
PANHANDLE GROUNDWATER

CONSERVATION DISTRICT

MANAGEMENT PLAN

2019-2024

Approved by the

Panhandle Groundwater Conservation District

Board of Directors

July 25, 2019

The Panhandle Groundwater Conservation District Management Plan was adopted, after notice and hearing, on July 25, 2019. Hydrologic data developed for this Management Plan were developed and reviewed by William F. Mullican III Licensed Texas Professional Geoscientist No. 10

Wile: 2. Milli D 7/25/2019

Contents

CHAPTER 1	DISTRICT MISSION AND OVERVIEW	1
CHAPTER 2	GROUNDWATER MANAGEMENT IN TEXAS	2
CHAPTER 3 CONSERVATIO	DESIRED FUTURE CONDITIONS AND THE PANHANDLE GROUNDWATER ON DISTRICT	3
CHAPTER 4	GOALS, MANAGEMENT OBJECTIVES, AND PERFORMANCE STANDARDS	5
SECTION 4. Necessary	.1 Actions, Methodologies, Procedures, Performance, and Avoid to Effectuate the Plan	
SECTION 4. GCD	.2 Goal 1 Achieve the Desired Future Conditions Adopted by the Panha	
Subsectio	on 4.2.1 Ogallala Aquifer DFC	7
4.2.1.1	l Management Objective 1.1	8
4.2.2	1.1.1 Performance Standards	9
4.2.1.2	2 Management Objective 1.2	9
4.2.2	1.2.1 Performance Standards	9
Subsectio	on 4.2.2 Dockum Aquifer DFC	9
4.2.2.1	Management Objective 1.3	10
4.2.2	2.1.1 Performance Standard	11
SECTION 4.	.3 Goal 2 Providing for the most efficient use of groundwater	11
4.3.1.1	Management Objective 2.1	11
4.3.2	1.1.1 Performance Standard	11
4.3.1.2	2 Management Objective 2.2	12
4.3.2	1.2.1 Performance Standard	12
4.3.1.3	3 Management Objective 2.3	12
4.3.2	1.3.1 Performance Standard	12
4.3.1.4	Management Objective 2.4	13
4.3.2	1.4.1 Performance Standard	13
4.3.1.5	5 Management Objective 2.5	13
4.3.2	1.5.1 Performance Standard	13
SECTION 4.	.4 Goal 3 Controlling and preventing waste of groundwater	14
4.4.1.1	l Management Objective 3.1	14
4.4.2	1.1.1 Performance Standards	14
SECTION 4.	.5 Goal 4 Implement strategies to address drought conditions	14
4.5.1.1	Management Objective 4.2	14

4.5.	1.1.1 Performance Standard	15
SECTION 4 manageme	.6 Goal 5 Implement strategies to address conjunctive seent issues	
4.6.1.2	1 Management Objective 5.1	15
4.6.	1.1.1 Performance Standard	15
SECTION 4	.7 Goal 6 Implement strategies that will address natural resource	e issues 15
4.7.1.2	1 Management objective 6.1	
4.7.	1.1.1 Performance Standards	
SECTION 4	.8 Goal 7 Improve operating efficiency and customer service	16
4.8.1.2	1 Management Objective 7.1	16
4.8.	1.1.1 Performance Standard	16
SECTION 4	.9 Goal 8 Addressing precipitation enhancement	17
4.9.1.2	1 Management Objective 8.1	17
4.9.	1.1.1 Performance Standard	17
4.9.1.2	2 Management Objective 8.2	17
4.9.	1.2.1 Performance Standard	17
SECTION 4	.10 Goal 9 Addressing Conservation	18
4.10.1	1 Management Objective 9.1	18
4.10	D.1.1.1 Performance Standards	
SECTION 4	.11 Goal 10 Rainwater Harvesting	18
4.11.1	1 Management Objective 10.1	19
4.11	1.1.1.1 Performance Standard	19
CHAPTER 5	GOALS DETERMINED NOT-APPLICABLE	19
SECTION 5	.1 Goal 11 Recharge Enhancement	19
SECTION 5		
SECTION 5		
CHAPTER 6	POPULATION, WATER USE, AND WATER DEMANDS	
CHAPTER 7	GROUNDWATER RESOURCES	
CHAPTER 8	SURFACE WATER RESOURCES	
CHAPTER 9	WATER MANAGEMENT PLAN	36

List of Tables

Table 1- Estimates of Modeled Available Groundwater for the Ogallala Aquifer in the District(Anaya, 2023).8
Table 2 - Estimates of Modeled Available Groundwater for the Dockum Aquifer in the District
(Anaya, 2023)
Table 3 - Decadal population projections for Panhandle GCD included in the 2017 Texas State
Water Plan
Table 4 - Water use estimates for the District in 2016. (In acre-feet per year)
Table 5 - Cumulative water demand projections for Panhandle GCD included in the 2017 Texas
State Water Plan. (In acre-feet per year)
Table 6 – Estimates of recharge, discharge, flow into and out of the District and between each
aquifer of the District for the Ogallala Aquifer. (In acre-feet per year)
Table 7 - Estimates of recharge, discharge, flow into and out of the District and between each
aquifer of the District for the Dockum Aquifer. (In acre-feet per year)
Table 8 - Estimates of recharge, discharge, flow into and out of the District and between each
aquifer of the District for the Blaine Aquifer. (In acre-feet per year)
Table 9 - Projected surface water supplies included in the 2017 Texas State Water Plan (In acre-
feet per year)
Table 10 - Projected water supply needs in the District from the 2017 Texas State Water Plan.
Values in red (-) indicate that water user groups in the county have been identified with water
supply needs. A value of zero indicates that no water supply need has been identified for the
county for the decade listed. (In acre-feet per year)
Table 11 - Summation of water supplies resulting from recommended water management
strategies included for the District in the 2017 Texas State Water Plan. (In acre-feet per year)

List of Figures

4
te
22
er
e-
25
١g
er
27
28
29
30

List of Appendices

Appendix 1 Texas Water Development Board Administrative Review Checklist.

Appendix 2Documentation for public notice of Panhandle Groundwater ConservationDistrict Board of Directors on July 25, 2019 during which Management Plan was adopted.

Appendix 3 Resolution adopting the 2019 Panhandle Groundwater Conservation District Management Plan.

Appendix 4 Estimated Historical Groundwater Use And 2017 State Water Plan Datasets: prepared for the Panhandle Groundwater Conservation District (Allen, 2019).

Appendix 5GAM RUN 21-007 MAG: Modeled Available Groundwater for the High PlainsAquifer System in Groundwater Management Area 1 (Anaya, R., 2023).

Appendix 6 Coordination letters with regional surface water management entities.

This page is intentionally blank.

CHAPTER 1 DISTRICT MISSION AND OVERVIEW

The Panhandle Groundwater Conservation District (the District) will strive to develop, promote, and implement water conservation, preservation, recharging, augmentation through precipitation enhancement, prevention of waste, and management strategies to protect water resources for the benefit of the citizens, economy, and environment of the District.

The District seeks cooperation in the implementation of this plan and the management of groundwater supplies within the District. All activities of the District will be undertaken in cooperation and coordination with local owners and the appropriate state, regional or local water management entities.

The District will work to treat all citizens uniformly. The District will enforce the permit terms and conditions and the District rules by enjoining the permit holder in a court of competent jurisdiction, as provided for in Texas Water Code Section 36.102, if required, after exhausting all other remedies.

The District consists of all of Carson, Donley, Gray, Roberts and Wheeler counties, along with parts of Armstrong, Hutchinson, and Potter counties. The District was created by the Legislature in 1955, when it began operating in portions of Gray, Carson, Potter, and Armstrong counties. Elections were held in 1988, 1991, 1994, 1997 and 2000 to annex the remaining portions of the District within the present boundaries.

The District's areal extent is 6,309 square miles or approximately four million acres located in the Panhandle region of Texas, extending from west of Amarillo to the Oklahoma border. The Canadian River to the north and Salt Fork of the Red River to the south generally border the District. The District's economy is dominated by agricultural production and petrochemical production. The agricultural income sources include beef cattle production, wheat, corn, milo, peanuts, soybeans, sunflowers, hay crops and cotton. Petrochemical production also contributes significantly to the income of the District. There are also chemical, manufacturing, and nuclear weapons industries located in the District.

There are over 4,676 irrigation wells capable of producing water to meet the needs of the agricultural community within District boundaries. The District also has more than 470 municipal or public supply wells, and over 450 wells for industrial use and oil and gas secondary recovery (water flood) operations. The remaining wells are registered wells providing water supplies for household, livestock consumption, and oil and gas exploration.

The area contains rolling plains that are used for cattle production, cultivation and oil and gas activities. There is a substantial area of flat plains that contain numerous playa basins. This area is used primarily for crop production. The altitude of the land surface ranges from 2,005 feet to 3,800 feet above mean sea level. The District lies within, and between, the drainage systems of both the Canadian River Basin and the Red River Basin.

All statutorily required elements for this Management Plan, as stipulated in Texas Water Code Section 36.1071 have been addressed herein, and for ease of review, are referenced in the Texas Water Development Board's Groundwater Conservation District Management Plan Checklist included as Appendix 1. Documentation that the Management Plan was adopted after public notice is presented in Appendix 2. A copy of the executed Resolution approved by the Panhandle Groundwater Conservation District Board of director's is included in Appendix 3.

CHAPTER 2 GROUNDWATER MANAGEMENT IN TEXAS

The authority of groundwater conservation districts (GCDs) to conserve, preserve, and protect groundwater through necessary regulation dates to the Underground Water Conservation Districts Act passed by the Texas Legislature in 1949 (Vernon's Civil Statutes, Article 7880-3c). Included in this landmark legislation, which for the most part, remains substantively unchanged today, GCDs receive the following legislative directive, "Such districts shall and are hereby authorized to exercise any one or more of the following:

(8) develop comprehensive plans for the most efficient use of the underground water of the underground reservoir or subdivision thereof and for the control and prevention of waste of such underground water, which plans shall specify in such detail as may be practicable, the acts, procedure, performance and avoidance which are or may be necessary to effect such plans, including specifications therefore; to carry out research projects, develop information and determine limitations, if any, which should be made on the withdrawal of underground water from the underground reservoir or subdivision thereof; to collect and preserve information regarding the use of such underground water and the practicability of recharge of the underground water subdivision thereof; to publish such plans and information, bring them to the notice and attention of the users of such underground water within the District, and to encourage their adoption and execution;"

In 1997 the Texas Legislature approved one of the more significant amendments to the Water Code by expanding the groundwater planning process, requiring all GCDs to develop and adopt management plans. Once adopted, management plans are then to be reviewed and approved by the Executive Administrator at the Texas Water Development Board (TWDB). This review and approval are designed to ensure that certain technical and administrative requirements are met.

Substantial changes in the planning and management of groundwater were put in place in 2005 with the passage of House Bill 1763, which requires GCDs in the same Groundwater Management Area (GMA) to conduct joint planning and establish Desired Future Conditions (DFCs) for all relevant aquifers in the GMA. The first round of joint planning concluded on September 1, 2010. Since the passage of House Bill 1763 in 2005, the District has been an active participant in the joint planning process for GMA 1. GMA 1 adopted DFCs for the Ogallala Aquifer on July 7, 2009, and DFCs for the Dockum and Blaine aquifers on June 3, 2010.

No other aquifers were determined to be relevant during the first round of joint planning in the District. By law, GCDs are required to meet at least annually to continue joint planning and to review and readopt (with amendments as necessary) DFCs at least every five years.

In 2011, the Texas Legislature again made significant changes to the planning and management of groundwater resources with the passage of Senate Bill 660 (SB 660). One of the primary elements of SB 660 was the identification of nine specific criteria that must be considered with respect to any DFCs being proposed for adoption (Texas Water Code Section 36.108 (d) (1-9). Other changes made by SB 660 included requirements that GCDs in a GMA must provide a balance between the highest practicable level of groundwater production and the conservation, preservation, protection, recharging, and prevention of waste of groundwater and control of subsidence in the GMA (Texas Water Code Section 36.108 (d-2)), development of an explanatory report to accompany adopted DFCs when submitted to the TWDB for review (Texas Water Code Section 36.108 (d-3), and also transfer of the petition process from the TWDB to the State Office of Administrative Hearings (Texas Water Code Section 36.1083). Based on the new requirements of SB 660, the District, along with the other GCDs in GMA 1, adopted updated DFCs on August 26, 2021, as required by Texas Water Code Section 36.108 (d). DFCs were adopted for the Ogallala and Dockum aquifers in the District. In 2016, the Blaine Aquifer, located in Wheeler County in GMA 1 was classified by GMA 1 District Representatives as being non-relevant for the purposes of joint planning.

CHAPTER 3 DESIRED FUTURE CONDITIONS AND THE PANHANDLE GROUNDWATER CONSERVATION DISTRICT


Long before the State of Texas first considered the concept of "Desired Future Conditions" or DFCs in the 2002 State Water Plan¹, or codified the concept in statute in House Bill 1763 in 2005 (Texas Water Code Section 36.108(d)), the District Board of Directors spent countless hours deliberating approaches to better manage and balance current water demands with future water needs. The result of this deliberation that began in 1995 was the District's adoption of the 50/50 Management Standard in 1998. This landmark decision in 1998 to adopt the 50/50 Management Standard represents the first DFC adopted by a GCD anywhere in Texas.


The District's 50/50 Management Standard is the goal to have at least 50 percent of current volume in the Ogallala Aquifer, still available 50 years after the first certification of this plan (which occurred in 1998). This standard was subsequently adopted for the Ogallala Aquifer for the District during both the first and second rounds of joint planning (2005 – 2010, 2010 – 2016 and 2016 – 2021). In the third round of planning, the District decided to extend the

¹ Texas Water Development Board, 2002, Water for Texas – The Texas State Water Plan, P.5.

planning period beyond 50 years, and added the clarification that it would monitor the 50/50 goal in each 50-year period.

For the purposes of the DFC adopted for the District by the member districts in GMA 1, this Management Plan and District rules, and the 50/50 Management Standard, 50 percent of the current saturated thickness remaining in 50 years, is indistinguishable from 50 percent of the volume of groundwater remaining in the Ogallala Aquifer. The 50/50 Management Standard, originally adopted by the District for the planning period of 1998 – 2048, has now been extended to 2080 in order to fully represent the current planning horizon (Figure 1). An examination of Figure 1 illustrates that as more time passes during the 50-year planning horizon, the reduction in saturated thickness of the Ogallala Aquifer each year becomes less and less.

Texas groundwater law is currently based on a conceptual three-step sequence that a GCD is to follow in accomplishing statutory responsibilities related to the conservation and management of groundwater resources within a GCD. The three primary steps, which are to occur at least every five years, are to: (1) adopt DFCs (Texas Water Code Section 36.108(c), (2) develop and adopt a management plan that includes goals, management objectives, and performance standards, designed to achieve the DFCs (Texas Water Code Section

36.1071(a)(8), and (3) amend and adopt rules necessary to achieve goals, management objectives, and performance standards, included in the management plan (Texas Water Code Section 36.101(a)(5).

While in concept these three steps are presented as a sequential process, from a practical perspective, all three steps are often ongoing concurrently. This management plan update was developed concurrently with the development of substantive rule amendments adopted by the Panhandle GCD Board of Directors on December 20, 2018, in order to better achieve adopted DFCs. This management plan is a modeled available groundwater amended revision of the management plan adopted by the Panhandle GCD Board of Directors on July 25, 2019. This revised management plan will remain in effect until an amended plan is adopted by the district and approved by the Texas Water Development Board, or until five years from the date the Executive Administrator of the Texas Water Development Board approves the plan, whichever is earlier. The Board of Directors will review and adopt the management plan at least every five years, as required by Texas Water Code Section 36.1072(e). The District Management Plan and any amendments thereto, shall be forwarded to the Panhandle Water Planning Group for consideration in their regional water planning process.

CHAPTER 4 GOALS, MANAGEMENT OBJECTIVES, AND PERFORMANCE STANDARDS

For over 60 years, the District has worked to manage and conserve groundwater resources within its jurisdictional boundaries. With the adoption of the 50/50 Management Standard by the District Board of Directors in 1998, this all-encompassing goal for the District to manage and conserve groundwater resources was established. All other goals, management objectives, and performance standards required for inclusion in this management plan by Texas Water Code Section 36.1071(a) have been developed and adopted to ensure that District programs and activities work directly or indirectly in an integrated and comprehensive manner in order to achieve the 50/50 Management Standard. The 50/50 Management Standard is specifically designed to ensure the management and conservation of the finite water resources within the District while seeking to maintain the economic viability of all water resource user groups, both public and private.

Texas Water Code Section 36.1071(a)(1-9) requires that all management plans address the following management goals, as applicable:

- addressing the desired future conditions adopted by the District,
- providing the most efficient use of groundwater;
- controlling and preventing waste of groundwater;
- controlling and preventing subsidence;
- conjunctive surface water management issues;
- natural resource issues;

- drought conditions, and;
- conservation, recharge enhancement, rainwater harvesting, precipitation enhancement, or brush control, where appropriate and cost-effective.

Goals, management objectives, and performance standards included in this management plan have been developed and adopted to ensure the management and conservation of groundwater resources within the District's jurisdiction.

SECTION 4.1 ACTIONS, METHODOLOGIES, PROCEDURES, PERFORMANCE, AND AVOIDANCE NECESSARY TO EFFECTUATE THE PLAN

In order to achieve the goals, management objectives, and performance standards adopted in this management plan, the District continually works to develop, maintain, review, and update rules and procedures for the various programs and activities contained in the management plan. As a means to monitor performance, (a) the General Manager routinely meets with District Staff to track progress on the various management objectives and performance standards adopted in this management plan and, (b) on an annual basis; the General Manager prepares and submits an annual report documenting progress made towards implementation of the management plan to the Board of Directors for their review and approval. In addition, District Staff reviews District rules to ensure that all provisions necessary to implement the management plan are contained in the rules. Reviews of the rules are conducted annually and on an as needed basis. The District Board of Directors will make revisions to the rules as needed to manage and conserve groundwater resources within the District more effectively and to ensure that the duties prescribed in the Texas Water Code and other applicable laws are carried out. Amendments to District rules adopted on December 20, 2018, and this amended management plan are the direct result of this review process between the General Manager, District staff and the District Board of Directors. A copy of this management plan and the District's rules may be found on the District website at www.pgcd.us.

SECTION 4.2 GOAL 1 ADDRESS THE DESIRED FUTURE CONDITIONS ADOPTED BY THE PANHANDLE GCD

The main purpose of a management plan is to develop goals, management objectives, and performance standards that, when successfully implemented, will work together to achieve the adopted DFCs. Goals 2 through 10 directly and/or indirectly support Goal 1. DFCs adopted for the Ogallala and Dockum aquifers by GMA 1 on August 26, 2021, and by the Panhandle GCD Board of Directors on May 11, 2023, for the District are described below (note, the Blaine Aquifer in Wheeler County is now classified by GMA 1 as non-relevant for joint planning). A 50-year planning horizon was used in setting the DFCs. Throughout the joint planning process, the District actively worked with the other District Representatives and stakeholders within GMA 1 to determine the DFCs for each relevant aquifer located within each district.

Subsection 4.2.1 Ogallala Aquifer DFC

The primary water resource in the District is the Ogallala Aquifer, which is a finite resource and must be managed and conserved for the benefit of future generations. The DFC for the Ogallala Aquifer within the boundaries of the District is to have at least 50 percent of the volume in storage (as discussed above, volume is equivalent to saturated thickness) remaining in each 50-year period from 2018 through 2080 (50/50 DFC). As discussed above, for the District, the 50/50 DFC (goal) is synonymous and interchangeable with the 50/50 Management Standard. Successful attainment of the 50/50 DFC is accomplished using the District's integrated programs focused on conservation, education, regulation, and permitting which are designed to achieve this umbrella goal. Texas Water Code Section 36.1132(a) states that "a district, to the extent possible, shall issue permits up to the point that the total volume of exempt and permitted groundwater production will achieve an applicable desired future condition under Section 36.108." The District's permitting program has been designed in order to achieve this DFC.

The requirement for inclusion of estimates of modeled available groundwater in the management plan is a requirement resulting from the passage of Senate Bill 660 by the 82nd Texas Legislature in 2011. The term "modeled available groundwater" is defined in Texas Water Code Section 36.001(a)(25) as "the amount of water that the executive administrator determines may be produced on an average annual basis to achieve a desired future condition..." This change in terms is included to clarify that the estimates presented in Table 1 represent both exempt and permitted groundwater production. Estimates of modeled available groundwater for the Ogallala Aquifer within the District, based on the updated High Plains Aquifer System Groundwater Availability Model (Deeds and Jigmond, 2015)² and Deeds (2016)³ and further analyses by Anaya (2023)⁴ are presented in Table 1 on the next page.

² Deeds, N. E., and Jigmond, M., 2015, Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model, 640 p.,http://www.twdb.texas.gov/groundwater/models/gam/hpas/HPAS_GAM_Num erical_Report.pdf.

³ Deeds, N. E., 2016, Delivery of GMA 1 Predictive Runs: Draft Technical Memorandum prepared for North Plains Groundwater Conservation District and Groundwater Management Area 1 for submission to Texas Water Development Board as part of Desired Future Conditions Submission Package, 18 p.:

⁴ Anaya, R., 2023, GAM RUN 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1: Texas Water Development Board, 11 pg.

Panhandle Groundwater Conservation District Management Plan 2023

Ogaliala							
County	2020	2030	2040	2050	2060	2070	2080
Armstrong	56,940	51,726	45,757	40,241	35,089	30,685	27,137
Carson	163,315	166,024	159,756	149,768	141,251	134,365	121,774
Donley	72,747	78,267	77,157	72,601	67,032	60,915	53,337
Gray	177,633	181,648	173,602	160,382	147,045	133,802	121,936
Hutchinson	8,524	10,589	11,798	11,784	11,427	10,775	9,606
Potter	24,022	22,245	19,590	16,477	13,607	10,990	8,821
Roberts	358,704	409,300	394,930	369,335	344,109	317,529	286,594
Wheeler	119,602	132,615	132,787	128,472	121,852	114,269	106,929
District Total	981,487	1,052,414	1,015,377	949,060	881,412	813,330	736,134

Table 1- Estimates of Modeled Available Groundwater for the Ogallala Aquifer in the District
(Anaya, 2023) ⁴ .

4.2.1.1 Management Objective 1.1

The cornerstone of the many programs and activities of the District is the 50/50 Management Standard which drives its Rules and this Management Plan. The 50/50 Management Standard states that 50 percent of the current volume within the Ogallala Aquifer will remain in 50 years. This 50/50 Management Standard is the tool by which the District will ensure that it meets or exceeds the 50/50 DFC outlined in Rule 1, 3, and 4, which states the maximum allowable volume of pumping from the Ogallala Aquifer is 1-acre foot per acre per year. In order to ensure that the 50/50 Management Standard is being met, the District goes through an annual review process to identify and act upon Contiguous Acreage Tracts exceeding the maximum allowable volume of pumping from the Ogallala Aquifer utilizing flow meter data. Management Objective 1.1 is for the District to successfully undergo and complete the annual flow meter data evaluation and review process for each Contiguous Acreage Tract each year by December 1st of the year following the year for which pumping data is collected. The results of this process will be published in the District's Annual Report which, upon approval by the District Board of Directors, will be published on the District's website.

The District also conducts a systematic winter water level program so as to collect data necessary to evaluate achievement of the District's Desired Future Conditions. Results from the District's winter water level monitoring program are presented to the Board of Directors on an annual basis and published in the District's newsletter.

In order to complete Management Objective 1.1, the following Performance Standards will be met. Actions by the District Board of Directors that may result from this review include the enforcement actions stipulated in Rule 3.3, as required.

4.2.1.1.1 Performance Standards

1.1a Based on flow meter readings, quantify all permitted pumping volumes annually for individual Contiguous Acreage Tracts and report results to the Board of Directors in the Annual Report by December 1st of each year.

1.1b Evaluate all Ogallala Aquifer water level measurements collected during the District's annual winter water level monitoring program. This information will be provided to the District Board of Directors at a regularly scheduled meeting by August 31st of each year.

1.1c The District will conduct a Sunset Review of the maximum allowable volume of production contained in Rule 4.2. This review will be concluded no later than January 1, 2025, and the maximum allowable production volume will then be reviewed every 5 years thereafter. Using annual production data, the Board will evaluate the effect of Rule 4.2 on the ability to achieve the District's Desired Future Conditions.

4.2.1.2 Management Objective 1.2

The District maintains an integrated geodatabase system based on the District's Observation Well Network and computer mapping programs to annually track and evaluate current supplies by a baseline (1998) Ogallala Aquifer saturated thickness dataset in the District. This analysis is utilized to track and review changes in water supplies.

4.2.1.2.1 Performance Standards

1.2a Update and publish at least once every five years, beginning in 2020, on the District's website the latest updated Ogallala Aquifer saturated thickness map.

