PLUM CREEK CONSERVATION DISTRICT

Groundwater Management Plan

Adopted as amended

PLUM CREEK CONSERVATION DISTRICT

P.O. Box 328 Lockhart, Texas 78644 Phone: 512 / 398-2383 Fax: 512 / 398-7776 Email: info@pccd.org

Website: www.pccd.org

President: James A. Holt, Jr.; Vice-President: James O. Lipscomb; Directors: Lucy Knight, Ben Twidwell, Fred Rothert, Peter Reinecke Adopted,

Groundwater Management Plan

TABLE OF CONTENTS

- 1. DISTRICT MISSION
- 2. TIME PERIOD OF THIS PLAN
- 3. BACKGROUND
 - 1. Introduction
 - 2. <u>Policy</u>
 - 3. Governing Board
 - 4. Daily Operations
 - 5. <u>Topography</u>
 - 6. Location and Extent
 - 7. Water Resources
- 4. GROUNDWATER RESOURCES
- 5. MANAGEMENT ZONES
- 6. PRODUCTION AND SPACING OF WELLS
- 7. MANAGEMENT OF GROUNDWATER SUPPLIES
- 8. ACTIONS, PROCEDURES, PERFORMANCE AND PLAN IMPLEMENTATION
- 9. METHODOLOGY FOR TRACKING DISTRICT PROGRESS IN ACHIEVING MANAGEMENT GOALS
- 10. MANAGEMENT GOALS, OBJECTIVES, & PERFORMANCE STANDARDS

- 10.1 Efficient Use of Groundwater
- 10.2 Controlling and Preventing Waste of Groundwater
- 10.3 Control and Prevent Subsidence
- 10.4 Conjunctive Use of Surface and Groundwater
- 10.5 Develop a Management Strategy to Address Drought Conditions
- 10.6 Address Natural Resource Issues That Impact the Use and Availability of Groundwater and Which are Impacted By the Use of Groundwater
- 10.7 Conservation of Groundwater including Recharge Enhancement, Rainwater Harvesting, Brush Control, and/or Precipitation Enhancement of Groundwater Resources in the District
- 10.8 Mitigation & Desired Future Conditions of Groundwater Resources
- 10.9 Desired Future Conditions of Groundwater Resources
- **10.10** Alternative Supply
- 11. PROJECTED TOTAL DEMAND FOR WATER WITHIN THE DISTRICT
- 12. PROJECTED SURFACE WATER SUPPLIES WITHIN THE DISTRICT
- 13. WATER NEEDS WITHIN THE DISTRICT
- 14. WATER MANAGEMENT STRATEGIES WITHIN THE DISTRICT
- 15. AMOUNT OF GROUNDWATER BEING USED IN THE DISTRICT ON AN ANNUAL BASIS
- 16. ANNUAL AMOUNT OF RECHARGE FROM PRECIPITATION TO THE GROUNDWATER RESOURCES WITHIN THE DISTRICT.
- 17. ANNUAL VOLUME OF WATER THAT DISCHARGES FROM THE AQUIFER TO SPRINGS AND SURFACE WATER BODIES.
- 18. ESTIMATE OF THE ANNUAL VOLUME OF FLOW INTO THE DISTRICT, OUT OF THE DISTRICT, AND BETWEEN AQUIFERS IN THE DISTRICT.
- 19. ESTIMATE OF MODELED AVAILABLE GROUNDWATER IN DISTRICT BASED ON DESIRED FUTURE CONDITIONS.
- 20. GEOLOGY MAP OF PCCD

PLUM CREEK CONSERVATION DISTRICT

GROUNDWATER MANAGEMENT PLAN

1. DISTRICT MISSION

The Plum Creek Conservation District (PCCD) mission for groundwater management is to conserve and preserve groundwater availability and protect permitted and exempt groundwater users, by gathering information about groundwater conditions and uses within the District; obtaining information from surrounding Groundwater Districts to assist in understanding groundwater availability within Plum Creek's area; by using that information to adopt Rules consistent with state law in order to maximize the beneficial development and use of the groundwater resources on a sustainable basis in keeping with the desired future conditions of aquifers within Plum Creek Conservation District's jurisdictional area; and by then enforcing these adopted Rules. The District will accomplish this mission by identifying aquifers within the District; and then by (1) determining zones of the various aquifers within the District, (2) imposing spacing requirements, (3) limiting production, (4) requiring permits for non-exempt wells and groundwater production, (5) noting information on exempt wells, (6) establishing water drawdown levels, (7) monitoring aquifer levels and production, (8) making appropriate adjustments to allowable and permitted production as more data become available, and (9) encouraging conservation to limit pumping. These actions are designed to extend the quantity and preserve the quality of the water available in the aquifers in Caldwell and Hays counties regulated by the District. PCCD is committed to protecting, conserving, and preventing waste of the groundwater resources in its District for the benefit of the citizens, economy and environment.

2. TIME PERIOD OF THIS PLAN

This plan will become effective upon adoption by the PCCD Board of Directors and approval as administratively complete by the Texas Water Development Board. The plan will remain in effect for five (5) years after the date of approval or until a revised plan is adopted and approved, or as otherwise directed by the Texas Legislature.

3. BACKGROUND

The PCCD is situated in parts of Caldwell and Hays Counties. The District was created as a Water Control and Improvement District in the 55th Texas Regular Legislative Session in 1957 with the passage of Senate Bill 289 under the provisions of Section 59, Article XVI of the Texas Constitution. The enabling statute provided the District with the power to control, conserve, protect, distribute and utilize the storm and floodwaters and unappropriated flow of Plum Creek and its tributaries as a Water Control and Improvement District. In 1989 the original 1957 legislation was amended to additionally authorize the District, upon approval of the qualified voters of the District, to exercise the powers and duties imposed under what is now Chapter 36 of the Texas Water Code, for the preservation, conservation, protection, recharge, and prevention of waste and pollution of the underground water of the District except in those areas of the District that were part of the Barton Springs-Edwards Aquifer Conservation District or the Edwards Underground Water District on January 1, 1989. The voters in the District approved the implementation of the powers granted by the Legislature after the 1989 amendment was passed in the Legislature.

1. Introduction: The District recognizes that the groundwater resources of the region are of vital importance not only within the District but to areas outside the District. The District was created, in part, to conserve, preserve, protect, and prevent waste of all of the water resources within its jurisdiction. The District believes that the groundwater resources in the District can be managed in a prudent and cost effective manner through education and conservation, coupled with reasonable regulation, including permitting and registration of new and existing non-exempt wells. Although the District has undertaken studies and has developed information about the occurrence and quality of groundwater in various geologic formations in and near the District, the District continues to conclude that one of the greatest threats to prevent the District from achieving the stated mission are inadequate information about groundwater occurrence, quality, groundwater production volumes, groundwater production rates, groundwater movement and groundwater uses within and from aquifers regulated by the District based in part on a lack of knowledge about groundwater production from exempt wells both within the District and groundwater occurrence and production from all aquifers in areas without groundwater districts adjacent to or in close proximity with the area of Plum Creek Conservation District. The District has concerns about the potential for groundwater quality degradation in some areas of the District related to existing groundwater pumping and to old oil and gas activities. The District needs to develop more information to understand how groundwater production, recharge, and flow into and out of the District are interrelated with production, recharge and flow in areas surrounding the District. Basic knowledge of the aquifers and their hydrogeologic properties, a quantification of resources, and development of data on groundwater quality are the foundation from which to build prudent planning measures. This Management Plan is intended as a tool to focus the thoughts and actions of those given the responsibility for the execution of the District activities in developing information and in driving activities implementing the District's goals.

- 2. <u>Policy</u>: It shall be the policy of the Board of Directors that the most beneficial use of groundwater in the District is to maintain present non-wasteful groundwater uses of those in the District and then to provide for future groundwater needs of citizens. Groundwater shall be beneficially used, conserved, preserved, protected, and waste prevented within the District to maintain the viability of those resources for current users and for users in the future who are in the District's area, followed at least a temporary basis by other potential users in areas outside the District. The Board of Directors, with the cooperation of the citizens of the District and of surrounding political subdivisions, shall implement this management plan and any necessary modifications thereof to achieve this goal.
 - 3. Governing Board: The District is governed by an appointed six member Board of Directors.
- 4. <u>Daily Operations</u>: The day-to-day management of District activities is carried out currently by a four -member staff led by Johnie Halliburton, Executive Manager and Daniel Meyer, Assistant Manager.
- 5. <u>Topography</u>: The land surface of Caldwell County ranges from nearly flat to hilly. The minimum elevation, about 295 feet, is at the southern tip of the County where Plum Creek joins the San Marcos River. The maximum elevation in Caldwell County, about 725 feet, is in the area of the so-called "Iron Mountains" peaks southeast and south of McMahan, a small community southeast of Lockhart. Regionally, the surface rises from southeast to northwest.

The portion of District located in Hays County generally exhibits the same type of terrain, although the elevation differences are more pronounced. Some of the surface of the District's area extends into Hays County, which overlies the Balcones Escarpment, and provides drainage to a portion of Plum Creek.

Plum Creek drains about 310 square miles, or about 60% of Caldwell County. In addition, a portion of Hays County that is drained by Plum Creek is also in the boundaries of the District. There is a small area of Travis County that drains into Plum Creek but that area is not within the District's boundaries.

- 6. <u>Location and Extent:</u> The District is situated within parts of Caldwell and Hays Counties, but the District's boundaries are not conterminous with those of either Caldwell or Hays Counties. The original boundaries of the District are described in Section 3 of the enabling statute that first created the District. In 2008 there were additional properties located in the southeastern portion of Caldwell County annexed into PCCD at the request of the landowners of the properties, however; the area where those properties were located was also annexed into the Gonzales County Underground Water Conservation District. S.B 1225 of the 82nd legislature enacted in 2011 was passed to and allowed the property owners annexed by Plum Creek to choose which district they wanted to belong to with the result that the original boundaries of the District were expanded by approximately 4672 acres. The most downstream point of the boundaries of the District is in the most southerly southeast corner of Caldwell County near the confluence of Plum Creek and the San Marcos River. The calls in the original description of the boundaries of Plum Creek are, generally, along tract or survey lines.
- 7. Water Resources: The District does not hold, own or otherwise control any groundwater or surface water rights. The District is located within the territory of the Guadalupe-Blanco River Authority ("GBRA"), which controls substantial surface water rights associated with GBRA owned or operated facilities and reservoirs, including Canyon Lake. Some water supply corporations providing retail water service within the District have access to surface water supplies either through direct ownership, through lease, or through long term supply contracts. Most of the permitted surface water rights in the vicinity of Plum Creek Conservation District are from the San Marcos River, which is not in the Boundaries of the District. There are few surface water rights permits for diversions from Plum Creek and none known for diversion from Plum Creek for any purpose other than agricultural use. No estimate of projected surface water supply available within Plum Creek Conservation District's geographic limits is currently available.

