Agenda for Stakeholder Advisory Forum (SAF) Meeting No. 1
July 12, 2006

- Overview of GAM program and status
- Edwards Trinity (High Plains) GAM project team
- Basic concepts of groundwater flow in the aquifer and groundwater flow modeling
- Project approach
- Project schedule
Groundwater Availability Modeling

Contract Manager
Richard M. Smith

Texas Water Development Board
Purpose: to develop tools that can be used to help GCDs, RWPGs, and others assess groundwater availability.

Public process: you get to see how the model is put together.

Freely available: standardized, thoroughly documented, and available over the internet.

Living tools: periodically updated.
Location of completed GAMs for the major aquifers of Texas

- Ogallala (northern part) 12/2001
- Ogallala (southern part) 4/2003
- Hueco Bolson 12/2001
- Cenozoic Pecos alluvium 9/2004
- Seymour 9/2004
- Trinity (northern part) 9/2004
- Carrizo-Wilcox (northern part) 4/2003
- Carrizo-Wilcox (central part) 5/2003
- Gulf Coast (northern part) 9/2004
- Edwards (northern segment) 12/2003
- Edwards (Barton Springs segment) 12/2001
- Gulf Coast (central part) 9/2004
- Edwards (southern part) 5/2004
- Carrizo-Wilcox (southern part) 5/2003
- Gulf Coast (southern part) 12/2003

Note: The Edwards-Trinity (Plateau) and Cenozoic Pecos Alluvium aquifers are included in the same model.
Location of **Completed** and **Ongoing** Models for GAM: Minor Aquifers

Completed
- Rita Blanca: 12/2001
- Dockum
- Edwards-Trinity (High Plains)
- Capitan Reef
- Rustler
- Bone Spring-Victorio Peak
- West Texas Bolsons: 12/2004
 - Wild Horse Flat, Michigan Flat, Ryan Flat & Lobo Flat, Presidio-Redford, Red Light, Green River, & Eagle Flat
- Igneous: 12/2004

Ongoing
- Blaine: 12/2004
- Woodbine: 9/2004
- Blossom
- Nacatoch
- Queen City: 1/2005
- Sparta: 1/2005

Status as of April 2006
Managed available groundwater (MAG)…the amount of groundwater available for use.

The State does not directly decide how much groundwater is available for use: GCDs will through GMA process

A GAM is a tool that can be used to assess groundwater availability once GCDs and GMAs decide on the desired future condition of the aquifer.
Do we have to use GAM?

- Water Code & TWDB rules require that GCDs use GAM information, if available, for their management plans.
- TWDB rules require that RWPGs use managed available groundwater estimates, if developed in time for the planning cycle.
How do we use GAM?

- The model
 - predict water levels and flows in response to pumping and drought
 - effects of well fields

- Data in the model
 - water in storage
 - recharge estimates
 - hydraulic properties

- GCDs and RWPGs can request runs
GCDs, RWPGs, TWDB, and others collect new information on aquifers. This information can enhance the current GAMs. TWDB plans to update GAMs every five years with new information. Please share information and ideas with TWDB on aquifers and GAMs.
Participating in the GAM process

- **SAF meetings**
 - hear about progress on the model
 - comment on model assumptions
 - offer information (timing is important!)

- **Report review**
 - at end of project

- **Contact TWDB**
 - contract manager
Comments:
Contract Manager
richard.smith@twdb.state.tx.us
(512) 936-0877
www.twdb.state.tx.us/gam
Project Team

Note: Names in bold are Task Leaders
Edwards Trinity (High Plains) Aquifer
Lower Cretaceous Geologic Units Nomenclature and Equivalent Hydrostratigraphic Units

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Group</th>
<th>Formation</th>
<th>Hydrogeologic Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Comanche</td>
<td>Washita</td>
<td>Ogallala or High Plains aquifer - includes uppermost permeable sediments of Washita Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duck Creek</td>
<td>Confining units (primarily shale) Edward Aquifer - Comanche Peak and Walnut formations contain shale interbeds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kiamichi</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Edwards</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Comanche Peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Walnut</td>
<td></td>
</tr>
<tr>
<td>Early (Lower) Cretaceous</td>
<td></td>
<td>Trinity</td>
<td>Antlers Sand</td>
<td>Trinity Aquifer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Antlers Sand and Basal Cretaceous Sand</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Triassic</td>
<td>Dockum</td>
<td>Confining Unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chinle or Cooper Canyon</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper</td>
<td></td>
</tr>
<tr>
<td>Quaternary</td>
<td>Pleistocene to recent</td>
<td>Blackwater Draw</td>
<td>Alluvium</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>Late Miocene to Pliocene</td>
<td>Ogallala</td>
<td>Ogallala</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Groundwater Occurrence