Subsection 4.2.2 Dockum Aquifer DFC

The Dockum Aquifer is classified by the TWDB as a minor aquifer that is present primarily in the western portions of the District and is generally under confined (artesian) conditions. Based on our current understanding of water resources in the Dockum Aquifer, DFCs have been adopted for Armstrong, Carson, and Potter counties within the District. Due to the predominantly confined nature of the Dockum Aquifer, a different approach was taken in adopting DFCs for the Dockum Aquifer. The DFCs adopted for the Dockum Aquifer in GMA 1 are that the average decline in water levels will be no more than 30 feet within the District in each 50-year period from 2018 to 2080. The maximum allowable volume of pumping from the Dockum Aquifer is 1-acre foot per acre per year.

The estimates of modeled available groundwater for the Dockum Aquifer were extracted from predictive simulations performed for GMA 1 using the updated High Plains Aquifer System.

Groundwater Availability Model (Deeds and Jigmond, 2015)⁵ and Deeds $(2016)^6$ and further analyses by Anaya $(2023)^7$ are presented in below.

Table 2 - Estimates of Modeled Available Groundwater for the Dockum Aquifer in the District
(Anaya (2023) ⁸ .

Dockum							
County	2020	2030	2040	2050	2060	2070	2080
Armstrong	5,313	7,102	8,122	8,601	8,849	8,904	8,914
Carson	6	6	6	6	6	6	6
Potter	30,160	37,699	37,853	36,963	35,881	34,685	33,571
District Total	35,479	44,807	45,981	45,570	44,736	43,595	42,491

4.2.2.1 Management Objective 1.3

While there are tens of thousands of data points collected over time relative to the Ogallala Aquifer, the opposite is the case for the Dockum Aquifer. This can primarily be attributed to dominance of the Ogallala Aquifer in the region and the general prevalence of poor water quality and yields from the Dockum Aquifer. Due to declining water levels in the Ogallala Aquifer, there are areas where the Dockum Aquifer is becoming a more important water resource. There are localized areas of good water quality and where technological advances are being made using brackish groundwater desalination.

Due to the scarcity of data regarding the Dockum Aquifer, the District is primarily focused on data collection and trend analysis on wells completed in the Dockum Aquifer currently included in the District's Observation Well Network. This management objective is to monitor and report on Dockum Aquifer wells in the District's Observation Well Network that are experiencing declines for which the trend is in excess of the DFC of 30 feet.

⁵ Deeds, N. E., and Jigmond, M., 2015, Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model, 640 p.,http://www.twdb.texas.gov/groundwater/models/gam/hpas/HPAS_GAM_Num erical_Report.pdf.

⁶ Deeds, N. E., 2016, Delivery of GMA 1 Predictive Runs: Draft Technical Memorandum prepared for North Plains Groundwater Conservation District and Groundwater Management Area 1 for submission to Texas Water Development Board as part of Desired Future Conditions Submission Package, 18 p.:

⁷ Anaya, R., 2023, GAM RUN 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1: Texas Water Development Board, 13 pg. ⁸ *Id.*

4.2.2.1.1 *Performance Standard*

1.3a Results from data collection and trend analysis will be presented to the Board of Directors during the annual review of depletion in the District by August 31st of each year.

SECTION 4.3 GOAL 2 PROVIDING FOR THE MOST EFFICIENT USE OF GROUNDWATER

Throughout its history, the District has operated on the core principle (or goal) that groundwater should be used as efficiently as possible for beneficial purposes. In order to achieve this goal, the District maintains a qualified staff to assist water users in protecting, managing, and conserving groundwater resources. The Board of Directors has in the past and continues today to base its decisions on the best data available to treat all water users as equitably as possible. Once data is collected, the District utilizes a wide variety of forums to provide important information to water users throughout the District's Observation Well Network will continuously be reviewed and maintained in order to monitor changing storage conditions of groundwater supplies within the District. The District will continue to undertake and cooperate with technical investigations of groundwater resources within the District. The following management objectives and performance standards have been developed and adopted to collect needed information, disseminate information, and provide opportunities through the District's Agricultural Water Conservation Equipment Loan Program to ensure the efficient use of groundwater.

4.3.1.1 Management Objective 2.1

The Observation Well Network, with approximately 850 water wells located throughout the District is continuously maintained and monitored. Wells in the Observation Well Network produce groundwater from the Ogallala Aquifer, the Dockum Aquifer, and also other minor aquifers in the area. Water levels are measured by District staff in as many wells as possible, with the management objective being to measure water levels in at least 90 percent of the wells in the Observation Well Network each year. This data is then processed for quality assurance/quality control, entered into the District's geodatabase, analyzed, mapped, and used to make decline calculations and update historic trend lines (hydrographs).

Water level measurements from wells in the District's Observation Well Network are used to generate annual decline maps. The District will strive to install additional monitoring wells in locations when necessary in order to evaluate the effects of high-impact pumping operations as necessary.

4.3.1.1.1 *Performance Standard*

2.1a Measure water levels in at least 90 percent of the operational water wells in the District's Observation Well Network annually by April 1st.

2.1b Using water level measurements collected from November to April from wells in the Observation Well Network, prepare an annual decline map based on changes in water levels observed in the last 12 months by July 31st and publish in next available District newsletter, Panhandle Water News (PWN).

2.1c Using water level measurements collected each year from wells in the Observation Well Network and historical information from the District's geodatabase, prepare an Ogallala Aquifer water table decline map for use in the Internal Revenue Service (IRS) annual depletion program. Provide results of IRS Ogallala Aquifer allowable depletion levels to participating producers by January 31st of each year.

4.3.1.2 Management Objective 2.2

The District encourages efficient groundwater use by continued promotion of low pressure and other efficient sprinkler systems, drip irrigation systems, and other recognized water conservation measures, which will decrease the utilization of less efficient row irrigation techniques. This will be accomplished by increasing the use of the District's Agricultural Water Conservation Equipment Loan Program, as long as TWDB Agricultural Loan Program funds are available and economically competitive. The District will enhance awareness of the loan program by utilizing local newspapers and the PWN. The District website will have information on availability of funds and guidelines for applicants. The District will strive to provide timely responses to loan applicants.

4.3.1.2.1 Performance Standard

2.2a The District will include a reminder about the District's Agricultural Water Conservation Equipment Loan Program at least bi-annually in the PWN, as long as funds are available at competitive rates.

2.2b District staff strives to complete the District review process for all loan applications and prepare for Board of Director consideration within 60 days of receipt of administratively complete loan applications.

4.3.1.3 Management Objective 2.3

The District encourages the efficient use of groundwater by disseminating educational information regarding current best management practices and trends in water conservation for agricultural, municipal, and industrial applications. The District publishes a newsletter quarterly that contains resources for water users interested in water conservation. In addition, the District also attends and participates in public events throughout the District including the annual Amarillo Farm and Ranch Show as often as possible.

4.3.1.3.1 *Performance Standard*

2.3a The District will publish Panhandle Water News (PWN) on a quarterly basis.

2.3b Each year the District will participate in the Amarillo Farm and Ranch Show, when held.

4.3.1.4 Management Objective 2.4

In order to ensure that the Board of Directors and District constituents are aware of and informed on the most current information on water conservation, groundwater management, and emerging policy issues related to groundwater resources, District staff actively participate in a broad grouping of professional associations that focus on water resource issues. District staff will report at the next available regularly scheduled Board of Directors meeting in the General Manager's Report on any activities resulting from participation with the following active affiliations:

- Texas Alliance of Groundwater Districts (TAGD)
- Texas Water Conservation Association (TWCA), and,
- Groundwater Management Districts Association (GMDA).

4.3.1.4.1 Performance Standard

2.4a District staff will attend and participate in 75 percent of the cumulative number of regularly scheduled TAGD, TWCA and GMDA general meetings and report on noteworthy presentations and issues from these meetings at the next available regularly scheduled Board of Directors meeting in the General Manager's Report.

4.3.1.5 Management Objective 2.5

The District has adopted rules that require an approved metering method on all wells producing more than 35 gallons per minute. The District believes that when a water user understands the volume of groundwater being used, they are better able to adopt best management practices that result in the efficient use of groundwater. Therefore, the District is committed to continuing the program focused on requiring a metering method for wells pumping more than 35 gallons per minute, flow meter monitoring, and data collection and analysis of water use by crop and irrigation type. To achieve this objective the District will read and record meter data from installed, registered, and accessible, meters in the District annually. The information from the District's metering program will be published in the District's Annual Report. Additionally, the District will provide water-users with meter data production reports. Finally, the Board will consider meter data with respect to individual Contiguous Acreage Tracts in order to document compliance with the District maximum allowable production rate.

4.3.1.5.1 *Performance Standard*

2.5a Read and record meter data for 90 percent of approved metering methods at least annually.

2.5b Based on data from the approved metering methods, Production Reports will be generated and sent to water-users by September 1st annually starting in 2020.

2.5c Review and prepare revised estimates to TWDB annual draft agricultural water use estimates based on District meter data and other relevant information and submit to designated TWDB staff within the timeframe requested.

SECTION 4.4 GOAL 3 CONTROLLING AND PREVENTING WASTE OF GROUNDWATER.

Another core principle adopted by the District since its inception in order to conserve groundwater resources of the region is by controlling and preventing the waste of groundwater. The following management objectives and performance standards have been developed and adopted as an integral component of the District's umbrella goal to achieve the 50/50 Management Standard.

4.4.1.1 Management Objective 3.1

The District is continuously working to take positive and prompt action to identify and address all reported wasteful practices and instances of waste located by District staff within the District. This effort involves the following actions to be taken by the District.

- Report each complaint to the landowner and/or operator within five working days.
- Resolve the complaint and note the corrective action taken.

• Report resolution of each complaint to the landowner/operator and to the Board at the next regularly scheduled meeting during the General Manager's Report.

4.4.1.1.1 *Performance Standards*

3.1a All notices or complaints will be recorded, investigated and reported to the landowner/operator within five working days.

3.1b Report each complaint and staff resolution to the Board of Directors at the next regularly scheduled meeting.

SECTION 4.5 GOAL 4 IMPLEMENT STRATEGIES TO ADDRESS DROUGHT CONDITIONS

In order to address drought conditions, the District has implemented a number of programs that are designed to positively support constituents in the District when drought conditions exist. While one of these efforts is described below in Management Objectives 4.1, others are documented elsewhere in the management plan. For example, the District operates a state-permitted precipitation enhancement program, described below in Goal 8.

4.5.1.1 Management Objective 4.1

In order to provide ongoing information regarding water conditions in the District, establish and maintain links to National Oceanic and Atmospheric Administration Drought Monitor indices are on the District website.

4.5.1.1.1 *Performance Standard*

4.1a Annually, the District will update links to the National Oceanic and Atmospheric Administration Drought Monitor indices are available for use on the District's website.

SECTION 4.6 GOAL 5 IMPLEMENT STRATEGIES TO ADDRESS CONJUNCTIVE SURFACE WATER MANAGEMENT ISSUES

The Canadian River Municipal Water Authority (CRMWA) supplements member city allocations of groundwater with supplies from Lake Meredith. The CRMWA system is the largest conjunctive use water provider in the State of Texas, providing a combination of groundwater and surface water to 11 member cities. All current CRMWA groundwater supplies are produced within the boundaries of the District.

The Greenbelt Water Authority (GWA) is the second surface water user with supplies inside the boundaries of the District. GWA is now also utilizing groundwater resources from the Ogallala Aquifer. The District will communicate with regards to rules and technical data as it applies to conjunctive use within the District.

4.6.1.1 Management Objective 5.1

In order to continually monitor the impact of declining surface-water availability on groundwater resources within the District, the General Manager or designee will participate in the Panhandle Water Planning Group (PWPG) with the two surface-water entities currently operating within the District. This activity helps facilitate regular communication and cooperation with regards to conjunctive use issues in the District.

4.6.1.1.1 *Performance Standard*

5.1a The District General Manger or designee will participate in at least 75 percent of the regularly scheduled PWPG meetings and activities throughout the current regional water planning cycle (2019 - 2024).

SECTION 4.7 GOAL 6 IMPLEMENT STRATEGIES THAT WILL ADDRESS NATURAL RESOURCE ISSUES

As part of the umbrella goal of achieving the adopted DFCs, the District recognizes that the protection of water quality is equally as important as working to ensure adequate water quantity. In order to protect the District's most important natural resource, the abundant, high quality groundwater resources, the District has for many years maintained and operated a water quality sampling program sampling different areas each summer which yields a complete set of data biennially.

4.7.1.1 Management objective 6.1

In order to control and prevent the contamination of groundwater, the District maintains and works to expand the groundwater quality monitoring. As part of this effort, an annual sampling program will be conducted within the District's Water Quality Network. The objective will be to sample at least 80 percent of the wells in the District's Water Quality Network on a biennial basis. Also, upon request the District will conduct analysis of water within current District sampling capabilities, including sites near oil and gas industry injection well sites.

4.7.1.1.1 Performance Standards

6.1a Sample 80 percent of the wells in the District's Water Quality Network on a biennial basis and report program status to the Board of Directors each year.

6.1b Record all water quality measurement data in the District's water quality database within 30 days of sampling.

SECTION 4.8 GOAL 7 IMPROVE OPERATING EFFICIENCY AND CUSTOMER SERVICE

4.8.1.1 Management Objective 7.1

Customer service is of great importance to the Board of Directors and Staff of the District. As detailed in the corresponding performance standards, the District will continue to provide timely response to customer assistance requests in the following areas:

- Pump flow tests.
- Processing of well drilling permits.
- Review and revision of District Rules, as necessary, to incorporate revisions required by new legislation and as necessary to achieve adopted Desired Future Conditions.
- Well camera recordings.

4.8.1.1.1 *Performance Standard*

7.1a Provide requested flow tests annually within five working days of the landowners requested date and report to the Board in the Annual Report.

7.1b General Manager's action on administrative completeness of well drilling permits taken and permit returned to customer within 10 working days of approval.

7.1c Provide the well camera service within five working days of request or the landowners requested date and return the information to the well operator within five working days, and archive a copy of the DVD into the District library and report to the Board in the Annual Report.

SECTION 4.9 GOAL 8 ADDRESSING PRECIPITATION ENHANCEMENT

Texas Water Code Section 36.1071(a)(7) requires groundwater conservation districts to include in the management plan a goal addressing precipitation enhancement. The District has one of the longest continuous precipitation enhancement programs in the Texas.

4.9.1.1 Management Objective 8.1

The District will continue to operate its Precipitation Enhancement Program throughout the planning horizon of this management plan. The program will operate within budget. A rain gauge network will be maintained and monitored to confirm precipitation enhancement results. Flight records will be collected and archived.

The program will abide by Texas Department of Licensing and Regulation requirements for testing, monitoring, and reporting in order to ensure compliance with permit guidelines. Results of the District's Precipitation Enhancement Program will be presented to the Board of Directors and included in the Annual Report each year.

4.9.1.1.1 Performance Standard

8.1a Annually conduct the Precipitation Enhancement Program from April 1st to September 30th.

8.1b Calculate the baseline costs for Precipitation Enhancement Program each year.

8.1c Collect and record rain gauge readings at least once a quarter.

8.1d Annually maintain all flight records on all precipitation enhancement operations and make available for review upon request.

8.1e. Provide precipitation enhancement annual report to Texas Department of Licensing and Regulation.

4.9.1.2 Management Objective 8.2

Educate the public with regards to the benefits of the District's Precipitation Enhancement Program through informational articles in the PWN and local newspapers, public presentations, and program summaries in the District's Annual Report each year.

4.9.1.2.1 Performance Standard

8.2a Publish an article about the Precipitation Enhancement Program in at least 2 of the quarterly issues of PWN.

8.2b Provide at least one article about the Precipitation Enhancement Program to all local newspapers annually.

8.2c District staff will give at least two presentations annually to a public or civic group regarding the Precipitation Enhancement Program.

8.2d Complete the Program Summary Report and include in District's Annual Report each year.

SECTION 4.10 GOAL 9 ADDRESSING CONSERVATION

Texas Water Code Section 36.0015 states, in part, that, "In order to provide for the conservation, preservation, protection, recharging, and prevention of waste of groundwater....Groundwater conservation districts may be created...are the state's preferred method of groundwater management through rules developed, adopted, and promulgated by a district in accordance with the provisions of this chapter." It is noteworthy that in this overview section of Texas water law addressing groundwater management that "conservation" is the first action groundwater conservation districts are to pursue. The 50/50 Management Standard can only be achieved if our groundwater resources are conserved in a manner that ensures adequate water resources will be available for future generations. While water conservation is a fundamental component of many of the District's programs, the following represent management objectives most focused on water conservation.

4.10.1.1 Management Objective 9.1

Continue and expand, when possible, the District's Groundwater Conservation Education Program. District staff will make presentations on the importance of water conservation to at least 5 civic organizations and in at least 30 educational settings. Annually, the District will award at least three college scholarships to students in the District based on participation in a water conservation essay competition. The District will maintain an Internet information page and launch an aggressive conservation education initiative called "Water Warriors", as well as work with other entities to present an ongoing Panhandle area water conservation symposium.

4.10.1.1.1 Performance Standards

9.1a Annually make a minimum of five civic educational presentations.

9.1b Annually make 30 presentations in educational settings.

9.1c Annually provide at least three scholarships to students residing within the District that have participated in the District's water conservation essay competition.

9.1d Continue Water Warrior Program as part of aggressive public relations and education campaign encouraging all users to make water conservation a high priority in at least three public presentations outside of school settings.

SECTION 4.11 GOAL 10 RAINWATER HARVESTING

Rainwater harvesting is becoming an increasingly important strategy for meeting water supply needs, especially in the more rural areas of Texas. While rainwater harvesting is one of the many topics included in the District's water conservation education programs, the following management objective and performance standards are specifically focused on rainwater harvesting.

4.11.1.1 Management Objective 10.1

The District has established and maintains a rainwater harvesting system and provides educational tours to the public regarding the many benefits of the system. Tours of the District office rainwater harvesting system are provided upon request. A link to an informational page highlighting the rainwater harvesting system will be maintained and updated as necessary on the District's website. In addition, a link to the TWDB website on rainwater harvesting will also be maintained on the District's website.

4.11.1.1.1 Performance Standard

10.1a Webpage highlighting the District's rainwater harvesting system along with information regarding availability of tours to the public is maintained and updated as necessary.

10.1b Link to the TWDB Rainwater Harvesting webpage is maintained on the District's webpage.

CHAPTER 5 GOALS DETERMINED NOT-APPLICABLE

SECTION 5.1 GOAL 11 RECHARGE ENHANCEMENT

The District has been a long-standing participant and supporter of recharge enhancement efforts, primarily in partnership with the Texas Water Development Board. However, lack of financial support from the Texas Legislature for this program has resulted in the suspension of this program on an indefinite basis. Due to the scale and nature of a recharge enhancement program and lack of participating support from either state or federal partners, the District has determined that a program addressing recharge enhancement by the District is not feasible at this time

SECTION 5.2 GOAL 12 CONTROL AND PREVENTION OF SUBSIDENCE

Although Furnans and others (2017)⁹ classified the Ogallala Aquifer in the High Plains as having a high subsidence risk, and the Dockum Aquifer as having medium subsidence risk potential, the absence of any measured subsidence in the District over the extensive historical period of pumping and he geologic framework and unconfined nature of the Ogallala Aquifer in the region led to the District's determination that the risk of significant subsidence from occurring due to groundwater pumping is not sufficient to warrant the adoption of a goal, management objective, or performance standard to meet a subsidence goal.

⁹ Furnans, J., Keester, M., Colvin, D., Bauer, J., Barber, J., Gin, G. Danielson, V., Erickson, L., Ryan, R., Khorzad, K., Worsley, A., Snyder, G., 2017, Final Report: Identification of the Vulnerability of the Major and Minor Aquifers of Texas to Subsidence with Regard to Groundwater Pumping TWDB Contract Number 1648302062, 434 pg.

SECTION 5.3 GOAL 13 BRUSH CONTROL

The Canadian River Municipal Water Authority has a large brush control project along the Canadian River in the District, and the District encourages that action, but the District has determined that a program addressing brush control by the District is not feasible at this time.

CHAPTER 6 POPULATION, WATER USE, AND WATER DEMANDS

Primary activities involved in the development of a water resources management plan include the analysis and development of projections of population, historical and current water use, and projections of water demands in the future (for a defined period of time). In order to develop projections for how much water supply we will need in the future, three questions must be answered: (1) how many people are there now and how much water has been used in the recent past, (2) how many people will there be in the future (population projections), and (3) how much water will be required to meet the needs of the projected population and other water use sectors in the future. These analyses to develop water demand projections are primarily conducted in Texas as part of the regional water supply planning process (created by the 75th Texas Legislature through the passage of Senate Bill 1 in 1997). Water demand projections are developed for the following water user categories; municipal, rural (countyother), irrigation, livestock, manufacturing, mining, and steam-electric power generation. These three tasks are then followed by the evaluation of current water supplies, comparison of water demands to water supplies in order to determine needs for additional water supplies, and finally the identification, evaluation, and selection of water management strategies to meet any water supply needs that identified. This section addresses population projections, water use, and water demands.

Based on information developed for the 2017 Texas State Water Plan, population projections for the District range from 170,045 in 2020 to 264,700 in 2070. This represents a 56 percent increase in population over the 50-year planning horizon. (Table 3, Figure 2).

County	2020	2030	2040	2050	2060	2070		
Armstrong	1,911	1,911	1,911	1,911	1,911	1,911		
Armstrong - District *	1,764	1,764	1,764	1,764	1,764	1,764		
Carson	6,354	6,520	6,632	6,632	6,632	6,632		
Donley	3,788	3,788	3,788	3,788	3,788	3,788		
Gray	24,439	27,046	30,168	34,186	37,388	40,730		
Hutchinson	22,957	23,779	23,990	23,990	23,990	23,990		
Hutchinson - District **	987	1,022	1,032	1,032	1,032	1,032		
Potter	134,031	148,960	164,757	180,486	197,638	215,701		
Potter - District ***	126,123	140,171	155,036	169,837	185,977	202,975		
Roberts	1,003	1,047	1,047	1,047	1,047	1,047		
Wheeler	5,587	5,809	6,019	6,239	6,478	6,733		
Total	170,045	187,168	205,486	224,525	244,106	264,700		
* - county total multiplied	by apportioning	factor (land ar	ea of District in	county/land ar	ea of county) o	f 0.923.		
** - county total multiplied	by apportionin	g factor (land a	rea of District i	n county/land a	rea of county) (of 0.043.		
*** - county total multiplied by apportioning factor (land area of District in county/land area of county) of 0.941.								
District total represents the sum of population projections for Carson, Donley, Gray, Roberts, and Wheeler counties and the proportional population estimate based on the proportional amount of area in the county that is within the boundaries for counties partially within the jurisdictional boundaries of the District.								

Table 3 - Decadal population projections for Panhandle GCD included in the 2017 Texas State Water Plan^{10}

¹⁰ Texas Water Development Board, 2017, Water for Texas, Texas State Water Plan, variously paginated.

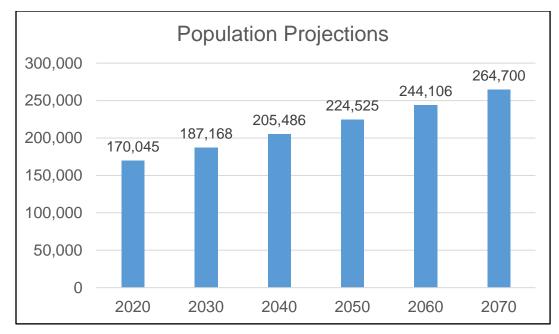


Figure 2 – Decadal population projections for Panhandle GCD included in the 2017 Texas State Water Plan.¹¹

¹¹ Texas Water Development Board, 2017, Water for Texas, Texas State Water Plan, variously paginated

The next important component in planning for and management of water resources is an understanding of water use. The methods used to estimate groundwater use in the District have changed and improved over time, so that flow meters are now available and being used throughout the District to improve estimates of groundwater use. Groundwater use in the District for the six major water use sectors in 2016 (most currently available year) is estimated to be approximately 250,057 acre-feet (see Table 4 and

Figure 3 – Groundwater use in the District by water use sector (as defined in regional water planning) in 2016. Groundwater use estimates from Texas Water Development Board.)¹². In 2016, irrigation continued to be the largest water use sector, representing 85.2 percent of the total groundwater pumpage. Historic estimates of both groundwater and surface water use from 2000 - 2016 are included in Appendix 4. Throughout the period of record, groundwater for irrigated agriculture in the District has been the largest use of groundwater from the Ogallala Aquifer.

Panhandle Groundwater Conservation District Management Plan 2023

¹² Allen, S., 2019, Estimated Historical Groundwater Use and 2017 State Water Plan Datasets: Panhandle Groundwater Conservation District: Texas Water Development Board Technical Report, 29 pg.

County	Municipal	Manufacturing	Mining	Steam Electric Power	Irrigation	Livestock	Total
Armstrong	305	0	0	0	6,292	243	6,840
Carson	834	987	0	0	104,042	314	106,177
Donley	78	0	0	0	29,946	692	30,716
Gray	736	264	0	0	41,766	1,584	44,350
Hutchinson	258	415	4	0	2,722	12	3,411
Potter	19,906	6,173	84	811	1,438	383	28,795
Roberts	170	0	16	0	9,545	300	10,031
Wheeler	1,389	0	90	0	17,381	877	19,737
District Total	23,676	7,839	194	811	213,132	4,405	250,057

Table 4 - Water use estimates for the District in 2016¹³. (In acre-feet per year)

Note - water use estimates for Armstrong, Hutchinson, and Potter counties are proportional to the area of the county within the District. Also, these water use estimates are for water use within the county, and not for water pumped within the county and transported outside of a county for use elsewhere. District total represents the sum of water use estimates for Carson, Donley, Gray, Roberts, and Wheeler counties and the proportional water use estimate based on the proportional amount of area in the county that is within the boundaries for counties partially within the jurisdictional boundaries of the District.