As a part of this Plan, each year the District will confer at least once with GBRA on cooperative opportunities for conjunctive resource management between ground and surface water suppliers to retail providers and other users.

4. GROUNDWATER RESOURCES

The PCCD has within its surface area boundaries the following geological formations: Quaternary Alluvium, Leona Gravel, Austin-Pecan Gap, Navarro, Midway, Wilcox Group, Queen City, Reklaw, Saline Edwards, Trinity Group and the Carrizo Sands. A geologic map of the area of the District is appended as Appendix C. The Texas Water Development Board

recently ran a groundwater availability model for the Southern part of the Queen City, Sparta, and Carrizo-Wilcox aquifers within the District. No information on discharges from, exchanges among aquifers, or flow into or out of the Leona Gravel, or from recent alluvium deposits in the District is currently available from the Texas Water Development Board.

The full modeling report is appended to this Plan as Appendix B.

5. MANAGEMENT ZONES

WILCOX MANAGEMENT ZONE

The Wilcox Group of Formations is recognized across the PCCD as a sequence of deltaic sands and shales undifferentiated. The Wilcox reaches a thickness of approximately 1,200 feet. The PCCD covers the outcrop area of the Wilcox and the southern boundary of the district corresponds to the outcrop with the exception of a few scattered parcels southeast of the outcrop. The sand aquifers within the Wilcox are characterized by alluvial channels, levees and over bank deposits. Many of the aquifer sands contain clay clasts. The WILCOX MANAGEMENT ZONE consists of the entire Wilcox outcrop area.

CRETACEOUS MANAGEMENT ZONE

The Cretaceous refers to several sand and carbonate aquifers all within the PCCD excluding the Edwards Group. The southern boundary is the outcrop of the Wilcox Group and the northern boundary encompasses all of the area north of the Wilcox. Not all of the Cretaceous aquifers crop out on the surface. A few of the aquifers do crop out within the PCCD. Reference is made to the Columnar Section within the body of the PCCD rules and the geologic map.

6. PRODUCTION AND SPACING OF WELLS

Production and spacing of all wells within the District is regulated by the District according to the Rules of the District. As noted, the Rules may be changed from time to time. The District has recently revised its Rules, with the latest revision becoming effective as of August 1, 2012, to take into account knowledge gained through its geologic studies that have been ongoing and to address anticipated increases in demands on the aquifers in and regulated by the District.

7. MANAGEMENT OF GROUNDWATER SUPPLIES

The District evaluates and monitors groundwater availability, and regulates production consistent with the District Rules, the GMA adopted Desired Future Conditions, ("DFC") and the Modeled Available Groundwater determination of the Texas Water Development Board. In consideration of the importance of groundwater availability to the economy and welfare of those in the District, the District anticipates that in the future, groundwater production will be regulated as needed to conserve groundwater, preserve groundwater availability, and protect permitted and exempt groundwater users, in a manner not to unnecessarily and adversely limit production or impact the economic viability of public and private groundwater users. The District will identify and engage in such activities and practices that will permit groundwater production and, as appropriate, will protect the aquifer and groundwater availability by restricting future requested pumping quantities, if necessary, according to the best information then available to the District.

Currently there are a number of monitoring wells that are in PCCD's Aquifer Water Level Observation Program that are being used in order to monitor aquifer conditions within the district and to track compliance with the DFC. On an annual basis, in accord with advice from its technical consultant PCCD will, if necessary, modify the program. The District will make a regular assessment of water supply and groundwater storage conditions as observed in data from its network and will report those conditions to the Board and to the public. The District will undertake investigations, and co-operate with third-party investigations including neighboring districts, of the groundwater resources within the District, and the results of the investigations will be made available to the public upon being presented at a meeting of the Board. The District will manage the available groundwater based on the "Desired Future Conditions" and Modeled Available Groundwater determination of the aquifers.

The District has adopted Rules to regulate groundwater withdrawals by means of well spacing and production limits or, alternatively, in accord with a study of the effects of the proposed well on the targeted aquifer. The District may deny a water well production permit or limit groundwater withdrawals in accordance with the Rules of the District. In making a determination to deny a permit or limit groundwater withdrawals, the District will consider the available data and evidence and then weigh the public benefit against the individual needs and hardship in accord with State law.

The relevant factors to be considered in a determination to grant or deny a well or a production permit or limit groundwater

withdrawals are stated in the District's Rules and information furnished can include:

- 1. Whether the application contains all the information required to be submitted to the District pursuant to these Rules;
- 2. Whether the application is in conformance with any applicable spacing requirements established by the District;
- 3. Whether the proposed use of groundwater unreasonably affects existing groundwater or surface water resources;
- 4. Whether the proposed use of groundwater is a beneficial use consistent with District's Certified Groundwater Management Plan;
- 5. Whether the applicant has agreed to avoid waste and achieve water conservation;
- 6. Whether the proposed use of the groundwater will result in subsidence;
- 7. Whether the applicant has agreed that reasonable diligence will be used to protect groundwater quality, and that the applicant will follow well plugging guidelines at the time of well closure;
- 8. The equitable distribution of the resource; and
- 9. The potential effect the permit may have on the aquifer, sustainability of the recharge on the aquifer as a whole, and potential impacts to prior existing permitted groundwater users and exempt groundwater users.
- 10. The modeled available groundwater determined by the executive administrator;
- 11. The executive administrator's estimate of the current and projected amount of groundwater produced under exemptions granted by district rules and Section 36.117;
- 12. The amount of groundwater authorized under permits previously issued by the district
- 13. A reasonable estimate of the amount of groundwater that is actually produced under permits issued by the district;
- 14. Yearly precipitation and production patterns.
- 15. Estimated Average Annual Recharge

The transport of groundwater out of the District is regulated by the District according to the Rules of the District.

In pursuit of the District's mission of protecting the resource to facilitate its maximum beneficial use, the District may require reduction of permitted groundwater withdrawals to amounts that, based on then available current information, will not knowingly cause permanent harm to an aquifer. To achieve this purpose, the District may, at the Board's discretion and after notice and hearing, amend or revoke any permit for non-compliance, or reduce the production authorized by permit based upon reliable scientific data for the purpose of protecting the aquifer and groundwater availability. The determination to seek the amendment of a permit will be based on aquifer conditions observed by the District confirmed by reliable scientific analysis. The determination to seek revocation of a permit will be based on compliance and non-compliance with the District's Rules and regulations, and reliable scientific evidence. The District will enforce the terms and conditions of permits and the Rules of the District, as necessary, by fine and/or enjoining the permit holder, or non-permit holder, in a court of competent jurisdiction as provided for in Chapter 36, Texas Water Code.

A drought management plan to cope with the effects of water supply deficits due to climatic or other conditions is also being developed by the Board. In developing the drought management plan, the District anticipates consideration of the economic effect of conservation measures upon all water resource user groups, the local implications of the degree and effect of changes in water storage conditions, the unique hydrogeologic conditions of the aquifers within the District and the appropriate conditions under which to implement the drought management plan.

The District will employ reasonable and necessary technical resources at its disposal to evaluate the groundwater resources available within the District and to determine the effectiveness of regulatory or conservation measures. The District anticipates that its drought management plan will provide that a public or private user may appeal to the Board for discretion in enforcement of the provisions of the water supply deficit drought management plan on grounds of adverse economic hardship or unique local conditions. The exercise of discretion by the Board, shall not be construed as limiting the power of the Board.

8. ACTIONS, PROCEDURES, PERFORMANCE AND PLAN IMPLEMENTATION

The District will implement the provisions of this Plan and will utilize the provisions of this Plan as a guidepost for ongoing evaluation determining the direction or priority for all District activities. All operations of the District, all agreements entered into by the District and any additional planning efforts in which the District may participate will be consistent with the provisions of this Plan.

The District has adopted Rules relating to the permitting of wells, production and transport of groundwater. The Rules adopted by the District will be modified to take into account this Plan once it has been approved and shall be amended as necessary, pursuant to Chapter 36 of the TEXAS WATER CODE consistent with the provisions of this Plan based upon reliable scientific evidence. All Rules will be enforced. The promulgation and enforcement of the Rules will be based on the best technical data reasonably available. A link to the District rules is provides as follows:

http://www.pccd.org/PCCD%20GW%20Management%20&%20Protection%20Rules.pdf

The District shall treat all citizens equally. Citizens may apply to the District for a variance in enforcement of the Rules on grounds of adverse economic effect or unique local conditions. In granting a variance to any rule, the Board shall consider the potential for adverse effect on adjacent landowners and the rights of other groundwater owners and users within the District. The exercise of said discretion by the Board, shall not be construed as limiting the power of the Board.

The District will seek cooperation with other agencies in the implementation of this Plan and the management of groundwater supplies within the District.

The District believes that there is a significant issue that affects groundwater within its boundaries and affects the District's ability to effectively manage the groundwater resources within the District. That issue is that there are very productive regions of aquifers that are near but not within Plum Creek Conservation District's regulatory authority. Should there be large volume water production from aquifers in these areas, there is significant potential that such production will impact water quantity and/or water quality of users in the District.

The fact that Plum Creek Conservation District's surface boundaries also includes areas that are within the Barton Springs Edwards Aquifer Conservation District and the Edwards Aquifer Authority [the District does have authority over any

aquifers in Hays and Caldwell County within its boundary that are not regulated by either the Edwards Aquifer Authority or the Barton Springs-Edwards Aquifer Conservation District -] indicates that Plum Creek should cooperate with [and provide some assistance to] the EAA and the Barton Springs-Edwards District while developing plans for understanding and use of water resources to the fast growing area along Interstate 35 between San Antonio and Austin. PCCD's territory extends from Northwest of IH 35 to IH 10 and encompasses much of an area that is projected to have rapid growth with the completion of SH 130. Developers and retail water suppliers are already searching for additional water supplies to meet growing demand.

Finally, there are significant long-existing oil and gas operations in the southern part of the District along with the possible future exploration and development of gas-liquids shale plays. Should those activities continue to increase as the price for oil and gas resources stays high, there may be significant consumption of water, or other groundwater impacts such as the potential for pollution, related to such activities that is outside the scope of regulatory power of any groundwater district.

For these reasons, all activities of the District will be undertaken in co-operation and coordinated with the appropriate state, regional or local water management entities where they are present. However, simply stated, in Hays County there are many such agencies looking at management of groundwater; in Caldwell County the absence of a groundwater agency in the eastern and western part of the county makes management of the groundwater resources in the District more challenging.

9. METHODOLOGY FOR TRACKING DISTRICT PROGRESS IN ACHIEVING MANAGEMENT GOALS

The Groundwater Manager of the District will prepare and present an annual report to the Board of Directors on the performance of the District with respect to achieving its management goals and objectives. The presentation of the report will occur during the last monthly Board meeting each fiscal year, beginning after the adoption and approval of this Plan. The report will include an enumeration and listing of activities furthering the District's management objectives during the fiscal year. Each activity will be referenced to the estimated expenditure of staff time and District resources used in accomplishment of the activity. The notations of activity frequency, staff time and resources used will be referenced to the appropriate performance standard for each management objective describing the activity, so that the effectiveness and efficiency of the District's operations may be evaluated. The Board will maintain the adopted report on file, for public inspection, at the District's offices. This methodology will apply to all management goals contained within this plan.

