Northern Segment of the Edwards (Balcones Fault Zone) **Aquifer GAM Stakeholder Advisory Forum** Texas Water Number 1 Groundwater Availability Modeling **Belton**, Texas March 5, 2018

Ian C. Jones, Ph.D., P.G.

*Unless specifically noted, this presentation does not necessarily reflect official Board positions or decisions.

Outline

- Introduction
- Regional overview
- Basics of groundwater flow
- Overview of Northern Segment of the Edwards (Balcones Fault Zone) Aquifer
- Groundwater modeling
- Data collection
- Project schedule

INTRODUCTION

Groundwater Availability Modeling Program

- Aim: Develop groundwater flow models for the major and minor aquifer of Texas.
- Purpose: Tools that can be used to aid in groundwater resources management by stakeholders.
- Public process: Stakeholder involvement during model development process.
- Models: Freely available, standardized, thoroughly documented. Reports available over the internet.
- Living tools: Periodically updated.

Major Aquifers

Minor Aquifers

How we use Groundwater Availability Models

- Uses required by statute
 - Provide groundwater conservation districts with water budget data for their management plans.
 - Calculating Modeled Available Groundwater.
 - Calculating Total Estimated Recoverable Storage
 - HB 1232 Texas aquifer study
 - HB 30 potential brackish groundwater production area determination
- Other uses
 - Assisting groundwater management areas in determining desired future conditions.

Stakeholder Advisory Forums

- Keep stakeholders updated about progress of the model
- Inform how the groundwater model can, should, and should not be used
- Provide stakeholders with the opportunity to provide input and data to assist with model development

REGIONAL OVERVIEW

Edwards (Balcones Fault Zone) Aquifer

Edwards (Balcones Fault Zone) Aquifer

Major Aquifers

BELL

WILLIAMSON

Legend Counties Major Aquifers Edwards (Balcones Fault Zone) Aquifer Outcrop Subcrop

Trinity Aquifer

Subcrop

TRAVIS

BASICS OF GROUNDWATER FLOW

Confined/Unconfined Aquifer

NORTHERN SEGMENT OF THE EDWARDS (BALCONES FAULT ZONE) AQUIFER

Home Board SWIFT Financial Assistance Water Planning Groundwater Surface Water Flood Conservation Innovative Water

Northern segment of the Edwards (Balcones Fault Zone) Aquifer

Groundwater Availability Model (GAM)

The Texas Water Development Board is currently updating the 2003 groundwater availability model for the northern segment of the Edwards (Balcones Fault Zone) Aquifer.

X

Model update for the northern segment of the Edwards (Balcones Fault Zone) Aquifer GAM

Northern segment of the Edwards (Balcones Fault Zone) Aquifer GAM

O Type here to search

Groundwater Availability Model: Northern Segment of the Edwards Aquifer, Texas

Report 358

by Ian C. Jones, Ph.D., P.G.

Texas Water Development Board P.O. Box 13231, Capitol Station Austin, Texas 78711-3231 December 2003

AM 1018

Generalized Stratigraphy

Series	Group		Stratigraphic Unit	Hydrologic Unit	Maximum Thickness (feet)
Gulf	Navarro			Navarro and Taylor	850
	Taylor			Group	
	Austin			Austin Chalk	450
Comanche	Eagle Ford				50
	Washita	Buda Limestone		1	50
		Del Rio Clay		/	60
		Georgetown Formation		the second second	100
	Fredericksburg	Edwards Limestone		Edwards (Balcones Fault Zone) Aquifer	200
		Comanche Peak Limestone			50
		Walnut Formation			150
	Trinity	Paluxy Formation		Upper Trinity	10
		c a	Upper Member	Aquifer	450
		Glen	Lower Member	Middle Trinity Aquifer	450
			Hensell Sand Member		100
		Travis Peak	Cow Cr. Limestone Member	- riganor	100
			Hammett Shale Member		50
			Sligo Member	Lower Trinity	150
			Hosston Member	Aquifer	850

Conceptual Flow System

Generalized Cross-Section

Water-Level Data

Hydraulic Properties

GROUNDWATER MODELING

Definition

- A mathematical device that represents an approximation of an aquifer (*The Compendium of Hydrogeology*)
- Simulation of groundwater flow by means of a governing equation used to represent the physical processes that occur in the aquifer, together with equations that describe heads or flows along the boundaries of the model (Anderson and Woessner, 2002)

Modeling Process

DATA COLLECTION

Data Collection

Heads, discharge, hydraulic properties, water quality data

- County Reports (predevelopment)
 - Evidence of artesian wells
 - Evidence of flowing springs
- TWDB groundwater database
- Railroad Commission Surface Casing Database
- GCDs
- Thesis work
- Other literature
- Stakeholders

