GAM RUN 15-008: MENARD COUNTY UNDERGROUND WATER DISTRICT MANAGEMENT PLAN

by Radu Boghici, P.G.
Texas Water Development Board
Groundwater Resources Division
Groundwater Availability Modeling Section
(512) 463-5808
July 2, 2015
This page is intentionally blank
EXECUTIVE SUMMARY:

Texas State Water Code, Section 36.1071, Subsection (h) (Texas Water Code, 2011), states that, in developing its groundwater management plan, a groundwater conservation district shall use groundwater availability modeling information provided by the executive administrator of the Texas Water Development Board (TWDB) in conjunction with any available site-specific information provided by the district for review and comment to the executive administrator. Information derived from groundwater availability models that shall be included in the groundwater management plan includes:

- the annual amount of recharge from precipitation to the groundwater resources within the district, if any;
- for each aquifer within the district, the annual volume of water that discharges from the aquifer to springs and any surface water bodies, including lakes, streams, and rivers; and
- the annual volume of flow into and out of the district within each aquifer and between aquifers in the district.

This report—Part 2 of a two-part package of information from the TWDB to the Menard County Underground Water District—fulfills the requirements noted above. Part 1 of the two-part package is the Estimated Historical Water Use/State Water Plan data report. The District will receive this data report from the TWDB Groundwater Technical Assistance Section. Questions about the data report can be directed to Mr. Stephen Allen, stephen.allen@twdb.texas.gov, (512) 463-7317.
The groundwater management plan for the Menard County Underground Water District should be adopted by the district on or before December 19, 2016 and submitted to the executive administrator of the TWDB on or before January 18, 2017. The current management plan for the Menard County Underground Water District expires on March 19, 2017.

This report discusses the methods, assumptions, and results from model runs using the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers (Anaya and Jones, 2009). This model run replaces the results of GAM Run 11-013 (Anaya, 2011). GAM Run 15-008 meets current standards set after the release of GAM Run 11-013.

Table 1 summarizes the groundwater availability model data required by statute, and Figure 1 shows the area of the model from which the values in Table 1 were extracted. If after review of the figure, the Menard County Underground Water District determines that the district boundaries used in the assessment do not reflect current conditions, please notify the TWDB at your earliest convenience.

Per statute, TWDB is required to provide the District with data from the official groundwater availability model; however, TWDB also approved, for planning purposes, an alternative model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers (Hutchison and others, 2011). Please contact the author of this report if a comparison table using the alternative model is desired. The Hickory and Ellenburger-San Saba aquifers also underlie the District; however, a groundwater availability model for these aquifers in still under development. Information on the Hickory and Ellenburger-San Saba aquifers is being provided separately from the Groundwater Technical Assistance Section of the TWDB.

METHODS:

In accordance with the provisions of the Texas State Water Code, Section 36.1071, Subsection (h), the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers (Anaya and Jones, 2009) was run for this analysis. Menard County Underground Water District water budgets were extracted for the historical model periods (1981 through 2000) for the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers using ZONEBUDGET Version 3.01 (Harbaugh, 2009). The average annual water budget values for recharge, discharge to surface waterbodies, inflow to the district, outflow from the district, net inter-aquifer flow (upper), and net inter-aquifer flow (lower) for the portion of the aquifer located within the district are summarized in this report.
PARAMETERS AND ASSUMPTIONS:

Edwards-Trinity (Plateau) Aquifer

- We used version 1.01 of the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers. See Anaya and Jones (2009) for assumptions and limitations of the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers. The Pecos Valley Aquifer does not occur within Menard County Underground Water District and therefore no groundwater budget values are included for it in this report.

- This groundwater availability model includes two layers within Menard County Underground Water District, which generally represent the Edwards Group (Layer 1) and the Trinity Group (Layer 2) of the Edwards-Trinity (Plateau) Aquifer. Individual water budgets for the District were determined for the Edwards-Trinity (Plateau) Aquifer (Layer 1 and Layer 2 combined).

- For Menard County Underground Water District, groundwater in the Edwards-Trinity (Plateau) Aquifer is generally fresh, with total dissolved solids of less than 500 milligrams per liter in nearly 85 percent of the entries in the TWDB groundwater database. (TWDB Groundwater Database, queried June 8, 2015).

- The model was run with MODFLOW-96 (Harbaugh and McDonald, 1996).

RESULTS:

A groundwater budget summarizes the amount of water entering and leaving the aquifer according to the groundwater availability model. Selected groundwater budget components listed below were extracted from the model results for the aquifers located within the district and averaged over the duration of the calibration and verification portion of the model run in the district, as shown in Table 1.

- Precipitation recharge—The areally distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district.

- Surface water outflow—The total water discharging from the aquifer (outflow) to surface water features such as streams, reservoirs, and springs.

- Flow into and out of district—The lateral flow within the aquifer between the district and adjacent counties.
- Flow between aquifers—The net vertical flow between the aquifer and adjacent aquifers or confining units. This flow is controlled by the relative water levels in each aquifer or confining unit and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs.

It is important to note that sub-regional water budgets are not exact. This is due to the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as a district or county boundary, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located.

Please note that the results of this model run are different from the results of the model run 11-013 (Anaya, 2011) that were obtained solely from the alternate groundwater availability model (Hutchison and others, 2011). The changes can be attributed to several characteristics of the new model, such as differences in model extent and layering, model base and top elevations, aquifer recharge, hydraulic conductivity, anisotropy, and aquifer storage.
FIGURE 1: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE EDWARDS-TRINITY (PLATEAU) AQUIFER FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED.
TABLE 1: SUMMARIZED INFORMATION FOR THE EDWARDS-TRINITY (PLATEAU) AQUIFER THAT IS NEEDED FOR THE MENARD COUNTY UNDERGROUND WATER DISTRICT’S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT.

<table>
<thead>
<tr>
<th>Management Plan requirement</th>
<th>Aquifer or confining unit</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated annual amount of recharge from precipitation to the district</td>
<td>Edwards-Trinity (Plateau) Aquifer</td>
<td>19,258</td>
</tr>
<tr>
<td>Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers</td>
<td>Edwards-Trinity (Plateau) Aquifer</td>
<td>20,347</td>
</tr>
<tr>
<td>Estimated annual volume of flow into the district within each aquifer in the district</td>
<td>Edwards-Trinity (Plateau) Aquifer</td>
<td>10,201</td>
</tr>
<tr>
<td>Estimated annual volume of flow out of the district within each aquifer in the district</td>
<td>Edwards-Trinity (Plateau) Aquifer</td>
<td>10,284</td>
</tr>
<tr>
<td>Estimated net annual volume of flow between each aquifer in the district</td>
<td>Edwards-Trinity (Plateau) Aquifer into/from adjacent formations</td>
<td>*Not Applicable</td>
</tr>
</tbody>
</table>

* The model assumes a no flow at the base of the aquifer.
LIMITATIONS:

The groundwater model(s) used in completing this analysis is the best available scientific tool that can be used to meet the stated objective(s). To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

“Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results.”

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and interaction with streams are specific to particular historic time periods.

Because the application of the groundwater models was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations related to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.
REFERENCES:

Anaya, R., and Jones, I., 2009, Groundwater Availability Model for the Edwards-Trinity (Plateau) and Pecos Valley Aquifers of Texas: Texas Water Development Board Report 373, 103 p.,

Hutchison, W. R., Jones, I., and Anaya, R., 2011, Update of the Groundwater Availability Model for the Edwards-Trinity (Plateau) and Pecos Valley Aquifers of Texas, 60 p.,

Texas Water Code, 2011,