¹³ Allen, S., 2019, Estimated Historical Groundwater Use and 2017 State Water Plan Datasets: Panhandle Groundwater Conservation District: Texas Water Development Board Technical Report, 29 pg.

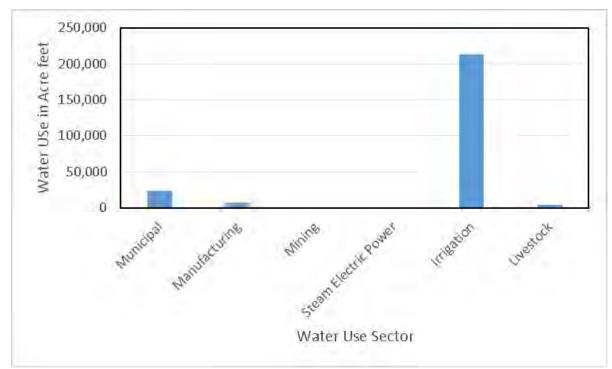


Figure 3 – Groundwater use in the District by water use sector (as defined in regional water planning) in 2016. Groundwater use estimates from Texas Water Development Board. (In acrefeet per year)¹⁴

The next step in the planning process is the development of water demand projections for the various water use sectors and water user groups over the course of the 50-year planning horizon. Water demand projections are updated for the regional water planning process every five years and are based on changes in population trends including information from the most recent U.S. Census, water use patterns, and changes in technology (for example, anticipated savings from drought tolerant crops in the future). Appendix 4 provides water demand projections for the six water use categories throughout the 50-year planning horizon and Table 5 along with Figure 4 provides summary information on water demands by county in the District. Water demands decrease from 218,939 acre-feet per year in 2020 to 200,513 acre-feet per year in 2070, representing an 8.4 percent decrease in water demands over the 50-year planning horizon.

¹⁴ Allen, S., 2019, Estimated Historical Groundwater Use and 2017 State Water Plan Datasets: Panhandle Groundwater Conservation District: Texas Water Development Board Technical Report, 29 pg.

County	2020	2030	2040	2050	2060	2070
Armstrong*	4,910	4,716	4,453	4,073	3,695	3,317
Carson	58,106	55,294	51,273	45,880	40,508	35,140
Donley	26,033	25,141	23,771	21,338	18,912	16,486
Gray	33,086	33,051	32,205	31,540	30,024	28,652
Hutchinson **	7,664	7,697	7,598	7,474	7,389	7,320
Potter ***	66,843	71,545	76,613	81,549	89,596	97,437
Roberts	8,102	7,295	6,408	5,413	4,672	4,083
Wheeler	14,195	13,156	11,711	10,014	8,872	8,078
District Total	218,939	217,895	214,032	207,281	203,668	200,513

Table 5 - Cumulative water demand projections for Panhandle GCD included in the 2017Texas State Water Plan¹⁵. (In acre-feet per year)

* County total multiplied by apportioning factor (land area of district in county/land area of county) of 0.9236

** county total multiplied by apportioning factor (land area of district in county/land area of county) of 0.0424

*** County total multiplied by apportioning factor (land area of district in county/land area of county) of 0.9412

District total represents the sum of water demand projections for Carson, Donley, Gray, Roberts, and Wheeler counties and the proportional water demand estimate based on the proportional amount of area in the county that is within the boundaries for counties partially within the jurisdictional boundaries of the District.

¹⁵ Allen, S., 2019, Estimated Historical Groundwater Use and 2017 State Water Plan Datasets: Panhandle Groundwater Conservation District: Texas Water Development Board Technical Report, 29 pg.

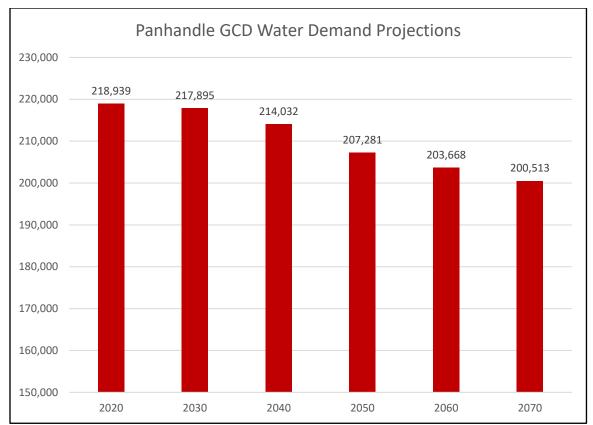


Figure 4 – Cumulative water demand projections for Panhandle GCD for the 50-year planning horizon approved by the Texas Water Development Board for the 2017 Texas State Water Plan. (In acre-feet per year)

CHAPTER 7 GROUNDWATER RESOURCES

The District has invested significant time and resources in an effort to improve the science and understanding of groundwater resources in the Panhandle of Texas. Most significantly, the District participated in the most recent update of the High Plains Aquifer System Groundwater Availability Model (High Plains GAM) approved by the Texas Water Development Board in 2015. This effort culminated in the publication of the High Plains GAM Report by Deeds and Jigmond (2015).¹⁶ The District worked with the Texas Water Development Board during this effort to update the High Plains GAM through financial support, provision of meter data and new well logs, and technical reviews on draft reports. This updated planning and water resources evaluation tool has made significant improvements to the science available to the Board of Directors and Staff at the District, especially with regards to improved historic and current pumping estimates, hydrostratigraphy, and aquifer properties. The updated High

¹⁶ Deeds, N. E., and Jigmond, M., 2015, Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model, 640 p., http://www.twdb.texas.gov/groundwater/models/gam/hpas/HPAS_GAM_Num erical_Report.pdf.

Plains GAM was most recently used by District Representatives in Groundwater Management Area 1 to evaluate potential predictive simulation scenarios and to establish estimates of modeled available groundwater resulting from the adoption of the 50/50 Management Standard and the 30-foot decline in the Dockum Aquifer.

The Ogallala Aquifer is the primary aquifer within the District and is located in sediments of the Ogallala Formation of Neogene (Pliocene) Period. The Ogallala Aquifer yields water from the mostly unconsolidated gravels, sands, silts, and clays of the Ogallala Formation. Groundwater movement is generally to the northeast, away from groundwater and topographic highs and towards the surface drainage system of the Canadian River basin (Figure 5). There are areas where flow is toward groundwater lows that have developed as a result of production in large well fields. Areas where irrigation wells are co-located with municipal well fields have experienced significant water table declines. Other irrigated areas have demonstrated varying water level declines.

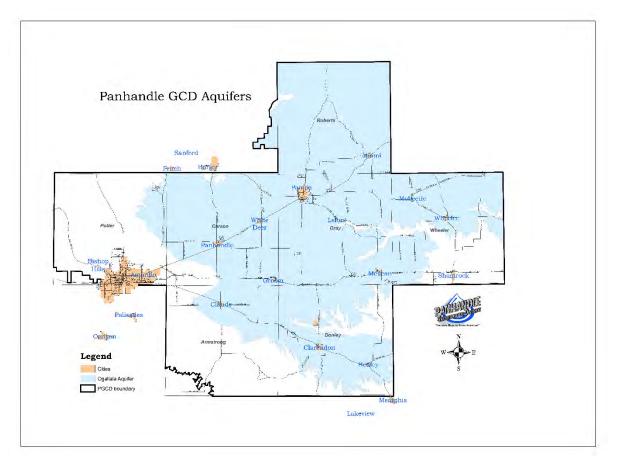


Figure 5 – Map illustrating the areal extent of the Ogallala Aquifer in the District.

In addition to the Ogallala Aquifer, there are three minor aquifers within the District. The Dockum Aquifer furnishes limited amounts of household, livestock and irrigation water within the District. The Dockum Aquifer is present in Triassic age shales, sandstones and siltstones where it is found within the District. Water production from the Dockum Aquifer occurs in Armstrong, Potter and southwest Carson counties (Figure 6).

Figure 6 – Map illustrating the areal extent of the Dockum Aquifer in the District.

The Blaine Aquifer is a minor aquifer located in the southern portion of Wheeler County (Figure 7). For the purposes of joint planning, District Representatives classified the Blaine Aquifer as non-relevant. As such, no goals, management objectives, or performance standards are adopted in this management plan for the Blaine Aquifer. The aquifer is contained in the Permian age Blaine Formation. The water is found in solution channels formed by dissolving deposits of anhydrite and halite within the formation. The dissolving salts raise the total dissolved solids to levels above drinking water standards, so the Blaine Aquifer is used mainly for agricultural purposes.

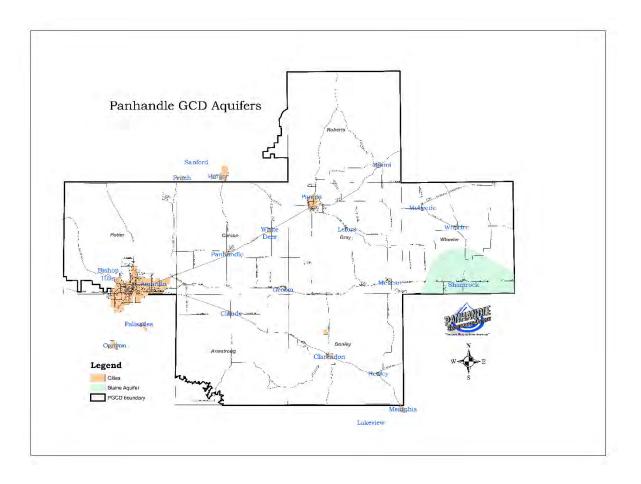


Figure 7 – Map illustrating the areal extent of the Blaine Aquifer in the District.

Texas Water Code Section 36.1071 requires groundwater conservation districts to consider and utilize information from the current groundwater availability model and site-specific information during development of the management plan. As part of this requirement, groundwater conservation districts are to consider estimates of (1) the annual amount of recharge from precipitation to the groundwater resources within the district, if any;(2) for each aquifer within the district, the annual volume of water that discharges from the aquifer to springs and any surface water bodies, including lakes, streams, and rivers; and (3) the annual volume of flow into and out of the district within each aquifer and between aquifers in the district. This information was provided by the Texas Water Development Board in Wade (2016)¹⁷ to the District for this management plan. The required estimates for the Ogallala, Dockum, and Blaine aquifers are included in Table 6, Table 7, and Table 8.

¹⁷ Wade, S., 2016, GAM RUN 16-001: Panhandle Groundwater Conservation District Management Plan, Texas Water Development Board, 15 p.

Table 6 – Estimates of recharge, discharge, flow into and out of the District and between each aquifer of the District for the Ogallala Aquifer.¹⁸ (In acre-feet per year)

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Ogallala Aquifer	113,864
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Ogallala Aquifer	129,654
Estimated annual volume of flow into the district within each aquifer in the district	Ogallala Aquifer	39,686
Estimated annual volume of flow out of the district within each aquifer in the district	Ogallala Aquifer	26,155
Estimated net annual volume of flow between each aquifer in the district	From the Ogallala Aquifer into Underlying units	2,663

Panhandle Groundwater Conservation District Management Plan 2023

¹⁸ Wade, S., 2016, GAM RUN 16-001: Panhandle Groundwater Conservation District Management Plan, Texas Water Development Board, 15 p.

Table 7 - Estimates of recharge, discharge, flow into and out of the District and between each aquifer of the District for the Dockum Aquifer. (In acre-feet per year)

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Dockum Aquifer	2,333
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Dockum Aquifer	7,937
Estimated annual volume of flow into the district within each aquifer in the district	Dockum Aquifer	4,111
Estimated annual volume of flow out of the district within each aquifer in the district	Dockum Aquifer	1,337
Estimated net annual volume of flow between each aquifer in the district	From overlying units into the Dockum Aquifer	2,663

Table 8 - Estimates of recharge, discharge, flow into and out of the District and between each aquifer of the District for the Blaine Aquifer. (In acre-feet per year)

Management Plan requirement	Aquifer or confining unit	Results
Estimated annual amount of recharge from precipitation to the district	Blaine Aquifer	3,702
Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers	Blaine Aquifer	5,165
Estimated annual volume of flow into the district within each aquifer in the district	Blaine Aquifer	0
Estimated annual volume of flow out of the district within each aquifer in the district	Blaine Aquifer	5,096
Estimated net annual volume of flow between each aquifer in the district	Blaine Aquifer	0*

*This model assumes a no-flow boundary at the base of the Blaine Aquifer.

Over the past century, there have been many hydrogeologic investigations focused on the Ogallala Aquifer and to a much lesser extent, the Dockum Aquifer. A detailed discussion of the hydrogeology of the District based on the published scientific literature is clearly beyond the scope of this management plan. For those interested in additional information, the following technical publications are recommended; Johnson (1901)¹⁹, White and others (1946)²⁰, Seni (1980)²¹, Knowles and others (1984)²², Gutentag and others (1984)²³, Bradley and Kalaswad (2003)²⁴, Dutton and Simpkins, (1986)²⁵, Dutton and others, (2001)²⁶, Dutton (2004)²⁷; Gustavson and others (1995)²⁸, Nativ (1988)²⁹, Wood and Osterkamp, (1987)³⁰; Wood and

¹⁹ Johnson, W. D., 1901, The High Plains and their utilization: U. S. Geological Survey 21st Annual Report, 1890-1900, pt. 4, p. 601-741.

²⁰ White, W. N., Broadhurst, W. L. and Lang, J. W., 1946, Ground water in the High Plains of Texas: T. S. Geological Survey Water-Supply Paper 889-F, p. 381-420.

²¹ Seni, S. J., 1980. Sand-body geometry and depositional systems, Ogallala Formation, Texas. The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 105, 36 p.

²² Knowles, T. R., Nordstrom, P., and Klempt, W. B., 1984, Evaluating the ground-water resources of the High Plains of Texas: Texas Department of Water Resources Report 288, v. 1, 119 p.

²³ Gutentag, E. D., Heimes, F. J., Krothe, N. C., Luckey, R. R., and Weeks, J. B., 1984, Geohydrology of the High Plains Aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming: U. S. Geological Survey Professional Paper 1400-B, 63 p.

²⁴ Bradley, R. G., and Kalaswad, S., 2003, The groundwater resources of the Dockum Aquifer in Texas: Texas Water Development Board Report 359, 73 p.

²⁵ Dutton, A.R., and Simpkins, W. W.,, 1986, Hydrochemistry and water resources of the Triassic Lower Dockum Group in the Texas Panhandle and Eastern New Mexico; of Economic Geology, The University of Texas at Austin, Report of Investigations No. 161, 51 p.

²⁶ Dutton, A. R., Reedy, R. C., and Mace, R. E., 2001, Saturated thickness in the Ogallala Aquifer in the Panhandle Water Planning Area—simulation of 2000 through 2050 withdrawal projections: Final Contract Report prepared for the Panhandle Water Planning Group, Panhandle Regional Planning Commission (contract number UTA01-462) by the Bureau of Economic Geology, The University of Texas at Austin, 130 p.

²⁷ Dutton, A. R., 2004, Adjustments of parameters to improve the calibration of the Og-N model of the Ogallala aquifer, Panhandle Water Planning Area: Bureau of Economic Geology, The University of Texas at Austin, 9 p.

²⁸ Gustavson, T. C. Holliday, V. T., and Hovorka, S. D., 1995, Origin and de4velopment of playa basins, sources of recharge to the Ogallala aquifer, Southern High Plains, Texas and New Mexico; The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 229, 44 p.

²⁹ Nativ, R., 1988, Hydrology and hydrochemistry of the Ogallala Aquifer, Southern High Plains, Texas Panhandle and Eastern New Mexico: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 177, 64 p.

³⁰ Wood, W. W., and Osterkamp, W. R., 1987, Playa-lake basins on the Southern High Plains of Texas and New Mexico: Part II, A hydraulic model and mass-balance argument for their development: Geological Society of America Bulletin, v. 99, no. 2, p. 224-230.

Sanford, $(1995)^{31}$; Mullican and others, $(1997)^{32}$; Scanlon and Goldsmith, $(1997)^{33}$, Scanlon and others $(1997)^{34}$, McMahon and others, $(2006)^{35}$, and Deeds and Jigmond, $(2015)^{36}$.

Primary sources of recharge to the Ogallala Aquifer are infiltration of water from playa lakes and infiltration of precipitation. Localized infiltration of water from playa lakes is the main recharge mechanism in the part of the District located "above the Caprock."

The District has determined that the most feasible method of increasing natural recharge is to increase rainfall by initiating a rainfall enhancement program. The objective of this program is to decrease irrigation demand and increase recharge in those areas where recharge takes place. Cloud seeding operations began in May 2000. The purpose of the cloud seeding program is to add additional rainfall over an extended period. One additional inch of rainfall could provide 2300 acre-feet of additional recharge within the District each year (PGCD, 2001)³⁷.

CHAPTER 8 SURFACE WATER RESOURCES

While groundwater clearly provides the vast majority of water supplies within the District, it is still important to consider surface water resources during the development of this management plan. Also, Texas Water Code §36.1071(e)(3)(F) requires the inclusion of estimates of projected surface water supplies in the District based on the most recently adopted Texas State Water Plan. These estimates summarized at the county level are presented below in Table 9 and increases slightly from 4,349 acre-feet per year in 2020 to 4,394 in 2070. (Readers note – estimates of groundwater resources as represented by estimates of modeled available groundwater (MAG), as determined based on the adopted desired future conditions, are included in Tables 1 and 2.

³¹ Wood, W. W., and Sanford, W.E., 1995. Chemical and isotopic methods for quantifying ground-water recharge in a regional semi-arid environment. Ground Water 33, 458-468.

³² Mullican, W. F., III. Johns, N. D., and Fryar, A. E., 1997, Playas and recharge of the Ogallala Aquifer on the Southern High Plains of Texas – An examination using numerical techniques; The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 242, 72 p.

³³ Scanlon, B.R., and Goldsmith, R.S., 1997. Field study of spatial variability in unsaturated flow beneath and adjacent to playas. Water Resources Research 33, 2239-2252.

³⁴ Scanlon, B. R., Goldsmith, R. S., and Mullican, W. F., III, 1997, Spatial variability in unsaturated flow beneath playa and adjacent interplay settings and implications for contaminant transport, Southern High Plains, Texas: The University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 243, 68 p.

³⁵ McMahon, P.B., Dennehy, K.F., Bruce, B.W., Bohlke, J.K., Michel, R.L., Gurdak, J.J., Hurlbut, D.B., 2006. Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States. Water Resources Research 42, Article No. 34013.

³⁶ Deeds, N. E., and Jigmond, M., 2015, Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model, 640 p., http://www.twdb.texas.gov/groundwater/models/gam/hpas/HPAS_GAM_Num erical_Report.pdf.

³⁷ Panhandle Groundwater Conservation District, 2001, Annual Evaluation Report on the District's Precipitation Enhancement Program, 15 p.

A detailed breakdown of the summary information provided in Table 9 is included in Appendix 4. The volume of surface water resources identified in the 2017 Texas State Water Plan that is available to the District was reduced significantly from the 2012 Texas State Water Plan (for example, from 22,070 acre-feet per year in 2020 in the 2012 Texas State Water Plan to 4,349 acre-feet per year in 2020 in the 2017 Texas State Water Plan), primarily due to the reductions in firm yield available from Lake Meredith resulting from the impact of the severe drought in 2011. As a result of reduced surface water in storage in Lake Meredith during 2011, no surface water was pumped form the reservoir from late summer in 2011 through the spring of 2014. This interruption in surface water supply from Lake Meredith during the drought of 2011 led to the significant reduction in firm supply that can be relied upon during the regional water planning process.

Lake Meredith and Lake Greenbelt are the two major surface impoundments used to supply water to cities inside and outside the District. There are also numerous other small reservoirs used for agricultural purposes and environmental needs. Lake Meredith is located in parts of Hutchinson, Moore, and Potter counties, and is operated by the Canadian River Municipal Water Authority (CRMWA) as a municipal and industrial water supply for 11 member cities of the Authority. The lake is owned by the United States Bureau of Reclamation and is operated as a National Recreation Area by the National Park Service. Water rights to impound water in the lake (up to 500,000 acre-feet may be held in conservation storage), and to divert water from it for municipal and industrial uses, are held by the Authority under certificates of adjudication issued by the State of Texas. The Ogallala Aquifer now provides most of the water that CRMWA delivers to its member cities. Supplemental water is obtained from Lake Meredith to fulfill the annual CRMWA allocations, however, for the first time since opening, there were no deliveries of surface water to member cities from Lake Meredith in 2012 - 2013. Water from the lake is blended with local groundwater from individual municipality well fields by several cities. Member cities use the water from CRMWA to supply their base demand, and rely upon their localized groundwater supplies to meet their peak demands. Pampa and Amarillo, two of the CRMWA member cities, within the boundaries of the District, follow the latter procedure. The second surface impoundment is Greenbelt Lake, located in Donley County. Greenbelt Municipal & Industrial Water Authority (Greenbelt) is the proprietor and operator.

County	2020	2030	2040	2050	2060	2070
Armstrong	113	113	113	113	113	113
Carson	411	411	411	411	411	411
Donley	766	773	781	790	801	811
Gray	855	855	855	855	855	855
Hutchinson	16	16	16	16	16	16
Potter	529	529	529	529	529	529
Roberts	211	211	211	211	211	211
Wheeler	1,448	1,448	1,448	1,448	1,448	1,448
District Total	4,349	4,356	4,364	4,373	4,384	4,394

Table 9 - Projected surface water supplies included in the 2017 Texas State Water Plan³⁸ (In acre-feet per year)

CHAPTER 9 WATER MANAGEMENT PLAN

During the regional water planning process in Texas, a water supply need is identified if the projected demands exceed the supply for an individual water user group or wholesale water provider. Water supply needs are quantified on an individual water user group basis, then summarized at the county, groundwater conservation district, regional water planning area, and statewide basis. If no water user group is determined to have a need for additional water supply during drought conditions, then the need for additional supply will be recorded as "O". A review of summary data for counties in the District documents that six of the eight counties in the District have a need for additional water supply throughout the 50-year planning horizon (see Table 10). Only Donley and Roberts counties do not have at least some need for additional water supplies during the 50-year planning horizon. Potter County has the most significant need for additional water supply needs by water user groups see Appendix 4.

³⁸ Allen, S., 2016, Estimated Historical Groundwater Use And 2017 State Water Plan Datasets for the Panhandle Groundwater Conservation District: Texas Water Development Board, 25 p.

Table 10 - Projected water supply needs in the District from the 2017 Texas State Water Plan³⁹. Values in red (-) indicate that water user groups in the county have been identified with water supply needs. A value of zero indicates that no water supply need has been identified for the county for the decade listed. (In acre-feet per year)

County	2020	2030	2040	2050	2060	2070
Armstrong		0	0	-35	-72	-110
Carson	-89	-521	-582	-577	-576	-576
Donley	0	0	0	0	0	0
Gray	0	-1,752	-2,491	-2,279	-3,120	-3,988
Hutchinson	-167	-1,642	-3,066	-4,538	-5,834	-7,128
Potter	-5,270	-11,415	-18,509	-25,526	-32,001	-39,238
Roberts	0	0	0	0	0	0
Wheeler	-184	-249	-308	-365	-412	-453
District Total	-5710	-15579	-24956	-33320	-42015	-51493

The final step in the Texas regional water planning process is to identify, evaluate, and then recommend or select water management strategies to meet all identified needs for additional water supply. Basically, any water user group, whether it is a city or irrigated agriculture or mining (at a county aggregate level) for example, that is determined to have a need for additional water supply for any decade during the 50-year planning horizon will go through a deliberate process of identifying all potentially feasible water management strategies to meet the identified need, evaluate the cost, reliability, yield, impact to the environment and water quality, and then recommend the most appropriate strategy or combination of water management strategies to meet the identified needs. Table 11 provides a summation by county of the projected volume of water supply that will result from implementation of all recommended water management strategies. Appendix 4 includes the individual water management strategies recommended in the 2017 Texas State Water Plan to meet the identified needs for additional water supply. An examination of more significant water management strategies recommended for water user groups in the District includes:

- Agricultural water conservation strategies,
- Municipal water conservation,
- Development of additional groundwater supplies,
- Weather modification,
- Water audits and leak repairs,
- Conjunctive use, and
- Expand infrastructure capacity (CRMA II).

³⁹ Allen, S., 2016, Estimated Historical Groundwater Use And 2017 State Water Plan Datasets for the Panhandle Groundwater Conservation District: Texas Water Development Board, 25 p.

