Central Gulf Coast GAM Modeler's Training February 7th **Travis Building** 1701 N. Congress Ave Austin, Texas

Models Start with Governing Equations

Governing equations to mathematically express the physical system

Equations to represent the flow of water

Moving From Equations to Models

- Analytical solutions not practical for most situations
- Create a finite difference approximation
- Use numerical methods to solve the large number of simpler equations

MODFLOW finite-difference model

Parameterization: Specifying the Physical System in Your Model

- Gather information regarding
 - Geometery
 - Boundary conditions
- Incoporate into the model
 - Input file formatting
 - Time varying data

CGC GAM Model

 Boundary conditions from a wide range of data bases

Discharge from aquifer

CGC Gam Models Produced for the TWDB

- Model Development
 - Steady State
 - Pre-1940 conditions
 - Data from 1901 1940
 - Calibration
 - Data from 1980 1989
 - Checked against 1988 data
 - Verification
 - Data from 1990 1999
 - Checked against 1998 data
 - Transient (1920-2000)
 - Combined all three

Years	Stress Periods	Description
1920- 1939	1	Steady- state
1940- 1980	1	
1981-	6	Calibration/
1986	annual	Normal
1987-	36	Calibration
1989	monthly	/Drought
1990-	5	Verification/
1994	annual	Normal
1995-	36	Verification/
1997	monthly	Drought
1998-	2	Verification/
1999	annual	Normal

Steady State MODFLOW Files

- Steady state simulation representing conditions prior to 1940
- .<u>BAS</u>
- .<u>BCF</u>
- .<u>GHB</u>
- .<u>PCG</u>

Programs and Files Needed

- ✓ PMWIN installed
 - Version 5 with 1st update \rightarrow Ver 5.2.1
- ✓ 10 MODFLOW input files
 - including 2 .STR files
- ✓ MODLFOW name file
- ✓ MODFLOW executable, mf96l90.exe
 - and tnt.exe, lff90.err
- ✓ Overlays/Maps: DXF files
- Boreholes and Observations:
 - .bor and .obs files
- ✓ PMWINSOP.doc

Converting and Setting Up The Steady-State Model

- Import the MODFLOW files

 CONVERT
- Environment settings
 - Orienting the Grid
- Add Maps
 - DXF/Map overlays
- Generate PMWIN MODFLOW files
- Copy .STR file

– copy TEXAS.STR (or TX40.STR) to str1.dat

Running the Steady State

• Verify the output intervals.

- Critical for transient runs, but does not affect the steady state
- Select to run
- Deselect .STR file
 Do NOT regenerate .STR file
- Specify the executable

 mf96l90.exe has additional screen output
- Proceed

Reviewing Results

Results extractor: How to get the data you want

Looking at water levels in PMWIN

- Presentation: Making it look the way you want
 - Contouring and saving the head contour file (.ctf)
 - Label size formats do not save
- Export
 - Formats
 - .BMP for comparying to modified-K run

Modifying K

- Select a region in layer 1

 Select with a zone
 Save the zone
 Explore cell-by-cell versus zone

 Specifying a multiplier
 - Decrease K by a factor of 100
- Saving the modified K field
- Go to layer two and repeat

Running the Modified Model

- Regenerate MODFLOW files
 Do NOT regenerat .STR
- Run the model
- Load results
- Zoom
- Recontour
 - Pull in saved contours from previous run
- Export for comparison to base case

.BAS File

- 4 layer system
- 169 Columns
- 277 Rows
- Steady state
- Initial heads based on topography

Return to Model Files

.BCF File

- All layers are convertible: confined to unconfined.
- Transmissivity recalculated based on updated saturated thickness.
- Standard lateral GAM dimensions: 1 mi².
- Geometry based on published data.
- K based on analysis of pump test results.

.GHB File

- General head boundaries outline the coast.
 - Represent flow at the top of the salinity interface
 - Values adjusted during calibration

.OC File

Recommend setting to a minimum number of needed outputs.
 – File sizes in excess of 5GB is not uncommon for the predictive runs

.PCG File

 For the steady state model the convergence criteria can is set to 1.0 for both the HCLOSE and RCLOSE.

Return to Model Files

.WEL File

 Information on net pumping from each model grid cell within the CGC GAM
 REMEMBER: values do not represent individual wells unless there is only one well pumping in the entire 1 mi².

.STR File

- More than 278 stream segments are represented in 5000 model grid cells.
 - PMWIN cannot handle more than 25 stream segments.
 - Tricked PMWIN at the start but
 - NEVER GENERATE .STR PACKAGE FROM PMWIN.
 - Stream budget data will not be either.

.RIV File

- River file provides representation of the lakes in the CGC region
- Predevelopment (steady state) had a limited number of lakes with minimal influence on the model.

.RCH File

- Recharge assigned according to the array supplied.
 - Array designates the daylighting layer as the recharge recipient.
- Spatial distribution of recharge.

.DRN File

- Representation of seepage from the aquifer:
 - Includes water leaving the aquifer through seeps, springs and wetlands
 - Based on Land Use/Land Cover with the designation of wetlands
- Elevation is based on the minimum DEM in the grid cell
- Conductance is based on area and the local vertical hydraulic conductivity