PROJECT SCHEDULE

Model Update Process

- Revise conceptual model
 - Interaction with the Trinity Aquifer
- Review input data
 - Review other aquifer-related studies
 - Fill data gaps, where possible
 - Pumping volumes per well, where feasible
- Extend calibration period
- Current version of MODFLOW

Data Request

- Request:
 - Unpublished data to support the model
 - Water levels
 - Pump test results
- Deadline:
 - August 2018

Project Tasks and Proposed Schedule

Project Task		2019 D J F M A M J J A S O N D
1.0 Project Management		
2.0 Stakeholder Communication		
2.1 Stakeholder Advisory Forums	x x	х
3.0 Model Development		
3.1 Data Collection and Conceptual Model		
3.2 Model Design		
4.0 Model Calibration		
4.1 Steady-State Calibration		
4.2 Transient Calibration		
4.3 Sensitivity Analysis		
5.0 Documentation		
5.1 Data Model Documentation		
5.2 Reporting	Conceptual Model	Draft Final

Contact Information

Ian C. Jones, Ph.D., P.G. ian.jones@twdb.texas.gov

512-463-6641

Texas Water Development Board P.O. Box 13231 Austin, Texas 78711-3231

Web information:

www.twdb.texas.gov/groundwater/models/gam/ebfz n/ebfz n.asp

MEETING MINUTES FOR THE FIRST NORTHERN SEGMENT OF THE EDWARDS (BALCONES FAULT ZONE) AQUIFER GROUNDWATER AVAILABILITY MODEL STAKEHOLDER ADVISORY FORUM

March 5, 2018

Offices of the Clearwater Underground Water Conservation District, Belton, Texas

Q: Do you require data up through 2016?

A: Yes through 2016, but we need pump test data of any vintage.

Q: If 2016 water levels data are not available, will you take 2018 measurements? A: We have a fair amount of data in Williamson County and a few instrumented wells. There may be enough, just that more is better.

Q:Will you be needing pump test data in the Trinity [*Aquifer*] under the Edwards [(*Balcones Fault Zone*) Aquifer]?

A: Yes, definitely.

Q: How will you calibrate the steady state, since the aquifer is no longer at steady state?A: People define steady state in different ways. For some means "predevelopment", others define it as "not changing with time". Typically, in the model it means the first stress period, a snapshot in time.

Q: Are you going to use annual pumping data? A: We will probably use monthly data, that's how the original model was run.

Q: So from us you'd require monthly production data over time?

A: Yes. Otherwise, we may have to artificially split it up over the year.

Q: What prompted the decision to update the model? Statutory requirement?

A: There is no statutory requirement to update, but over time we run into problems with these models, such as some assumptions made in the old model, may need revisions, also some of the GAMs predate the DFC process. In our case, having a model for the Edwards alone will not be helpful in answering questions regarding interactions with the Trinity.

Q: Will you calibrate the model using pumping in the Trinity to see how it affects the Edwards *[(Balcones Fault Zone Aquifer]*? A: Yes.

Q: Will you be changing the 1,000 mg/l line *[the down-dip boundary of the Edwards (Balcones Fault Zone Aquifer]* if new data TDS warrants it? A: There is a possibility of small changes to that boundary.

Q: Are you going to take a look at the recharge distribution, and how recharge changes with time?There are many new quarries in the area that can serve as potential sites of focused recharge.A: The quarries are probably too small to make a difference in the model. Something to think about.

Q: How are you going to get a recharge number?

A: Through the calibration process. Will back into it.

Q: Have you looked at the USGS soil water balance code for estimating distributed recharge? A: Not at the moment.

Q: What about the conceptual report?

A: The conceptual report is more general description of the aquifer, and can include things that don't actually go into the model. The model report is more likely to change than the conceptual model report.

Q: The fear I have is that the bad water lines moves further to the west...

A: The connection between Trinity Aquifer and the Edwards (Balcones Fault Zone) Aquifer could be through fractures. There are points of higher salinity in areas of fresh water. That could be attributed to flow from the underlying Trinity Aquifer.

Q: MODFLOW assumes porous media, *[is there]* any intention of adding fracture flow components to the model?

A: In the original model, we looked at the big picture, where individual fractures don't play much of a role. In the updated model, we may adjust anisotropy *[if necessary]* to cause potentiometric heads to match observed flow paths.

Q: What size grid will you be using?

A: Quarter-mile, same size grid as in the original model; and at least one additional layer.

Name	Affiliation	
Amy Muttoni	Brazos River Authority	
Brant Konetchy	WSP	
Corry Dawson	Clearwater UWCD	
Dirk Aaron	Clearwater UWCD	
Glenn Dishong	City of Georgetown	
lan Jones	TWDB	
Jim Briggs	City of Georgetown	
Joe Yelderman	Baylor University	
Michael Keester	LRE Water	
Radu Boghici	TWDB	
Stephanie Wong	Baylor University	