10. MANAGEMENT GOALS, OBJECTIVES, & PERFORMANCE STANDARDS

10.1 Efficient Use of Groundwater

Management Objectives:

- 1. The PCCD Aquifer Water Level Observation Well Program will have at least 6 observation wells located according to management zones within the District, and measure those wells at least three times a year.
- 2. As part of the Aquifer Water Level Observation Program, the District will geographically divide the surface area overlying the Wilcox Aquifer into a grid-type network of units.
- 3. The district will have a goal of establishing at least one monitoring water well in each of these units.
- 4. The District will provide educational leadership to citizens within the District concerning this subject. The activity will be accomplished annually through at least one printed publication, such as a brochure, and public speaking at service organizations and public schools as provided for in the District's Public Education Program.
- 5. The District will use its best efforts to obtain information on water being produced from areas in Caldwell County that are outside the boundaries of the District.
- 6. The District will use its best efforts to obtain information on groundwater being produced from groundwater aquifers in counties surrounding the District as well as in areas close to the District that are not in groundwater districts to develop information about impacts of such production on groundwater in the District.

Performance Standards:

- 1. The PCCD Aquifer Water Level Observation Well Program will have at least 6 observation wells located according to management zones within the District.
- 2. Water levels at these observation wells will be measured a minimum of three times a year.
- 3. As part of the Aquifer Water Level Observation Program the District will geographically divide the surface area overlying the Wilcox Aquifer into a grid type network of units within one year of the adoption of this plan.

- 4. On an annual basis the district will assess the District's progress of establishing at least one monitoring well in each of these units.
- 5. PCCD representatives will circulate at least one publication and notice speaking appearances each year.
- 6. PCCD representatives will attend and participate in GMA meetings appropriate to the District's regulatory authority.
- 7. PCCD will periodically seek information from nearby groundwater districts not in the same GMA but drawing from the same aquifers regulated by the District.

10.2 Controlling and Preventing Waste of Groundwater.

Management Objective:

The District will provide educational leadership to citizens within the District concerning this subject. The activity will be accomplished annually through at least one printed publication, such as a brochure.

Performance Standard:

- Each calendar year Representatives of Plum Creek will prepare at least two informational articles listing current
 data related to groundwater production and well levels. The goal of the articles is to make those who use and
 depend on the groundwater aware of their use, aware of the impacts of their use, and the need to be responsible
 in that use.
- 2. At its offices Plum Creek will maintain an inventory of publications of others, such as those prepared by the Guadalupe Blanco River Authority about the necessity for conservation, and serve as a local source for distribution of those publications.

10.3 Control and Prevent Subsidence

Subsidence from production of groundwater is unlikely to occur in the Plum Creek Conservation District. The District historically has not experienced any subsidence from any cause. Accordingly, the District's Plan does not contain any "Management Objective" or related "Performance Standards" to address the issue of non-existent subsidence.

Alluvium is poorly consolidated, but generally too thin to experience measurable (if any) subsidence due to groundwater withdrawals.

10.4 Conjunctive Use of Surface and Groundwater

Management Objective:

Each year the District will confer at least once with the Guadalupe-Blanco River Authority (GBRA) and other local political subdivisions and water and wastewater utilities on cooperative opportunities for conjunctive resource management.

Performance Standard:

- Each year the District will confer with the GBRA, other political subdivisions and water and wastewater utilities
 providing retail water service within Plum Creek's boundaries, to gain information about conjunctive resource
 management.
- 2. The District will continue to participate in the monthly meetings of the Plum Creek Watershed Project through the time of completion of the water quality management plan being developed in that effort

10.5 Develop a Management Strategy to Address Drought Conditions

Management Objective:

Review the Drought Management Strategy Plan annually, and revise it if necessary based upon the availability of additional scientific data collected by or presented to the Board. The Drought Management Strategy Plan will be implemented when specified conditions require.

Performance Standards:

- 1. Review on an annual basis all of the conditions and requirements specified in the Drought Management Strategy Plan that would trigger its implementation.
- 2. Use data that are available from local weather stations monitoring rainfall, looking at the correlation between rainfall, water levels, groundwater recharge and availability.

10.6 Address Natural Resource Issues That Impact the Use and Availability of Groundwater and Which are Impacted By the Use of Groundwater

Management Objectives:

- 1. Each year the District will confer at least once with a representative of the Texas Railroad Commission (RRC) on the impact of oil and gas production or waste and disposal operations associated with oil and gas production on groundwater availability and quality, as well as the impact of groundwater production on the production of oil and gas in the District.
- 2. Also, during each year the District will evaluate all permit applications for new production injection or disposal wells permitted by the Railroad Commission, if any are filed, and the information submitted by the applicants on those wells prior to drilling, in order to assess the impact of these wells on the groundwater resources in the District.

Performance Standards:

- 1. At least one annual conference with a representative of the Texas RRC;
- 2. The addition of available RRC well data to the District's database;
- 3. Report **PCCD** of well to the Board Directors when new groundwater permit applications filed, the possible impacts those wells are and of new on the groundwater resources in the District; and
- 4. Annual reports to the Board about consumption and use of groundwater for commercial purposes, including irrigation uses and enhanced oil and gas production when information is available.

10.7 Conservation of Groundwater including Recharge Enhancement, Rainwater Harvesting, Brush Control, and/or Precipitation Enhancement of Groundwater Resources in the District

Management Objectives:

1. The District will provide educational leadership and encouragement to citizens within the District on the need for water conservation and publicize the benefits of rainwater harvesting and brush control. The educational efforts and publicity will be through distribution of brochures produced either by the District or by others and

made available by the District and through the presentation annually of informational articles that tabulate data developed by the District on the groundwater resources being monitored. Each of the following topics will be addressed in the publications:

- A. Conservation
- B. Rainwater Harvesting
- C. Brush Control
- 2. With respect to recharge enhancement, the District will continue to develop geologic data to map and gain understanding of the relationship between recharge to and discharge from various formations to each other and to Plum Creek as it flows through the District. At this time, the relationships among the aquifers and the Creek are not well documented or understood. It is known that recharge of much of the groundwater that can be found in the District, and in areas next to the District that are not in any groundwater district, originate outside the boundaries of the District. There is some natural recharge to aquifers in the District from both streams and from areas where those aquifers are at the surface. However, the formations found in the District are not readily susceptible to recharge enhancement.
- 3. The District has an active brush control program for the flood water retention structures that it maintains. The District also cooperates with the US Department of Agriculture in agricultural conservation efforts and actively supports the local Soil and Water Conservation District.
- 4. The District has participated in the funding of a rainwater harvesting demonstration project at the Luling Foundation and will continue to monitor the results of that project and report those results in its articles.
- 5. The District does not believe that precipitation enhancement is appropriate and cost effective in its area. At the same time, PCCD is aware of efforts being implemented by other districts and will continue to monitor the information gathered from those and determine whether such efforts might be attempted by the District. The

District will continue to assess the need and opportunity for precipitation enhancement in the District at least once every five years.

Performance Standards:

- 1. Preparation and distribution of at least two publications each year containing information about conservation, rainwater harvesting and brush control efforts.
- 2. The District staff will continue to cooperate with the Natural Resource Conservation Service to control brush on the 28 flood water retention structures maintained by the District. In addition, the District will participate in at least one meeting each year with the local soil and water conservation district to discuss brush control efforts, and will continue to support the local soil and water conservation districts efforts through and annual financial contribution.
- 3. The District will obtain, if available, at least one report each year about the relationship between recharge of aquifers in the District and rainfall on the surface to determine whether it would be appropriate and cost effective to develop a trial plan for recharge enhancement.
- 4. At least once every other year the staff will report to the Board on the results of nearby precipitation enhancement activities so the Board can consider the feasibility of participating in any efforts in the area of lands that are serving as sources of recharge for groundwater found in the District. If the Board determines that precipitation enhancement might be appropriate and cost effective, within two years the Board will develop and adopt a program allowing participation in precipitation efforts ongoing in the region.

10.8. Mitigation & Desired Future Conditions of Groundwater Resources

The mitigation plan will be reviewed on an annual basis and revised if necessary in order to be compliant with the adopted DFCs and any current or new state law in effect. Further, any projects that have been mitigated will also be reviewed on an annual basis.

Review of groundwater resources in the District in comparison with the Desired Future Conditions of those resources and preparation of a recommendation for any mitigation actions within six (6) months or later if warranted

10.9 Desired Future Conditions of Groundwater Resources

Management Objective:

At least once every three years, the District will monitor water levels and evaluate whether the change in water levels is in conformance with the DFCs adopted by the District. The District will estimate total annual groundwater production for each aquifer based on the water use reports, estimated exempted use, and other relevant information, and compare these production estimates to the MAGs.

Performance Standard:

- At least once every three years, the executive manager will report to the Board the measured water levels
 obtained from the monitoring wells within each Management Zone, the average measured drawdown for each
 Management Zone calculated from the measured water levels of the monitoring wells within the Management
 Zone, a comparison of the average measured drawdowns for each Management Zone with the DFCs for each
 Management Zone, and the District's progress in conforming with the DFCs.
- 2. At least once every three years, the executive manager will report to the Board the total permitted production and the estimated total annual production for each aquifer and compare these amounts to the MAGs for each aquifer.
- 3. In conjunction with information from PCCD's drought management plan, Aquifer Water Level Observation Well Program, water use production patterns, analysis from PCCD's geological consultant and other pertinent technical data, the board on an annual basis will determine if conditions are present that would jeopardize DFC compliance and if so, schedule a hearing to address limiting water use for water well production permit holders.

10.10 Alternative Supply

Management Objective:

1. The District will assess the need and feasibility, including funding options, of developing a program to research, participate in regional studies with other groundwater conservation districts and regional agencies in order to look at the potential benefits of alternative water supply sources such as underdeveloped aquifers, one being the Trinity Aquifer, desalinization, rainwater harvesting, and aquifer recovery and storage in and around our district.

Performance Standard:

- Assess the groundwater resources of the Trinity Group and saline Edwards. The district will assess the need to
 develop one or more monitoring wells in order to determine the aquifer characteristics and potential for public
 supply and to cooperate with GCDs that have similar goals.
- 2. The district will evaluate and support studies on ASR and on desalination projects through cooperative collaboration or financial assistance.

11. PROJECTED WATER DEMANDS WITHIN THE DISTRICT

Please refer to Appendix A

12. PROJECTED SURFACE WATER SUPPLIES WITHIN THE DISTRICT

Please refer to Appendix A

13. WATER NEEDS WITHIN THE DISTRICT

Please refer to Appendix A

14. WATER MANAGEMENT STRATEGIES WITHIN THE DISTRICT

Please refer to Appendix A

15. ESTIMATE OF GROUNDWATER USE IN THE DISTRICT

Please refer to Appendix A

16. Annual Amount of Recharge From Precipitation to the Groundwater Resources within the District

Please refer to Appendix B.