Primary Openings (Ogallala)

Secondary Openings

Edwards-Trinity (HP)

Source - Heath (1983)
Pre-1940
Early Irrigated Agriculture (1940s-1970s)
Recent Developments (1980s - 1990s)
Groundwater Flow Modeling

Model "Cell"
Cells “Communicate” - Each Cell is Affected by its Neighbor
Major Influences in the Life of a Cell

- Permeability
- Storage value
- Thickness

Natural recharge

Irrigation return flow

Exchange of water with neighboring cells

Water remaining in storage

Water removed from storage

Daniel B. Stephens & Associates, Inc.
To add aquifers, we add additional layer(s) of cells

Groundwater flow

Daniel B. Stephens & Associates, Inc.
Conceptual Model of Groundwater Flow
Southern Ogallala and Edwards-Trinity (High Plains) Aquifer

Predevelopment (Pre-1940)
Conceptual Model of Groundwater Flow
Southern Ogallala and Edwards-Trinity
(High Plains) Aquifer

West

Irrigation return flow
Salt lake with spring
Dry spring
Enhanced recharge beneath agricultural area

Post-development (1940-2000)

East
Conceptual Model of Groundwater Flow
Southern Ogallala and Edwards-Trinity (High Plains) Aquifer

West East

Post-development (1940-2000)

- Irrigation return flow
- Salt lake with spring
- Dry spring
- Enhanced recharge beneath agricultural area
- Escarpment spring
Approach to Model Layers

- Layer 1 - Ogallala and permeable portions of the Cretaceous section in direct hydraulic communication
- Layer 2 - Low-permeability portions of the Duck Creek and Kiamichi Formation
- Layer 3 - Edwards, Comanche Peak and Walnut Formations
- Layer 4 - Antlers Sand
Model Layering and Edwards Trinity Wells in TWDB Database

<table>
<thead>
<tr>
<th>Model Layer</th>
<th>Hydrostratigraphic Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ogallala Aquifer - Ogallala Formation and Antlers Formation</td>
</tr>
<tr>
<td>2</td>
<td>Inactive</td>
</tr>
<tr>
<td>3</td>
<td>Inactive</td>
</tr>
<tr>
<td>4</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Model Layer</th>
<th>Hydrostratigraphic Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ogallala Aquifer - Ogallala Formation</td>
</tr>
<tr>
<td>2</td>
<td>Antlers Formation</td>
</tr>
<tr>
<td>3</td>
<td>Inactive</td>
</tr>
<tr>
<td>4</td>
<td>Inactive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Layer</th>
<th>Hydrostratigraphic Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ogallala Aquifer - Ogallala, Edwards Comanche Peak, and Walnut Formations</td>
</tr>
<tr>
<td>2</td>
<td>Antlers Formation</td>
</tr>
<tr>
<td>3</td>
<td>Inactive</td>
</tr>
<tr>
<td>4</td>
<td>Inactive</td>
</tr>
</tbody>
</table>
Approach to Geologic Characterization

- Begin with existing cross sections (e.g. Fallin, 1989 and HPUWCD No. 1 for Lynn County)
- Add mapped geologic outcrops
- Implement the following in sequence
 - Geophysical logs from oil and gas wells (~ 10 per county)
 - Drillers’ logs from the Texas observation wells system
 - Driller’s logs submitted electronically to the state
 - TCEQ surface casing information
 - GCD well log information not previously provided by team members
Approach to Hydraulic Properties and Recharge

- Hydraulic properties will be correlated with depositional environments if possible.
- Nature of formation will be considered (e.g., fractured rock will have a lower specific yield than porous material).
- Groundwater recharge will be estimated from the modeling - most recharge would have to pass through the Ogallala.

Daniel B. Stephens & Associates, Inc.
Approach to Model Calibration

- Begin date - 1930
- Contract - focus on 1980 through 2002 for transient calibration; we will focus on entire time period
- Implement enhancements made to the Southern Ogallala GAM for Hockley and Lubbock Counties (need approval of TWDB)
- Will need to consider calibration in the Ogallala as well as the Edwards-Trinity (High Plains) aquifer

Daniel B. Stephens & Associates, Inc.
Some Thoughts About this Aquifer...

