Numerical Model for the Brazos River Alluvium Aquifer GAM

Stakeholder Advisory Forum #3 Milano, TX

 \bigcirc

Presented By:

May 26, 2016

Presentation Outline

- Introduction to the Groundwater Availability Program by Cindy Ridgeway (TWDB)
- Conceptual model review
- Model construction

- Structure
- Head boundaries
- Properties
- Flux boundaries
- Steady-state and transient calibration
- Model results
- Sensitivity analysis
- Schedule

Introduction of Texas Water Development Board (TWDB) Groundwater Availability Modeling (GAM) Program

Cindy Ridgeway, P.G. Contract Manager and Manager Groundwater Availability Modeling Texas Water Development Board

Disclaimer

The following presentation is based upon professional research and analysis within the scope of the Texas Water Development Board's statutory responsibilities and priorities but, unless specifically noted, does not necessarily reflect official Board positions or decisions.

Groundwater Availability Modeling Program

- Aim: Produce groundwater flow models for the major and minor aquifers of Texas.
- **Purpose**: Develop various tools that can be used to aid in groundwater resources management by stakeholders.
- Public process: Stakeholder involvement during model development process and during associated aquifer related projects-as applicable.
- **Models**: Freely available, standardized, thoroughly documented. Reports available over the internet.
- Living tools: Periodically updated.

Minor Aquifers

How we use Groundwater Models?

Per Statute:

- TWDB provides groundwater conservation districts with water budget data for their management plans.
- Groundwater management areas can use to assist in determining desired future conditions.
- TWDB uses when calculating estimated Modeled Available Groundwater.
- TWDB uses when calculating Total Estimated Recoverable Storage.

Why Stakeholder Advisory Forums?

- Keep stakeholders updated about progress of the model-related project
- Provide stakeholders with the opportunity to provide input and data to assist with modelrelated project development
- Discuss limitations and applications of the project

Contact Information

Cindy Ridgeway, P.G. Groundwater Availability Modeling Section 512-936-2386 Cindy.ridgeway@twdb.texas.gov

> Texas Water Development Board P.O. Box 13231 Austin, Texas 78711-3231

Web information (includes meeting information): http://www.twdb.texas.gov/groundwater/models/gam/bzrv/bzrv.asp

Project Team and Responsibilities

Extent and Hydrostratigraphy

System	Series	Geologic Unit	Aquifer	Model Layer
	Holocene	Alluvium	Brazos River Alluvium	1&2
Quaternary		Fluvial terrace deposits		
	Pleistocene	Beaumont Formation		
		Lissie Formation		
	Pliocene	Willis Sand	Gulf Coast	
		Goliad Sand		
	Miocene	Fleming Formation		
		Oakville Sandstone		
	Oligocene	Catahoula Sandstone		
		Jackson Group	Yegua-	
Tertiary		Yegua Formation	Jackson	
		Cook Mountain		
		Formation		
		Sparta Sand	Sparta	
	Eocene	Weches Formation		3
		Queen City Sand	Queen City	
		Reklaw Formation		
		Carrizo Sand	Carrizo-	
		Wilcox Group	Wilcox	
	Paleocene	Midway Group		
		Navarro Group		
		Taylor Marl		
	Gulfian	Austin Chalk		
Cretaceous		Eagle Ford Group		
		Grayson Marl		
	Comanchean	Washita Group		
	Comuncticall	Fredericksburg Group		

Extent and Hydrostratigraphy

Model Grid

- Quadtree grid
- 1/8-mile in BRAA
- 1-mile max in model
- 374,487 total grid cells
- 251,378 active cells
- 135,352 active BRAA cells
- Oriented 31° west of north along the main axis of the BRAA
- Built in Groundwater Vistas

Structure on Grid – Northern Cross-Section

Structure on Grid – Southern Cross-Section

Head boundaries:

- SFR cells represent perennial streams
- RIV cells represent ephemeral streams
- EVT cells represent riparian evapotranspiration
- DRN cells represent springs