17. Annual Volume of Water that Discharges from the Aquifer to Springs and Surface Water Bodies

Please refer to Appendix B.

18. Estimate of the Annual Volume of Flow into the District, out of the District, and Between Aquifers in the District

Please refer to Appendix B.

19. Estimate of Modeled Available Groundwater in District Based on Desired Future Conditions

Texas Water Code § 36.001 defines modeled available groundwater as "the amount of water that the executive administrator determines may be produced on an average annual basis to achieve a desired future condition established under Section 36.108".

The joint planning process set forth in Texas Water Code § 36.108 must be collectively conducted by all groundwater conservation districts within the same GMA. The District is a member of GMA 10 & 13. GMA 10 and GMA 13 adopted DFCs, as summarized below, and then forwarded them to the TWDB for MAG development which are also shown below.

TABLE 1: Desired Future Conditions for GMA 10 & 13

GMA	Aquifers Adopted DFC		Adoption Date
10	Trinity Group	A regional average well drawdown during average recharge conditions that does not exceed 25 feet (including	August 23, 2010

		exempt and non-exempt well use)	
10	Saline Edwards	Well drawdown at the saline- freshwater interface (the so called Edwards "bad water line") in the northern subdivision of GMA 10 that averages no more than 5 feet and does not exceed a maximum of 25 feet at any point on the interface.	August 4, 2010
13	Carrizo-Wilcox, Etal	In Reference to scenario 4 (GAM run 09-034), and an average drawdown of 23 ft., for the Sparta, Weches, Queen City, Reklaw, Carrizo, and Wilcox Aquifers.	April 9, 2010

TABLE 2: Modeled Available Groundwater for the Plum Creek Conservation District

GMA	Aquifers	MAG (acre-ft/ per year)	TWDB MAG Report		
10	Trinity Group	238	GTA Aquifer		
10	Trimey Group	230	Assessment 10-29 MAG		
10	Saline Edwards	112	GTA Aquifer Assessment		
10	Saille Luwarus	112	10-35 MAG		
13	Total Carrizo-Wilcox,	2012 = 18,122 ac-ft./yr.	GAM Run 10-012 MAG		
13	Etal	2060 = 17,138 ac-ft./yr.	GAM NULL 10-012 MAG		
13	Carrizo	3498	GAM Run 10-012 MAG		
13	Wilcox Group	2012 =14,602 ac-ft./yr.	GAM Run 10-012 MAG		
	'	2060 =13,618 ac-ft./yr.			
13	Queen City	22	GAM Run 10-012 MAG		

20. GEOLOGY MAP OF PCCD

Please refer to Appendix C.

We the undersigned members of the Board of Directors do hereby certify and confirm the adoption of this revised and amended Groundwater Management Plan of the Plum Creek Conservation District on this the 13th day of November, 2007 as evidenced by our signatures below:

	Board of Directors
_	James A. Holt, Jr., President
-	James O. Lipscomb, Vice President
_	Lucy Knight, Director
-	Peter Reinecke, Director
_	Ben Twidwell, Director
_	Fred Rothert, Director
Attested	•
	Johnie Halliburton, Executive Manager

APPENDIX A

Estimated Historical Groundwater Use And 2012 State Water Plan Datasets:

Plum Creek Conservation District

by Stephen Allen
Texas Water Development Board
Groundwater Resources Division
Groundwater Technical Assistance Section
stephen.allen@twdb.texas.gov
(512) 463-7317
September 20, 2012

GROUNDWATER MANAGEMENT PLAN DATA:

This package of water data reports (part 1 of a 2-part package of information) is being provided to groundwater conservation districts to help them meet the requirements for approval of their five-year groundwater management plan. Each report in the package addresses a specific numbered requirement in the Texas Water Development Board's groundwater management plan checklist. The checklist can be viewed and downloaded from this web address:

http://www.twdb.texas.gov/groundwater/docs/GCD/GMPchecklist0911.pdf

The five reports included in part 1 are:

- 1. Estimated Historical Groundwater Use (checklist Item 2) from the TWDB Historical Water Use Survey (WUS)
- 2. Projected Surface Water Supplies (checklist Item 6)
- 3. Projected Water Demands (checklist Item 7)
- 4. Projected Water Supply Needs (checklist Item 8)
- 5. Projected Water Management Strategies (checklist Item 9)

reports 2-5 are from the 2012 State Water Plan (SWP)

Part 2 of the 2-part package is the groundwater availability model (GAM) report. The District should have received this report from the Groundwater Availability Modeling Section. Questions about the GAM can be directed to Dr. Shirley Wade, shirley.wade@twdb.texas.gov or (512) 936-0883.

DISCLAIMER:

The data presented in this report represents the Historical Groundwater Use and 2012 State Water Planning data available as of 9/20/2012. Although it does not happen frequently, neither of these datasets are static and are subject to change pending the availability of more accurate data (Historical Water Use data) or an amendment to the 2012 State Water Plan (2012 State Water Planning data). District personnel must review these datasets and correct any discrepancies in order to ensure approval of their groundwater management plan.

The Historical Water Use dataset can be verified at this web address:

http://www.twdb.texas.gov/waterplanning/waterusesurvey/estimates/

The 2012 State Water Planning dataset can be verified by contacting Wendy Barron (wendy.barron@twdb.texas.gov or 512-936-0886).

The values presented in the data tables of this report are county-based. In cases where groundwater conservation districts cover only a portion of one or more counties the data values are modified with an apportioning multiplier to create new values that more accurately represent district conditions. The multiplier used as part of the following formula is a land area ratio: (data value * (land area of district in county / land area of county)). For two of the four State Water Plan tables (Projected Surface Water Supplies and Projected Water Demands) only the county-wide water user group (WUG) data values (county other, manufacturing, steam electric power, irrigation, mining and livestock) are modified using the multiplier. WUG values for municipalities, water supply corporations, and utility districts are not apportioned; instead, their full values are retained if they are located within the district, and eliminated if they are located outside (we ask each district to identify these locations).

The two other SWP tables (Projected Water Supply Needs and Projected Water Management Strategies) are not apportioned because district-specific values are not statutorily required. Each district needs only "consider" the county values in those tables.

In the Historical Groundwater Use table every category of water use (including municipal) is apportioned. Staff determined that breaking down the annual municipal values into individual WUGs was too complex.

TWDB recognizes that the apportioning formula used is not perfect but it is the best available process with respect to time and staffing constraints. If a district believes it has data that is more accurate it has the option of including those data in the plan with an explanation of how the data were derived. Apportioning percentages are listed above each applicable table.

For additional questions regarding this data, please contact Stephen Allen (2tephen.allen@twdb.texas.gov or 512-463-7317) or Rima Petrossian (rima.petrossian@twdb.texas.gov or 512-936-2420).

Estimated Historical Groundwater Use TWDB Historical Water Use Survey (WUS) Data

Groundwater use estimates are currently unavailable for 2005. TWDB staff anticipates the calculation and posting of such estimates at a later date.

CALDWELL COUNTY 51.56 % (multiplier) All values are in acre-feet/year Total Source Municipal Manufacturing **Steam Electric Irrigation** Mining Livestock Year GW 1,582 1,904 GW 1,381 1,538 GW 1,888 2,057 GW 1,677 1,823 1,749 1,886 GW GW 1,700 1,830 1,725 GW 1,856 GW 1,756 1,888 GW 1,850 2,254 GW 1,601 1,651 GW 1,652 2,084 GW 1,800 1,923 GW 1,774 1,908 GW 1,757 1,928 2,047 2,217 GW GW 1,836 1,997 GW 1,956 2,377 GW 1,943 2,318 GW 1,930 2,060 GW 1,662 1,916 GW 1,580 1,737 GW 1,825 1,931 GW 1,748 1,873 GW 1,138 GW GW 1,574 1,799 GW 1,398 1,560

1,807

1,357

GW

Estimated Historical Groundwater Use TWDB Historical Water Use Survey (WUS) Data

Groundwater use estimates are currently unavailable for 2005. TWDB staff anticipates the calculation and posting of such estimates at a later date.

HAYS COUNTY 9.11 % (multiplier) All values are in acre-feet/year Source Municipal Manufacturing **Steam Electric Irrigation** Minina Livestock Total Year GW GW GW 1,096 GW 1,018 1,175 1,258 GW 1,052 GW 1,139 1,251 GW 1,280 1,126 GW 1,189 1,263 1,087 GW 1,054 GW 1,030 1,067 GW 1,066 1,114 GW 1,147 1,199 GW 1,222 1,159 GW 1,276 1,337 1,277 1,341 GW GW 1,240 1,312 GW 1,386 1,459 GW 1,389 1,439 GW GW 1,177 GW 1,029 GW GW 1,104 GW 1,194 GW 1,140 GW 1,139 1,218 GW 1,087 1,256

1,299

1,155

GW

Projected Surface Water Supplies TWDB 2012 State Water Plan Data

CALD	WELL COUNTY	51.56 % (multiplier)			All values are in acre-feet/year				
RWPG	WUG	WUG Basin	Source Name	2010	2020	2030	2040	2050	2060
L	COUNTY LINE WSC	GUADALUPE	CANYON LAKE/RESERVOIR	272	272	272	272	272	272
L	COUNTY LINE WSC	GUADALUPE	GUADALUPE RIVER RUN-OF-RIVER	56	56	56	56	56	56
L	COUNTY-OTHER	GUADALUPE	GUADALUPE RIVER RUN-OF-RIVER	258	258	258	258	258	258
L	GOFORTH WSC	GUADALUPE	CANYON LAKE/RESERVOIR	151	151	151	151	151	151
L	GONZALES COUNTY WSC	GUADALUPE	CANYON LAKE/RESERVOIR	21	21	21	21	21	21
L	LIVESTOCK	COLORADO	LIVESTOCK LOCAL SUPPLY	40	40	40	40	40	40
L	LIVESTOCK	GUADALUPE	LIVESTOCK LOCAL SUPPLY	196	196	196	196	196	196
L	MARTINDALE	GUADALUPE	GUADALUPE RIVER RUN-OF-RIVER						
L	MARTINDALE WSC	GUADALUPE	CANYON LAKE/RESERVOIR						
L	MARTINDALE WSC	GUADALUPE	GUADALUPE RIVER RUN-OF-RIVER						
L	MAXWELL WSC	GUADALUPE	CANYON LAKE/RESERVOIR	477	477	477	477	477	477
L	MAXWELL WSC	GUADALUPE	GUADALUPE RIVER RUN-OF-RIVER	174	174	174	174	174	174
	Sum of Projected Sur	rface Water Sup	plies (acre-feet/year)	1,645	1,645	1,645	1,645	1,645	1,645