Table 11 - Summation of water supplies resulting from recommended water management strategies included for the District in the 2017 Texas State Water Plan⁴⁰. (In acre-feet per year)

County	2020	2030	2040	2050	2060	2070
Armstrong	637	856	1,551	1,630	1,699	1,730
Carson	9,502	12,434	18,271	19,534	20,298	20,670
Donley	2,716	3,363	4,315	4,608	4,944	5,138
Gray	5,763	7,663	9,614	11,898	12,351	12,712
Hutchinson	13,163	18,835	22,749	23,937	24,715	25,272
Potter	9,713	24,948	32,701	32,369	34,383	42,360
Roberts	921	1,204	1,825	1,961	2,036	2,076
Wheeler	1,884	2,196	2,721	2,856	2,974	3,039
District Total	44,299	71,499	93,747	98,793	103,400	112,997

⁴⁰ Allen, S., 2016, Estimated Historical Groundwater Use And 2017 State Water Plan Datasets for the Panhandle Groundwater Conservation District: Texas Water Development Board, 25 p.

Appendix 1

Texas Water Development Board Administrative Review Checklist

Texas Water Development Board

Groundwater Conservation District	Management	Plan Checklis	st, effective Dece	mber 6, 201	2		
District name: Panhandle Groundwater Conse	rvation Distric	;t					
			Date plan receiv	Date plan received:			
Reviewing staff:			Date plan review	wed:			
A management plan shall contain, unless exp	plained as not a	applicable, the f	following elements	s, 31 TAC §3	56.52(a):		
	Citation of rule	Citation of statute	Present in plan and administratively complete	Source of data	Evidence that best available data was used		
Is a paper hard copy of the plan available?	31 TAC §356.53(a)(1)		Yes				
Is an electronic copy of the plan available?	31 TAC §356.53(a)(2)		Yes				
1. Is an estimate of the modeled available groundwater in the District based on the desired future condition established under Section 36.108 included?	31 TAC §356.52(a)(5)(A)	TWC §36.1071(e)(3)(A)	Ogallala Aquifer – Subsection 4.2.1, pg. 7-8 Dockum Aquifer - Subsection 4.2.1.1, pg. 9-10				

2. Is an estimate of the <u>amount of groundwater being</u> <u>used</u> within the District on an annual basis for at least the <u>most recent five years</u> included?	31 TAC §356.52(a)(5)(B); §356.10(2)	TWC §36.1071(e)(3)(B)	See Chapter 6, pg. 23-25, and Appendix 4		
For sections 3-5 below, each district must use the g by the TWDB in conjunction with available site-spe developing the required estimates, 31 TAC §356.52	cific informatio			provided	
3. Is an estimate of the annual <u>amount of recharge</u> , <u>from</u> <u>precipitation</u> , if any, to the groundwater resources within the District included?	31 TAC §356.52(a)(5)(C)	TWC §36.1071(e)(3)(C)	Chapter 7, pg. 31 – 32, and Appendix 5		
4. For each aquifer in the district, is an estimate of the annual volume of <u>water that discharges from the aquifer</u> to springs and any surface water bodies, including lakes, streams and rivers, included?	31 TAC §356.52(a)(5)(D)	TWC §36.1071(e)(3)(D)	Chapter 7, pg. 31– 32, and Appendix 5		
5. Is an estimate of the annual volume of flow					
a) into the District within each aquifer,			Chapter 7, pg. 31– 32, and Appendix 5		
b) <u>out of the District</u> within each aquifer,	31 TAC §356.52(a)(5)(E)	TWC §36.1071(e)(3)(E)	Chapter 7, pg. 31 – 32, and Appendix 5		
c) and <u>between aquifers</u> in the District,	3000.02(4)(0)(2)	300.1071(0)(0)(2)	Chapter 7, pg. 31 – 32, and Appendix 5		
if a groundwater availability model is available, included?					
6. Is an estimate of the <u>projected surface water supply</u> within the District according to the most recently adopted state water plan included?	31 TAC §356.52(a)(5)(F)	TWC §36.1071(e)(3)(F)	Chapter 8, pg. 35 – 35=6, and Appendix 4		

		1		
7. Is an estimate of the <u>projected total demand for water</u> within the District according to the most recently adopted state water plan included?	31 TAC §356.52(a)(5)(G)	TWC §36.1071(e)(3)(G)	Chapter 6, pg. 26 – 27, and Appendix 4	
8. Did the District consider and include the <u>water supply</u> <u>needs</u> from the adopted state water plan?		TWC §36.1071(e)(4)	Chapter 9, pg. 37 – 38, and Appendix 4	
9. Did the District consider and include the <u>water</u> <u>management strategies</u> from the adopted state water plan?		TWC §36.1071(e)(4)	Chapter 9, pg. 37 – 38, and Appendix 4	
10 . Did the district include details of how it will manage groundwater supplies in the district	31 TAC §356.52(a)(4)		Chapter 3, pg. 3-5	
11. Are the actions, procedures, performance, and avoidance necessary to effectuate the management plan, including <u>specifications</u> and <u>proposed rules</u> , all specified in as much detail as possible, included in the plan?		TWC §36.1071(e)(2)	Section 4.1, pg. 6	
12. Was <u>evidence</u> that the plan was adopted, <u>after</u> <u>notice and hearing</u> , included? Evidence includes the posted agenda, meeting minutes, and copies of the notice printed in the newspaper(s) and/or copies of certified receipts from the county courthouse(s).	31 TAC §356.53(a)(3)	TWC §36.1071(a)	Appendix 2	
13 . Was <u>evidence</u> that, following notice and hearing, the District coordinated in the development of its management plan with regional surface water management entities?	31 TAC §356.51	TWC §36.1071(a)	Appendix 6	
14. Has any available <u>site-specific information</u> been provided by the district to the executive administrator for review and comment before being used in the management plan when developing the <u>estimates</u> <u>required in subsections 31 TAC §356.52(a)(5)(C).(D), and</u> (E) ?	31 TAC §356.52(c)	TWC §36.1071(h)	No	

Mark an affirmative response with YES Mark a negative response with NO Mark a non-applicable checklist item with N/A

Management goals required to be addressed unless declared not applicable	Management goal (time-based and quantifiable) 31 TAC §356.51	Methodology for tracking progress 31TAC §356.52(a)(4)	Management objective(s) (specific and time- based statements of future outcomes) 31 TAC §356.52 (a)(2)		Notes
Providing the most efficient use of groundwater 31 TAC 356.52(a)(1)(A); TWC §36.1071(a)(1)	15) 4.3	16) 4.1, 4.3, 4.3.1.2, 4.3.1.3, 4.3.1.4, 4.3.1.5,	17) 4.3.1.1, 4.3.1.2, 4.3.1.3, 4.3.1.4, 4.3.1.5	18) 4.3.1.1.1, 4.3.1.2.1, 4.3.1.3.1, 4.3.1.4.1, 4.3.1.5.1	p. 11-13
Controlling and preventing waste of groundwater 31 TAC 356.52(a)(1)(B); TWC §36.1071(a)(2)	19) 4.4	20) 4.4, 4.4.1.1	21) 4.4.1.1	22) 4.4.1.1.1	p. 14
Controlling and preventing subsidence 31 TAC 356.52(a)(1)(C); TWC §36.1071(a)(3)	23) NA	24) NA	25) NA	26) NA	p. 19
Addressing conjunctive surface water management issues 31 TAC 356.52(a)(1)(D); TWC §36.1071(a)(4)	27) 4.6	28) 4.6, 4.6.1.1	29) 4.6.1.1	30) 4.6.1.1.1	p. 15
Addressing natural resource issues that impact the use and availability of groundwater and which are impacted by the use of groundwater 31 TAC 356.52(a)(1)(E); TWC §36.1071(a)(5)	31) 4.7	32) 4.7, 4.7.1.1	33) 4.7.1.1	34) 4.7.1.1.1	p. 16
Addressing drought conditions 31 TAC 356.52(a)(1)(F); TWC §36.1071(a)(6)	35) 4.5	36) 4.5, 4.5.1.1,	37) 4.5.1.1,	38) 4.5.1.1.1	p. 14-15
Addressing	39)	40)	41)	42)	
a) conservation,	39a) 4.10	40a) 4.10, 4.10.1.1	41a) 4.10.1.1	42a) 4.10.1.1.1	p. 18
b) recharge enhancement,	39b) NA	40b) NA	41b) NA	42b) NA	p. 19
c) rainwater harvesting,	39c) 4.11	40c) 4.11, 4.11.1.1	41c) 4.11.1.1	42c) 4.11.1.1	p. 18-19
d) precipitation enhancement, and	39d) 4.9	40d) 4.9, 4.9.1.1, 4.9.1.2	41d) 4.9.1.1, 4.9.1.2	42d) 4.9.1.1.1, 4.9.1.2.1	p. 17
e) brush control	39e) NA	40e) NA	41e) NA	42e) NA	p. 20
where appropriate and cost effective 31 TAC 356.52(a)(1)(G); TWC §36.1071(a)(7)					
Addressing the desired future conditions established under TWC §36.108. 31 TAC 356.52(a)(1)(H); TWC §36.1071(a)(8)	43) 4.2	44) 4.2, 4.2.1, 4.2.1.1, 4.2.1.2, 4.2.2, 4.2.2.1	45) 4.2.1.1, 4.2.1.2, 4.2.2.1	46) 4.2.1.1.1, 4.2.1.2.1, 4.2.2.1.1	p. 6-11

Does the plan identify the performance standards and management objectives for effecting the plan? 31 TAC §356.52(a)(2)&(3); TWC §36.1071(e)(1)	47) Chapter 4, pg. 5 - 18	48) Chapter 4, pg. 5 - 18	
Mark required elements that are prese Mark any required elements that are Mark plan elements that have been in	N/A		

Appendix 2

Documentation for public notices of Panhandle Groundwater Conservation District Board of Directors of July 26, 2023, during which the amended Management Plan was adopted

Open Meeting Submission

RD:	2023004163
ate Posted:	07/20/2023
tatus:	Accepted
gency Id:	0900
ate of ubmission:	07/20/2023
gency Name:	Panhandle Ground Water Conservation District Number 3
oard:	Panhandle Groundwater Conservation District
'ommittee:	Board of Directors
ate of leeting:	07/26/2023
ime of leeting:	09:00 AM (##:## AM Local Time)
treet Location:	201 W 3rd Street
'ity:	White Deer
tate:	TX
iaison Name:	Katie Hodges
iaison Id:	2
dditional 1formation 1btained From	Britney Britten, General Manager, 201 W 3rd Street, PO Box 637, White Deer, TX 79097, britney@pgcd.us
genda:	PANHANDLE GROUNDWATER
genoa.	CONSERVATION DISTRICT BOARD OF DIRECTOR'S REGULAR MEETING AND PUBLIC HEARING ON AMENDMENTS TO DISTRICT'S MANAGEMENT PLAN DISTRICT OFFICE - Windmill Room 201 W. Third Street, White Deer, Texas
	July 26, 2023 - 9:00 a.m. Agenda
	1. CALL PUBLIC HEARING TO ORDER regarding amendments to the District Management Plan to include information related to the applicable desired future conditions for the Panhandle GCD adopted by Groundwater Management Area 1 and the Panhandle GCD
	2. PUBLIC COMMENT - Public questions and comments on the District's proposed Management Plan amendments (Limited to 3 minutes each, please fill out a "Request to Speak " form prior to the discussion of the agenda item.)
	3. CONSIDERATION AND POSSIBLE ACTION TO ADOPT THE PROPOSED AMENDMENTS TO THE DISTRICT'S MANAGEMENT PLAN TO INCLUDE THE NEWLY ADOPTED DESIRED FUTURE CONDITIONS AND RELATED INFORMATION; SUBMIT THE AMENDMENTS TO THE TEXAS WATER DEVELOPMENT BOARD
	4. ADJOURN PUBLIC HEARING
	5. CALL REGULAR MEETING TO ORDER
	6. PUBLIC COMMENT - Please limit comments to 3 minutes.
	7. CONSIDERATION AND POSSIBLE ACTION ON MINUTES FROM JUNE 2023
	8. CONSIDERATION AND POSSIBLE ACTION ON JUNE 2023 EXPENDITURES
	9. CONSIDERATION AND POSSIBLE ACTION ON QUARTERLY PRODUCTION REPORTS AND OUT OF DISTRICT TRANSPORTATION REPORTS FROM THE CITY OF AMARILLO, CONOCO PHILLIPS, CRMWA, THE CITY OF BORGER, THE CITY OF FRITCH, THE CITY OF MEMPHIS, THE CITY OF CLARENDON, BRICE-LESLEY, AND GREENBELT WATER AUTHORITY
	10. CONSIDERATION AND POSSIBLE ACTION ON APPLICATION AND POSSIBLE AMENDMENTS FOR TDLR PERMIT RENEWAL OF PGCD PRECIPITATION ENHANCEMENT PROGRAM
	11. CONSIDERATION AND POSSIBLE ACTION ON THE ANNUAL REVIEW OF THE INVESTMENT POLICY
	12. CONSIDERATION AND POSSIBLE ACTION ON APPOINTING A GROUNDWATER MANAGEMENT AREA 1 REPRESENTATIVE
	12 DEDORT ON AND IAL DEVIEW OF DEDI FTION

17. DISCUSSION OF DISTRICT RULES

18. STAFF UPDATES

19. MANAGER'S REPORT

20 CONSIDERATION AND POSSIBLE ACTION TO SET FUTURE MEETING DATES

21. LEGAL COUNSEL REGARDING LEGISLATIVE AND REGULATORY ISSUES

22. EXECUTIVE SESSION ON LISTED AGENDA ITEMS

23. ADJOURN REGULAR MEETING

At any time during the meeting and in compliance with the Texas Open Meetings Act, Chapter 551, Government Code, Vernon's Texas Codes. Annotated, the Panhandle Groundwater Conservation District Board of Directors may meet in executive session on any of the above agenda items for consultation concerning legal matters (§551.071); deliberation regarding real property (§551.072), deliberation regarding prospective gift (§551.073); personnel matters (§551.074); and deliberation regarding security devices (§551.076), or for any other purpose authorized by Chapter 551 of the Texas Government Code. Any subject discussed in the executive session may be subject to action during an open meeting. The presiding office of the Board, prior to the Board meeting in executive session, will announce that a closed meeting will be held and will publicly identify the section or sections of the Government Code Chapter 551 under which the closed meeting is to be held. PUBLIC NOTICE

This complies with Section 551.043, of the Open Meetings Act, requiring posting of the items to be considered at least 72 hours prior to the meeting. Notice has been filed with the Secretary of State's office in Austin, at a place convenient to the public in the administrative office of the District and on the District's website, in compliance with Section 551.053 of the Open Meetings Act. Posted this 201 W. Third Street, White Deer, Texas at ______ a.m./p.m.

Katie Hodges, Panhandle Groundwater

New Submission

HOME TEXAS REGISTER TEXAS ADMINISTRATIVE CODE OPEN MEETINGS

AW 20 110

Meeting Information

Agenda 8.24.23 - Tax Abatement Notice

<u>Agenda 7.26,23</u>

Agenda 5.11.23

Approved Minutes 5.11.23

Agenda 3.23.23

Approved Minutes 3.23.23

Agenda 3.23,23 - Tax Abatement Notice

<u>Approved Tax Abatement Minutes</u>

Agenda 2.09.23

Approved Minutes 2.09.23

Agenda 1.12.23

Approved Minutes 1.12.23

Agenda 12.13.22

Approved Minutes 12.13.22

Agenda 12.13.22- Tax Abgtement Notice

<u>Approved Tax Abatement Minutes</u>

Agenda 10.27.22

* Approved Minutes 10.27.22

Agenda 09.15.22

Approved Minutes 09.15.22

Agenda 08.18.22

Approved Minutes 08.18.22

Agenda 08.18.22- Tax Abatement Notice

<u>Approved Tax Abatement Notice Minutes</u>

Agenda 07.28.22

<u>Approved Minutes 07.28.22</u>

Agenda 07.28.22- Tax Abatement Notice

PANHANDLE GROUNDWATER CONSERVATION DISTRICT BOARD OF DIRECTOR'S REGULAR MEETING AND PUBLIC HEARING ON AMENDMENTS TO DISTRICT'S MANAGEMENT PLAN DISTRICT OFFICE - Windmill Room

201 W. Third Street, White Deer, Texas July 26, 2023 – 9:00 a.m.

Agenda

- CALL PUBLIC HEARING TO ORDER regarding amendments to the District Management Plan to include information related to the applicable desired future conditions for the Panhandle GCD adopted by Groundwater Management Area 1 and the Panhandle GCD
 - PUBLIC COMMENT Public questions and comments on the District's proposed Management Plan amendments (Limited to 3 minutes each, please fill out a "Request to Speak" form prior to the discussion of the agenda item.)
 - 3. CONSIDERATION AND POSSIBLE ACTION TO ADOPT THE PROPOSED AMENDMENTS TO THE DISTRICT'S MANAGEMENT PLAN TO INCLUDE THE NEWLY ADOPTED DESIRED FUTURE CONDITIONS AND RELATED INFORMATION; SUBMIT THE AMENDMENTS TO THE TEXAS WATER DEVELOPMENT BOARD
- 4. ADJOURN PUBLIC HEARING
- 5. CALL REGULAR MEETING TO ORDER
 - 6. PUBLIC COMMENT Please limit comments to 3 minutes.
 - 7. CONSIDERATION AND POSSIBLE ACTION ON MINUTES FROM JUNE 2023
- 8. CONSIDERATION AND POSSIBLE ACTION ON JUNE 2023 EXPENDITURES
 - 9. CONSIDERATION AND POSSIBLE ACTION ON QUARTERLY PRODUCTION REPORTS AND OUT OF DISTRICT TRANSPORTATION REPORTS FROM THE CITY OF AMARILLO, CONOCO PHILLIPS, CRMWA, THE CITY OF BORGER, THE CITY OF FRITCH, THE CITY OF MEMPHIS, THE CITY OF CLARENDON, BRICE-LESLEY, AND GREENBELT WATER AUTHORITY
- 10. CONSIDERATION AND POSSIBLE ACTION ON APPLICATION AND POSSIBLE AMENDMENTS FOR TDLR PERMIT RENEWAL OF PGCD PRECIPITATION ENHANCEMENT PROGRAM

- 11. CONSIDERATION AND POSSIBLE ACTION ON THE ANNUAL REVIEW OF THE INVESTMENT POLICY
- 12. CONSIDERATION AND POSSIBLE ACTION ON APPOINTING A GROUNDWATER MANAGEMENT AREA 1 REPRESENTATIVE
 - 13. REPORT ON ANNUAL REVIEW OF DEPLETION
 Presented by Ashley Ausbrooks, District Hydrogeologist
 - CONSIDERATION AND POSSIBLE ACTION ON THE CARSON COUNTY BID Lot 1-5, Blk 2 OT 200 Main, Skellytown, TX BID AMOUNT: \$180.00

15. CONSENT AGENDA – DRILLING PERMITS

The following items are a part of the Consent Agenda. All Well Permit requests have been thoroughly reviewed by the staff, are administratively complete and the General Manager and Permitting Administrator recommend issuance.

RECLASSIFY WELLS -

1. Wade Ritter requests to reclassify well #647936 located in the SE4 of Section 131, Block 7, I&GN Survey in Carson County, from a 6" well to a 4" well

DRILLING PERMITS FOR WELLS PUMPING LESS THAN 25,000 GALLONS A DAY OR 17.5 GPM-

 Jean Wood – A 1" well to be drilled on 1033.24 acres by West Texas Water Well Svc by 6.7.23 located in the SE4 of Section 1, Blk 6Z, JH Gibson Survey (being located approx. 1/4 mi S of the intersection of Hwy 207 & Quebec Rd, W side of FM 207) ARMSTRONG COUNTY

DRILLING PERMITS FOR WELLS PUMPING MORE THAN 25,000 GALLONS A DAY OR 17.5 GPM-

- Jean Wood A 2" well to be drilled on 1033.24 acres by West Texas Water Well Svc by 5.17.23 located in the SW4 of Section 16, Blk 4, AB&M Survey (being located approx. 2 mi S of the intersection of Hwy 207 & FM 1258, E side of Hwy 207)
 ARMSTRONG COUNTY
- Lisa Petty An 8" well to be drilled on 320 acres by Lichtie Drilling by 6.16.23 located in the NE4 of Sec 61, Blk 7, I&GN Survey (being located approx. 1 mi W of White Deer on Hwy 60 to CR X, approx. 2 ¼ mi S on CR X to CR 14, W side of CR X, S side of CR 14) CARSON COUNTY

- Wade Ritter A 4" well to be drilled on 640 acres by Lichtie Drilling by 7.14.23 located on the SE4 of Sec 131, Blk 7, I&GN Survey (being located approx. 6 mi N of Groom on FM 295 to CR 8, W on CR 8 1 mi to CR BB, S on CR BB ³/₄ mi, W side of CR BB) CARSON COUNTY
- RBL Crawford, LLC A 4" well to be drilled on 1280 acres by K-Ran Drilling by 2.22.23 located in the NW4 of Section 16, Blk 23, H&GN Survey (being located SE of McLean on FM 3143, approx. ¼ S of the intersection of CR 30, & FM 3143, E side of CR 30) DONLEY COUNTY
- Greg Sweatt A 3" well to be drilled on 219 acres by Kelly Faulk by 5.24.23 located in the NW4 of Section 22, Blk 20, H&GN Survey (being located approx. ½ mi N of the Hall County line on the W side of Hwy 287) DONLEY COUNTY REPLACEMENT WELL
- Luis G Velasco Esparza a 2" well to be drilled on 33.09 acres by 4M Drilling by 7.21.23 located in the NE4 of Sec 124, Blk 2, AB&M Survey (being located approx. 1/2 mi W of the N Eastern St, Sanborn St intersection) POTTER COUNTY
- BRS Mesa Vista Partners, LLC A 6" well to be drilled on 20,164.62 acres by Hydro Resources by 7.28.23 located in the NW4 of Sec 1, Blk H, Scoggan, W Survey (being located on the BRS Mesa Vista Partners Ranch approx. 2 ½ mi W of Hwy 70) ROBERTS COUNTY WELL #1
- BRS Mesa Vista Partners, LLC An 8" well to be drilled on 20,164.62 acres by Hydro Resources by 7.28.23 located in the NW4 of Sec 1, Blk H, Scoggan, W Survey (being located on the BRS Mesa Vista Partners Ranch approx. 2 mi W of Hwy 70) ROBERTS COUNTY WELL #2
- BRS Mesa Vista Partners, LLC An 8" well to be drilled on 20,164.62 acres by Hydro Resources by 7.28.23 located in the SW4 of Sec 11, Blk 46, H&TC Survey (being located on the BRS Mesa Vista Partners Ranch approx. 3 ¹/₂ mi W of Hwy 70) ROBERTS COUNTY
- BRS Mesa Vista Partners, LLC An 8" well to be drilled on 20,164.62 acres by Hydro Resources by 7.28.23 located in the NW4 of Sec 1, Blk D, EL&RR Survey (being located on the BRS Mesa Vista Partners Ranch approx. 6 ³/₄ mi W of Hwy 70) ROBERTS COUNTY
 - BRS Mesa Vista Partners, LLC A 4" well to be drilled on 20,164.62 acres by Hydro Resources by 7.28.23 located in the NW4 of Sec 1, Blk C, H&GN Survey (being located on the BRS Mesa Vista Partners Ranch approx. 3 ¼ mi W of Hwy 70)

ROBERTS COUNTY

- BRS Mesa Vista Partners, LLC An 8" well to be drilled on 20,164.62 acres by Hydro Resources by 7.28.23 located in the NE4 of Sec 5, Blk D, EL&RR Survey (being located on the BRS Mesa Vista Partners Ranch approx. 7 ¼ mi W of Hwy 70) ROBERTS COUNTY
- BRS Mesa Vista Partners, LLC An 8" well to be drilled on 20,164.62 acres by Hydro Resources by 7.28.23 located in the SE4 of Sec 2, Blk D, EL&RR Survey (being located on the BRS Mesa Vista Partners Ranch approx. 5 mi W of Hwy 70) ROBERTS COUNTY
- 14. Gary Hutchens a 3" Well to be drilled on 1200 acres by K-Ran Drilling by 2.27.23 located in the SE4 of Section 99, Blk 23, H&GN Survey (being located NE of Mclean, approx. 1 mi W of the CR X, Pakan Rd intersection, then approx. ½ mi S to well location.) WHEELER COUNTY
- Ken Wischkaemper A 6" well to be drilled on 426.26 acres by Kelly Faulk Drilling by 7.11.23 located in the NE4 of Section 50, Blk 13, H&GN Survey (being located approx. 3½ mi E of Shamrock on I-40, S side of I-40) WHEELER COUNTY WELL #1
- Ken Wischkaemper A 6" well to be drilled on 426.26 acres by Kelly Faulk Drilling by 7.11.23 located in the NE4 of Section 50, Blk 13, H&GN Survey (being located approx. 3¹/₂ mi E of Shamrock on I-40, S side of I-40) WHEELER COUNTY WELL #2
- 16. REPORT FROM THE RULES COMMITTEE
- 17. DISCUSSION OF DISTRICT RULES
- 18. STAFF UPDATES
- 19. MANAGER'S REPORT
 - 20. CONSIDERATION AND POSSIBLE ACTION TO SET FUTURE MEETING DATES
 - 21. LEGAL COUNSEL REGARDING LEGISLATIVE AND REGULATORY ISSUES
 - 22. EXECUTIVE SESSION ON LISTED AGENDA ITEMS
 - 23. ADJOURN REGULAR MEETING

At any time during the meeting and in compliance with the Texas Open Meetings Act, Chapter 551, Government Code, Vernon's Texas Codes, Annotated, the Panhandle Groundwater Conservation District Board of Directors may meet in executive session on any of the above agenda items for consultation concerning legal matters (§551.071); deliberation regarding real property (§551.072); deliberation regarding prospective gift (§551.073); personnel matters (§551.074); and deliberation regarding security devices (§551.076), or for any other purpose authorized by Chapter 551 of the Texas Government Code. Any subject discussed in the executive session may be subject to action during an open meeting.