Head boundaries: zoomed

 SFR cells represent perennial streams

- RIV cells represent ephemeral streams
- EVT cells represent riparian evapotranspiration
- DRN cells represent springs

Flux Boundary: Recharge

- Steady-state recharge to BRAA was based on:
 - Baseflow separation analyses
 - Surficial soil type

- Steady-state recharge to underlying formations was varied by formation
- Transient recharge was based on steadystate with variations in precipitation

Flux Boundary: Pumping

- Created combined database of all known wells from all sources
 - TWDB GWDB
 - Driller databases
 - TCEQ PWS
 - GCDs

 \square

- Used actual wells for pumping assignment when possible
- Added some wells based on either irrigation areas or population centers
- Associated irrigation wells with crop types based on cropland coverage
- Varied pumping seasonally based on crop type

 Pilot points used to warp Kh in BRAA

 \bigcirc

 Kh and recharge of underlying formations varied by formation

Reklaw

Sparta

Taylor

Simsboro

Travis Peak

Lower Jackson

Lower Lagarto

Lower Yegua

Midway

Middle Lagarto

Weches

Woodbine

County Boundary

Brazos River Alluvium Aquifer

Willis

Carrizo

Catahoula

Eagle Ford

Cook Mountain

Fredericksburg

Brazos River Alluvium Aquifer (steady-state)

- Few predevelopment targets available for the BRAA
- Good fit to available targets

 \bigcirc

Brazos River Alluvium Aquifer (steady-state)

 \bigcirc

Underlying Formations (Steady-state)

- Many predevelopment targets for the shallow portions of the underlying units
- Good fit between simulated and observed heads

 \bigcirc

Underlying Formations (Steady-state)

 \bigcirc

Steady state SFR

- Few long-term baseflow estimates available
- High observed flows are simulated high
- Low observed flows are simulated low

Transient Calibration – Early Period

Brazos River Alluvium Aquifer (1950-1979)

- Many transient head targets between 1950 and 1979
- Good fit between simulated and observed heads
- Early time data helps constrain steady-state model

Transient Calibration – Early Period

 \bigcirc

Brazos River Alluvium Aquifer (1950-1979)

Transient Calibration – Late Period

Brazos River Alluvium Aquifer (1980-2012)

- Many transient head targets between 1980 and 2012
- Good fit between simulated and observed heads

Transient Calibration – Late Period

 \bigcirc

Brazos River Alluvium Aquifer (1980-2012)