HAYS COUNTY		9.11	9.11 % (multiplier)			All values are in acre-feet/year			
WUG	WUG Basin	Source Name	2010	2020	2030	2040	2050	2060	
BUDA	COLORADO	CANYON LAKE/RESERVOIR							
COUNTY-OTHER	COLORADO	CANYON LAKE/RESERVOIR	153	153	153	153	153	153	
COUNTY-OTHER	COLORADO	HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	130	130	130	130	130	130	
DRIPPING SPRINGS	COLORADO	HIGHLAND LAKES LAKE/RESERVOIR SYSTEM							
DRIPPING SPRINGS WSC	COLORADO	HIGHLAND LAKES LAKE/RESERVOIR SYSTEM							
	BUDA COUNTY-OTHER COUNTY-OTHER DRIPPING SPRINGS DRIPPING SPRINGS WSC	WUG Basin BUDA COLORADO COUNTY-OTHER COLORADO COUNTY-OTHER COLORADO DRIPPING SPRINGS COLORADO DRIPPING SPRINGS COLORADO WSC	WUG WUG Basin Source Name BUDA COLORADO CANYON LAKE/RESERVOIR COUNTY-OTHER COLORADO CANYON LAKE/RESERVOIR COUNTY-OTHER COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM DRIPPING SPRINGS COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM DRIPPING SPRINGS COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM DRIPPING SPRINGS COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	WUG WUG Basin Source Name 2010 BUDA COLORADO CANYON LAKE/RESERVOIR COUNTY-OTHER COLORADO CANYON LAKE/RESERVOIR 153 COUNTY-OTHER COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM 130 DRIPPING SPRINGS COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM DRIPPING SPRINGS COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM DRIPPING SPRINGS COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	WUG WUG Basin Source Name 2010 2020 BUDA COLORADO CANYON LAKE/RESERVOIR COUNTY-OTHER COLORADO CANYON LAKE/RESERVOIR COUNTY-OTHER COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM DRIPPING SPRINGS COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM DRIPPING SPRINGS WSC COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM	WUG WUG Basin Source Name 2010 2020 2030 BUDA COLORADO CANYON LAKE/RESERVOIR COUNTY-OTHER COLORADO CANYON LAKE/RESERVOIR 153 153 153 COUNTY-OTHER COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM 130 130 130 DRIPPING SPRINGS COLORADO HIGHLAND LAKES LAKE/RESERVOIR SYSTEM LAKE/RESERVOIR SYSTEM	WUGWUG BasinSource Name2010202020302040BUDACOLORADOCANYON LAKE/RESERVOIRCOUNTY-OTHERCOLORADOCANYON LAKE/RESERVOIRCOUNTY-OTHERCOLORADOHIGHLAND LAKES LAKE/RESERVOIR SYSTEMDRIPPING SPRINGSCOLORADOHIGHLAND LAKES LAKE/RESERVOIR SYSTEMDRIPPING SPRINGS WSCCOLORADOHIGHLAND LAKES LAKE/RESERVOIR SYSTEM	WUG WUG Basin Source Name 2010 2020 2030 2040 2050 BUDA COLORADO CANYON LAKE/RESERVOIR COUNTY-OTHER COLORADO CANYON LAKE/RESERVOIR LAKE/RESERVOIR </td	

Estimated Historical Water Use and 2012 State Water Plan Dataset: Plum Creek Conservation District September 20, 2012

Projected Surface Water Supplies TWDB 2012 State Water Plan Data

RWPG	WUG	WUG Basin	Source Name	2010	2020	2030	2040	2050	2060
K	HILL COUNTRY WSC	COLORADO	COLORADO RIVER RUN-OF-RIVER						
K	HILL COUNTRY WSC	COLORADO	HIGHLAND LAKES LAKE/RESERVOIR SYSTEM						
K	IRRIGATION	COLORADO	COLORADO RIVER COMBINED RUN-OF- RIVER IRRIGATION	4	4	4	4	4	4
K	LIVESTOCK	COLORADO	LIVESTOCK LOCAL SUPPLY	17	17	17	17	17	17
L	COUNTY LINE WSC	GUADALUPE	CANYON LAKE/RESERVOIR	780	780	780	780	780	780
L	COUNTY LINE WSC	GUADALUPE	GUADALUPE RIVER RUN-OF-RIVER	140	140	140	140	140	140
L	COUNTY-OTHER	GUADALUPE	CANYON LAKE/RESERVOIR	286	286	286	286	286	286
L	CRYSTAL CLEAR WSC	GUADALUPE	CANYON LAKE/RESERVOIR						
L	CRYSTAL CLEAR WSC	GUADALUPE	GUADALUPE RIVER RUN-OF-RIVER						
L	GOFORTH WSC	GUADALUPE	CANYON LAKE/RESERVOIR	899	899	899	899	899	899
L	IRRIGATION	GUADALUPE	GUADALUPE RIVER COMBINED RUN-OF- RIVER IRRIGATION	11	11	11	11	11	11
L	KYLE	GUADALUPE	CANYON LAKE/RESERVOIR	2,957	2,957	2,957	2,957	2,957	2,957
L	LIVESTOCK	GUADALUPE	LIVESTOCK LOCAL SUPPLY	13	13	13	13	13	13
L	MAXWELL WSC	GUADALUPE	CANYON LAKE/RESERVOIR	167	167	167	167	167	167
L	MAXWELL WSC	GUADALUPE	GUADALUPE RIVER RUN-OF-RIVER	69	69	69	69	69	69
L	PLUM CREEK WATER COMPANY	GUADALUPE	CANYON LAKE/RESERVOIR	560	560	560	560	560	560
L	SAN MARCOS	GUADALUPE	CANYON LAKE/RESERVOIR						
L	STEAM ELECTRIC POWER	GUADALUPE	CANYON LAKE/RESERVOIR	224	224	224	224	224	224
	Sum of Projected Sur	plies (acre-feet/year)	6,410	6,410	6,410	6,410	6,410	6,410	

Projected Water Demands TWDB 2012 State Water Plan Data

Please note that the demand numbers presented here include the plumbing code savings found in the Regional and State Water Plans.

CALDWELL COUNTY		51	.56 % (multiplie	r)	All values are in acre-feet/year			
RWPG	WUG	WUG Basin	2010	2020	2030	2040	2050	2060
L	COUNTY-OTHER	COLORADO	12	11	11	11	11	11
L	MINING	COLORADO	4	5	5	5	5	5
L	IRRIGATION	COLORADO	8	7	6	6	5	5
L	LIVESTOCK	COLORADO	80	80	80	80	80	80
L	CREEDMOOR-MAHA WSC	COLORADO	136	177	213	250	287	325
L	MUSTANG RIDGE	COLORADO	122	160	194	228	262	296
L	POLONIA WSC	COLORADO	202	268	325	384	441	501
L	CREEDMOOR-MAHA WSC	GUADALUPE	98	127	154	181	207	235
L	POLONIA WSC	GUADALUPE	466	618	749	884	1,016	1,155
L	MARTINDALE	GUADALUPE						
L	MAXWELL WSC	GUADALUPE	503	678	844	996	1,166	1,331
L	MARTINDALE WSC	GUADALUPE						
L	MINING	GUADALUPE	3	3	4	4	4	4
L	IRRIGATION	GUADALUPE	530	471	419	372	330	293
L	LIVESTOCK	GUADALUPE	393	393	393	393	393	393
L	MUSTANG RIDGE	GUADALUPE	13	18	21	25	29	33
L	NIEDERWALD	GUADALUPE	26	43	61	78	95	111
L	AQUA WSC	GUADALUPE	267	339	396	458	518	580
L	COUNTY LINE WSC	GUADALUPE	204	308	405	501	600	695
L	GOFORTH WSC	GUADALUPE	184	269	342	417	495	571
L	GONZALES COUNTY WSC	GUADALUPE	63	79	94	108	122	136
L	LOCKHART	GUADALUPE	2,451	3,094	3,629	4,180	4,725	5,285
L	LULING	GUADALUPE	1,067	1,210	1,299	1,384	1,486	1,594
L	COUNTY-OTHER	GUADALUPE	110	104	91	79	70	63
L	MANUFACTURING	GUADALUPE	8	9	11	12	14	15
	Sum of Projected W	later Demands (acre-feet/y	ear) 6,950	8,471	9,746	11,036	12,361	13,717

HAY	S COUNTY		9.11 % (multiplie	All values are in acre-feet/yea				
RWPG	WUG	WUG Basin	2010	2020	2030	2040	2050	2060
K	MOUNTAIN CITY	COLORADO						

Estimated Historical Water Use and 2012 State Water Plan Dataset:
Plum Creek Conservation District
September 20, 2012
Page 7 of 17

Projected Water Demands TWDB 2012 State Water Plan Data

Please note that the demand numbers presented here include the plumbing code savings found in the Regional and State Water Plans.

RWPG	WUG	WUG Basin	2010	2020	2030	2040	2050	2060
K	DRIPPING SPRINGS WSC	COLORADO						
K	HILL COUNTRY WSC	COLORADO						
K	BUDA	COLORADO						
K	DRIPPING SPRINGS	COLORADO						
K	COUNTY-OTHER	COLORADO	306	443	566	690	845	967
K	MANUFACTURING	COLORADO	63	74	85	95	105	114
K	MINING	COLORADO	1	1	0	0	0	0
K	IRRIGATION	COLORADO	1	1	1	1	1	1
K	LIVESTOCK	COLORADO	20	20	20	20	20	20
K	CIMARRON PARK WATER COMPANY	COLORADO						
L	GOFORTH WSC	GUADALUPE	972	1,340	1,704	2,075	2,545	2,914
L	COUNTY-OTHER	GUADALUPE	132	150	169	189	215	235
L	CRYSTAL CLEAR WSC	GUADALUPE						
L	WOODCREEK UTILITIES INC	GUADALUPE						
L	CREEDMOOR-MAHA WSC	GUADALUPE	10	12	15	17	20	23
L	MANUFACTURING	GUADALUPE	19	23	26	29	32	35
L	STEAM ELECTRIC POWER	GUADALUPE	92	65	86	178	243	330
L	SAN MARCOS	GUADALUPE						
L	WIMBERLEY WSC	GUADALUPE						
L	WOODCREEK	GUADALUPE						
L	MAXWELL WSC	GUADALUPE	157	200	249	294	354	402
L	PLUM CREEK WATER COMPANY	GUADALUPE	566	762	963	1,168	1,427	1,630
L	COUNTY LINE WSC	GUADALUPE	947	1,999	2,319	2,393	2,612	2,982
L	NIEDERWALD	GUADALUPE	104	147	194	238	294	338
L	LIVESTOCK	GUADALUPE	26	26	26	26	26	26
L	MOUNTAIN CITY	GUADALUPE						
L	IRRIGATION	GUADALUPE	32	32	32	31	31	31
L	MINING	GUADALUPE	13	14	14	15	15	15
L	KYLE	GUADALUPE	2,740	3,940	4,217	4,377	4,874	5,203
	Sum of Projected Wat	er Demands (acre-feet/year)	6,201	9,249	10,686	11,836	13,659	15,266

Projected Water Supply Needs TWDB 2012 State Water Plan Data

Negative values (in red) reflect a projected water supply need, positive values a surplus.