- The Edwards Trinity (High Plains) aquifer is not another Ogallala
- Yields can be substantial in some areas, but high yields are not likely to be widespread
Project Schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Project management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWDB kick-off meeting</td>
<td></td>
<td></td>
<td>▲</td>
</tr>
<tr>
<td>2 Stakeholder</td>
<td>Stakeholder communication</td>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>3 Data collection</td>
<td>Conceptual model complete</td>
<td></td>
<td></td>
<td>▲</td>
</tr>
<tr>
<td>4 Groundwater model</td>
<td>Groundwater model development</td>
<td></td>
<td>▼</td>
<td></td>
</tr>
<tr>
<td>5 Model calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Documentation</td>
<td>Study completion</td>
<td></td>
<td></td>
<td>▲</td>
</tr>
<tr>
<td></td>
<td>Final report deadline</td>
<td></td>
<td></td>
<td>▲</td>
</tr>
</tbody>
</table>

Timeline:

- **2006:**
 - June

- **2007:**
 - March
 - January

- **2008:**
 - January
 - March
 - May
 - January
 - March
 - May
 - January
 - March
The model will be a regional scale tool, and will be most applicable at that scale. The model will have limited utility for local analyses, such as individual well locations, farms and well fields.

Model utility may be constrained by historical aquifer conditions used during the calibration process. Effects caused by future changes in aquifer stresses must be considered carefully.
Remember to ask for help here....
Edwards-Trinity (High Plains) GAM
First Stakeholder Advisory Forum
Held July 12, 2006 in Lubbock, Texas

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>James P. Mitchell</td>
<td>HPUG Dist #1</td>
</tr>
<tr>
<td>Marisue Potts</td>
<td>Land owner</td>
</tr>
<tr>
<td>Cleon Namken</td>
<td>USDA-NRCS</td>
</tr>
<tr>
<td>Judy Reeves</td>
<td></td>
</tr>
<tr>
<td>Jason Coleman</td>
<td>SPUWCD</td>
</tr>
<tr>
<td>Don McReynolds</td>
<td>HPUWCD #1</td>
</tr>
<tr>
<td>Herb Grubb</td>
<td>HDR Ener.</td>
</tr>
<tr>
<td>Mike McGregor</td>
<td>Llano Estacado UWCD</td>
</tr>
<tr>
<td>Kevin Hopson</td>
<td>DBS&A</td>
</tr>
<tr>
<td>Jim Conkwright</td>
<td>HPUWCD #1</td>
</tr>
<tr>
<td>Harvey Everheart</td>
<td>Mesa UWCD</td>
</tr>
<tr>
<td>Neil Blandford</td>
<td>DBS&A</td>
</tr>
<tr>
<td>H.P. Brown, Jr</td>
<td>Region O</td>
</tr>
<tr>
<td>Ken Carver</td>
<td>Permian Basin UWCD</td>
</tr>
<tr>
<td>Richard Smith</td>
<td>TWDB</td>
</tr>
<tr>
<td>Alan Stanton</td>
<td>DBS&A</td>
</tr>
</tbody>
</table>
Summary of Questions/Responses from the
Edwards-Trinity (High Plains) GAM SAF No. 1
High Plains Underground Water Conservation District No. 1
Lubbock, Texas July 12, 2006

Questions directed to Richard Smith (TWDB Project Manager)

How many GAM runs have been requested of the TWDB?
Over 100

Is the two years for upcoming regional work part of the five year planning cycle?
Yes

Do the groundwater districts have less than two years to get Desired Future Conditions to be part of the next RWPG plan?
Yes, however, the deadline may be extended from 9/1/07 to 12/1/07.

Questions directed to Neil Blandford (DBS&A Project Manager)

What is the time step for the GAM?
The stress periods are 1 year, and every stress period will probably be divided into at least 5 time steps.

Where does the aquitard fit in?
It will be discussed later in the presentation, but low permeability units in the Cetaceous such as the Kiamichi will be included as an aquitard layer

What are the purple dots in the figure?
They are wells available in the TWDB database that are listed as Edwards-Trinity High Plains wells.

Are the Ogallala-Antlers hydraulically connected when in one layer?
Separation into layers will be formation specific if delineation can be determined from well logs.

What are the water quality characteristics of the Edwards-Trinity High Plains aquifer?
What are the chloride concentrations like?
The water quality may not be as good as that in the Ogallala, but we still need to look at available data, so I can not really say at this point.

Are the driller’s logs that will be used in the study available to anyone?
Yes, logs and associated information used during the study will be available at TWDB website.
Will all information used be available after the GAM is completed?
Yes, all geo-data will be available at TWDB website.

How much confidence is there in the TWDB’s delineated extent of the Edwards-Trinity High Plains aquifer?
We believe it is pretty accurate and we will use the delineated extent, unless information collected during the project indicates that it should be different.