Simulated Water Levels

Simulated Drawdown

Simulated and Observed Hydrographs

Simulated and Observed Hydrographs

Simulated and Observed Hydrographs

Steady-State Water Balance

Transient Water Balance – December, 1980

Transient Water Balance – December, 2012

Transient Water Balance

Brazos River Alluvium Aquifer

Transient Water Balance

 \bigcirc

Brazos River Alluvium Aquifer

Cross-Formational Flow

Steady-State Stream Gains/Losses

Steady-State Stream Gains/Losses in Brazos River

Transient Stream Gains/Losses in Brazos River

Transient Stream Gains/Losses in Brazos River Alluvium

2006 Stream Gains/Losses in Brazos River Alluvium

 \bigcirc

Between USGS Gages 08111850 and 08114000

2006 Stream Gains/Losses in Brazos River Alluvium

Steady-State Head Sensitivities

Steady-State Head Sensitivities

Steady-State Head Sensitivities

Transient Head/Flow Sensitivities

Transient Hydrograph Sensitivities

Transient Hydrograph Sensitivities

Project Task		2013 201								14										2015									2016							
	S	0	Ν	D	J	F	М	Α	М	J	J	Α	S	0	Ν	D	J	F	М	Α	М	J	J	Α	S	0	Ν	D	J	F	М	Α	М	J	J	Α
1.0 Project Management																																				
1.1 Monthly Status Report 1.2 TWDB Review Meetings 1.3 Senior Technical Review																																				
2.0 Stakeholder Communication				1																																
2.1 Stakeholder Interaction 2.2 SAF Meeting 2.3 Stakeholder and TWDB Seminar																																				
3.0 Model Development																																				
3.1 Data Collection and Conceptual Model 3.2 Model Design																																				
4.0 Model Calibration																																				
4.1 Steady-State Calibration 4.2 Transient Calibration																																				
4.3 Sensitivity Analysis																																				
5.0 Documentation & Tech. Transfer 5.1 Data Model Documentation 5.2 Reporting														С	M													DI	VI						FM	
	E CM DM		Moni Cono Drafi	thly F ceptu Mod	Repor al Mo lel Re	t odel F eport	Repo	ort		FM		Fi T\ S/	nal N WDB AF N	Node 3 Tec 1eetir	l Rep hnica	oort al Re	view	Mee	ting					ΤV	VDB	& Sta	akeh	older	Trai	ning						

Brazos Alluvium Aquifer GAM -- Stakeholder Advisory Forum #3 Milano, Texas, May 26th, 2016 Questions and Answers

Question: Slide 37. Explain Stream Leakage in/out flow.

Answer: "Out" means stream gains and "In" means stream loses. So streams are primarily gaining in predevelopment and they are the largest outflow mechanism in the model.

Question: Slide 39. Explain Stream Leakage in/out flow.

Answer: "Out" means stream gains and "In" means stream loses. So gains and losses are roughly equal in December of 2012.

Question: Slide 40. If line is negative does that mean water is leaving the aquifer (stream leakage)? Answer: Yes.

Question: What is the difference between River and Stream leakage?

Answer: Ephemeral streams are represented with the River package and are called "Rivers". Perennial streams are represented with the Streamflow Routing package and are called "Streams".

Question: Why?

Answer: We actually route flow in the Brazos River and other perennial streams. This requires the Streamflow Routing package.

Question: Slide 40 (lower). Explain Spikes?

Answer: The spikes are high stages in the Brazos River which recharge the aquifer. The fact that the water goes into storage and then comes right back out indicates that it is bank storage.

Question: Slide 41. What is the impact of pumping on stream gains/losses? Answer: Short term, it's hard to say. Long term there appears to be an impact from pumping.

Question: Slide 42. Why is there more (downward) flow in the south over the Gulf Coast Aquifer? Answer: Hard to say. It's upward beneath the Brazos River and the downward flow may just indicate more local circulation of water at depth.

Question: Slide 44. Was gain/loss based on studies or data? Answer: Yes. The steady-state model was calibrated to long-term estimates of base-flow from data. The figure shows the model results.

Question: Slide 46. In more recent times, losses increase. Why? Answer: Losses typically mean more high stream flows. Not sure about recent increases. Question: Could 2012 be lower because 2011 was a dry year? Answer: Maybe, if water table was lower that could also increase losses.

Question: Slide 47. Where are the two gages located?

Answer: Don't know. I don't actually have a map with gage locations with me.

Question: Slide 48. What is 16?

Answer: The x-axis numbers are just arbitrary numbers for segments to order them from upstream to downstream. The fact that it is negative indicates that it is a losing segment.

Question: Slide 52 (lower). Does it mean pumping water from the Brazos River? Answer: It means wells capturing water before it discharges to the Brazos River.

Question: Slide 54. Does the early dip represent the drought of record? Answer: Well it occurs more in the 1960s. There is not much data on early time (1950s) pumping.

Question: What will this model be used for? Answer: for DFCs and MAGs.

Question: What new data is needed?

Answer: Metered pumping, spring flows, a well with a transducer near a stream gage, data from well pairs completed in alluvium and shallow underlying formations.

Question: What is the next step?

Answer: Review of the report, final comments on the report, response to comments, acceptance, and distribution of the model.

Question: Why is Layer 3 200 feet thick? Answer: This is meant to approximate the shallow flow system and is somewhat of a best guess.

Brazos River Alluvium Aquifer GAM Stakeholder Advisory Forum III

May 26th, 2016

Attendance

Name	Affiliation								
Cindy Ridgeway	TWDB								
John Ewing	Intera								
Bobby Bazan	POSGCD								
Tiffany Proffitt	BGCD								
Philip Price	BRA								