CAI		A/EII	COL	INITY
LA	LUV	VELL	. LUI	

All values are in acre-feet/year

RWPG	WUG	WUG Basin	2010	2020	2030	2040	2050	2060
L	AQUA WSC	GUADALUPE	-49	-121	-178	-240	-300	-362
L	COUNTY LINE WSC	GUADALUPE	137	33	-64	-160	-259	-354
L	COUNTY-OTHER	COLORADO	6	7	7	7	8	8
L	COUNTY-OTHER	GUADALUPE	494	507	531	554	572	586
L	CREEDMOOR-MAHA WSC	COLORADO	-61	-102	-138	-175	-212	-250
L	CREEDMOOR-MAHA WSC	GUADALUPE	-44	-73	-100	-127	-153	-181
L	GOFORTH WSC	GUADALUPE	59	-26	-99	-174	-252	-328
L	GONZALES COUNTY WSC	GUADALUPE	87	71	56	42	28	14
L	IRRIGATION	COLORADO	0	1	3	4	5	6
L	IRRIGATION	GUADALUPE	1	115	217	307	388	460
L	LIVESTOCK	COLORADO	0	0	0	0	0	0
L	LIVESTOCK	GUADALUPE	0	0	0	0	0	0
L	LOCKHART	GUADALUPE	322	-321	-856	-1,407	-1,952	-2,512
L	LULING	GUADALUPE	21	-122	-211	-296	-398	-506
L	MANUFACTURING	GUADALUPE	14	11	8	5	2	0
L	MARTINDALE	GUADALUPE	33	24	19	15	8	0
L	MARTINDALE WSC	GUADALUPE	-29	-40	-45	-49	-57	-66
L	MAXWELL WSC	GUADALUPE	264	89	-77	-229	-399	-564
L	MINING	COLORADO	3	2	2	1	1	1
L	MINING	GUADALUPE	2	2	1	1	0	0
L	MUSTANG RIDGE	COLORADO	-17	-55	-89	-123	-157	-191
L	MUSTANG RIDGE	GUADALUPE	-2	-7	-10	-14	-18	-22
L	NIEDERWALD	GUADALUPE	-8	-25	-43	-60	-77	-93
L	POLONIA WSC	COLORADO	219	153	96	37	-20	-80
L	POLONIA WSC	GUADALUPE	504	352	221	86	-46	-185
	Sum of Projected Water	r Supply Needs (acre-feet/year)	-210	-892	-1,910	-3,054	-4,300	-5,694

HAYS COUNTY

All values are in acre-feet/year

RWP	G WUG	WUG Basin	2010	2020	2030	2040	2050	2060
K	BUDA	COLORADO	257	143	-332	-817	-1,395	-1,869

Estimated Historical Water Use and 2012 State Water Plan Dataset: Plum Creek Conservation District September 20, 2012 Page 9 of 17

Projected Water Supply Needs TWDB 2012 State Water Plan Data

Negative values (in red) reflect a projected water supply need, positive values a surplus.

RWPG	WUG	WUG Basin	2010	2020	2030	2040	2050	2060
K	CIMARRON PARK WATER COMPANY	COLORADO	-150	-236	-329	-423	-536	-629
K	COUNTY-OTHER	COLORADO	760	-838	-2,072	-3,440	-5,144	-6,482
K	DRIPPING SPRINGS	COLORADO	-574	-1,350	-1,791	-2,239	-2,794	-3,230
K	DRIPPING SPRINGS WSC	COLORADO	452	299	140	-17	-213	-366
K	HILL COUNTRY WSC	COLORADO	0	0	0	0	0	0
K	IRRIGATION	COLORADO	42	42	42	42	41	41
K	LIVESTOCK	COLORADO	2	2	2	2	0	0
K	MANUFACTURING	COLORADO	-93	-211	-330	-450	-558	-657
K	MINING	COLORADO	0	6	10	12	10	10
K	MOUNTAIN CITY	COLORADO	-25	-23	-23	-22	-22	-22
L	COUNTY LINE WSC	GUADALUPE	3	-1,049	-1,369	-1,443	-1,662	-2,032
L	COUNTY-OTHER	GUADALUPE	1,829	1,629	1,418	1,196	912	689
L	CREEDMOOR-MAHA WSC	GUADALUPE	-3	-5	-8	-10	-13	-16
L	CRYSTAL CLEAR WSC	GUADALUPE	181	27	-140	-293	-499	-661
L	GOFORTH WSC	GUADALUPE	398	30	-334	-705	-1,175	-1,544
L	IRRIGATION	GUADALUPE	316	319	322	325	328	331
L	KYLE	GUADALUPE	764	-436	-713	-873	-1,370	-1,699
L	LIVESTOCK	GUADALUPE	0	0	0	0	0	0
L	MANUFACTURING	GUADALUPE	1,353	1,316	1,280	1,243	1,210	1,179
L	MAXWELL WSC	GUADALUPE	120	77	28	-17	-77	-125
L	MINING	GUADALUPE	-82	-91	-97	-101	-102	-103
L	MOUNTAIN CITY	GUADALUPE	4	-22	-49	-75	-108	-134
L	NIEDERWALD	GUADALUPE	-50	-93	-140	-184	-240	-284
L	PLUM CREEK WATER COMPANY	GUADALUPE	407	211	10	-195	-454	-657
L	SAN MARCOS	GUADALUPE	5,014	1,854	-1,319	-4,772	-8,507	-11,387
L	STEAM ELECTRIC POWER	GUADALUPE	5,151	5,442	5,211	4,211	3,497	2,533
L	WIMBERLEY WSC	GUADALUPE	-219	-440	-667	-885	-1,179	-1,409
L	WOODCREEK	GUADALUPE	-23	-92	-162	-229	-317	-387
L	WOODCREEK UTILITIES INC	GUADALUPE	-455	-852	-1,271	-1,681	-2,184	-2,580
	Sum of Projected Water S	upply Needs (acre-feet/year)	-1,674	-5,738	-11,146	-18,871	-28,549	-36,273

Projected Water Management Strategies TWDB 2012 State Water Plan Data

CALDWELL COUNTY

WUG, Basin (RWPG)				All values are in acre-feet/year			
Water Management Strategy	Source Name [Origin]	2010	2020	2030	2040	2050	2060
AQUA WSC, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [CALDWELL]	13	0	0	0	0	C
LOCAL GROUNDWATER CARRIZO- WILCOX AQUIFER (INCLUDES OVERDRAFTS)	CARRIZO-WILCOX AQUIFER [CALDWELL]	403	403	403	403	403	403
MUNICIPAL WATER CONSERVATION	CONSERVATION [CALDWELL]	0	0	0	0	6	19
COUNTY LINE WSC, GUADALUPE (L)							
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)	AOUIFER [CALDWELL]	0	285	285	285	285	285
LOCAL GROUNDWATER (TRINITY AQUIFER)	TRINITY AQUIFER [CALDWELL]	0	10	10	10	10	10
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	0	0	64	160	259	354
COUNTY-OTHER, GUADALUPE (L)							
FACILITIES EXPANSION	GUADALUPE RIVER RUN- OF-RIVER [CALDWELL]	0	0	0	0	0	0
MUNICIPAL WATER CONSERVATION	CONSERVATION [CALDWELL]	21	37	36	31	28	29
CREEDMOOR-MAHA WSC, COLORADO (L)							
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	102	138	175	212	250
PURCHASE FROM WWP (GUADALUPE- BLANCO RIVER AUTHORITY)	GUADALUPE RIVER RUN- OF-RIVER [CALHOUN]	61	0	0	0	0	0
CREEDMOOR-MAHA WSC, GUADALUPE (L	.)						
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	73	100	127	153	181
MUNICIPAL WATER CONSERVATION	CONSERVATION [CALDWELL]	0	0	0	0	0	11
PURCHASE FROM WWP (GUADALUPE- BLANCO RIVER AUTHORITY)	GUADALUPE RIVER RUN- OF-RIVER [CALHOUN]	44	0	0	0	0	0
GOFORTH WSC, GUADALUPE (L)							
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)	CARRIZO-WILCOX AQUIFER [GONZALES]	0	26	99	174	252	328

Projected Water Management Strategies TWDB 2012 State Water Plan Data

WUG, Basin (RWPG)				All	values ar	e in acre-fe	et/year
Water Management Strategy	Source Name [Origin]	2010	2020	2030	2040	2050	2060
LOCKHART, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [CALDWELL]	123	0	0	0	0	0
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	1,120	1,120	1,120	1,120	1,120
LOCAL GROUNDWATER CARRIZO- WILCOX AQUIFER (INCLUDES OVERDRAFTS)	CARRIZO-WILCOX AQUIFER [CALDWELL]	0	403	1,210	1,613	2,016	2,823
MUNICIPAL WATER CONSERVATION	CONSERVATION [CALDWELL]	0	0	28	103	195	333
LULING, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [CALDWELL]	53	0	0	0	0	0
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	1,680	1,680	1,680	1,680	1,680
LOCAL GROUNDWATER CARRIZO- WILCOX AQUIFER (INCLUDES OVERDRAFTS)	CARRIZO-WILCOX AQUIFER [CALDWELL]	0	403	403	403	403	807
MUNICIPAL WATER CONSERVATION	CONSERVATION [CALDWELL]	70	90	108	117	148	192
MARTINDALE, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [CALDWELL]	6	0	0	0	0	0
MARTINDALE WSC, GUADALUPE (L)							
CRWA WELLS RANCH PROJECT PHASE II (INCL. GONZALES CO.)	CARRIZO-WILCOX AQUIFER [GUADALUPE]	257	257	444	568	568	568
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [CALDWELL]	9	0	0	0	0	0
MAXWELL WSC, GUADALUPE (L)							
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)		0	300	600	900	1,200	1,500
MUNICIPAL WATER CONSERVATION	CONSERVATION [CALDWELL]	0	0	0	0	11	55
MUSTANG RIDGE, COLORADO (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [CALDWELL]	6	0	0	0	0	0
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	55	89	123	157	191
MUNICIPAL WATER CONSERVATION	CONSERVATION [CALDWELL]	10	26	48	74	98	116

Estimated Historical Water Use and 2012 State Water Plan Dataset: Plum Creek Conservation District September 20, 2012