The presiding office of the Board, prior to the Board meeting in executive session, will announce that a closed meeting will be held and will publicly identify the section or sections of the Government Code Chapter 551 under which the closed meeting is to be held.

PUBLIC NOTICE

This complies with Section 551.043, of the Open Meetings Act, requiring posting of the items to be considered at least 72 hours prior to the meeting. Notice has been filed with the Secretary of State's office in Austin, at a place convenient to the public in the administrative office of the District and on the District's website, in compliance with Section 551.053 of the Open Meetings Act.

Posted this Jugo 201 W. Third Street, White Deer, Texas at 11:00 (a.m.)p.m.

Katie Hodges, Panhadle Groundwater

Appendix 3

Resolution adopting the 2023 Panhandle Groundwater Conservation District amended Management Plan

Panhandle Groundwater Conservation District

P.O. Box 637 White Deer, TX 79097 Resolution No. MP23-02

Management Plan 2019-2024 Adopted July 26, 2023

WHEREAS, the Panhandle Groundwater Conservation District (District) was created by Acts of the 51st Legislature (Texas Civil Statutes, Chapter 3A, Title 128, Article 7880-3c, and currently operates under Chapter 36 of the Texas Water Code); and

WHEREAS, the District is required to amend its Management Plan within two years of adoption of the Districts Desired Future Conditions; and

WHEREAS, under the direction of the Board of Directors of the District (the "Board"), and in accordance with Sections 36.1071, 36.1072 and 36.108 of the Texas Water Code, and 31 Texas Administrative Code Chapter 356, the District has undertaken the amendment of its Management Plan;

WHEREAS, the District issued the notice in the manner required by state law and held a public hearing on July 26, 2023, at 9:00 AM in White Deer, Texas to receive public and written comments on the Amendments to the Management Plan and received written comments at the District's office located at 201 W. Third St., White Deer, Texas;

WHEREAS, the Board finds that the Management plan meets all the requirements of Chapter 36, Water Code, and 31 Texas Administrative Code Chapter 356; and

WHEREAS, these amendments are changes reflective of updated modeled available groundwater reports provided by the Texas Water Development Board on March 30, 2023; and

WHEREAS, the Board of Directors met in a public hearing on July 26, 2023, properly noticed in accordance with state law, and considered adoption of the attached Management Plan, and approval of this resolution after due consideration of all comments received.

NOW, THEREFORE, BE IT RESOLVED BY THE BOARD OF DIRECTORS OF THE PANHANDLE GROUNDWATAER CONSERVATION DISTRICT THAT:

- 1. The above recitals are true and correct.
- 2. The Board of Directors of the District hereby adopts the attached Management Plan as the Management Plan for the District, subject to those amendments necessary to incorporate technical information received from the Texas Water Development Board and/or District geoscientist;
- 3. The Board President and the General manager of the District are further authorized to take all steps necessary to implement this resolution and submit the Management Plan to the TWDB for its approval; and
- 4. The Board President and General Manager of the District are further authorized to take any and all action necessary to coordinate with the TWDB as may be required in furtherance of TWDB's approval pursuant to the provisions of Section 36.1072 of the Texas Water Code.

AND IT IS SO ORDERED.

PASSED AND ADOPTED on this 202 day of July_, 2023.

PANHANDLE GROUNDWATER CONSERVATION DISTRICT

Chaney Cruse

Board President

Lee Peterson

Board Secretary

Appendix 4

Estimated Historical Groundwater Use and 2017 State Water Plan Datasets: prepared for the Panhandle Groundwater Conservation District

Estimated Historical Groundwater Use And 2017 State Water Plan Datasets:

Panhandle Groundwater Conservation District

by Stephen Allen Texas Water Development Board Groundwater Division Groundwater Technical Assistance Section stephen.allen@twdb.texas.gov (512) 463-7317 December 5, 2016

GROUNDWATER MANAGEMENT PLAN DATA:

This package of water data reports (part 1 of a 2-part package of information) is being provided to groundwater conservation districts to help them meet the requirements for approval of their fiveyear groundwater management plan. Each report in the package addresses a specific numbered requirement in the Texas Water Development Board's groundwater management plan checklist. The checklist can be viewed and downloaded from this web address:

http://www.twdb.texas.gov/groundwater/docs/GCD/GMPChecklist0113.pdf

The five reports included in this part are:

1. Estimated Historical Groundwater Use (checklist item 2)

from the TWDB Historical Water Use Survey (WUS)

- 2. Projected Surface Water Supplies (checklist item 6)
- 3. Projected Water Demands (checklist item 7)
- 4. Projected Water Supply Needs (checklist item 8)
- 5. Projected Water Management Strategies (checklist item 9)

from the 2017 Texas State Water Plan (SWP)

Part 2 of the 2-part package is the groundwater availability model (GAM) report for the District (checklist items 3 through 5). The District should have received, or will receive, this report from the Groundwater Availability Modeling Section. Questions about the GAM can be directed to Dr. Shirley Wade, shirley.wade@twdb.texas.gov, (512) 936-0883.

DISCLAIMER:

The data presented in this report represents the most up-to-date WUS and 2017 SWP data available as of 12/5/2016. Although it does not happen frequently, either of these datasets are subject to change pending the availability of more accurate WUS data or an amendment to the 2017 SWP. District personnel must review these datasets and correct any discrepancies in order to ensure approval of their groundwater management plan.

The WUS dataset can be verified at this web address:

http://www.twdb.texas.gov/waterplanning/waterusesurvey/estimates/

The 2017 SWP dataset can be verified by contacting Sabrina Anderson (sabrina.anderson@twdb.texas.gov or 512-936-0886).

The values presented in the data tables of this report are county-based. In cases where groundwater conservation districts cover only a portion of one or more counties the data values are modified with an apportioning multiplier to create new values that more accurately represent conditions within district boundaries. The multiplier used in the following formula is a land area ratio: (data value * (land area of district in county / land area of county)). For two of the four SWP tables (Projected Surface Water Supplies and Projected Water Demands) only the county-wide water user group (WUG) data values (county other, manufacturing, steam electric power, irrigation, mining and livestock) are modified using the multiplier. WUG values for municipalities, water supply corporations, and utility districts are not apportioned; instead, their full values are retained when they are located within the district, and eliminated when they are located outside (we ask each district to identify these entity locations).

The remaining SWP tables (Projected Water Supply Needs and Projected Water Management Strategies) are not modified because district-specific values are not statutorily required. Each district **needs only "consider" the county values in these tables.**

In the WUS table every category of water use (including municipal) is apportioned. Staff determined that breaking down the annual municipal values into individual WUGs was too complex.

TWDB recognizes that the apportioning formula used is not perfect but it is the best available process with respect to time and staffing constraints. If a district believes it has data that is more accurate it can add those data to the plan with an explanation of how the data were derived. Apportioning percentages that the TWDB used are listed above each applicable table.

For additional questions regarding this data, please contact Stephen Allen (stephen.allen@twdb.texas.gov or 512-463-7317) or Rima Petrossian (rima.petrossian@twdb.texas.gov or 512-936-2420).

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 2 of 25

Estimated Historical Water Use TWDB Historical Water Use Survey (WUS) Data

Groundwater and surface water historical use estimates are currently unavailable for calendar year 2015. TWDB staff anticipates the calculation and posting of these estimates at a later date.

ARMSTRONG COUNTY

92.36% (multiplier)

All values are in acre-feet

Total	Livestock	Irrigation	Steam Electric	Mining	Manufacturing	Municipal	Source	Year
5,563	235	5,008	0	0	0	320	GW	2014
26	26	0	0	0	0	0	SW	
7,744	227	7,163	0	0	0	354	GW	2013
25	25	0	0	0	0	0	SW	
9,612	431	8,785	0	0	0	396	GW	2012
48	48	0	0	0	0	0	SW	
8,640	460	7,752	0	0	0	428	GW	2011
51	51	0	0	0	0	0	SW	
4,796	414	4,060	0	0	0	322	GW	2010
46	46	0	0	0	0	0	SW	
6,367	494	5,527	0	0	0	346	GW	2009
54	54	0	0	0	0	0	SW	
7,392	491	6,524	0	0	0	377	GW	2008
54	54	0	0	0	0	0	SW	
6,170	467	5,338	0	0	0	365	GW	2007
53	53	0	0	0	0	0	SW	
7,361	846	6,080	0	0	0	435	GW	2006
94	94	0	0	0	0	0	SW	
8,193	759	7,077	0	0	0	357	GW	2005
84	84	0	0	0	0	0	SW	
7,724	719	6,647	0	0	0	358	GW	2004
179	179	0	0	0	0	0	SW	
8,163	728	7,051	0	0	0	384	GW	2003
181	181	0	0	0	0	0	SW	
10,309	489	9,489	0	0	0	331	GW	2002
122	122	0	0	0	0	0	SW	
7,920	417	7,148	0	0	0	355	GW	2001
104	104	0	0	0	0	0	SW	
11,738	446	10,915	0	0	0	377	GW	2000
112	112	0,915	0	0	0	0	SW	2000

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 3 of 25

acre-feet	alues are in a	All v	100% (multiplier)				CARSON COUNTY	
Tota	Livestock	Irrigation	Steam Electric	Mining	Manufacturing	Municipal	Source	Year
93,686	332	91,433	0	0	982	939	GW	2014
37	37	0	0	0	0	0	SW	
106,930	317	105,201	0	0	393	1,019	GW	2013
34	34	0	0	0	0	0	SW	
126,353	503	124,090	0	0	470	1,290	GW	2012
56	56	0	0	0	0	0	SW	
99,063	718	95,956	0	64	954	1,371	GW	2011
103	80	0	0	23	0	0	SW	
62,423	631	59,823	0	11	609	1,349	GW	2010
333	71	246	0	4	0	12	SW	
74,051	474	71,965	0	38	308	1,266	GW	2009
57	53	0	0	2	0	2	SW	
90,072	558	88,034	0	38	365	1,077	GW	2008
65	62	0	0	0	0	3	SW	
86,935	571	84,896	0	52	308	1,108	GW	2007
66	63	0	0	0	0	3	SW	
67,267	1,007	64,707	0	43	308	1,202	GW	2006
115	112	0	0	0	0	3	SW	
72,498	586	70,275	0	57	439	1,141	GW	2005
68	65	0	0	0	0	3	SW	
58,512	261	56,545	0	65	442	1,199	GW	2004
385	381	0	0	0	0	4	SW	
57,587	277	55,663	0	44	442	1,161	GW	2003
416	404	0	0	0	0	12	SW	
55,662	377	53,621	0	34	449	1,181	GW	2002
558	550	0	0	0	0	8	SW	
53,173	387	51,012	0	80	405	1,289	GW	2001
576	565	0	0	0	0	11	SW	
82,05	1,135	79,045	0	59	494	1,324	GW	2000
294	284	0	0	0	0	10	SW	

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 4 of 25

cre-feet	alues are in a	All \	er)		DONLEY COUNTY			
Tota	Livestock	Irrigation	Steam Electric	Mining	Manufacturing	Municipal	Source	Year
35,844	732	35,001	0	0	0	111	GW	2014
510	183	0	0	0	0	327	SW	
31,245	671	30,412	0	0	0	162	GW	2013
509	167	0	0	0	0	342	SW	
42,967	711	42,048	0	0	0	208	GW	2012
581	178	0	0	0	0	403	SW	
40,168	770	39,148	0	0	0	250	GW	2011
691	193	0	0	0	0	498	SW	
26,398	696	25,493	0	0	0	209	GW	2010
633	174	30	0	0	0	429	SW	
30,219	726	29,290	0	0	0	203	GW	2009
660	182	0	0	0	0	478	SW	
33,311	835	32,265	0	0	0	211	GW	2008
721	209	46	0	0	0	466	SW	
39,676	943	38,543	0	0	0	190	GW	2007
657	235	37	0	0	0	385	SW	
27,392	862	26,299	0	0	0	231	GW	2006
774	215	48	0	0	0	511	SW	
32,118	942	30,960	0	0	0	216	GW	2005
687	236	70	0	0	0	381	SW	
29,405	110	29,097	0	0	0	198	GW	2004
1,517	985	64	0	0	0	468	SW	
28,792	100	28,484	0	0	0	208	GW	2003
1,349	894	0	0	0	0	455	SW	
26,599	125	26,256	0	0	0	218	GW	2002
1,594	1,122	0	0	0	0	472	SW	
19,099	135	18,739	0	0	0	225	GW	2001
1,744	1,209	0	0	0	0	535	SW	
24,229	136	23,873	0	0	0	220	GW	2000
1,696	1,225	0	0	0	0	471	SW	

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 5 of 25

GRAY COUNTY			100	All	All values are in acre-fe			
Year	Source	Municipal	Manufacturing	Mining	Steam Electric	Irrigation	Livestock	Total
2014	GW	1,456	309	0	0	40,664	1,467	43,896
	SW	2,222	0	0	0	0	489	2,711
2013	GW	2,574	287	0	0	39,122	1,428	43,411
	SW	2,187	0	0	0	0	475	2,662
2012	GW	2,251	303	2	0	38,708	1,410	42,674
	SW	2,388	0	0	0	0	470	2,858
2011	GW	2,569	316	37	0	37,285	1,406	41,613
	SW	2,334	0	10	0	8	469	2,821
2010	GW	1,612	459	23	0	22,721	1,183	25,998
	SW	3,080	0	6	0	0	396	3,482
2009	GW	1,794	5,378	21	0	31,276	2,148	40,617
	SW	2,259	0	5	0	0	716	2,980
2008	GW	2,822	3,947	19	0	33,218	1,546	41,552
	SW	1,285	0	5	0	0	516	1,806
2007	GW	2,773	3,921	0	0	32,104	1,449	40,247
	SW	1,285	0	0	0	0	483	1,768
2006	GW	2,821	3,694	0	0	27,181	1,998	35,694
	SW	1,285	0	0	0	0	666	1,951
2005	GW	2,844	3,656	0	0	33,406	1,169	41,075
	SW	1,285	0	0	0	0	390	1,675
2004	GW	2,089	4,030	0	0	35,394	118	41,631
	SW	1,151	0	0	0	0	1,426	2,577
2003	GW	2,121	3,952	0	0	37,451	109	43,633
	SW	1,151	0	0	0	0	1,318	2,469
2002	GW	2,116	3,898	0	0	20,494	106	26,614
	SW	1,149	4	0	0	0	1,279	2,432
2001	GW	1,262	4,042	0	0	15,733	91	21,128
	SW	3,241	5	0	0	0	1,106	4,352
2000	GW	1,184	4,265	0	0	20,525	140	26,114
	SW	3,240	5	0	0	0	1,262	4,507

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 6 of 25

cre-feet	alues are in a	All \	ər)	% (multiplie	4.24	HUTCHINSON COUNTY		
Total	Livestock	Irrigation	Steam Electric	Mining	Manufacturing	Municipal	Source	Year
3,634	11	2,732	0	4	673	214	GW	2014
4	4	0	0	0	0	0	SW	
3,713	11	2,932	0	4	638	128	GW	2013
64	4	12	0	0	0	48	SW	
3,893	14	3,045	0	4	684	146	GW	2012
56	5	12	0	0	0	39	SW	
4,109	17	3,127	0	4	720	241	GW	2011
25	6	0	0	0	14	5	SW	
3,069	16	1,700	0	6	1,160	187	GW	2010
108	5	12	0	1	39	51	SW	
3,675	21	2,255	0	6	1,240	153	GW	2009
17	7	0	0	1	0	9	SW	
3,457	21	2,138	0	6	1,104	188	GW	2008
190	7	82	0	5	82	14	SW	
2,690	16	1,463	0	4	1,070	137	GW	2007
146	5	12	0	4	114	11	SW	
3,008	24	1,735	0	4	1,107	138	GW	2006
60	8	12	0	4	23	13	SW	
2,914	20	1,761	0	4	1,028	101	GW	2005
183	7	12	0	0	151	13	SW	
2,862	3	1,625	0	4	1,104	126	GW	2004
172	27	12	0	4	110	19	SW	
2,765	2	1,542	0	0	1,068	153	GW	2003
157	20	12	0	0	75	50	SW	
3,238	2	2,044	0	1	1,053	138	GW	2002
165	20	0	0	0	110	35	SW	
2,990	2	1,697	0	1	1,128	162	GW	2001
167	17	0	0	0	105	45	SW	
3,905	2	2,492	0	1	1,276	134	GW	2000
176	21	0	0	0	115	40	SW	

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 7 of 25

icre-feet	alues are in a	All v	er)	% (multipli	94.12		COUNTY	POTTER
Tota	Livestock	Irrigation	Steam Electric	Mining	Manufacturing	Municipal	Source	Year
32,258	368	2,451	1,065	187	5,359	22,828	GW	2014
180	65	0	0	56	58	1	SW	
33,866	414	3,854	1,223	104	4,400	23,871	GW	2013
174	72	0	0	32	70	0	SW	
34,756	523	3,365	742	105	4,107	25,914	GW	2012
197	92	0	0	32	70	3	SW	
36,139	680	2,246	1,321	397	5,452	26,043	GW	2011
2,130	120	0	0	430	75	1,505	SW	
25,898	614	1,121	503	417	5,738	17,505	GW	2010
6,860	108	0	0	464	544	5,744	SW	
26,551	600	3,306	665	394	4,965	16,621	GW	2009
7,173	106	0	0	434	380	6,253	SW	
30,203	564	2,923	1,246	380	5,476	19,614	GW	2008
5,390	100	0	0	404	218	4,668	SW	
29,301	596	5,539	1,331	129	5,473	16,233	GW	2007
6,920	105	0	181	0	340	6,294	SW	
30,370	507	3,958	902	137	5,312	19,554	GW	2006
10,420	90	0	1,732	6	422	8,170	SW	
28,814	516	5,180	1,529	137	4,580	16,872	GW	2005
12,922	92	0	3,540	0	252	9,038	SW	
29,102	42	4,639	1,271	136	5,030	17,984	GW	2004
12,228	449	0	4,404	0	301	7,074	SW	
22,492	74	4,792	1,369	134	5,111	11,012	GW	2003
21,202	784	0	3,788	0	310	16,320	SW	
27,570	92	8,211	1,547	136	4,622	12,962	GW	2002
22,015	968	4,823	3,022	5	321	12,876	SW	
24,083	44	4,959	1,267	249	4,739	12,825	GW	2001
19,629	466	2,913	3,094	5	413	12,738	SW	
26,026	54	3,518	3,432	192	5,110	13,720	GW	2000
25,996	486	5,873	3,447	0	292	15,898	SW	

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 8 of 25

acre-feet	values are in a	All v	er)	100% (multiplier)				ROBERTS COUNTY	
Tota	Livestock	Irrigation	Steam Electric	Mining	Manufacturing	Municipal	Source	Year	
9,871	287	9,157	0	232	0	195	GW	2014	
108	50	0	0	58	0	0	SW		
9,423	289	8,797	0	147	0	190	GW	2013	
86	50	0	0	36	0	0	SW		
9,865	264	9,161	0	234	0	206	GW	2012	
76	46	0	0	30	0	0	SW		
13,962	312	13,137	0	287	0	226	GW	2011	
192	55	0	0	137	0	0	SW		
7,965	273	7,362	0	162	0	168	GW	2010	
125	48	0	0	77	0	0	SW		
7,165	295	6,531	0	180	0	159	GW	2009	
137	52	0	0	85	0	0	SW		
9,042	287	8,412	0	196	0	147	GW	2008	
146	52	0	0	94	0	0	SW		
17,065	388	16,522	0	0	0	155	GW	2007	
69	69	0	0	0	0	0	SW		
15,168	350	14,639	0	0	0	179	GW	2006	
62	62	0	0	0	0	0	SW		
14,263	459	13,601	0	0	0	203	GW	2005	
81	81	0	0	0	0	0	SW		
14,627	48	14,393	0	0	0	186	GW	2004	
468	468	0	0	0	0	0	SW		
13,061	46	12,866	0	0	0	149	GW	2003	
442	442	0	0	0	0	0	SW		
12,843	50	12,642	0	0	0	151	GW	2002	
484	484	0	0	0	0	0	SW		
7,230	45	7,045	0	0	0	140	GW	2001	
438	438	0	0	0	0	0	SW		
9,052	54	8,838	0	0	0	160	GW	2000	
487	487	0	0	0	0	0	SW		

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 9 of 25

acre-feet	values are in a	All \	er)	6 (multiplie	1009	Y	WHEELER COUNTY	
Total	Livestock	Irrigation	Steam Electric	Mining	Manufacturing	Municipal	Source	Year
19,616	843	16,580	0	696	0	1,497	GW	2014
455	281	0	0	174	0	0	SW	
20,384	836	16,805	0	1,375	0	1,368	GW	2013
990	278	369	0	343	0	0	SW	
29,162	1,001	24,070	0	2,416	0	1,675	GW	2012
794	334	131	0	329	0	0	SW	
21,731	1,090	16,601	0	2,454	0	1,586	GW	2011
2,033	364	170	0	1,499	0	0	SW	
16,673	995	13,913	0	537	0	1,228	GW	2010
659	331	0	0	328	0	0	SW	
17,284	1,195	14,277	0	674	0	1,138	GW	2009
809	398	0	0	411	0	0	SW	
18,383	1,170	15,143	0	810	0	1,260	GW	2008
884	390	0	0	494	0	0	SW	
17,448	1,221	15,370	0	0	0	857	GW	2007
407	407	0	0	0	0	0	SW	
16,563	2,112	13,528	0	0	0	923	GW	2006
704	704	0	0	0	0	0	SW	
15,238	1,358	12,990	0	0	0	890	GW	2005
453	453	0	0	0	0	0	SW	
11,474	168	10,441	0	0	0	865	GW	2004
1,508	1,508	0	0	0	0	0	SW	
14,211	168	13,169	0	0	0	874	GW	2003
1,508	1,508	0	0	0	0	0	SW	
10,150	147	9,104	0	0	0	899	GW	2002
1,326	1,326	0	0	0	0	0	SW	
6,757	395	5,396	0	0	0	966	GW	2001
1,559	1,559	0	0	0	0	0	SW	
9,260	395	7,939	0	0	0	926	GW	2000
1,561	1,561	0	0	0	0	0	SW	

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 10 of 25

Projected Surface Water Supplies TWDB 2017 State Water Plan Data

ARMSTRONG COUNTY			92.36% (n	All values are in acre-feet					
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
A	LIVESTOCK, ARMSTRONG	RED	RED LIVESTOCK LOCAL SUPPLY	113	113	113	113	113	113
	Sum of Project	ed Surface Wate	r Supplies (acre-feet)	113	113	113	113	113	113

CARS	SON COUNTY		100% (m	100% (multiplier)				All values are in acre-feet			
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070		
А	IRRIGATION, CARSON	RED	RED RUN-OF-RIVER	277	277	277	277	277	277		
A	LIVESTOCK, CARSON	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	59	59	59	59	59	59		
A	LIVESTOCK, CARSON	RED	RED LIVESTOCK LOCAL SUPPLY	75	75	75	75	75	75		
	Sum of Projecte	er Supplies (acre-feet)	411	411	411	411	411	411			

DON	DONLEY COUNTY 1009						All values are in acre-feet		
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
А	CLARENDON	RED	GREENBELT LAKE/RESERVOIR	253	258	263	269	278	286
А	COUNTY-OTHER, DONLEY	RED	GREENBELT LAKE/RESERVOIR	64	66	69	72	74	76
А	IRRIGATION, DONLEY	RED	RED RUN-OF-RIVER	166	166	166	166	166	166
A	LIVESTOCK, DONLEY	RED	RED LIVESTOCK LOCAL SUPPLY	283	283	283	283	283	283
	Sum of Projecte	d Surface Wate	r Supplies (acre-feet)	766	773	781	790	801	811

GRA	GRAY COUNTY 100				6 (multiplier)				All values are in acre-feet		
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070		
А	IRRIGATION, GRAY	CANADIAN	CANADIAN RUN-OF- RIVER	1	1	1	1	1	1		
А	IRRIGATION, GRAY	RED	RED RUN-OF-RIVER	55	55	55	55	55	55		
A	LIVESTOCK, GRAY	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	199	199	199	199	199	199		
A	LIVESTOCK, GRAY	RED	RED LIVESTOCK LOCAL SUPPLY	600	600	600	600	600	600		
	Sum of Projected Surface Water Supplies (acre-feet)				855	855	855	855	855		

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 11 of 25

HUT	CHINSON COU	NTY	4.24% (multiplier)				All values are in acre-feet			
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070	
А	IRRIGATION, HUTCHINSON	CANADIAN	CANADIAN RUN-OF- RIVER	4	4	4	4	4	4	
A	LIVESTOCK, HUTCHINSON	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	12	12	12	12	12	12	
A	MANUFACTURING, HUTCHINSON	CANADIAN	CANADIAN RUN-OF- RIVER	0	0	0	0	0	0	
	Sum of Projected Surface Water Supplies (acre-fee				16	16	16	16	16	

POTT	ER COUNTY		94.12% (n	94.12% (multiplier)				All values are in acre-feet			
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070		
A	LIVESTOCK, POTTER	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	471	471	471	471	471	471		
А	LIVESTOCK, POTTER	RED	RED LIVESTOCK LOCAL SUPPLY	58	58	58	58	58	58		
	Sum of Projecte	ed Surface Wate	r Supplies (acre-feet)	529	529	529	529	529	529		

ROB	ERTS COUNTY	100% (m	00% (multiplier)				All values are in acre-feet		
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070
А	IRRIGATION, ROBERTS	CANADIAN	CANADIAN RUN-OF- RIVER	72	72	72	72	72	72
A	LIVESTOCK, ROBERTS	CANADIAN	CANADIAN LIVESTOCK LOCAL SUPPLY	124	124	124	124	124	124
A	LIVESTOCK, ROBERTS	RED	RED LIVESTOCK LOCAL SUPPLY	15	15	15	15	15	15
	Sum of Projected Surface Water Supplies (acre-fee				211	211	211	211	211

WHEELER COUNTY			100% (m	100% (multiplier)				All values are in acre-feet			
RWPG	WUG	WUG Basin	Source Name	2020	2030	2040	2050	2060	2070		
А	IRRIGATION, WHEELER	RED	RED RUN-OF-RIVER	603	603	603	603	603	603		
A	LIVESTOCK, WHEELER	RED	RED LIVESTOCK LOCAL SUPPLY	845	845	845	845	845	845		
	Sum of Projected	d Surface Wate	r Supplies (acre-feet)	1,448	1,448	1,448	1,448	1,448	1,448		

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 12 of 25

Projected Water Demands TWDB 2017 State Water Plan Data

Please note that the demand numbers presented here include the plumbing code savings found in the Regional and State Water Plans.

