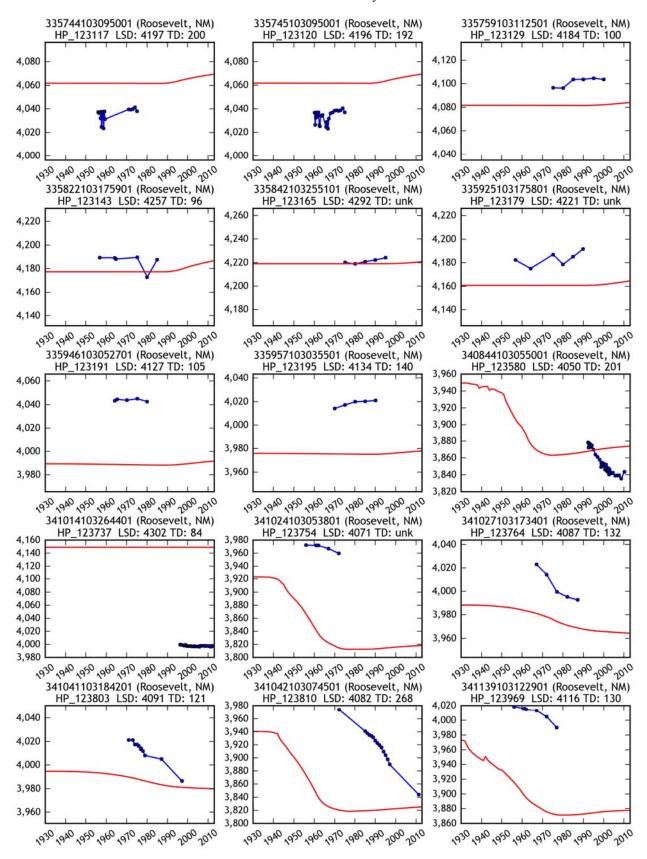


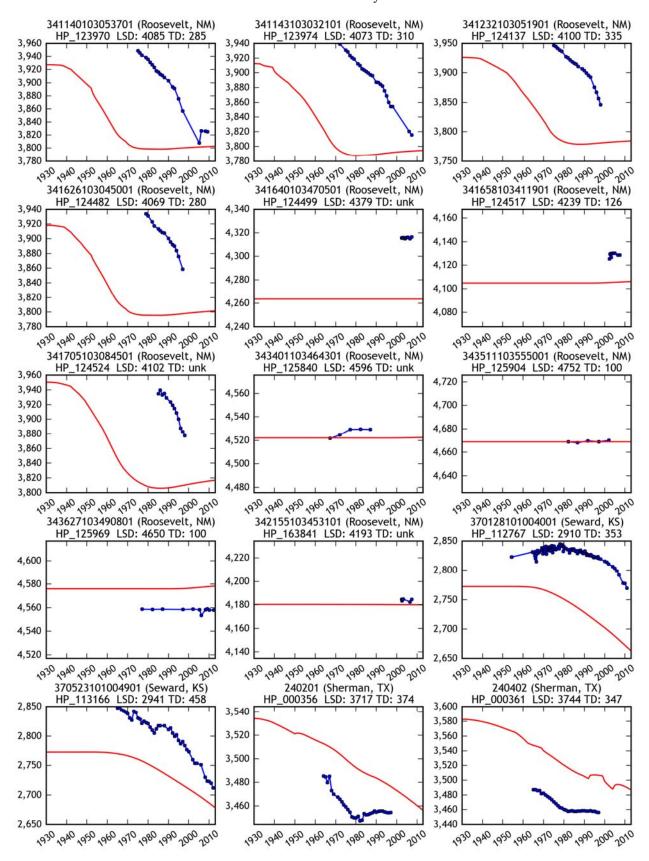


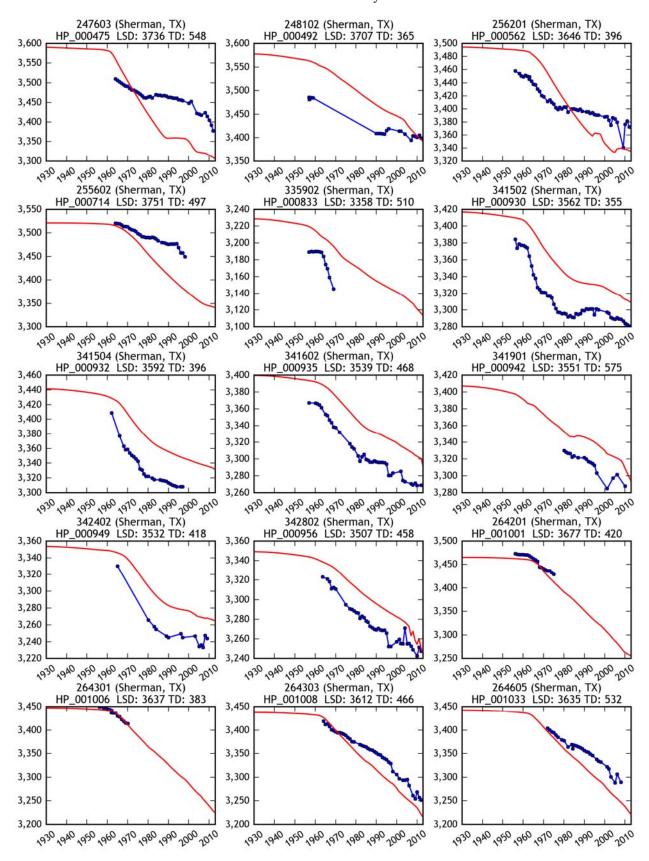


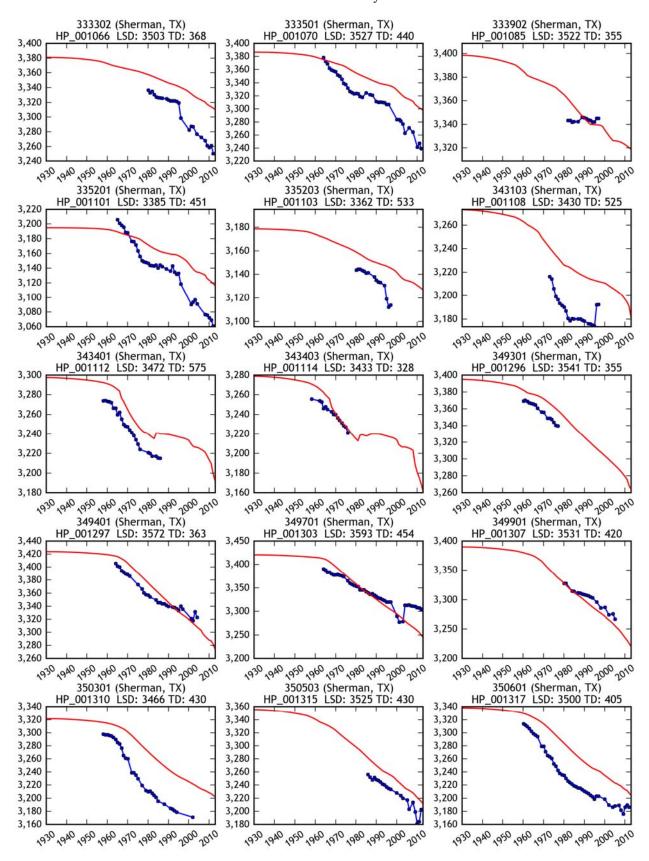


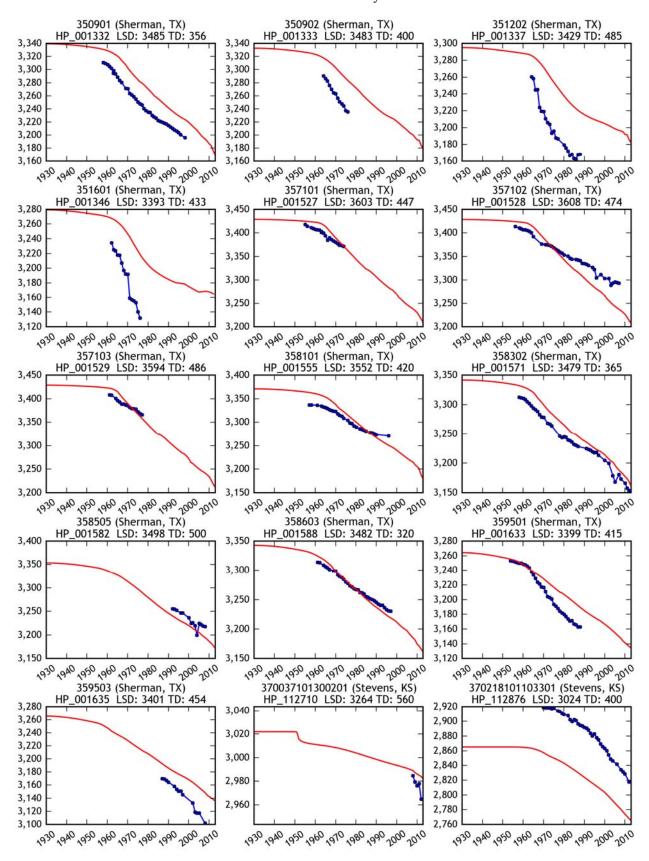


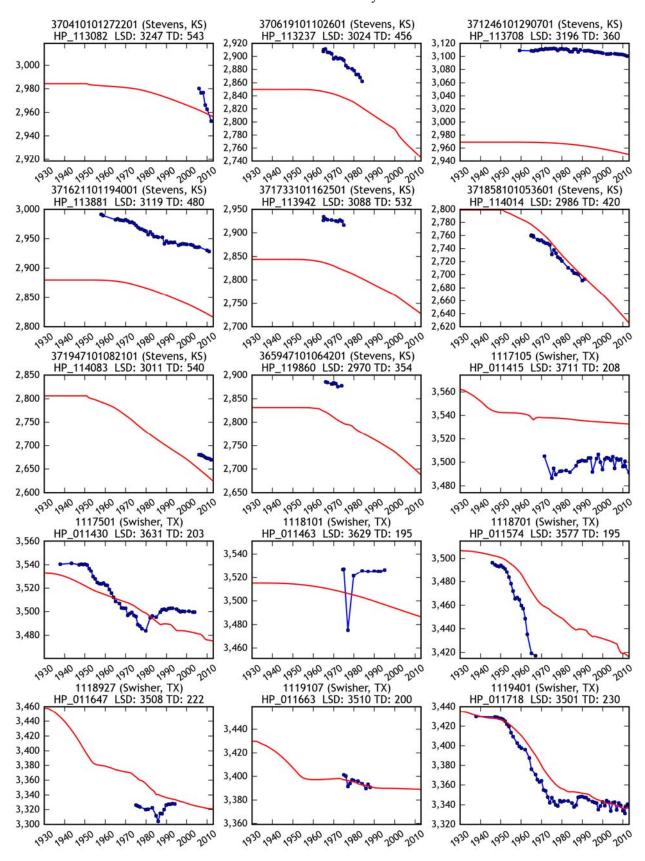


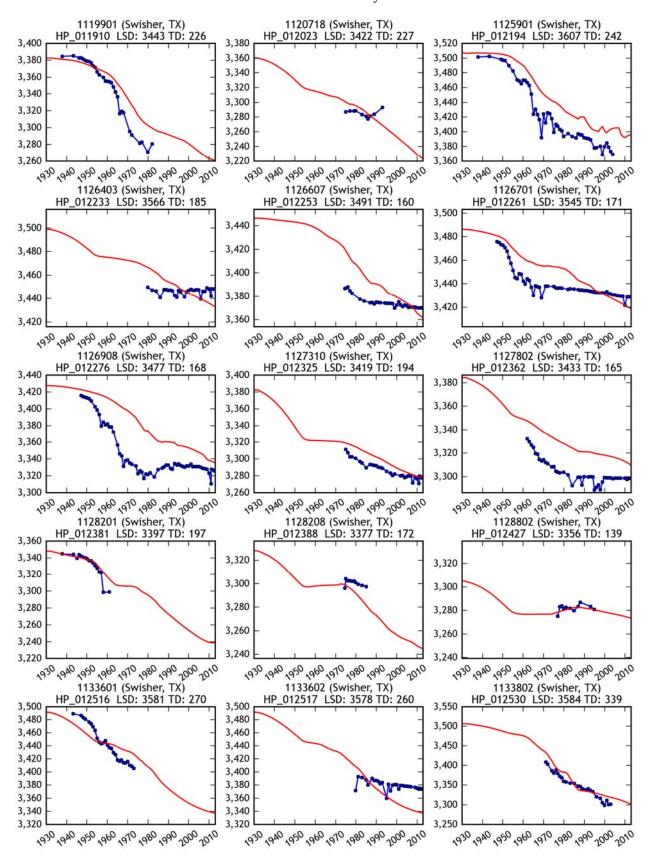


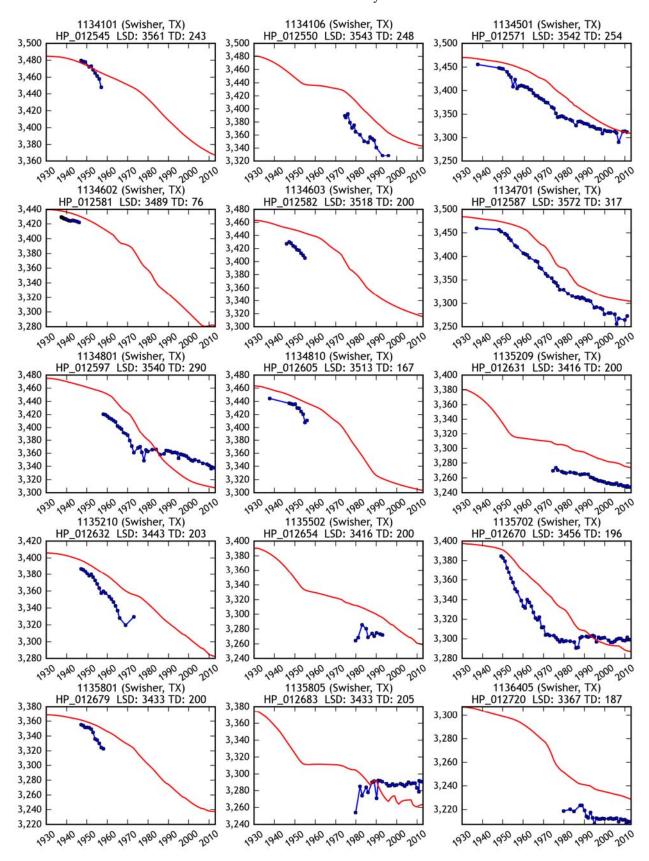


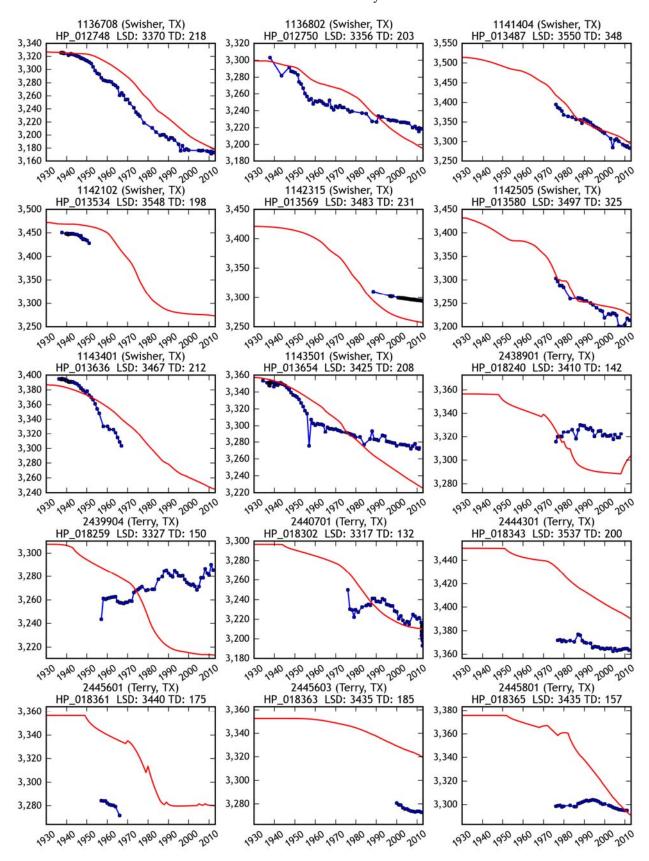


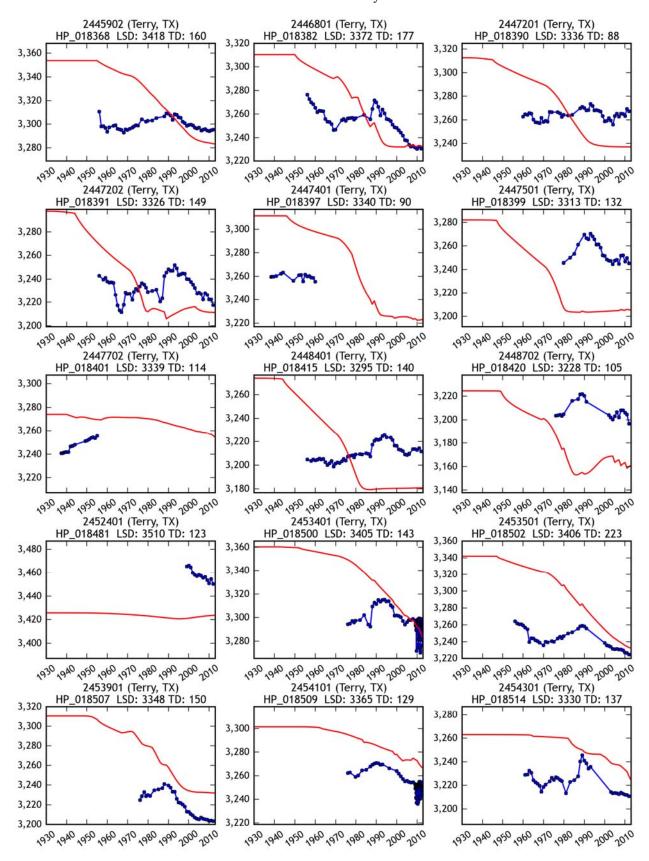


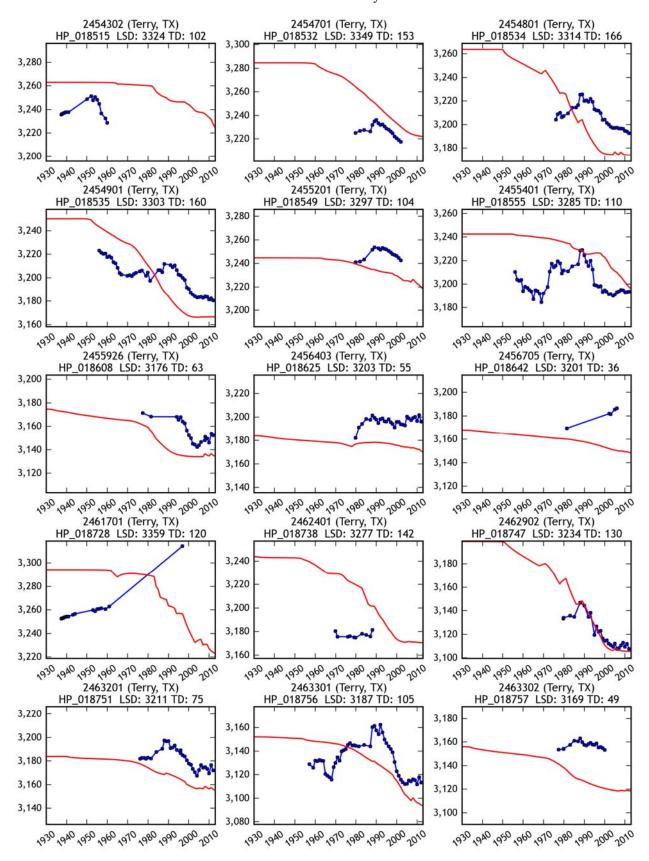


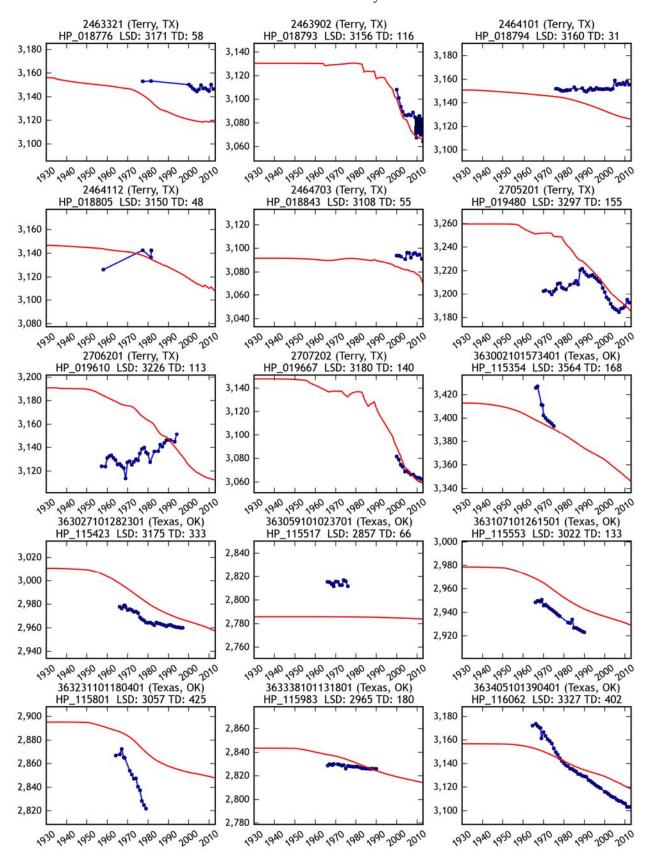


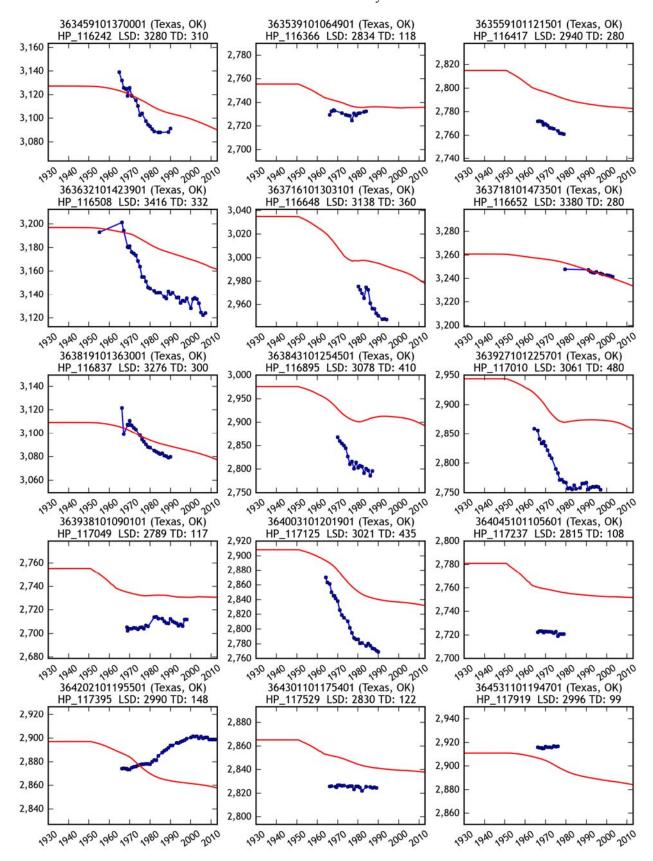


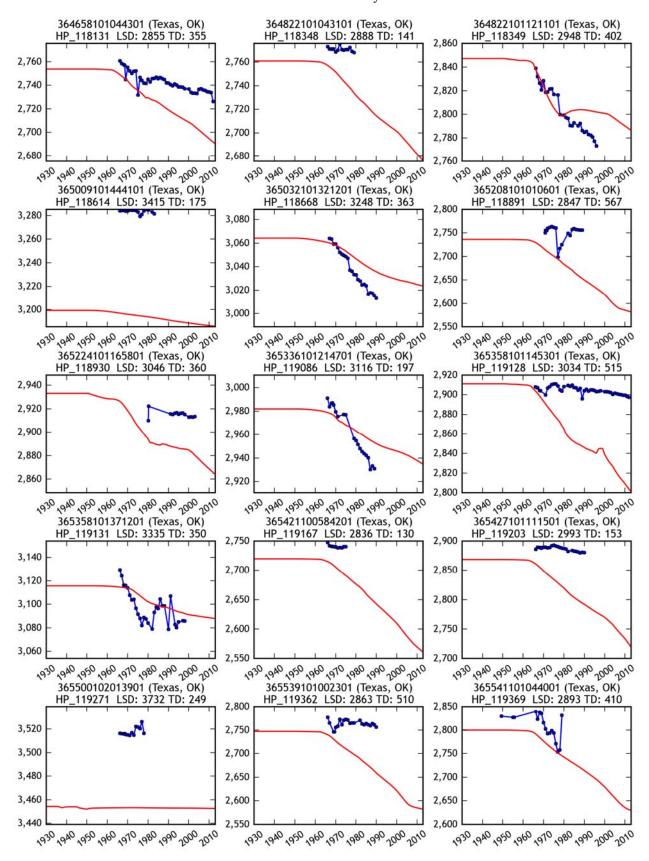


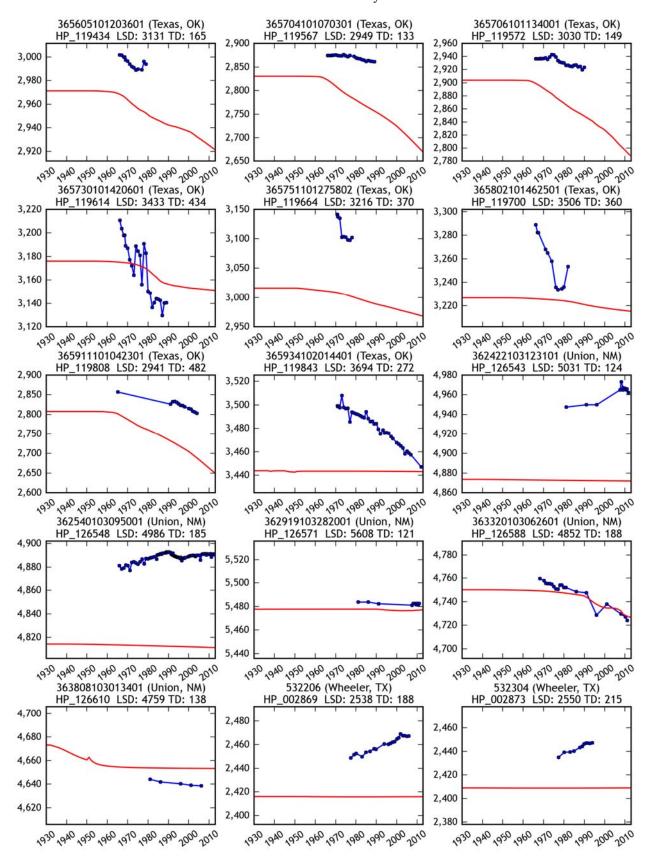


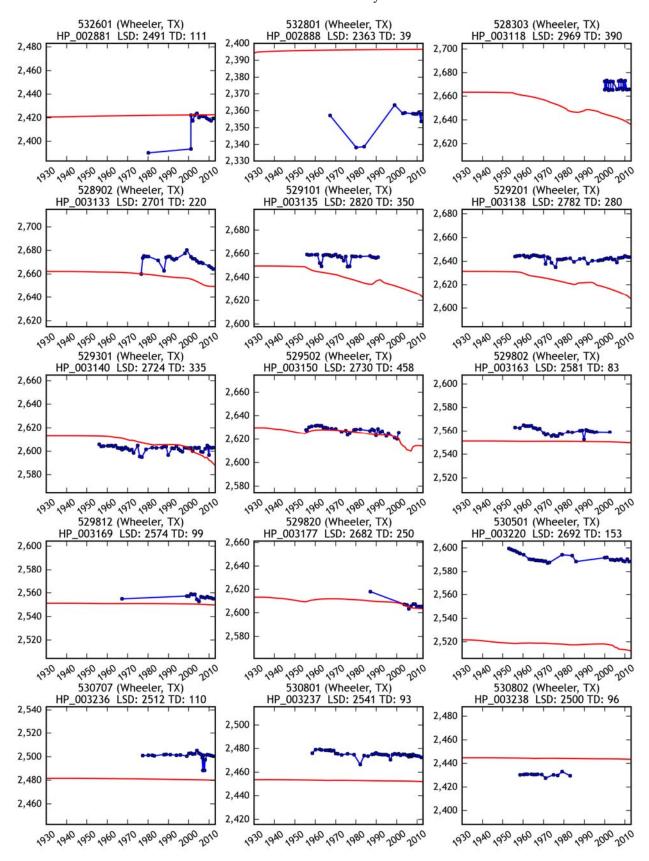


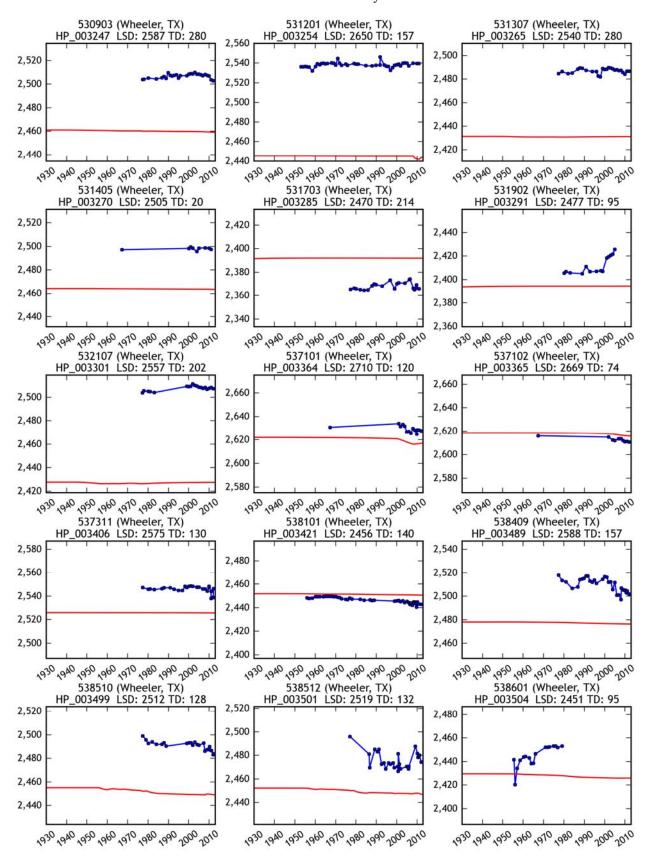


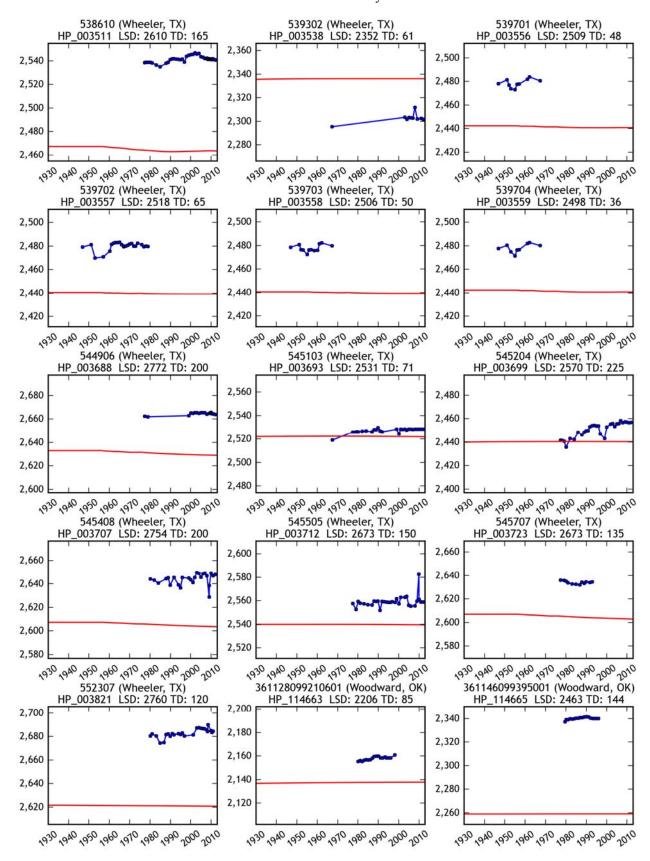


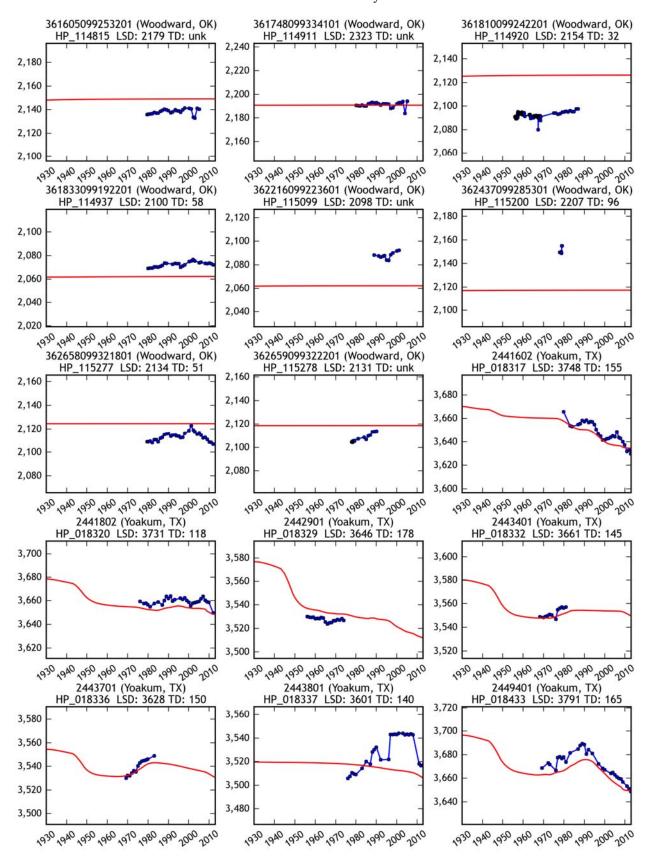


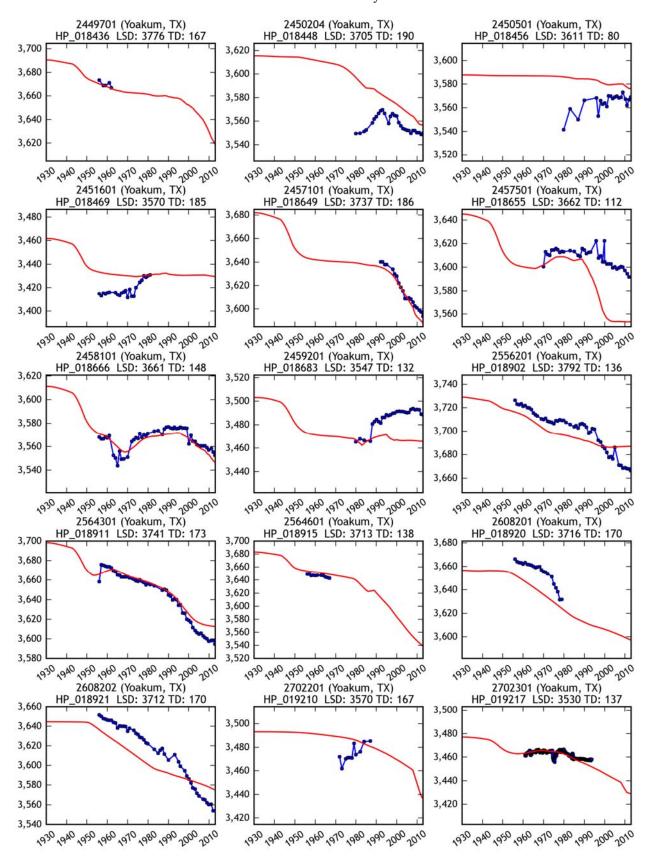


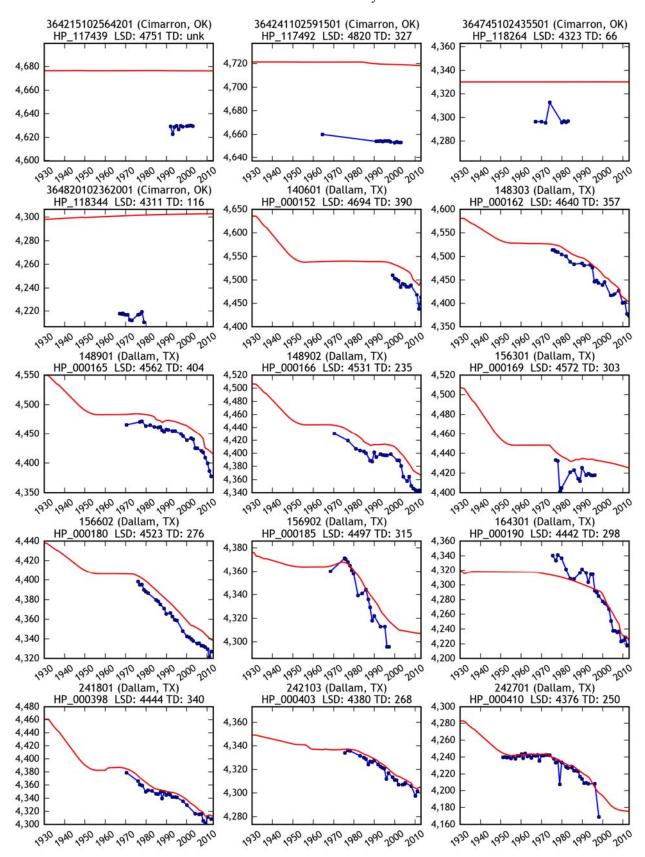


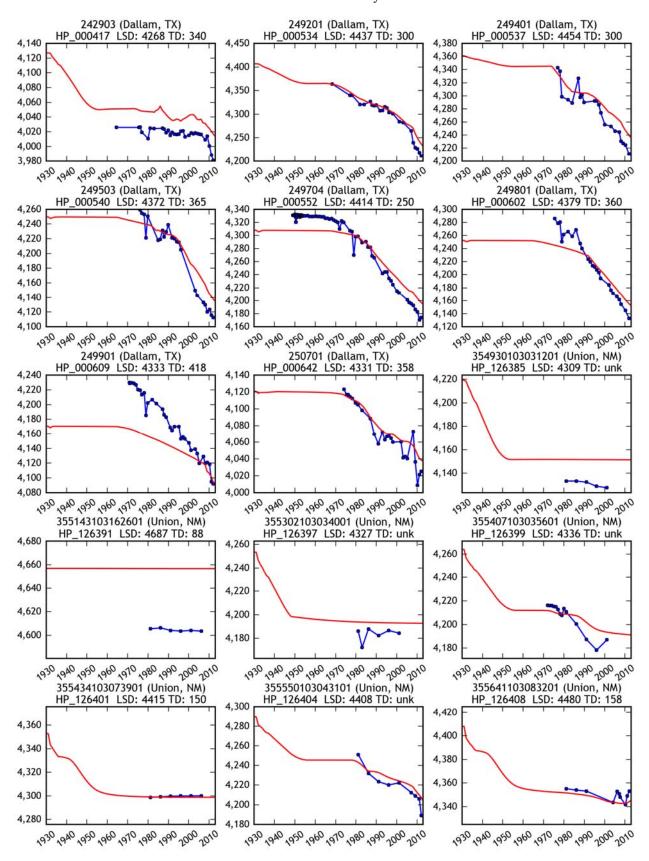


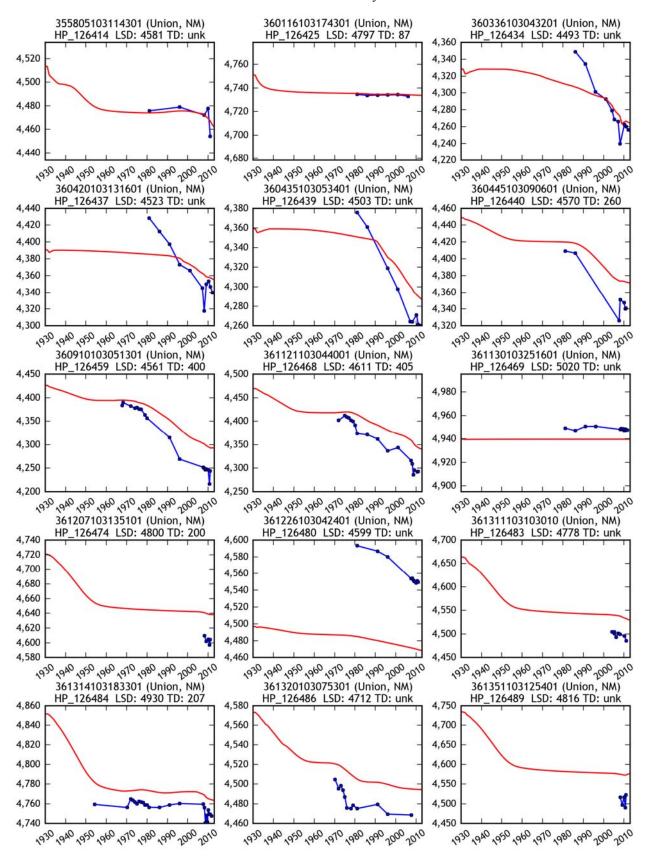