WUG, Basin (RWPG)				All	values are	e in acre-f	eet/year
Water Management Strategy	Source Name [Origin]	2010	2020	2030	2040	2050	2060
PURCHASE FROM WWP (GUADALUPE- BLANCO RIVER AUTHORITY)	CANYON LAKE/RESERVOIR [RESERVOIR]	17	0	0	0	0	0
MUSTANG RIDGE, GUADALUPE (L)							
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	7	10	14	18	22
PURCHASE FROM WWP (GUADALUPE- BLANCO RIVER AUTHORITY)	CANYON LAKE/RESERVOIR [RESERVOIR]	2	0	0	0	0	0
NIEDERWALD, GUADALUPE (L)							
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	25	43	60	77	93
PURCHASE FROM WWP (GUADALUPE- BLANCO RIVER AUTHORITY)	CANYON LAKE/RESERVOIR [RESERVOIR]	8	0	0	0	0	0
POLONIA WSC, COLORADO (L)							
LOCAL GROUNDWATER CARRIZO- WILCOX AQUIFER (INCLUDES OVERDRAFTS)	CARRIZO-WILCOX AQUIFER [CALDWELL]	0	0	0	0	48	97
POLONIA WSC, GUADALUPE (L)							
LOCAL GROUNDWATER CARRIZO- WILCOX AQUIFER (INCLUDES OVERDRAFTS)	CARRIZO-WILCOX AQUIFER [CALDWELL]	0	0	0	0	113	226
Sum of Projected Water Management St	rategies (acre-feet/year)	1,103	5,302	6,918	8,140	9,460	11,693

HAYS COUNTY

WUG, Basin (RWPG)

All values are in acre-feet/year

	Water Management Strategy	Source Name [Origin]	2010	2020	2030	2040	2050	2060
BUD	A, COLORADO (K)							
	DEVELOPMENT OF CARRIZO-WILCOX AQUIFER	CARRIZO-WILCOX AQUIFER [CALDWELL]	0	1,687	1,687	1,687	1,687	1,687
	DEVELOPMENT OF SALINE ZONE OF EDWARDS-BFZ AQUIFER	EDWARDS-BFZ AQUIFER [TRAVIS]	0	0	0	0	0	500
CIM	ARRON PARK WATER COMPANY, COI	ORADO (K)						
	DEVELOPMENT OF SALINE ZONE OF EDWARDS-BFZ AQUIFER	EDWARDS-BFZ AQUIFER [TRAVIS]	0	0	250	350	500	600
	DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [HAYS]	109	109	109	109	109	109

Estimated Historical Water Use and 2012 State Water Plan Dataset:

Plum Creek Conservation District

September 20, 2012

WUG, Basin (RWPG)				All	values are	e in acre-fe	eet/year
Water Management Strategy	Source Name [Origin]	2010	2020	2030	2040	2050	2060
MUNICIPAL CONSERVATION	CONSERVATION [HAYS]	24	17	13	9	5	7
WATER ALLOCATION	EDWARDS-BFZ AQUIFER [HAYS]	17	110	0	0	0	C
COUNTY-OTHER, COLORADO (K)							
DEVELOPMENT OF SALINE ZONE OF EDWARDS-BFZ AQUIFER	EDWARDS-BFZ AQUIFER [TRAVIS]	0	250	2,500	2,500	5,000	6,000
PURCHASE WATER FROM COA	COLORADO RIVER RUN- OF-RIVER [TRAVIS]	1,100	1,100	1,100	1,100	1,100	1,100
DRIPPING SPRINGS, COLORADO (K)							
AMEND LCRA CONTRACT	COLORADO RIVER COMBINED RUN-OF- RIVER - LCRA SUPPLY REALLOCATION [TRAVIS]	493	1,073	1,321	1,690	2,133	2,482
MUNICIPAL CONSERVATION	CONSERVATION [HAYS]	81	277	470	549	661	748
DRIPPING SPRINGS WSC, COLORADO (K)						
AMEND LCRA CONTRACT	COLORADO RIVER COMBINED RUN-OF- RIVER - LCRA SUPPLY REALLOCATION [TRAVIS]	0	0	0	17	213	366
MANUFACTURING, COLORADO (K)							
DEVELOPMENT OF TRINITY AQUIFER	TRINITY AQUIFER [HAYS]		0	75	200	301	400
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [HAYS]	257	257	257	257	257	257
MOUNTAIN CITY, COLORADO (K)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [HAYS]	39	39	39	39	39	39
MUNICIPAL CONSERVATION	CONSERVATION [HAYS]	2	0	0	0	0	0
COUNTY LINE WSC, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [HAYS]	58	0	0	0	0	0
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)		0	285	285	285	285	285
LOCAL GROUNDWATER (TRINITY AQUIFER)	TRINITY AQUIFER [CALDWELL]	0	1,119	1,442	1,603	1,926	2,410
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	43	110	112	67	85	119
COUNTY-OTHER, GUADALUPE (L)							
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]		0	12	49	112	184

Page 14 of 17

WUG, Basin (RWPG)				All	values are	e in acre-fe	et/year
Water Management Strategy	Source Name [Origin]	2010	2020	2030	2040	2050	2060
CREEDMOOR-MAHA WSC, GUADALUPE (L)						
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	5	8	10	13	16
PURCHASE FROM WWP (GUADALUPE- BLANCO RIVER AUTHORITY)	GUADALUPE RIVER RUN- OF-RIVER [CALHOUN]	3	0	0	0	0	0
CRYSTAL CLEAR WSC, GUADALUPE (L)							
BRACKISH GROUNDWATER DESALINATION (WILCOX AQUIFER)	CARRIZO-WILCOX AQUIFER- BRACKISH [GUADALUPE]	0	0	130	130	259	259
BRACKISH GROUNDWATER DESALINATION (WILCOX AQUIFER)	CARRIZO-WILCOX AQUIFER- BRACKISH [WILSON]	0	0	206	206	1,469	1,469
CRWA WELLS RANCH PROJECT PHASE I	CARRIZO-WILCOX AQUIFER [GONZALES]	434	0	0	0	0	0
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	865	0	0	0	0
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)	CARRIZO-WILCOX AQUIFER [CALDWELL]	0	0	530	530	0	0
LOCAL GROUNDWATER CARRIZO- WILCOX AQUIFER (INCLUDES OVERDRAFTS)	CARRIZO-WILCOX AQUIFER [GUADALUPE]	0	0	140	293	499	661
GOFORTH WSC, GUADALUPE (L)							
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	0	300	300	300	300
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)	CARRIZO-WILCOX AQUIFER [GONZALES]	0	1,613	1,540	1,465	1,387	1,311
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	0	0	0	0	22	111
KYLE, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [HAYS]	137	0	0	0	0	0
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)	CARRIZO-WILCOX AQUIFER [GONZALES]	0	500	1,000	2,416	5,144	9,355
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	0	27	96	167	302	443
MAXWELL WSC, GUADALUPE (L)							
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)	CARRIZO-WILCOX AQUIFER [CALDWELL]	0	100	200	300	400	500
MINING, GUADALUPE (L)							
INDUSTRIAL, STEAM-ELECTRIC POWER GENERATION, AND MINING WATER CONSERVATION	CONSERVATION [HAYS]	82	91	97	101	102	103

Estimated Historical Water Use and 2012 State Water Plan Dataset: Plum Creek Conservation District September 20, 2012

WUG, Basin (RWPG)				All	values ar	e in acre-f	eet/year
Water Management Strategy	Source Name [Origin]	2010	2020	2030	2040	2050	2060
MOUNTAIN CITY, GUADALUPE (L)							
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)	CARRIZO-WILCOX AQUIFER [CALDWELL]	0	150	150	150	150	150
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	1	3	6	10	16	22
NIEDERWALD, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [HAYS]	7	0	0	0	0	(
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	93	140	184	240	284
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	0	1	8	15	27	42
PURCHASE FROM WWP (GUADALUPE- BLANCO RIVER AUTHORITY)		50	0	0	0	0	(
PLUM CREEK WATER COMPANY, GUADAL	UPE (L)						
GBRA MID BASIN (SURFACE WATER)	GUADALUPE RIVER RUN- OF-RIVER [GONZALES]	0	0	0	195	454	657
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	0	0	0	0	12	54
SAN MARCOS, GUADALUPE (L)							
HAYS/CALDWELL PUA PROJECT (INCL. GONZALES CO.)	CARRIZO-WILCOX AQUIFER [GONZALES]	0	0	1,548	4,953	8,675	11,910
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	417	554	815	1,282	1,875	2,656
WIMBERLEY WSC, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [HAYS]	39	0	0	0	0	C
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	0	0	0	0	19	70
WIMBERLEY AND WOODCREEK WATER SUPPLY PROJECT	CANYON LAKE/RESERVOIR [RESERVOIR]	336	1,425	1,425	1,425	1,425	1,425
WOODCREEK, GUADALUPE (L)							
DROUGHT MANAGEMENT	DROUGHT MANAGEMENT [HAYS]	12	0	0	0	0	C
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	0	0	2	6	20	37
WIMBERLEY AND WOODCREEK WATER SUPPLY PROJECT	CANYON LAKE/RESERVOIR [RESERVOIR]	112	400	400	400	400	400
WOODCREEK UTILITIES INC, GUADALUP	E (L)						
MUNICIPAL WATER CONSERVATION	CONSERVATION [HAYS]	56	177	337	455	619	 771

WUG, Basin (RWPG)					values are	e in acre-fe	eet/year
Water Management Strategy	Source Name [Origin]	2010	2020	2030	2040	2050	2060
WIMBERLEY AND WOODCREEK WATER SUPPLY PROJECT	CANYON LAKE/RESERVOIR [RESERVOIR]	672	2,655	2,655	2,655	2,655	2,655

APPENDIX B

GAM Run 12-001: Plum Creek Conservation District Management Plan

by William Kohlrenken Texas Water Development Board Groundwater Resources Division Groundwater Availability Modeling Section (512) 463-8279 July 2, 2012

Cynthia K. Ridgeway is the Manager of the Groundwater Availability Modeling Section and is responsible for oversight of work performed by William Kohlrenken under her direct supervision. The seal appearing on this document was authorized by Cynthia K. Ridgeway, P.G. 471 on July 2, 2012.

July 2, 2012 Page 4 of 12

This report discusses the method, assumptions, and results from model runs using the groundwater availability model for the southern portions of the Carrizo-Wilcox, Queen City, and Sparta aquifers. Tables 1 and 2 summarize the groundwater availability model data required by the statute, and Figures 1 and 2 show the area of the model from which the values in the tables were extracted. This model run replaces the results of GAM Run 06-18. GAM Run 12-001 meets current standards set after the release of GAM Run 06-18 and it is based on the most current groundwater district boundaries. If after review of the figures, Plum Creek Conservation District determines that the district boundaries used in the assessment do not reflect current conditions, please notify the TWDB immediately.

METHODS:

The groundwater availability model for the southern portion of the Carrizo-Wilcox, Queen City, and Sparta aquifers was run for this analysis. Water budgets for each year of 1980 through 1999 were extracted and the average annual water budget values for recharge, surface water outflow, inflow to the district, outflow from the district, net inter-aquifer flow (upper), and net inter-aquifer flow (lower) for the portions of the aquifers located within the district are summarized in this report.