ARMS	STRONG COUNTY	92.36% (multij	2.36% (multiplier) All values are in acr					cre-feet
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	CLAUDE	RED	358	353	348	346	345	345
A	COUNTY-OTHER, ARMSTRONG	RED	82	79	78	77	77	77
А	IRRIGATION, ARMSTRONG	RED	3,874	3,685	3,425	3,044	2,664	2,283
A	LIVESTOCK, ARMSTRONG	RED	596	599	602	606	609	612
	Sum of Projecte	d Water Demands (acre-feet)	4,910	4,716	4,453	4,073	3,695	3,317

CARS	SON COUNTY	100% (multip	olier)			All valu	es are in a	acre-feet
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	COUNTY-OTHER, CARSON	CANADIAN	161	161	160	158	157	157
A	COUNTY-OTHER, CARSON	RED	123	120	120	119	119	119
A	GROOM	RED	179	176	174	173	173	173
A	IRRIGATION, CARSON	CANADIAN	14,483	13,738	12,682	11,273	9,864	8,454
A	IRRIGATION, CARSON	RED	41,219	39,100	36,094	32,083	28,073	24,063
A	LIVESTOCK, CARSON	CANADIAN	519	522	525	528	532	535
A	LIVESTOCK, CARSON	RED	173	174	175	176	177	178
A	MANUFACTURING, CARSON	CANADIAN	25	28	30	32	35	37
A	MANUFACTURING, CARSON	RED	394	432	469	500	541	587
A	MINING, CARSON	CANADIAN	14	14	14	14	14	14
A	PANHANDLE	RED	572	581	582	577	576	576
A	WHITE DEER	CANADIAN	106	107	107	107	107	107
A	WHITE DEER	RED	138	141	141	140	140	140
	Sum of Project	ed Water Demands (acre-feet)	58,106	55,294	51,273	45,880	40,508	35,140

DON	LEY COUNTY	Y COUNTY 100% (multiplier) All values are in				ies are in a	acre-feet	
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	CLARENDON	RED	378	369	361	356	356	356
A	COUNTY-OTHER, DONLEY	RED	245	237	230	228	227	227
А	IRRIGATION, DONLEY	RED	24,080	23,203	21,847	19,419	16,992	14,564
A	LIVESTOCK, DONLEY	RED	1,330	1,332	1,333	1,335	1,337	1,339
	Sum of Projec	ted Water Demands (acre-feet)	26,033	25,141	23,771	21,338	18,912	16,486

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 13 of 25

GRA	Y COUNTY	100% (multip	olier)			All valu	ies are in a	acre-feet
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	COUNTY-OTHER, GRAY	CANADIAN	450	488	537	604	659	717
A	COUNTY-OTHER, GRAY	RED	243	264	290	326	356	388
A	IRRIGATION, GRAY	CANADIAN	5,536	5,227	4,820	4,285	3,749	3,213
A	IRRIGATION, GRAY	RED	15,755	14,877	13,719	12,194	10,670	9,146
A	LIVESTOCK, GRAY	CANADIAN	135	138	141	144	147	151
A	LIVESTOCK, GRAY	RED	1,217	1,240	1,266	1,294	1,326	1,360
A	MANUFACTURING, GRAY	CANADIAN	4,133	4,197	4,240	4,257	4,086	3,923
A	MANUFACTURING, GRAY	RED	217	221	223	224	215	206
A	MCLEAN	RED	205	222	243	274	299	326
A	MINING, GRAY	CANADIAN	7	7	7	6	5	5
A	MINING, GRAY	RED	68	67	60	54	48	42
A	PAMPA	CANADIAN	3,711	3,991	4,360	4,926	5,377	5,855
A	STEAM ELECTRIC POWER, GRAY	CANADIAN	1,409	2,112	2,299	2,952	3,087	3,320
	Sum of Projec	ted Water Demands (acre-feet)	33,086	33,051	32,205	31,540	30,024	28,652

HUTC	TCHINSON COUNTY4.24% (multiplier)				All value	I values are in ac		
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	BORGER	CANADIAN	3,215	3,254	3,234	3,229	3,225	3,224
А	COUNTY-OTHER, HUTCHINSON		13	14	14	14	14	14
А	FRITCH	CANADIAN	437	441	436	434	433	433
А	IRRIGATION, HUTCHINSON	CANADIAN	1,696	1,597	1,469	1,305	1,142	979
А	LIVESTOCK, HUTCHINSON	CANADIAN	36	37	38	40	41	43
А	MANUFACTURING, HUTCHINSON	CANADIAN	1,075	1,137	1,198	1,250	1,337	1,431
A	MINING, HUTCHINSON	CANADIAN	8	10	7	5	2	1
А	STINNETT	CANADIAN	446	452	448	447	446	446
A	TCW SUPPLY INC	CANADIAN	738	755	754	750	749	749
	Sum of Projected	d Water Demands (acre-feet)	7,664	7,697	7,598	7,474	7,389	7,320

POTTER COUNTY			94.12% (multiplier)			All valu	ies are in acre-feet				
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070			
А	AMARILLO	CANADIAN	15,884	17,294	18,856	20,510	22,424	24,462			
А	AMARILLO	RED	10,458	11,386	12,414	13,504	14,764	16,106			
А	COUNTY-OTHER, POTTER	CANADIAN	1,855	2,020	2,204	2,397	2,620	2,857			
А	COUNTY-OTHER, POTTER	RED	1,047	1,139	1,242	1,352	1,477	1,611			
А	IRRIGATION, POTTER	CANADIAN	1,580	1,518	1,425	1,267	1,109	951			
А	IRRIGATION, POTTER	RED	1,645	1,580	1,484	1,320	1,154	989			
А	LIVESTOCK, POTTER	CANADIAN	376	376	378	379	381	384			
А	LIVESTOCK, POTTER	RED	77	77	77	78	78	78			

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 14 of 25

А	MANUFACTURING, POTTER	CANADIAN	1,371	1,477	1,580	1,669	1,792	1,923
А	MANUFACTURING, POTTER	RED	7,771	8,369	8,953	9,459	10,153	10,898
А	MINING, POTTER	CANADIAN	602	735	858	930	1,044	1,172
А	MINING, POTTER	RED	283	346	404	438	491	552
A	STEAM ELECTRIC POWER, POTTER	CANADIAN	23,894	25,228	26,738	28,246	32,109	35,454
	Sum of Project	ed Water Demands (acre-feet)	66,843	71,545	76,613	81,549	89,596	97,437

ROB	ERTS COUNTY	100% (multip	lier)			All value	es are in a	cre-feet
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
A	COUNTY-OTHER, ROBERTS	CANADIAN	48	50	48	48	48	48
А	COUNTY-OTHER, ROBERTS	RED	1	1	1	1	1	1
А	IRRIGATION, ROBERTS	CANADIAN	5,660	5,329	4,897	4,353	3,809	3,265
А	IRRIGATION, ROBERTS	RED	298	280	258	229	200	172
А	LIVESTOCK, ROBERTS	CANADIAN	359	359	360	361	362	363
А	LIVESTOCK, ROBERTS	RED	10	10	10	10	10	10
А	MIAMI	CANADIAN	224	225	223	222	222	222
А	MINING, ROBERTS	CANADIAN	1,457	1,010	593	183	19	2
A	MINING, ROBERTS	RED	45	31	18	6	1	0
	Sum of Project	ed Water Demands (acre-feet)	8,102	7,295	6,408	5,413	4,672	4,083

WHE	ELER COUNTY	100% (multip	olier)			All valu	es are in a	cre-feet
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	COUNTY-OTHER, WHEELER	RED	290	291	293	302	313	325
А	IRRIGATION, WHEELER	RED	8,203	7,983	7,433	6,607	5,781	4,955
А	LIVESTOCK, WHEELER	RED	1,577	1,680	1,682	1,684	1,687	1,689
А	MINING, WHEELER	RED	3,268	2,329	1,413	503	139	119
А	SHAMROCK	RED	350	353	357	369	383	398
А	WHEELER	RED	507	520	533	549	569	592
	Sum of Project	ed Water Demands (acre-feet)	14,195	13,156	11,711	10,014	8,872	8,078

Projected Water Supply Needs TWDB 2017 State Water Plan Data

Negative values (in red) reflect a projected water supply need, positive values a surplus.

ARMSTRONG COUNTY

7 ALXIVIS								
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	CLAUDE	RED	105	52	6	-35	-72	-110
А	COUNTY-OTHER, ARMSTRONG		11	15	16	17	17	17
А	IRRIGATION, ARMSTRONG	RED	0	0	0	0	0	0
A	LIVESTOCK, ARMSTRONG	RED	0	0	0	0	0	0
	Sum of Projected Wa	ater Supply Needs (acre-feet)	0	0	0	-35	-72	-110

CARSON COUNTY

All values are in acre-feet

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	COUNTY-OTHER, CARSON	CANADIAN	88	76	68	67	51	28
A	COUNTY-OTHER, CARSON	RED	92	85	77	75	61	41
A	GROOM	RED	147	166	170	165	153	141
А	IRRIGATION, CARSON	CANADIAN	0	0	0	0	0	0
A	IRRIGATION, CARSON	RED	0	0	0	0	0	0
A	LIVESTOCK, CARSON	CANADIAN	0	0	0	0	0	0
A	LIVESTOCK, CARSON	RED	0	0	0	0	0	0
А	MANUFACTURING, CARSON	CANADIAN	0	0	0	0	0	0
А	MANUFACTURING, CARSON	RED	708	563	458	371	283	190
A	MINING, CARSON	CANADIAN	0	0	0	0	0	0
A	PANHANDLE	RED	-89	-521	-582	-577	-576	-576
A	WHITE DEER	CANADIAN	0	0	0	0	0	0
А	WHITE DEER	RED	0	0	0	0	0	0
	Sum of Projected V	Vater Supply Needs (acre-feet)	-89	-521	-582	-577	-576	-576

DONLEY COUNTY

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	CLARENDON	RED	0	0	0	0	0	0
А	COUNTY-OTHER, DONLEY	RED	20	28	35	37	38	38
А	IRRIGATION, DONLEY	RED	166	166	166	166	166	166
A	LIVESTOCK, DONLEY	RED	0	0	0	0	0	0
	Sum of Projected	Water Supply Needs (acre-feet)	0	0	0	0	0	0

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 16 of 25

GRAY COUNTY

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	COUNTY-OTHER, GRAY	CANADIAN	0	0	0	0	0	0
A	COUNTY-OTHER, GRAY	RED	0	0	0	0	0	0
A	IRRIGATION, GRAY	CANADIAN	0	0	0	0	0	0
А	IRRIGATION, GRAY	RED	0	0	0	0	0	0
A	LIVESTOCK, GRAY	CANADIAN	205	202	199	196	193	189
A	LIVESTOCK, GRAY	RED	557	534	508	480	448	414
A	MANUFACTURING, GRAY	CANADIAN	238	173	225	208	189	162
A	MANUFACTURING, GRAY	RED	12	9	12	11	10	9
A	MCLEAN	RED	40	18	1	-89	-135	-182
A	MINING, GRAY	CANADIAN	0	0	0	0	0	0
A	MINING, GRAY	RED	0	0	0	0	0	0
A	PAMPA	CANADIAN	304	-1,752	-2,491	-2,190	-2,985	-3,806
A	STEAM ELECTRIC POWER, GRAY	CANADIAN	0	0	0	0	0	0
	Sum of Projected	Water Supply Needs (acre-feet)	0	-1,752	-2,491	-2,279	-3,120	-3,988

HUTCHINSON COUNTY

All values are in acre-feet

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	BORGER	CANADIAN	-92	-531	-952	-1,343	-1,647	-1,927
А	COUNTY-OTHER, HUTCHINSON		143	129	120	113	106	102
А	FRITCH	CANADIAN	0	0	0	0	0	0
А	IRRIGATION, HUTCHINSON		96	96	96	96	96	96
А	LIVESTOCK, HUTCHINSON	CANADIAN	0	0	0	0	0	0
А	MANUFACTURING, HUTCHINSON	CANADIAN	10	-860	-1,739	-2,614	-3,487	-4,416
А	MINING, HUTCHINSON	CANADIAN	0	0	0	0	0	0
А	STINNETT	CANADIAN	55	15	0	-115	-165	-216
A	TCW SUPPLY INC	CANADIAN	-75	-251		-466	-535	-569
	Sum of Projected Wa	ater Supply Needs (acre-feet)	-167	-1,642	-3,066	-4,538	-5,834	-7,128

POTT	ER COUNTY					All valu	es are in a	acre-feet
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	AMARILLO	CANADIAN	-1,501	-4,129	-7,241	-10,389	-13,215	-16,315
А	AMARILLO	RED	-987	-2,719	-4,767	-6,840	-8,703	-10,742
А	COUNTY-OTHER, POTTER	CANADIAN	-271	-446	-642	-847	-1,084	-1,336
А	COUNTY-OTHER, POTTER	RED	-412	-510	-620	-736	-869	-1,212
А	IRRIGATION, POTTER	CANADIAN	181	37	0	0	0	7
А	IRRIGATION, POTTER	RED	0	0	1	121	323	519
А	LIVESTOCK, POTTER	CANADIAN	164	163	161	160	158	155
А	LIVESTOCK, POTTER	RED	30	30	30	29	29	29
A	MANUFACTURING, POTTER	CANADIAN	-314	-542	-786	-1,007	-1,220	-1,445

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 17 of 25

А	MANUFACTURING, POTTER	RED	-1,785	-3,069	-4,453	-5,707	-6,910	-8,188
А	MINING, POTTER	CANADIAN	0	0	0	0	0	0
А	MINING, POTTER	RED	0	0	0	0	0	0
A	STEAM ELECTRIC POWER, POTTER	CANADIAN	0	0	0	0	0	0
	Sum of Projected V	Vater Supply Needs (acre-feet)	-5,270	-11,415	-18,509	-25,526	-32,001	-39,238

ROBERTS COUNTY

RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	COUNTY-OTHER, ROBERTS		12	10	12	12	12	12
А	COUNTY-OTHER, ROBERTS	RED	4	4	4	4	4	4
А	IRRIGATION, ROBERTS	CANADIAN	0	0	0	0	0	0
А	IRRIGATION, ROBERTS	RED	0	0	0	0	0	0
А	LIVESTOCK, ROBERTS	CANADIAN	103	103	102	101	100	99
А	LIVESTOCK, ROBERTS	RED	15	15	15	15	15	15
А	MIAMI	CANADIAN	317	316	318	237	171	104
А	MINING, ROBERTS	CANADIAN	0	0	0	0	0	0
A	MINING, ROBERTS	RED	0	0	0	0	0	0
	Sum of Projected V	Vater Supply Needs (acre-feet)	0	0	0	0	0	0

WHEELER COUNTY

All values are in acre-feet

All values are in acre-feet

VVIIL								
RWPG	WUG	WUG Basin	2020	2030	2040	2050	2060	2070
А	COUNTY-OTHER, WHEELER	RED	95	94	92	83	72	60
А	IRRIGATION, WHEELER	RED	895	896	897	899	901	903
А	LIVESTOCK, WHEELER	RED	118	15	13	11	8	6
А	MINING, WHEELER	RED	0	0	0	0	0	0
А	SHAMROCK	RED	607	559	515	451	382	312
A	WHEELER	RED	-184	-249	-308	-365	-412	-453
	Sum of Projected V	Vater Supply Needs (acre-feet)	-184	-249	-308	-365	-412	-453

Projected Water Management Strategies TWDB 2017 State Water Plan Data

ARMSTRONG COUNTY

WUG, Basin (RWPG)					All valu	es are in a	cre-feet
Water Management Strategy	Source Name [Origin]	2020	2030	2040	2050	2060	2070
CLAUDE, RED (A)							
DEVELOP OGALLALA AQUIFER SUPPLIES - CLAUDE	OGALLALA AQUIFER [ARMSTRONG]	0	0	400	400	400	400
MUNICIPAL CONSERVATION - CLAUDE	[ARMSTRONG]	11	11	10	10	10	10
WATER AUDITS AND LEAK REPAIR - CLAUDE	DEMAND REDUCTION [ARMSTRONG]	18	18	18	18	18	18
		29	29	428	428	428	428
IRRIGATION, ARMSTRONG, RED (A)							
IRRIGATION CONSERVATION - ARMSTRONG COUNTY	DEMAND REDUCTION [ARMSTRONG]	206	425	721	800	869	900
WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	WEATHER MODIFICATION [ATMOSPHERE]	402	402	402	402	402	402
		608	827	1,123	1,202	1,271	1,302
Sum of Projected Water Manageme	ent Strategies (acre-feet)	637	856	1,551	1,630	1,699	1,730

CARSON COUNTY

			All valu	ues are in a	acre-feet
2020	2030	2040	2050	2060	2070
5	5	5	5	5	5
5	5	5	5	5	5
1,035	1,797	3,314	3,643	3,841	3,938
1,261	1,261	1,261	1,261	1,261	1,261
2,296	3,058	4,575	4,904	5,102	5,199
2,945	5,113	9,433	10,367	10,933	11,208
3,589	3,589	3,589	3,589	3,589	3,589
6,534	8,702	13,022	13,956	14,522	14,797
600	600	600	600	600	600
	5 5 1,035 1,261 2,296 2,945 3,589 6,534	5 5 5 5 1,035 1,797 1,261 1,261 2,296 3,058 2,945 5,113 3,589 3,589 6,534 8,702	5 5 5 5 5 5 1,035 1,797 3,314 1,261 1,261 1,261 2,296 3,058 4,575 2,945 5,113 9,433 3,589 3,589 3,589 6,534 8,702 13,022	2020 2030 2040 2050 5 5 5 5 5 5 5 5 5 5 5 5 1,035 1,797 3,314 3,643 1,261 1,261 1,261 1,261 2,296 3,058 4,575 4,904 2,945 5,113 9,433 10,367 3,589 3,589 3,589 3,589 6,534 8,702 13,022 13,956	5 5 5 5 5 5 5 5 5 1,035 1,797 3,314 3,643 3,841 1,261 1,261 1,261 1,261 1,261 2,296 3,058 4,575 4,904 5,102 2,945 5,113 9,433 10,367 10,933 3,589 3,589 3,589 3,589 3,589 6,534 8,702 13,022 13,956 14,522

Estimated Historical Water Use and 2017 State Water Plan Dataset:

Panhandle Groundwater Conservation District

December 5, 2016

Page 19 of 25

SUPPLIES - PANHANDLE	[CARSON]						
MUNICIPAL CONSERVATION - PANHANDLE	DEMAND REDUCTION [CARSON]	18	19	19	19	19	19
WATER AUDITS AND LEAK REPAIR - PANHANDLE	DEMAND REDUCTION [CARSON]	29	29	29	29	29	29
		647	648	648	648	648	648
WHITE DEER, CANADIAN (A)							
MUNICIPAL CONSERVATION - WHITE DEER	DEMAND REDUCTION [CARSON]	3	4	4	4	4	4
WATER AUDITS AND LEAK REPAIR - WHITE DEER	DEMAND REDUCTION [CARSON]	5	5	5	5	5	5
		8	9	9	9	9	9
NHITE DEER, RED (A)							
MUNICIPAL CONSERVATION - WHITE DEER	DEMAND REDUCTION [CARSON]	5	5	5	5	5	5
WATER AUDITS AND LEAK REPAIR - WHITE DEER	DEMAND REDUCTION [CARSON]	7	7	7	7	7	7
		12	12	12	12	12	12
Sum of Projected Water Manageme	ent Strategies (acre-feet)	9,502	12,434	18,271	19,534	20,298	20,670

DONLEY COUNTY

WUG, Basin (RWPG)					All value	es are in a	cre-feet
Water Management Strategy	Source Name [Origin]	2020	2030	2040	2050	2060	2070
CLARENDON, RED (A)							
MUNICIPAL CONSERVATION - CLARENDON	DEMAND REDUCTION [DONLEY]	14	13	13	13	13	13
		14	13	13	13	13	13
IRRIGATION, DONLEY, RED (A)							
IRRIGATION CONSERVATION - DONLEY COUNTY	DEMAND REDUCTION [DONLEY]	836	1,484	2,436	2,729	3,065	3,259
WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	WEATHER MODIFICATION [ATMOSPHERE]	1,866	1,866	1,866	1,866	1,866	1,866
		2,702	3,350	4,302	4,595	4,931	5,125
Sum of Projected Water Manager	ment Strategies (acre-feet)	2,716	3,363	4,315	4,608	4,944	5,138

GRAY COUNTY

WUG, Basin (RWPG)					All value	es are in a	cre-feet
Water Management Strategy	Source Name [Origin]	2020	2030	2040	2050	2060	2070
IRRIGATION, GRAY, CANADIAN (A)							
IRRIGATION CONSERVATION - GRAY COUNTY	DEMAND REDUCTION [GRAY]	354	598	1,096	1,209	1,282	1,320
WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	WEATHER MODIFICATION [ATMOSPHERE]	483	483	483	483	483	483
		837	1,081	1,579	1,692	1,765	1,803

IRRIGATION, GRAY, RED (A)

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 20 of 25

	IRRIGATION CONSERVATION - GRAY COUNTY	DEMAND REDUCTION [GRAY]	1,007	1,703	3,120	3,439	3,647	3,758
	WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	WEATHER MODIFICATION [ATMOSPHERE]	1,375	1,375	1,375	1,375	1,375	1,375
			2,382	3,078	4,495	4,814	5,022	5,133
MCLE	EAN, RED (A)							
	DEVELOP OGALLALA AQUIFER SUPPLIES - MCLEAN	OGALLALA AQUIFER [GRAY]	200	200	200	200	200	200
	MUNICIPAL CONSERVATION - MCLEAN	DEMAND REDUCTION [GRAY]	7	7	8	9	10	11
	WATER AUDITS AND LEAK REPAIR - MCLEAN	DEMAND REDUCTION [GRAY]	10	11	12	14	15	16
			217	218	220	223	225	227
PAMI	PA, CANADIAN (A)							
	CONJUNCTIVE USE - CRMWA	MEREDITH LAKE/RESERVOIR [RESERVOIR]	181	168	161	385	385	385
	DEVELOP OGALLALA AQUIFER SUPPLIES - PAMPA	OGALLALA AQUIFER [GRAY]	2,000	2,000	2,000	2,000	2,000	2,000
	EXPAND CAPACITY CRMWA II	OGALLALA AQUIFER [ROBERTS]	0	806	772	1,850	1,848	1,847
	MUNICIPAL CONSERVATION - PAMPA	DEMAND REDUCTION [GRAY]	146	161	178	202	220	240
	REPLACE WELL CAPACITY FOR CRMWA I	OGALLALA AQUIFER [ROBERTS]	0	151	209	732	886	1,077
			2,327	3,286	3,320	5,169	5,339	5,549
	Sum of Projected Water Manageme	ent Strategies (acre-feet)	5,763	7,663	9,614	11,898	12,351	12,712