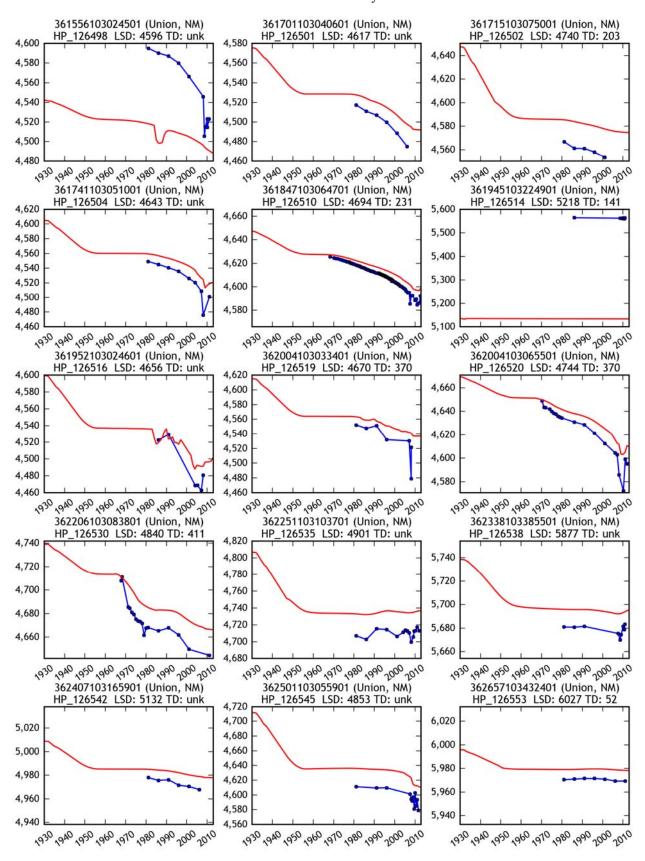


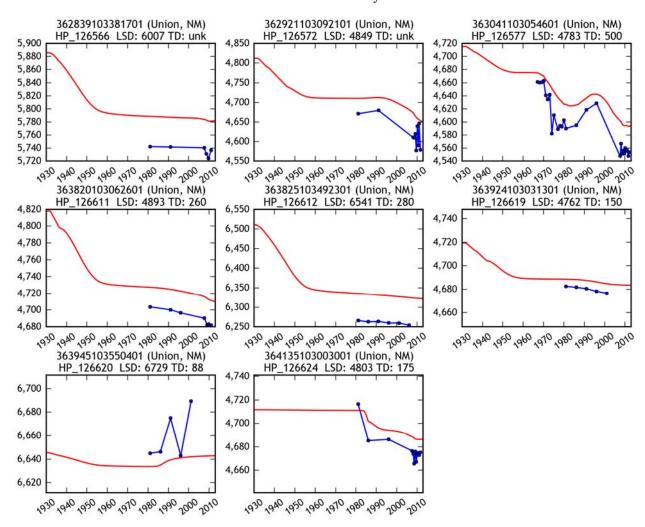


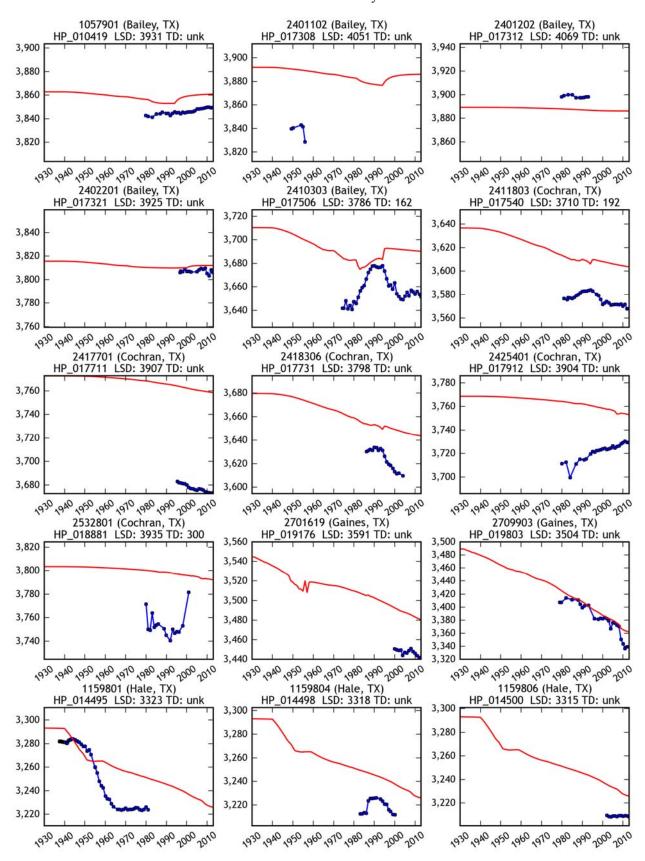


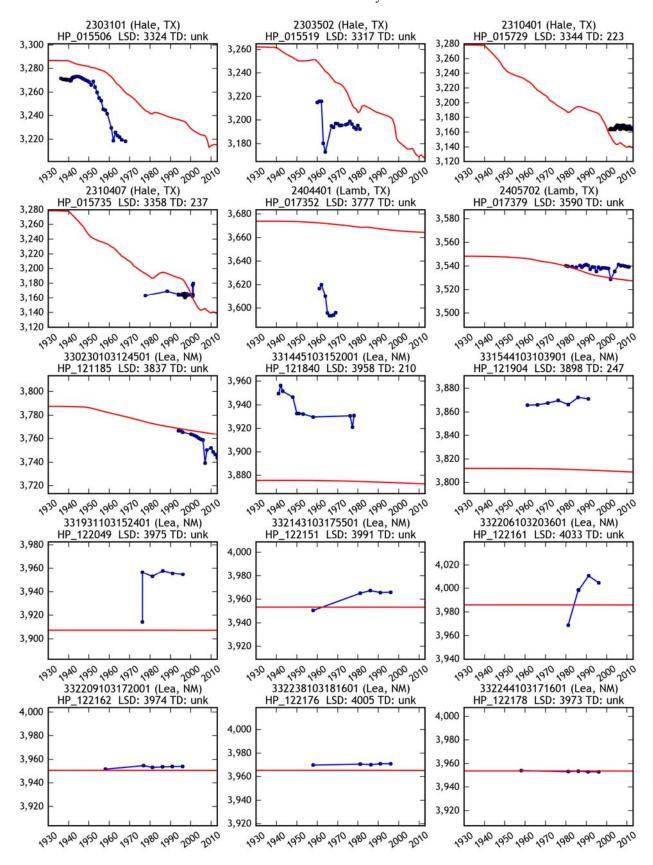

This page intentionally left blank.

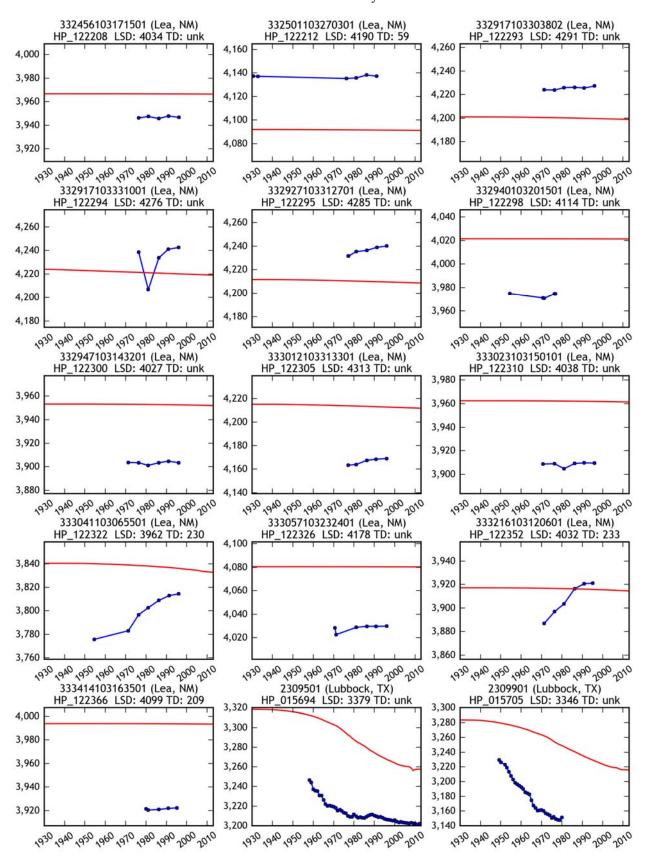

B.2 Rita Blanca Aquifer Hydrographs

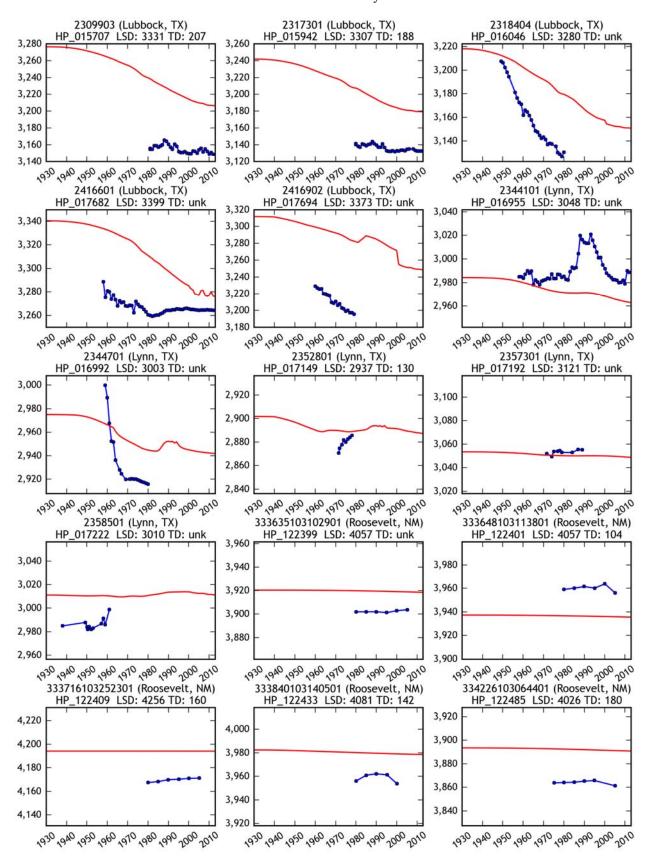

This section contains the observed and simulated hydrographs for the Rita Blanca Aquifer.

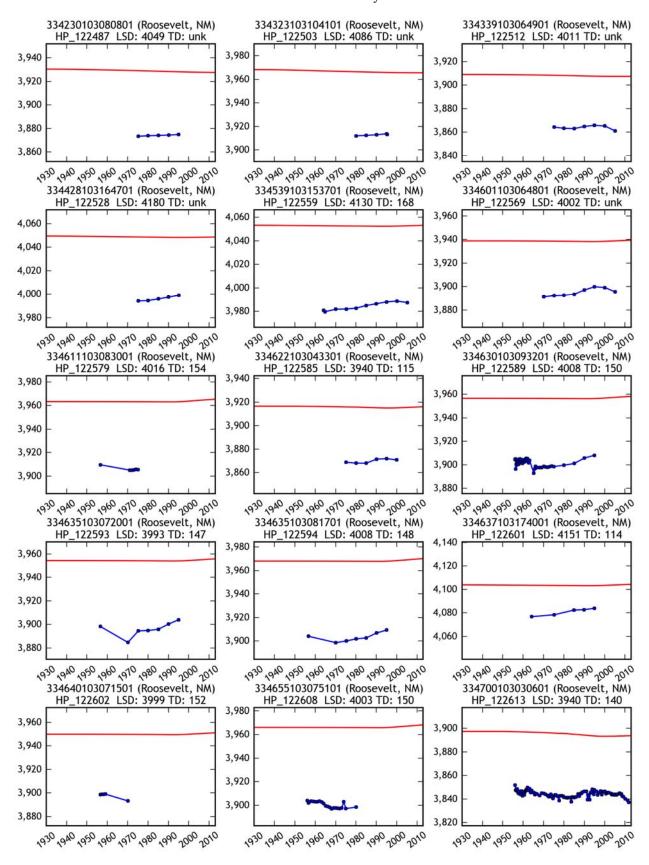

This page intentionally left blank.

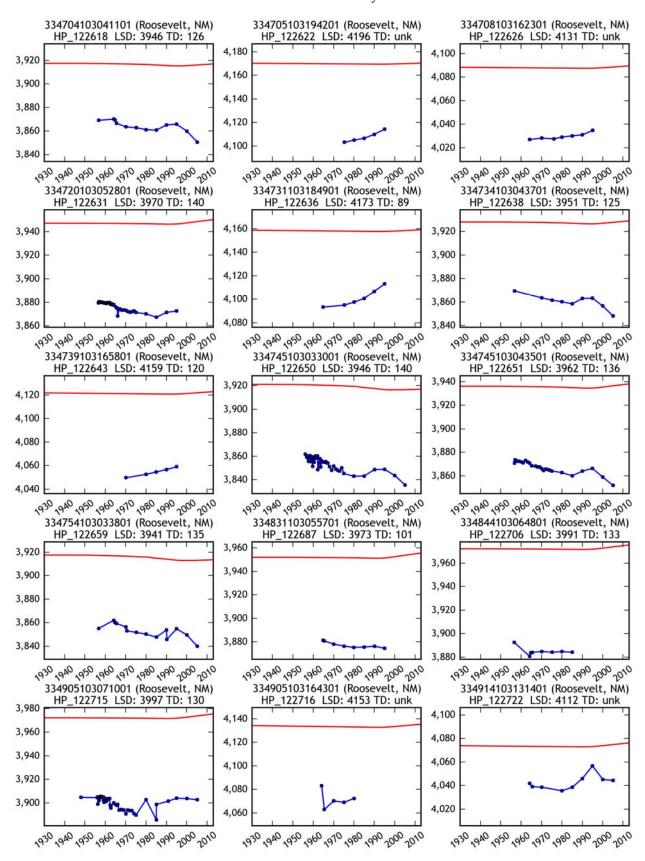


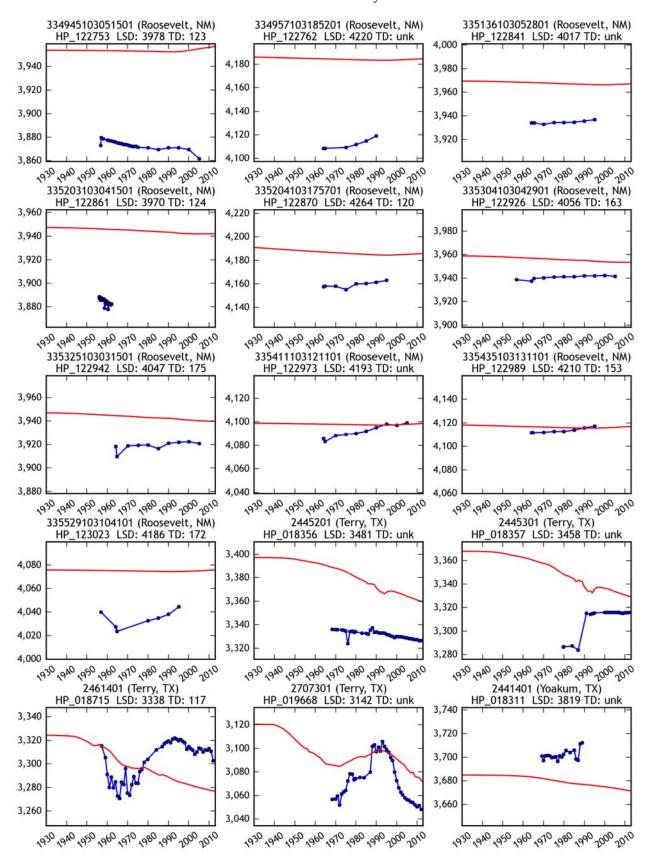

This page intentionally left blank.

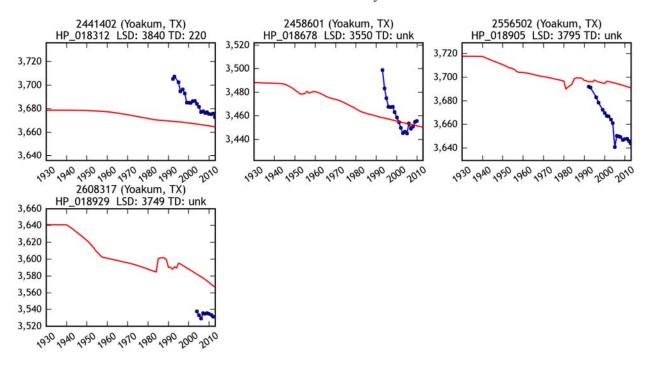

B.3 Edwards-Trinity (High Plains) Aquifer Hydrographs

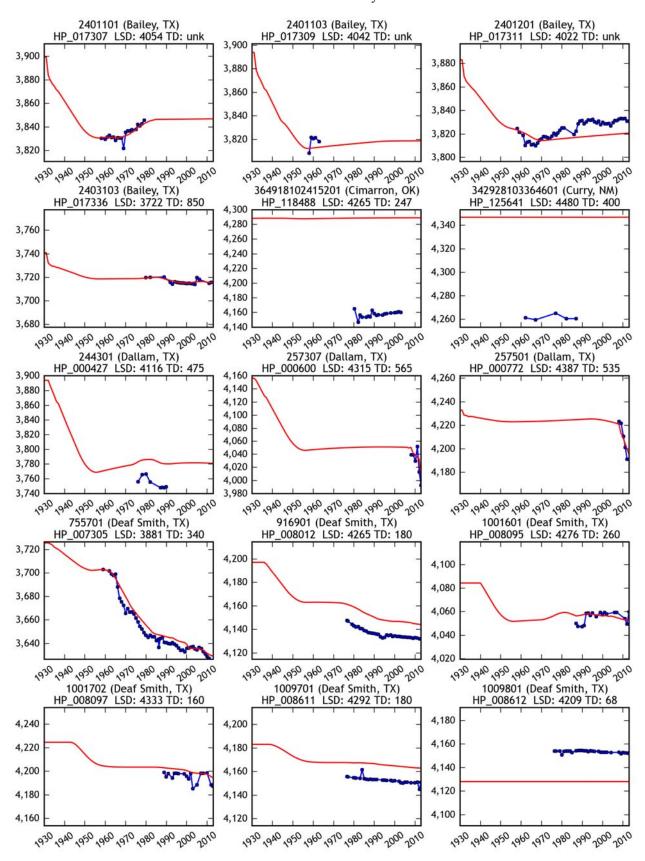

This section contains the observed and simulated hydrographs for the Edwards-Trinity (High Plains) Aquifer.

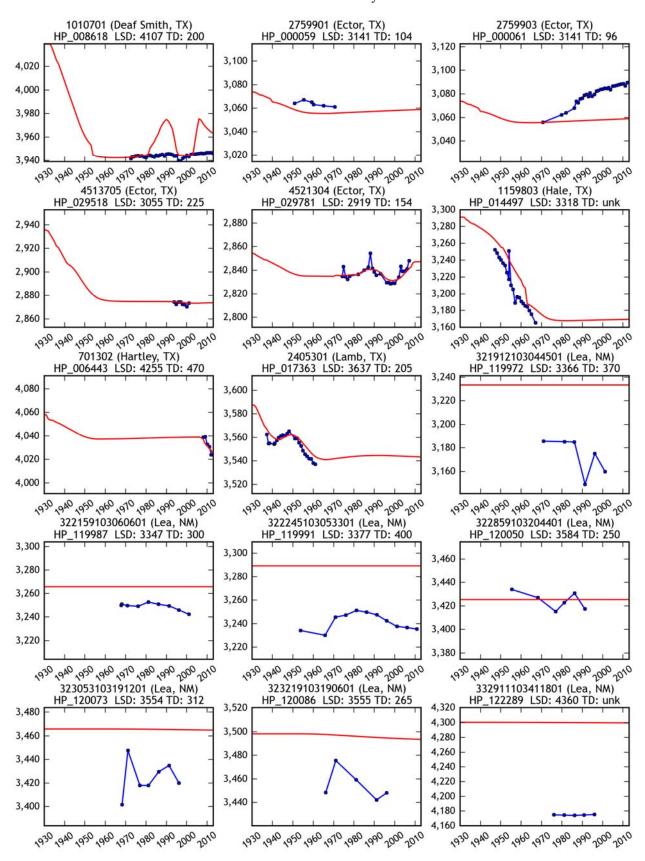

This page intentionally left blank.