PARAMETERS AND ASSUMPTIONS:

Carrizo-Wilcox and Queen City Aquifers

- Version 2.01 of the groundwater availability model for the southern part of the Carrizo-Wilcox, Queen City, and Sparta aquifers was used for this analysis. See Deeds and others (2003) and Kelley and others (2004) for assumptions and limitations of the groundwater availability model for the southern part of the Carrizo-Wilcox, Queen City, and Sparta aquifers.
- This groundwater availability model includes eight layers, which generally correspond to (from top to bottom):
 - 1. the Sparta Aquifer,
 - 2. the Weches Confining Unit,
 - 3. the Queen City Aquifer,
 - 4. the Reklaw Confining Unit,
 - 5. the Carrizo Aquifer,

GAM Run 12-001: Plum Creek Conservation District Management Plan July 2, 2012 Page 5 of 12

- 6. the Upper Wilcox Aquifer,
- 7. the Middle Wilcox Aquifer, and
- 8. the Lower Wilcox Aquifer.
- Of the eight layers listed above, individual water budgets for the district were determined for the Queen City Aquifer (Layer 3), and the combined layers of the Carrizo-Wilcox Aquifer (Layers 5 through 8). Budget terms were not determined for the Sparta Aquifer because it is not present in the Plum Creek Conservation District.
- The root mean square error (a measure of the difference between simulated and actual water levels during model calibration) in the groundwater availability model is 23 feet for the Sparta Aquifer, 18 feet for the Queen City Aquifer, and 33 feet for the Carrizo Aquifer for the calibration period (1980 to 1990) and 19, 22, and 48 feet for the same aquifers, respectively, in the verification period (1991 to 1999) (Kelley and others, 2004). These root mean square errors are between seven and ten percent of the range of measured water levels (Kelley and others, 2004).
- Groundwater in the Carrizo-Wilcox, Queen City, and Sparta aquifers ranges from fresh to brackish in composition (Kelley and others, 2004).
 Groundwater with total dissolved solids concentrations of less than 1,000 milligrams per liter (mg/l) are considered fresh and total dissolved solids concentrations of 1,000 to 10,000 mg/l are considered brackish.

July 2, 2012 Page 6 of 12

RESULTS:

A groundwater budget summarizes the amount of water entering and leaving the aquifer according to the groundwater availability model. Selected groundwater budget components listed below were extracted from the model results for the aquifers located within the district and averaged over the duration of the calibration and verification portion of the model runs in the district, as shown in Tables 1 and 2. The components of the modified budget shown in Tables 1 and 2 include:

- Precipitation recharge—The areally distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district.
- Surface water outflow—The total water discharging from the aquifer (outflow) to surface water features such as streams, reservoirs, and drains (springs).
- Flow into and out of district—The lateral flow within the aquifer between the district and adjacent counties.
- Flow between aquifers—The net vertical flow between aquifers or confining units. This flow is controlled by the relative water levels in each aquifer or confining unit and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs. "Inflow" to an aquifer from an overlying or underlying aquifer will always equal the "Outflow" from the other aquifer.

The information needed for the District's management plan is summarized in Tables 1 and 2. It is important to note that sub-regional water budgets are not exact. This is due to the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as a district or county boundary, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located (Figures 1 and 2).

GAM Run 12-001: Plum Creek Conservation District Management Plan July 2, 2012 Page 7 of 12

TABLE 1: SUMMARIZED INFORMATION FOR THE QUEEN CITY AQUIFER THAT IS NEEDED FOR PLUM CREEK CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT. THESE FLOWS INCLUDE BRACKISH WATERS.

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Queen City Aquifer	119
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Queen City Aquifer	41
Estimated annual volume of flow into the district within each aquifer in the district	Queen City Aquifer	66
Estimated annual volume of flow out of the district within each aquifer in the district	Queen City Aquifer	159
Estimated net annual volume of flow between each aquifer in the district	From Queen City Aquifer into the underlying Reklaw Formation confining unit	10

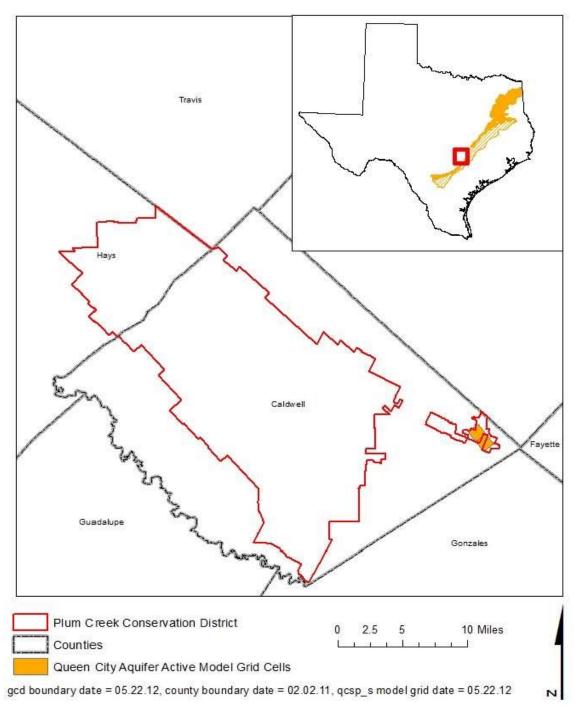


FIGURE 1: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE SOUTHERN PORTION OF THE CARRIZO -WILCOX, QUEEN CITY, AND SPARTA AQUIFERS FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED (THE AQUIFER EXTENT OF THE QUEEN CITY AQUIFER WITHIN THE DISTRICT BOUNDARY).

July 2, 2012 Page 9 of 12

TABLE 2: SUMMARIZED INFORMATION FOR THE CARRIZO-WILCOX AQUIFER THAT IS NEEDED FOR PLUM CREEK CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT. THESE FLOWS MAY INCLUDE FRESH AND BRACKISH WATERS.

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Carrizo-Wilcox Aquifer	5,743
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Carrizo-Wilcox Aquifer	6,847
Estimated annual volume of flow into the district within each aquifer in the district	Carrizo-Wilcox Aquifer	4,043
Estimated annual volume of flow out of the district within each aquifer in the district	Carrizo-Wilcox Aquifer	3,616
Estimated net annual volume of flow between each aquifer in the district	From the Reklaw Formation confining unit into the Carrizo- Wilcox Aquifer	58

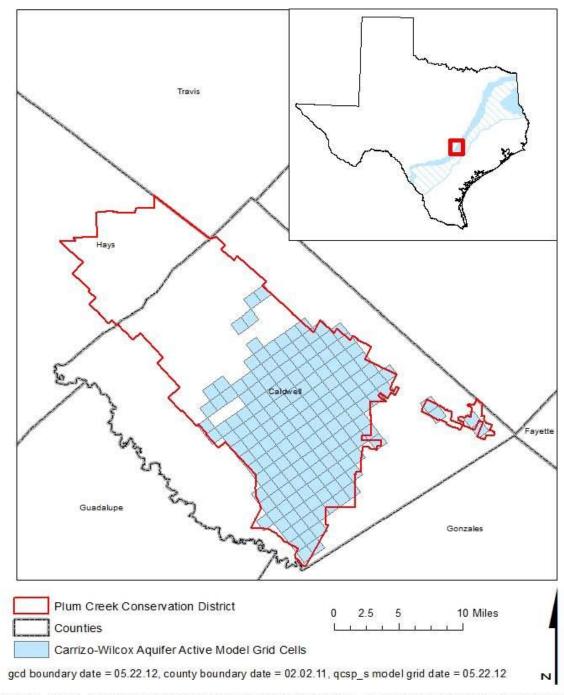


FIGURE 2: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE SOUTHERN PORTION OF THE CARRIZO-WILCOX, QUEEN CITY, AND SPARTA AQUIFERS FROM WHICH THE INFORMATION IN TABLE 2 WAS EXTRACTED (THE AQUIFER EXTENT OF THE CARRIZO-WILCOX AQUIFER WITHIN THE DISTRICT BOUNDARY).

July 2, 2012 Page 11 of 12

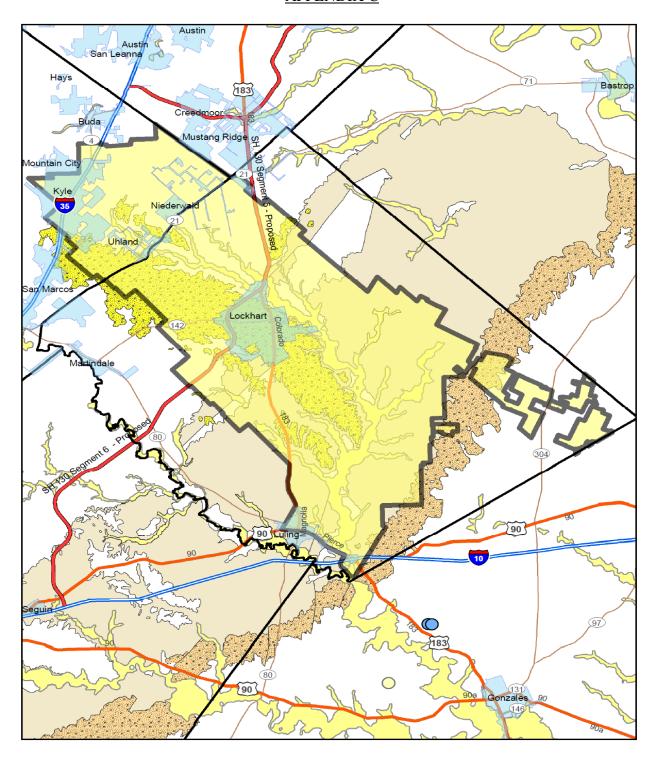
LIMITATIONS

The groundwater model(s) used in completing this analysis is the best available scientific tool that can be used to meet the stated objective(s). To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and interaction with streams are specific to particular historic time periods.

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations related to the actual conditions of any aquifer at a particular location or at a particular time.


It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.

GAM Run 12-001: Plum Creek Conservation District Management Plan July 2, 2012 Page 12 of 12

REFERENCES:

- Deeds, N., Kelley, V., Fryar, D., Jones, T., Whallon, A.J., and Dean, K.E., 2003, Groundwater Availability Model for the Southern Carrizo-Wilcox Aquifer: Contract report to the Texas Water Development Board, 452 p., http://www.twdb.texas.gov/groundwater/models/gam/czwx_s/CZWX_S_Full_Report.pdf.
- Kelley, V.A., Deeds, N.E., Fryar, D.G., and Nicot, J.P., 2004, Groundwater availability models for the Queen City and Sparta aquifers: Contract report to the Texas Water Development Board, 867 p., http://www.twdb.texas.gov/groundwater/models/gam/qcsp/QCSP_Model_Report.pdf.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p.
- Smith, R., 2006, GAM Run 06-18: Texas Water Development Board, GAM Run 06-18 Report, 5 p., http://www.twdb.texas.gov/groundwater/docs/GAMruns/GR06-18.pdf.

APPENDIX C

PCCD GEOLOGY

1 in = 5 miles