HUTCHINSON COUNTY

WUG, Basin (RWPG)					All valu	es are in a	cre-feet
Water Management Strategy	Source Name [Origin]	2020	2030	2040	2050	2060	2070
BORGER, CANADIAN (A)							
CONJUNCTIVE USE - CRMWA	MEREDITH LAKE/RESERVOIR [RESERVOIR]	702	652	620	582	581	581
DEVELOP NEW WELL FIELD (OGALLALA AQUIFER) - BORGER	OGALLALA AQUIFER [HUTCHINSON]	6,000	5,140	4,261	3,386	2,513	1,584
EXPAND CAPACITY CRMWA II	OGALLALA AQUIFER [ROBERTS]	0	3,128	2,974	2,793	2,790	2,787
MUNICIPAL CONSERVATION - BORGEF	DEMAND REDUCTION [HUTCHINSON]	104	107	106	106	106	106
REPLACE WELL CAPACITY FOR CRMWA I	OGALLALA AQUIFER [ROBERTS]	0	586	805	1,106	1,337	1,626
		6,806	9,613	8,766	7,973	7,327	6,684
FRITCH, CANADIAN (A)							
MUNICIPAL CONSERVATION - FRITCH	DEMAND REDUCTION [HUTCHINSON]	14	15	14	14	14	14
WATER AUDITS AND LEAK REPAIR - FRITCH	DEMAND REDUCTION [HUTCHINSON]	21	21	21	21	21	21
		35	36	35	35	35	35

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 21 of 25

IRRIGATION, HUTCHINSON, CANADIAN (A)

IRRIGATION CONSERVATION - HUTCHINSON COUNTY	DEMAND REDUCTION [HUTCHINSON]	2,692	4,694	8,578	9,459	10,010	10,281
WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	WEATHER MODIFICATION [ATMOSPHERE]	2,960	2,960	2,960	2,960	2,960	2,960
		5,652	7,654	11,538	12,419	12,970	13,241
MANUFACTURING, HUTCHINSON, CANA	DIAN (A)						
DEVELOP NEW WELL FIELD (OGALLALA AQUIFER) - BORGER	OGALLALA AQUIFER [HUTCHINSON]	0	860	1,739	2,614	3,487	4,416
		0	860	1,739	2,614	3,487	4,416
STINNETT, CANADIAN (A)							
DEVELOP OGALLALA AQUIFER SUPPLIES - STINNETT	OGALLALA AQUIFER [HUTCHINSON]	0	0	0	225	225	225
MUNICIPAL CONSERVATION - STINNETT	DEMAND REDUCTION [HUTCHINSON]	15	15	15	15	15	15
WATER AUDITS AND LEAK REPAIR - STINNETT	DEMAND REDUCTION [HUTCHINSON]	22	23	22	22	22	22
		37	38	37	262	262	262
TCW SUPPLY INC, CANADIAN (A)							
DEVELOP OGALLALA AQUIFER SUPPLIES - TCW SUPPLY	OGALLALA AQUIFER [HUTCHINSON]	575	575	575	575	575	575
MUNICIPAL CONSERVATION - TCW SUPPLY	DEMAND REDUCTION [HUTCHINSON]	21	21	21	21	22	22
WATER AUDITS AND LEAK REPAIR - TCW SUPPLY	DEMAND REDUCTION [HUTCHINSON]	37	38	38	38	37	37
		633	634	634	634	634	634
Sum of Projected Water Managem	nent Strategies (acre-feet)	13,163	18,835	22,749	23,937	24,715	25,272

POTTER COUNTY

'UG, Basin (RWPG)					All valu	ies are in a	acre-feet
Water Management Strategy	Source Name [Origin]	2020	2030	2040	2050	2060	2070
MARILLO, CANADIAN (A)							
CONJUNCTIVE USE - CRMWA	MEREDITH LAKE/RESERVOIR [RESERVOIR]	1,524	1,525	1,454	1,365	1,364	1,364
DEVELOP CARSON COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO	OGALLALA AQUIFER [CARSON]	0	0	3,718	1,700	1,700	1,700
DEVELOP POTTER COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO	OGALLALA AQUIFER [POTTER]	510	300	200	500	567	0
DEVELOP ROBERTS COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO	OGALLALA AQUIFER [ROBERTS]	0	0	0	0	0	3,715
EXPAND CAPACITY CRMWA II	OGALLALA AQUIFER [ROBERTS]	0	7,320	6,979	6,552	6,547	6,546
MUNICIPAL CONSERVATION - AMARILLO	DEMAND REDUCTION [POTTER]	577	642	704	768	840	916
REPLACE WELL CAPACITY FOR CRMWA I	OGALLALA AQUIFER [ROBERTS]	0	1,372	1,890	2,593	3,137	3,818
		2,611	11,159	14,945	13,478	14,155	18,059

Estimated Historical Water Use and 2017 State Water Plan Dataset:

Panhandle Groundwater Conservation District December 5, 2016

Page 22 of 25

AMARILLO, RED (A)

CONJUNCTIVE USE - CRMWA	MEREDITH LAKE/RESERVOIR [RESERVOIR]	1,003	1,004	957	899	898	898
DEVELOP CARSON COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO	OGALLALA AQUIFER [CARSON]	0	0	2,448	1,000	1,325	1,000
DEVELOP POTTER COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO	OGALLALA AQUIFER [POTTER]	900	575	387	750	233	0
DEVELOP ROBERTS COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO	OGALLALA AQUIFER [ROBERTS]	0	0	0	0	0	2,446
EXPAND CAPACITY CRMWA II	OGALLALA AQUIFER [ROBERTS]	0	4,819	4,595	4,314	4,310	4,310
MUNICIPAL CONSERVATION - AMARILLO	DEMAND REDUCTION [POTTER]	380	423	464	506	553	603
REPLACE WELL CAPACITY FOR CRMWA I	OGALLALA AQUIFER [ROBERTS]	0	903	944	1,708	2,065	2,514
OUNTY OTHER ROTTER CANADIAN (A.)		2,283	7,724	9,795	9,177	9,384	11,771
OUNTY-OTHER, POTTER, CANADIAN (A)							
DEVELOP DOCKUM AQUIFER SUPPLIES - POTTER COUNTY OTHER	DOCKUM AQUIFER [POTTER]	560	560	560	560	560	560
DEVELOP OGALLALA AQUIFER SUPPLIES (IRRIGATION CONSERVATION) - POTTER COUNTY OTHER	OGALLALA AQUIFER [POTTER]	0	0	0	0	0	44
DEVELOP OGALLALA AQUIFER SUPPLIES - POTTER COUNTY OTHER	OGALLALA AQUIFER [POTTER]	575	576	535	429	308	0
MUNICIPAL CONSERVATION - POTTER COUNTY OTHER	DEMAND REDUCTION [POTTER]	72	79	86	95	103	113
WATER AUDITS AND LEAK REPAIR - POTTER COUNTY OTHER	DEMAND REDUCTION [POTTER]	98	107	117	127	139	152
		1,305	1,322	1,298	1,211	1,110	869
OUNTY-OTHER, POTTER, RED (A)							
DEVELOP DOCKUM AQUIFER SUPPLIES - POTTER COUNTY OTHER	DOCKUM AQUIFER [POTTER]	140	140	140	140	140	140
DEVELOP OGALLALA AQUIFER SUPPLIES - POTTER COUNTY OTHER	OGALLALA AQUIFER [POTTER]	325	324	365	471	592	856
MUNICIPAL CONSERVATION - POTTER COUNTY OTHER	DEMAND REDUCTION [POTTER]	40	44	49	53	58	63
WATER AUDITS AND LEAK REPAIR - POTTER COUNTY OTHER	DEMAND REDUCTION [POTTER]	56	61	66	72	79	85
		561	569	620	736	869	1,144
RRIGATION, POTTER, CANADIAN (A)							
RRIGATION, POTTER, CANADIAN (A) IRRIGATION CONSERVATION - POTTER COUNTY	DEMAND REDUCTION [POTTER]	47	102	231	276	337	311
IRRIGATION CONSERVATION -		47 106	102 106	231 106	276 106	337 106	311 106
IRRIGATION CONSERVATION - POTTER COUNTY WEATHER MODIFICATION	[POTTER] WEATHER MODIFICATION		-				-
IRRIGATION CONSERVATION - POTTER COUNTY WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	[POTTER] WEATHER MODIFICATION	106	106	106	106	106	106

Estimated Historical Water Use and 2017 State Water Plan Dataset:

Panhandle Groundwater Conservation District December 5, 2016 Page 23 of 25

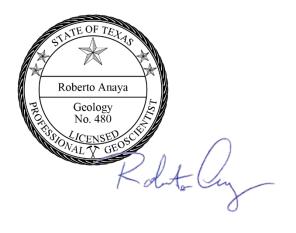
(PRECIPITATION ENHANCEMENT)	[ATMOSPHERE]						
		158	217	198	193	186	240
ANUFACTURING, POTTER, CANADIAN	(A)						
DEVELOP CARSON COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO	OGALLALA AQUIFER [CARSON]	0	0	0	579	635	479
DEVELOP POTTER COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO	OGALLALA AQUIFER [POTTER]	396	562	526	500	600	1,000
REPLACE WELL CAPACITY FOR CRMWA I	OGALLALA AQUIFER [ROBERTS]	0	0	300	0	0	0
		396	562	826	1,079	1,235	1,479
ANUFACTURING, POTTER, RED (A)							
DEVELOP CARSON COUNTY WELL	OGALLALA AQUIFER						
FIELD (OGALLALA AQUIFER) - AMARILLO	[CARSON]	0	0	0	5,112	4,540	5,798
. , , , , , , , , , , , , , , , , , , ,	[CARSON] OGALLALA AQUIFER [POTTER]	0 2,246	0 3,187	0 2,982	5,112	4,540 2,461	5,798 2,583
AMARILLO DEVELOP POTTER COUNTY WELL FIELD (OGALLALA AQUIFER) -	OGALLALA AQUIFER						
AMARILLO DEVELOP POTTER COUNTY WELL FIELD (OGALLALA AQUIFER) - AMARILLO REPLACE WELL CAPACITY FOR	OGALLALA AQUIFER [POTTER] OGALLALA AQUIFER	2,246	3,187	2,982	1,001	2,461	2,583

ROBERTS COUNTY

WUG, Basin (RWPG)					All valu	es are in a	cre-feet
Water Management Strategy	Source Name [Origin]	2020	2030	2040	2050	2060	2070
IRRIGATION, ROBERTS, CANADIAN (A)							
IRRIGATION CONSERVATION - ROBERTS COUNTY	DEMAND REDUCTION [ROBERTS]	413	681	1,272	1,401	1,473	1,510
WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	WEATHER MODIFICATION [ATMOSPHERE]	446	446	446	446	446	446
		859	1,127	1,718	1,847	1,919	1,956
IRRIGATION, ROBERTS, RED (A)							
IRRIGATION CONSERVATION - ROBERTS COUNTY	DEMAND REDUCTION [ROBERTS]	22	36	67	74	77	80
WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	WEATHER MODIFICATION [ATMOSPHERE]	23	23	23	23	23	23
		45	59	90	97	100	103
MIAMI, CANADIAN (A)							
MUNICIPAL CONSERVATION - MIAMI	DEMAND REDUCTION [ROBERTS]	6	7	6	6	6	6
WATER AUDITS AND LEAK REPAIR - MIAMI	DEMAND REDUCTION [ROBERTS]	11	11	11	11	11	11
		17	18	17	17	17	17
Sum of Projected Water Managen	nent Strategies (acre-feet)	921	1,204	1,825	1,961	2,036	2,076

WHEELER COUNTY

Estimated Historical Water Use and 2017 State Water Plan Dataset: Panhandle Groundwater Conservation District December 5, 2016 Page 24 of 25


WUG, Basin (RWPG)					All valu	es are in a	cre-feet
Water Management Strategy	Source Name [Origin]	2020	2030	2040	2050	2060	2070
IRRIGATION, WHEELER, RED (A)							
IRRIGATION CONSERVATION - WHEELER COUNTY	DEMAND REDUCTION [WHEELER]	395	706	1,230	1,364	1,480	1,542
WEATHER MODIFICATION (PRECIPITATION ENHANCEMENT)	WEATHER MODIFICATION [ATMOSPHERE]	944	944	944	944	944	944
		1,339	1,650	2,174	2,308	2,424	2,486
SHAMROCK, RED (A)							
MUNICIPAL CONSERVATION - SHAMROCK	DEMAND REDUCTION [WHEELER]	12	13	13	14	14	15
WATER AUDITS AND LEAK REPAIR - SHAMROCK	DEMAND REDUCTION [WHEELER]	18	18	18	18	19	20
		30	31	31	32	33	35
WHEELER, RED (A)							
DEVELOP OGALLALA AQUIFER SUPPLIES - WHEELER	OGALLALA AQUIFER [WHEELER]	500	500	500	500	500	500
MUNICIPAL CONSERVATION - WHEELER	DEMAND REDUCTION [WHEELER]	15	15	16	16	17	18
		515	515	516	516	517	518
Sum of Projected Water Managem	ent Strategies (acre-feet)	1,884	2,196	2,721	2,856	2,974	3,039

Appendix 5

GAM RUN 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 (Anaya, R., 2023)

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1

Roberto Anaya, P.G. Texas Water Development Board Groundwater Division Groundwater Modeling Department 512-463-6115 February 28, 2023

This page is intentionally left blank.

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1

Roberto Anaya, P.G. Texas Water Development Board Groundwater Division Groundwater Modeling Department 512-463-6115 February 28, 2023

EXECUTIVE SUMMARY:

The modeled available groundwater for the High Plains Aquifer System within Groundwater Management Area 1 is summarized by decade for the groundwater conservation districts (Tables 1 and 2) and for use in the regional water planning process (Tables 3 and 4). The modeled available groundwater values for the Ogallala Aquifer (inclusive of the Rita Blanca Aquifer) range from 3,192,963 acre-feet per year in 2020 to 1,991,106 acre-feet per year in 2080 (Table 1). The modeled available groundwater values for the Dockum Aquifer range from 288,052 acre-feet per year in 2020 to 241,087 acre-feet per year in 2080 (Table 2).

The modeled available groundwater values for the Ogallala (inclusive of the Rita Blanca Aquifer) and Dockum aquifers were extracted from results of a model simulation using the groundwater availability model for the High Plains Aquifer System (version 1.01). District representatives in Groundwater Management Area 1 declared the Blaine and Seymour aquifers to be non-relevant for the purposes of joint groundwater planning. The explanatory report and other materials submitted to the TWDB were determined to be administratively complete on December 16, 2022.

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 4 of 23*

REQUESTOR:

Mr. Dustin Meyer, Groundwater Management Area 1 coordinator at the time of the request.

DESCRIPTION OF REQUEST:

District representatives in Groundwater Management Area 1 adopted desired future conditions by resolution for the aquifers in the area on August 26, 2021:

Ogallala (inclusive of the Rita Blanca) Aquifer:

- *"At least 40 percent of volume in storage remaining for each 50-year period between 2018 and 2080 in Dallam, Hartley, Moore, and Sherman Counties"*
- "At least 50 percent of volume in storage remaining for each 50-year period between 2018 and 2080 in Hansford, Hutchison, Lipscomb, Ochiltree, Carson, Donley, Gray, Roberts, Wheeler, and Oldham Counties; and within the Panhandle District portions of Armstrong and Potter Counties"
- *"At least 80 percent of volume in storage remaining for each 50-year period between 2018 and 2080 in Hemphill County"*
- "Approximately 20 feet of total average drawdown for each 50-year period between 2012 and 2080 in Randall County and within High Plains District in Armstrong and Potter Counties".

Dockum Aquifer:

- "At least 40 percent of the average available drawdown remaining for each 50-year period between 2018 and 2080 in Dallam, Hartley, Moore, and Sherman Counties"
- "No more than 30 feet average decline in water levels for each 50-year period between 2018 and 2080 in Oldham and Carson Counties and the Panhandle District portions of Potter and Armstrong Counties"
- "Approximately 40 feet average decline in water levels for each 50-year period between 2012 and 2080 in Randall County and within High Plains District in Armstrong and Potter Counties".

District representatives in Groundwater Management Area 1 determined the Blaine and Seymour aquifers were not relevant for purposes of joint planning.

On January 4, 2022, Mr. Wade Oliver, on behalf of Groundwater Management Area 1, submitted the Desired Future Conditions Explanatory Report and accompanying files to the TWDB. Groundwater Management Area 1 adopted four geographically defined desired future conditions for the Ogallala (inclusive of the Rita Blanca) Aquifer, and three GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 5 of 23*

geographically defined desired future conditions for the Dockum Aquifer, as presented above. TWDB staff reviewed the model files associated with the desired future conditions and some of the desired future conditions were initially not mutually compatible with the groundwater availability model results for the High Plains Aquifer System.

The technical coordinator and consultant for Groundwater Management Area 1 confirmed that the intended desired future conditions required clarification for the assumption of "averaging the 50-year periods," as defined in the resolution adopting desired future conditions. Additionally, the technical coordinator and consultant for the Groundwater Management Area 1 confirmed that a 1 percent tolerance was acceptable for the desired future conditions of both the Ogallala (inclusive of the Rita Blanca) Aquifer and the Dockum Aquifer.

The TWDB received clarifications on procedures and assumptions from the Groundwater Management Area 1 technical coordinator on November 10, 2022, and on November 17, 2022, and a letter of administrative completeness was then provided by the TWDB to Groundwater Management Area 1 on December 16, 2022. All clarifications are included in Appendix A of this report.

METHODS:

The groundwater availability model for the High Plains Aquifer System version 1.01 was run using model files submitted with the explanatory report (Groundwater Management Area 1 and Oliver, 2021) for both the Ogallala (inclusive of the Rita Blanca) Aquifer and the Dockum Aquifer (Figures 1 and 2). Model-simulated water levels were extracted for the years 2019 (stress period 1) through 2080 (stress period 62).

Average percent volumes in storage remaining, total average drawdowns, percent of average drawdowns remaining, and average decline in water levels were calculated according to the Desired Future Conditions Explanatory Report provided by Groundwater Management Area 1 (Groundwater Management Area 1, and Oliver, W., INTERA Inc., 2021). The calculated average percent volumes in storage remaining, total average drawdowns, percent of average drawdowns remaining, and average decline in water level values were then analyzed to verify that the annual pumping scenarios characterized in the submitted model files achieved the desired future conditions within a tolerance of one percent.

The modeled available groundwater values were determined by extracting pumping rates at the end of each decade from the model results using ZONEBUDGET Version 3.01 (Harbaugh, 2009). Annual pumping rates by aquifer are summarized by county and groundwater conservation district, subtotaled by groundwater conservation district, and then summed for Groundwater Management Area 1 (Tables 1 and 2). Annual pumping rates by aquifer are summarized by county, river basin, and regional water planning area GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 6 of 23*

within Groundwater Management Area 1 (Tables 3 and 4) to be consistent with the format used in the regional water planning process.

Modeled Available Groundwater and Permitting

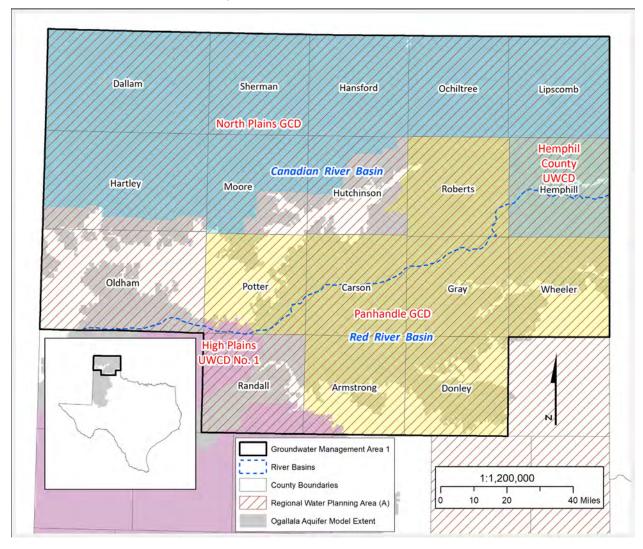
As defined in Chapter 36 of the Texas Water Code (2011), "modeled available groundwater" is the estimated average amount of water that may be produced annually to achieve a desired future condition. Groundwater conservation districts are required to consider modeled available groundwater, along with several other factors, when issuing permits to manage groundwater production that achieves the desired future condition(s). The other factors districts must consider include annual precipitation and production patterns, the estimated amount of pumping exempt from permitting, existing permits, and a reasonable estimate of actual groundwater production under existing permits.

PARAMETERS AND ASSUMPTIONS:

The parameters and assumptions for the modeled available groundwater values are described below:

Ogallala (inclusive of the Rita Blanca Aquifer) and Dockum aquifers

- We used Version 1.01 of the groundwater availability model for the High Plains Aquifer System. See Deeds and Jigmond (2015) for assumptions and limitations of the groundwater availability model for the Ogallala, Rita Blanca, and Dockum aquifers.
- This groundwater availability model includes four layers, which generally represent the Ogallala Aquifer (Layer 1), the Rita Blanca Aquifer (Layer 2), the Upper Unit of the Dockum Aquifer (Layer 3), and the Lower Unit of the Dockum Aquifer (Layer 4). Since active model cells extend beyond the official TWDB aquifer extents, please note that only active model cells within the official TWDB aquifer extents and within Groundwater Management Area 1 were considered for analysis of the desired future conditions and modeled available groundwater values.
- The model was run with MODFLOW-NWT (Niswonger and others, 2011).
- Although the original groundwater availability model was calibrated only to 2012, an analysis during the current round of joint planning (Groundwater Management Area 1 and Oliver, 2021) verified that the model satisfactorily matched measured water levels for the period from 2012 to 2018. For this reason, the TWDB considers it acceptable to use the end of 2018 as the reference year for initial starting water levels for the predictive model simulation from 2019 to 2080.


GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 7 of 23*

- Average percent volumes in storage remaining, total average drawdowns, percent of average drawdowns remaining, and average decline in water levels, as well as modeled available groundwater values were based on the active model cells spatially coincident within the official TWDB defined aquifer boundaries.
- Model cells that became dry (when the water level in a model cell drops below the base of the aquifer) at the start of a simulated 50-year duration cycle were excluded from the desired future conditions analysis. Pumping in dry cells were excluded from the modeled available groundwater values for the decades after the cell went dry.
- A tolerance value of one percent was assumed when comparing desired future conditions to modeled results of average percent volumes in storage remaining, total average drawdowns, percent of average drawdowns remaining, and average decline in water levels. This one percent tolerance was specified by the Groundwater Management Area 1 in clarification statements for their desired future conditions resolution (Appendix A).
- Calculations of modeled available groundwater from the model simulation were rounded to the nearest whole number in units of acre-feet per year.
- The verification calculation for the desired future conditions of average percent volume in storage remaining for each 50-year period between 2018 and 2080 in the Ogallala (inclusive of the Rita Blanca) Aquifer for Dallam, Sherman, Hartley, and Moore counties is based on model layer 1 where the Rita Blanca Aquifer does not exist and on an average of model layers 1 and 2 for the area where the extent of the Rita Blanca Aquifer is spatially coincident with the Ogallala Aquifer within Dallam and Hartley counties.

RESULTS:

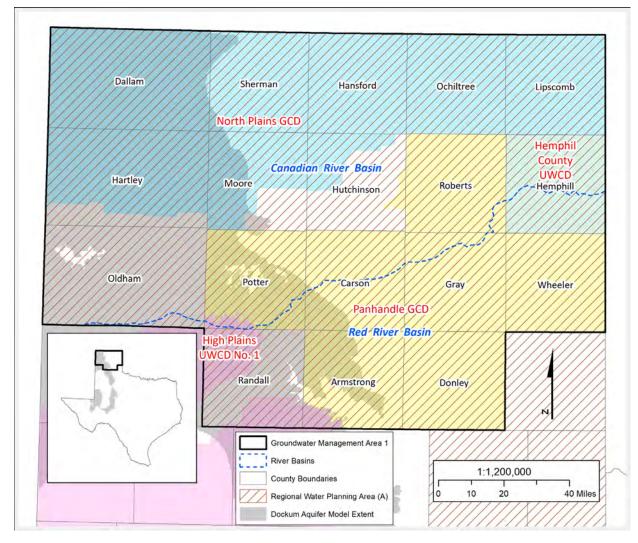

The modeled available groundwater values for the Ogallala (inclusive of the Rita Blanca Aquifer) Aquifer range from 3,192,963 acre-feet per year in 2020 to 1,991,106 acre-feet per year in 2080 (Table 1). The modeled available groundwater values for the Dockum Aquifer range from approximately 288,052 acre-feet per year in 2020 to 241,087 acre-feet per year in 2080 (Table 2). The modeled available groundwater is summarized by groundwater conservation district and county for the Ogallala (inclusive of the Rita Blanca Aquifer) and Dockum aquifers (Tables 1 and 2). The modeled available groundwater has also been summarized by county, river basin, and regional water planning area for use in the regional water planning process for the Ogallala (inclusive of the Rita Blanca Aquifer) and Dockum aquifers (Tables 3 and 4). GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 8 of 23*

FIGURE 1. GROUNDWATER MANAGEMENT AREA (GMA) 1 BOUNDARY, RIVER BASINS, COUNTIES, REGIONAL WATER PLANNING AREAS (RWPAS), AND GROUNDWATER CONSERVATION DISTRICTS (GCDS) OVERLAIN ON THE MODEL EXTENT OF THE OGALLALA (INCLUSIVE OF THE RITA BLANCA) AQUIFER.