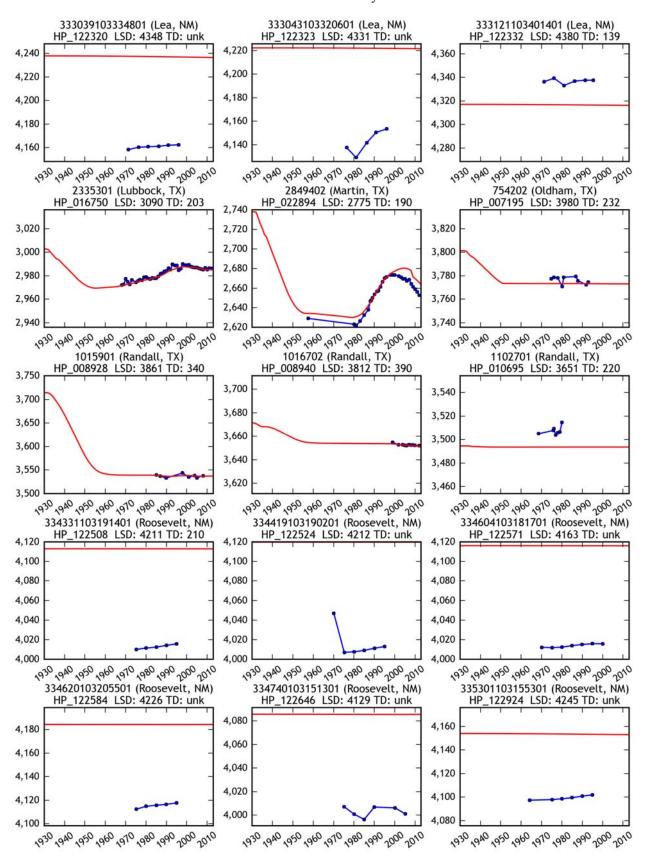


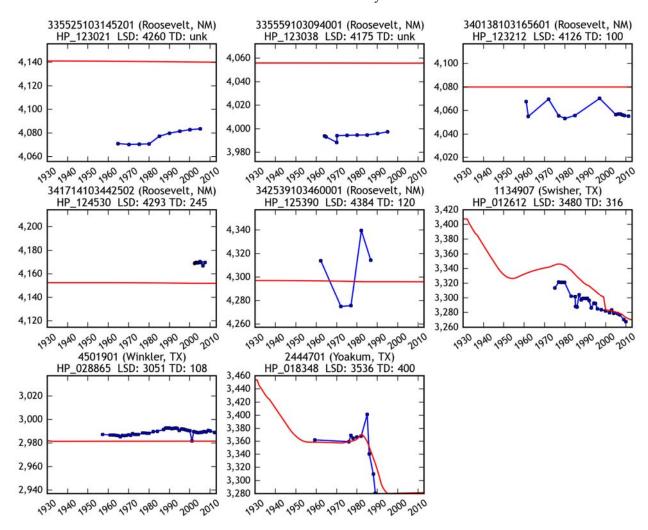




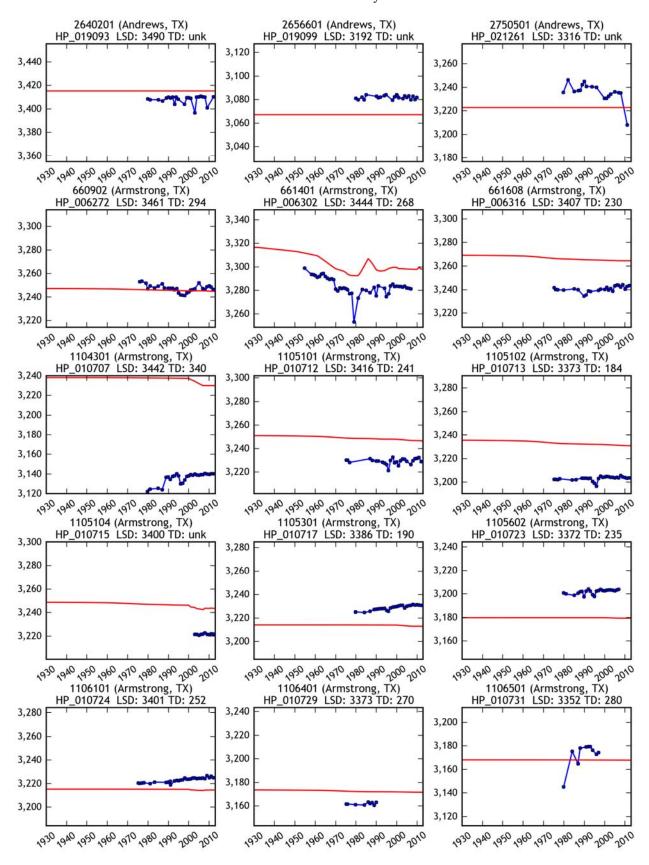


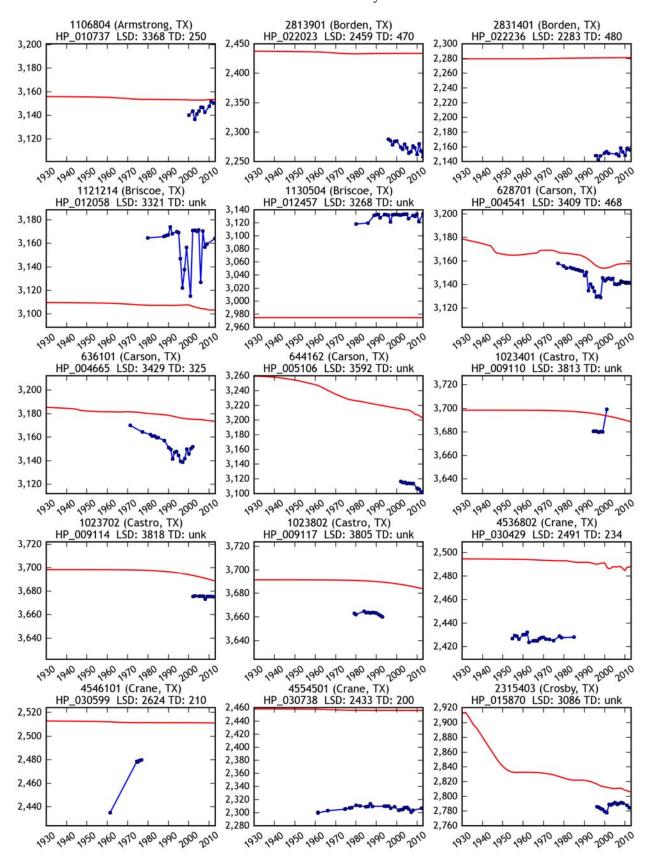


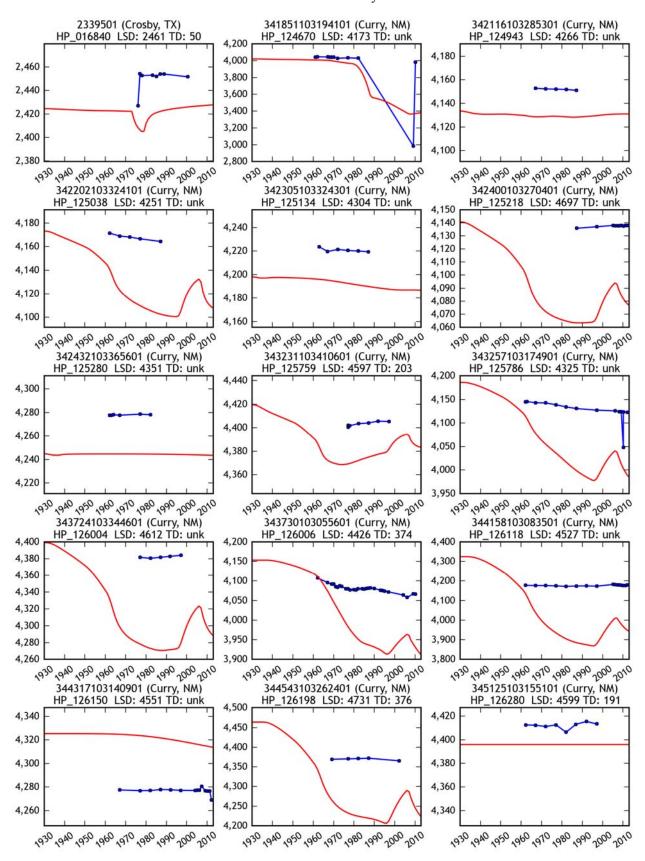

B.4 Upper Dockum Aquifer Hydrographs

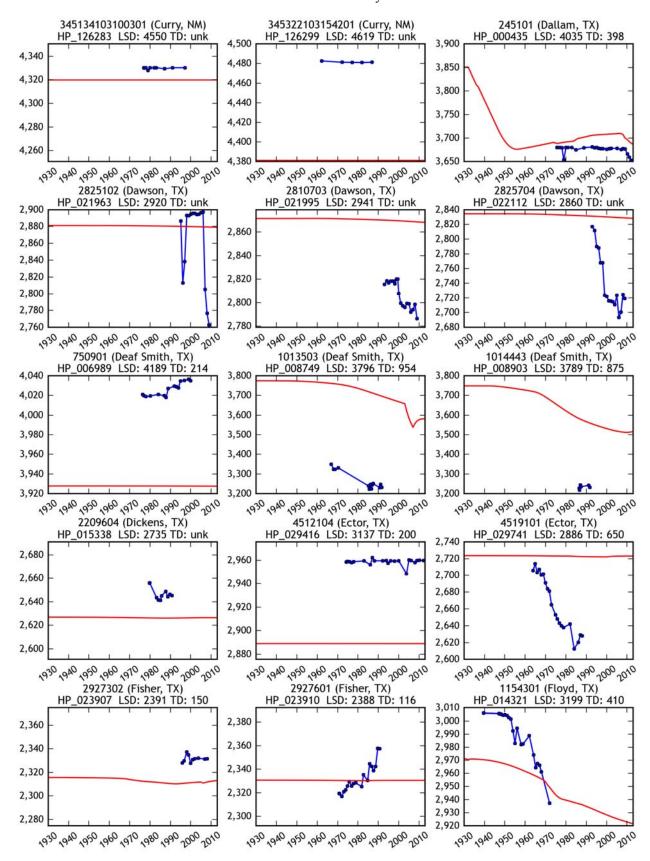

This section contains the observed and simulated hydrographs for the upper Dockum Aquifer.

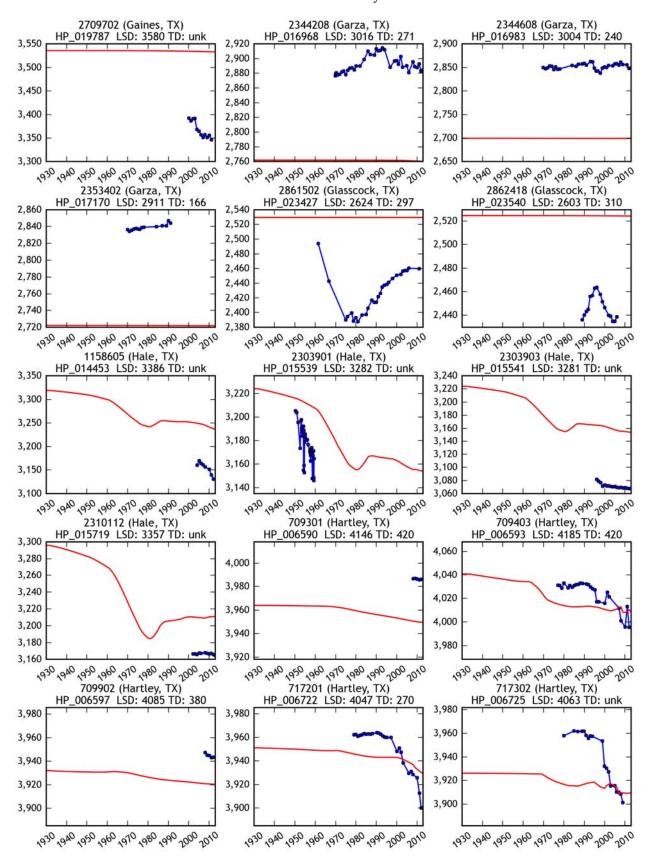
This page intentionally left blank.

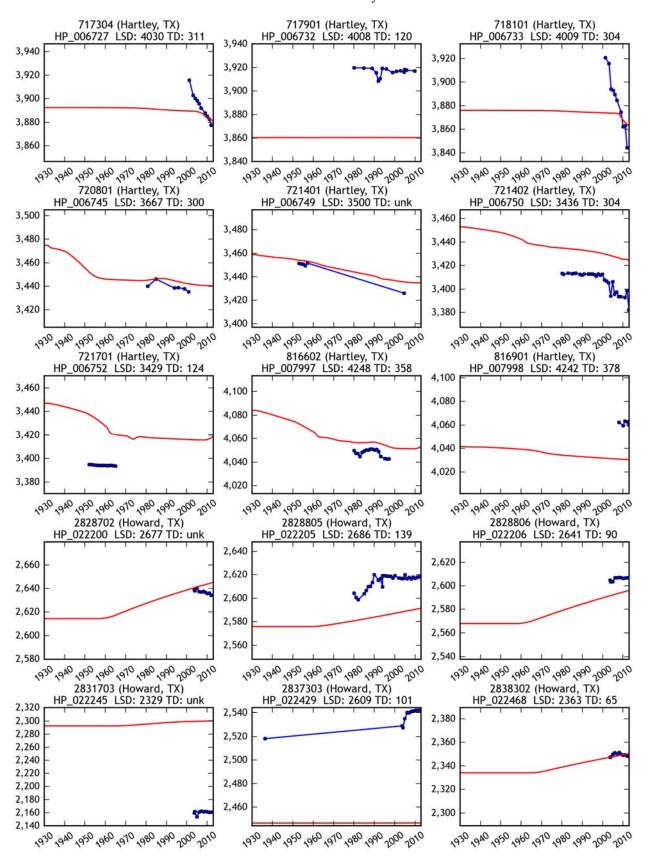


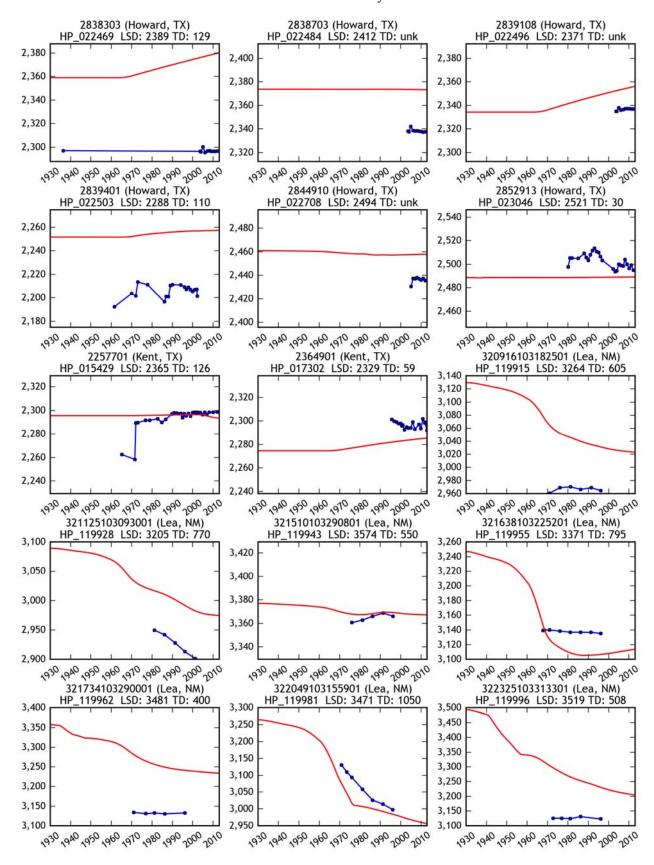


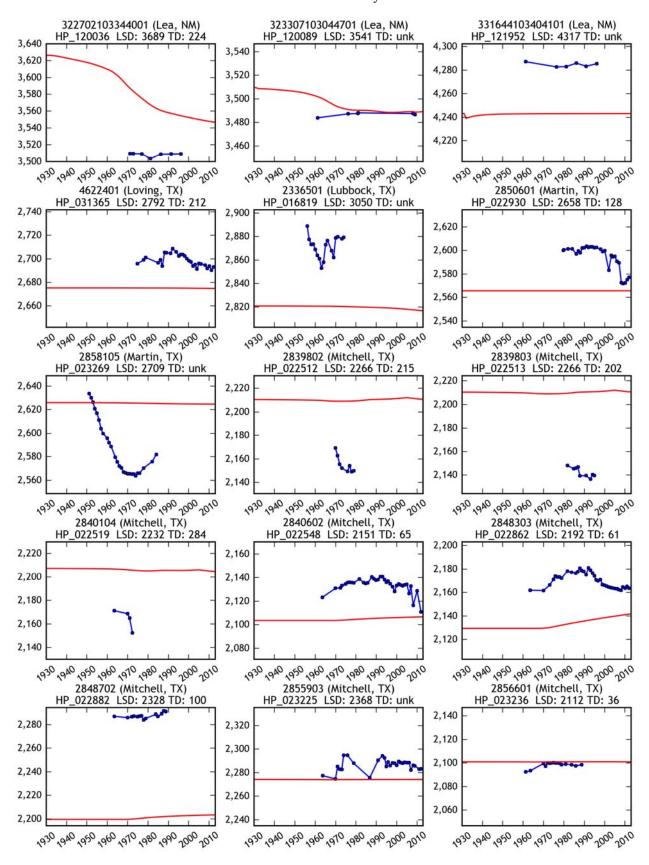

B.5 Lower Dockum Aquifer Hydrographs

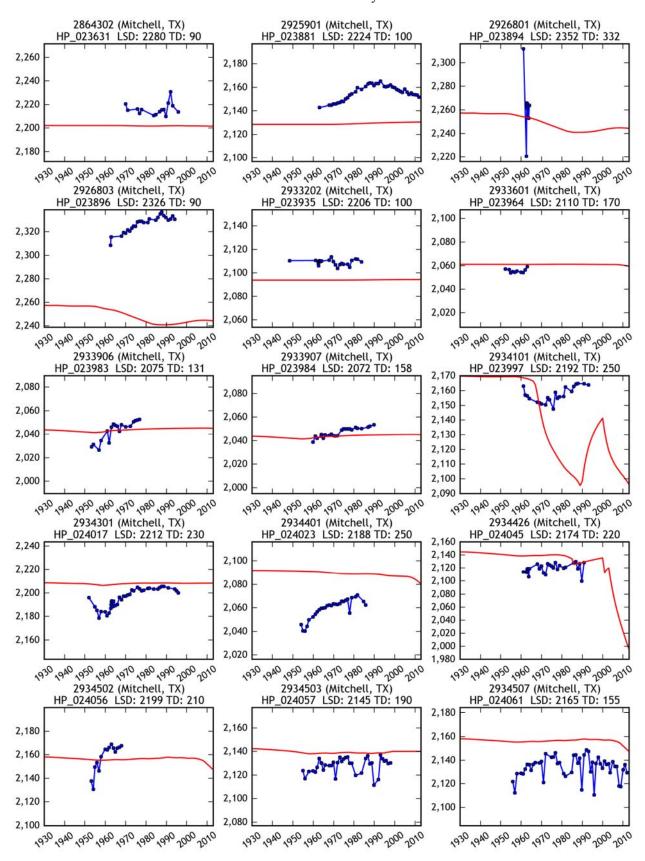

This section contains the observed and simulated hydrographs for the lower Dockum Aquifer.

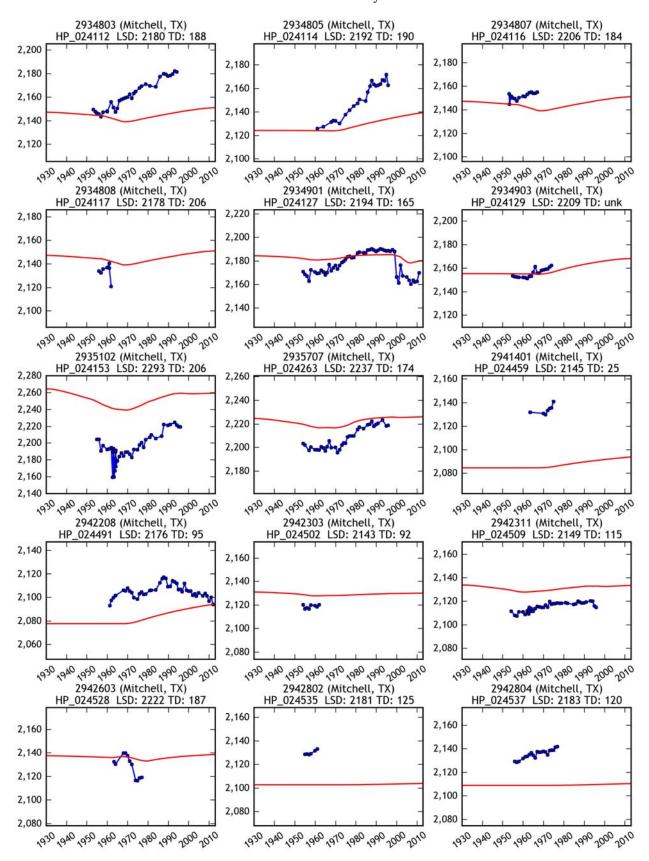

This page is intentionally left blank.

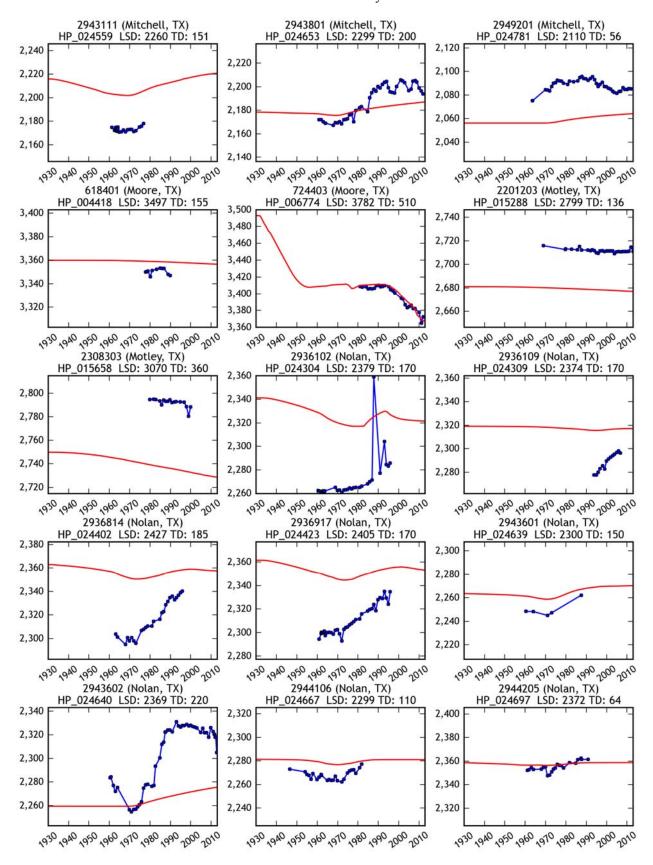


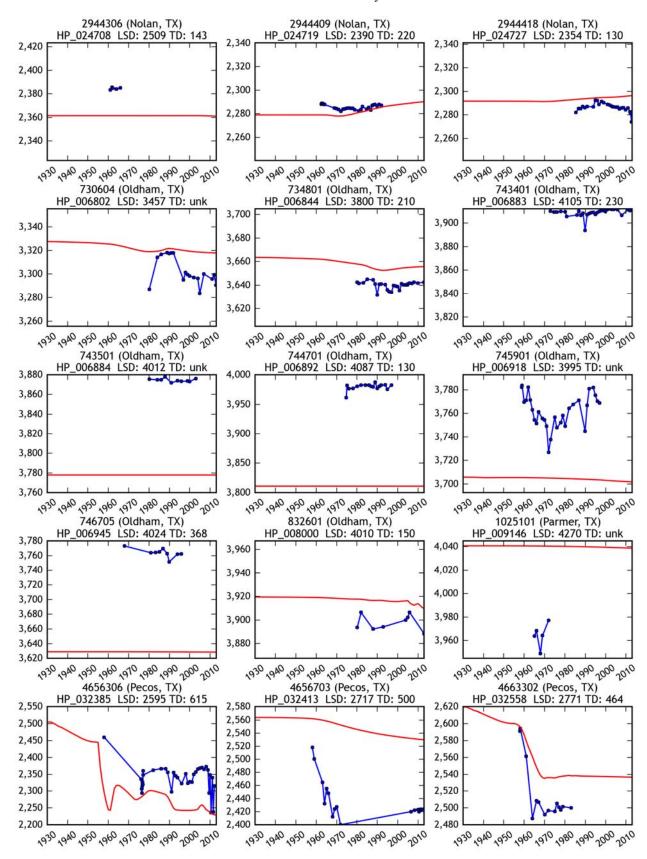


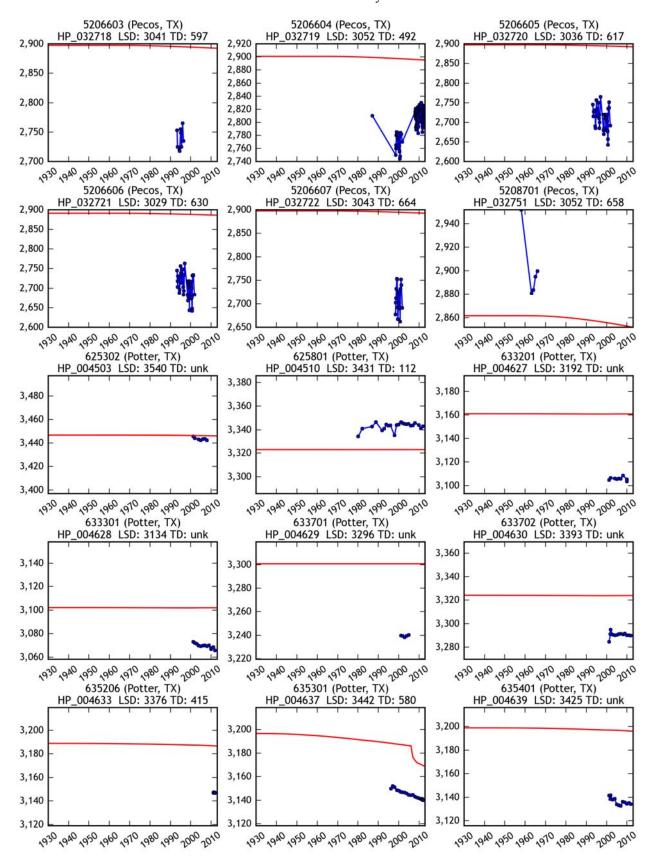


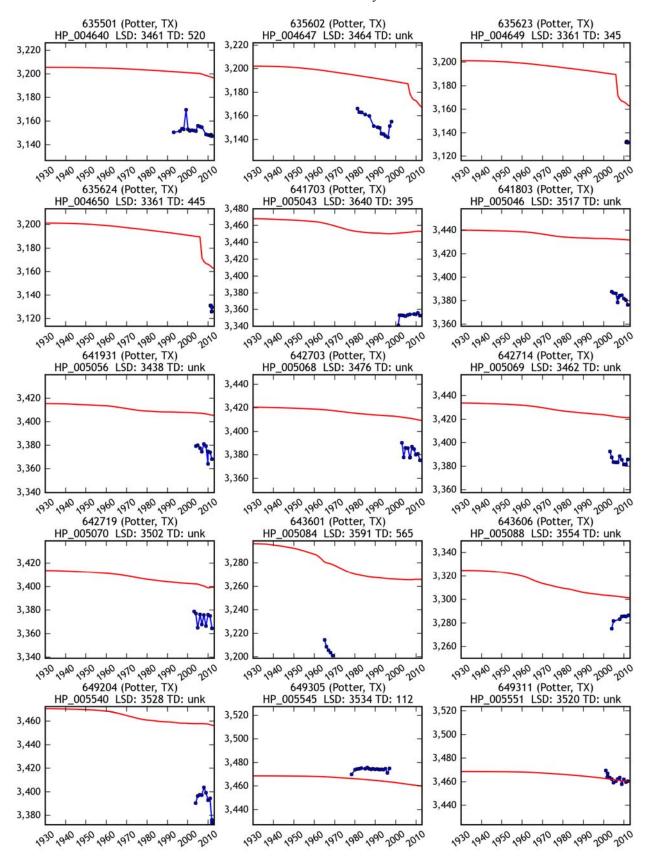


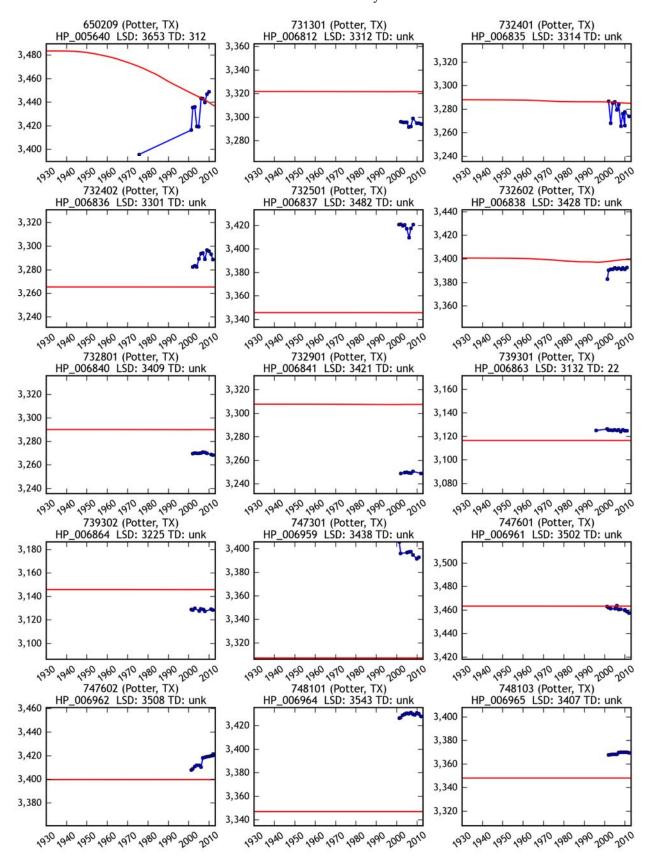


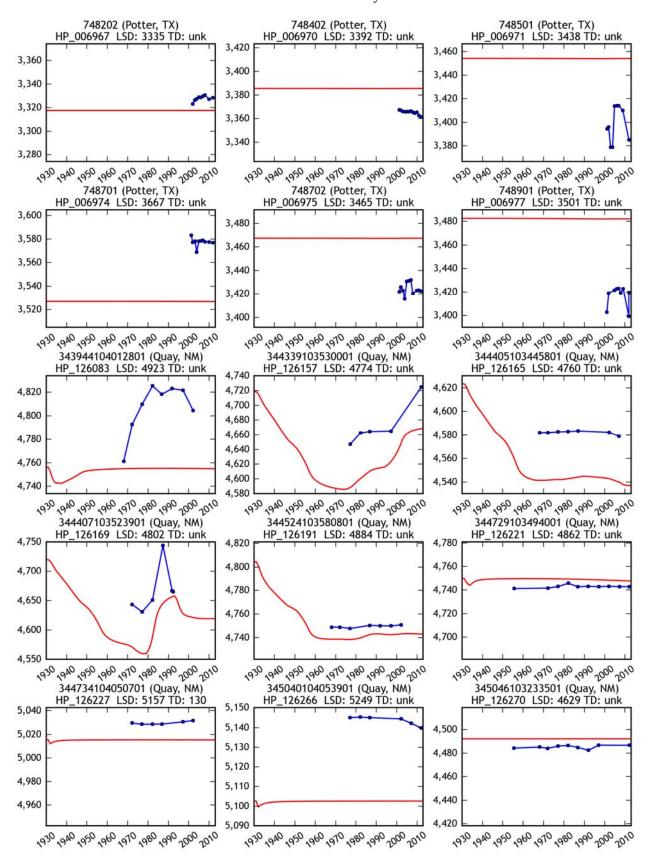


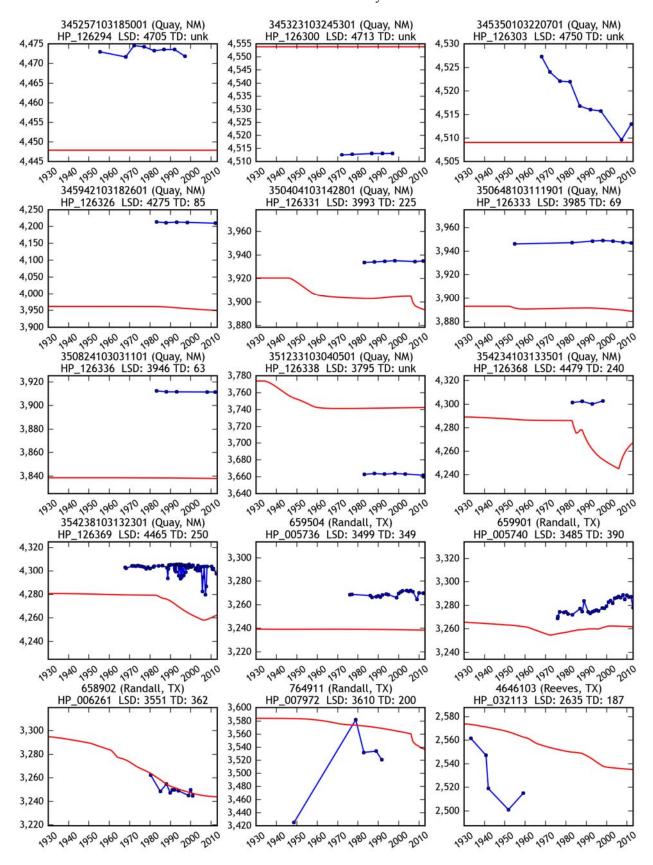


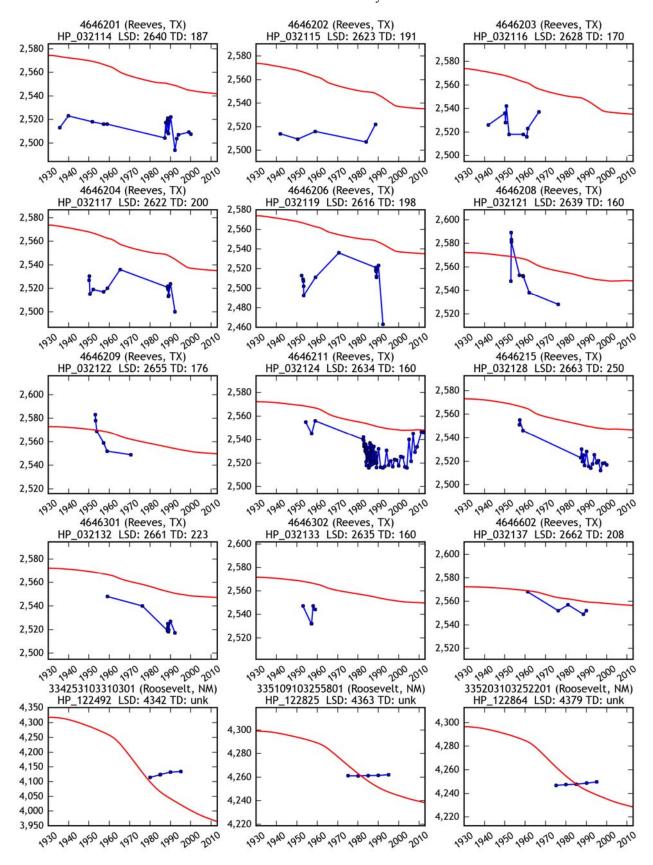


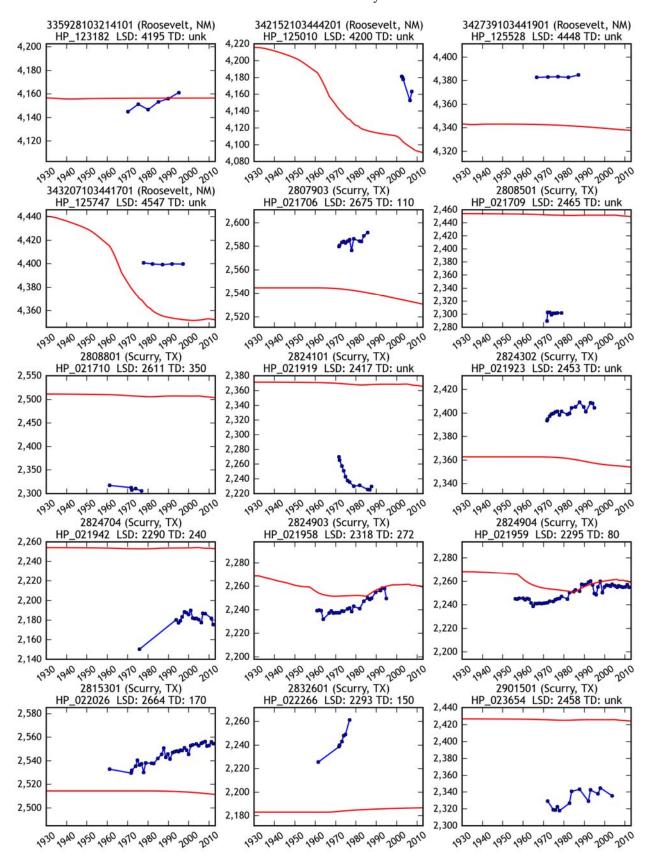


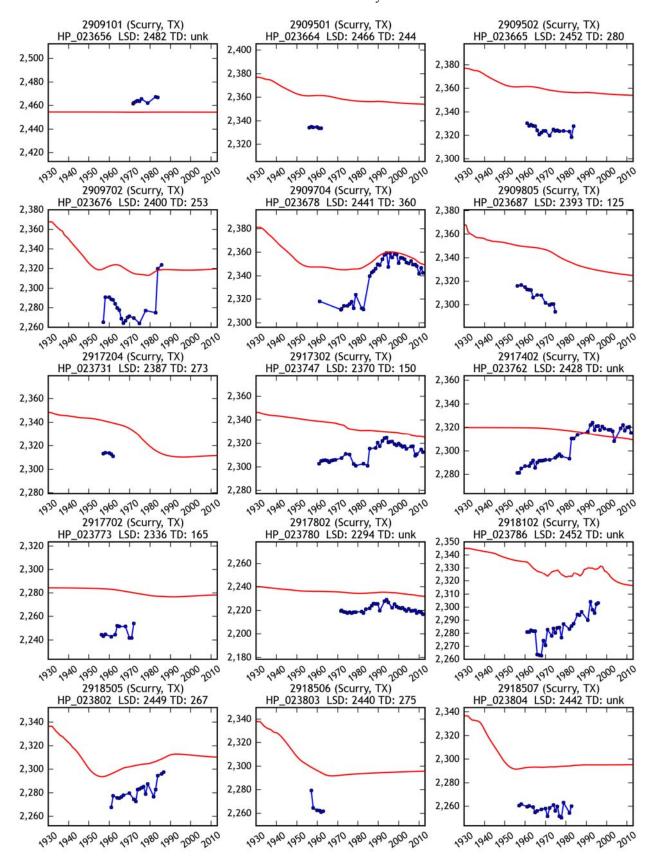


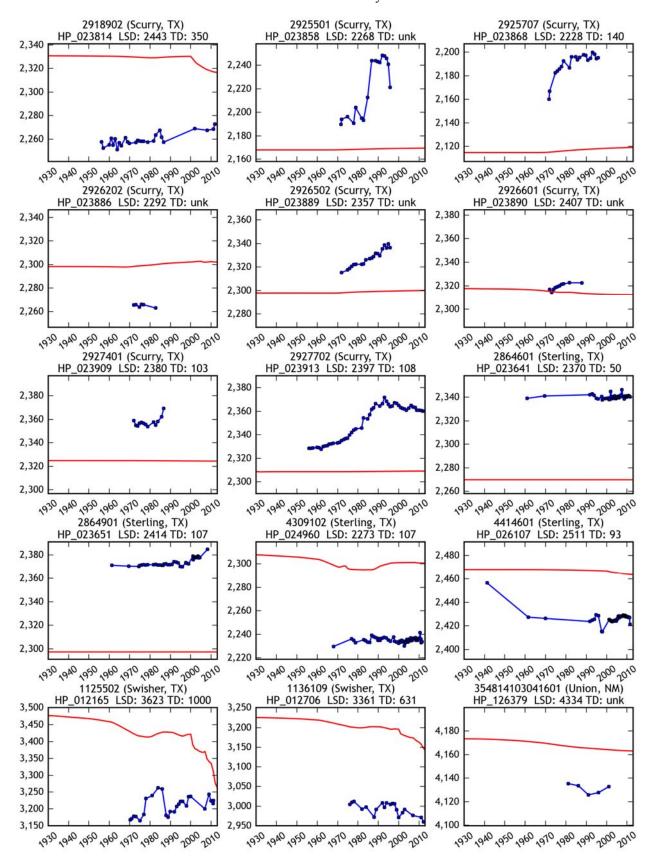


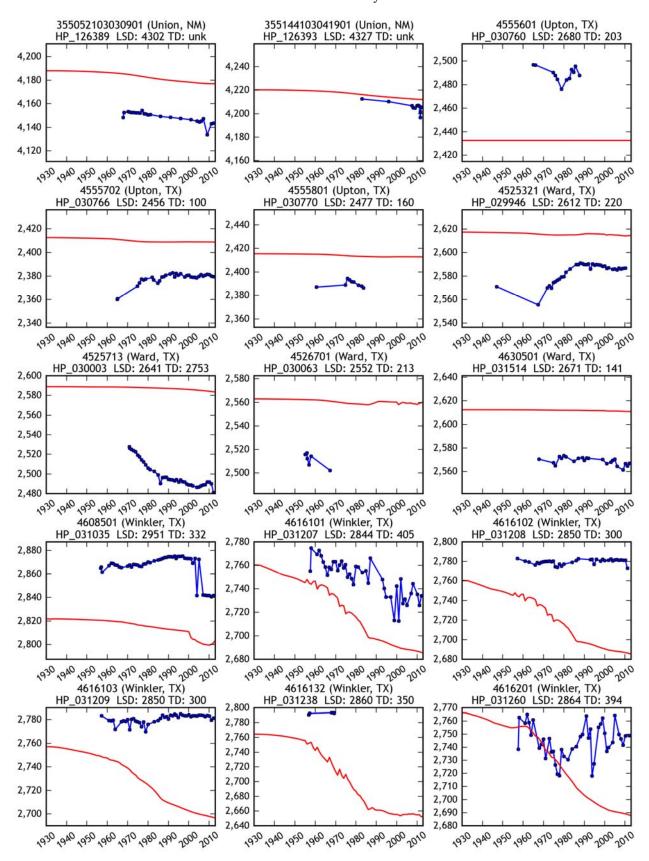


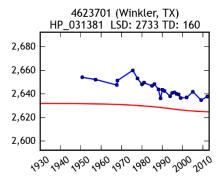












This page intentionally left blank.

Appendix C Total Pumping by County and Stress Period

This page intentionally left blank.

The tables of this appendix provide the total pumping by county and stress period in terms of volume in acre-feet per year for the period from 1930 to 2012. Pumping values are presented by aquifer.

This page intentionally left blank.

Table C.1.1 Annual pumping for the Ogallala Aquifer by county. All values are reported in acre-feet per year.

Year	Andrews	Armstrong	Bailey	Beaver	Borden	Briscoe	Carson	Castro
1930	0	0	0	0	0	0	0	0
1931	68	419	2,349	37	18	616	2,028	3,882
1932	136	838	4,698	75	35	1,231	4,056	7,764
1933	204	1,257	7,047	112	53	1,847	6,084	11,646
1934	272	1,676	9,396	150	71	2,462	6,664	15,528
1935	340	2,095	11,745	187	89	3,078	10,140	19,410
1936	408	2,514	14,094	225	106	3,694	12,168	23,292
1937	476	2,934	16,443	262	124	4,309	14,196	27,174
1938	543	3,353	18,792	300	142	4,925	16,224	31,056
1939	610	3,772	21,141	337	159	5,541	18,253	34,938
1940	678	4,191	23,490	374	177	6,156	20,281	38,820
1941	707	4,549	25,817	412	182	6,776	22,309	42,619
1942	739	4,907	28,183	449	188	7,355	24,337	46,419
1943	851	5,274	30,484	487	228	7,934	26,365	50,219
1944	969	5,642	32,786	524	269	8,512	28,393	54,018
1945	1,096	6,009	35,089	562	309	9,091	30,421	57,818
1946	1,236	6,376	37,391	599	349	9,670	32,449	61,617
1947	1,394	6,744	39,693	636	390	10,249	34,477	65,417
1948	1,630	7,118	41,996	674	454	10,828	36,505	69,217
1949	1,902	7,492	44,299	711	519	11,407	38,533	73,016
1950	2,225	7,865	46,602	839	584	11,986	40,561	76,816
1951	2,490	8,239	48,905	5,795	648	12,569	42,589	80,621
1952	2,780	8,613	51,208	6,824	713	13,151	44,617	84,427
1953	3,041	8,979	53,512	7,853	749	13,734	46,645	88,233
1954	3,337	9,346	55,815	8,881	786	14,317	48,673	92,040
1955	3,668	9,712	58,119	9,910	822	14,899	50,701	95,848
1956	4,101	11,438	60,918	10,939	858	15,490	60,218	99,619
1957	4,496	13,120	63,027	11,968	895	16,078	64,426	103,454
1958	5,016	14,856	65,473	12,996	931	16,647	71,071	107,281
1959	7,495	16,563	69,528	14,025	915	21,763	80,028	121,344
1960	10,629	18,276	73,597	15,054	898	26,809	85,099	135,328
1961	12,528	17,884	77,841	14,838	882	31,878	87,007	149,259
1962	15,736	17,556	82,170	17,200	865	36,935	91,343	163,297
1963	17,914	17,121	86,367	19,562	849	42,041	97,947	177,304
1964	20,897	16,740	90,808	21,924	832	47,157	102,459	191,513
1965	17,286	16,261	82,579	24,286	834	45,873	103,219	186,297
1966	14,128	15,817	73,980	26,648	835	44,558	107,067	181,170
1967	11,632	15,373	65,358	29,010	836	43,261	109,385	176,019
1968	7,855	14,894	56,157	31,372	838	41,955	106,765	170,949
1969	4,874	14,440	47,235	33,734	839	40,674	105,889	165,749
1970	5,679	14,024	56,882	36,096	821	41,266	111,509	165,523

Table C.1.1, cont.

Year	Andrews	Armstrong	Bailey	Beaver	Borden	Briscoe	Carson	Castro
1971	6,680	13,767	86,191	36,213	804	43,637	112,952	204,239
1971	7,380	13,707	121,538	36,773	786	46,071	112,932	242,952
1973	7,835	13,268	134,811	37,332	769	48,532	116,050	281,527
1974	8,920	13,038	135,529	37,892	751	51,068	116,352	319,895
1975	9,156	12,705	135,074	38,451	662	52,262	119,042	341,251
1976	10,123	12,457	136,545	39,011	573	53,404	122,218	359,422
1977	11,314	12,171	137,434	39,571	485	54,511	124,317	373,958
1978	11,992	12,027	138,940	40,130	441	55,471	126,644	382,715
1979	12,641	11,806	137,123	40,690	396	56,303	128,387	389,124
1980	15,732	11,720	137,475	41,250	680	52,196	130,466	439,478
1981	19,215	11,039	136,869	40,701	940	46,242	125,933	460,571
1982	22,697	10,400	136,544	40,233	1,199	40,288	122,739	481,664
1983	40,024	9,812	136,219	39,765	108	34,775	122,963	409,545
1984	18,302	9,163	135,894	39,297	274	28,786	117,111	424,571
1985	15,935	8,650	136,045	38,829	527	26,584	113,374	427,096
1986	16,394	8,214	114,623	38,361	820	26,131	111,606	289,943
1987	12,780	7,699	101,446	37,892	1,038	22,923	109,381	263,256
1988	12,207	7,220	61,903	37,424	2,671	21,109	105,665	231,065
1989	10,286	6,792	137,163	36,956	1,297	24,694	101,504	314,063
1990	16,443	6,429	153,530	36,488	1,227	31,365	99,381	393,366
1991	16,187	6,054	139,822	35,361	2,380	26,708	97,329	277,707
1992	15,405	6,018	130,715	35,451	3,186	31,134	94,335	313,566
1993	13,327	5,771	143,688	35,541	88	36,703	92,651	379,157
1994	14,413	5,290	128,382	35,634	2,902	33,983	91,796	171,659
1995	18,522	4,828	113,445	35,727	1,579	24,408	89,257	212,195
1996	17,670	4,580	135,888	35,820	5,186	23,115	87,819	251,775
1997	24,407	4,146	104,981	35,913	5,951	14,730	84,152	293,236
1998	15,772	5,733	118,407	35,918	3,444	31,271	98,728	262,544
1999	15,870	7,551	79,804	37,912	2,723	25,616	112,273	196,864
2000	17,534	9,245	107,235	40,372	1,946	30,543	125,506	243,967
2001	24,577	8,562	107,610	42,832	4,050	36,940	119,661	226,708
2002	23,474	8,569	99,658	43,096	4,361	35,936	115,314	245,170
2003	26,775	7,964	91,629	43,359	4,199	41,148	106,741	191,279
2004	22,781	8,296	93,269	43,623	4,418	36,697	104,654	188,092
2005	25,347	7,247	37,477	43,886	4,672	47,236	95,193	145,034
2006	25,489	6,906	55,465	44,150	4,370	39,797	93,320	164,678
2007	32,770	7,030	92,304	44,413	4,534	36,325	96,151	241,825
2008	25,289	5,560	90,596	44,677	4,337	44,746	78,671	247,366
2009	21,032	6,284	69,373	45,059	6,052	55,326	78,662	193,061
2010	19,574	4,735	43,665	45,323	3,645	33,456	89,291	173,502
2011	20,825	8,470	82,483	45,588	5,832	36,892	129,313	203,969
2012	20,825	8,470	82,483	45,588	5,832	36,892	129,313	203,969

Table C.1.1, cont.

Year	Cimarron	Cochran	Collingsworth	Crosby	Curry	Dallam	Dawson	Deaf Smith
1930	0	0	0	0	0	0	0	0
1931	4,453	255	0	2,531	158	2,013	883	5,282
1932	8,906	509	0	5,062	316	4,025	1,765	10,563
1933	13,359	764	0	7,593	474	6,038	2,648	15,845
1934	17,812	1,018	0	10,124	631	8,051	3,530	21,126
1935	22,265	1,273	0	12,655	789	10,063	4,413	26,408
1936	26,718	1,527	0	15,186	947	12,076	5,295	31,689
1937	31,171	1,782	0	17,717	1,105	14,088	6,178	36,971
1938	35,624	2,036	0	20,249	1,263	16,101	7,060	42,252
1939	40,077	2,291	0	22,780	1,421	18,114	7,943	47,534
1940	44,530	2,545	0	25,311	1,579	20,126	8,825	52,815
1941	48,983	2,770	0	27,812	1,636	22,139	9,961	57,943
1942	53,436	2,995	0	30,296	1,693	24,152	10,710	63,073
1943	57,889	4,635	0	32,779	1,751	26,164	16,014	68,204
1944	62,342	6,275	0	35,263	1,808	28,177	21,320	73,333
1945	66,795	7,916	0	37,746	1,866	30,189	26,627	78,469
1946	71,248	9,558	0	40,230	1,923	32,202	31,936	83,608
1947	75,701	11,200	0	42,713	1,981	34,215	37,245	88,749
1948	80,154	13,821	0	45,197	2,038	36,227	45,710	93,892
1949	84,607	16,444	0	47,680	2,096	38,240	54,176	99,038
1950	886	19,067	0	50,164	2,153	40,253	62,644	104,187
1951	7,979	21,679	0	52,651	2,204	42,265	71,054	109,332
1952	11,297	24,292	0	55,138	8,240	44,278	79,464	114,480
1953	14,616	25,762	0	57,625	43,507	46,290	84,195	119,630
1954	17,934	27,233	0	60,112	104,958	48,303	88,926	124,783
1955	21,253	28,703	0	62,599	140,790	50,316	93,657	129,939
1956	24,572	30,161	0	65,048	158,462	57,978	98,392	135,180
1957	27,890	31,635	0	67,546	142,514	65,053	102,842	140,144
1958	31,209	33,103	0	70,078	108,056	72,386	107,785	145,196
1959	34,527	33,938	0	74,150	97,619	80,035	115,169	149,003
1960	37,846	34,768	0	78,250	72,671	87,398	122,514	152,519
1961	37,998	35,580	0	82,372	98,708	92,918	129,798	156,259
1962	47,188	36,410	0	86,460	124,745	98,826	137,266	159,901
1963	56,378	37,242	0	90,556	150,782	104,584	144,476	163,779
1964	65,569	38,097	0	94,733	176,819	110,266	151,833	167,731
1965	74,759	34,546	0	97,469	202,856	115,727	130,352	169,372
1966	83,949	30,933	0	100,201	228,893	121,754	108,733	170,025
1967	93,139	27,318	0	102,939	255,480	127,505	87,439	171,066
1968	102,329	23,674	0	105,665	281,586	132,987	65,190	171,408
1969	111,519	20,081	0	108,390	288,705	138,337	43,225	171,774
1970	120,709	21,314	0	110,096	289,185	144,296	42,353	176,135

Table C.1.1, cont.

Year	Cimarron	Cochran	Collingsworth	Crosby	Curry	Dallam	Dawson	Deaf Smith
1971	122,291	27,774	0	122,975	289,515	153,862	38,918	212,906
1972	118,542	34,785	0	136,191	289,845	163,589	36,552	249,730
1973	114,794	42,413	0	149,781	290,173	173,310	34,396	286,609
1974	111,045	50,636	0	163,667	290,503	183,090	32,225	326,054
1975	107,297	49,190	0	146,865	290,832	192,805	28,061	332,134
1976	103,548	45,861	0	126,299	281,639	202,596	24,027	337,097
1977	99,800	41,588	0	101,936	272,445	212,453	20,271	335,026
1978	96,051	34,971	0	73,766	263,236	222,629	15,618	325,761
1979	92,303	27,434	0	41,786	254,028	232,068	10,733	312,600
1980	88,554	64,299	0	71,132	244,820	242,234	21,620	329,870
1981	82,566	99,530	0	98,324	200,233	253,664	33,246	326,619
1982	81,336	134,760	0	125,516	139,683	265,547	44,872	323,368
1983	80,106	94,530	0	159,794	100,974	277,479	43,391	285,275
1984	78,877	103,354	0	164,451	107,002	289,298	40,400	248,941
1985	77,647	69,780	0	89,716	99,410	300,651	48,750	166,866
1986	76,417	72,651	0	95,160	92,255	312,068	23,142	158,351
1987	75,187	45,060	0	72,515	85,099	323,645	25,175	183,314
1988	73,958	72,271	0	93,882	91,020	334,894	18,483	195,501
1989	72,728	40,540	0	121,663	96,941	346,572	37,458	174,432
1990	71,498	48,565	0	141,480	102,862	357,989	33,758	230,464
1991	69,008	51,736	0	149,799	108,753	346,154	39,383	180,367
1992	69,098	77,194	0	154,515	114,623	334,948	32,677	220,136
1993	69,188	82,350	0	193,937	121,586	323,476	55,139	260,682
1994	69,285	82,518	0	155,232	145,216	312,204	55,706	240,332
1995	69,381	79,029	0	139,582	130,821	300,548	50,501	209,102
1996	69,478	108,721	0	143,709	115,528	289,350	108,269	219,225
1997	69,574	76,036	0	109,778	100,236	278,580	97,902	194,753
1998	69,501	79,606	1	155,966	125,854	290,540	98,628	188,549
1999	74,242	65,725	1	156,197	125,854	302,828	80,313	332,082
2000	79,587	77,862	1	108,391	125,854	315,145	108,637	268,685
2001	84,931	82,188	1	152,588	126,001	320,019	107,053	222,211
2002	85,501	85,963	1	143,837	126,001	324,863	101,075	231,179
2003	86,070	102,985	1	143,053	126,001	329,156	94,959	176,490
2004	86,639	95,967	1	133,974	126,001	333,539	77,727	172,305
2005	87,208	53,040	1	72,170	126,001	339,636	78,305	111,923
2006	87,777	63,703	1	86,275	126,001	343,053	96,481	106,047
2007	88,346	107,441	1	149,490	126,001	347,633	53,914	187,386
2008	88,915	83,828	1	164,138	126,001	377,077	103,920	213,863
2009	90,924	71,162	0	123,833	126,001	389,544	98,454	158,724
2010	90,776	49,843	0	78,202	126,001	336,684	61,114	138,671
2011	90,629	71,384	0	131,300	126,001	455,177	119,199	173,719
2012	90,629	71,384	0	131,116	126,001	455,239	119,199	173,719

Table C.1.1, cont.

Year	Dickens	Donley	Ector	Ellis	Floyd	Gaines	Garza	Glasscock
1930	0	0	0	0	0	0	0	0
1931	55	147	88	16	6,230	1,361	111	42
1932	109	295	176	33	13,417	2,723	222	85
1933	164	442	264	49	20,126	4,084	333	127
1934	218	589	352	65	26,834	5,445	444	170
1935	273	737	439	82	33,543	6,807	555	212
1936	327	884	527	98	40,251	8,168	666	254
1937	382	1,031	615	114	46,960	9,529	777	297
1938	436	1,179	703	131	53,668	10,891	888	339
1939	491	1,326	791	147	60,377	12,252	999	381
1940	545	1,473	879	163	67,085	13,613	1,110	424
1941	580	1,621	1,051	180	73,655	14,914	1,210	430
1942	615	1,768	1,260	196	80,187	15,967	1,310	436
1943	878	1,915	1,515	213	86,719	23,743	2,060	483
1944	1,140	2,062	1,827	229	93,251	31,447	2,810	529
1945	1,403	2,210	2,206	245	99,783	39,151	3,560	575
1946	1,666	2,357	2,669	262	106,315	46,855	4,310	622
1947	1,928	2,504	3,232	278	112,847	54,560	5,060	668
1948	2,348	2,652	3,920	294	119,379	66,869	6,260	742
1949	2,768	2,799	4,758	311	125,911	79,178	7,460	817
1950	3,189	2,946	5,780	655	132,443	91,488	8,660	891
1951	3,609	3,094	6,526	2,272	138,998	103,827	9,860	965
1952	4,029	3,241	7,371	2,399	145,554	116,245	11,060	1,039
1953	4,265	3,388	8,327	2,525	152,110	123,297	11,735	1,081
1954	4,502	3,536	9,409	2,652	158,666	130,354	12,410	1,123
1955	4,738	3,683	10,633	2,779	165,224	137,418	13,085	1,165
1956	4,974	3,911	12,235	2,906	171,793	144,445	13,760	1,206
1957	5,211	4,253	12,619	3,033	178,470	151,148	14,435	1,248
1958	5,447	4,841	10,210	3,159	184,841	158,295	15,110	1,290
1959	5,571	5,099	8,120	3,286	195,779	179,430	15,613	1,463
1960	5,695	5,381	7,737	3,413	206,729	201,224	16,115	1,636
1961	5,819	6,275	10,004	3,264	217,561	222,987	16,617	1,809
1962	5,944	6,884	9,220	4,302	228,530	244,834	17,120	1,984
1963	6,068	7,881	10,087	5,339	239,516	266,716	17,622	2,157
1964	6,192	8,699	11,749	6,376	250,661	289,918	18,124	2,328
1965	6,684	9,242	11,774	7,414	262,638	262,184	17,818	2,482
1966	7,176	9,968	10,946	8,451	274,493	234,250	17,512	2,636
1967	7,669	10,651	11,020	9,488	286,386	207,336	17,206	2,789
1968	8,161	10,718	9,733	10,526	298,177	179,590	16,900	2,943
1969	8,653	11,498	9,783	11,563	310,251	151,958	16,594	3,097
1970	8,490	12,248	8,473	12,600	304,490	184,954	16,431	3,431

Table C.1.1, cont.

Year	Dickens	Donley	Ector	Ellis	Floyd	Gaines	Garza	Glasscock
1971								
1971	8,327	12,188	9,465	12,831	298,529	217,976	16,267	3,766
1972	8,165	12,280	8,332	14,170	292,588	251,094	16,104	4,101
1973	8,002	12,254	8,058	15,509	286,630	283,518	15,941	4,436
	7,839	12,312	8,098	16,848	280,900	316,655	15,777	4,770
1975	6,602	12,276	8,409	18,187	259,466	336,375	15,007	4,482
1976	5,365	12,309	8,417	19,527	238,204	356,705	14,236	4,194
1977	4,127	12,371	8,420	20,866	216,882	376,812	13,466	3,904
1978	2,923	12,308	7,525	22,205	195,520	397,564	12,745	3,637
1979	1,719	12,325	7,691	23,544	173,953	418,130	12,024	3,369
1980	3,396	12,409	3,884	24,884	224,649	422,025	10,105	4,039
1981	5,067	13,309	3,834	25,517	275,103	426,667	8,194	4,668
1982	6,737	14,116	3,785	26,967	325,557	431,381	6,284	5,297
1983	3,625	15,198	804	28,416	235,076	329,585	6,887	5,609
1984	4,989	16,129	945	29,866	257,035	263,308	7,697	5,211
1985	2,494	17,019	1,956	31,316	167,808	306,985	5,575	2,657
1986	3,121	17,906	1,870	32,765	143,638	211,959	3,498	5,180
1987	1,264	18,869	3,255	34,215	153,046	235,069	3,730	3,154
1988	1,821	19,742	1,757	35,665	170,301	204,835	4,711	3,558
1989	1,989	20,712	2,175	37,114	155,774	303,642	7,091	3,701
1990	2,304	21,674	5,523	38,564	192,055	323,001	5,049	3,222
1991	1,391	20,260	8,987	39,275	206,103	352,996	3,919	4,234
1992	2,075	18,825	6,144	39,382	215,493	328,008	5,174	4,297
1993	1,332	17,410	6,259	39,489	232,894	311,626	6,265	4,095
1994	2,092	15,986	5,152	39,600	217,898	330,529	9,872	5,346
1995	2,259	14,557	7,181	39,711	189,661	323,049	11,034	6,894
1996	6,931	13,182	7,304	39,822	174,872	284,740	16,850	5,538
1997	6,539	11,823	3,553	39,933	141,146	319,231	14,900	6,417
1998	6,154	15,142	500	39,945	181,356	335,936	24,968	6,250
1999	5,750	19,063	1,174	42,693	185,334	320,712	12,320	2,478
2000	3,992	25,950	3,616	45,447	166,457	267,175	17,694	3,266
2001	3,787	24,377	5,450	48,201	123,911	350,065	21,138	2,382
2002	4,147	25,258	3,500	48,501	132,815	318,804	28,811	2,437
2003	4,217	26,383	99	48,801	136,600	269,227	19,436	4,134
2004	3,936	27,751	101	49,101	121,393	288,741	19,321	4,062
2005	4,790	28,424	136	49,401	83,215	271,410	17,179	4,062
2006	4,899	30,205	142	49,700	90,482	266,248	16,789	4,279
2007	3,603	30,099	170	50,000	117,809	263,870	21,149	3,493
2008	3,513	30,821	97	50,300	134,397	342,193	13,043	3,931
2009	4,495	29,978	977	50,486	121,735	253,412	21,994	4,204
2010	3,858	26,277	712	50,782	73,658	230,353	10,824	5,240
2011	4,581	39,752	238	51,079	119,804	291,267	16,846	4,886
2012	4,581	39,752	238	51,079	119,804	291,274	16,846	4,886

Table C.1.1, cont.

Year	Gray	Hale	Hansford	Harper	Hartley	Hemphill	Hockley	Howard	Hutchinson
1930	0	0	0	0	0	0	0	0	0
1931	348	7,340	1,102	32	698	26	1,507	30	1,693
1932	695	14,681	2,203	65	1,395	52	3,014	59	3,386
1933	1,043	22,021	3,305	97	2,093	78	4,521	89	5,079
1934	1,391	29,362	4,406	130	2,791	103	6,028	119	6,772
1935	1,738	36,702	5,508	162	3,488	129	7,535	149	8,465
1936	2,086	44,043	6,610	195	4,186	155	9,043	178	10,158
1937	2,434	51,383	7,711	227	4,884	181	10,550	208	11,851
1938	2,781	58,724	8,813	260	5,581	207	12,057	238	13,544
1939	3,129	66,064	9,915	292	6,279	233	13,564	267	15,237
1940	3,476	73,405	11,016	325	6,977	258	15,071	297	16,930
1941	3,824	80,702	12,118	357	7,674	284	16,557	307	18,623
1942	4,172	87,947	13,317	389	8,372	310	18,044	318	20,316
1943	4,519	95,195	14,321	422	9,069	336	19,531	394	22,009
1944	4,867	102,445	15,423	454	9,767	362	21,020	471	23,702
1945	5,215	109,699	16,524	487	10,465	388	22,510	548	25,395
1946	5,562	116,955	17,626	519	11,162	414	24,000	624	27,088
1947	5,910	124,214	18,728	552	11,860	439	25,492	701	28,781
1948	6,258	131,477	19,829	584	12,558	465	26,985	824	30,474
1949	6,605	138,743	20,931	617	13,255	491	28,479	947	32,167
1950	6,953	146,013	22,032	127	13,953	517	29,975	1,069	33,860
1951	7,301	153,256	23,134	3,431	14,651	543	31,452	1,192	35,553
1952	7,648	160,500	24,236	3,768	15,348	569	32,929	1,315	37,246
1953	7,996	167,746	25,337	4,105	16,046	594	34,406	1,384	38,939
1954	8,343	174,993	26,439	4,442	16,744	620	35,883	1,453	40,632
1955	8,691	182,265	27,541	4,779	17,441	646	37,360	1,522	42,325
1956	10,963	189,775	32,737	5,116	20,882	760	38,936	1,592	48,110
1957	10,937	196,703	37,431	5,453	24,195	917	40,436	1,661	52,230
1958	11,351	204,005	42,346	5,790	27,538	751	42,205	1,729	51,808
1959	12,493	234,990	47,923	6,127	30,942	771	51,885	1,834	58,178
1960	13,463	266,045	52,507	6,464	34,324	720	61,585	1,939	63,655
1961	14,318	295,552	67,981	6,270	46,209	762	71,333	2,044	64,906
1962	15,353	327,897	83,751	6,506	58,214	809	81,126	2,149	68,177
1963	19,433	358,984	98,835	6,743	70,221	1,070	90,926	2,255	70,210
1964	18,456	389,992	115,112	6,979	82,142	1,023	100,78	2,361	73,240
1965	19,669	360,781	130,245	7,216	94,117	1,165	91,717	2,203	72,118
1966	21,290	330,734	145,821	7,452	106,15	1,215	82,382	2,045	73,792
1967	22,774	300,290	161,236	7,689	117,91	1,235	73,062	1,888	75,352
1968	24,293	270,549	177,226	7,925	129,81	1,410	63,621	1,730	77,346
1969	25,094	241,389	192,315	8,162	141,51	1,509	54,410	1,573	78,832
1970	26,393	251,453	207,790	8,398	153,68	1,627	60,970	1,798	81,676

Table C.1.1, cont.