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 9 of 23*

FIGURE 2. GROUNDWATER MANAGEMENT AREA (GMA) 1 BOUNDARY, RIVER BASINS, COUNTIES, REGIONAL WATER PLANNING AREAS (RWPAS), AND GROUNDWATER CONSERVATION DISTRICTS (GCDS) OVERLAIN ON THE MODEL EXTENT OF THE DOCKUM AQUIFER.

TABLE 1.MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA (INCLUSIVE OF THE RITA BLANCA AQUIFER) AQUIFER IN
GROUNDWATER MANAGEMENT AREA 1 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR
EACH DECADE BETWEEN 2020 AND 2080. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District	County	Aquifer	2020	2030	2040	2050	2060	2070	2080
Hemphill County UWCD	Hemphill	Ogallala	37,259	45,816	52,208	55,621	58,039	59,257	60,177
Hemphill Cour Total	nty UWCD	Ogallala	37,259	45,816	52,208	55,621	58,039	59,257	60,177
High Plains UWCD No.1	Armstrong	Ogallala	5,679	4,713	3,007	1,877	1,181	968	786
High Plains UWCD No.1	Potter	Ogallala	2,348	2,538	2,362	2,049	1,634	1,075	802
High Plains UWCD No.1	Randall	Ogallala	36,992	34,674	29,709	24,585	20,385	17,088	14,559
High Plains UV Total	VCD No.1	Ogallala	45,019	41,925	35,078	28,511	23,200	19,131	16,147
North Plains GCD	Dallam	Ogallala*	319,988	269,575	228,726	194,888	165,787	144,360	128,259
North Plains GCD	Hansford	Ogallala	297,486	295,700	281,612	264,290	247,744	229,800	211,464
North Plains GCD	Hartley	Ogallala†	355,646	270,230	207,754	169,890	144,564	124,366	108,352
North Plains GCD	Hutchinson	Ogallala	77,920	80,189	77,835	74,461	70,609	67,496	64,083
North Plains GCD	Lipscomb	Ogallala	251,489	270,819	263,478	249,968	235,561	218,975	201,984

^{*} Ogallala Aquifer also includes the Rita Blanca Aquifer where they are both spatially coincident within the Dallam County portion of North Plains GCD.

[†] Ogallala Aquifer also includes the Rita Blanca Aquifer where they are both spatially coincident within the Hartley County portion of North Plains GCD.

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023*

Page 11 of 23

TABLE 1 (CONTINUED). MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA (INCLUSIVE OF THE RITA BLANCA AQUIFER) AQUIFERIN GROUNDWATER MANAGEMENT AREA 1 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTYFOR EACH DECADE BETWEEN 2020 AND 2080. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District	County	Aquifer	2020	2030	2040	2050	2060	2070	2080
North Plains GCD	Ochiltree	Ogallala	259,676	259,973	247,274	231,502	215,617	199,324	181,295
North Plains GCD	Sherman	Ogallala	290,148	287,657	261,521	226,142	198,338	166,675	145,399
North Plains G	CD Total	Ogallala	1,992,761	1,873,888	1,700,937	1,532,757	1,384,354	1,239,161	1,113,964
Panhandle GCD	Armstrong	Ogallala	56,940	51,726	45,757	40,241	35,089	30,685	27,137
Panhandle GCD	Carson	Ogallala	163,315	166,024	159,756	149,768	141,251	134,365	121,774
Panhandle GCD	Donley	Ogallala	72,747	78,267	77,157	72,601	67,032	60,915	53,337
Panhandle GCD	Gray	Ogallala	177,633	181,648	173,602	160,382	147,045	133,802	121,936
Panhandle GCD	Hutchinson	Ogallala	8,524	10,589	11,798	11,784	11,427	10,775	9,606
Panhandle GCD	Potter	Ogallala	24,022	22,245	19,590	16,477	13,607	10,990	8,821
Panhandle GCD	Roberts	Ogallala	358,704	409,300	394,930	369,335	344,109	317,529	286,594
Panhandle GCD	Wheeler	Ogallala	119,602	132,615	132,787	128,472	121,852	114,269	106,929
Panhandle GCI) Total	Ogallala	981,487	1,052,414	1,015,377	949,060	881,412	813,330	736,134
All Districts To	otal	Ogallala	3,056,526	3,014,043	2,803,600	2,565,949	2,347,005	2,130,879	1,926,422

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 12 of 23*

TABLE 1 (CONTINUED). MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA (INCLUSIVE OF THE RITA BLANCA AQUIFER) AQUIFERIN GROUNDWATER MANAGEMENT AREA 1 SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTYFOR EACH DECADE BETWEEN 2020 AND 2080. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District	County	Aquifer	2020	2030	2040	2050	2060	2070	2080
No District- County	Hartley	Ogallala‡	15,555	16,380	15,634	14,309	12,989	11,646	10,434
No District- County	Hutchinson	Ogallala	33,955	32,967	28,372	24,059	20,978	18,576	17,204
No District- County	Moore	Ogallala	8,703	9,681	9,415	8,245	7,122	6,198	5,517
No District- County	Oldham	Ogallala	40,496	39,067	36,192	31,219	26,044	21,393	18,041
No District- County	Randall	Ogallala	37,728	35,877	30,800	25,725	20,992	17,103	13,488
No District Tot	al	Ogallala	136,437	133,972	120,413	103,557	88,125	74,916	64,684
GMA 1 Total		Ogallala	3,192,963	3,148,015	2,924,013	2,669,506	2,435,130	2,205,795	1,991,106

[‡] Ogallala Aquifer also includes the Rita Blanca Aquifer where they are both spatially coincident within Hartley County and outside of any groundwater district.

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 February 28, 2023

Page 13 of 23

TABLE 2.MODELED AVAILABLE GROUNDWATER FOR THE DOCKUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 1 SUMMARIZED
BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2020 AND 2080. VALUES ARE
IN ACRE-FEET PER YEAR.

Groundwater Conservation District	County	Aquifer	2020	2030	2040	2050	2060	2070	2080
High Plains UWCD No.1	Armstrong	Dockum	1,853	835	221	221	221	221	221
High Plains UWCD No.1	Potter	Dockum	2,663	2,657	2,406	2,315	2,281	2,248	2,172
High Plains UWCD No.1	Randall	Dockum	6,997	8,736	9,703	8,428	7,698	7,610	7,782
High Plains UW Total	VCD No.1	Dockum	11,513	12,228	12,330	10,964	10,200	10,079	10,175
North Plains GCD	Dallam	Dockum	15,969	15,522	14,700	14,019	13,513	12,895	12,415
North Plains GCD	Hartley	Dockum	12,402	11,792	11,051	10,334	9,755	9,234	8,831
North Plains GCD	Moore	Dockum	4,496	5,399	5,409	5,064	4,782	4,474	4,213
North Plains GCD	Sherman	Dockum	445	416	310	288	293	288	291
North Plains G	CD Total	Dockum	33,312	33,129	31,470	29,705	28,343	26,891	25,750
Panhandle GCD	Armstrong	Dockum	5,313	7,102	8,122	8,601	8,849	8,904	8,914
Panhandle GCD	Carson	Dockum	6	6	6	6	6	6	6
Panhandle GCD	Potter	Dockum	30,160	37,699	37,853	36,963	35,881	34,685	33,571
Panhandle GCI) Total	Dockum	35,479	44,807	45,981	45,570	44,736	43,595	42,491
All Districts To	otal	Dockum	80,304	90,164	89,781	86,239	83,279	80,565	78,416

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 14 of 23*

TABLE 2 (CONTINUED). MODELED AVAILABLE GROUNDWATER FOR THE DOCKUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 1SUMMARIZED BY GROUNDWATER CONSERVATION DISTRICT (GCD) AND COUNTY FOR EACH DECADE BETWEEN 2020 AND2080. VALUES ARE IN ACRE-FEET PER YEAR.

Groundwater Conservation District	County	Aquifer	2020	2030	2040	2050	2060	2070	2080
No District- County	Hartley	Dockum	44,260	52,799	53,096	50,432	46,907	42,974	39,311
No District- County	Moore	Dockum	241	560	594	616	643	645	625
No District- County	Oldham	Dockum	144,234	153,787	145,925	135,393	124,861	114,569	105,341
No District- County	Randall	Dockum	19,013	29,231	32,057	31,502	28,550	21,149	17,394
No District Tot	al	Dockum	207,748	236,377	231,672	217,943	200,961	179,337	162,671
GMA 1 Total		Dockum	288,052	326,541	321,453	304,182	284,240	259,902	241,087

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 February 28, 2023

Page 15 of 23

TABLE 3. MO	DELED AVAILABLE GROUNDWATER FOR THE OGALLALA (INCLUSIVE OF THE RITA BLANCA AQUIFER) AQUIFER IN
GRC	DUNDWATER MANAGEMENT AREA 1 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), RIVER BASIN,
ANE	D AQUIFER FOR EACH DECADE BETWEEN 2030 AND 2080. VALUES ARE IN ACRE-FEET PER YEAR.

County	RWPA	River basin	Aquifer	2030	2040	2050	2060	2070	2080
Armstrong	А	RED	Ogallala	56,439	48,764	42,118	36,270	31,653	27,923
Carson	А	CANADIAN	Ogallala	68,193	66,220	62,132	57,975	54,708	49,565
Carson	А	RED	Ogallala	97,831	93,536	87,636	83,276	79,657	72,209
Dallam	А	CANADIAN	Ogallala§	269,575	228,726	194,888	165,787	144,360	128,259
Donley	А	RED	Ogallala	78,267	77,157	72,601	67,032	60,915	53,337
Gray	А	CANADIAN	Ogallala	46,240	43,480	39,643	36,480	33,394	30,628
Gray	А	RED	Ogallala	135,408	130,122	120,739	110,565	100,408	91,308
Hansford	А	CANADIAN	Ogallala	295,700	281,612	264,290	247,744	229,800	211,464
Hartley	А	CANADIAN	Ogallala**	286,610	223,388	184,199	157,553	136,012	118,786
Hemphill	А	CANADIAN	Ogallala	24,975	29,168	32,388	34,729	36,110	37,074
Hemphill	А	RED	Ogallala	20,841	23,040	23,233	23,310	23,147	23,103
Hutchinson	А	CANADIAN	Ogallala	123,745	118,005	110,304	103,014	96,847	90,893
Lipscomb	А	CANADIAN	Ogallala	270,819	263,478	249,968	235,561	218,975	201,984
Moore	А	CANADIAN	Ogallala	149,426	142,152	129,861	113,256	94,363	78,645
Ochiltree	А	CANADIAN	Ogallala	259,973	247,274	231,502	215,617	199,324	181,295
Oldham	А	CANADIAN	Ogallala	34,871	32,845	28,578	23,948	19,789	16,869
Oldham	А	RED	Ogallala	4,196	3,347	2,641	2,096	1,604	1,172
Potter	А	CANADIAN	Ogallala	14,672	13,137	11,036	9,214	7,648	6,337
Potter	А	RED	Ogallala	10,111	8,815	7,490	6,027	4,417	3,286
Randall	А	RED	Ogallala	70,551	60,509	50,310	41,377	34,191	28,047
Roberts	А	CANADIAN	Ogallala	386,950	372,064	346,908	322,461	297,068	267,425
Roberts	А	RED	Ogallala	22,350	22,866	22,427	21,648	20,461	19,169

[§] Ogallala Aquifer also includes the Rita Blanca Aquifer where they are both spatially coincident within Dallam County and the Canadian River basin.
** Ogallala Aquifer also includes the Rita Blanca Aquifer where they are both spatially coincident within Hartley County and the Canadian River basin.

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 16 of 23*

TABLE 3 (CONTINUED). MODELED AVAILABLE GROUNDWATER FOR THE OGALLALA (INCLUSIVE OF THE RITA BLANCA AQUIFER) AQUIFER IN GROUNDWATER MANAGEMENT AREA 1 SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), RIVER BASIN, AND AQUIFER FOR EACH DECADE BETWEEN 2030 AND 2080. VALUES ARE IN ACRE-FEET PER YEAR.

County	RWPA	River basin	Aquifer	2030	2040	2050	2060	2070	2080
Sherman	А	CANADIAN	Ogallala	287,657	261,521	226,142	198,338	166,675	145,399
Wheeler	А	RED	Ogallala	132,615	132,787	128,472	121,852	114,269	106,929
GMA 1 Total			Ogallala	3,148,015	2,924,013	2,669,506	2,435,130	2,205,795	1,991,106

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 17 of 23*

TABLE 4.MODELED AVAILABLE GROUNDWATER FOR THE DOCKUM AQUIFER IN GROUNDWATER MANAGEMENT AREA 1
SUMMARIZED BY COUNTY, REGIONAL WATER PLANNING AREA (RWPA), RIVER BASIN, AND AQUIFER FOR EACH
DECADE BETWEEN 2030 AND 2080. VALUES ARE IN ACRE-FEET PER YEAR.

County	RWPA	River basin	Aquifer	2030	2040	2050	2060	2070	2080
Armstrong	А	RED	Dockum	7,937	8,343	8,822	9,070	9,125	9,135
Carson	А	CANADIAN	Dockum	0	0	0	0	0	0
Carson	А	RED	Dockum	6	6	6	6	6	6
Dallam	А	CANADIAN	Dockum	15,522	14,700	14,019	13,513	12,895	12,415
Hartley	А	CANADIAN	Dockum	64,591	64,147	60,766	56,662	52,208	48,142
Moore	А	CANADIAN	Dockum	5,959	6,003	5,680	5,425	5,119	4,838
Oldham	А	CANADIAN	Dockum	153,694	145,814	135,269	124,727	114,427	105,188
Oldham	А	RED	Dockum	93	111	124	134	142	153
Potter	А	CANADIAN	Dockum	38,004	38,158	37,268	36,186	34,990	33,815
Potter	А	RED	Dockum	2,352	2,101	2,010	1,976	1,943	1,928
Randall	А	RED	Dockum	37,967	41,760	39,930	36,248	28,759	25,176
Sherman	А	CANADIAN	Dockum	416	310	288	293	288	291
GMA 1 Total		Dockum	326,541	321,453	304,182	284,240	259,902	241,087	

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 18 of 23*

LIMITATIONS:

The groundwater model used in completing this analysis is the best available scientific tool that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

"Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results."

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and streamflow are specific to a particular historic time period.

Because the application of the groundwater model was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations relating to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and groundwater levels in the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions. GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 Page 19 of 23*

REFERENCES:

- Deeds, Neil E. and Jigmond, Marius, 2015, Numerical Model Report for the High Plains Aquifer System Groundwater Availability Model: Prepared for Texas Water Development Board, 640 p., <u>http://www.twdb.texas.gov/groundwater/models/gam/hpas/HPAS GAM Numeric</u> <u>al Report.pdf</u>.
- Groundwater Management Area 1, and Oliver, W., INTERA Inc., 2021, Desired Future Conditions Explanatory Report (Groundwater Management Area 1), December 2021, 595 p.
- Harbaugh, A. W., 2009, Zonebudget Version 3.01, A computer program for computing subregional water budgets for MODFLOW ground-water flow models, U.S. Geological Survey Groundwater Software.
- National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p., <u>http://www.nap.edu/catalog.php?record_id=11972</u>.
- Niswonger, R.G., Panday, S., and Ibaraki, M., 2011, MODFLOW-NWT, a Newton formulation for MODFLOW-2005: United States Geological Survey, Techniques and Methods 6-A37, 44 p.

Texas Water Code, 2011, http://www.statutes.legis.state.tx.us/docs/WA/pdf/WA.36.pdf

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 APPENDIX A Page 20 of 23*

APPENDIX A

Critical Clarifications requested by the TWDB (need additional files or potential update to legal DFC Resolutions):

- 1. Based on TWDB analysis of the High Plains Aquifer System model files provided by the GMA 1 consultant (INTERA, Inc.), some DFCs are unachievable with respect to the current legal phrasing of the DFC Resolution. The TWDB is requesting the following tolerances:
 - A tolerance of 1% for GMA 1 DFCs defined by percent volume in storage remaining in the Ogallala Aquifer (inclusive of Rita Blanca Aquifer).
 - A tolerance of 1% for GMA 1 DFCs defined by percent available drawdown remaining in the Dockum Aquifer.

Please confirm that the GMA is willing to accept the tolerance clarifications requested above. Alternatively, the GMA or GMA consultant may provide revised High Plains Aquifer System model files for TWDB to review or may revise the DFC Resolution so that the DFCs are achievable without requiring a tolerance.

Other Clarifications requested by the TWDB (need acknowledgement):

Note that the tolerances in Clarification #1 were derived from calculations using the following assumptions. If the GMA disagrees with the following assumptions, the requested tolerances may no longer be sufficient for TWDB to declare the DFCs achievable and further action may be required.

Ogallala (inclusive of Rita Blanca) Aquifer:

- 2. Please confirm that the phrase "percent of volume in storage remaining for each 50year period between 2018 and 2080" in the DFC Resolution means "the percent of volume remaining in storage averaged over all thirteen 50-year time periods starting from 2018 to 2068 through 2030 to 2080." This interpretation produces calculated storage values consistent with the DFC values provided in the Explanatory Report and supplemental documents provided by the GMA 1 consultant.
- 3. Please confirm that the phrase "total average drawdown for each 50-year period between 2012 and 2080" in the DFC Resolution means "the total average drawdown averaged over all nineteen 50-year time periods starting from 2012 to 2062 through 2030 to 2080. This interpretation produces calculated drawdown values consistent with the DFC values provided in the Explanatory Report and supplemental documents provided by the GMA 1 consultant.
- 4. Please confirm that the GMA accepts the following assumptions for calculating modeled drawdown: 1) modeled dry cells are excluded from the calculations, 2) only active model cells within official TWDB aquifer boundaries are included in calculations, and 3) averages are calculated over the entire multi-county area defined

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 APPENDIX A Page 21 of 23*

within the resolutions rather than by individual county within those areas. This method produces drawdown values consistent with the DFC values provided in the Explanatory Report and supplemental documents provided by the GMA 1 consultant.

Dockum Aquifer:

- 5. Please confirm that the phrase "percent of the average available drawdown remaining for each 50-year period between 2018 and 2080" in the DFC Resolution means "the percent of the average available drawdown remaining averaged over all thirteen 50-year time periods starting from 2018 to 2068 through 2030 to 2080." This method produces calculated storage values consistent with the DFC values provided in the Explanatory Report and supplemental documents provided by the GMA 1 consultant.
- 6. Please confirm that the phrase "average decline in water levels for each 50-year period between 2018 and 2080" in the DFC Resolution means "the average decline in water levels averaged over all thirteen 50-year time periods starting from 2018 to 2068 through 2030 to 2080". This method produces calculated storage values consistent with the DFC values provided in the Explanatory Report and supplemental documents provided by the GMA 1 consultant.
- 7. Please confirm that the phrase "average decline in water levels for each 50-year period between 2012 and 2080" in the DFC Resolution means "the average decline in water levels averaged over all nineteen 50-year time periods starting from 2012 to 2062 through 2030 to 2080. This method produces calculated storage values consistent with the DFC values provided in the Explanatory Report and supplemental documents provided by the GMA 1 consultant.
- 8. Please confirm that the GMA accepts the following assumptions for calculating modeled drawdowns: 1) modeled dry cells are excluded from the calculations, 2) only active model cells within official TWDB aquifer boundaries are included in calculations, and 3) averages are calculated over the entire multi-county area defined within the resolutions rather than by individual county within those areas. This method produces drawdown values consistent with the DFC values provided in the Explanatory Report and supplemental documents provided by the GMA 1 consultant.

Optional Clarifications requested by the TWDB (*Typos in Explanatory Report*)⁶:

None

⁶ Since the TWDB considers the legal DFC Resolution documents, rather than the Explanatory Report, as the official definition of DFCs, the TWDB does not officially require corrections to the Explanatory Report. However, because the Explanatory Report is often used as a simplified, more-readable summary of the legal DFC Resolution documents, we recommend correcting the Explanatory Report to match the DFC Resolutions in order to avoid confusion.

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 APPENDIX A Page 22 of 23*

Informational

For reference, the tables below show the averaged results of DFC analysis calculations provided by the GMA 1 consultant and verified by TWDB for the currently unachievable DFCs:

Bulleted	Percent of volume in storage remaining for each 50- year period between 2018 and 2080					
Resolutions	DFC	Calculated from model				
Ogallala Bullet #2*	>= 50%	49%				
Ogallala Bullet #3**	>= 80%	79%				

* Refers to Hansford, Hutchinson, Lipscomb, Ochiltree, Carson, Donley, Gray, Roberts, Wheeler, and Oldham counties; and within the Panhandle District portions of Armstrong and Potter counties ** refers to Hemphill County

Resolution Section	Percent of average available drawdown remaining for each 50-year period between 2018 and 2080					
	DFC	Calculated from model				
Dockum Bullet #1*	>= 40%	39%				

* Refers to Dallam, Hartley, Moore, and Sherman counties.

GAM Run 21-007 MAG: Modeled Available Groundwater for the High Plains Aquifer System in Groundwater Management Area 1 *February 28, 2023 APPENDIX A Page 23 of 23*

FIGURE A1. LETTER OF AGREEMENT FROM THE GROUNDWATER MANAGEMENT AREA 1 TECHNICAL COORDINATOR FOR CLARIFICATIONS ON PROCEDURES AND ASSUMPTIONS OF THEIR DESIRED FUTURE CONDITIONS RESOLUTION STATEMENTS.

November 10, 2022

Robert G. Bradley, PG, CTCM Groundwater Technical Assistance Texas Water Development Board P.O. Box 13231 Austin, Texas 78711

Dear Mr. Bradley,

Thank you for reaching out to clarify the Desired Future Conditions adopted by the groundwater conservation districts in Groundwater Management Area 1 (GMA 1). The GMA 1 technical consultant and the managers from Hemphill County Underground Water Conservation District, High Plains Underground Water Conservation District, and Panhandle Groundwater Conservation District reviewed the clarifications document attached to this correspondence.

The Districts in GMA 1 agree that the approach presented by the TWDB staff including the tolerances below are consistent with our intent when adopting DFCs:

- A tolerance of 1% for GMA 1 DFCs defined by percent volume in storage remaining in the Ogallala Aquifer (inclusive of Rita Blanca Aquifer).
- A tolerance of 1% for GMA 1 DFCs defined by percent available drawdown remaining in the Dockum Aquifer.

We agree with the TWDB staff assumptions presented in the "Other Clarifications" section of your note on November 9, 2022, relating to Ogallala, Rita Blanca and Dockum aquifers.

We look forward to TWDB's determination of administrative completeness and estimation of modeled available groundwater. If there is anything else we can do to help in this process, please let me know.

Sincerely,

Steven D. Walthour, PG General Manager

CC. Janet Guthrie – Hemphill County Underground Water Conservation District Britney Britten – Panhandle Groundwater Conservation District Jason Coleman– High Plains Underground Water Conservation District Wade Oliver - Intera

Attachment

603 East 1º Street PO Box 795 Dumas, TX 79029 (806) 935-56401 Phone (806) 935-5633 Fax www.northplainsgcd.org

Appendix 6

Coordination letters with regional surface water management entities

Britney Britten

From: Sent: To: Subject: Attachments: Britney Britten Wednesday, July 26, 2023 4:19 PM randy.whiteman@rra.texas.gov PGCD - MAG Amended Management Plan PGCD Management Plan - for Final Review.pdf

Good Afternoon Mr. Whiteman -

Please see the attached amended Management Plan that was adopted today by Panhandle Groundwater Conservation District's Board of Directors. This fulfills our requirement to update our management plan before the second anniversary of the adoption of the desired future conditions by the management area.

If you have any questions or comments, please let me know.

Office: 806,883,2501 op1, 2 Cell: 806,898,0128

Thanks,

BRITNEY BRITTEN General Manager 201 W Third Street, white Deer, TX 79097

IDLE GROUNDWATER

1

Britney Britten

From: Sent: To: Subject: Attachments: Britney Britten Wednesday, July 26, 2023 4:20 PM Drew Satterwhite PGCD Amended Management Plan PGCD Management Plan - for Final Review.pdf

Good Afternoon Mr. Satterwhite -

Please see the attached amended Management Plan that was adopted today by Panhandle Groundwater Conservation District's Board of Directors. This fulfills our requirement to update our management plan before the second anniversary of the adoption of the desired future conditions by the management area.

If you have any questions or comments, please let me know.

Thanks,

General Manager

Office: 606.883.2501 opt. 2 Cell: 806.898.0128 www.pgcd.us Conterving Water for Future Generations

Britney Britten

From: Sent: To: Subject: Attachments: Britney Britten Wednesday, July 26, 2023 4:21 PM Bobbie Kidd PGCD - Amended Management Plan Signed Final Agenda- July 26,2023.pdf

Good Afternoon Mr. Kidd -

Please see the attached amended Management Plan that was adopted today by Panhandle Groundwater Conservation District's Board of Directors. This fulfills our requirement to update our management plan before the second anniversary of the adoption of the desired future conditions by the management area.

If you have any questions or comments, please let me know.

Thanks,

BRITNEY BRITTEN General Manager

201 W Third Street, White Deer, TX 79097 Office: 806.885.2501 opt. 2 Cell: 806.898.0128 www.pgcd.us Centering Wear to The Proceeding