Year	Gray	Hale	Hansford	Harper	Hartley	Hemphill	Hockley	Howard	Hutchinson
1971	25,519	310,869	205,018	8,123	163,605	1,723	87,550	2,023	84,564
1972	31,645	373,963	202,285	8,540	173,570	1,699	118,323	2,248	87,950
1973	21,338	440,801	198,788	8,957	183,546	1,621	152,738	2,473	89,892
1974	20,459	511,229	195,974	9,373	193,581	1,718	191,425	2,697	90,464
1975	19,281	502,273	192,914	9,790	203,514	1,611	179,734	2,364	91,409
1976	18,951	481,602	190,118	10,207	213,580	1,764	159,528	2,021	94,076
1977	18,068	448,309	187,684	10,623	223,895	1,883	129,986	1,682	95,663
1978	17,859	403,083	185,278	11,040	234,224	1,907	91,999	1,650	97,426
1979	17,153	344,866	182,729	11,457	244,499	1,923	43,884	1,643	97,139
1980	17,010	406,091	180,324	11,873	254,951	2,333	112,920	5,489	95,095
1981	16,183	441,597	172,905	11,958	249,465	2,052	178,871	9,309	92,705
1982	16,427	477,103	165,514	11,870	244,029	1,888	244,822	13,129	88,601
1983	16,282	418,074	158,439	11,781	238,765	1,482	211,742	4,821	83,033
1984	16,584	432,725	151,255	11,692	233,402	1,490	176,726	5,755	77,842
1985	16,515	391,168	144,573	11,603	228,556	1,357	145,830	5,973	72,721
1986	15,374	298,175	134,479	11,514	222,259	1,436	114,458	5,897	67,500
1987	14,851	265,503	128,776	11,425	217,605	815	86,780	3,410	63,136
1988	13,078	245,696	118,563	11,336	210,563	1,109	88,358	4,389	58,998
1989	14,924	431,549	110,974	11,247	205,121	978	147,564	5,341	54,583
1990	15,191	441,391	103,398	11,158	199,764	1,006	147,003	7,025	50,102
1991	16,031	295,421	108,892	10,864	192,764	1,440	145,728	6,640	49,764
1992	17,067	384,318	114,869	10,892	186,932	2,197	177,751	8,971	46,257
1993	18,195	407,826	120,282	10,920	179,843	2,534	179,850	5,533	43,023
1994	19,224	394,884	125,458	10,948	172,562	2,956	190,314	4,356	43,872
1995	19,531	328,352	130,790	10,977	165,943	3,287	173,599	4,212	42,984
1996	19,478	334,227	135,585	11,005	159,426	3,926	173,174	4,200	40,958
1997	20,292	239,293	141,561	11,034	152,577	4,414	154,010	5,489	39,728
1998	22,802	304,303	141,780	11,035	199,416	4,661	165,173	9,498	48,602
1999	26,493	285,761	141,884	11,780	246,124	6,110	195,206	12,684	62,314
2000	29,663	273,558	142,131	12,544	293,017	6,384	175,046	6,813	76,766
2001	29,193	251,577	136,580	13,309	294,045	6,332	187,755	5,547	73,056
2002	29,601	285,065	131,106	13,390	295,200	6,710	165,837	5,245	66,486
2003	29,313	290,993	125,530	13,472	296,465	7,282	192,397	4,153	63,006
2004	29,320	261,698	120,008	13,554	297,578	7,987	186,175	4,542	59,112
2005	28,274	182,261	114,514	13,636	298,674	7,161	92,003	4,572	56,120
2006	29,038	209,626	109,217	13,718	299,930	8,087	110,896	6,110	52,263
2007	27,336	362,216	103,185	13,800	300,971	9,166	198,338	9,509	42,543
2008	27,253	390,763	145,555	13,881	367,995	12,877	131,632	7,623	59,940
2009	41,068	273,534	157,452	13,963	388,040	8,771	152,183	9,837	80,140
2010	26,306	166,304	134,274	14,045	346,449	14,175	101,261	10,807	63,416
2011	41,569	288,789	239,003	14,127	490,652	21,951	152,075	13,768	88,136
2012	41,569	288,789	239,003	14,127	490,652	21,951	152,075	13,768	88,136

Table C.1.1, cont.

Year	Lamb	Lea	Lipscomb	Lubbock	Lynn	Martin	Midland	Moore
1930	0	0	0	0	0	0	0	0
1931	4,338	475	74	3,875	671	558	116	1,528
1932	8,676	950	149	7,750	1,343	1,117	232	3,218
1933	13,014	1,424	223	11,626	2,014	1,675	347	4,827
1934	17,352	1,899	298	15,501	2,686	2,233	463	6,436
1935	21,690	2,374	372	19,376	3,357	2,792	579	8,045
1936	26,028	2,849	447	23,251	4,029	3,350	695	9,654
1937	30,366	3,324	521	27,126	4,700	3,909	811	11,263
1938	34,704	3,799	596	31,002	5,372	4,467	927	12,872
1939	39,042	4,273	670	34,877	6,043	5,025	1,042	14,481
1940	43,380	4,748	745	38,737	6,715	5,584	1,158	15,705
1941	47,631	3,133	819	42,563	7,442	6,011	1,293	17,275
1942	51,882	5,117	894	46,409	7,963	6,282	1,440	18,846
1943	56,134	7,652	968	50,276	11,928	8,315	1,861	20,917
1944	60,385	5,186	1,043	54,167	15,893	10,348	2,298	22,526
1945	64,637	8,221	1,117	58,084	19,859	12,381	2,755	24,135
1946	68,889	5,256	1,192	62,030	23,824	14,414	3,233	25,744
1947	73,141	20,790	1,266	66,009	27,790	16,447	3,735	27,353
1948	77,393	40,825	1,341	70,022	34,141	19,700	4,444	28,962
1949	81,645	63,426	1,415	74,075	40,492	22,953	5,185	30,571
1950	85,897	98,507	1,490	78,171	46,843	26,207	5,962	32,180
1951	90,147	156,657	1,564	82,089	53,202	29,437	6,924	33,789
1952	94,396	169,807	1,639	86,068	59,561	32,668	7,980	35,398
1953	98,646	168,957	1,713	90,021	63,138	34,475	8,939	37,007
1954	102,895	167,107	1,788	93,993	66,715	36,283	10,033	38,616
1955	107,145	174,257	1,862	97,983	70,291	38,090	11,287	40,225
1956	111,532	164,407	2,204	101,720	73,680	39,266	12,099	46,868
1957	116,089	146,123	2,494	104,352	77,225	41,472	11,800	53,385
1958	120,694	114,835	2,882	108,196	80,831	43,229	12,187	60,032
1959	135,457	156,983	3,225	103,829	80,709	45,100	12,144	67,321
1960	150,140	113,132	3,565	99,316	80,759	46,745	11,125	74,649
1961	164,364	115,290	3,726	94,418	80,665	47,625	10,092	83,908
1962	179,102	117,446	3,963	90,404	80,694	48,897	10,006	94,213
1963	193,955	119,603	4,177	86,147	80,578	50,160	9,849	104,426
1964	208,420	121,760	4,495	81,828	80,480	52,105	9,484	113,897
1965	190,659	123,916	4,717	80,660	69,390	48,517	10,186	122,569
1966	172,782	126,072	4,945	78,846	58,221	44,586	10,406	133,435
1967	154,981	128,234	5,175	79,444	46,996	42,210	12,302	143,191
1968	136,361	130,387	5,461	72,692	35,659	38,945	13,568	153,001
1969	118,199	132,544	5,651	69,619	24,662	34,893	13,723	161,902
1970	119,855	132,607	5,877	76,169	34,159	31,340	10,095	171,229

Table C.1.1, cont.

Year	Lamb	Lea	Lipscomb	Lubbock	Lynn	Martin	Midland	Moore
1971	149,456	132,536	7,366	96,849	43,894	31,781	10,850	172,660
1972	179,944	132,464	8,986	120,978	53,629	30,838	10,065	183,881
1973	210,967	132,393	10,460	146,915	63,411	31,150	10,773	193,573
1974	243,089	132,320	12,127	175,286	73,231	31,677	11,719	199,052
1975	259,799	132,247	13,693	158,510	66,307	28,262	10,619	204,675
1976	274,412	128,756	15,439	137,524	59,548	25,530	10,383	214,804
1977	287,168	125,266	17,023	109,084	52,661	23,684	11,088	223,566
1978	297,351	121,776	18,465	76,235	45,990	21,096	11,503	232,873
1979	302,528	118,287	20,025	32,420	39,013	17,761	10,956	241,267
1980	371,854	114,796	21,644	109,846	39,114	14,816	9,403	250,141
1981	417,263	86,549	20,888	186,050	39,281	13,885	13,247	245,243
1982	462,673	58,304	19,964	262,254	39,449	12,954	17,092	240,082
1983	381,079	37,985	19,182	230,691	50,797	14,942	16,133	233,239
1984	328,219	36,410	18,449	266,373	55,723	11,275	20,151	229,148
1985	288,835	41,302	17,454	220,274	56,704	10,640	20,796	224,784
1986	282,944	48,154	16,740	183,602	32,980	8,204	16,202	219,113
1987	254,745	55,007	15,741	151,842	29,974	6,512	13,405	213,662
1988	268,479	57,721	14,878	171,102	31,157	9,942	16,105	206,819
1989	246,054	60,434	13,984	247,982	38,668	13,565	19,283	202,593
1990	403,963	63,148	13,255	298,936	60,600	14,358	16,898	197,986
1991	328,417	65,919	15,530	226,235	51,346	8,410	14,245	192,338
1992	300,318	68,681	17,675	230,604	70,231	16,458	15,431	189,210
1993	329,509	44,380	19,991	260,071	55,745	17,614	14,657	184,231
1994	308,636	46,121	22,261	230,386	55,652	15,916	17,301	178,994
1995	294,127	50,614	24,459	250,808	62,740	14,375	12,813	174,446
1996	295,395	54,743	26,860	224,033	53,230	15,084	12,751	169,682
1997	237,026	58,870	29,245	191,669	48,292	12,633	11,639	164,389
1998	290,131	58,695	28,346	216,632	89,008	22,802	12,047	170,254
1999	264,726	58,694	27,123	183,438	61,745	21,666	12,751	174,856
2000	306,328	58,694	26,303	200,051	109,018	16,800	6,810	180,936
2001	338,910	58,756	26,660	186,772	104,676	18,182	7,760	176,269
2002	339,440	58,744	27,558	200,926	91,199	18,451	9,463	172,052
2003	314,901	58,732	28,477	187,754	83,722	15,433	11,765	167,600
2004	305,358	58,720	29,262	183,915	84,794	16,917	12,533	161,880
2005	203,183	58,707	29,955	103,516	59,064	18,696	12,728	159,213
2006	208,322	58,695	30,787	111,931	58,734	18,297	15,478	154,940
2007	373,797	58,683	31,480	190,571	102,136	28,861	13,687	147,940
2008	325,385	58,671	32,300	230,668	107,812	30,747	18,996	198,708
2009	262,326	58,659	32,421	163,254	85,280	37,759	20,577	213,644
2010	158,134	58,647	36,541	100,371	51,716	37,190	16,269	173,866
2011	253,470	58,647	53,740	136,326	95,945	41,800	15,220	282,405
2012	253,470	58,647	53,740	136,326	95,945	41,800	15,220	282,421

Table C.1.1, cont.

Year	Morton	Motley	Ochiltree	Oldham	Parmer	Potter	Quay	Randall
1930	0	0	0	0	0	0	0	0
1931	0	3	447	74	8,415	150	189	953
1932	0	5	894	147	16,829	300	378	1,906
1933	0	8	1,342	221	25,244	450	567	2,859
1934	0	10	1,789	294	33,659	600	756	3,812
1935	0	13	2,236	368	42,074	749	945	4,764
1936	0	15	2,683	442	50,488	899	1,134	5,717
1937	0	18	3,131	515	58,903	1,049	1,322	6,670
1938	0	20	3,578	589	67,318	1,199	1,511	7,623
1939	0	23	4,025	662	75,733	1,349	1,700	8,576
1940	0	25	4,472	736	84,147	1,499	1,889	9,529
1941	0	26	4,919	803	92,405	1,642	899	10,407
1942	0	27	5,367	870	100,756	1,785	2,819	11,302
1943	0	36	5,814	1,355	109,048	2,188	3,619	13,723
1944	0	44	6,261	1,840	117,340	2,592	2,819	16,163
1945	0	53	6,708	2,325	125,632	2,995	4,569	18,624
1946	0	61	7,156	2,810	133,924	3,399	6,919	21,110
1947	0	69	7,603	3,295	142,216	3,803	8,069	23,622
1948	0	83	8,050	4,069	150,508	4,387	4,619	27,206
1949	0	96	8,497	4,844	158,799	4,971	2,619	30,822
1950	191	110	8,945	5,618	167,091	5,555	6,919	34,473
1951	810	123	9,392	6,392	175,397	6,143	8,319	38,455
1952	1,152	137	9,839	7,166	183,704	6,731	5,619	42,558
1953	1,494	144	10,286	7,603	192,012	7,109	6,019	45,587
1954	1,836	152	10,733	8,039	200,322	7,488	5,319	48,783
1955	2,178	159	11,181	8,476	208,632	7,868	5,719	52,175
1956	2,520	167	13,171	8,911	216,959	8,545	3,719	57,572
1957	2,862	175	15,162	9,379	225,266	9,131	3,519	56,716
1958	3,204	182	17,314	9,826	233,554	9,784	3,319	59,825
1959	3,546	201	19,699	10,798	223,583	11,400	4,819	67,678
1960	3,888	220	21,432	11,758	213,580	13,038	2,319	71,300
1961	3,900	239	28,680	12,731	203,569	14,443	2,939	76,415
1962	4,662	258	35,797	13,705	193,631	15,755	3,559	80,919
1963	5,425	278	43,293	14,680	183,664	17,195	4,179	87,462
1964	6,187	297	50,603	15,657	173,715	18,707	4,800	93,906
1965	6,949	340	57,745	15,000	168,877	18,448	5,420	86,255
1966	7,712	383	64,877	14,359	164,016	18,359	6,040	82,315
1967	8,474	427	72,034	13,708	159,196	18,243	6,660	76,466
1968	9,237	470	79,382	13,041	154,373	18,028	7,280	61,401
1969	9,999	513	86,764	13,240	149,479	17,952	7,426	48,209
1970	10,761	505	94,168	12,506	156,287	18,339	9,094	52,093

Table C.1.1, cont.

Year	Morton	Motley	Ochiltree	Oldham	Parmer	Potter	Ouev	Randall
		-					Quay	
1971 1972	10,841	497	95,748	14,462	201,112	19,988	10,685	58,423
1972	10,763	489	97,164	17,819	248,992	21,591	12,276	62,007
	10,684	481	98,633	20,036	300,205	23,598	13,867	73,800
1974	10,606	473	100,400	22,984	354,579	25,256	15,458	79,227
1975	10,528	423	101,877	23,436	395,604	26,207	17,049	83,960
1976	10,449	373	103,504	23,926	436,409	26,805	16,042	90,973
1977	10,371	323	105,680	24,162	476,900	27,312	15,035	97,841
1978	10,293	272	107,611	22,371	516,993	27,814	14,028	99,952
1979	10,214	222	109,016	20,157	556,620	28,549	13,021	105,727
1980	10,136	352	110,658	24,278	551,211	26,934	12,014	93,729
1981	9,786	482	105,972	30,195	504,372	23,055	6,781	71,246
1982	9,715	613	100,592	35,784	457,532	19,194	766	50,464
1983	9,643	448	95,497	33,013	377,620	32,676	601	81,656
1984	9,572	570	90,187	30,360	358,230	43,833	618	95,225
1985	9,500	428	85,048	23,481	324,772	30,133	621	91,147
1986	9,429	435	78,939	30,297	280,806	30,856	666	80,323
1987	9,357	456	74,365	22,939	221,450	18,087	711	78,439
1988	9,286	454	68,149	34,416	164,354	32,933	765	79,388
1989	9,214	478	62,978	11,332	238,722	12,769	820	63,722
1990	9,143	478	58,037	12,570	400,118	9,925	879	74,636
1991	8,904	403	54,932	27,156	226,511	13,889	933	86,794
1992	8,926	388	51,531	19,531	272,373	17,515	988	77,129
1993	8,949	248	48,501	13,160	339,787	17,298	854	79,961
1994	8,972	452	45,875	19,350	312,826	19,274	928	83,204
1995	8,996	518	42,969	16,249	278,028	20,574	1,379	86,977
1996	9,019	417	40,336	18,833	290,036	23,690	1,450	89,596
1997	9,043	414	39,019	28,224	227,515	27,042	1,521	79,498
1998	9,044	1,096	62,114	22,178	307,215	14,363	1,623	84,242
1999	9,654	920	84,863	6,629	230,781	9,322	1,623	75,167
2000	10,280	209	108,289	7,986	267,955	6,396	1,623	89,301
2001	10,907	89	100,022	12,131	232,873	6,827	1,195	93,609
2002	10,974	209	92,728	18,112	289,951	9,152	1,195	95,894
2003	11,041	233	84,950	14,669	271,307	6,346	1,195	93,587
2004	11,108	226	77,170	13,979	296,648	6,147	1,195	89,458
2005	11,175	210	69,588	18,417	190,297	5,514	1,195	91,520
2006	11,242	230	61,963	19,666	179,181	4,580	1,195	88,822
2007	11,309	215	54,098	17,044	261,879	8,056	1,195	67,934
2008	11,376	280	78,930	21,137	264,765	14,259	1,195	65,460
2009	11,443	256	70,269	19,043	197,596	32,750	1,195	35,630
2010	11,510	153	65,645	12,463	169,872	5,579	1,195	32,389
2011	11,577	273	114,261	17,124	164,421	10,388	1,195	46,071
2012	11,577	273	114,261	17,124	164,421	10,388	1,195	46,071

Table C.1.1, cont.

Year	Roberts	Roosevelt	Seward	Sherman	Stevens	Swisher	Terry	Texas
1930	0	0	0	0	0	0	0	0
1931	75	2,700	0.1	1,770	2	3,424	330	12
1932	151	5,400	0.1	3,539	4	6,849	661	23
1933	226	8,099	0.1	5,309	6	10,273	991	35
1934	301	10,799	0.2	7,078	8	13,697	1,321	47
1935	377	13,499	0.3	8,848	10	17,122	1,652	58
1936	452	16,199	0.3	10,618	12	20,546	1,982	70
1937	527	18,898	0.3	12,387	14	23,970	2,312	82
1938	603	21,598	0.4	14,125	16	27,394	2,643	93
1939	678	24,298	0.5	15,891	18	30,819	2,973	105
1940	753	26,998	0.5	17,656	20	34,243	3,303	116
1941	829	10,974	1	19,422	22	37,560	3,584	128
1942	904	24,750	1	21,188	24	40,877	3,865	140
1943	979	46,276	1	22,953	26	44,194	5,909	151
1944	1,055	24,803	1	24,719	28	47,512	7,954	163
1945	1,130	38,829	1	26,485	31	50,829	9,998	175
1946	1,205	38,355	1	28,250	33	54,147	12,042	186
1947	1,281	46,381	1	30,016	35	57,464	14,087	198
1948	1,356	38,407	1	31,781	37	60,782	17,352	210
1949	1,431	38,434	1	33,547	39	64,100	20,617	221
1950	1,507	53,460	327	35,313	649	67,418	23,883	1,669
1951	1,582	85,474	3,616	37,078	11,322	70,737	27,153	18,895
1952	1,657	83,488	4,544	38,844	15,774	74,056	30,424	26,665
1953	1,733	102,502	5,472	40,610	20,226	77,375	32,272	34,434
1954	1,879	118,765	6,400	42,375	24,678	80,694	34,120	42,204
1955	1,957	105,779	7,328	44,240	29,131	84,014	35,968	49,973
1956	2,346	110,793	8,257	52,970	33,583	87,403	37,772	57,769
1957	2,729	99,807	9,185	61,757	38,035	90,679	39,513	65,540
1958	3,085	80,821	10,113	70,563	42,488	94,008	41,352	73,309
1959	3,464	100,085	11,041	79,362	46,940	106,085	43,181	81,078
1960	3,819	86,599	11,969	88,146	51,392	118,121	44,724	88,864
1961	4,271	95,820	11,891	115,189	51,487	130,213	46,672	89,153
1962	4,754	105,041	13,901	142,328	58,438	142,308	48,534	108,876
1963	5,256	114,263	15,911	169,806	65,389	154,406	49,936	128,580
1964	5,709	123,484	17,922	196,908	72,339	166,544	51,960	148,324
1965	6,144	132,705	19,932	223,875	79,290	159,439	45,033	168,015
1966	6,621	141,926	21,942	251,003	86,241	152,308	38,206	187,765
1967	7,061	151,148	23,952	278,040	93,192	145,154	31,382	207,484
1968	7,515	160,369	25,962	305,207	100,142	137,881	24,452	227,231
1969	7,989	159,134	27,972	332,371	107,093	130,738	17,611	246,935
1970	8,465	170,665	29,982	359,461	114,044	138,209	22,954	266,681

Table C.1.1, cont.

Year	Roberts	Roosevelt	Seward	Sherman	Stevens	Swisher	Terry	Texas
1971	8,210	181,775	30,097	355,816	113,827	172,560	34,819	269,634
1972	7,990	192,884	31,100	352,183	117,792	209,599	49,033	266,605
1973	7,784	203,993	32,102	348,545	121,757	249,474	65,808	263,535
1974	7,604	215,102	33,104	345,007	125,722	292,192	84,975	260,481
1975	7,370	226,212	34,106	341,263	129,686	280,494	83,631	257,449
1976	7,172	213,106	35,109	337,673	133,651	260,682	80,115	254,425
1977	6,943	200,000	36,111	334,321	137,616	232,540	73,755	251,391
1978	6,744	186,894	37,113	330,985	141,581	196,079	65,563	248,374
1979	6,510	173,788	38,115	327,700	145,546	151,305	54,464	245,356
1980	6,372	160,682	39,118	324,487	149,510	212,852	80,488	242,339
1981	6,089	148,796	39,037	316,294	149,333	264,026	102,351	232,949
1982	5,851	126,351	39,346	308,120	150,422	315,201	124,213	231,733
1983	5,596	65,582	39,655	299,420	151,510	273,971	186,629	230,518
1984	5,412	65,728	39,964	290,932	152,598	311,624	154,035	229,302
1985	5,152	67,597	40,272	282,693	153,686	242,087	171,070	228,087
1986	4,576	69,202	40,581	273,872	154,775	241,121	100,336	226,893
1987	4,551	70,808	40,890	265,190	155,863	137,365	82,251	225,590
1988	4,405	77,946	41,199	255,613	156,951	122,031	49,511	224,433
1989	4,174	85,083	41,508	247,023	158,040	118,274	185,870	223,124
1990	3,947	92,457	41,817	238,561	159,128	155,100	161,119	221,897
1991	4,156	99,851	41,347	226,385	157,254	152,594	154,983	216,637
1992	4,336	107,246	41,451	215,632	157,653	166,203	153,273	217,083
1993	4,522	100,569	41,556	204,057	158,052	189,843	168,866	217,554
1994	4,689	107,873	41,665	192,091	158,466	191,008	159,488	218,025
1995	4,882	107,426	41,774	180,385	158,881	161,016	164,235	218,487
1996	5,038	106,111	41,883	167,988	159,295	142,386	157,291	218,961
1997	5,373	104,797	41,992	156,416	159,710	109,513	171,894	219,420
1998	5,457	104,381	41,997	203,793	159,726	140,905	268,421	219,368
1999	6,847	104,381	44,830	251,422	170,504	152,914	174,909	233,128
2000	1,812	104,381	47,740	298,857	181,568	141,785	213,762	248,375
2001	3,440	104,339	50,649	286,556	192,632	138,699	194,007	263,620
2002	34,018	104,339	50,960	274,187	193,817	130,952	215,139	265,189
2003	40,843	104,339	51,271	261,739	195,001	139,639	171,256	266,760
2004	45,014	104,339	51,583	248,997	196,185	138,921	121,806	268,329
2005	41,750	104,339	51,894	236,550	197,369	137,697	145,566	269,899
2006	48,134	104,339	52,206	224,233	198,554	126,013	186,584	271,469
2007	45,946	104,339	52,517	211,997	199,738	187,249	104,286	273,039
2008	48,343	104,339	52,828	280,222	200,922	203,116	168,020	274,609
2009	21,356	104,339	53,140	290,246	202,106	198,266	193,455	275,963
2010	48,287	104,339	53,451	253,982	203,291	94,323	145,191	277,548
2011	36,261	104,339	53,762	400,585	204,475	128,796	222,147	279,133
2012	36,261	104,339	53,762	400,674	204,475	128,796	222,147	279,133

Table C.1.1, cont.

Year	Union	Wheeler	Yoakum
1930	0	0	0
1931	36	78	242
1932	71	156	484
1933	107	235	726
1934	142	313	968
1935	178	391	1,210
1936	213	469	1,452
1937	249	548	1,694
1938	284	626	1,936
1939	320	704	2,178
1940	356	782	2,419
1941	391	861	2,551
1942	427	939	2,682
1943	462	1,017	3,697
1944	498	1,095	4,711
1945	533	1,174	5,725
1946	569	1,252	6,740
1947	604	1,330	7,754
1948	640	1,408	9,380
1949	675	1,487	11,006
1950	233	1,565	12,632
1951	2,404	1,643	14,280
1952	2,635	1,721	15,930
1953	2,866	1,800	16,869
1954	3,097	1,878	16,891
1955	3,328	1,956	18,741
1956	3,559	2,272	18,764
1957	3,790	2,646	19,668
1958	4,021	3,003	20,604
1959	4,252	2,931	20,327
1960	4,482	2,626	20,060
1961	4,459	2,293	19,751
1962	5,067	2,459	19,464
1963	5,674	3,725	19,157
1964	6,281	3,907	18,910
1965	6,889	3,727	19,643
1966	7,496	3,574	20,333
1967	8,103	3,887	21,089
1968	8,710	4,070	21,840
1969	9,318	4,348	22,557
1970	9,925	4,501	26,496
1971	10,074	4,495	37,426

Year	Union	Wheeler	Yoakum
1972	10,382	4,420	50,152
1973	10,691	4,421	64,685
1974	10,999	4,789	81,124
1975	11,307	4,357	88,737
1976	11,616	4,926	96,134
1977	11,924	5,084	103,013
1978	12,236	5,124	109,527
1979	12,548	5,637	115,423
1980	12,861	6,043	121,658
1981	12,944	5,410	119,120
1982	12,976	4,919	116,643
1983	13,008	4,448	80,941
1984	13,040	3,872	72,408
1985	13,072	3,304	44,555
1986	13,103	2,782	35,294
1987	13,135	2,332	15,077
1988	13,163	1,948	28,221
1989	13,192	1,424	84,996
1990	13,223	1,038	75,908
1991	13,125	1,522	83,261
1992	12,932	1,992	98,881
1993	12,747	2,471	78,746
1994	12,558	3,045	101,621
1995	12,367	3,416	105,794
1996	12,176	3,937	133,377
1997	11,984	4,621	133,849
1998	11,787	5,912	144,985
1999	9,772	6,958	100,709
2000	10,529	8,481	115,527
2001	11,286	9,837	107,713
2002	11,382	10,258	130,958
2003	11,479	9,897	120,548
2004	11,575	11,958	115,080
2005	11,671	11,010	116,268
2006	11,768	12,919	112,571
2007	11,864	12,083	141,253
2008	11,960	10,344	156,511
2009	12,791	11,863	169,144
2010	12,354	11,678	180,729
2011	11,917	13,792	142,681
2012	11,917	13,792	142,582

Table C.1.2 Annual pumping for the Rita Blanca Aquifer by county. All values are reported in acre-feet per year.

Year	Dallam	Union		
1930	0	0		
1931	56	825		
1932	119	1,276		
1933	180	1,794		
1934	240	2,295		
1935	301	2,788		
1936	358	2,872		
1937	420	3,396		
1938	481	3,933		
1939	542	4,439		
1940	603	4,916		
1941	664	5,406		
1942	725	5,890		
1943	787	6,357		
1944	848	6,790		
1945	910	7,208		
1946	971	7,616		
1947	1,032	7,955		
1948	1,092	8,207		
1949	1,151	8,376		
1950	1,210	8,471		
1951	1,213	8,503		
1952	1,215	8,482		
1953	1,216	8,417		
1954	1,217	8,309		
1955	1,217	8,160		
1956	1,386	7,972		
1957	1,545	7,830		
1958	1,709	7,719		
1959	1,877	7,629		
1960	2,041	7,554		
1961	2,164	7,490		
1962	2,294	7,434		
1963	2,421	7,384		
1964	2,547	7,335		
1965	2,670	7,296		
1966	2,802	7,264		
1967	2,929	7,247		
1968	3,051	7,234		
1969	3,171	7,217		
1970	3,302	7,232		
1971	3,515	7,251		

Year	Dallam	Union
1972	3,731	7,265
1973	3,948	7,281
1974	4,167	7,306
1975	4,384	7,330
1976	4,602	7,360
1977	4,823	7,398
1978	5,049	7,434
1979	5,263	7,474
1980	6,683	7,481
1981	7,926	7,493
1982	9,169	7,514
1983	11,235	7,438
1984	12,475	7,440
1985	5,298	7,459
1986	6,030	7,484
1987	5,099	7,497
1988	5,033	7,528
1989	5,928	7,621
1990	7,547	7,602
1991	3,387	7,659
1992	4,464	7,744
1993	8,722	7,798
1994	4,707	7,881
1995	5,068	7,970
1996	5,417	8,119
1997	6,364	8,263
1998	5,681	8,392
1999	6,098	8,529
2000	6,320	8,640
2001	5,499	8,756
2002	7,258	8,796
2003	5,280	8,912
2004	5,052	9,145
2005	5,072	9,351
2006	4,358	9,520
2007	4,603	9,635
2008	5,175	10,711
2009	5,309	10,374
2010	4,643	10,119
2011	6,205	9,889
2012	6,202	9,821

Table C.1.3 Annual pumping for the Edwards Trinity (High Plains) Aquifer by county. All values are reported in acre-feet per year.

Year	Bailey	Borden	Cochran	Dawson	Floyd	Gaines	Garza	Hale
1930	0	0	0	0	0	0	0	0
1931	0	0	0	14	0	84	0	0
1932	0	0	0	27	0	168	0	0
1933	0	0	0	41	0	251	0	0
1934	0	0	0	54	0	335	0	0
1935	0	0	0	68	0	419	0	0
1936	0	0	0	81	0	503	0	0
1937	0	0	0	95	0	587	0	0
1938	0	0	0	108	0	671	0	0
1939	0	0	0	122	0	754	0	0
1940	5	0.1	4	135	43	838	0.4	151
1941	11	0.2	9	149	86	922	1	303
1942	17	0.4	13	162	130	1,006	1	454
1943	23	0.5	17	266	173	1,646	1	605
1944	30	1	22	369	216	2,286	2	757
1945	38	1	27	473	259	2,926	2	908
1946	45	1	31	576	302	3,566	3	1,060
1947	52	1	36	679	346	4,206	3	1,211
1948	60	1	41	839	389	5,194	3	1,362
1949	69	1	46	998	432	6,182	4	1,514
1950	78	1	51	1,158	475	7,169	4	1,665
1951	87	1	56	1,318	518	8,157	4	1,816
1952	96	2	62	1,477	562	9,144	5	1,968
1953	105	2	67	1,361	605	7,477	5	2,119
1954	112	2	72	1,367	648	8,016	5	2,271
1955	120	2	76	625	691	3,794	6	2,422
1956	127	2	81	1,649	734	10,557	6	2,573
1957	135	2	86	1,603	778	7,666	7	2,725
1958	143	2	91	1,557	821	4,775	7	2,876
1959	151	2	95	1,664	864	5,457	7	3,027
1960	159	3	99	1,772	907	6,140	8	3,179
1961	174	3	106	1,880	950	6,822	8	3,330
1962	183	3	110	1,988	994	7,505	8	3,482
1963	191	3	114	2,095	1,037	8,187	9	3,633
1964	199	3	119	2,203	1,080	8,870	9	3,784
1965	196	3	121	1,888	1,123	8,010	10	3,936
1966	199	3	125	1,572	1,166	7,150	10	4,087
1967	195	3	127	1,256	1,210	6,290	10	4,238
1968	191	4	129	940	1,253	5,430	11	4,390
1969	187	4	131	625	1,296	4,570	11	4,541
1970	201	4	136	592	1,339	5,590	11	4,693

Table C.1.3, cont.

Year	Bailey	Borden	Cochran	Dawson	Floyd	Gaines	Garza	Hale
1971	222	4	143	560	1,382	6,610	12	4,844
1972	237	4	148	528	1,426	7,630	12	4,995
1973	253	4	152	495	1,469	8,651	12	5,147
1974	268	4	157	463	1,512	9,671	13	5,298
1975	266	4	158	399	1,555	10,307	13	5,449
1976	271	5	160	335	1,598	10,943	14	5,601
1977	268	5	160	271	1,642	11,579	14	5,752
1978	265	5	161	207	1,685	12,215	14	5,904
1979	262	5	161	144	1,728	12,851	15	6,055
1980	264	5	347	340	1,883	13,536	15	6,271
1981	346	11	302	339	1,684	12,802	11	5,099
1982	429	17	258	338	1,485	12,068	8	3,926
1983	511	23	213	338	1,285	11,334	4	2,754
1984	594	29	169	337	1,086	10,600	0	1,581
1985	626	36	153	438	611	7,665	0	1,447
1986	531	61	152	226	519	993	0	1,108
1987	427	58	140	219	677	4,389	0	932
1988	369	58	117	310	706	6,574	0	836
1989	762	29	81	633	612	9,649	0	1,438
1990	851	28	68	634	801	10,190	0	1,499
1991	782	54	72	739	856	11,082	0	1,014
1992	746	54	96	647	939	11,177	0	907
1993	928	80	121	1,049	1,710	12,309	0	1,409
1994	99	4	19	1,175	1,518	12,355	0	3,150
1995	116	4	22	1,339	1,468	12,398	0	4,900
1996	111	3	21	1,499	1,385	12,473	0	6,641
1997	88	3	21	1,674	1,262	12,504	0	8,380
1998	117	3	14	1,819	1,422	12,506	0	10,120
1999	122	3	17	1,967	1,453	12,549	0	11,860
2000	0	6	11	2,000	0	12,664	191	13,508
2001	0	6	19	1,945	0	15,843	228	12,406
2002	0	6	3	1,838	0	14,342	310	14,170
2003	0	6	6	1,725	0	11,938	209	14,490
2004	0	6	6	1,399	0	12,559	208	13,010
2005	0	19	14	1,403	0	12,021	187	8,918
2006	0	16	54	1,735	0	11,772	183	10,236
2007	0	19	42	935	0	11,585	230	18,085
2008	0	14	19	1,873	0	15,105	142	19,507
2009	0	13	19	1,796	0	10,533	238	13,561
2010	0	15	16	1,087	0	9,779	118	8,085
2011	0	15	20	2,163	0	12,225	184	14,288
2012	0	15	20	2,163	0	12,225	184	14,288

Table C.1.3, cont.

Year	Hockley	Lamb	Lubbock	Lynn	Terry	Yoakum
1930	0	0	0	0	0	0
1931	0	0	0	0	0	0
1932	0	0	0	0	0	0
1933	0	0	0	0	0	0
1934	0	0	0	0	0	0
1935	0	0	0	0	0	0
1936	0	0	0	0	0	0
1937	0	0	0	0	0	0
1938	0	0	0	0	0	0
1939	0	0	0	0	0	0
1940	2	7	9	10	10	43
1941	4	15	18	19	20	85
1942	6	22	27	29	31	128
1943	8	29	36	39	41	171
1944	10	36	45	48	51	213
1945	12	44	53	58	61	256
1946	14	51	62	68	72	298
1947	16	58	71	78	82	341
1948	18	66	80	87	92	384
1949	20	73	89	97	102	426
1950	21	80	98	107	112	469
1951	23	88	107	116	123	512
1952	25	95	116	126	133	554
1953	27	102	125	136	143	597
1954	29	109	134	145	153	640
1955	31	117	143	155	164	682
1956	33	124	151	165	174	725
1957	35	131	160	174	184	768
1958	37	139	169	184	194	810
1959	39	146	178	194	205	853
1960	41	153	187	203	215	895
1961	43	161	196	213	225	938
1962	45	168	205	223	235	981
1963	47	175	214	233	245	1,023
1964	49	182	223	242	256	1,066
1965	51	190	232	252	266	1,109
1966	53	197	241	262	276	1,151
1967	55	204	249	271	286	1,194
1968	57	212	258	281	297	1,237
1969	59	219	267	291	307	1,279
1970	61	226	276	300	317	1,322

Table C.1.3, cont.

Tuble Offic, com						
Year	Hockley	Lamb	Lubbock	Lynn	Terry	Yoakum
1971	62	234	285	310	327	1,364
1972	64	241	294	320	337	1,407
1973	66	248	303	329	348	1,450
1974	68	255	312	339	358	1,492
1975	70	263	321	349	368	1,535
1976	72	270	330	359	378	1,578
1977	74	277	339	368	389	1,620
1978	76	285	347	378	399	1,663
1979	78	292	356	388	409	1,706
1980	93	299	365	407	760	2,179
1981	74	224	274	386	735	1,696
1982	54	150	183	365	709	1,214
1983	35	75	91	344	684	731
1984	15	0	0	323	658	248
1985	16	0	0	236	773	185
1986	14	0	0	143	533	174
1987	14	0	0	96	435	168
1988	11	0	0	100	447	198
1989	12	0	0	121	1,165	359
1990	16	0	0	177	1,048	331
1991	18	0	0	165	1,015	378
1992	26	0	0	259	765	278
1993	27	0	0	176	1,204	291
1994	23	0	0	343	68	123
1995	23	0	0	511	72	163
1996	22	0	0	684	73	162
1997	20	0	0	851	74	169
1998	25	0	0	1,027	65	170
1999	23	0	0	1,192	51	165
2000	64	0	1,483	1,344	0	5
2001	60	0	1,388	1,296	0	5
2002	62	0	1,406	1,128	0	8
2003	53	0	1,218	1,031	0	8
2004	24	0	1,259	1,045	0	7
2005	36	0	691	730	0	9
2006	85	8	776	725	14	11
2007	62	6	1,386	1,262	13	5
2008	80	13	1,521	1,330	17	7
2009	77	13	1,123	1,057	16	6
2010	75	13	668	624	16	6
			1			
2012			<u> </u>			
2011 2012	56 56	0	1,000 1,000	1,162 1,162	0	6

Table C.1.4 Annual pumping for the Upper Dockum Aquifer by county. All values are reported in acrefeet per year.

Year	Bailey	Castro	Dallam	Deaf Smith	Ector	Hale	Hartley	Lamb
1930	0	0	0	0	0	0	0	0
1931	54	0.1	3	0	1	0.05	2	2
1932	20	3	4	0.1	1	1	1	6
1933	16	4	5	2	2	1	1	7
1934	15	5	6	4	2	1	1	8
1935	17	5	7	4	3	1	1	9
1936	13	4	6	4	3	1	1	7
1937	17	6	8	6	4	1	2	9
1938	18	7	9	9	4	1	2	9
1939	19	7	10	17	6	1	2	10
1940	20	8	11	43	12	2	2	10
1941	20	8	12	65	21	2	2	10
1942	21	9	13	82	43	2	2	10
1943	21	9	13	104	59	2	3	10
1944	36	10	14	128	71	2	3	9
1945	55	10	15	147	80	2	3	9
1946	70	11	16	161	87	2	3	10
1947	78	11	17	166	90	2	3	9
1948	82	11	17	166	89	3	3	9
1949	82	11	17	161	87	3	3	10
1950	80	11	18	152	82	2	3	10
1951	75	11	18	142	76	3	3	10
1952	70	11	18	128	70	4	3	10
1953	63	10	18	121	62	4	3	10
1954	56	10	18	111	54	5	3	10
1955	40	10	17	94	45	5	3	10
1956	26	9	17	75	36	5	3	10
1957	15	9	17	60	29	6	3	10
1958	14	9	17	49	25	6	3	10
1959	20	9	17	41	21	6	3	10
1960	25	8	17	35	18	7	3	10
1961	30	8	16	31	16	7	3	10
1962	33	8	16	28	15	22	3	10
1963	36	8	16	26	14	32	3	9
1964	37	8	16	24	13	44	3	9
1965	35	7	16	23	12	53	3	9
1966	30	7	16	22	12	57	3	9
1967	26	7	16	21	11	58	3	9
1968	17	7	16	21	9	57	3	9
1969	13	7	16	19	9	56	3	8
1970	10	7	16	18	9	52	3	8

Table C.1.4, cont.

Year	Bailey	Castro	Dallam	Deaf Smith	Ector	Hale	Hartley	Lamb
1971	5	7	15	17	9	46	3	8
1972	4	6	15	16	9	39	3	8
1973	4	6	15	15	9	31	3	8
1974	4	6	15	15	9	25	3	8
1975	3	6	15	16	9	20	3	8
1976	3	6	15	17	9	17	3	8
1977	3	6	14	16	9	14	3	8
1978	3	5	14	14	8	12	3	7
1979	3	5	14	15	8	11	3	7
1980	3	5	14	13	9	9	3	7
1981	3	5	14	14	8	9	3	7
1982	4	4	14	17	8	8	3	7
1983	3	4	14	18	8	8	3	7
1984	3	4	14	19	8	7	3	6
1985	4	3	14	22	8	7	3	6
1986	4	3	14	21	8	7	3	6
1987	4	3	14	24	8	6	3	6
1988	4	3	14	27	8	6	3	6
1989	4	2	14	28	8	6	3	6
1990	4	2	14	34	9	6	3	6
1991	4	2	14	33	10	6	3	5
1992	5	1	14	33	9	6	3	5
1993	6	1	13	34	10	6	2	5
1994	6	1	13	35	12	6	2	5
1995	7	1	13	31	12	6	2	5
1996	7	0.3	13	32	14	6	2	5
1997	7	0	13	30	13	6	2	5
1998	7	0	13	33	13	6	2	4
1999	7	0	13	37	12	5	2	4
2000	7	0	13	41	11	5	2	4
2001	7	0	13	40	10	5	2	4
2002	7	0	12	31	10	5	2	4
2003	7	0	12	24	9	5	2	4
2004	7	0	12	22	8	5	2	4
2005	7	0	12	21	7	5	2	4
2006	7	0	12	30	5	5	2	4
2007	7	0	12	39	6	5	2	4
2008	8	0	17	61	6	5	2	5
2009	8	0	14	65	6	5	1	4
2010	8	0	15	68	6	5	2	4
2011	7	0	14	66	7	5	2	4
2012	7	0	23	56	7	5	2	4

Table C.1.4, cont.

Year	Lubbock	Martin	Oldham	Randall	Swisher	Winkler	Yoakum
1930	0	0	0	0	0	0	0
1931	0.2	0.1	0	4	0.01	5	7
1932	1	2	0.1	59	1	4	4
1933	1	2	0.4	101	1	0	5
1934	1	3	1	144	2	0	5
1935	1	3	1	164	2	0	5
1936	1	3	1	150	2	0	4
1937	1	4	1	175	2	0	6
1938	1	4	1	196	2	0	6
1939	1	5	1	213	3	0	6
1940	2	5	1	224	3	0	6
1941	2	6	1	232	3	0	7
1942	2	6	1	240	3	0	7
1943	2	7	2	245	4	0	7
1944	2	7	2	249	4	0	8
1945	2	8	2	252	4	0	8
1946	2	8	2	255	4	0	8
1947	2	9	2	251	4	0	8
1948	2	9	2	241	4	0	8
1949	2	9	2	228	4	0	8
1950	2	9	2	212	4	0	8
1951	2	9	2	194	4	0	7
1952	2	9	2	174	4	0	7
1953	2	9	2	153	4	0	7
1954	2	9	2	132	4	0	6
1955	2	9	2	109	4	0	6
1956	2	9	2	86	3	0	6
1957	2	9	2	69	3	0	6
1958	2	9	2	56	3	0	6
1959	2	9	2	47	3	0	6
1960	2	9	2	40	3	0	6
1961	2	9	2	34	3	0	5
1962	2	9	2	31	3	0	6
1963	2	9	2	28	3	0	6
1964	2	8	2	26	2	0	5
1965	2	8	2	24	2	0	5
1966	2	8	2	23	2	0	5
1967	2	8	2	22	2	0	5
1968	2	8	2	21	2	0	5
1969	2	8	2	21	2	0	5
1970	2	8	2	20	2	0	5

Table C.1.4, cont.

V	T la 2 1	Martin	O141	Day J.D	C	XX/2 1 - 1	Vasl
Year	Lubbock	Martin	Oldham	Randall	Swisher	Winkler	Yoakum
1971	2	8	2	20	2	0	5
1972	2	8	2	20	1	0	5
1973	2	8	2	20	1	0	5
1974	1	8	2	20	1	0	5
1975	1	8	2	19	1	0	5
1976	1	8	2	19	1	0	4
1977	1	8	2	19	1	0	4
1978	1	8	2	19	1	0	4
1979	1	8	2	19	1	0	3
1980	1	8	2	19	1	0	2
1981	1	8	2	19	1	0	1
1982	1	8	2	21	1	0	5
1983	1	7	2	23	1	0	7
1984	1	7	2	25	1	0	9
1985	1	7	2	28	1	0	12
1986	1	6	2	28	1	0	12
1987	1	6	2	28	1	0	13
1988	1	6	2	28	1	0	13
1989	0.5	5	2	26	1	0	15
1990	0.4	5	2	24	1	0	16
1991	0.3	5	2	22	1	0	18
1992	0.5	5	2	17	1	0	14
1993	0.5	4	2	13	1	0	13
1994	0.3	4	2	10	1	0	12
1995	0.3	4	2	9	1	0	10
1996	0.3	4	2	12	1	0	10
1997	0.3	4	2	15	1	0	10
1998	0.3	4	2	16	1	0	10
1999	0.4	4	2	18	5	0	9
2000	0.4	4	2	23	12	0	9
2001	0.4	4	2	27	13	0	9
2002	0.3	4	2	30	14	0	9
2003	0.4	4	2	33	17	0	9
2004	1	4	2	32	21	0	9
2005	0.5	4	2	30	25	0	9
2006	0.5	4	2	25	28	0	9
2007	1	4	2	22	28	0	9
2008	1	6	2	17	60	0	9
2009	0.4	5	2	17	49	0	9
2010	0.4	5	1	18	37	0	9
2011	0.4	6	1	19	27	0	9
2012	0.4	6	1	22	21	0	9

Table C.1.5 Annual pumping for the Lower Dockum Aquifer by county. All values are reported in acrefeet per year.

Year	Andrews	Armstrong	Borden	Briscoe	Carson	Crane	Crockett	Crosby
1930	0	0	0	0	0	0	0	0
1931	0.01	1	1	0.1	3	0.3	0.02	28
1932	0.02	2	1	0.2	5	1	0.05	55
1933	0.02	2	2	0.4	8	1	0.1	83
1934	0.03	3	2	0.5	11	1	0.1	111
1935	0.04	4	3	1	13	2	0.1	138
1936	0.05	5	3	1	16	2	0.1	166
1937	0.1	6	4	1	19	2	0.2	194
1938	0.1	6	4	1	22	3	0.2	221
1939	0.1	7	5	1	24	3	0.2	249
1940	0.1	8	5	1	27	3	0.2	277
1941	0.1	9	6	1	30	4	0.3	304
1942	0.1	10	6	1	32	4	0.3	332
1943	0.1	10	7	2	35	4	0.3	360
1944	0.1	11	7	2	38	5	0.3	387
1945	0.1	12	8	2	40	5	0.3	415
1946	0.1	13	8	2	43	5	0.4	443
1947	0.1	14	9	2	46	6	0.4	471
1948	0.1	14	9	2	48	6	0.4	498
1949	0.1	15	10	2	51	6	0.4	526
1950	0.2	16	10	2	54	6	0.5	554
1951	0.2	17	11	3	59	7	1	606
1952	0.2	19	12	3	64	8	1	658
1953	0.2	20	13	3	69	8	1	710
1954	0.2	22	14	3	74	9	1	763
1955	0.2	23	15	4	79	10	1	815
1956	0.2	25	16	4	84	10	1	867
1957	0.3	26	17	4	89	11	1	920
1958	0.3	28	18	4	95	11	1	972
1959	0.3	29	19	5	100	12	1	1,024
1960	0.3	31	20	5	105	13	1	1,077
1961	0.4	37	23	6	124	15	1	1,270
1962	0.4	42	27	7	142	17	1	1,464
1963	0.5	48	30	7	161	19	1	1,658
1964	1	53	34	8	180	22	2	1,852
1965	1	59	37	9	199	24	2	2,046
1966	1	64	41	10	218	26	2	2,239
1967	1	70	44	11	237	29	2	2,433
1968	1	76	48	12	255	31	2	2,627
1969	1	81	51	13	274	33	2	2,821
1970	1	87	55	13	293	35	3	3,014

Table C.1.5, cont.

Year	Andrews	Armstrong	Borden	Briscoe	Carson	Crane	Crockett	Crosby
1971	1	91	57	14	308	37	3	3,162
1972	1	95	60	15	322	39	3	3,309
1973	1	100	63	15	336	41	3	3,457
1974	1	104	65	16	351	42	3	3,604
1975	1	108	68	17	365	44	3	3,751
1976	1	108	68	17	364	44	3	3,741
1977	1	107	68	17	363	44	3	3,730
1978	1	107	68	17	362	44	3	3,720
1979	1	107	67	17	361	44	3	3,709
1980	1	103	65	16	348	42	3	3,578
1981	2	94	64	15	311	44	3	3,118
1982	4	85	62	14	274	47	3	2,658
1983	5	75	61	14	236	49	3	2,199
1984	7	66	59	13	199	52	3	1,739
1985	8	57	58	12	162	54	3	1,279
1986	8	65	58	12	186	54	3	1,565
1987	7	73	58	12	209	53	3	1,852
1988	7	80	58	13	233	53	3	2,138
1989	6	88	58	13	256	52	3	2,425
1990	6	96	58	13	280	52	3	2,711
1991	7	93	58	12	258	133	3	2,858
1992	8	90	57	11	237	215	3	3,005
1993	8	88	57	10	215	296	3	3,151
1994	9	85	56	9	194	378	3	3,298
1995	10	82	56	8	172	459	3	3,445
1996	10	81	56	7	146	250	3	3,499
1997	10	80	56	6	121	41	3	3,554
1998	10	80	56	6	121	41	3	3,554
1999	10	80	56	6	121	41	3	3,554
2000	4	182	62	68	121	515	5	2,469
2001	4	151	62	67	121	558	5	3,439
2002	3	177	62	70	121	696	4	3,245
2003	2	188	62	84	121	519	4	3,229
2004	2	184	62	80	121	518	4	3,007
2005	4	192	75	81	121	518	5	1,635
2006	5	205	72	71	121	474	5	1,957
2007	6	153	75	68	121	475	5	3,355
2008	4	168	70	97	128	684	5	3,677
2009	5	160	69	107	133	93	5	2,790
2010	4	138	71	80	138	103	4	1,737
2011	4	172	71	76	138	158	4	2,908
2012	4	172	71	76	138	158	4	2,908

Table C.1.5, cont.

Year	Curry	Dallam	Dawson	Deaf Smith	Dickens	Ector	Eddy	Fisher
1930	0	0	0	0	0	0	0	0
1931	4	13	0.01	24	0.2	1	0.02	0.1
1932	8	27	0.02	48	0.3	2	0.05	0.2
1933	12	40	0.02	72	1	2	0.1	0.3
1934	16	54	0.03	96	0.4	3	0.1	0.3
1935	19	67	0.04	120	1	4	0.1	0.4
1936	23	81	0.05	144	1	5	0.1	1
1937	27	94	0.1	168	1	5	0.2	1
1938	31	108	0.1	192	1	6	0.2	1
1939	35	121	0.1	216	2	7	0.2	1
1940	39	135	0.1	240	2	8	0.2	1
1941	43	148	0.1	264	2	8	0.3	1
1942	47	162	0.1	288	2	9	0.3	1
1943	50	175	0.1	312	2	10	0.3	1
1944	54	189	0.1	336	2	11	0.3	1
1945	58	202	0.1	360	3	11	0.3	1
1946	62	216	0.1	384	3	12	0.4	1
1947	66	229	0.1	408	3	13	0.4	1
1948	70	243	0.1	431	3	14	0.4	2
1949	74	256	0.1	455	3	14	0.4	2
1950	78	270	0.2	479	3	15	0.5	2
1951	85	295	0.2	525	4	17	1	2
1952	92	321	0.2	570	4	18	1	2
1953	99	346	0.2	615	4	19	1	2
1954	107	372	0.2	661	5	21	1	2
1955	114	397	0.2	706	5	22	1	3
1956	121	423	0.2	751	5	24	1	3
1957	129	448	0.3	797	6	25	1	3
1958	136	474	0.3	842	6	27	1	3
1959	143	499	0.3	887	6	28	1	3
1960	151	525	0.3	933	7	29	1	3
1961	178	619	0.4	1,100	8	35	1	4
1962	205	713	0.4	1,268	9	40	1	5
1963	232	808	0.5	1,436	10	45	1	5
1964	259	902	1	1,604	11	51	2	6
1965	286	996	1	1,772	13	56	2	6
1966	314	1,091	1	1,940	14	61	2	7
1967	341	1,185	1	2,107	15	67	2	7
1968	368	1,280	1	2,275	16	72	2	14
1969	395	1,374	1	2,443	17	77	2	15
1970	422	1,468	1	2,611	19	83	3	16

Table C.1.5, cont.

Year	Curry	Dallam	Dawson	Deaf Smith	Dickens	Ector	Eddy	Fisher
1971	443	1,540	1	2,739	19	87	3	16
1972	463	1,612	1	2,866	20	91	3	16
1973	484	1,684	1	2,994	21	95	3	17
1974	505	1,756	1	3,122	22	99	3	17
1975	525	1,827	1	3,249	23	103	3	18
1976	524	1,822	1	3,240	23	102	3	18
1977	522	1,817	1	3,231	23	102	3	18
1978	521	1,812	1	3,222	23	102	3	18
1979	519	1,807	1	3,213	23	102	3	17
1980	501	1,743	1	3,099	22	98	3	17
1981	478	1,702	1	3,007	21	97	3	18
1982	455	1,660	1	2,914	21	96	3	18
1983	432	1,619	1	2,822	20	95	4	19
1984	409	1,577	1	2,729	20	94	4	19
1985	386	1,536	1	2,637	19	93	4	20
1986	439	1,622	1	2,687	18	87	7	20
1987	493	1,708	1	2,737	17	81	9	21
1988	546	1,794	2	2,786	17	74	12	21
1989	600	1,880	2	2,836	16	68	14	21
1990	653	1,966	2	2,886	15	62	17	22
1991	627	2,041	2	2,876	14	55	19	21
1992	601	2,117	2	2,866	13	48	22	20
1993	576	2,192	1	2,856	13	40	24	16
1994	550	2,268	1	2,846	12	33	27	13
1995	524	2,343	1	2,836	11	26	29	13
1996	516	2,550	1	2,916	12	26	40	12
1997	508	2,757	2	2,997	13	26	51	10
1998	508	2,757	2	2,997	13	26	51	10
1999	508	2,757	2	2,997	13	26	51	10
2000	508	2,757	2	3,092	56	961	51	9
2001	508	2,757	2	3,021	49	36	51	9
2002	508	2,757	2	3,019	53	373	51	9
2003	508	2,757	2	2,998	54	334	51	9
2004	508	2,757	2	3,015	51	466	51	9
2005	508	2,757	2	3,023	100	668	51	36
2006	508	2,757	2	3,063	126	743	51	38
2007	508	2,757	2	3,041	119	578	51	33
2008	508	2,757	2	3,019	113	587	51	42
2009	508	2,757	2	3,021	116	542	51	39
2010	508	2,757	2	1,914	108	580	51	49
2011	508	2,757	2	2,423	116	492	51	53
2012	508	2,757	2	2,423	116	492	51	53

Table C.1.5, cont.

Year	Floyd	Garza	Hale	Hartley	Hockley	Howard	Kent	Lea
1930	0	0	0	0	0	0	0	0
1931	13	1	2	11	0	0.2	0.02	22
1932	25	1	4	22	0	0.4	0.05	45
1933	38	2	6	32	0	1	0.1	67
1934	50	2	8	43	0	1	0.1	90
1935	63	3	9	54	0	1	0.1	112
1936	76	4	11	65	0	1	0.1	135
1937	88	4	13	76	0	2	0.2	157
1938	101	5	15	87	0	2	0.2	180
1939	113	5	17	97	0	2	0.2	202
1940	126	6	19	108	0	2	0.2	224
1941	139	7	21	119	0	2	0.3	247
1942	151	7	23	130	0	3	0.3	269
1943	164	8	24	141	0	3	0.3	292
1944	176	9	26	152	0	3	0.3	314
1945	189	9	28	162	0	3	0.3	337
1946	201	10	30	173	0	3	0.4	359
1947	214	10	32	184	0	4	0.4	382
1948	227	11	34	195	0	4	0.4	404
1949	239	12	36	206	0	4	0.4	427
1950	252	12	38	216	0	4	0.5	449
1951	276	13	41	237	0	5	1	491
1952	299	15	45	257	0	5	1	534
1953	323	16	48	278	0	6	1	576
1954	347	17	52	298	0	6	1	619
1955	371	18	55	319	0	6	1	661
1956	395	19	59	339	0	7	1	704
1957	418	20	62	360	0	7	1	746
1958	442	21	66	380	0	8	1	788
1959	466	23	70	401	0	8	1	831
1960	490	24	73	421	0	8	1	873
1961	578	28	86	497	0	10	1	1,030
1962	666	32	99	573	0	11	1	1,188
1963	754	37	113	648	0	13	1	1,345
1964	843	41	126	724	0	14	2	1,502
1965	931	45	139	800	0	16	2	1,659
1966	1,019	49	152	876	0	18	2	1,816
1967	1,107	54	165	951	0	19	2	1,973
1968	1,195	58	178	1,027	0	21	2	2,131
1969	1,283	62	192	1,103	0	22	2	2,288
1970	1,372	67	205	1,179	0	24	3	2,445

Table C.1.5, cont.

Year	Floyd	Garza	Hale	Hartley	Hockley	Howard	Kent	Lea
1971	1,439	70	215	1,236	0	25	3	2,564
1972	1,506	73	225	1,294	0	26	3	2,684
1973	1,573	76	235	1,352	0	27	3	2,804
1974	1,640	80	245	1,409	0	28	3	2,923
1975	1,707	83	255	1,467	0	29	3	3,043
1976	1,702	83	254	1,463	0	29	3	3,034
1977	1,697	82	253	1,459	0	29	3	3,026
1978	1,693	82	253	1,454	0	29	3	3,017
1979	1,688	82	252	1,450	0	29	3	3,009
1980	1,628	79	243	1,399	0	28	3	2,902
1981	1,406	72	225	1,449	0	31	3	2,887
1982	1,183	66	207	1,499	0	34	3	2,871
1983	961	59	188	1,549	0	37	3	2,856
1984	738	53	170	1,599	0	40	3	2,840
1985	516	46	152	1,649	0	43	3	2,825
1986	553	49	152	1,528	0	46	3	2,733
1987	590	51	152	1,406	0	49	3	2,640
1988	627	54	152	1,285	0	51	3	2,548
1989	664	56	152	1,163	0	54	3	2,455
1990	701	59	152	1,042	0	57	3	2,363
1991	818	63	149	1,140	0	52	3	2,415
1992	935	67	147	1,238	0	47	3	2,467
1993	1,051	72	144	1,335	0	43	3	2,518
1994	1,168	76	142	1,433	0	38	3	2,570
1995	1,285	80	139	1,531	0	33	3	2,622
1996	1,185	88	135	1,615	0	47	3	2,798
1997	1,084	96	130	1,700	0	61	2	2,975
1998	1,084	96	130	1,700	0	61	2	2,975
1999	1,084	96	130	1,700	0	61	2	2,975
2000	3,538	218	130	1,132	32	357	5	2,975
2001	2,579	254	130	1,132	30	251	5	2,975
2002	2,784	335	130	1,145	31	235	4	2,975
2003	2,841	231	130	1,197	27	182	4	2,975
2004	2,564	231	130	1,242	12	209	4	2,975
2005	1,996	218	130	1,469	18	215	18	2,975
2006	2,423	217	130	1,898	36	311	23	2,975
2007	2,653	266	130	1,540	25	524	16	2,975
2008	2,955	225	130	1,679	27	399	21	2,975
2009	2,741	324	130	1,639	26	535	21	2,975
2010	1,545	205	130	1,543	24	541	19	2,975
2011	2,451	271	130	1,775	28	779	19	2,975
2012	2,451	271	130	1,775	28	779	19	2,975

Table C.1.5, cont.

Year	Loving	Lubbock	Mitchell	Moore	Motley	Nolan	Oldham	Pecos
1930	0	0	0	0	0	0	0	0
1931	0.1	0.02	26	33	1	6	4	7
1932	0.1	0.03	53	67	1	13	7	15
1933	0.2	0.05	79	100	2	19	11	22
1934	0.2	0.1	106	134	2	25	14	30
1935	0.3	0.1	132	167	3	32	18	37
1936	0.4	0.1	159	200	3	38	21	44
1937	0.4	0.1	185	234	4	44	25	52
1938	0.5	0.1	212	267	5	51	28	59
1939	1	0.1	238	300	5	57	32	66
1940	1	0.2	265	334	6	63	35	74
1941	1	0.2	291	367	6	70	39	81
1942	1	0.2	318	401	7	76	43	89
1943	1	0.2	344	434	7	82	46	96
1944	1	0.2	371	467	8	89	50	103
1945	1	0.2	397	501	9	95	53	111
1946	1	0.2	424	534	9	101	57	118
1947	1	0.3	450	567	10	108	60	126
1948	1	0.3	477	601	10	114	64	133
1949	1	0.3	503	634	11	121	67	140
1950	1	0.3	530	668	11	127	71	148
1951	1	0.3	580	731	13	139	78	162
1952	1	0.4	630	794	14	151	84	176
1953	2	0.4	680	857	15	163	91	190
1954	2	0.4	730	920	16	175	98	204
1955	2	0.5	780	983	17	187	104	186
1956	2	0.5	830	1,046	18	199	111	205
1957	2	1	880	1,109	19	211	118	226
1958	2	1	930	1,172	20	223	124	246
1959	2	1	980	1,235	21	235	131	265
1960	2	1	1,030	1,298	22	247	138	285
1961	3	1	1,215	1,532	26	291	163	339
1962	3	1	1,401	1,766	30	336	187	391
1963	4	1	1,586	2,000	34	380	212	443
1964	4	1	1,772	2,233	38	424	237	494
1965	5	1	1,957	2,467	42	469	262	546
1966	5	1	2,142	2,701	46	513	287	598
1967	5	1	2,328	2,934	50	558	311	649
1968	6	1	2,513	3,168	54	602	336	701
1969	6	2	2,698	3,402	58	646	361	753
1970	7	2	2,884	3,635	62	691	386	805

Table C.1.5, cont.

Year	Loving	Lubbock	Mitchell	Moore	Motley	Nolan	Oldham	Pecos
1971	7	2	3,025	3,813	65	725	405	844
1972	7	2	3,166	3,991	68	758	424	883
1973	8	2	3,307	4,169	71	792	442	923
1974	8	2	3,448	4,346	75	826	461	962
1975	8	2	3,589	4,524	78	860	480	1,001
1976	8	2	3,579	4,511	77	857	479	998
1977	8	2	3,569	4,499	77	855	479	996
1978	8	2	3,559	4,499	77	853	476	993
1979	8	2	3,549	4,473	77	850	475	990
1980	8	2	3,423	4,315	74	820	458	955
1981	7	2	3,667	4,263	71	832	450	933
1982	6	2	3,911	4,203	69	844	441	899
1983	5	2		4,212	66			
1984	4	2	4,155			857 869	433	872
1985	3		4,399	4,109	64		424	844
1985	4	2	4,643	4,057	61	881	416	816
1987		2	4,073	4,361	64	864	395	780
1988	4	2	3,502	4,665	67	847	375	744
1989	5	3	2,932	4,968	71	830	354	708
	5	3	2,361	5,272	74	813	334	672
1990	6	3	1,791	5,576	77	796	313	636
1991	6	3	1,571	5,430	82	775	331	674
1992	7	4	1,351	5,284	86	754	348	712
1993	7	4	1,131	5,137	91	732	366	749
1994	8	5	911	4,991	95	711	383	787
1995	8	5	691	4,845	100	690	401	825
1996	7	4	963	4,942	72	706	591	801
1997	7	3	1,235	5,040	44	721	781	777
1998	7	3	1,235	5,040	44	721	781	777
1999	7	3	1,235	5,040	44	721	781	777
2000	19	3	6,478	2,012	656	5,058	699	777
2001	19	3	4,736	1,778	283	2,994	701	777
2002	17	3	5,518	2,212	657	3,018	916	777
2003	17	3	6,766	2,016	730	3,481	771	777
2004	17	3	7,404	2,021	710	4,430	760	777
2005	47	3	7,778	2,008	658	5,703	1,242	777
2006	54	3	9,070	1,254	721	5,413	1,571	777
2007	34	3	10,506	1,728	673	5,957	1,244	777
2008	22	3	9,524	1,297	875	10,328	919	777
2009	24	3	12,967	1,362	803	11,438	862	777
2010	18	3	10,947	1,129	483	8,306	899	777
2011	19	3	11,470	1,852	854	12,402	1,129	777
2012	19	3	11,470	1,852	854	12,402	1,129	777

Table C.1.5, cont.

Year	Potter	Quay	Randall	Reagan	Reeves	Roosevelt	Scurry	Sherman
1930	0	0	0	0	0	0	0	0
1931	6	39	8	6	13	2	69	4
1932	11	78	17	12	27	4	138	9
1933	17	117	25	18	40	6	207	13
1934	22	156	33	24	53	8	276	17
1935	28	195	42	30	67	10	345	22
1936	33	234	50	36	80	12	414	26
1937	39	273	58	42	93	14	483	30
1938	44	313	67	48	107	16	552	35
1939	50	352	75	54	120	18	621	39
1940	55	391	83	60	133	20	690	43
1941	61	430	91	66	147	23	759	48
1942	67	469	100	72	160	25	828	52
1943	72	508	108	78	173	27	897	57
1944	78	547	116	84	187	29	966	61
1945	83	586	125	90	200	31	1,035	65
1946	89	625	133	96	213	33	1,104	70
1947	94	664	141	102	227	35	1,173	74
1948	100	703	150	108	240	37	1,242	78
1949	105	742	158	114	254	39	1,311	83
1950	111	781	166	121	267	41	1,380	87
1951	121	855	182	132	292	45	1,510	95
1952	132	929	198	143	317	49	1,640	103
1953	142	1,003	213	155	343	53	1,771	112
1954	153	1,077	229	166	368	56	1,901	120
1955	163	1,150	245	177	393	60	2,031	128
1956	174	1,224	261	189	418	64	2,162	136
1957	184	1,298	276	200	443	68	2,292	144
1958	195	1,372	292	212	469	72	2,423	153
1959	205	1,446	308	223	494	76	2,553	161
1960	216	1,520	323	234	519	80	2,683	169
1961	255	1,793	382	277	613	94	3,166	200
1962	293	2,067	440	319	706	108	3,649	230
1963	332	2,340	498	361	799	123	4,132	260
1964	371	2,614	556	403	893	137	4,615	291
1965	410	2,887	615	445	986	152	5,098	321
1966	449	3,161	673	488	1,080	166	5,581	352
1967	488	3,434	731	530	1,173	180	6,064	382
1968	526	3,708	789	572	1,266	195	6,547	413
1969	565	3,981	847	614	1,360	209	7,029	443
1970	604	4,255	906	656	1,453	223	7,512	473

Table C.1.5, cont.

Year	Potter	Quay	Randall	Reagan	Reeves	Roosevelt	Scurry	Sherman
1971	634	4,463	950	688	1,524	234	7,880	497
1972	663	4,671	994	720	1,595	245	8,247	520
1973	693	4,879	1,039	753	1,666	256	8,614	543
1974	722	5,087	1,083	785	1,738	267	8,982	566
1975	752	5,295	1,127	817	1,809	278	9,349	589
1976	750	5,280	1,124	814	1,804	277	9,323	588
1977	748	5,265	1,121	812	1,798	276	9,297	586
1978	745	5,250	1,118	810	1,793	276	9,271	584
1979	743	5,235	1,114	808	1,788	275	9,244	583
1980	717	5,050	1,075	779	1,725	265	8,917	562
1981	687	4,625	1,058	825	1,674	277	7,752	537
1982	656	4,200	1,041	871	1,623	290	6,587	513
1983	626	3,776	1,024	917	1,572	302	5,422	488
1984	595	3,351	1,007	963	1,521	315	4,255	464
1985	565	2,926	990	1,009	1,470	327	3,087	439
1986	544	3,104	968	1,139	1,386	332	2,749	440
1987	524	3,283	946	1,268	1,302	337	2,405	440
1988	503	3,461	925	1,398	1,218	343	2,054	441
1989	483	3,640	903	1,527	1,134	348	1,715	441
1990	462	3,818	881	1,657	1,050	353	1,374	442
1991	501	4,191	907	1,706	1,074	331	1,318	451
1992	540	4,564	933	1,756	1,099	310	1,262	460
1993	578	4,938	958	1,805	1,123	288	1,206	469
1994	617	5,311	984	1,855	1,148	267	1,149	478
1995	656	5,684	1,010	1,904	1,172	245	1,091	487
1996	713	4,840	982	1,984	1,195	245	1,074	486
1997	770	3,997	954	2,064	1,217	245	1,210	485
1998	770	3,997	954	2,064	1,217	245	1,210	485
1999	770	3,997	954	2,064	1,217	245	1,210	485
2000	449	3,997	1,087	61	1,218	245	3,214	485
2001	495	3,997	1,263	45	1,215	245	2,606	485
2002	602	3,997	1,293	57	1,215	245	3,585	485
2003	490	3,997	1,376	38	1,209	245	2,977	485
2004	484	3,997	1,284	40	1,212	245	3,486	485
2005	510	3,997	1,364	47	1,215	245	4,296	485
2006	1,477	3,997	1,843	72	1,219	245	6,553	485
2007	1,530	3,997	1,638	65	1,210	245	5,414	485
2008	1,354	3,997	1,680	75	1,209	245	5,016	485
2009	1,444	3,997	1,713	65	1,213	245	8,642	485
2010	1,462	3,997	3,755	75	1,203	245	7,064	485
2011	1,500	3,997	2,607	101	1,204	245	7,803	485
2012	1,500	3,997	2,607	101	1,204	245	7,803	485

Table C.1.5, cont.

Year	Sterling	Swisher	Upton	Ward	Winkler
1930	0	0	0	0	0
1931	0.2	2	2	1	22
1932	0.3	3	4	2	44
1933	0.5	5	6	3	66
1934	1	7	8	4	88
1935	1	8	10	4	110
1936	1	10	12	5	131
1937	1	12	14	6	153
1938	1	14	16	7	175
1939	1	15	18	8	197
1940	2	17	19	9	219
1941	2	19	21	10	241
1942	2	20	23	11	263
1943	2	22	25	11	285
1944	2	24	27	12	307
1945	2	25	29	13	329
1946	2	27	31	14	351
1947	3	29	33	15	373
1948	3	30	35	16	394
1949	3	32	37	17	416
1950	3	34	39	18	438
1951	3	37	43	19	480
1952	4	40	46	21	521
1953	4	43	50	23	563
1954	4	47	54	24	604
1955	5	50	57	26	645
1956	5	53	61	28	687
1957	5	56	65	29	728
1958	5	59	68	31	770
1959	6	63	72	33	811
1960	6	66	76	34	853
1961	7	78	89	40	1,006
1962	8	90	103	47	1,159
1963	9	101	117	53	1,313
1964	10	113	130	59	1,466
1965	11	125	144	65	1,620
1966	13	137	158	71	1,773
1967	14	149	171	78	1,926
1968	15	161	185	84	2,080
1969	16	173	199	90	2,233
1970	17	185	212	96	2,387

Table C.1.5, cont.

Year	Sterling	Swisher	Upton	Ward	Winkler
1971	18	194	223	101	2,503
1972	18	203	233	105	2,620
1973	19	212	243	110	2,737
1974	20	221	254	115	2,854
1975	21	230	264	120	2,970
1976	21	229	263	119	2,962
1977	21	228	263	119	2,954
1978	21	228	262	119	2,945
1979	21	227	261	118	2,937
1980	20	219	252	114	2,833
1981	20	205	236	114	2,938
1982	20	192	220	114	3,043
1983	20	178	205	113	3,149
1984	20	165	189	113	3,254
1985	20	151	173	113	3,359
1986	19	149	181	106	3,151
1987	18	148	189	100	2,943
1988	16	146	197	93	2,735
1989	15	145	205	87	2,527
1990	14	143	213	80	2,319
1991	13	154	224	79	2,321
1992	13	165	236	79	2,323
1993	12	175	247	78	2,326
1994	12	186	259	78	2,328
1995	11	197	270	77	2,330
1996	11	179	245	75	2,191
1997	11	162	220	74	2,052
1998	11	162	220	74	2,052
1999	11	162	220	74	2,052
2000	19	443	155	110	2,197
2001	22	434	119	87	2,169
2002	20	409	114	79	1,808
2003	17	437	110	80	1,945
2004	17	435	104	82	1,975
2005	18	427	107	82	1,857
2006	19	381	112	79	1,975
2007	19	588	103	89	1,811
2008	19	636	120	102	1,936
2009	19	620	113	108	1,959
2010	18	861	209	125	1,663
2011	18	1,177	278	116	2,057
2012	18	1,177	278	116	2,057

APPENDIX D

Comments and Responses

for

Review of "Draft Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model" Report and Deliverables for TWDB Contract No. 1248301494 Dated August 31, 2015

and

Review of "Predictive Simulations using Updated Draft Groundwater Availability Numerical Model for the High Plains Aquifer System" Memo and Model Files Received July 13, 2015 for TWDB Contract No. 1248301494 Dated August 31, 2015

This page intentionally left blank.

Appendix D

Comments and Responses

for

Review of "Draft Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model" Report and deliverables for TWDB Contract No. 1248301494 Dated August 31, 2015

Attachment 1

The following report and model review comments shall be addressed and included in the final deliverables due August 31, 2015. Section 2.1 is a very clear and understandable explanation of packages. The figures and table are very helpful. Please note the items listed under suggestions are editorial in context and are not contractually required; however, adjustments noted may improve the readability of the report.

Draft Numerical Model Comments:

1. Some of the storage coefficient values for the Edwards-Trinity (Plateau) and Pecos Valley Alluvium portions of the model are very high (up to 0.782 [specific storage of 0.0024 per foot], Figures below). Please provide a figure in the report and provide discussion of storage properties for all active areas of layer 2, not just Rita Blanca and Edwards-Trinity (High Plains) aquifers. Please verify and discuss why these values are high in the text of the report.

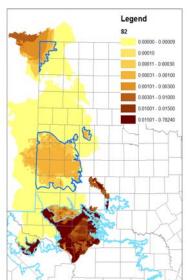


Figure 2. Storage Coefficients for Layer 2 of the draft High Plains Aquifer System model. Note maximum value of 0.7824 in the Edwards-Trinity (Plateau) Aquifer portion.

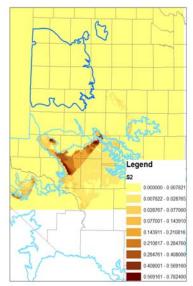


Figure 2. Storage Coefficients for Layer 2 of the draft High Plains Aquifer System model (zoomed into the Edwards-Trinity (Plateau) Aquifer area). Note values greater than 0.5 in Edwards-Trinity (Plateau) Aquifer portion.

The Edwards-Trinity (Plateau) and Pecos Valley aquifer storage properties were taken directly from the updated Edwards-Trinity (Plateau) and Pecos Valley aquifer groundwater availability model (Hutchinson and others, 2011) Because head boundaries (River package) exist in every cell of the model that represents these aquifers, and these aquifers are not part of the High Plains Aquifer System (nor should the model be used so simulate them), we are do not put a high priority on parameterization of their storage parameters. In response to your comment, we did clip the storage coefficients in the Edwards-Trinity (Plateau) portion, so that the upper limit was 0.074. This value is based on the values reported in Ashworth (1983) and referenced in Anaya and Jones (2009). Because the portion of the Pecos Valley Alluvium represented in the model is strictly unconfined, only the specific yield is relevant. Figure 3.1.10 shows the modified storativity of the Edwards-Trinity (Plateau).

2. The calibrated horizontal hydraulic conductivities of the upper and lower Dockum (Figures 3.1.13 and 3.1.14) are at least an order of magnitude lower than the calibrated horizontal hydraulic conductivities of the original groundwater availability model for the Dockum Aquifer and the hydraulic conductivity data presented in the conceptual model for the Dockum Aquifer (Figures 4.6.5 and 4.6.11 from the original Dockum Aquifer GAM report below). Please discuss the changes to the hydraulic properties in the report and the implications for the original conceptualization of the High Plains Aquifer System. Discussion shall include any justification for the adjustments, how this affects areas where the Ogallala and Dockum aquifers are connected with comparable properties, and in the outcrop portions of the Dockum Aquifer. Please also see public comments for Lone Wolf Groundwater Conservation District located at the end of this document.

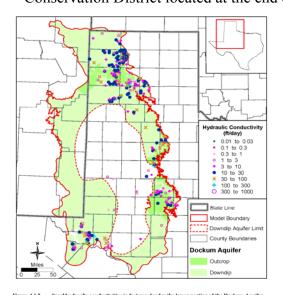


Figure 4.6.11 Kriged map of sand hydraulic conductivity in feet per day for the lower porti Dockum Aquifer.

Model Boundary Downdip Aquife County Boundar

Based on the comments from Lone Wolf Groundwater Conservation District (see responses below) and discussions with TWDB staff, we revisited the calibration of hydraulic conductivity (both horizontal and vertical) and recharge in the Dockum Aquifer. We were able to achieve nearly as good a calibration in the Dockum Aquifer by increasing recharge and horizontal hydraulic conductivity to the Lower Dockum Aquifer, and decreasing vertical conductivity in the lower Dockum Aquifer. In the shallow regions of the lower Dockum Aquifer, such as Mitchell County, the horizontal hydraulic conductivity is now nearly identical to the original conceptualization. Note that both figures shown above in the TWDB comment are for sand conductivities, not the "effective" horizontal hydraulic conductivity distribution that is calculated when multiplying by the sand fraction in the lower Dockum Aquifer (as described in Ewing and others (2008)). The conceptual model figure for comparison is Figure 6.4.4 in Ewing and others (2008) or Figure 4.6.8 from Deeds and others (2015).

In summary, the updated calibration, after comments were considered, results in a horizontal hydraulic conductivity in the lower Dockum Aquifer that is nearly the same as the conceptualization, in the shallow units where the Dockum Aquifer is freshest and most productive.

Draft numerical model comments:

General comments to be addressed

3. Please do not use any acronyms except TWDB. Please spell out everything else including, but not limited to, groundwater conservation district, groundwater availability model, acrefeet per year, and High Plains Aquifer System.

Done.

4. Section 4.0 Sensitivity Analysis: Please proofread the entire section. Several words seem to missing and/or there are several incorrect words.

Done.

Specific comments to be addressed

5. Executive Summary, Page ES-1, Paragraph 1, last Sentence: Please revise to," The purpose of the High Plains Aquifer System model is to provide a tool for managing the groundwater resources in the study area."

Corrected.

6. Section 1.1, Page 1-1, Paragraph 1: Figures 1.0.1 and 1.0.2 are cited in the text, but the figures of the major and minor aquifers are missing. Please add Figures 1.0.1 and 1.0.2 to the report.

Figures added.

7. Section 1.1, Per Exhibit B, Attachment 1, (Scope of Work page 20 of 27) of the contract: Please include a figure of the location of the aquifers in the study area and cite the figure in paragraph 2 of this section.

Figure added.

8. Section 1.2, Page 1-1, Paragraph 1: Please cite legislative session or year when referring to bills since each legislative session could use the same bill number. For example, Senate Bill 1 (75th Texas Legislative Session, 1997) concerned the development and management of the water resources in the state and now references ad valorem taxes in the 84th session in 2015.

Corrected.

9. Section 1.2, Page 1-2, last Paragraph: Please cite legislative session or year when referring to bills since each legislative session could use the same bill number. For example, House Bill 1763 concerned groundwater in 2005 (79th session) and now references public education in the 84th session in 2015.

Corrected.

10. Section 2.0, Page 2-1, Paragraph 1, sentence 1: "...boundary condition packages to handle recharge, streams, reservoirs, etc." Please either list all of the boundary condition types or replace etc. with "and others".

Corrected.

11. Section 2.1, Paragraph 2: Text describes aquifers in each layer. Please update text for layer 2 to also include parts of the Edwards-Trinity (Plateau) Aquifer.

Corrected.

12. Figures 2.1.5a and 2.1.5b, Pages 2-10 and 2-11: Please consider using different colors for springs and river cells or making the spring cells larger in the figures since they are hard to discern.

Figures updated.

13. Section 2.4, Page 2-19, Paragraph 4, Sentence 3: Text cites Figures 4.2.2 through 4.2.4, should be 2.4.2 through 2.4.2. Please update figure numbers in the text of the report.

Corrected.

14. Section 2.4, Page 2-20, Paragraph. 3: Text cites Figures 4.2.5 and 4.2.6, should be 2.4.5 and 2.4.6. Please update figure numbers in the text of the report.

Corrected.

15. Section 2.4, Page 2-20, Paragraph. 3: The text mentions a second zone used to modify specific yield in a four county area as shown in Figure [2.4.6]. However, Figure 2.4.6 shows a much larger area covering more than four counties. Please correct text or figure so they agree. Also, please explain (or provide a reference) in the text as to why this second zone was created.

Text added.

16. Figure 2.4.2, Page 2-22: Shading (light purple) is missing from ETHP zone. Please update figure to include shading in Edwards-Trinity (High Plains) Aquifer area.

Corrected.

17. Section 2.5.2, Page 2-28 and Page 2-29: The text on Page 2-28 mentions that, "wells without depth or screen information were excluded since they could not be assigned to an aquifer". However, on Page 2-29 it is stated that, "If no screen information was known[;] screen information of nearby wells of similar type was used". These two statements are contradictory. Please explain or correct text of the report, as needed.

Text clarified.

18. Section 2.5, Page 2-29, Bullet "b": Line 3 refers to bullet (6), please clarify if this should be (3) and adjust as needed.

Corrected.

19. Section 2.5, Page 2-29, Numbered list in the middle of the page, (wells outside of Texas): Numbering starts over with 1, 2, then 3; however, items 2 and 3 refer to item (5) above "within 20 feet of a well in (5)". There is no (5) because numbering started over with 1. Please update text and/or numbering so text/numbering agrees with point being addressed.

Corrected.

20. Section 2.5.3, Page 2-30, item 2: The text mentions that production limits for Ogallala were set according to Hecox and others (2002). Please explain or provide a reference as to how production limits were set for other aquifers.

Text added to explain how production limits were set for other aquifers.

21. Section 2.5.5, Page 2-31, last sentence: Please provide name of the file where the well package totals by county and aquifer are provided as part of the electronic submittal to aid the reader in finding the data. In addition, we recommend providing a figure of irrigation wells—delineated by aquifer and county (and showing location of paleo valleys) —which were used for the pumping distribution for irrigation throughout the active model domain. Please note that "point" distribution of irrigation and livestock was deemed insufficient in previous models due to the scarcity of wells and due to pumping exceeding aquifer properties, especially for predictive simulations.

Added the name of the file to text. Added figure showing location of irrigation wells in the model region.

22. Section 2.5: Per Exhibit B, Attachment 1, of the contract (page 21 of 27), please provide a table of total pumping per county per stress period in an Appendix of the report. Alternatively please provide (or reference) a table in Section 3.1.6 with initial pumping and reduced pumping.

Tables of annual pumping by county and aquifer added. See Appendix C.

23. Section 2.6, Page 2-33, Paragraph 2, last sentence: Please update text and "hpas.drn" file to note the drain cells representing "low-lying seepage" are also specifically identified.

Done.

24. Section 2.6, Page 2-33, Paragraph 3, last sentence: Please explain in the text of the report why a value of 10 feet was used for placing the drain elevations above the bottom of the model layer in which they were placed.

Explanation added.

25. Section 2.9.1, Page 2-37, Paragraph 2, lines 5 and 6: Please explain why values of 10 and 5 feet were used as stated.

Explanation added.

26. Section 2.9.1, Page 2-38, Paragraph 1, line 6: Please explain why a value of 5 feet was used as stated.

We assume you mean Section 2.9.3. Explanation added.

27. Section 2.9.1, Page 2-38, Paragraph 1, line 8: "Dockum and these units" Please state the name of the units for clarity.

We assume you mean Section 2.9.3. Unit names added.

28. Section 3.1.1, Page 3-1, Paragraph 1, line 1: Please mention in the text of the report, the relevant year that represents the conditions prior to significant development of the aquifer.

Year added to text.

29. Section 3.1.2, Page 3-2, last Paragraph: Please include the plots to assess spatial bias that are mentioned in this paragraph in the text of the report.

Text notes that "Post plots of hydraulic head residuals for both the steady-state and transient portions of the model were used to check for spatial bias." These plots are discussed in Section 3.2.2, and we don't think a forward reference to them is necessary in this introductory discussion.

30. Section 3.1.3, Pages 3-3 to 3-4: In the text of the report please clarify the source of the initial values for the pilot points. It is unclear in Section 2.4.2 or 3.1.3 if the initial pilot point values were based on data from previous calibrated models, measured data, or some other documented approach. Please confirm that measured data was honored in this calibration approach.

The initial values of all the pilot points were 1.0, since the pilot points were multipliers. The text was modified to reflect this.

31. Section 3.1.3, Page 3-3, Last Paragraph: Text states that similar to the previous Dockum Aquifer modeling effort horizontal conductivities were decreased during calibration in the Upper and Lower Dockum aquifer units. However, it appears the starting horizontal conductivities for this modeling effort were the final calibrated horizontal conductivities from the original modeling effort. See comment #2 in the modeling section and please update text with justification of further lowering horizontal conductivities away from measured values.

As noted in the response to comment #2, we have since updated the lower Dockum Aquifer calibration so that in the shallow portions of the Dockum Aquifer the calibrated field is nearly identical to the hydraulic conductivity field in the conceptual model (Figure 4.6.8 in Deeds and others (2015)) (not the final calibrated horizontal conductivities from the previous Dockum Aquifer model). In fact, the final calibrated Dockum Aquifer hydraulic conductivities in the High Plains Aquifer System groundwater availability model are now higher than the final calibrated Dockum Aquifer hydraulic conductivities in the previous groundwater availability model (except in the deeper, brackish areas).

32. Section 3.1.3, Page 3-4, Paragraph 2: Text suggests that the model may be limited in modeling the relationship of the Ogallala and Dockum aquifers in the region where the Ogallala Aquifer overlies the Santa Rosa portion of the Dockum Aquifer. The text states this was possibly due to the non-uniqueness of parameter combinations within their acceptable ranges. This needs to be discussed in the Executive Summary and in the Limitation Section of the report, as modeling the relationships between the Ogallala and Dockum aquifers was the main objective of this modeling project.

The intention was to say that this zone where the Santa Rosa Formation was in direct contact with the Ogallala Aquifer did not require any special approach for parameterization of vertical conductivity. The basic approach for estimating the vertical conductivity of the lower Dockum Aquifer was driven by clay percentage and depth. The conductance term calculated by MODFLOW between two layers is

dependent on vertical conductivity and layer thickness. Because the lower Dockum Aquifer in this zone is relatively sandy, is shallow, and thin compared to areas more basinward, the vertical connection calculated from the basic approach results in a vertical conductance that creates satisfactory calibration to heads in the area. We added this explanation to the text.

33. Section 3.1.3, Page 3-4: Please cite Figures 3.1.5 through 3.1.8 in the text.

Citations added.

34. Section 3.1.3, Page 3-4: Please cite Figures 3.1.10 through 3.1.12 in the text.

Citations added.

35. Section 3.1.3, Figures 3.1.3, 3.1.4, 3.1.11, and 3.1.12, Pages 3-13, 3-14 and 3-21, and 3-22: Low areas of horizontal hydraulic conductivity seem to correspond to areas of higher storage coefficient for the Upper and Lower Dockum. This is the reverse of what might be expected. Please review these four figures and discuss possible reasons for the relationship.

Storativity is dependent on thickness, whereas hydraulic conductivity is not. Storativity increases towards the center of the basin because the Dockum Aquifer is thickening in that direction and specific storage was assumed to be constant for the Dockum Aquifer. We cannot find literature that indicates that *specific* storage and hydraulic conductivity would necessarily be correlated, for a system consisting of sands and shales.

36. Section 3.1.3, Page 3-4, Paragraph 2, last sentence: Please provide values in decimals rather 1E-2 and 1E-4.

Corrected.

37. Section 3.1.4, Page 3-5, Paragraph. 1, Sentence 6: "The model sensitivity to recharge was dominated by the steady-state stress period, where initial head elevations were very sensitive to the recharge rate." Please rephrase for clarity, "heads at the end of the steady-state stress period were sensitive to the recharge rate"?

Rephrased as suggested.

38. Section 3.1.4, Page 3-5, Paragraph 2: The text states that recharge rates were decreased but doesn't mention whether this was done for the steady-state conditions or transient. Please expand discussion in the text to clarify this.

The updated conductivity and recharge in response to comments caused a general rewrite of this paragraph.

39. Section 3.1.5, Page 3-5, Paragraph 1, last sentence: Text mentions that fluxes were compared with those from previous models and verified to be within reasonable range and plausible bounds. Please consider either providing these comparisons or quantitatively stating the 'reasonable range' and 'plausible bounds'.

Agreed that this was poorly phrased. We took a second look at these fluxes and rewrote paragraphs to more specifically discuss how they were evaluated.

40. Section 3.1.6, Pages 3-6 to 3-7: Please see Table A (at the end of this review) which shows the comparison between pumping in the input well package, from the Water Use Survey and the curtailed pumping applied by the NWT package. There is a consistently large positive bias (averaging 20 percent and as high as 31 percent) in the input well package from 1984 through 1992 and a consistently large negative bias from 1995 to 2000 (averaging 14 percent and as high as 20 percent) when compared to the Water Use Survey. It appears that consistently high pumping (than what is estimated in the Water Use Survey) in the earlier years (1984 to 1992) may have resulted in curtailed pumping in the latter years. While Water Use Survey estimates may not have been used for preparing the input files for the model, please explain why such a large discrepancy (31 percent to -20 percent) might occur in the input pumping. Also, please discuss what effects such a discrepancy might have on the calibration process and therefore on the model results. Please be specific about what discrepancies would occur if calibration is conducted to much higher (or lower) than actual pumping both spatially as well as temporally.

The difference between the pumping shown in Table A and the model pumping is due to two reasons:

- 1. Table A shows pumping only in Texas. The model includes pumping in Texas and other states, primarily New Mexico and Oklahoma. This explains the positive bias early on, that is, Table A is comparing Texas pumping to (Texas plus non-Texas) pumping.
- 2. The conceptual model for total pumping by county did not depend exclusively on the water use survey results. As noted in Deeds and others (2015), irrigation pumping in the Ogallala Aquifer was based on the same sources as the existing southern Ogallala Aquifer groundwater availability model Blandford and others

(2008) and northern Ogallala Aquifer groundwater availability model (INTERA and Dutton, 2010). These sources are studies from Amosson and others (Appendix B in Blandford and others (2008)), and the Texas Agricultural Experiment Station (Dutton and others, 2001).

In short, the post-1980 pumping in the numerical model followed the post-1980 pumping in conceptual model, and the conceptual model report explains the sources for the pumping, which were not necessarily the same as the water use survey.

41. Section 3.1, Table 3.1.1, Page 3-8: Please distinguish between storage coefficient and specific storage in the table, "S" is used for both. For the Ogallala, Rita Blanca outcrop, Edwards Trinity (Plateau) outcrop, Upper Dockum outcrop, and Lower Dockum outcrop the values are specific storage. For the Rita Blanca downdip, Edwards-Trinity (High Plains), Edwards-Trinity (Plateau) downdip, and Upper Dockum downdip the values are storage coefficient. Please use "S" for storage coefficient and "Ss" for specific storage.

To avoid confusion, we changed our approach to report only specific storage, since that is the parameter that is input in the Upstream Weighting package. We used "Ss" to denote specific storage.

42. Section 3.1, Table 3.1.1, Page 3-8: Please check the final mean values for horizontal and vertical hydraulic conductivities for the Edwards-Trinity (Plateau) downdip. We calculate 2.04 and 2.04 x 10⁻⁴ respectively. Please check the values and update the table if appropriate.

The problem was labeling. The label should have been "Edwards-Trinity (Plateau)" rather than "Edwards-Trinity (Plateau) Downdip". We included both IBOUND==51 and IBOUND==52 in the calculation. We corrected the label.

43. Section 3.1, Table 3.1.1, Page 3-8: Please mark or indicate the values that were not changed in the calibration process. Perhaps, shade the applicable cells or underline the values.

Shaded the cells for parameter and aquifer when parameter values were not modified from initial estimates during calibration, and noted this at the bottom of the table.

44. Section 3.1.6, Page 3-10, Table 3.1.2: Suggest changing table caption to "Fraction of initial pre-1980 Ogallala Aquifer pumping by county". Current table caption is misleading. Also, please consider adding a column to the table showing the percent reduction, for the benefit of the readers.

Done.

45. Figure 3.1.9, Page 3-19: It is difficult to discern the specific yield values in the figure. Please consider grouping the specific yield values into 4 to 5 groups and using visibly distinct shades or colors.

Figure updated.

46. Figures 3.1.13 and 3.1.14, Pages 3-23 and 3-24: Please use visibly distinct shades or colors.

Figures updated

47. Section 3.2, Pages 3-25 to 3-32: The text points out various observations in the figures by county name. However, counties are not labeled in the figures. Please update figures with county labels so reader can easily locate observations.

Figures updated.

48. Section 3.2.1, Page 3-25, Paragraph 2, line 2: "This bias is not obvious.." The bias is observable and therefore, obvious. Please consider rephrasing the sentence.

Rephrased.

49. Section 3.2.2, Page 3-28, Paragraphs 2 and 3: The discussion outlines the presence of bias in the calibration results. However, there is no discussion on the probable cause of the reported bias. Please include a discussion on probable reason(s) for the bias for each of the aquifers discussed.

Discussion regarding negative bias in New Mexico for the Ogallala Aquifer already present in paragraph two. Discussion regarding negative bias for Edwards-Trinity (High Plains) Aquifer already present in paragraph three. Discussion expanded for other aquifers in paragraph three.

50. Section 3.2.4, Page 3-32, Paragraph 3: The text states a tolerance value of 40 feet for flooding and a maximum flood value of 48 feet above tolerance is reported. Later, however, it is mentioned that the maximum flood height is 55 feet. Please address the discrepancies in the text of the report. Also, please provide the reasoning behind selecting the tolerance value in the text of the report.

The numbers were updated for the updated model. The 48 feet referred to the steady-state model, while the 55 feet referred to the end of the transient model. The reasoning behind selecting that tolerance was that it represented the approximate mean absolute error among the aquifers. This is stated in the text.

51. Figures 3.2.10a through 3.2.14, Pages 3-43 through 3-50: It is hard to discern between the shades of blue dots. Please consider changing some of the blue shades to green or any other distinctly visible shade that may benefit the readers. There appear to be clusters of negative values (indicating bias) but it is hard to check if the values are highly negative or mildly.

Also, please consider changing the shade of the (-49 to 50) range to a blank circle instead of black dot to aid in visualization. In addition please adjust legends and replace "-" with "to".

Figures updated. See Figures 3.2.10a through 3.2.15.

52. Figure 3.2.20, Page 3-55: To aid in visualization of the saturated thickness, please consider reducing the number of zones to 4 or 5 rather than 10 used currently

Figure updated. See Figure 3.2.20.

53. Figure 3.2.25 through Figure 3.2.30, Pages 3-68 to 3-73: To aid in visualization please consider reducing the number of zones or using different shades of colors rather than orange which are hard to discern

Figures updated. See Figures 3.2.25 through 3.2.30.

54. Section 3.3, Figures 3.3.5 and 3.3.9, Pages. 3-101 and 3-105: Please use a different color for the outline of the Ogallala or different colors for the downward flow. The outline of the Ogallala is the same color as large upward flow.

Figures updated.

55. Section 3.3, Figures 3.3.5, 3.3.6, 3.3.9, and 3.3.10, Pages 3-101,3-102, 3-105, and 3-106: Please clarify in the text of the report the juxtaposed reversals of flow along the Edwards-Trinity (High Plains) Aquifer that appears in the steady-state (no pumping) and continues through the transient calibration.

This is due to the rivers crossing the Ogallala where the Edwards-Trinity (High Plains) Aquifer is thinning in Gaines/Dawson (and also Lubbock) counties. Explanation added to section 3.3.2.

56. Section 3.4.1, Table 3.4.1., Page 3-113: Please clarify why "Cross-formational other into Ogallala" (44,401 IN) is not equal to total cross-formational OUT to the Ogallala from the underlying units (-41,532). Please clarify if there flow from other units besides Rita Blanca, Edwards-Trinity (High Plains), and Dockum aquifers.

This comment made us take a second look at the table in general. We added the Edwards-Trinity (Plateau) and Pecos Valley zones so that "Cross Formational (Other)" (44,330 IN) now can be compared to "Cross Formational (Ogallala) (-44,330 OUT). We added a sum for "Cross Formational (Other)" (49,687 IN) that does not include the Ogallala Aquifer, for comparison to the sum "Cross Formational (Other)" (-49,687 OUT) which also does not include the Ogallala Aquifer. We also broke out layer totals (which would include cross-formational flow) from model totals (which do not include cross-formational flow, since it is internal to the model). We added text to help explain the additions to the table.

57. Section 3.4, Figures 3.4.7 to 3.4.10, Pages 3-122 to 3-125: Please consider using a darker color than yellow in the graphs as this is hard to see and does not photocopy well.

Changed to dark green.

58. Section 4.2.1, Page 4-2, Paragraph. 3: Text states "For those parameters that would affect the shallow hydraulic heads, both flow and hydraulic head output metrics were considered." However, all of the parameters indicate both hydraulic head and flow were considered except specific yield and specific storage for which only hydraulic head was considered. This difference doesn't seem to be related to whether shallow heads were or weren't affected. Please clarify or provide a different explanation or just remove that sentence. In addition, storage values may have a significant impact on the flux values. Therefore, please consider adding the flow metric to the storage value sensitivity analyses.

Removed sentence, added flow metric to specific yield of the Ogallala Aquifer. Flows were not sensitive to confined storage, and this is now noted in the text.

59. Figures 4.2.20 through 4.2.40, Pages. 4-28 to 4-48: Please discuss the relative significance of the difference in mean flux values. The maximum values appear to be around 10 acre-fee

across all figures. Please discuss what is indicated by the relative magnitude of the flux values especially in context of the different boundary conditions.

Added text regarding relative magnitude of mean flux values at the end of the section.

60. Section 4.2.1, Page 4-8, Last Paragraph.: Please add some discussion of Figures 4.2.39 and 4.2.40, sensitivity of flow to evapotranspiration parameters.

Discussion added.

61. Section 4.2.2, Page 4-49, Paragraph 1, Sentence 2: Text states that transient model head sensitivity to horizontal and vertical hydraulic conductivities (Figures 4.41 through 4.50) are very similar to steady-state sensitivities (Figures 4.1 through 4.10). However, Figure 4.49 (vertical conductivity of the Upper Dockum) is not similar to Figure 4.9. Please verify that these are the correct figures and if they are correct please discuss the difference between the sensitivities in the text.

Text modified to note and explain exceptions to the claim of similarity in responses.

62. Section 4.2.2, Page 4-49, Paragraph 1, Sentence 4: Text states that transient model flow sensitivity to horizontal and vertical hydraulic conductivities (Figures 4.68 through 4.77) are very similar to steady-state sensitivities (Figures 4.21 through 4.30). However, Figure 4.72 (horizontal conductivity of the Upper Dockum) is not similar to Figure 4.25 (steady-state version). Please verify that these are the correct figures and if they are correct please discuss the difference between the sensitivities in the text.

Text modified to note and explain exceptions to the claim of similarity in responses.

63. Section 4.2.2, Page 4-49, Paragraph 1, Sentence 5: Text states that transient model flow sensitivity to recharge and boundary conductance (Figures 4.78 through 4.87) are very similar to steady-state sensitivities (Figures 4.31 through 4.40). However, Figures 4.82 and 4.83 (river boundary conductance and river boundary conductance for ghb cells) are not similar to Figures 4.35 and 4.36 (steady-state versions). Please verify that these are the correct figures and if they are correct please discuss the difference between the sensitivities in the text.

Text modified to note and explain exceptions to the claim of similarity in responses.

64. Section 4.2.2, Figures 4.2.90 through 4.2.94, Pages 4-101 to 4-105: Please consider adding the observed water level data from the wells. Also, please discuss how modifications in the

parameter values impact the residuals between observed and multiple simulated values (from the sensitivity analysis).

Observed water level data added. Discussion added.

65. Section 5.3: Please consider adding discussion about how pre-1980 pumping was modified based on change in storage (obtained from water levels) and the transient model was calibrated to the same water levels thereby increasing the uncertainty in model predictions. Also, please note in the text of the report that this makes the model highly sensitive to starting water levels or saturated thickness conditions.

We added text to 5.3 discussing the concerns expressed in this comment.

We are interpreting the first part of this comment to mean that because pre-1980 pumping was estimated based on change in storage, rather than using estimates independent of water levels, that the amount of constraint placed on the parameterization was reduced. This may be true, but would require an actual uncertainty analysis to show one way or the other, and that is beyond the scope of this effort. We provide evidence (Deeds and others (2015), Section 4.7.2.7), that some of the pre-1980 pumping estimates from the irrigation survey are biased high, and so high that it was impossible to calibrate the model using them (as the previous modelers found as well).

Even if we treated the portion of the transient model prior to 1980 as an exercise in producing initial 1980 heads, we still have more than 30 years of transient calibration where non-storage-based pumping estimates were used. Our confidence in both pumping and water levels increases through time, so the value of the last 30 years of calibration is at least equal to or higher than the 30 years prior to 1980.

We don't agree with the second part of the comment. Predictive results of a model that consists mostly of a large, unconfined aquifer is going to be sensitive to starting saturated thickness, regardless of how pumping was parameterized prior to 1980.

66. Appendix A, Table A.1.1, Page A-4: Please verify the steady-state water budget entries for Lynn (ET and total drains) and Ochiltree (ET) counties. We extracted the steady-state water budget values by county and generally reproduced Table A.1.1 for all Texas counties except Lynn and Ochiltree (ET and total drains). Please verify and update if necessary.

We verified the water budgets and the numbers are correct. The discrepancy probably stems from the fact that you restricted the analysis to the official aquifer boundary. In our meeting from June 17, 2015 at TWDB's headquarters we brought up the fact that

while the active area closely matches the official aquifer boundary, slight changes were made (by adding/subtracting active cells) to enhance model stability.

67. Appendix A, Table A.3.5, Page A-28: Please review table format on the last few pages (A-29 and A-30). The columns are shifted. Please review and correct if appropriate.

Final Model Report General Suggestions

68. When listing a range of values or figure numbers please use 'through' rather than a dash. For example, we prefer "Figures 3.2.1 through 3.2.6" rather than "Figures 3.2.1 – 3.2.6", or (1980 through 2012) rather than (1980 - 2012).

Corrected.

69. Within the figures, in the legend, please use 'to' rather than a dash; for example (-1000 to -300) rather than (-1000 - -300).

Figures with negative values updated to avoid confusion. See Figures 3.2.10a through 3.2.15, 3.2.25 through 3.2.28, and 3.3.1a through 3.3.2b.

70. When referencing the Edwards-Trinity (High Plains) Aquifer, please use parenthesis around High Plains.

Corrected.

Final Model Report Specific Suggestions

71. Section 2.0, Page 2-1, Paragraph 1: Line 5 refers to United States Geological Survey and line 8 refers to U. S. Geological Survey. Please update the text of the report to identify this agency consistently.

Corrected.

72. Section 2.0, Page 2-1, Paragraph 2, line 3: "model creation did not necessary follow". Please use necessarily rather than necessary.

Corrected.

73. Figure 2.1.1, Page 2-6: Please correct spelling of Ogallala in legend.

Corrected.

74. Section 2.5.2, Page 2-29: Please spell out "UWCD" and "GCD" for South Plains and Panhandle.

Corrected.

75. Section 2.5.3, Page 2-30, item 2, last sentence: ".....Ogallala were based on (Hecox and others, 2002) which ...". Please change citation to "....on Hecox and others (2002)...".

Corrected.

76. Section 2.5.1, Pg 2-27, Paragraph 5: "is likely to decline significantly from Brune". Please use 'as stated in' (or a variation thereof) rather than 'from'

Corrected.

77. Section 3.1.4, Page 3-5, Paragraph 1, Sentence 4: "...transient period, <u>i.e.</u>, the initial variation in recharge from steady-state to transient was maintained for the calibrated case." Please don't use latin (i.e, e.g., etc.). Please replace i.e. with "in other words".

Corrected.

78. Section 3.1.6, Page 3-7, Paragraph 1, Sentence 3: "Bailey County was the one county were post-1980 pumping was also decreased as in input...". Please change 'were' to 'where' and consider removing the word 'as' and changing to 'decreased in the input files'.

Corrected.

79. Section 3.1, Table 3.1.1, Page 3-8: Please provide a footnote for the table that explains what each of the parameters are. For example, Kh = horizontal hydraulic conductivity, Kv = vertical hydraulic conductivity, Sy = specific yield.

Corrected

80. Section 3.2.4: Please provide figures showing dry and flooded cells in steady-state and in 2012.

Added figures and references to them in the text. See Figures 3.2.45 and 3.2.46.

81. Figures 3.2.10a through 3.2.14, Pages 3-43 through 3-50: In the legend, please consider using 'to' rather than the dash (-) while reporting the value ranges such as (-1000 to -300) rather than (-1000 - -300).

Figures updated. See Figures 3.2.10a through 3.2.15.

82. Section 3.4.1, Page 3-109, Paragraph 2, line 1: "steady-state model in in .." Please delete one "in"

Corrected.

83. Section 4.2.1, Page 4-5, Paragraph 2, line 4: "= Figure 4.2.7 depicts..." please remove '='

Corrected.

Final Conceptual Model Report

Specific Comments to be addressed

84. Unable to review "Chapter 3 Previous Investigations" as this chapter is missing from the pdf document provided. Please include Chapter 3 in the final version of the conceptual model report.

Chapter 3 added.

85. Comment 81 from draft comments was not addressed for the Lower Dockum Group. Page 4.3-18, last Paragraph: Please cite Table 4.3.4 for each trend discussed that is not based on a hydrograph in Figure 4.3-24.

Corrected.

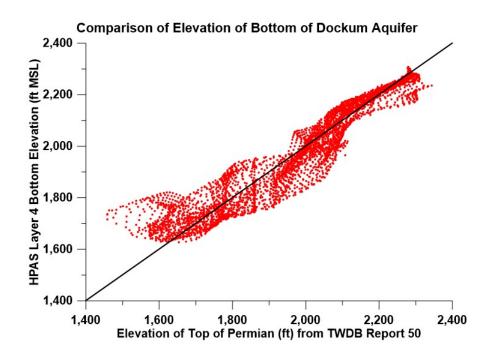
Table 1. Comparison between pumpage from the input files (.wel package), Water Use Survey, and the final model results as curtailed by the NWT package. The last column details the percentage difference between Input pumpage and Water Use Survey estimates. All values reported in acre-feet per year.

Year	Stress Period	Input-wel TWDB Water Use Survey		NWT-pumping	Input>WUS ? in Percent
		Layer 1	Ogallala	Layer 1	
1980	52	6,794,872	7,078,788	6,523,850	-4
1981	53	7,037,904	Not reported	6,808,666	Not applicable
1982	54	7,271,706	Not reported	7,091,950	Not applicable
1983	55	6,565,698	Not reported	6,436,031	Not applicable
1984	56	6,426,570	5,726,598	6,294,512	12
1985	57	5,866,706	4,649,101	5,737,056	23
1986	58	5,205,091	4,020,366	5,083,256	26
1987	59	4,787,568	3,502,956	4,655,378	31
1988	60	4,691,664	3,571,094	4,549,340	27
1989	61	5,438,538	4,719,780	5,283,144	14
1990	62	6,086,628	5,554,632	5,909,783	9
1991	63	5,480,339	4,796,361	5,274,400	13
1992	64	5,730859	4,502,649	5,505,806	24
1993	65	6,010,052	5,909,222	5,771,931	2
1994	66	5,687,956	5,973,734	5,426,284	-5
1995	67	5,447,544	6,215,598	5,184,050	-13
1996	68	5,516,778	6,456,173	5,254,496	-16
1997	69	5,087,932	6,231,052	4,845,638	-20
1998	70	5,790,196	6,603,075	5,512,386	-13
1999	71	5,669,730	6,278,999	5,388,064	-10
2000	72	5,975,411	6,615,001	5,698,954	-10
2001	73	5,976,699	6,170,983	5,701,624	-3
2002	74	6,089,603	6,731,156	5,793,082	-10
2003	75	5,823,435	6,203,758	5,562,356	-6
2004	76	5,681,250	6,111,827	5,446,019	-7
2005	77	4,883,732	5,039,652	4,685,960	-3
2006	78	5,014,270	4,780,052	4,809,424	5
2007	79	5,881,578	6,089,454	5,628,986	-3
2008	80	6,402,056	6,523,636	6,114,018	-2
2009	81	5,916,189	5,706,845	5,654,955	4
2010	82	4,861,566	4,414,738	4,648,556	10
2011	83	6,475,514	6,287,859	6,216,727	3
2012	84	6,475,323	6,127,376	6,190,139	6

Public Comments

[Editors Note: The response to this comment is at the end of the model review, starting on page D-24.]

Draft Model Review for Lone Wolf Groundwater Conservation District


This review covered the following elements of the draft model:

- Elevation of the bottom of the Dockum Aquifer in Mitchell County
- Recharge
- Pumping
- •Hydraulic conductivity estimates
- Model Calibration
- Groundwater budgets for Mitchell County

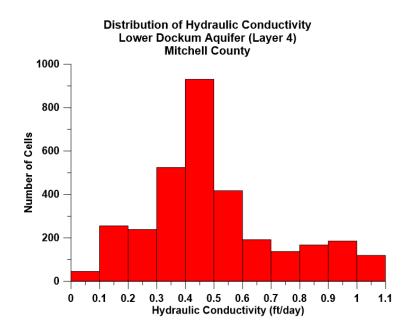
After the review and discussion, the Board of Directors of the Lone Wolf Groundwater Conservation District asked me to provide the following comments regarding the draft model.

Elevation of the Bottom of the Dockum Aquifer in Mitchell County

The bottom of the Dockum Aquifer (bottom of model layer 4) was compared with the Figure 8 of TWDB Report 50 (Ground-Water Resources of Mitchell and Western Nolan Counties, Texas, herein referred to as Shamburger, 1967), which was a contour map of the top of the Permian rocks. The comparison is shown below, and appears to be a reasonable match.

Recharge

Recharge in the HPAS was assumed not to change with time. The draft HPAS report describes changes to steady state recharge using pilot points. However, it is unclear whether recharge values were adjusted in Mitchell County during the transient calibration.


Some hydrographs in Mitchell County show variation in groundwater elevation that are likely due to variations in recharge. Using a constant recharge assumption results in a situation where pumping reduction is the only mechanism to cause groundwater elevation rises in the model.

Pumping

Pumping input for the HPAS in Mitchell County was reviewed and compared with TWDB estimates of groundwater pumping. The review showed close agreement between input estimates and the TWDB estimates.

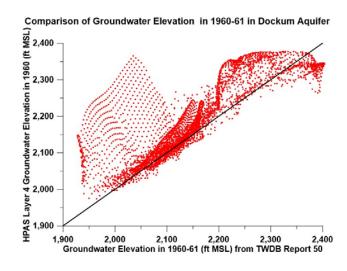
Hydraulic Conductivity

In Mitchell County, the original Dockum GAM used two hydraulic conductivity values (0.14 ft/day and 0.34 ft/day). The revised Dockum model also used two hydraulic conductivity values (5.0 ft/day and 7.0 ft/day). In these two models, the same zonation was used, just different values. The draft HPAS uses a range of hydraulic conductivity values from 0.7 ft/day to 1.1 ft/day. The distribution of these values is shown below:

The draft HPAS model report includes Table 3.1.1 that shows the changes in various parameters during calibration. The horizontal hydraulic conductivity values for the Lower Dockum for the entire model area are reproduced below:

Horizontal Hydraulic Conductivity	Initial Value (ft/day)	Final Value (ft/day)	
Minimum	0.07	0.001	
Maximum	22.30	7.49	
Mean	1.97	0.25	
Geometric Mean	1.26	0.07	
Median	0.40	0.01	

Please note that during calibration, hydraulic conductivity was lowered significantly during calibration.


When combined with the saturated thickness, the hydraulic conductivity values used in Mitchell County result in transmissivity values that are much lower than those reported in Shamburger (1967).

Shamburger (1967) reported the results of aquifer tests in four wells with a range of transmissivity of about 5,800 gpd/ft to about 12,000 gpd/ft. Calculated transmissivities using parameters from the HPAS in Mitchell County yield that are generally less than 1,500 gpd/ft. It appears that changes to hydraulic conductivity may have been made during transient calibration in Mitchell County while holding recharge constant. If recharge were to be increased slightly, the hydraulic conductivity estimates would be higher, and likely more consistent with the aquifer test results. As a result, more water moving through the system, and a similar head match would be achieved.

Model Calibration

The hydrograph comparisons for the Lower Dockum in Appendix B-5 were reviewed. Also, the heads in 1960 and 1961 were compared with the 1960-61 contour map of groundwater elevation (Figure 14 of Shamburger, 1967). HPAS heads in 1960 and 1961 were nearly identical. The result is shown below:

Final Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model

Please note that the HPAS heads tend to be higher than the groundwater elevations from the contour map, especially at the lower elevations. This is also an indication that the hydraulic conductivity values in the HPAS in Mitchell County may be too low.

Groundwater Budget of Mitchell County

Pacharge from Precipitation

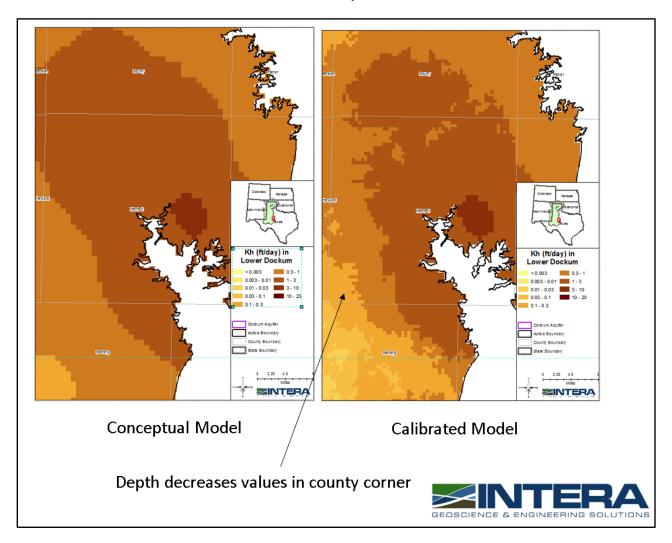
The groundwater budget data for Mitchell County for 1980 and 2012 are presented in the draft HPAS report in Tables A.2.5 and A.3.5, respectively, and are presented below:

1980

HPAS Mitchell County Groundwater Budget (AF/yr)

Recharge from Precipitation	5,929	5,929
Inflow from Adjacent Counties	327	666
Recharge from "Reservoirs"	164	115
Inflow from Overlying Formations	1,007	329
Total Inflow	7,427	7,039
Outflow		
Evapotran spiration	1,407	1,479
Springs	75	79
Baseflow to Rivers	2,311	2,020
Escarpment (Seepage faces)	324	331
Pumping	3,423	11,251
Total Outflow	7,540	15,160
Inflow-Outflow	-113	-8,121
Model Calculated Storage Change	-114	-8,120
Model Error	-1	1

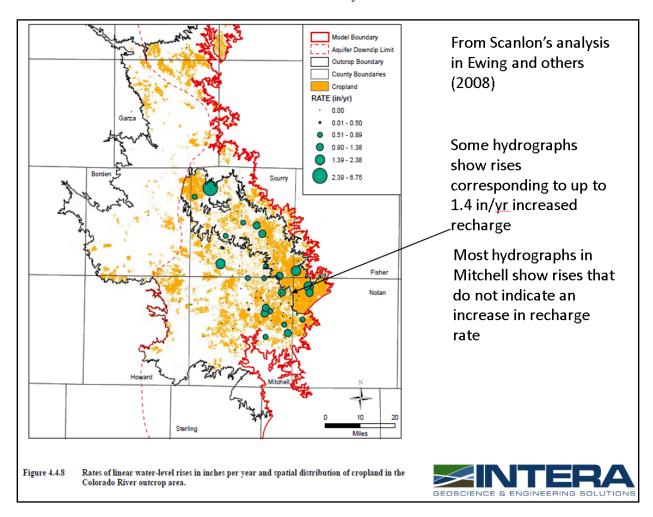
Please note that the large increase in pumping from 1980 to 2012 has resulted in little or no response in the flow system, except for a decrease in storage. This is directly attributable to the low hydraulic conductivity values used in the HPAS. In contrast, the revised Dockum model groundwater that had higher hydraulic conductivity estimates shows more recharge and inflow from adjacent counties, and more natural discharge.


Summary

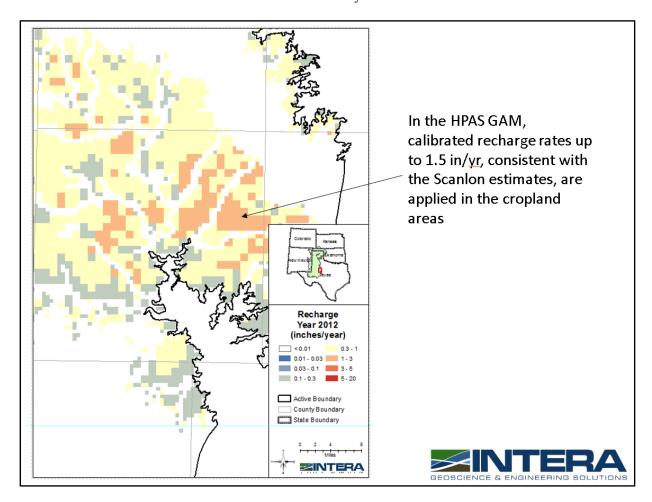
Based on this review, the Mitchell County area of the HPAS needs additional attention due to the significant differences between the HPAS and previous studies and models. Specifically, it appears that the recharge needs to be increased slightly and needs to be variable during the transient calibration period. More importantly, the hydraulic conductivity values in the Mitchell County part of the HPAS appear to be too low based on a comparison with previously published estimates of transmissivity that were derived from aquifer tests, and from a synoptic comparison of HPAS heads with a published groundwater elevation contour map.

Response to comments:

Hydraulic Properties


As noted in the response to TWDB comment #2, after comments were received the horizontal hydraulic conductivity and recharge in the Dockum Aquifer were revisited. The recharge and horizontal hydraulic conductivity (in the shallow regions, like Mitchell County) are now more consistent with the conceptual model. The recharge is basically unchanged from the conceptual model and the hydraulic conductivity has been decreased with depth, which was essential for calibration. A comparison of initial and final hydraulic conductivity in Mitchell County is shown below.

The hydraulic conductivity conceptualization was based on all available estimates of hydraulic conductivity (Ewing and others, 2008), not just those in Shamburger (1967).


Recharge

The conceptual model for recharge in the Dockum Aquifer was based on a rigorous study by the Bureau of Economic Geology (BEG) (Ewing and others, 2008). We feel that the BEG updated study (40 more years of data) complements the Shamburger (1967) report. The BEG findings indicate that land use changes (not precipitation) were the reason for the increase in post-development recharge in these areas. The BEG used the rising hydrographs in the Colorado River Basin to estimate post-development recharge rates, as shown in the figure below:

The recharge in the High Plains Aquifer System groundwater availability model reflects this, as shown on the next page.

Final Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model

So the numerical model has implemented recharge in a way that is consistent with the conceptualization.

Calibration

We recognize that some measured hydrographs which show recovery of 40 feet are not matched by the simulated heads. However, to match those few hydrographs with larger increases in measured water levels would require us to "point calibrate" pumping or recharge to fit the increase. This would not improve our confidence in the model calibration nor would it improve the predictive capability of the model. The calibration statistics for the Dockum Aquifer in Mitchell County are well within industry standards:

County	ME (ft)	MAE (ft)	Range (ft)	MAE/ Range	N
Mitchell	4.2	25.7	433.1	0.06	1446

Given these good calibration statistics, the solid conceptualization of recharge and hydraulic conductivity, and the consistency between the conceptual model and the numerical model, we feel that the High Plains Aquifer System groundwater availability model is a good predictive tool for Mitchell County.

Model Review for Groundwater Management Area 2

After the review and discussion, the representatives of the groundwater conservation districts in Groundwater Management Area 2 asked me to provide the following comments regarding the recharge and pumping used in the draft model.

I have included the PowerPoint presentation used during the GMA 2 meeting that include aquifercounty level hydrographs comparing groundwater pumping estimates for the calibration period that are summarized in this letter.

Recharge

Recharge in the HPAS was assumed not to change with time. The draft HPAS report describes changes to steady state recharge using pilot points.

Some hydrographs in the GMA 2 portion of the model domain show variation in groundwater elevation that are likely due to variations in recharge. Using a constant recharge assumption results in a situation where pumping reduction is the only mechanism to cause groundwater elevation rises in the model.

Pumping

Pumping estimates in the HPAS were compared with TWDB estimates of groundwater pumping. The draft HPAS report documents how pumping locations were chosen, but does not elaborate further on how pumping volumes were developed beyond the conceptual model.

The review was completed on an aquifer-county level, and is summarized below:

- For the Ogallala Aquifer (model layer 1), the HPAS estimates of pumping do not always agree with the TWDB estimates. In several counties, the HPAS estimates are significantly lower.
- For the Edwards-Trinity (High Plains) Aquifer (model layer 2 in the GMA 2 area), HPAS pumping estimates are generally consistent with TWDB estimates.
- For the Dockum Aquifer (model layers 3 and 4), there are many counties where HPAS estimates and TWDB estimates are in agreement. However, there are others where there are significant differences.

During the GMA 2 meeting, there was consensus that the HPAS estimates are likely more accurate because of the fact that the calibration process requires that various inputs and outputs of the model must be internally consistent. However, the draft HPAS report includes no discussion of

how these estimates were modified from the TWDB estimates, assuming that the TWDB estimates were used as a starting point. The draft HPAS report only describes modification of pre-1980 pumping. We recommend that additional documentation of post-1980 pumping is needed, especially given the differences between HPAS pumping estimates and TWDB estimates.

It is recommended that if it is found that the estimates in the HPAS are determined to be more accurate than the TWDB estimates of groundwater pumping, the TWDB database of groundwater pumping estimates be updated and revised to reflect these estimates.

Response to comments:

Recharge in the model is not varied with precipitation. This is because the conceptual model did not propose short term correlation between precipitation and recharge on a regional scale. The time lag for wetting and travel through the vadose zone is significant, as shown in the Bureau of Economic Geology work in the High Plains Aquifer System conceptual model report (Deeds and others, 2015), where breakthrough from agricultural return flow can take decades or longer to occur.

Recharge does increase through time in those areas that were identified to have enhanced recharge post-development. This change in recharge between pre- and post-development in some areas was identified as the most important regional factor in recharge rates, and was implemented in the numerical model.

The pumping in the High Plains Aquifer System groundwater availability model was not always based on the water use survey (called "TWDB estimates" by the commenter). The approach to developing pumping datasets is explained in the conceptual model report (Deeds and others, 2015), and the numerical model is consistent with this approach.

Comments and Responses for

Review of "Predictive Simulations using Updated Draft Groundwater Availability Numerical Model for the High Plains Aquifer System" Memo and Model Files Received July 13, 2015 for TWDB Contract No. 1248301494 Dated August 31, 2015

The following memo and predictive model review comments shall be addressed and included in the final deliverables due August 31, 2015. The comments below were in response to a memo dated July 13, 2015 and an updated memo dated July 21, 2015. The memo that was dated July 21, 2015 was provided to the groundwater conservation districts in Groundwater Management Area 1 at their meeting on July 23, 2015 in Amarillo, Texas. Following these comments is a summary of a preliminary review of the updated model by a consultant working for Lone Wolf Groundwater Conservation District in Mitchell County, Texas.

Predictive Model Simulation (July 13 and July 21, 2015 memos and deliverables)

- 1. Please document approaches and assumptions for analyzing and summarizing the model results, so the values noted in the predictive model report/memo can be replicated. Some key aspects to document include:
 - a. Using leap years when calculating modeled available groundwater;
 - b. When evaluating Dockum available drawdown, the outcrop and subcrop were evaluated separately. Also please document that when model cells convert from confined to unconfined only the remaining confined portions were included in the calculations for both initial volumes and final volumes. Additionally, please document that confined and unconfined portions were considered based on initial zonation and not the simulated or predicted conditions in the aquifer. Also please note that the upper Dockum (layer 3) was not included in the evaluation of the Dockum Aquifer available drawdown;
 - c. When evaluating the Rita Blanca Aquifer, Table 1 notes 2015 rates. Per follow up discussions on August 4, 2015, please update to 2012 rates and note that this does not qualify as a desired future condition. The desired future condition must reflect aquifer conditions not pumping assumptions. In addition, please include Hartley County in model results or discuss reason for excluding;
 - d. For the Edwards-Trinity (High Plains) Aquifer, please clearly state that layers 1 and 2 in the High Plains Underground Water Conservation District No.1 were combined when evaluating fifty percent remaining in fifty years; and
 - e. "Non-HPWD South" in Table 1 reflects the assumption used for the remainder of Groundwater Management Area 2 not within High Plains Underground Water Conservation District No.1.

These approaches and assumptions are documented in the "approach" section of the memo. Please not that we revised the simulations slightly to try to achieve fractions that were closer to the targets, so the model results are slightly different than those that were reviewed.

2. Please use the attributed grid GIS shapefiles developed by TWDB staff that was provided to INTERA on July 30, 2015. Our initial analysis of the modeled available groundwater values did not consistently agree with the tables in the memo dated July 21, 2015 partly due to using a different approach to assign political and aquifer boundaries, as well as assumptions about the number of days per year (average 365.25 for all years versus 365 for non-leap and 366 for leap years).

TWDB grid assignments used.

3. Please update the attributed grid GIS shapefiles with the same "zones" noted in Table 1 in the July 21, 2015 memo. Specifically, delineate cells located in NPGCD West, NPGCD East, and non-HPWD South.

Zone shapefile included in electronic files.

4. Please provide model results summarized using the same categories listed in Table 1 in the July 21, 2015 memo; for example, list model-calculated percent remaining of the Ogallala or of the Ogallala and Edwards-Trinity (High Plains) aquifers combined and remaining available drawdown for the Dockum Aquifer for each groundwater conservation district or non-groundwater conservation district area as appropriate. For consistency and to avoid confusion, we suggest changing abbreviation for High Plains Underground Water Conservation District No.1 from HPWD to HPUWCD.

Results added.

- 5. For the Ogallala Aquifer, we get some variations in percent remaining. Wording of the desired future condition may address this deviation of results; for example, "The desired future condition of the Ogallala Aquifer within the Hemphill County Underground Water Conservation District is 80 percent of the volume groundwater in 2012 remaining in 2062, plus or minus two percent ". Our analyses indicates the volumes remaining for the Ogallala Aquifer and remaining available drawdown/volumes for the Dockum from the model files provided are as follows:
 - a. North Plains Groundwater Conservation District West has a 40/50 for the Ogallala Aquifer in Table 1. We get 39 percent of storage remaining in 2062. Table 1 lists 40/50 for the Dockum Aquifer and we get 42 percent of available drawdown (or volume) remaining in 2062.
 - b. North Plains Groundwater Conservation District East has a 50/50 for the Ogallala Aquifer in Table 1. We get 52 percent of storage remaining in 2062.
 - c. Hemphill Underground Water Conservation District has a 80/50 for the Ogallala Aquifer in Table 1. We get 79 percent of storage remaining in 2062.

- d. Panhandle Groundwater Conservation District has 50/50 for the Ogallala Aquifer in Table 1 we get 50 percent of storage remaining in 2062. Table 1 lists 50/50 for the Dockum Aquifer and we get 52 percent of available drawdown (or volume) remaining in 2062.
- e. High Plains Underground Water Conservation District No.1 has 50/50 for the Ogallala Aquifer in Table 1. We get 49 percent of storage remaining in 2062. Table 1 lists 50/50 for the Dockum Aquifer and we get 49 percent of available drawdown (or volume) remaining in 2062.

Modelled percent remaining or fraction drawdown is reported. The memo will not include a DFC statement, as GMA-1 has not finalized their choices for DFC.

July 28, 2015 Summary of Comments on Second Set of Draft High Plains Aquifer System Model Files on Behalf of the Lone Wolf Groundwater Conservation District

- 6. Model transmissivity is too low in the Dockum in Mitchell County.
- 7. Model recharge does not vary annually with precipitation, while measured hydrographs show annual water level variation with precipitation.
- 8. Model is not well-calibrated in Mitchell County, and not suitable for use in Mitchell County as a planning tool.

See previous comment response starting on page D-24, which addresses these comments.

This page intentionally left blank.